prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import logging import os import sys import pandas as pd import pytest import handy as hd log: logging.Logger @pytest.fixture def setup_logging(): logging.basicConfig(level=logging.INFO, stream=sys.stdout) global log log = logging.getLogger('handy test') log.setLevel(logging.INFO) return log def test_nothing(setup_logging): global log # this is to show how to use logging with pycharm + pytest # it will be printed if pytest is run with options `-p no:logging -s` # Add them to "Additional Arguments" in your Run Configuration or # Run Configuration Template for pytest print('\nignore the communicates from this method. This is test.') print('this is how to print to console, without logging') log.warning('Just a test warning message. Ignore it.') log.warning('This is how to print a warning with logging') log.info('This is how to print an info with logging') assert True, "dummy assertion" def test_round_up(): assert hd.round_up(98) == 100 assert hd.round_up(55) == 60 assert hd.round_up(10) == 10 assert hd.round_up(345) == 400 def test_tidy_bins(): assert hd.tidy_bins([21,35,92], 4).tolist() == [0,25,50,75,100] assert hd.tidy_bins([21,35,92]).tolist() == [0,10,20,30,40,50,60,70,80,90,100] assert hd.tidy_bins([21,35,92], 5).tolist() == [0,20,40,60,80,100] def test_to_datetime(): days = ['2021-04-05 00:00', # Mon '2021-04-10 11:46', # Sat '2021-04-11 23:59' # Sun ] df = pd.DataFrame({'input': days}) df = hd.to_datetime(df, input_column='input', output_column='output') assert df.output[2] ==
pd.to_datetime(days[2])
pandas.to_datetime
#!/usr/bin/env python # -*- coding: utf-8 -*- from . import _unittest as unittest try: import pandas except ImportError: pandas = None from datatest._compatibility.collections.abc import Iterator from datatest._utils import IterItems from datatest._vendor.repeatingcontainer import RepeatingContainer class TestRepeatingContainer(unittest.TestCase): def test_init_sequence(self): group = RepeatingContainer([1, 2, 3]) self.assertEqual(group._keys, ()) self.assertEqual(group._objs, (1, 2, 3)) def test_init_mapping(self): data = {'a': 1, 'b': 2, 'c': 3} group = RepeatingContainer(data) self.assertEqual(group._keys, tuple(data.keys())) self.assertEqual(group._objs, tuple(data.values())) def test_init_iteritems(self): keys = ('a', 'b', 'c') values = (1, 2, 3) group = RepeatingContainer(IterItems(zip(keys, values))) self.assertEqual(group._keys, keys) self.assertEqual(group._objs, values) def test_init_exceptions(self): with self.assertRaises(TypeError): RepeatingContainer(123) with self.assertRaises(ValueError): RepeatingContainer('abc') def test_iter_sequence(self): group = RepeatingContainer([1, 2, 3]) self.assertIsInstance(iter(group), Iterator) self.assertNotIsInstance(iter(group), IterItems) self.assertEqual(list(group), [1, 2, 3]) def test_iter_mapping(self): group = RepeatingContainer({'a': 1, 'b': 2, 'c': 3}) self.assertIsInstance(iter(group), IterItems) self.assertEqual(set(group), set([('a', 1), ('b', 2), ('c', 3)])) def test_repr(self): group = RepeatingContainer([1, 2, 3]) self.assertEqual(repr(group), 'RepeatingContainer([1, 2, 3])') group = RepeatingContainer([1, 2]) group._keys = ['a', 'b'] self.assertEqual(repr(group), "RepeatingContainer({'a': 1, 'b': 2})") def test_repr_long(self): # Get longest element repr that should fit on one line. single_line_max = 79 - len(RepeatingContainer.__name__) - len("([''])") # Exactly up-to single-line limit. value = 'a' * single_line_max group = RepeatingContainer([value]) self.assertEqual(len(repr(group)), 79) self.assertEqual( repr(group), "RepeatingContainer(['{0}'])".format(value), ) # Multi-line repr (one char over single-line limit) value = 'a' * (single_line_max + 1) group = RepeatingContainer([value]) self.assertEqual(len(repr(group)), 84) self.assertEqual( repr(group), "RepeatingContainer([\n '{0}'\n])".format(value), ) def test_getattr(self): class ExampleClass(object): attr = 123 group = RepeatingContainer([ExampleClass(), ExampleClass()]) group = group.attr self.assertIsInstance(group, RepeatingContainer) self.assertEqual(group._objs, (123, 123)) def test_compatible_container(self): # Test RepeatingContainer of list items. group = RepeatingContainer([2, 4]) self.assertTrue( group._compatible_container(RepeatingContainer([5, 6])), msg='is RepeatingContainer and _objs length matches', ) self.assertFalse( group._compatible_container(1), msg='non-RepeatingContainer values are never compatible', ) self.assertFalse( group._compatible_container(RepeatingContainer([5, 6, 7])), msg='not compatible when _objs length does not match', ) self.assertFalse( group._compatible_container(RepeatingContainer({'foo': 5, 'bar': 6})), msg='not compatible if keys are given but original has no keys', ) # Test RepeatingContainer of dict items. group = RepeatingContainer({'foo': 2, 'bar': 4}) self.assertTrue( group._compatible_container(RepeatingContainer({'foo': 5, 'bar': 6})), msg='is RepeatingContainer and _keys match', ) self.assertFalse( group._compatible_container(RepeatingContainer({'qux': 5, 'quux': 6})), msg='not compatible if keys do not match', ) def test_normalize_value(self): group = RepeatingContainer([2, 4]) result = group._normalize_value(5) self.assertEqual( result, (5, 5), msg='value is expanded to match number of _objs', ) result = group._normalize_value(RepeatingContainer([5, 6])) self.assertEqual( result, (5, 6), msg='compatible RepeatingContainers are unwrapped rather than expanded', ) other = RepeatingContainer([5, 6, 7]) result = group._normalize_value(other) self.assertIsInstance( result, tuple, msg='incompatible RepeatingContainers are expanded like other values', ) self.assertEqual(len(result), 2) equals_other = super(other.__class__, other).__eq__ self.assertTrue(equals_other(result[0])) self.assertTrue(equals_other(result[1])) group = RepeatingContainer([2, 4]) group._keys = ['foo', 'bar'] other = RepeatingContainer([8, 6]) other._keys = ['bar', 'foo'] # <- keys in different order result = group._normalize_value(other) self.assertEqual( result, (6, 8), # <- reordered to match `group` msg='result order should match key names, not _obj position', ) def test_expand_args_kwds(self): argsgroup = RepeatingContainer([2, 4]) kwdsgroup = RepeatingContainer([2, 4]) kwdsgroup._keys = ['foo', 'bar'] # Unwrap RepeatingContainer. result = argsgroup._expand_args_kwds(RepeatingContainer([5, 6])) expected = [ ((5,), {}), ((6,), {}), ] self.assertEqual(result, expected) # Expand int and unwrap RepeatingContainer. result = argsgroup._expand_args_kwds(1, RepeatingContainer([5, 6])) expected = [ ((1, 5), {}), ((1, 6), {}), ] self.assertEqual(result, expected) # Unwrap two RepeatingContainer. result = argsgroup._expand_args_kwds( x=RepeatingContainer([5, 6]), y=RepeatingContainer([7, 9]), ) expected = [ ((), {'x': 5, 'y': 7}), ((), {'x': 6, 'y': 9}), ] self.assertEqual(result, expected) # Kwdsgroup expansion. kwdgrp2 = RepeatingContainer([5, 6]) kwdgrp2._keys = ['foo', 'bar'] # Unwrap keyed RepeatingContainer. result = kwdsgroup._expand_args_kwds(kwdgrp2) expected = [ ((5,), {}), ((6,), {}), ] self.assertEqual(result, expected) # Unwrap keyed RepeatingContainer with keys in different order. kwdgrp_reverse = RepeatingContainer([6, 5]) kwdgrp_reverse._keys = ['bar', 'foo'] result = kwdsgroup._expand_args_kwds(kwdgrp_reverse) expected = [ ((5,), {}), ((6,), {}), ] self.assertEqual(result, expected) # Expand int and unwrap keyed RepeatingContainer. result = kwdsgroup._expand_args_kwds(1, kwdgrp2) expected = [ ((1, 5), {}), ((1, 6), {}), ] self.assertEqual(result, expected) # Sanity-check/quick integration test (all combinations). result = kwdsgroup._expand_args_kwds('a', RepeatingContainer({'foo': 'b', 'bar': 'c'}), x=1, y=RepeatingContainer({'bar': 4, 'foo': 2})) expected = [ (('a', 'b'), {'x': 1, 'y': 2}), (('a', 'c'), {'x': 1, 'y': 4}), ] self.assertEqual(result, expected) def test__getattr__(self): number = complex(2, 3) group = RepeatingContainer([number, number]) group = group.imag # <- Gets `imag` attribute. self.assertEqual(group._objs, (3, 3)) def test__call__(self): group = RepeatingContainer(['foo', 'bar']) result = group.upper() self.assertIsInstance(result, RepeatingContainer) self.assertEqual(result._objs, ('FOO', 'BAR')) def test_added_special_names(self): """Test some of the methods that are programmatically added to RepeatingContainer by the _setup_RepeatingContainer_special_names() function. """ group = RepeatingContainer(['abc', 'def']) result = group + 'xxx' # <- __add__() self.assertIsInstance(result, RepeatingContainer) self.assertEqual(result._objs, ('abcxxx', 'defxxx')) result = group[:2] # <- __getitem__() self.assertIsInstance(result, RepeatingContainer) self.assertEqual(result._objs, ('ab', 'de')) def test_added_reflected_special_names(self): result = 100 + RepeatingContainer([1, 2]) # <- __radd__() self.assertIsInstance(result, RepeatingContainer) self.assertEqual(result._objs, (101, 102)) # When the reflected method is missing, the unreflected method of # the *other* value is re-called on the RepeatingContainer's contents. # The following test case does this with strings. Since 'str' does not # have an __radd__() method, this calls the unreflected __add__() # of the original string. result = 'xxx' + RepeatingContainer(['abc', 'def']) # <- unreflected __add__() self.assertIsInstance(result, RepeatingContainer) self.assertEqual(result._objs, ('xxxabc', 'xxxdef')) def test_repeatingcontainer_argument_handling(self): # Unwrapping RepeatingContainer args with __add__(). group_of_ints1 = RepeatingContainer([50, 60]) group_of_ints2 = RepeatingContainer([5, 10]) group = group_of_ints1 + group_of_ints2 self.assertEqual(group._objs, (55, 70)) # Unwrapping RepeatingContainer args with __getitem__(). group_of_indexes = RepeatingContainer([0, 1]) group_of_strings = RepeatingContainer(['abc', 'abc']) group = group_of_strings[group_of_indexes] self.assertEqual(group._objs, ('a', 'b')) class TestRepeatingContainerBaseMethods(unittest.TestCase): def setUp(self): self.group1 = RepeatingContainer(['foo', 'bar']) self.group2 = RepeatingContainer(['foo', 'baz']) def test__eq__(self): # Comparing contents of RepeatingContainer (default behavior). result = (self.group1 == self.group2) # <- Call to __eq__(). self.assertIsInstance(result, RepeatingContainer) self.assertEqual(tuple(result), (True, False)) # Comparing RepeatingContainer objects themselves. result = super(RepeatingContainer, self.group1).__eq__(self.group1) self.assertIs(result, True) result = super(RepeatingContainer, self.group1).__eq__(self.group2) self.assertIs(result, False) def test__ne__(self): # Comparing contents of RepeatingContainer (default behavior). result = (self.group1 != self.group2) # <- Call to __ne__(). self.assertIsInstance(result, RepeatingContainer) self.assertEqual(tuple(result), (False, True)) # Comparing RepeatingContainer objects themselves. result = super(RepeatingContainer, self.group1).__ne__(self.group2) self.assertIs(result, True) result = super(RepeatingContainer, self.group1).__ne__(self.group1) self.assertIs(result, False) class TestNestedExample(unittest.TestCase): """Quick integration test using nested RepeatingContainers.""" def setUp(self): self.group = RepeatingContainer([ RepeatingContainer({'foo': 'abc', 'bar': 'def'}), 'ghi', ]) def test_method(self): result1, result2 = self.group.upper() self.assertEqual(dict(result1), {'foo': 'ABC', 'bar': 'DEF'}) self.assertEqual(result2, 'GHI') def test_magic_method(self): result1, result2 = self.group + 'XYZ' self.assertEqual(dict(result1), {'foo': 'abcXYZ', 'bar': 'defXYZ'}) self.assertEqual(result2, 'ghiXYZ') def test_unreflected_magic_method(self): result1, result2 = 'XYZ' + self.group self.assertEqual(dict(result1), {'foo': 'XYZabc', 'bar': 'XYZdef'}) self.assertEqual(result2, 'XYZghi') def test_deeply_nested(self): group = RepeatingContainer([ RepeatingContainer([ RepeatingContainer(['abc', 'def']), RepeatingContainer(['abc', 'def']), ]), RepeatingContainer([ RepeatingContainer(['abc', 'def']), RepeatingContainer(['abc', 'def']) ]) ]) result = group + ('xxx' + group.upper()) # <- Operate on RepeatingContainer. # Unpack various nested values. subresult1, subresult2 = result subresult1a, subresult1b = subresult1 subresult2a, subresult2b = subresult2 self.assertEqual(subresult1a._objs, ('abcxxxABC', 'defxxxDEF')) self.assertEqual(subresult1b._objs, ('abcxxxABC', 'defxxxDEF')) self.assertEqual(subresult2a._objs, ('abcxxxABC', 'defxxxDEF')) self.assertEqual(subresult2b._objs, ('abcxxxABC', 'defxxxDEF')) @unittest.skipUnless(pandas, 'requires pandas') class TestPandasExample(unittest.TestCase): """Quick integration test using a RepeatingContainer of DataFrames.""" def setUp(self): data = pandas.DataFrame({ 'A': ('x', 'x', 'y', 'y', 'z', 'z'), 'B': ('foo', 'foo', 'foo', 'bar', 'bar', 'bar'), 'C': (20, 30, 10, 20, 10, 10), }) self.group = RepeatingContainer([data, data]) def test_summed_values(self): result = self.group['C'].sum() self.assertEqual(tuple(result), (100, 100)) def test_selected_grouped_summed_values(self): result = self.group[['A', 'C']].groupby('A').sum() expected = pandas.DataFrame( data={'C': (50, 30, 20)}, index=pandas.Index(['x', 'y', 'z'], name='A'), ) df1, df2 = result # Unpack results. pandas.testing.assert_frame_equal(df1, expected)
pandas.testing.assert_frame_equal(df2, expected)
pandas.testing.assert_frame_equal
import dash import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc from dash.dependencies import Input, Output, State import plotly.graph_objs as go import plotly.express as px import numpy as np import pandas as pd # adding an CSS stylesheet external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] # initilaise dash_html_components app = dash.Dash(__name__, external_stylesheets = external_stylesheets) server = app.server # now read the data to it df =
pd.read_csv('restaurants_zomato.csv', encoding='ISO-8859-1')
pandas.read_csv
from flask import Flask, render_template,request, url_for, redirect import plotly import plotly.graph_objs as go import pandas as pd import numpy as np import json import functions with open('data/users.json', 'r', errors='ignore') as f: data = json.load(f) users = pd.DataFrame(data) with open('data/problems.json', 'r', errors='ignore') as f: data = json.load(f) problems =
pd.DataFrame(data)
pandas.DataFrame
import numpy as np import pandas as pd import pytest from pandas.testing import assert_series_equal from src.policies.single_policy_functions import _interpolate_activity_level from src.policies.single_policy_functions import reduce_recurrent_model from src.policies.single_policy_functions import reduce_work_model from src.policies.single_policy_functions import reopen_other_model from src.policies.single_policy_functions import shut_down_model @pytest.fixture def fake_states(): states = pd.DataFrame(index=np.arange(10)) states["state"] = ["Bayern", "Berlin"] * 5 # date at which schools are open in Berlin but closed in Bavaria # date with uneven week number, i.e. where group a attends school states["date"] = pd.Timestamp("2020-04-23") states["school_group_a"] = [0, 1] * 5 states["occupation"] = pd.Categorical( ["school"] * 8 + ["preschool_teacher", "school_teacher"] ) states["educ_worker"] = [False] * 8 + [True] * 2 states["age"] = np.arange(10) return states def test_shut_down_model_non_recurrent(): contacts = pd.Series(np.arange(3)) states = pd.DataFrame(index=["a", "b", "c"]) calculated = shut_down_model(states, contacts, 123, is_recurrent=False) expected =
pd.Series(0, index=["a", "b", "c"])
pandas.Series
import copy import csv import gzip import logging import os import re import subprocess import tempfile from collections import defaultdict from multiprocessing import Pool from pathlib import Path import numpy as np import pandas as pd import tqdm from Bio import SeqIO from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord from centreseq.bin.core.accessories import run_subprocess main_log = logging.getLogger('main_log') def read_seqs(infile, filter_list=None): """ Reads up sequences from a path to a fasta file :param infile: path to fasta file :param filter_list: Strings that should be in the description of the sequences :return: a list of strings """ r = [] f = open_possible_gzip(infile) for seq in SeqIO.parse(f, "fasta"): if filter_list is not None: assert isinstance(filter_list, list) if any([x in seq.description for x in filter_list]): r.append(seq) else: r.append(seq) f.close() return r def faster_fasta_searching(infile, filter_list=[]): """ Loads up a fasta file into a list. Much faster than using SeqIO :param infile: fasta infile :param filter_list: a list of sequence ids you want to keep. If you want to keep everything pass [] :return: """ skip = True gene_name = "" gene_description = "" seq = "" seqs_all = [] f = open_possible_gzip(infile) for line in f: if line[0] == ">": # Resolve last gene if (filter_list == []) | (gene_name in filter_list): seqs_all.append(SeqRecord(Seq(seq), id=gene_name, name=gene_name, description=gene_description)) # Initialize new gene seq = "" gene_name = line.split(" ")[0].lstrip(">") gene_description = line.rstrip("\n") # If we want everything if filter_list == []: skip = False else: # Keep this gene if gene_name in filter_list: skip = False else: skip = True elif skip: continue else: # Add sequence to the string seq += line.rstrip("\n") f.close() # Resolve the final gene if (filter_list == []) | (gene_name in filter_list): seqs_all.append(SeqRecord(Seq(seq), id=gene_name, name=gene_name, description=gene_description)) return seqs_all def open_possible_gzip(infile, flags="rt"): """ Opens a file handle for a gzipped or non-zipped file :param infile: Path to file :param flags: :return: file handle """ infile = str(infile) if re.search("\.gz$", infile): f = gzip.open(infile, flags) else: f = open(infile, flags) return f def write_seqs_to_file(seq_list, outfile_seq=None): """ Write sequences to file. If not file is given then this is written to a tempfile :param seq_list: a list of sequence objects :param outfile_seq: outfile path :return: the name of the output file """ if outfile_seq is None: outfile_seq = tempfile.NamedTemporaryFile(suffix=".fasta", delete=False).name with open(outfile_seq, "w") as f: SeqIO.write(seq_list, f, "fasta") return outfile_seq def run_mmseqs(seqs1, seqs2): """ Equivalent to blast_seqs() but uses mmseqs and thus is much faster :param seqs1: list of sequences to compare :param seqs2: list of sequence to be compared against :return: """ query_fasta = write_seqs_to_file(seqs1) target_fasta = write_seqs_to_file(seqs2) outfile = Path(tempfile.gettempdir()) / (next(tempfile._get_candidate_names()) + ".dat") tmpdir = tempfile.TemporaryDirectory() # This needs at least mmseqs v8 result = subprocess.run(["mmseqs"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) # m = re.search("MMseqs2 Version: ([0-9])\..+", result.stdout.decode('utf-8')) # assert m, "Can't read your mmseqs version, requires at least version 8" # assert int(m.group(1)) >= 8, "Require mmseqs at least version 8" cmd = f"mmseqs easy-search {query_fasta} {target_fasta} {outfile} {tmpdir.name} --threads 1 --split-memory-limit {max_mem_use} --search-type 3" run_subprocess(cmd, get_stdout=True) with open(outfile) as f: mmseqs_output = f.read().rstrip("\n") # I've renamed these for consistency with blast output columns = "qseqid,sseqid,pident,alnlen,mismatch,gapopen,qstart,qend,tstart,tend,evalue,bitscore".split(",") return mmseqs_output, columns def load_pangenome_list(pangenome_list: list): """ Takes a putative core genome list and load it up Checks whether there are any paralogs, and therefore, if we need to run the algorithm :param pangenome_list: a list of gene names """ # Default is no change update = False # Check if we have any paralogs, and thus, need to update for item in pangenome_list: if
pd.isnull(item)
pandas.isnull
# coding: utf-8 # ### Import # In[1]: from bs4 import BeautifulSoup import requests import numpy as np import pandas as pd import xgboost import xgboost as xgb from xgboost.sklearn import XGBClassifier from sklearn.metrics import * from IPython.core.display import Image from sklearn.datasets import make_classification from sklearn.ensemble import ExtraTreesClassifier from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import confusion_matrix from sklearn.tree import export_graphviz import io from sklearn.preprocessing import Imputer import pydot from sklearn import preprocessing import lightgbm as lgb from scipy.stats import mode import re from datetime import datetime from lightgbm import plot_importance import warnings warnings.filterwarnings('ignore') # --- # ### Date read # In[12]: age_gender_bkts = pd.read_csv("age_gender_bkts.csv") countries = pd.read_csv("countries.csv") sessions = pd.read_csv("sessions.csv") test_users = pd.read_csv("test_users.csv") train_users_2 = pd.read_csv("train_users_2.csv") sample_submission_NDF = pd.read_csv("sample_submission_NDF.csv") merged_sessions = pd.read_csv("merged_sessions.csv") # --- # ### Date setting - Base1 # In[13]: def pre_age_set_data(train_users_2, test_users): check = pd.concat([train_users_2, test_users], ignore_index=True) check["first_affiliate_tracked"] = check["first_affiliate_tracked"].replace(np.nan, "untracked") check["date_account_created"] = pd.to_datetime(check["date_account_created"], format = "%Y-%m-%d") check["timestamp_first_active"] = pd.to_datetime(check["timestamp_first_active"], format="%Y%m%d%H%M%S") s_lag = check["timestamp_first_active"] - check["date_account_created"] check["lag_days"] = s_lag.apply(lambda x : -1 * x.days) check["lag_seconds"] = s_lag.apply(lambda x : x.seconds) s_all_check = (check['age'] < 120) & (check['gender'] != '-unknown-') check['faithless_sign'] = s_all_check.apply(lambda x : 0 if x == True else 1) pre_age = check.drop("date_first_booking",axis = 1) pre_age['date_account_created_y'] = pre_age["date_account_created"].apply(lambda x : x.year) pre_age['date_account_created_m'] = pre_age["date_account_created"].apply(lambda x : x.month) pre_age['date_account_created_d'] = pre_age["date_account_created"].apply(lambda x : x.day) pre_age['timestamp_first_active_y'] = pre_age["timestamp_first_active"].apply(lambda x : x.year) pre_age['timestamp_first_active_m'] = pre_age["timestamp_first_active"].apply(lambda x : x.month) pre_age['timestamp_first_active_d'] = pre_age["timestamp_first_active"].apply(lambda x : x.day) pre_age = pre_age.drop("date_account_created" , axis=1) pre_age = pre_age.drop("timestamp_first_active" , axis=1) return check, pre_age # --- # ### Date setting - Base2 # In[14]: def pre_age_predict_data(pre_age): pre_age['age'] = pre_age['age'].fillna(-1) pre_age_sub = pre_age.filter(items = ['age', 'country_destination','id']) pre_age_dum = pre_age.filter(items = ['affiliate_channel', 'affiliate_provider', 'first_affiliate_tracked', 'first_browser', 'first_device_type', 'language', 'signup_app', 'signup_flow', 'signup_method', 'date_account_created_y', 'date_account_created_m', 'date_account_created_d', 'timestamp_first_active_y', 'timestamp_first_active_m', 'timestamp_first_active_d',"lag_days","lag_seconds", "faithless_sign"]) pre_age_dum[['date_account_created_y', 'date_account_created_m', 'date_account_created_d', 'timestamp_first_active_y','timestamp_first_active_m', 'timestamp_first_active_d']] = pre_age_dum[['date_account_created_y', 'date_account_created_m', 'date_account_created_d', 'timestamp_first_active_y', 'timestamp_first_active_m', 'timestamp_first_active_d']].astype(str) pre_age_dum = pd.get_dummies(pre_age_dum) pre_age_dum_con = pd.concat([pre_age_dum, pre_age_sub], axis=1) pre_age_dum_con["age"] = pre_age_dum_con["age"].replace(-1, np.nan) pre_age_mission = pre_age_dum_con[pre_age_dum_con["age"].isna()].reset_index() pre_age_train = pre_age_dum_con[pre_age_dum_con["age"].notna()].reset_index() pre_age_mission_test = pre_age_mission.drop("index", axis=1) pre_age_train_test = pre_age_train.drop("index", axis=1) pre_age_mission_test_drop = pre_age_mission_test.drop(['id', 'age', 'country_destination'], axis=1) pre_age_train_test_drop = pre_age_train_test.drop(['id', 'age', 'country_destination'], axis=1) return pre_age_mission_test, pre_age_train_test, pre_age_mission, pre_age_train, pre_age_mission_test_drop, pre_age_train_test_drop # In[15]: def pre_age_predict_data_cat(pre_age_train): bins = [0, 15, 25, 35, 60, 9999] labels = ["미성년자", "청년", "중년", "장년", "노년"] cats = pd.cut(pre_age_train['age'], bins, labels=labels) cats = pd.DataFrame(cats) return cats # --- # ### Predict gender data setting - Only gender # In[16]: def add_gender(pre_age): pred_gen_data = pd.read_csv("model_gen_lgb.csv") pre_gen_sub = pre_age.filter(items = ['age', 'country_destination', 'id', 'gender']) pre_gen_dum = pre_age.filter(items = ['affiliate_channel', 'affiliate_provider', 'first_affiliate_tracked', 'first_browser', 'first_device_type', 'language', 'signup_app', 'signup_flow', 'signup_method', 'date_account_created_y', 'date_account_created_m', 'date_account_created_d', 'timestamp_first_active_y', 'timestamp_first_active_m', 'timestamp_first_active_d',"lag_days","lag_seconds", "faithless_sign"]) pre_gen_dum = pd.get_dummies(pre_gen_dum) pre_gen_dum_con = pd.concat([pre_gen_dum, pre_gen_sub], axis=1) pre_gen_dum_con["gender"] = pre_gen_dum_con["gender"].replace(['-unknown-', 'OTHER'], np.nan) pre_gen_mission = pre_gen_dum_con[pre_gen_dum_con["gender"].isna()].reset_index() pre_gen_train = pre_gen_dum_con[pre_gen_dum_con["gender"].notna()].reset_index() pre_gen_mission_test = pre_gen_mission.drop("index", axis=1) pre_gen_train_test = pre_gen_train.drop("index", axis=1) pre_gen_mission_test_drop = pre_gen_mission_test.drop(['id', 'age', 'country_destination', "gender"], axis=1) pre_gen_train_test_drop = pre_gen_train_test.drop(['id', 'age', 'country_destination', "gender"], axis=1) pre_gen_mission_test_la = pd.concat([pre_gen_mission_test, pred_gen_data], axis=1) pre_gen_mission_test_la = pre_gen_mission_test_la.drop("gender", axis=1) pre_gen_mission_test_la = pre_gen_mission_test_la.rename(columns={"0": 'gender'}) last_gen_add = pd.concat([pre_gen_mission_test_la, pre_gen_train_test]) last_gen_add = last_gen_add.filter(items = ["id",'gender']) return last_gen_add # --- # ### Holiday, Weekend, Day of week data setting - Only Holiday # In[17]: def holiday(train_users_2, test_users): def get_holidays(year): response = requests.get("https://www.timeanddate.com/calendar/custom.html?year="+str(year)+" &country=1&cols=3&df=1&hol=25") dom = BeautifulSoup(response.content, "html.parser") trs = dom.select("table.cht.lpad tr") df = pd.DataFrame(columns=["date", "holiday"]) for tr in trs: datestr = tr.select_one("td:nth-of-type(1)").text date = datetime.strptime("{} {}".format(year, datestr), '%Y %b %d') holiday = tr.select_one("td:nth-of-type(2)").text df.loc[len(df)] = {"date" : date, "holiday": 1} return df holiday_ls = [] for year in range(2009, 2015): df = get_holidays(year) holiday_ls.append(df) holiday_df =
pd.concat(holiday_ls)
pandas.concat
import pandas as pd import matplotlib.pyplot as plt from datetime import datetime plt.rcParams['font.size'] = 6 import os root_path = os.path.dirname(os.path.abspath('__file__')) graphs_path = root_path+'/boundary_effect/graph/' if not os.path.exists(graphs_path): os.makedirs(graphs_path) time = pd.read_csv(root_path+'/time_series/MonthlyRunoffWeiRiver.csv')['Time'] time = time.values time = [datetime.strptime(t,'%Y/%m') for t in time] time = [t.strftime('%b %Y') for t in time] # print(time) # CHECK 1: is EEMD shift-invariant? # If yes, any shifted copy of an IMF from a EEMD decomposition, similar to a # shifted copy of the original time series, should be maintained. # For example, given the sunspot time series x (of length 792) we can # generate a 1-step advanced copy of the original time series as follows: # x0=(1:791) # x1=(2:792) this is a 1-step advanced version of x0 # Observiously, shift-invariancy is preserved between x0 and x1 since # x0(2:791)=x1(1:790) # For shift-invariancy to be preserved for EEMD, we would observe, for # example, that the EEMD IMF1 components for x0 (imf1 of x0) and x1 (imf1 of # x1) should be exact copies of one another, advanced by a single step. # i.e., x0_imf(2:791,1) should equal x1_imf(1:790,1) if shift-invariancy # is preserved. # As the case for EEMD shown below, we can see the x0_imf(2:791,1) basically # equal to x1_imf(1:790,1) except for a few samples close to the begin and # end of x0 and x1. Interestingly, we see a low level of error close to the # begin of the time series and a high level of error close to the end of # the time series, of high importance in operational forecasting tasks. # The errors along the middle range are zeros indicating EEMD is # shift-invariant. # We argue that the error close to the boundaries are # caused by boundary effect, which is the exact problem this study designed # to solve. # CHECK 2: The impact of appedning data points to a time series then # performing EEMD, analogous the case in operational forecasting when new # data becomes available and an updated forecast is made using the newly # arrived data. # Ideally, for forecasting situations, when new data is appended to a time # series and some preprocessing is performed, it should not have an impact # on previous measurements of the pre-processed time series. # For example, if IMF1_1:N represents the IMF1, which has N total # measurements and was derived by applying EEMD to x_1:N the we would expect # that when we perform EEMD when x is appended with another measurement, # i.e., x_1:N+1, resulting in IMF1_1:N+1 that the first 1:N measurements in # IMF1_1:N+1 are equal to IMF1_1:N. In other words, # IMF1_1:N+1[1:N]=IMF1_1:N[1:N]. # We see than is not the case. Appending an additional observation to the # time series results in the updated EEMD components to be entirely # different then the original (as of yet updated) EEMD components. # Interesting, we see a high level of error at the boundaries of the time # seriesm, of high importance in operational forecasting tasks. x0_imf = pd.read_csv(root_path+'/boundary_effect/eemd-decompositions-huaxian/x0_imf.csv') x1_imf = pd.read_csv(root_path+'/boundary_effect/eemd-decompositions-huaxian/x1_imf.csv') x_1_552_imf = pd.read_csv(root_path+"/boundary_effect/eemd-decompositions-huaxian/x_1_552_imf.csv") x_1_791_imf = pd.read_csv(root_path+'/boundary_effect/eemd-decompositions-huaxian/x_1_791_imf.csv') x_1_792_imf = pd.read_csv(root_path+'/boundary_effect/eemd-decompositions-huaxian/x_1_792_imf.csv') x0_imf1_2_791 = x0_imf['IMF1'][1:790] x0_imf1_2_791 = x0_imf1_2_791.reset_index(drop=True) x1_imf1_1_790 = x1_imf['IMF1'][0:789] x1_imf1_1_790 = x1_imf1_1_790.reset_index(drop=True) print(x0_imf1_2_791) print(x1_imf1_1_790) err = x0_imf1_2_791-x1_imf1_1_790 # err_df = pd.DataFrame(err.values,columns=['err']) print(err) err.to_csv(root_path+'/results_analysis/results/shift_variance_err.csv') x_1_552_imf1 = x_1_552_imf['IMF1'] x_1_791_imf1 = x_1_791_imf['IMF1'] x_1_792_imf1 = x_1_792_imf['IMF1'] err_append_one = x_1_792_imf1[0:790]-x_1_791_imf1[0:790] err_append_several = x_1_792_imf1[0:551]-x_1_552_imf1[0:551] err_append_one_df = pd.DataFrame(err_append_one,columns=['err']) err_append_several_df = pd.DataFrame(err_append_several,columns=['err']) print(err_append_one_df) print(err_append_several_df) err_append_one.to_csv(root_path+'/results_analysis/results/err_append_one.csv') err_append_several.to_csv(root_path+'/results_analysis/results/err_append_several.csv') xx = -6 aceg_y = 15 bdf_y = 2.4 y_min = -15 y_max = 20 ye_min = -1.3 ye_max = 3.1 plt.figure(figsize=(7.48,6)) plt.subplot(4,2,1) plt.text(xx,aceg_y,'(a)',fontsize=7,fontweight='bold',bbox=dict(facecolor='thistle', alpha=0.25)) plt.plot(x0_imf1_2_791,c='b',label=r'$IMF_{1}(2:791)$ of $x_{0}$') plt.plot(x1_imf1_1_790,c='g',label=r'$IMF_{1}(1:790)$ of $x_{1}$') plt.xlabel('Time (From '+time[1]+' to '+time[790]+')') plt.ylabel(r"Runoff($10^8m^3$)") plt.ylim(y_min,y_max) plt.legend(ncol=2) plt.subplot(4,2,2) plt.text(xx,bdf_y,'(b)',fontsize=7,fontweight='bold',bbox=dict(facecolor='thistle', alpha=0.25)) shift_var=plt.plot(err,'o',markerfacecolor='w',markeredgecolor='r',markersize=4.5, label=R'''Error between $IMF_{1}(2:791)$ of $x_{0}$ and $IMF_{1}(1:790)$ of $x_{1}$''') plt.xlabel('Time (From '+time[1]+' to '+time[790]+')') plt.ylabel(r"Runoff($10^8m^3$)") plt.ylim(ye_min,ye_max) plt.legend() plt.subplot(4,2,3) plt.text(xx,aceg_y,'(c)',fontsize=7,fontweight='bold',bbox=dict(facecolor='thistle', alpha=0.25)) plt.plot(x_1_791_imf1,c='b',label=r'$IMF_{1}$ of $x_{1-791}$') plt.plot(x_1_792_imf1,c='g',label=r'$IMF_{1}$ of $x_{1-792}$') plt.xlabel('Time (From '+time[0]+' to '+time[791]+')') plt.ylabel(r"Runoff($10^8m^3$)") plt.ylim(y_min,y_max) plt.legend(ncol=2) plt.subplot(4,2,4) plt.text(xx,bdf_y,'(d)',fontsize=7,fontweight='bold',bbox=dict(facecolor='thistle', alpha=0.25)) plt.plot(err_append_one,'o',markerfacecolor='w',markeredgecolor='r',markersize=4.5, label=R'''Error between $IMF_{1}(1:791)$ of $x_{1-791}$ and $IMF_{1}(1:791)$ of $x_{1-792}$''') plt.xlabel('Time (From '+time[0]+' to '+time[790]+')') plt.ylabel(r"Runoff($10^8m^3$)") plt.ylim(ye_min,ye_max) plt.legend(loc=9) plt.subplot(4,2,5) plt.text(xx,aceg_y,'(e)',fontsize=7,fontweight='bold',bbox=dict(facecolor='thistle', alpha=0.25)) plt.plot(x_1_552_imf1,c='b',label=r'$IMF_{1}$ of $x_{1-552}$') plt.plot(x_1_792_imf1,c='g',label=r'$IMF_{1}$ of $x_{1-792}$') plt.xlabel('Time (From '+time[0]+' to '+time[791]+')') plt.ylabel(r"Runoff($10^8m^3$)") plt.ylim(y_min,y_max) plt.legend(ncol=2) plt.subplot(4,2,6) plt.text(xx,bdf_y,'(f)',fontsize=7,fontweight='bold',bbox=dict(facecolor='thistle', alpha=0.25)) plt.plot(err_append_several,'o',markerfacecolor='w',markeredgecolor='r',markersize=4.5, label=R'''Error between $IMF_{1}(1:552)$ of $x_{1-552}$ and $IMF_{1}(1:552)$ of $x_{1-792}$''') plt.xlabel('Time (From '+time[0]+' to '+time[551]+')') plt.ylabel(r"Runoff($10^8m^3$)") plt.ylim(ye_min,ye_max) plt.legend(loc=9,ncol=2) eemd_train =
pd.read_csv(root_path+"/Huaxian_eemd/data/EEMD_TRAIN.csv")
pandas.read_csv
# coding: utf-8 # # Dataset Statistics for Compound Gene Sentences # This notebook is designed to show statistics on the data extracted from pubmed. The following cells below here are needed to set up the environment. # In[1]: get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().run_line_magic('matplotlib', 'inline') from collections import Counter from itertools import product import os import pickle import sys sys.path.append(os.path.abspath('../../../modules')) import pandas as pd import matplotlib.pyplot as plt from matplotlib_venn import venn2 import seaborn as sns from tqdm import tqdm_notebook sns.set(rc={'figure.figsize':(12,6), "font.size":17}) # In[2]: #Set up the environment username = "danich1" password = "<PASSWORD>" dbname = "pubmeddb" #Path subject to change for different os database_str = "postgresql+psycopg2://{}:{}@/{}?host=/var/run/postgresql".format(username, password, dbname) os.environ['SNORKELDB'] = database_str from snorkel import SnorkelSession session = SnorkelSession() # In[3]: from snorkel.models import candidate_subclass, Candidate CompoundGene = candidate_subclass('CompoundGene', ['Compound', 'Gene']) # In[4]: from utils.notebook_utils.dataframe_helper import write_candidates_to_excel, make_sentence_df # # Read Full Sentence Table # The cells below will read every sentence that contains a gene and compound entity from the sentence table in our postgres database. For time sake majority of the data has already been processed and save as files mentioned below. # In[ ]: sql= ''' select id as sentence_id, text, ( char_length(regexp_replace(CAST(words AS TEXT), '[\u0080-\u00ff]', '', 'g')) - char_length(regexp_replace(regexp_replace(CAST(words AS TEXT), '[\u0080-\u00ff]', '', 'g'), ',', '','g')) ) as sen_length, entity_types from sentence where entity_types::text like '%%Compound%%' or entity_types::text like '%%Gene%%'; ''' sentence_df = pd.read_sql(sql, database_str) sentence_df.head(2) # In[ ]: entity_data = [] tagging_error_ids = set({}) #skip tagging error skip_tag_error = False for index, row in tqdm_notebook(sentence_df.iterrows()): #create dictionay for mapping entity types entity_mapper = {"sentence_id": row['sentence_id']} #Keep track of previous entity previous_entity = 'o' #For all entitys in a given sentence decide what is tagged for entity in row['entity_types']: entity = entity.lower() #Non-O tag if entity != 'o' and previous_entity =='o': #If entity not seen before instanciate it if entity not in entity_mapper: entity_mapper[entity] =0 entity_mapper[entity] += 1 # If previous tag was non-O and the current tag does not equal previous # Then tagging error. e.x. Disease, Gene, Disease instead of Disease, O, Disease elif entity != previous_entity and entity != 'o': tagging_error_ids.add(row['sentence_id']) skip_tag_error = True break previous_entity = entity # Do not add errors to dataframe # They will be thrown out if not skip_tag_error: entity_data.append(entity_mapper) skip_tag_error=False entity_stats_df = pd.DataFrame.from_dict(entity_data).fillna(0) entity_stats_df.head(2) # In[ ]: tagging_error_df = pd.Series(sorted(list(tagging_error_ids))) tagging_error_df.to_csv("results/tagging_error_ids.tsv.xz", sep="\t", index=False, compression="xz") tagging_error_df.head(2) # In[ ]: print( "Total Number of IOB Tagging Errors: {}. Percentage of sentences affected: {:.2f}".format( tagging_error_df.shape[0], 100*tagging_error_df.shape[0]/sentence_df.shape[0] ) ) # In[ ]: header = ["sentence_id", "text", "sen_length"] sentence_df[header].to_csv("results/sentence_stats.tsv.xz", sep="\t", index=False, compression="xz") entity_stats_df.to_csv("results/entity_stats.tsv.xz", sep="\t", index=False, compression="xz") # # Sentence Counts and Statistics # Below is the block of code that contains information about the full distribution of sentences tied to each candidate pair. Multiple sentences can contain more than one co-occuring pair, which results in some sentences being counted more than once. For example # ``` # To assess the importance of the consensus amino acid sequence in [elf-4a G] for [atp G] binding, we mutated the consensus amino-proximal [glycine C] and [lysine C] to isoleucine and asparagine, respectively. # ``` # # In this sentence there are multiple mentions of genes and compounds, where some compounds are artificial proteins. # ## Load and Merge DataFrames # In[5]: entity_level_df =
pd.read_csv("../datafile/results/compound_binds_gene.tsv.xz")
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Sep 4 10:30:55 2018 @author: niels-peter """ import numpy as np from numpy import math import pandas as pd import pickle from sklearn.externals import joblib import re from italy_transformation import * clf_EW_italy = joblib.load('/home/niels-peter/Dokumenter/EW_DK_ITALY.pkl') #clf_EW_italy = joblib.load('EW_DK_ITALY_dummy.pkl') xl =
pd.ExcelFile('/home/niels-peter/Dokumenter/ITALY_100_FINANCIAL_STATEMENT.xlsx')
pandas.ExcelFile
#!/usr/bin/env python # coding: utf-8 # # <font color='yellow'>How can we predict not just the hourly PM2.5 concentration at the site of one EPA sensor, but predict the hourly PM2.5 concentration anywhere?</font> # # Here, you build a new model for any given hour on any given day. This will leverage readings across all ~120 EPA sensors, as well as weather data, traffic data, purpleair data, and maybe beacon data to create a model that predicts the PM2.5 value at that location. # In[1]: import json import csv import pandas as pd from pandas.io.json import json_normalize import numpy as np import geopandas as gpd import shapely from shapely.geometry import Point, MultiPoint, Polygon, MultiPolygon from shapely.affinity import scale import matplotlib.pyplot as plt import glob import os import datetime from datetime import timezone import zipfile import pickle pd.set_option('display.max_columns', 500) # ## <font color='yellow'>Loading data</font> # # We'll load EPA data, weather data, truck traffic data, Beacon data, and purpleair data # In[2]: df_epa = pd.read_csv("EPA_Data_MultiPointModel.csv") df_epa.head(1) # In[3]: df_beac = pd.read_csv("Beacon_Data_MultiPointModel.csv") df_beac.head(1) # In[5]: df_noaa =
pd.read_csv("NOAA_Data_MultiPointModel.csv")
pandas.read_csv
# --- # jupyter: # jupytext: # formats: ipynb,py # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.6.0 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # ## Telecom Churn Case Study # With 21 predictor variables we need to predict whether a particular customer will switch to another telecom provider or not. In telecom terminology, this is referred to as churning and not churning, respectively. # ### Step 1: Importing and Merging Data # Suppressing Warnings import warnings warnings.filterwarnings('ignore') # Importing Pandas and NumPy import pandas as pd, numpy as np # Importing all datasets churn_data = pd.read_csv("churn_data.csv") churn_data.head() customer_data = pd.read_csv("customer_data.csv") customer_data.head() internet_data = pd.read_csv("internet_data.csv") internet_data.head() # #### Combining all data files into one consolidated dataframe # Merging on 'customerID' df_1 = pd.merge(churn_data, customer_data, how='inner', on='customerID') # Final dataframe with all predictor variables telecom = pd.merge(df_1, internet_data, how='inner', on='customerID') # ### Step 2: Inspecting the Dataframe telecom.OnlineBackup.value_counts() # Let's see the head of our master dataset telecom.head() # Let's check the dimensions of the dataframe telecom.shape # let's look at the statistical aspects of the dataframe telecom.describe() # Let's see the type of each column telecom.info() # ### Step 3: Data Preparation # #### Converting some binary variables (Yes/No) to 0/1 # + # List of variables to map varlist = ['PhoneService', 'PaperlessBilling', 'Churn', 'Partner', 'Dependents'] # Defining the map function def binary_map(x): return x.map({'Yes': 1, "No": 0}) # Applying the function to the housing list telecom[varlist] = telecom[varlist].apply(binary_map) # - telecom.head() # #### For categorical variables with multiple levels, create dummy features (one-hot encoded) # + # Creating a dummy variable for some of the categorical variables and dropping the first one. dummy1 = pd.get_dummies(telecom[['Contract', 'PaymentMethod', 'gender', 'InternetService']], drop_first=True) # Adding the results to the master dataframe telecom = pd.concat([telecom, dummy1], axis=1) # - telecom.head() # + # Creating dummy variables for the remaining categorical variables and dropping the level with big names. # Creating dummy variables for the variable 'MultipleLines' ml = pd.get_dummies(telecom['MultipleLines'], prefix='MultipleLines') # Dropping MultipleLines_No phone service column ml1 = ml.drop(['MultipleLines_No phone service'], 1) #Adding the results to the master dataframe telecom = pd.concat([telecom,ml1], axis=1) # Creating dummy variables for the variable 'OnlineSecurity'. os = pd.get_dummies(telecom['OnlineSecurity'], prefix='OnlineSecurity') os1 = os.drop(['OnlineSecurity_No internet service'], 1) # Adding the results to the master dataframe telecom = pd.concat([telecom,os1], axis=1) # Creating dummy variables for the variable 'OnlineBackup'. ob = pd.get_dummies(telecom['OnlineBackup'], prefix='OnlineBackup') ob1 = ob.drop(['OnlineBackup_No internet service'], 1) # Adding the results to the master dataframe telecom = pd.concat([telecom,ob1], axis=1) # Creating dummy variables for the variable 'DeviceProtection'. dp = pd.get_dummies(telecom['DeviceProtection'], prefix='DeviceProtection') dp1 = dp.drop(['DeviceProtection_No internet service'], 1) # Adding the results to the master dataframe telecom = pd.concat([telecom,dp1], axis=1) # Creating dummy variables for the variable 'TechSupport'. ts = pd.get_dummies(telecom['TechSupport'], prefix='TechSupport') ts1 = ts.drop(['TechSupport_No internet service'], 1) # Adding the results to the master dataframe telecom = pd.concat([telecom,ts1], axis=1) # Creating dummy variables for the variable 'StreamingTV'. st =pd.get_dummies(telecom['StreamingTV'], prefix='StreamingTV') st1 = st.drop(['StreamingTV_No internet service'], 1) # Adding the results to the master dataframe telecom = pd.concat([telecom,st1], axis=1) # Creating dummy variables for the variable 'StreamingMovies'. sm = pd.get_dummies(telecom['StreamingMovies'], prefix='StreamingMovies') sm1 = sm.drop(['StreamingMovies_No internet service'], 1) # Adding the results to the master dataframe telecom = pd.concat([telecom,sm1], axis=1) # - telecom.head() # #### Dropping the repeated variables # We have created dummies for the below variables, so we can drop them telecom = telecom.drop(['Contract','PaymentMethod','gender','MultipleLines','InternetService', 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies'], 1) telecom = telecom.loc[~telecom.index.isin([488, 753, 936, 1082, 1340, 3331, 3826, 4380, 5218, 6670, 6754])] # + # telecom['TotalCharges'].sample(40) # telecom['TotalCharges'].str.replace('.', '', 1).str.contains('\D',regex=True).sum() # telecom[telecom['TotalCharges'].str.replace('.', '', 1).str.contains('\D',regex=True)].TotalCharges.index # - #The varaible was imported as a string we need to convert it to float telecom['TotalCharges'] = telecom['TotalCharges'].str.strip().astype('float64') telecom.info() # Now you can see that you have all variables as numeric. # #### Checking for Outliers # Checking for outliers in the continuous variables num_telecom = telecom[['tenure','MonthlyCharges','SeniorCitizen','TotalCharges']] # Checking outliers at 25%, 50%, 75%, 90%, 95% and 99% num_telecom.describe(percentiles=[.25, .5, .75, .90, .95, .99]) # From the distribution shown above, you can see that there no outliers in your data. The numbers are gradually increasing. # #### Checking for Missing Values and Inputing Them # Adding up the missing values (column-wise) telecom.isnull().sum() # It means that 11/7043 = 0.001561834 i.e 0.1%, best is to remove these observations from the analysis # Checking the percentage of missing values round(100*(telecom.isnull().sum()/len(telecom.index)), 2) # Removing NaN TotalCharges rows telecom = telecom[~np.isnan(telecom['TotalCharges'])] # Checking percentage of missing values after removing the missing values round(100*(telecom.isnull().sum()/len(telecom.index)), 2) # Now we don't have any missing values # ### Step 4: Test-Train Split from sklearn.model_selection import train_test_split # + # Putting feature variable to X X = telecom.drop(['Churn','customerID'], axis=1) X.head() # + # Putting response variable to y y = telecom['Churn'] y.head() # - # Splitting the data into train and test X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, test_size=0.3, random_state=100) # ### Step 5: Feature Scaling from sklearn.preprocessing import StandardScaler # + scaler = StandardScaler() X_train[['tenure','MonthlyCharges','TotalCharges']] = scaler.fit_transform(X_train[['tenure','MonthlyCharges','TotalCharges']]) X_train.head() # - ### Checking the Churn Rate churn = (sum(telecom['Churn'])/len(telecom['Churn'].index))*100 churn # We have almost 27% churn rate # ### Step 6: Looking at Correlations # Importing matplotlib and seaborn import matplotlib.pyplot as plt import seaborn as sns # %matplotlib inline # Let's see the correlation matrix plt.figure(figsize = (20,10)) # Size of the figure sns.heatmap(telecom.corr(),annot = True) plt.show() # #### Dropping highly correlated dummy variables X_test = X_test.drop(['MultipleLines_No','OnlineSecurity_No','OnlineBackup_No','DeviceProtection_No','TechSupport_No', 'StreamingTV_No','StreamingMovies_No'], 1) X_train = X_train.drop(['MultipleLines_No','OnlineSecurity_No','OnlineBackup_No','DeviceProtection_No','TechSupport_No', 'StreamingTV_No','StreamingMovies_No'], 1) # #### Checking the Correlation Matrix # After dropping highly correlated variables now let's check the correlation matrix again. plt.figure(figsize = (20,10)) sns.heatmap(X_train.corr(),annot = True) plt.show() # ### Step 7: Model Building # Let's start by splitting our data into a training set and a test set. # #### Running Your First Training Model import statsmodels.api as sm # Logistic regression model logm1 = sm.GLM(y_train,(sm.add_constant(X_train)), family = sm.families.Binomial()) logm1.fit().summary() # ### Step 8: Feature Selection Using RFE from sklearn.linear_model import LogisticRegression logreg = LogisticRegression() from sklearn.feature_selection import RFE rfe = RFE(logreg, 15) # running RFE with 13 variables as output rfe = rfe.fit(X_train, y_train) rfe.support_ list(zip(X_train.columns, rfe.support_, rfe.ranking_)) col = X_train.columns[rfe.support_] X_train.columns[~rfe.support_] # ##### Assessing the model with StatsModels X_train_sm = sm.add_constant(X_train[col]) logm2 = sm.GLM(y_train,X_train_sm, family = sm.families.Binomial()) res = logm2.fit() res.summary() # Getting the predicted values on the train set y_train_pred = res.predict(X_train_sm) y_train_pred[:10] y_train_pred = y_train_pred.values.reshape(-1) y_train_pred[:10] # ##### Creating a dataframe with the actual churn flag and the predicted probabilities y_train_pred_final = pd.DataFrame({'Churn':y_train.values, 'Churn_Prob':y_train_pred}) y_train_pred_final['CustID'] = y_train.index y_train_pred_final.head() # ##### Creating new column 'predicted' with 1 if Churn_Prob > 0.5 else 0 # + y_train_pred_final['predicted'] = y_train_pred_final.Churn_Prob.map(lambda x: 1 if x > 0.5 else 0) # Let's see the head y_train_pred_final.head() # - from sklearn import metrics # Confusion matrix confusion = metrics.confusion_matrix(y_train_pred_final.Churn, y_train_pred_final.predicted ) print(confusion) # + # Predicted not_churn churn # Actual # not_churn 3270 365 # churn 579 708 # - # Let's check the overall accuracy. print(metrics.accuracy_score(y_train_pred_final.Churn, y_train_pred_final.predicted)) # #### Checking VIFs # Check for the VIF values of the feature variables. from statsmodels.stats.outliers_influence import variance_inflation_factor # Create a dataframe that will contain the names of all the feature variables and their respective VIFs vif = pd.DataFrame() vif['Features'] = X_train[col].columns vif['VIF'] = [variance_inflation_factor(X_train[col].values, i) for i in range(X_train[col].shape[1])] vif['VIF'] = round(vif['VIF'], 2) vif = vif.sort_values(by = "VIF", ascending = False) vif # There are a few variables with high VIF. It's best to drop these variables as they aren't helping much with prediction and unnecessarily making the model complex. The variable 'PhoneService' has the highest VIF. So let's start by dropping that. col = col.drop('PhoneService', 1) col # Let's re-run the model using the selected variables X_train_sm = sm.add_constant(X_train[col]) logm3 = sm.GLM(y_train,X_train_sm, family = sm.families.Binomial()) res = logm3.fit() res.summary() y_train_pred = res.predict(X_train_sm).values.reshape(-1) y_train_pred[:10] y_train_pred_final['Churn_Prob'] = y_train_pred # Creating new column 'predicted' with 1 if Churn_Prob > 0.5 else 0 y_train_pred_final['predicted'] = y_train_pred_final.Churn_Prob.map(lambda x: 1 if x > 0.5 else 0) y_train_pred_final.head() # Let's check the overall accuracy. print(metrics.accuracy_score(y_train_pred_final.Churn, y_train_pred_final.predicted)) # So overall the accuracy hasn't dropped much. # ##### Let's check the VIFs again vif = pd.DataFrame() vif['Features'] = X_train[col].columns vif['VIF'] = [variance_inflation_factor(X_train[col].values, i) for i in range(X_train[col].shape[1])] vif['VIF'] = round(vif['VIF'], 2) vif = vif.sort_values(by = "VIF", ascending = False) vif # Let's drop TotalCharges since it has a high VIF col = col.drop('TotalCharges') col # Let's re-run the model using the selected variables X_train_sm = sm.add_constant(X_train[col]) logm4 = sm.GLM(y_train,X_train_sm, family = sm.families.Binomial()) res = logm4.fit() res.summary() y_train_pred = res.predict(X_train_sm).values.reshape(-1) y_train_pred[:10] y_train_pred_final['Churn_Prob'] = y_train_pred # Creating new column 'predicted' with 1 if Churn_Prob > 0.5 else 0 y_train_pred_final['predicted'] = y_train_pred_final.Churn_Prob.map(lambda x: 1 if x > 0.5 else 0) y_train_pred_final.head() # Let's check the overall accuracy. print(metrics.accuracy_score(y_train_pred_final.Churn, y_train_pred_final.predicted)) # The accuracy is still practically the same. # ##### Let's now check the VIFs again vif = pd.DataFrame() vif['Features'] = X_train[col].columns vif['VIF'] = [variance_inflation_factor(X_train[col].values, i) for i in range(X_train[col].shape[1])] vif['VIF'] = round(vif['VIF'], 2) vif = vif.sort_values(by = "VIF", ascending = False) vif # All variables have a good value of VIF. So we need not drop any more variables and we can proceed with making predictions using this model only # Let's take a look at the confusion matrix again confusion = metrics.confusion_matrix(y_train_pred_final.Churn, y_train_pred_final.predicted ) confusion # Actual/Predicted not_churn churn # not_churn 3269 366 # churn 595 692 # Let's check the overall accuracy. metrics.accuracy_score(y_train_pred_final.Churn, y_train_pred_final.predicted) # ## Metrics beyond simply accuracy TP = confusion[1,1] # true positive TN = confusion[0,0] # true negatives FP = confusion[0,1] # false positives FN = confusion[1,0] # false negatives # Let's see the sensitivity of our logistic regression model TP / float(TP+FN) # Let us calculate specificity TN / float(TN+FP) # Calculate false postive rate - predicting churn when customer does not have churned print(FP/ float(TN+FP)) # positive predictive value print (TP / float(TP+FP)) # Negative predictive value print (TN / float(TN+ FN)) # ### Step 9: Plotting the ROC Curve # An ROC curve demonstrates several things: # # - It shows the tradeoff between sensitivity and specificity (any increase in sensitivity will be accompanied by a decrease in specificity). # - The closer the curve follows the left-hand border and then the top border of the ROC space, the more accurate the test. # - The closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate the test. def draw_roc( actual, probs ): fpr, tpr, thresholds = metrics.roc_curve( actual, probs, drop_intermediate = False ) auc_score = metrics.roc_auc_score( actual, probs ) plt.figure(figsize=(5, 5)) plt.plot( fpr, tpr, label='ROC curve (area = %0.2f)' % auc_score ) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate or [1 - True Negative Rate]') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show() return None fpr, tpr, thresholds = metrics.roc_curve( y_train_pred_final.Churn, y_train_pred_final.Churn_Prob, drop_intermediate = False ) list(zip(fpr,tpr,thresholds)) draw_roc(y_train_pred_final.Churn, y_train_pred_final.Churn_Prob) # ### Step 10: Finding Optimal Cutoff Point # Optimal cutoff probability is that prob where we get balanced sensitivity and specificity # Let's create columns with different probability cutoffs numbers = [float(x)/10 for x in range(10)] for i in numbers: y_train_pred_final[i]= y_train_pred_final.Churn_Prob.map(lambda x: 1 if x > i else 0) y_train_pred_final.head() # + # Now let's calculate accuracy sensitivity and specificity for various probability cutoffs. cutoff_df =
pd.DataFrame( columns = ['prob','accuracy','sensi','speci'])
pandas.DataFrame
"""Prediction result visualization""" import pandas as pd import matplotlib.pyplot as plt def visualize(result, y_test, num_test, rmse): """ :param result: RUL prediction results :param y_test: true RUL of testing set :param num_test: number of samples :param rmse: RMSE of prediction results """ result = y_test.join(
pd.DataFrame(result)
pandas.DataFrame
import imagehash import pandas as pd import numpy as np import os import sys import math hashesPath = sys.argv[1] outPath = sys.argv[2] df1 =
pd.read_csv(hashesPath)
pandas.read_csv
from __future__ import annotations import os import numpy as np import pandas as pd import scipy.optimize as so import scipy.special as sp from pymwm.utils.cutoff_utils import f_fp_fpp_cython class Cutoff: """A callable class that calculates the values of u at cutoff frequencies for coaxial waveguides made of PEC Attributes: num_n (int): The number of orders of modes. num_m (int): The number of modes in each order and polarization. r_ratios (list[float]): A list of ratio between inner and outer radii. samples (DataFrame): Cutoff values of u at r_ratios. """ dirname = os.path.join(os.path.expanduser("~"), ".pymwm") filename = os.path.join(dirname, "cutoff.h5") def __init__(self, num_n: int, num_m: int) -> None: """Init Cutoff class.""" self.num_n, self.num_m = num_n, num_m self.r_ratios = 0.001 * np.arange(1000) if os.path.exists(self.filename): samples = pd.read_hdf(self.filename) if self.num_n > samples["n"].max() + 1 or self.num_m >= samples["m"].max(): self.samples = self.cutoffs() self.samples.to_hdf(self.filename, "cutoff") else: self.samples = samples[ (samples["n"] < num_n) & ( (samples["pol"] == "E") & (samples["m"] <= num_m) | (samples["pol"] == "M") & (samples["m"] <= num_m + 1) ) ].reset_index(drop=True) if not os.path.exists(self.filename): if not os.path.exists(self.dirname): print("Folder Not Found.") os.mkdir(self.dirname) print("File Not Found.") self.samples = self.cutoffs() self.samples.to_hdf(self.filename, "cutoff") def __call__(self, alpha: tuple, r_ratio: float) -> float: """Return the cutoff value of u Args: alpha (tuple[pol (str), n (int), m (int)]): pol: 'E' or 'M' indicating the polarization. n: A integer indicating the order of the mode. m: A integer indicating the ordinal of the mode in the same order. r_ratio (float): The ratio between inner and outer radii. Returns: float: The value of u at cutoff frequency. """ df = self.samples df = df[(df["pol"] == alpha[0]) & (df["n"] == alpha[1]) & (df["m"] == alpha[2])] x = df["rr"].to_numpy() y = df["val"].to_numpy() i: int = np.where(x <= r_ratio)[0][-1] a: float = r_ratio - x[i] b: float = x[i + 1] - r_ratio val: float = (b * y[i] + a * y[i + 1]) / (a + b) return val def PEC( self, u: float, r_ratio: float, n: int, pol: str ) -> tuple[float, float, float]: x = u * r_ratio def f_fp_fpp_fppp(func, z): f = func(n, z) fp = -func(n + 1, z) + n / z * f fpp = -fp / z - (1 - n ** 2 / z ** 2) * f fppp = -fpp / z - fp + (n ** 2 + 1) * fp / z ** 2 - 2 * n ** 2 / z ** 3 * f return f, fp, fpp, fppp jx, jpx, jppx, jpppx = f_fp_fpp_fppp(sp.jv, x) yx, ypx, yppx, ypppx = f_fp_fpp_fppp(sp.yv, x) ju, jpu, jppu, jpppu = f_fp_fpp_fppp(sp.jv, u) yu, ypu, yppu, ypppu = f_fp_fpp_fppp(sp.yv, u) if pol == "E": f = jpx * ypu - ypx * jpu fp = r_ratio * jppx * ypu + jpx * yppu - r_ratio * yppx * jpu - ypx * jppu fpp = ( r_ratio ** 2 * jpppx * ypu + 2 * r_ratio * jppx * yppu + jpx * ypppu - r_ratio ** 2 * ypppx * jpu - 2 * r_ratio * yppx * jppu - ypx * jpppu ) else: f = jx * yu - yx * ju fp = r_ratio * jpx * yu + jx * ypu - r_ratio * ypx * ju - yx * jpu fpp = ( r_ratio ** 2 * jppx * yu + 2 * r_ratio * jpx * ypu + jx * yppu - r_ratio ** 2 * yppx * ju - 2 * r_ratio * ypx * jpu - yx * jppu ) return f, fp, fpp def cutoffs_numpy(self) -> pd.DataFrame: import ray if not ray.is_initialized(): ray.init() rrs_id = ray.put(self.r_ratios) pec_id = ray.put(self.PEC) @ray.remote def func(alpha, kini, rrs, pec): pol, n, m = alpha drr = 0.1 * (rrs[1] - rrs[0]) x0 = x1 = kini z = [] for rr in rrs: z.append(x1) for i in range(1, 11): sol = so.root_scalar( pec, x0=2 * x1 - x0, fprime=True, fprime2=True, method="halley", args=(rr + i * drr, n, pol), ) x0 = x1 x1 = sol.root return z num_m = self.num_m args = [] kinis = sp.jn_zeros(0, num_m) for m in range(2, num_m + 2): args.append((("M", 0, m), kinis[m - 2])) kinis = sp.jnp_zeros(0, num_m) for m in range(1, num_m + 1): args.append((("E", 0, m), kinis[m - 1])) for n in range(1, self.num_n): for (pol, m_end) in [("M", num_m + 2), ("E", num_m + 1)]: if pol == "E": kinis = sp.jnp_zeros(n, m_end - 1) else: kinis = sp.jn_zeros(n, m_end - 1) for m in range(1, m_end): kini = kinis[m - 1] args.append(((pol, n, m), kini)) result_ids = [func.remote(alpha, kini, rrs_id, pec_id) for alpha, kini in args] results = ray.get(result_ids) if ray.is_initialized(): ray.shutdown() df = pd.DataFrame() num_rr = len(self.r_ratios) df["pol"] = np.full(num_rr, "M") df["n"] = 0 df["m"] = 1 df["irr"] = np.arange(num_rr) df["rr"] = self.r_ratios df["val"] = 0.0 for i in range(len(args)): (pol, n, m), _ = args[i] z = results[i] df1 = pd.DataFrame() df1["pol"] = np.full(num_rr, pol) df1["n"] = n df1["m"] = m df1["irr"] = np.arange(num_rr) df1["rr"] = self.r_ratios df1["val"] = z df = pd.concat([df, df1], ignore_index=True) return df def cutoffs(self) -> pd.DataFrame: import ray if not ray.is_initialized(): ray.init() rrs_id = ray.put(self.r_ratios) @ray.remote def func(alpha, kini, rrs): pol, n, m = alpha drr = 0.1 * (rrs[1] - rrs[0]) x0 = x1 = kini z = [] for rr in rrs: z.append(x1) for i in range(1, 11): sol = so.root_scalar( f_fp_fpp_cython, x0=2 * x1 - x0, fprime=True, fprime2=True, method="halley", args=(rr + i * drr, n, pol), ) x0 = x1 x1 = sol.root return z num_m = self.num_m args = [] kinis = sp.jn_zeros(0, num_m) for m in range(2, num_m + 2): args.append((("M", 0, m), kinis[m - 2])) kinis = sp.jnp_zeros(0, num_m) for m in range(1, num_m + 1): args.append((("E", 0, m), kinis[m - 1])) for n in range(1, self.num_n): for (pol, m_end) in [("M", num_m + 2), ("E", num_m + 1)]: if pol == "E": kinis = sp.jnp_zeros(n, m_end - 1) else: kinis = sp.jn_zeros(n, m_end - 1) for m in range(1, m_end): kini = kinis[m - 1] args.append(((pol, n, m), kini)) result_ids = [func.remote(alpha, kini, rrs_id) for alpha, kini in args] results = ray.get(result_ids) if ray.is_initialized(): ray.shutdown() df = pd.DataFrame() num_rr = len(self.r_ratios) df["pol"] = np.full(num_rr, "M") df["n"] = 0 df["m"] = 1 df["irr"] = np.arange(num_rr) df["rr"] = self.r_ratios df["val"] = 0.0 for i in range(len(args)): (pol, n, m), _ = args[i] z = results[i] df1 =
pd.DataFrame()
pandas.DataFrame
from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score import random import numpy as np import hydra from omegaconf import DictConfig from pytorch_lightning import ( LightningDataModule, Trainer, seed_everything, ) import pandas as pd from pytorch_tabular import TabularModel from pytorch_tabular.config import DataConfig, OptimizerConfig, TrainerConfig, ExperimentConfig from pytorch_tabular.models import CategoryEmbeddingModelConfig, NodeConfig def make_mixed_classification(n_samples, n_features, n_categories): X,y = make_classification(n_samples=n_samples, n_features=n_features, random_state=42, n_informative=5) cat_cols = random.choices(list(range(X.shape[-1])),k=n_categories) num_cols = [i for i in range(X.shape[-1]) if i not in cat_cols] for col in cat_cols: X[:,col] = pd.qcut(X[:,col], q=4).codes.astype(int) col_names = [] num_col_names=[] cat_col_names=[] for i in range(X.shape[-1]): if i in cat_cols: col_names.append(f"cat_col_{i}") cat_col_names.append(f"cat_col_{i}") if i in num_cols: col_names.append(f"num_col_{i}") num_col_names.append(f"num_col_{i}") X = pd.DataFrame(X, columns=col_names) y =
pd.Series(y, name="target")
pandas.Series
import numpy as np import pandas as pd import scanpy as sc from scipy import sparse from sklearn.linear_model import LinearRegression from ..utils import check_adata, check_batch def pcr_comparison( adata_pre, adata_post, covariate, embed=None, n_comps=50, scale=True, verbose=False ): """ Compare the explained variance before and after integration Return either the difference of variance contribution before and after integration or a score between 0 and 1 (`scaled=True`) with 0 if the variance contribution hasn't changed. The larger the score, the more different the variance contributions are before and after integration. :param adata_pre: anndata object before integration :param adata_post: anndata object after integration :param covariate: Key for adata.obs column to regress against :param embed: Embedding to use for principal components. If None, use the full expression matrix (`adata.X`), otherwise use the embedding provided in `adata_post.obsm[embed]`. :param n_comps: Number of principal components to compute :param scale: If True, scale score between 0 and 1 (default) :param verbose: :return: Difference of R2Var value of PCR (scaled between 0 and 1 by default) """ if embed == 'X_pca': embed = None pcr_before = pcr( adata_pre, covariate=covariate, recompute_pca=True, n_comps=n_comps, verbose=verbose ) pcr_after = pcr( adata_post, covariate=covariate, embed=embed, recompute_pca=True, n_comps=n_comps, verbose=verbose ) if scale: score = (pcr_before - pcr_after) / pcr_before if score < 0: print( "Variance contribution increased after integration!\n" "Setting PCR comparison score to 0." ) score = 0 return score else: return pcr_after - pcr_before def pcr( adata, covariate, embed=None, n_comps=50, recompute_pca=True, verbose=False ): """ Principal component regression for anndata object Checks whether to + compute PCA on embedding or expression data (set `embed` to name of embedding matrix e.g. `embed='X_emb'`) + use existing PCA (only if PCA entry exists) + recompute PCA on expression matrix (default) :param adata: Anndata object :param covariate: Key for adata.obs column to regress against :param embed: Embedding to use for principal components. If None, use the full expression matrix (`adata.X`), otherwise use the embedding provided in `adata_post.obsm[embed]`. :param n_comps: Number of PCs, if PCA is recomputed :return: R2Var of regression """ check_adata(adata) check_batch(covariate, adata.obs) if verbose: print(f"covariate: {covariate}") covariate_values = adata.obs[covariate] # use embedding for PCA if (embed is not None) and (embed in adata.obsm): if verbose: print(f"Compute PCR on embedding n_comps: {n_comps}") return pc_regression(adata.obsm[embed], covariate_values, n_comps=n_comps) # use existing PCA computation elif (recompute_pca == False) and ('X_pca' in adata.obsm) and ('pca' in adata.uns): if verbose: print("using existing PCA") return pc_regression(adata.obsm['X_pca'], covariate_values, pca_var=adata.uns['pca']['variance']) # recompute PCA else: if verbose: print(f"compute PCA n_comps: {n_comps}") return pc_regression(adata.X, covariate_values, n_comps=n_comps) def pc_regression( data, covariate, pca_var=None, n_comps=50, svd_solver='arpack', verbose=False ): """ :params data: Expression or PC matrix. Assumed to be PC, if pca_sd is given. :param covariate: series or list of batch assignments :param n_comps: number of PCA components for computing PCA, only when pca_sd is not given. If no pca_sd is not defined and n_comps=None, compute PCA and don't reduce data :param pca_var: Iterable of variances for `n_comps` components. If `pca_sd` is not `None`, it is assumed that the matrix contains PC, otherwise PCA is computed on `data`. :param svd_solver: :param verbose: :return: R2Var of regression """ if isinstance(data, (np.ndarray, sparse.csr_matrix, sparse.csc_matrix)): matrix = data else: raise TypeError(f'invalid type: {data.__class__} is not a numpy array or sparse matrix') # perform PCA if no variance contributions are given if pca_var is None: if n_comps is None or n_comps > min(matrix.shape): n_comps = min(matrix.shape) if n_comps == min(matrix.shape): svd_solver = 'full' if verbose: print("compute PCA") pca = sc.tl.pca(matrix, n_comps=n_comps, use_highly_variable=False, return_info=True, svd_solver=svd_solver, copy=True) X_pca = pca[0].copy() pca_var = pca[3].copy() del pca else: X_pca = matrix n_comps = matrix.shape[1] ## PC Regression if verbose: print("fit regression on PCs") # handle categorical values if pd.api.types.is_numeric_dtype(covariate): covariate = np.array(covariate).reshape(-1, 1) else: if verbose: print("one-hot encode categorical values") covariate =
pd.get_dummies(covariate)
pandas.get_dummies
import glob import os import sys import copy from joblib import Parallel, delayed import matplotlib.pyplot as plt import numpy as np import pandas as pd import pyabf from ipfx import feature_extractor from ipfx import subthresh_features as subt print("feature extractor loaded") from .abf_ipfx_dataframes import _build_full_df, _build_sweepwise_dataframe, save_data_frames from .loadABF import loadABF from .patch_utils import plotabf, load_protocols, find_non_zero_range from .QC import run_qc default_dict = {'start': 0, 'end': 0, 'filter': 0} def folder_feature_extract(files, param_dict, plot_sweeps=-1, protocol_name='IC1', para=1): debugplot = 0 running_lab = ['Trough', 'Peak', 'Max Rise (upstroke)', 'Max decline (downstroke)', 'Width'] dfs =
pd.DataFrame()
pandas.DataFrame
"""Contains methods and classes to collect data from tushare API """ import pandas as pd import tushare as ts from tqdm import tqdm class TushareDownloader : """Provides methods for retrieving daily stock data from tushare API Attributes ---------- start_date : str start date of the data (modified from config.py) end_date : str end date of the data (modified from config.py) ticker_list : list a list of stock tickers (modified from config.py) Methods ------- fetch_data() Fetches data from tushare API date:date Open: opening price High: the highest price Close: closing price Low: lowest price Volume: volume Price_change: price change P_change: fluctuation ma5: 5-day average price Ma10: 10 average daily price Ma20:20 average daily price V_ma5:5 daily average V_ma10:10 daily average V_ma20:20 daily average """ def __init__(self, start_date: str, end_date: str, ticker_list: list): self.start_date = start_date self.end_date = end_date self.ticker_list = ticker_list def fetch_data(self) -> pd.DataFrame: """Fetches data from Yahoo API Parameters ---------- Returns ------- `pd.DataFrame` 7 columns: A date, open, high, low, close, volume and tick symbol for the specified stock ticker """ # Download and save the data in a pandas DataFrame: data_df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np import os from os import listdir from os.path import isfile, join from datetime import datetime import logging logger = logging.getLogger(__name__) def load_csvs(paths): """Creates a dataframe dictionary from the csv files in /data : dict_df Arguments --------- param_file : paths Path to the data files (/data) """ filepaths = [f for f in listdir(paths) if isfile(join(paths, f))] onlyfiles = [os.path.join(paths, f) for f in filepaths] dict_df = {} for files in onlyfiles: #validate that the files are csv. Else the read function will not work _, filename = os.path.split(files) name, ending = os.path.splitext(filename) if ending == '.csv': dict_df[name] = pd.read_csv(files, header=0) else: print('You have mixed file types in you directory, please make sure all are .csv type! {}'.format(files)) return dict_df def make_outputfile(param_file): """Creates a string from the template OSeMOSYS file Arguments --------- param_file : str Path to the parameter file """ allLinesFromXy = "" with open(param_file, "r") as inputFile: allLinesFromXy = inputFile.read() outPutFile = allLinesFromXy return outPutFile def functions_to_run(dict_df, outPutFile): """Runs all the functions for the different parameters Arguments --------- dict_df, outPutFile dict_df: is a dictionary which contains all the csv files as dataframes from load_csv. Key is the name of the csv file outPutFile: is a string with the empty OSeMOSYS parameters file from make_outputfile """ if 'operational_life' in dict_df: outPutFile = operational_life(outPutFile, dict_df['GIS_data'], dict_df['input_data'], dict_df['operational_life']) else: print('No operational_life file') ################################################################################# if 'fixed_cost' in dict_df: outPutFile = fixedcost(dict_df['GIS_data'], outPutFile, dict_df['input_data'], dict_df['fixed_cost']) else: print('No fixed_cost file') ##################################################################################### if 'total_annual_technology_limit' in dict_df: outPutFile = totaltechnologyannualactivityupperlimit(dict_df['GIS_data'], outPutFile, dict_df['input_data'], dict_df['total_annual_technology_limit']) else: print('No total_annual_technology_limit file') if 'demand' in dict_df: outPutFile = specifiedannualdemand(outPutFile, dict_df['demand'], dict_df['input_data']) else: print('No demand file') #################################################################################### if 'capitalcost_RET' in dict_df: outPutFile = capitalcost_dynamic(dict_df['GIS_data'], outPutFile, dict_df['capitalcost_RET'], dict_df['capacityfactor_wind'], dict_df['capacityfactor_solar'], dict_df['input_data']) else: print('No capitalcost_RET file') ########################################################################### if 'capitalcost' in dict_df: outPutFile = capitalcost(outPutFile, dict_df['capitalcost'], dict_df['input_data']) else: print('No capitalcost file') # ################################################################################ if 'capacityfactor_solar' or 'capacityfactor_wind' in dict_df: outPutFile = capacityfactor(outPutFile, dict_df['GIS_data'], dict_df['battery'], dict_df['input_data'], dict_df['capacityfactor_wind'], dict_df['capacityfactor_solar']) else: print('No capacityfactor_solar or capacityfactor_wind file') # ############################################################################### if 'capacitytoactivity' in dict_df: outPutFile = capacitytoactivity(dict_df['capacitytoactivity'], outPutFile, dict_df['input_data']) else: print('No capacitytoactivity file') ################################################################################# if 'demandprofile' in dict_df: outPutFile = SpecifiedDemandProfile(outPutFile, dict_df['demandprofile'], dict_df['input_data']) else: print('No demandprofile file') ########################################################### ###################### Mode of operation parameters###################### if 'emissions' in dict_df: outPutFile = emissionactivity(dict_df['GIS_data'], outPutFile, dict_df['input_data'], dict_df['emissions']) else: print('No emissions file') ######################################################## if 'variable_cost' in dict_df: outPutFile = variblecost(dict_df['GIS_data'], outPutFile, dict_df['input_data'], dict_df['variable_cost']) else: print('No variable_cost file') ############################################################# if 'inputactivity' in dict_df: outPutFile = inputact(outPutFile, dict_df['inputactivity'], dict_df['input_data']) else: print('No inputactivity file') ################################################################ if 'outputactivity' in dict_df: outPutFile = outputactivity(outPutFile, dict_df['outputactivity'], dict_df['input_data']) else: print('No outputactivity file') return(outPutFile) def operational_life(outPutFile, GIS_data, input_data, operational_life): """ builds the OperationalLife (Region, Technology, OperationalLife) ------------- Arguments outPutFile, GIS_data, input_data, operational_life outPutFile: is a string containing the OSeMOSYS parameters file GIS_data: is the location specific data which is used to iterate the data input_data: contains meta data such as region, start year, end year, months, timeslices OperationalLife: is the operational life per technology """ dataToInsert = "" print("Operational life", datetime.now().strftime('%Y-%m-%d %H:%M:%S')) param = "param OperationalLife default 1 :=\n" startIndex = outPutFile.index(param) + len(param) for i, row in GIS_data.iterrows(): location = row['Location'] for m, line in operational_life.iterrows(): t = line['Technology'] l = line['Life'] dataToInsert += "%s\t%s_%i\t%i\n" % (input_data['region'][0],t, location, l) outPutFile = outPutFile[:startIndex] + dataToInsert + outPutFile[startIndex:] return(outPutFile) def fixedcost(df, outPutFile, input_data, fixed_cost): """ Builds the Fixed cost (Region, Technology, Year, Fixed cost) ------------- Arguments df, outPutFile, input_data, fixed_cost outPutFile: is a string containing the OSeMOSYS parameters file df: is the location specific data which is used to iterate the data input_data: contains meta data such as region, start year, end year, months, timeslices fixed_cost: is the fixed cost per technology """ print("Fixed cost", datetime.now().strftime('%Y-%m-%d %H:%M:%S')) dataToInsert = "" param = "param FixedCost default 0 :=\n" startIndex = outPutFile.index(param) + len(param) for i, row in df.iterrows(): location = row['Location'] for m, line in fixed_cost.iterrows(): t = line['Technology'] fc = line['Fixed Cost'] year = int(input_data['startyear'][0]) while year <= int(input_data['endyear'][0]): dataToInsert += "%s\t%s_%i\t%i\t%f\n" % (input_data['region'][0], t, location, year, fc) year += 1 outPutFile = outPutFile[:startIndex] + dataToInsert + outPutFile[startIndex:] return(outPutFile) def emissionactivity(df, outPutFile, input_data, emissions): """ Builds the Emission activity (Region, Technology, Emissiontype, Technology, ModeofOperation, Year, emissionactivity) ------------- Arguments df, outPutFile, input_data, emissions outPutFile: is a string containing the OSeMOSYS parameters file df: is the location specific data which is used to iterate the data input_data: contains meta data such as region, start year, end year, months, timeslices emissions: is the emissionactivity per technology and mode of operation """ print("Emission activity", datetime.now().strftime('%Y-%m-%d %H:%M:%S')) dataToInsert = "" param = "param EmissionActivityRatio default 0 :=\n" startIndex = outPutFile.index(param) + len(param) for i, row in df.iterrows(): location = i for m, line in emissions.iterrows(): year = int(input_data['startyear'][0]) t = line['Technology'] k = line['Modeofoperation'] CO2 = line['CO2'] NOx = line['NOx'] while year <= int(input_data['endyear'][0]): dataToInsert += "%s\t%s_%i\tCO2\t%i\t%i\t%f\n" % (input_data['region'][0], t, location, k, year, CO2) dataToInsert += "%s\t%s_%i\tNOX\t%i\t%i\t%f\n" % (input_data['region'][0], t, location, k, year, NOx) year += 1 outPutFile = outPutFile[:startIndex] + dataToInsert + outPutFile[startIndex:] return (outPutFile) def variblecost(df, outPutFile, input_data, variable_cost): """ Builds the Variable cost (Region, Technology, ModeofOperation, Year, Variablecost) ------------- Arguments df, outPutFile, input_data, variable_cost outPutFile: is a string containing the OSeMOSYS parameters file df: is the location specific data which is used to iterate the data input_data: contains meta data such as region, start year, end year, months, timeslices variable_cost: is the variable cost per technology and mode of operation """ print("Variable cost", datetime.now().strftime('%Y-%m-%d %H:%M:%S')) dataToInsert = "" param = "param VariableCost default 0 :=\n" startIndex = outPutFile.index(param) + len(param) for i, row in df.iterrows(): location = str(row['Location']) year = int(input_data['startyear'][0]) for m, line in variable_cost.iterrows(): while year <= int(input_data['endyear'][0]): t = line['Technology'] vc = line['Variable Cost'] modeofop = line['ModeofOperation'] dataToInsert += "%s\t%s_%s\t%i\t%i\t%f\n" % (input_data['region'][0], t, location, modeofop, year, vc) year += 1 outPutFile = outPutFile[:startIndex] + dataToInsert + outPutFile[startIndex:] return(outPutFile) def totaltechnologyannualactivityupperlimit(df,outPutFile, input_data, totalannuallimit): """ Builds the TotalTechnologyAnnualActivityUpperLimit (Region, Technology, Year, TotalTechnologyUpperLimit) ------------- Arguments df,outPutFile, input_data, totalannuallimit outPutFile: is a string containing the OSeMOSYS parameters file df: is the location specific data which is used to iterate for the location specific the data input_data: contains meta data such as region, start year, end year, months, timeslices totalannuallimit: is the total annual limit per technology """ print("TotalTechnologyAnnualActivityUpperLimit", datetime.now().strftime('%Y-%m-%d %H:%M:%S')) dataToInsert = "" param = "param TotalTechnologyAnnualActivityUpperLimit default 99999999999 :=\n" startIndex = outPutFile.index(param) + len(param) for index, row in df.iterrows(): location = row['Location'] year = int(input_data['startyear'][0]) while year <= int(input_data['endyear'][0]): for m, line in totalannuallimit.iterrows(): tech = line['Technology'] cf = line[location] dataToInsert += "%s\t%s_%i\t%i\t%f\n" % (input_data['region'][0], tech, location, year, cf) year = year + 1 outPutFile = outPutFile[:startIndex] + dataToInsert + outPutFile[startIndex:] return(outPutFile) def inputact(outPutFile, inputactivity, input_data): """ Builds the InputactivityRatio (Region, Technology, Fuel, Modeofoperation, Year, InputactivityRatio) ------------- Arguments outPutFile, inputactivity, input_data outPutFile: is a string containing the OSeMOSYS parameters file input_data: contains meta data such as region, start year, end year, months, timeslices inputactivity: is the inputactivity per fuel and technology """ dataToInsert = "" print("Input activity", datetime.now().strftime('%Y-%m-%d %H:%M:%S')) param = "param InputActivityRatio default 0 :=\n" startIndex = outPutFile.index(param) + len(param) for j, row in inputactivity.iterrows(): technology = row['Technology'] fuel = row['Fuel'] inputactivityratio = row['Inputactivity'] modeofoperation = row['ModeofOperation'] year = int(input_data['startyear'][0]) while year<=int(input_data['endyear'][0]): dataToInsert += "%s\t%s\t%s\t%i\t%i\t%f\n" % (input_data['region'][0], technology, fuel, modeofoperation, year, inputactivityratio) year = year + 1 outPutFile = outPutFile[:startIndex] + dataToInsert + outPutFile[startIndex:] return (outPutFile) def SpecifiedDemandProfile(outPutFile, demandprofile, input_data): """ Builds the SpecifiedDemandProfile (Region, Fuel, Timeslice, Year, SpecifiedDemandProfile) ------------- Arguments outPutFile, demandprofile,input_data outPutFile: is a string containing the OSeMOSYS parameters file input_data: contains meta data such as region, start year, end year, months, timeslices demandprofile: is the demandprofile per fuel and technology """ dataToInsert = "" print("SpecifiedDemandProfile", datetime.now().strftime('%Y-%m-%d %H:%M:%S')) param = "param SpecifiedDemandProfile default 0 :=\n" startIndex = outPutFile.index(param) + len(param) fuels = input_data['Demand fuel'] demand_fuels = [x for x in fuels if str(x) != 'nan'] d = demandprofile.columns[1:] for i in demand_fuels: for k, line in demandprofile.iterrows(): timeslice = line['Timeslice'] for j in d: demandprofile.index = demandprofile['Timeslice'] demand_profile = demandprofile.loc[timeslice][j] dataToInsert += "%s\t%s\t%s\t%s\t%f\n" % (input_data['region'][0], i, timeslice, j, demand_profile) outPutFile = outPutFile[:startIndex] + dataToInsert + outPutFile[startIndex:] return(outPutFile) def capacityfactor(outPutFile, df, battery, input_data, capacityfactor_wind, capacityfactor_solar): """ builds the Capacityfactor(Region, Technolgy, Timeslice, Year, CapacityFactor) This method is for capacityfactor which does not use storage equations but still model batteries ------------- Arguments outPutFile, df, capacityfactor_solar, input_data, capitalcost_RET outPutFile: is a string containing the OSeMOSYS parameters file df: is the location specific data which is used to iterate the data battery: contains meta data on technologies that you want ot model batteries, time and capacityfactor input_data: contains meta data such as region, start year, end year, months, timeslices capitalcost_RET: -- """ print("Capacity factor", datetime.now().strftime('%Y-%m-%d %H:%M:%S')) param = "param CapacityFactor default 1 :=\n" startIndex = outPutFile.index(param) + len(param) dataToInsert = "" #read input data def convert(value): try: return int(value) except ValueError: try: return float(value) except ValueError: return value month = (input_data['Month']) #the list includes Nan mon = [convert(value) for value in month] mont = [x for x in mon if str(x) != 'nan'] months = ['{:02d}'.format(x) for x in mont] #padding numbers timeslice = input_data['Timeslice'] timesliceDN = str(input_data['timesliceDN'][0]) timesliceDE = str(input_data['timesliceDE'][0]) timesliceED = str(input_data['timesliceED'][0]) timesliceEN = str(input_data['timesliceEN'][0]) timesliceNE = str(input_data['timesliceNE'][0]) timesliceND = str(input_data['timesliceND'][0]) region = input_data['region'][0] startyear = input_data['startyear'][0] endyear = input_data['endyear'][0] type = input_data.groupby('renewable ninjafile') solar = type.get_group('capacityfactor_solar') solar_tech = solar['Tech'] wind = type.get_group('capacityfactor_wind') wind_tech = wind['Tech'] #deep copy renewable ninja data capacityfactor_solar_ = capacityfactor_solar.copy() capacityfactor_solar_p = pd.to_datetime(capacityfactor_solar_['date'], errors='coerce', format='%Y/%m/%d %H:%M') capacityfactor_solar_.index = capacityfactor_solar_p capacityfactor_solar_pv = capacityfactor_solar_.drop(columns=['date']) for k, row in df.iterrows(): location = str(row['Location']) year = startyear while year <= endyear: m = 0 while m < 11: currentMonth = months[m] startDate = "2016-%s-01" % (currentMonth) endDate = "2016-%s-01" % (months[m + 1]) thisMonthOnly = capacityfactor_solar_pv.loc[startDate:endDate] sliceStart = timesliceDN sliceEnd = timesliceDE ts = "%iD" % (m + 1) slice = sum(thisMonthOnly[(location)].between_time(sliceStart, sliceEnd)) try: average_solar = ((slice / len(thisMonthOnly.between_time(sliceStart, sliceEnd)._values))) except ZeroDivisionError: average_solar = 0 for t in solar_tech: dataToInsert += "%s\t%s_%s\t%s\t%i\t%f\n" % (region, t, location , ts, year, average_solar) sliceStart = timesliceED sliceEnd = timesliceEN ts = "%iE" % (m + 1) slice = sum(thisMonthOnly[(location)].between_time(sliceStart, sliceEnd)) try: average_solar = ( (slice / len(thisMonthOnly.between_time(sliceStart, sliceEnd)._values))) except ZeroDivisionError: average_solar = 0 for t in solar_tech: dataToInsert += "%s\t%s_%s\t%s\t%i\t%f\n" % (region,t, location, ts, year, average_solar) sliceStart = timesliceNE sliceEnd = timesliceND ts = "%iN" % (m + 1) slice = sum(thisMonthOnly[(location)].between_time(sliceStart, sliceEnd)) try: average_solar = ( (slice / len(thisMonthOnly.between_time(sliceStart, sliceEnd)._values))) except ZeroDivisionError: average_solar = 0 for t in solar_tech: dataToInsert += "%s\t%s_%s\t%s\t%i\t%f\n" % (region,t, location, ts, year, average_solar) m = m + 1 while m == 11: currentMonth = months[m] startDate = "2016-%s-01" % (currentMonth) endDate = "2016-%s-31" % (months[m]) thisMonthOnly = capacityfactor_solar_pv.loc[startDate:endDate] sliceStart = timesliceDN sliceEnd = timesliceDE ts = "%iD" % (m + 1) slice = sum(thisMonthOnly[(location)].between_time(sliceStart, sliceEnd)) try: average_solar = ( (slice / len(thisMonthOnly.between_time(sliceStart, sliceEnd)._values))) except ZeroDivisionError: average_solar = 0 for t in solar_tech: dataToInsert += "%s\t%s_%s\t%s\t%i\t%f\n" % (region,t, location, ts, year, average_solar) sliceStart = timesliceED sliceEnd = timesliceEN ts = "%iE" % (m + 1) slice = sum(thisMonthOnly[(location)].between_time(sliceStart, sliceEnd)) try: average_solar = (slice / len(thisMonthOnly.between_time(sliceStart, sliceEnd)._values)) except ZeroDivisionError: average_solar = 0 for t in solar_tech: dataToInsert += "%s\t%s_%s\t%s\t%i\t%f\n" % (region,t, location, ts, year, average_solar) sliceStart = timesliceNE sliceEnd = timesliceND ts = "%iN" % (m + 1) slice = sum(thisMonthOnly[(location)].between_time(sliceStart, sliceEnd)) try: average_solar = ( (slice / len(thisMonthOnly.between_time(sliceStart, sliceEnd)._values))) except ZeroDivisionError: average_solar = 0 for t in solar_tech: dataToInsert += "%s\t%s_%s\t%s\t%i\t%f\n" % (region,t, location, ts, year, average_solar) m = m + 1 year = year + 1 if battery is None: pass else: tech = battery.groupby('renewable ninjafile') solar_battery = tech.get_group('capacityfactor_solar') for j, line in solar_battery.iterrows(): capacityfactor_solar_batt = capacityfactor_solar.copy() # deep copy for k, row in df.iterrows(): location = str(row['Location']) batteryCapacityFactor = line['Batterycapacityfactor'] batteryTime = line['BatteryTime'] lastRowWasZero = False batteryConsumed = False index = 0 for solarCapacity in capacityfactor_solar_batt[location].values: currentRowIsZero = solarCapacity == 0 if not currentRowIsZero: # This will happen when the current row is not zero. We should "reset" everything. batteryTime = line['BatteryTime'] batteryCapacityFactor = line['Batterycapacityfactor'] batteryConsumed = False lastRowWasZero = False elif batteryTime == int(0): # This will happen when the current value is 0, the last value was zero and there is no batterytime left. batteryConsumed = True batteryTime = line['BatteryTime'] batteryCapacityFactor = line['Batterycapacityfactor'] elif solarCapacity == 0 and lastRowWasZero and not batteryConsumed: # This will happen when the last row was zero and the current row is 0. capacityfactor_solar_batt.at[index, location] = batteryCapacityFactor lastRowWasZero = True batteryTime -= 1 elif not batteryConsumed: # This will happen when the last row was not zero and the current row is 0. Same as above? capacityfactor_solar_batt.at[index, location] = batteryCapacityFactor lastRowWasZero = True batteryTime -= 1 index += 1 capacityfactor_solar_b = capacityfactor_solar_batt.copy() capacityfactor_solar_b.index = capacityfactor_solar_p capacityfactor_solar_battery = capacityfactor_solar_b.drop(columns=['date']) year = startyear while year <= endyear: m = 0 while m < 11: currentMonth = months[m] startDate = "2016-%s-01" % (currentMonth) endDate = "2016-%s-01" % (months[m + 1]) thisMonthOnly = capacityfactor_solar_battery.loc[startDate:endDate] sliceStart = timesliceDN sliceEnd = timesliceDE ts = "%iD" % (m + 1) slice = sum(thisMonthOnly[(location)].between_time(sliceStart, sliceEnd)) try: average_solar = ((slice / len(thisMonthOnly.between_time(sliceStart, sliceEnd)._values))) except ZeroDivisionError: average_solar = 0 dataToInsert += "%s\t%s_%ih_%s\t%s\t%i\t%f\n" % (region, line['Technology'], line['BatteryTime'], location, ts, year, average_solar) sliceStart = timesliceED sliceEnd = timesliceEN ts = "%iE" % (m + 1) slice = sum(thisMonthOnly[(location)].between_time(sliceStart, sliceEnd)) try: average_solar = ( (slice / len(thisMonthOnly.between_time(sliceStart, sliceEnd)._values))) except ZeroDivisionError: average_solar = 0 dataToInsert += "%s\t%s_%ih_%s\t%s\t%i\t%f\n" % (region, line['Technology'], line['BatteryTime'], location, ts, year, average_solar) sliceStart = timesliceNE sliceEnd = timesliceND ts = "%iN" % (m + 1) slice = sum(thisMonthOnly[(location)].between_time(sliceStart, sliceEnd)) try: average_solar = ( (slice / len(thisMonthOnly.between_time(sliceStart, sliceEnd)._values))) except ZeroDivisionError: average_solar = 0 dataToInsert += "%s\t%s_%ih_%s\t%s\t%i\t%f\n" % (region, line['Technology'], line['BatteryTime'], location, ts, year, average_solar) m = m + 1 while m == 11: currentMonth = months[m] startDate = "2016-%s-01" % (currentMonth) endDate = "2016-%s-31" % (months[m]) thisMonthOnly = capacityfactor_solar_battery.loc[startDate:endDate] sliceStart = timesliceDN sliceEnd = timesliceDE ts = "%iD" % (m + 1) slice = sum(thisMonthOnly[(location)].between_time(sliceStart, sliceEnd)) try: average_solar = ( (slice / len(thisMonthOnly.between_time(sliceStart, sliceEnd)._values))) except ZeroDivisionError: average_solar = 0 dataToInsert += "%s\t%s_%ih_%s\t%s\t%i\t%f\n" % (region, line['Technology'], line['BatteryTime'], location, ts, year, average_solar) sliceStart = timesliceED sliceEnd = timesliceEN ts = "%iE" % (m + 1) slice = sum(thisMonthOnly[(location)].between_time(sliceStart, sliceEnd)) try: average_solar = (slice / len(thisMonthOnly.between_time(sliceStart, sliceEnd)._values)) except ZeroDivisionError: average_solar = 0 dataToInsert += "%s\t%s_%ih_%s\t%s\t%i\t%f\n" % (region, line['Technology'], line['BatteryTime'], location, ts, year, average_solar) sliceStart = timesliceNE sliceEnd = timesliceND ts = "%iN" % (m + 1) slice = sum(thisMonthOnly[(location)].between_time(sliceStart, sliceEnd)) try: average_solar = ( (slice / len(thisMonthOnly.between_time(sliceStart, sliceEnd)._values))) except ZeroDivisionError: average_solar = 0 dataToInsert += "%s\t%s_%ih_%s\t%s\t%i\t%f\n" % (region, line['Technology'], line['BatteryTime'], location, ts, year, average_solar) m = m + 1 year = year + 1 #WIND capacityfactor_windcop = capacityfactor_wind.copy() capacityfactor_windc =
pd.to_datetime(capacityfactor_windcop['date'], errors='coerce', format='%Y/%m/%d %H:%M')
pandas.to_datetime
import re import string from math import ceil from operator import itemgetter from random import randrange import lime import lime.lime_tabular import matplotlib.pyplot as plt import numpy as np import pandas as pd import shap from gensim.corpora import Dictionary from gensim.models import CoherenceModel, nmf from sklearn.decomposition import NMF from sklearn.feature_extraction.text import ( ENGLISH_STOP_WORDS, CountVectorizer, TfidfVectorizer, ) from sklearn.linear_model import ElasticNet, LogisticRegression, SGDClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import ( accuracy_score, mean_squared_error, median_absolute_error, precision_score, r2_score, recall_score, roc_auc_score, f1_score, ) from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from datto.CleanText import CleanText class ModelResults: def most_similar_texts( self, X, num_examples, text_column_name, num_topics=None, chosen_stopwords=set() ): """ Uses NMF clustering to create n topics based on adjusted word frequencies Parameters -------- X: DataFrame num_examples: int text_column_name: str num_topics: int Optional - if none algorithm will determine best number Returns -------- topic_words_df: DataFrame Top 15 words/phrases per topic combined_df: DataFrame Original text with topic number assigned to each """ X = X[~X[text_column_name].isna()] X = X[X[text_column_name] != ""] X = X[X[text_column_name] != " "] X = X[X[text_column_name] != "NA"] X = X[X[text_column_name] != "n/a"] X = X[X[text_column_name] != "N/A"] X = X[X[text_column_name] != "na"] all_stop_words = ( set(ENGLISH_STOP_WORDS) | set(["-PRON-"]) | set(string.punctuation) | set([" "]) | chosen_stopwords ) ct = CleanText() vectorizer = TfidfVectorizer( tokenizer=ct.lematize, ngram_range=(1, 3), stop_words=all_stop_words, min_df=5, max_df=0.4, ) vectors = vectorizer.fit_transform(X[text_column_name]).todense() # Adding words/phrases used in text data frequencies back into the dataset (so we can see feature importances later) vocab = vectorizer.get_feature_names() vector_df = pd.DataFrame(vectors, columns=vocab, index=X.index) if X.shape[0] < 20: return "Too few examples to categorize." if not num_topics: # In case 1, add 1 to get at least 2 # The rest are based on eyeballing numbers min_topics = ceil(X.shape[0] * 0.01) + 1 max_topics = ceil(X.shape[0] * 0.2) step = ceil((max_topics - min_topics) / 5) topic_nums = list(np.arange(min_topics, max_topics, step)) texts = X[text_column_name].apply(ct.lematize) # In gensim a dictionary is a mapping between words and their integer id dictionary = Dictionary(texts) # Filter out extremes to limit the number of features dictionary.filter_extremes(no_below=2, no_above=0.85, keep_n=5000) # Create the bag-of-words format (list of (token_id, token_count)) corpus = [dictionary.doc2bow(text) for text in texts] coherence_scores = [] for num in topic_nums: model = nmf.Nmf( corpus=corpus, num_topics=num, id2word=dictionary, chunksize=2000, passes=5, kappa=0.1, minimum_probability=0.01, w_max_iter=300, w_stop_condition=0.0001, h_max_iter=100, h_stop_condition=0.001, eval_every=10, normalize=True, random_state=42, ) cm = CoherenceModel( model=model, texts=texts, dictionary=dictionary, coherence="u_mass" ) coherence_scores.append(round(cm.get_coherence(), 5)) scores = list(zip(topic_nums, coherence_scores)) chosen_num_topics = sorted(scores, key=itemgetter(1), reverse=True)[0][0] else: chosen_num_topics = num_topics model = NMF(n_components=chosen_num_topics, random_state=42) model.fit(vectors) component_loadings = model.transform(vectors) top_topics = pd.DataFrame( np.argmax(component_loadings, axis=1), columns=["top_topic_num"] ) top_topic_loading = pd.DataFrame( np.max(component_loadings, axis=1), columns=["top_topic_loading"] ) X.reset_index(inplace=True, drop=False) vector_df.reset_index(inplace=True, drop=True) # Fix for duplicate text_column_name vector_df.columns = [x + "_vector" for x in vector_df.columns] combined_df = pd.concat([X, vector_df, top_topics, top_topic_loading], axis=1) combined_df.sort_values(by="top_topic_loading", ascending=False, inplace=True) combined_df = pd.concat([X, vector_df, top_topics], axis=1) topic_words = {} sample_texts_lst = [] for topic, comp in enumerate(model.components_): word_idx = np.argsort(comp)[::-1][:num_examples] topic_words[topic] = [vocab[i] for i in word_idx] sample_texts_lst.append( list( combined_df[combined_df["top_topic_num"] == topic][ text_column_name ].values[:num_examples] ) ) topic_words_df = pd.DataFrame( columns=[ "topic_num", "num_in_category", "top_words_and_phrases", "sample_texts", ] ) topic_words_df["topic_num"] = [k for k, _ in topic_words.items()] topic_words_df["num_in_category"] = ( combined_df.groupby("top_topic_num").count().iloc[:, 0] ) topic_words_df["top_words_and_phrases"] = [x for x in topic_words.values()] topic_words_df["sample_texts"] = sample_texts_lst topic_words_explode = pd.DataFrame( topic_words_df["sample_texts"].tolist(), index=topic_words_df.index, ) topic_words_explode.columns = [ "example{}".format(num) for num in range(len(topic_words_explode.columns)) ] concated_topics = pd.concat( [ topic_words_df[ ["topic_num", "num_in_category", "top_words_and_phrases"] ], topic_words_explode, ], axis=1, ) print("Topics created with top words & example texts:") print(concated_topics) original_plus_topics = combined_df[list(X.columns) + ["index", "top_topic_num"]] original_with_keywords = pd.merge( original_plus_topics, concated_topics[["topic_num", "top_words_and_phrases"]], left_on="top_topic_num", right_on="topic_num", how="left", ).drop("top_topic_num", axis=1) return ( concated_topics, original_with_keywords, model, ) def coefficients_graph(self, X_train, X_test, model, model_type, filename): """ Displays graph of feature importances. * Number of horizontal axis indicates magnitude of effect on target variable (e.g. affected by 0.25) * Red/blue indicates feature value (increasing or decreasing feature has _ effect) * Blue & red mixed together indicate there isn't a clear effect on the target variable * For classification - interpreting magnitude number / x axis - changes the predicted probability of y on average by _ percentage points (axis value * 100) Parameters -------- X_train: pd.DataFrame X_test: pd.DataFrame model: fit model object model_type: str 'classification' or 'regression' filename: str """ if model_type.lower() == "classification": f = lambda x: model.predict_proba(x)[:, 1] else: f = lambda x: model.predict(x) med = X_train.median().values.reshape((1, X_train.shape[1])) explainer = shap.KernelExplainer(f, med) # Runs too slow if X_test is huge, take a representative sample if X_test.shape[0] > 1000: X_test_sample = X_test.sample(1000) else: X_test_sample = X_test shap_values = explainer.shap_values(X_test_sample) shap.summary_plot(shap_values, X_test_sample) plt.tight_layout() plt.savefig(filename) return shap_values def most_common_words_by_group( self, X, text_col_name, group_col_name, num_examples, num_times_min, min_ngram, ): """ Get the most commons phrases for defined groups. Parameters -------- X: DataFrame text_col_name: str group_col_name: str num_examples: int Number of text examples to include per group num_times_min: int Minimum number of times word/phrase must appear in texts min_ngram: int Returns -------- overall_counts_df: DataFrame Has groups, top words, and counts """ # Fix for when column name is the same as an ngram column name X["group_column"] = X[group_col_name] # Remove all other unneeded columns X = X[[text_col_name, "group_column"]] all_stop_words = ( set(ENGLISH_STOP_WORDS) | set(["-PRON-"]) | set(string.punctuation) | set([" "]) ) cv = CountVectorizer( stop_words=all_stop_words, ngram_range=(min_ngram, 3), min_df=num_times_min, max_df=0.4, ) vectors = cv.fit_transform(X[text_col_name]).todense() words = cv.get_feature_names() vectors_df = pd.DataFrame(vectors, columns=words) group_plus_vectors = pd.concat([vectors_df, X.reset_index(drop=False)], axis=1) count_words = pd.DataFrame( group_plus_vectors.groupby("group_column").count()["index"] ) count_words = count_words.loc[:, ~count_words.columns.duplicated()] # Fix for when "count" is an ngram column count_words.columns = ["count_ngrams"] group_plus_vectors = group_plus_vectors.merge( count_words, on="group_column", how="left" ) group_plus_vectors["count_ngrams"].fillna(0, inplace=True) sums_by_col = ( group_plus_vectors[ group_plus_vectors.columns[ ~group_plus_vectors.columns.isin([text_col_name, "index",]) ] ] .groupby("group_column") .sum() ) sums_by_col.sort_values(by="count_ngrams", ascending=False, inplace=True) sums_by_col.drop("count_ngrams", axis=1, inplace=True) array_sums = np.array(sums_by_col) sums_values_descending = -np.sort(-array_sums, axis=1) sums_indices_descending = (-array_sums).argsort() highest_sum = pd.DataFrame(sums_values_descending[:, 0]) highest_sum.columns = ["highest_sum"] sums_by_col["highest_sum"] = highest_sum["highest_sum"].values overall_counts_df = pd.DataFrame(columns=["group_name", "top_words_and_counts"]) i = 0 for row in sums_by_col.index: dict_scores = {} temp_df = pd.DataFrame(columns=["group_name", "top_words_and_counts"]) temp_df["group_name"] = [row] top_columns = sums_by_col.columns[ sums_indices_descending[i][:num_examples] ].values top_counts = sums_values_descending[i][:num_examples] [dict_scores.update({x: y}) for x, y in zip(top_columns, top_counts)] temp_df["top_words_and_counts"] = [dict_scores] overall_counts_df = overall_counts_df.append([temp_df]) print(f"Group Name: {row}\n") for k, v in dict_scores.items(): print(k, v) print("\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n") i += 1 return overall_counts_df def score_final_model( self, model_type, X_test, y_test, trained_model, multiclass=False ): """ Score your model on the test dataset. Only run this once to get an idea of how your model will perform in realtime. Run it after you have chosen your model & parameters to avoid problems with overfitting. Parameters -------- model_type: str X_test: DataFrame y_test: DataFrame trained_model: sklearn model multiclass: bool Returns -------- model: model Fit model y_predicted: array """ # Predict actual scores y_predicted = trained_model.predict(X_test) if multiclass: pscore = precision_score(y_test, y_predicted, average="weighted") rscore = recall_score(y_test, y_predicted, average="weighted") f1score = f1_score(y_test, y_predicted, average="weighted") print(f"Final Model Precision Weighted: {pscore}") print(f"Final Model Recall Weighted: {rscore}") print(f"Final Model F1 Weighted: {f1score}") elif model_type.lower() == "classification": pscore = precision_score(y_test, y_predicted) rscore = recall_score(y_test, y_predicted) accuracy = accuracy_score(y_test, y_predicted) roc_auc = roc_auc_score(y_test, y_predicted) print(f"Final Model Precision: {pscore}") print(f"Final Model Recall: {rscore}") print(f"Final Model Accuracy: {accuracy}") print(f"Final Model ROC AUC: {roc_auc}") crosstab = pd.crosstab( y_test, y_predicted, rownames=["Actual"], colnames=["Predicted"], ) print(crosstab) sum_crosstab = crosstab.to_numpy().sum() print( pd.crosstab( y_test, y_predicted, rownames=["Actual"], colnames=["Predicted"], ).apply(lambda r: round(r / sum_crosstab, 3)) ) else: mse = mean_squared_error(y_test, y_predicted) mae = median_absolute_error(y_test, y_predicted) r2 = r2_score(y_test, y_predicted) print(f"Mean Negative Root Mean Squared Errror: {(mse ** 5) * -1}") print(f"Mean Negative Median Absolute Error: {mae * -1}") print(f"Mean R2: {r2}") return trained_model, y_predicted def coefficients_summary( self, X, y, num_repetitions, num_coefficients, model_type, multiclass=False, params={}, ): """ Prints average coefficient values using a regression model. Parameters -------- X: DataFrame y: DataFrame num_repetitions: int Number of times to create models num_coefficients: int Number of top coefficients to display model_type: str 'classification' or 'regression' multiclass: bool params: dict Optional - add to change regression params, otherwise use default Returns -------- simplified_df: DataFrame Has mean, median, and standard deviation for coefficients after several runs """ coefficients_df = pd.DataFrame(columns=["features", "coefficients"]) X["intercept"] = 1 for _ in range(num_repetitions): if multiclass: model = DecisionTreeClassifier() elif model_type.lower() == "classification": model = LogisticRegression(fit_intercept=False, **params) else: model = ElasticNet(fit_intercept=False, **params) X_train, _, y_train, _ = train_test_split(X, y) model.fit(X_train, y_train) if multiclass: coefs = model.feature_importances_ elif model_type.lower() == "classification": coefs = model.coef_[0] else: coefs = model.coef_ temp_df = pd.DataFrame( [x for x in zip(X_train.columns, coefs)], columns=["features", "coefficients"], ) coefficients_df = coefficients_df.append(temp_df) column_of_interest = "coefficients" summary_coefficients_df = pd.DataFrame( coefficients_df.groupby("features").agg( {column_of_interest: ["mean", "std", "median"]} ) ) summary_coefficients_df.columns = ["mean", "std", "median"] summary_coefficients_df.reset_index(inplace=True) value_counts_df = pd.DataFrame(columns=["features"]) for col in X_train.columns: temp_df = pd.DataFrame([[col,]], columns=["features"],) value_counts_df = value_counts_df.append(temp_df) value_counts_df.reset_index(inplace=True, drop=True) combined_df = summary_coefficients_df.merge( value_counts_df, on="features", how="left" ) combined_df["abs_val_mean"] = abs(combined_df["mean"]) combined_df["abs_val_to_se"] = abs(combined_df["mean"]) / combined_df["std"] combined_df.sort_values("abs_val_to_se", inplace=True, ascending=False) simplified_df = ( combined_df[["features", "mean", "std", "median", "abs_val_to_se"]] .head(num_coefficients) .round(7) ) # 7 is the most before it flips back to scientific notation print("Coefficients summary (descending by mean abs se value):") print(simplified_df) return simplified_df def coefficients_individual_predictions( self, trained_model, X_train, X_test, id_col, num_samples, model_type, class_names=["False", "True"], ): def model_preds_adjusted(data): if model_type.lower() == "classification": predictions = np.array(trained_model.predict_proba(data)) else: predictions = np.array(trained_model.predict(data)) return predictions if model_type.lower() == "classification": explainer = lime.lime_tabular.LimeTabularExplainer( np.array(X_train), feature_names=X_train.columns, class_names=class_names, mode="classification", ) else: explainer = lime.lime_tabular.LimeTabularExplainer( np.array(X_train), feature_names=X_train.columns, class_names=class_names, mode="regression", ) for i in range(num_samples): user_idx = randrange(X_test.shape[0]) exp = explainer.explain_instance( np.array(X_test.iloc[user_idx]), model_preds_adjusted, num_features=50, top_labels=10, ) user_id = X_test.iloc[user_idx][id_col] print(f"\nUser: {user_id}") if model_type.lower() == "classification": prediction = class_names[ trained_model.predict_proba(
pd.DataFrame(X_test.iloc[user_idx])
pandas.DataFrame
import pandas as pd import numpy as np from pandas.tseries.offsets import * import scipy.optimize as opt import scipy.cluster.hierarchy as sch from scipy import stats class FHBacktestAncilliaryFunctions(object): """ This class contains a set of ancilliary supporting functions for performing backtests. They are all static methods meant to be used some place else. Here is the current list of methods: resample_dates : for calculating rebalancing dates based on Pandas calendar sampling expand_static_weights : to transfor static weights series in a dataframe of constant weights over some time index get_cov_matrix_on_date : calculates covariance matrices static_weights : static non-negative weights (long-only) for a given weighting scheme """ @staticmethod def resample_dates(index, rebalance): """ This function resamples index (a DatetimeIndex) in a few different ways: 1. Using the double-letter codes below: # WW weekly frequency (on Wednesdays) # WF weekly frequency (on Fridays) # WM weekly frequency (on Mondays) # ME month end frequency (last day of the month) # MM mid-month frequency (10th business days of the month) # MS month start frequency (first day of the month) # QE quarter end frequency # QM quarter end mid-month frequency (10th business days of the end of quarter month) # QS quarter start frequency (first day of the quarter) # SE semester end frequency # SM semester end mid-month frequency (15th of June and 15th of December) # SS semester start frequency # YE year end frequency # YM year end mid-month frequency (15th of December) # YS year start frequency (first day of the year) 2. Given a custom list or DatetimeIndex with custom rebalancing dates 3. Given a list of months to rebalance as in [2,4,8] for rebalancing in Feb, Apr, and Aug If the function fails to recognize the resampling method, it will assume ME""" if isinstance(rebalance, str): if (rebalance[0] == 'W' and len(rebalance) > 1) or rebalance == 'W': wd = int(2 * (rebalance[1] == 'W') + 4 * (rebalance[1] == 'F')) if len(rebalance) > 1 else None rebc = pd.to_datetime([x for x in (index + Week(1, weekday=wd)).unique()]) elif rebalance == 'ME' or rebalance == 'M': rebc = pd.to_datetime((index + BMonthEnd(1)).unique()) elif rebalance == 'MM': rebc = pd.to_datetime((index + MonthBegin(0) + BusinessDay(10)).unique()) elif rebalance == 'MS': # TODO: This is taking the last business day of the month if index + MonthBegin(0) fall on a weekend. Fix this. rebc = pd.to_datetime((index + MonthBegin(0)).unique()) elif rebalance == 'QE' or rebalance == 'Q': rebc = pd.to_datetime((index + QuarterEnd(1)).unique()) elif rebalance == 'QM': rebc = pd.to_datetime((index + QuarterBegin(0) + BusinessDay(10)).unique()) elif rebalance == 'QS': # TODO: This is taking the last business day of the quarter if index + QuarterBegin(0) fall on a weekend. Fix this. rebc = pd.to_datetime((index + QuarterBegin(0)).unique()) elif rebalance == 'SE' or rebalance == 'S': rebc = pd.to_datetime([x for x in (index + BMonthEnd(1)).unique() if x.month in [6, 12]]) elif rebalance == 'SM': rebc = pd.to_datetime( [x for x in (index + MonthBegin(0) + BusinessDay(10)).unique() if x.month in [6, 12]]) elif rebalance == 'SS': # TODO: This is taking the last business day of the semester if index + MonthBegin(0) fall on a weekend. Fix this. rebc = pd.to_datetime([x for x in (index + MonthBegin(0)).unique() if x.month in [6, 12]]) elif rebalance == 'YE' or rebalance == 'Y': rebc = pd.to_datetime((index + BYearEnd(1)).unique()) elif rebalance == 'YM': rebc = pd.to_datetime((index + BYearBegin(0) + BusinessDay(10)).unique()) elif rebalance == 'YS': # TODO: This is taking the last business day of the semester if index + MonthBegin(0) fall on a weekend. Fix this. rebc = pd.to_datetime((index + BYearBegin(0)).unique()) else: print('rebalance string not recognized, assuming month end frequency (last day of the month)') rebc = pd.to_datetime((index + BMonthEnd(1)).unique()) elif isinstance(rebalance, list): if all(isinstance(x, type(index[0])) for x in rebalance): # if the list or DatetimeIndex contains actual dates rebc = pd.to_datetime(rebalance) else: # this will work if the user provided a list with months to rebalance month end frequency (last day of the month try: rebc = pd.to_datetime([x for x in (index + BMonthEnd(1)).unique() if x.month in rebalance]) except: # last resort for user provided list print('Invalid rebalance list, assuming month end frequency (last day of the month)') rebc = pd.to_datetime((index + BMonthEnd(1)).unique()) else: print('rebalance parameter not recognized, assuming month end frequency (last day of the month)') rebc = pd.to_datetime((index + BMonthEnd(1)).unique()) # not necessarily the rebalancing days are valid days, i.e., are in index # we need to take the rebalancing days that are not in index and alter them # we alter them to the closest possible date in index # rebalancing days that are not in index rebc.freq = None notin = pd.DatetimeIndex([x for x in rebc if x not in index and x < index.max()], dtype=rebc.dtype, freq=rebc.freq) # find the closest day in index if isinstance(rebalance, str) and len(rebalance) == 2 and rebalance[1] == 'S': # when dealing with start frequency we want to find the next valid day not only the closest next_index_day = lambda x: min([d for d in index if d >= x]) alter = [next_index_day(p) for p in notin] else: # for the other cases, we just find the closest date alter = [min(index, key=lambda x: abs(x - p)) for p in notin] notin = notin.append(pd.DatetimeIndex([x for x in rebc if x > index.max()], dtype=rebc.dtype, freq=rebc.freq)) alter = pd.DatetimeIndex(alter, dtype=rebc.dtype, freq=rebc.freq) reb = rebc.drop(notin) # drop the invalid rebalancing dates reb = reb.append(alter) # add the closest days in index reb = reb.sort_values() # reorder return reb @staticmethod def expand_static_weights(dates_to_expand, weights): """" This function transforms static weights in a dataframe of constant weights having dates_to_expand as index """ w_df = pd.DataFrame(index=dates_to_expand, columns=weights.index, data=np.tile(weights.values, [len(dates_to_expand), 1])) return w_df @staticmethod def get_cov_matrix_on_date(d, ts, h=21, cov_type='rolling', cov_window=756, halflife=60, shrinkage_parameter = 1): """ This function calculates the annualized covariance matrix for a given date, r It does a few things that are important for backtests that are not done by pandas cov functions 1.It will take the unconditional cov matrix if there is too little data (less than cov_window bdays) This avoids using cov estimates with just a few datapoints (less than cov_window bdays) in the backtest 2.The DataFrame ts can have time series starting a different points in time The cov estimates will use the pairwise unconditional coveriance matrix if there is too little data given Parameters ---------- r : a single date value of the same type as the dates in ts.index ts : a DataFrame with daily time series of index/price levels (not returns!) h : this is the number of bdays used to calculate returns for estimating the covariance matrix cov_type : is a string with the type of covariance calulation it can be: 1. rolling (default) : is a rolling window of size cov_window (default is 3 years of data) 2. ewma : is a ewma cov (default halflife is 60 bdays) 3. expanding : is an expanding window from the start of each series Returns ------- an annualized covariance matrix based on h period returns """ # clean up ts = ts.astype(float) ts.index = pd.DatetimeIndex(pd.to_datetime(ts.index)) r = max([x for x in ts.index if x <= pd.to_datetime(d)]) t0 = ts.index[0] # this is when the data starts unc_cov = np.log(ts).diff(h).cov() * (252 / h) # this is the unconditional covariance matrix annualized # if the dataframe has less than certain amount of data, use the unconditional covariance matrix if (r - t0).days < cov_window: cov = unc_cov.copy() # if the ts DataFrame has at least some amount of data, use the conditional cov else: past_data = ts.shift(1).loc[:r] # note the day lag to not use information not available in the backtesst if cov_type == 'expanding': cond_cov = np.log(past_data).diff(h).cov() * (252 / h) elif cov_type == 'ewma': # This is roughly similar to a GARCH(1, 1) model: cond_cov = (np.log(past_data).diff(1).ewm(halflife=halflife).cov().loc[r]) * 252 else: if cov_type != 'rolling': print('cov_type not recognized, assuming rolling window of %s bdays' % str(cov_window)) cond_cov = np.log(past_data.iloc[-cov_window:]).diff(h).cov() * (252 / h) count_past = past_data.count() # this counts how munch data for each series # take the series that do not have enough data and replace with unconditional estimates for x in count_past[count_past <= cov_window].index: cond_cov.loc[x, :] = unc_cov.loc[x, :].values cond_cov.loc[:, x] = unc_cov.loc[:, x].values cov = cond_cov.copy() if shrinkage_parameter >=0 and shrinkage_parameter<1: vols = pd.Series(index=cov.index,data=np.sqrt(np.diag(cov))) corr = cov.div(vols, axis=0).div(vols, axis=1) corr = shrinkage_parameter * corr + (1 - shrinkage_parameter) * np.eye(len(vols)) cov = corr.multiply(vols, axis=0).multiply(vols, axis=1).copy() return cov @staticmethod def static_weights(weighting_scheme, cov=None, vol_target=0.1): """ This method calculates static non-negative weights for a given weighting scheme This method largely makes the functions in portfolio/construction.py obsolete Parameters ---------- weighting_scheme : this is a string that can take the following values 'IVP' : Inverse Volatility Portfolio 'MVR' : Minimum Variance Portfolio 'ERC' : Equal Risk Contribution Portfolio 'HRP' : Hierarchical Risk Parity from L<NAME> (2016) in the Journal of Portfolio Management 'EW' : Equal weights (this is the fall back case if the string is not recognized) cov : a DataFrame with the covariance matrix used in all weighting schemes but equal weights vol_target : only used in the Equal Risk Contribution Portfolio to set the overall volatility of the portfolio Returns ------- a Pandas series with static non-negative weights (long-only) """ assert isinstance(ts, pd.DataFrame), "input 'cov' must be a pandas DataFrame" # Inverse Volatility Portfolio if weighting_scheme == 'IVP': # non-negative weights are set to be proportional to the inverse of the vol, adding up to one w = np.sqrt(np.diag(cov)) w = 1 / w w = w / w.sum() static_weights = pd.Series(data=w, index=cov.columns) # Minimum Variance Portfolio elif weighting_scheme == 'MVR': # non-negative weights are set to minimize the overall portfolio variance n = cov.shape[0] port_variance = lambda x: x.dot(cov).dot(x) eq_cons = {'type': 'eq', 'fun': lambda w: w.sum() - 1} bounds = opt.Bounds(0, np.inf) w0 = np.ones(n) / n res = opt.basinhopping(port_variance, w0, minimizer_kwargs={'method': 'SLSQP', 'constraints': eq_cons, 'bounds': bounds}, T=1.0, niter=500, stepsize=0.5, interval=50, disp=False, niter_success=100) if not res['lowest_optimization_result']['success']: raise ArithmeticError('Optimization convergence failed for static MVR weighting scheme') static_weights = pd.Series(data=res.x, index=cov.columns) # Equal Risk Contribution Portfolio elif weighting_scheme == 'ERC': # non-negative weights are set to for each component to have equal risk contribution n = cov.shape[0] target_risk_contribution = np.ones(n) / n dist_to_target = lambda x: np.linalg.norm(x * (x @ cov / (vol_target ** 2)) - target_risk_contribution) port_vol = lambda x: np.sqrt(x.dot(cov).dot(x)) eq_cons = {'type': 'eq', 'fun': lambda x: port_vol(x) - vol_target} bounds = opt.Bounds(0, np.inf) res = opt.basinhopping(dist_to_target, target_risk_contribution, minimizer_kwargs={'method': 'SLSQP', 'constraints': eq_cons, 'bounds': bounds}, T=1.0, niter=500, stepsize=0.5, interval=50, disp=False, niter_success=100) if not res['lowest_optimization_result']['success']: raise ArithmeticError('Optimization convergence failed for static ERC weighting scheme') static_weights = pd.Series(data=res.x, index=cov.columns) # Hierarchical Risk Parity elif weighting_scheme == 'HRP': # Idea is from <NAME> (2016) in the Journal of Portfolio Management # Code is from the book Advances in <NAME>(2018), Financial Machine Learning, <NAME> & Sons vols = np.sqrt(np.diag(cov)) corr = cov.div(vols, axis=0).div(vols, axis=1) dist = np.sqrt(np.round(((1 - corr) / 2),10)) link = sch.linkage(dist) # quasi diagonal link = link.astype(int) sort_ix = pd.Series([link[-1, 0], link[-1, 1]]) num_items = link[-1, 3] while sort_ix.max() >= num_items: sort_ix.index = range(0, sort_ix.shape[0] * 2, 2) # make space df0 = sort_ix[sort_ix >= num_items] # find clusters i = df0.index j = df0.values - num_items sort_ix[i] = link[j, 0] # item 1 df0 = pd.Series(link[j, 1], index=i + 1) sort_ix = sort_ix.append(df0) # item 2 sort_ix = sort_ix.sort_index() # re-sort sort_ix.index = range(sort_ix.shape[0]) # re-index sort_ix = corr.index[sort_ix.tolist()].tolist() static_weights = pd.Series(1, index=sort_ix) c_items = [sort_ix] # initialize all items in one cluster while len(c_items) > 0: # bi-section c_items = [i[j:k] for i in c_items for j, k in ((0, len(i) // 2), (len(i) // 2, len(i))) if len(i) > 1] for i in range(0, len(c_items), 2): # parse in pairs c_items0 = c_items[i] # cluster 1 c_items1 = c_items[i + 1] # cluster 2 # get cluster var for 0 cov_ = cov.loc[c_items0, c_items0] # matrix slice ivp = 1 / np.diag(cov_) ivp /= ivp.sum() w_ = ivp.reshape(-1, 1) c_var0 = np.dot(np.dot(w_.T, cov_), w_)[0, 0] # get cluster var for 1 cov_ = cov.loc[c_items1, c_items1] # matrix slice ivp = 1 / np.diag(cov_) ivp /= ivp.sum() w_ = ivp.reshape(-1, 1) c_var1 = np.dot(np.dot(w_.T, cov_), w_)[0, 0] alpha = 1 - c_var0 / (c_var0 + c_var1) static_weights[c_items0] *= alpha # weight 1 static_weights[c_items1] *= 1 - alpha # weight 2 else: # Equal Weights if weighting_scheme != 'EW': print('%s weighting scheme is not recognized, defaulting to static equal weights' % weighting_scheme) n = cov.shape[0] static_weights = pd.Series(index=cov.index, data=1 / n) return static_weights @staticmethod def cross_sectional_weights_from_signals(signals, weighting_scheme = 'rank', cov = None, vol_target = 0.1): """ This method calculates static long-short weights for a given set of signals Parameters ---------- signals : a Pandas series containing a set of signals on which assets will be sorted. Typically, we want to be long and have higher weight on assets with large signals and to be short and have large negative weights in the assets with low signals weighting_scheme : this is a string that can take the following values 'zscores' : z-score long-short weights adding up to 200% in absolute value 'winsorized' : same as 'zscores' but with z-scores winsorized at 10th/90th percentile limits 'vol_target' : long-short weights set to achieve a certain volatility target for the entire portfolio 'ERC' : Equal Risk Contribution Portfolio 'IVP' : Inverse Volatility Portfolio 'EW' : Equal Weights 'rank' : Signal Rank Based Portfolio (this is the case if the parameter is not given or not recognized) cov : a DataFrame with the covariance matrix used in all weighting schemes but equal weights vol_target : used in the 'vol_target' and 'ERC' weighting schemes to set the overall volatility of the portfolio Returns ------- a Pandas series with static long-short weights as type float """ assert isinstance(signals, pd.Series), "input 'signals' must be a pandas Series" assert isinstance(weighting_scheme, str), "input 'weighting_scheme' must be a string" if weighting_scheme.lower().find('zscores')>-1: # z-score long-short weights adding up to 200% in absolute value weights = signals.copy().fillna(0) * 0 scores = pd.Series(index=signals.dropna().index, data=stats.zscore(signals.dropna())) weights[scores.index] = scores.values weights = weights / (np.nansum(np.abs(weights)) / 2) elif weighting_scheme.lower().find('winsorized')>-1: # z-scores winsorized at 10th/90th percentile limits long-short weights adding up to 200% weights = signals.copy().fillna(0) * 0 raw_scores = stats.zscore(signals.dropna()) w_scores = stats.mstats.winsorize(raw_scores, limits=.1) scores = pd.Series(index=signals.dropna().index, data=w_scores) weights[scores.index] = scores.values weights = weights / (np.nansum(np.abs(weights)) / 2) elif weighting_scheme.lower().find('vol_target')>-1: # long-short weights set to achieve a certain volatility target for the entire portfolio # maximize the portfolio signal (actually minimize the opposite of that) port_signal = lambda x: - x.dot(signals.values) # subject to the portfolio volatility being equal to vol_target port_vol = lambda x: np.sqrt(x.dot(cov).dot(x)) - vol_target eq_cons = {'type': 'eq', 'fun': lambda x: port_vol(x)} # initialize optimization with rank-based portfolio ranks = signals.rank() w0 = ranks - ranks.mean() w0 = w0 / (np.nansum(np.abs(w0)) / 2) # bounds are set in order to be long/short what the rank based portfolio tells us to be long/short # the maximum weight in absolute value is the maximum weight in the rank-based portfolio bounds = pd.DataFrame(index=signals.index, columns=['lower', 'upper']) bounds['lower'] = np.array([np.sign(w0) * max(np.abs(w0)), np.zeros(w0.shape)]).min(axis=0) bounds['upper'] = np.array([np.sign(w0) * max(np.abs(w0)), np.zeros(w0.shape)]).max(axis=0) res = opt.basinhopping(port_signal, np.nan_to_num(w0.values), minimizer_kwargs={'method': 'SLSQP', 'constraints': eq_cons, 'bounds': bounds.values}, T=1.0, niter=500, stepsize=0.5, interval=50, disp=False, niter_success=100) if not res['lowest_optimization_result']['success']: raise ArithmeticError('Optimization convergence failed for volatility target weighting scheme') weights = pd.Series(index=signals.index, data = np.nan_to_num(res.x)) elif weighting_scheme.find('ERC')>-1: # Equal Risk Contribution Portfolio # minimize the distance to the equal risk portfolio n = cov.shape[0] target_risk_contribution = np.ones(n) / n dist_to_target = lambda x: np.linalg.norm(x * (x @ cov / (vol_target ** 2)) - target_risk_contribution) # subject to the portfolio volatility being equal to vol_target port_vol = lambda x: np.sqrt(x.dot(cov).dot(x)) eq_cons = {'type': 'eq', 'fun': lambda x: port_vol(x) - vol_target} # initialize optimization with rank-based portfolio ranks = signals.rank() w0 = ranks - ranks.mean() w0 = w0 / (np.nansum(np.abs(w0)) / 2) # bounds are set in order to be long/short what the rank based portfolio tells us to be long/short # the maximum weight in absolute value is the maximum weight in the rank-based portfolio bounds = pd.DataFrame(index=signals.index, columns=['lower', 'upper']) bounds['lower'] = np.array([np.sign(w0) * max(np.abs(w0)), np.zeros(w0.shape)]).min(axis=0) bounds['upper'] = np.array([np.sign(w0) * max(np.abs(w0)), np.zeros(w0.shape)]).max(axis=0) res = opt.basinhopping(dist_to_target, target_risk_contribution, minimizer_kwargs={'method': 'SLSQP', 'constraints': eq_cons, 'bounds': bounds.values}, T=1.0, niter=500, stepsize=0.5, interval=50, disp=False, niter_success=100) if not res['lowest_optimization_result']['success']: raise ArithmeticError('Optimization convergence failed for ERC weighting scheme') weights = pd.Series(index=signals.index, data=np.nan_to_num(res.x)) elif weighting_scheme.find('IVP')>-1: # Inverse Volatility Portfolio ranks = signals.rank() weights = ranks - ranks.mean() vols = pd.Series(index=cov.index, data=np.sqrt(np.diag(cov))) weights = np.sign(weights) / vols weights = weights / (np.nansum(np.abs(weights)) / 2) elif weighting_scheme == 'EW': # Equal Weights ranks = signals.rank() weights = ranks - ranks.mean() weights = np.sign(weights) / signals.shape[0] weights = weights / (np.nansum(np.abs(weights)) / 2) else: # Signal Rank Based Portfolio if weighting_scheme.lower().find('rank')== -1: print('Unclear weighting scheme, assuming signal-rank based weights') ranks = signals.rank() weights = ranks - ranks.mean() weights = weights / (np.nansum(np.abs(weights)) / 2) return weights.astype(float) class FHLongOnlyWeights(object): """ Implements long-only portfolio strategies Attributes ---------- underlyings : a list or index with the name of the underlyings of the strategy ts : a Pandas DataFrame containing the indexed time series of returns for a set of underlying trackers rebalance_dates : DatetimeIndex with the rebalancing dates of the strategy weights : a Pandas DataFrame containing the time series of notional allocation (weights) on each underlying tracker for each rebalancing date holdings : a Pandas DataFrame containing the time series of the quantitiy held on each underlying tracker on all dates pnl : a Pandas Series containing the time series of the daily pnl of the strategy backtest : a Pandas Series containing the time series of the indexed cumulative pnl of the strategy Methods ---------- _rescale_weights : rescale the weights to achieve a certain objective when new assets come into the portfolio. Current options are: 'to_one' : rescale weights add to one 'vol' : rescale weights to meet a certain volatility target 'notional' : weights are rescaled but keep the same notional as before run_backtest : runs the strategy, calculating the performance and the attributes backtest, pnl and holdings It also returns the backtest as a Pandas DataFrame """ def __init__(self, ts, DTINI='1997-12-31', DTEND='today', static = True, weighting_scheme = 'IVP', rebalance='M', rescale_weights = False, vol_target = 0.1, cov_type='rolling', cov_period=21, cov_window=756, halflife=60): """ This class implements long-only portfolio strategies. Parameters ---------- ts : a Pandas DataFrame containing the indexed time series of returns for a set of trackers. The time series do not need to start or end all at the same time and the code deals with missing data DTINI : a string containing the initial date for the backtest (default is '1997-12-31') DTEND : a string containing the end date for the backtest (default is 'today') static : a Boolean where True is if the strategy has static weights (default) and False otherwise weighting_scheme : a string that defines the strategy weighting scheme to be used as argument on the static_weights method in the FHBacktestAncilliaryFunctions class. See FHBacktestAncilliaryFunctions.static_weights for different weighting scheme options. Inverse Volatility Portfolio is the default weighting scheme. rebalance : a string, list or DatetimeIndex that defines the rebalancing frequency of the strategy. The string is used as argument on the resample_dates method in the FHBacktestAncilliaryFunctions class. See FHBacktestAncilliaryFunctions.resample_dates for rebalancing options Month-end rebalancing is the default rebalancing scheme. rescale_weights : a Boolean or string that is used as an argument in the _rescale_weights method. If True, or not recognized, the weights will be rescaled to add up to one when new underlyings come into the portfolio. Other options are described above in the _rescale_weights method description vol_target : a float used in some weighting schemes to set the overall volatility of the portfolio cov_type : is a string with the type of covariance calulation. See the cov_type parameter on the get_cov_matrix_on_date method of the FHBacktestAncilliaryFunctions class. The default is 'rolling' cov_period : an integer used to calculate the rolling returns that will be used in the covariance calculation. See the h parameter on the get_cov_matrix_on_date method of the FHBacktestAncilliaryFunctions class. The default is 21 business days, so 1 month of rolling returns cov_window : an integer used to determine how far back in history to calculate the rolling returns that will be used in the covariance calculation. See the cov_window parameter on the get_cov_matrix_on_date method of the FHBacktestAncilliaryFunctions class The default is 756 business days, so 3 years of data halflife : for cov_type equal to 'ewma' a halflife paramter may be specified. See the cov_window parameter on the get_cov_matrix_on_date method of the FHBacktestAncilliaryFunctions class. The default is 60 bdays, about 3 months, if no parameter is specified """ assert isinstance(ts, pd.DataFrame), "input 'ts' must be a pandas DataFrame" assert isinstance(rescale_weights, bool) or isinstance(rescale_weights, str),\ "input 'rescale_weights' must be boolean or string" # store the names of the underlyings self.underlyings = ts.columns # fill na's and store time series data ts = ts.copy().fillna(method='ffill').dropna(how='all') ts.index = pd.DatetimeIndex(pd.to_datetime(ts.index)) relevant_time_period = pd.DatetimeIndex([t for t in ts.index if pd.to_datetime(DTINI) <= t <= pd.to_datetime(DTEND)]) self.ts = ts.loc[relevant_time_period] # find and store the rebalancing dates baf = FHBacktestAncilliaryFunctions() self.rebalance_dates = baf.resample_dates(relevant_time_period, rebalance) # find weights if static: # static weights case, so same weights every rebalance date try: cov = baf.get_cov_matrix_on_date(ts.dropna().index[-1], ts, h=cov_period, cov_type='expanding', cov_window=cov_window, halflife=halflife) static_weights = baf.static_weights(weighting_scheme, cov, vol_target=vol_target) except: # fall back to equal weights if weighting_scheme parameters is not recognized print('%s weighting scheme is not recognized, defaulting to static equal weights' % weighting_scheme) weighting_scheme = 'EW' static_weights = baf.static_weights(weighting_scheme) self.weights = baf.expand_static_weights(self.rebalance_dates, static_weights) else: dynamic_weights = pd.DataFrame(index=self.rebalance_dates,columns=ts.columns) for r in dynamic_weights.index: cov = baf.get_cov_matrix_on_date(r, ts, cov_type=cov_type, h=cov_period, cov_window=cov_window, halflife=halflife) static_weights = baf.static_weights(weighting_scheme, cov, vol_target=vol_target) dynamic_weights.loc[r] = static_weights.values self.weights = dynamic_weights.copy() # default to one if rescale_weights = True rsw_string = 'to_one' if isinstance(rescale_weights, bool) and rescale_weights else rescale_weights if rsw_string and static: # if raw_string is True or a string, this will be true # also, only makes sense to re-scale static weights, dynamic weights are already rescaled if rescale_weights == True: # only print this if boolean True print('type of re-scaling not given, rescalling to one') self._rescale_weights(by=rsw_string, vol_target=vol_target, cov_type=cov_type, h=cov_period, cov_window=cov_window, halflife=halflife) def _rescale_weights(self, by='to_one', vol_target=0.1, h=21, cov_type='rolling', cov_window=756, halflife=60): """" This function transforms static weights in a dataframe of constant weights having dates_to_expand as index Parameters ---------- by : method by which weights are supposed to be re-scaled 'to_one' : rescale weights add to one 'vol' : rescale weights to meet a certain volatility target 'notional' : weights are rescaled but keep the same notional as before for other parameters see get_cov_matrix_on_date method of the FHBacktestAncilliaryFunctions class """ r_weights = (self.ts.reindex(self.weights.index).notnull()*self.weights).copy() if by == 'notional': notional = self.weights.dropna().iloc[-1].sum() k = notional / r_weights.sum(axis=1) r_weights = r_weights.fillna(0).multiply(k,axis=0) elif by == 'vol': num_assets_in_reb_date = self.ts.reindex(self.weights.index).dropna(how='all').count(axis=1) for r in num_assets_in_reb_date.index: if num_assets_in_reb_date.diff(1).loc[r] != 0: active_assets = r_weights.loc[r][r_weights.loc[r] != 0].index cov = FHBacktestAncilliaryFunctions.get_cov_matrix_on_date(r, self.ts[active_assets], h=h, cov_type=cov_type, cov_window=cov_window, halflife=halflife) rescale_factor = vol_target / np.sqrt((r_weights.loc[r,active_assets] @ cov) @ r_weights.loc[r,active_assets]) r_weights.loc[r] = rescale_factor * r_weights.loc[r] else: r_weights.loc[r] = r_weights.loc[:r].iloc[-2].values else: if by != 'to_one': print('type of re-scaling not recognized, rescalling to one') k = 1 / r_weights.sum(axis=1) r_weights = r_weights.fillna(0).multiply(k,axis=0) self.weights = r_weights.copy().fillna(method='ffill').dropna(how='all') def run_backtest(self, backtest_name = 'backtest'): """" Runs the strategy, calculating the performance and the attributes backtest, pnl and holdings The resulting single-column Pandas DataFrame with the backtest will be stored in the backtest attribute with backtest_name as sole column name """ # TODO: incorporate transaction costs # set up backtest series. Same calendar as the underlying time series and indexed to start at one self.backtest = pd.Series(index=self.ts.index) self.backtest.iloc[0] = 1 # set up pnl series. Same calendar as the underlying time series and indexed to start at zero pnl on day one self.pnl = pd.Series(index=self.ts.index) self.pnl.iloc[0] = 0 # take the first set of weights available and use those at the start of the backtest if min(self.weights.index)>min(self.ts.index): w0 = pd.DataFrame(columns=[min(self.ts.index)], index=self.weights.columns, data=self.weights.iloc[0].values) self.weights = self.weights.append(w0.T).sort_index() # set up the DataFrame that will store the quantities of each underlying held during the backtest self.holdings = pd.DataFrame(index=self.ts.index,columns=self.ts.columns) self.holdings.iloc[0] = self.weights.iloc[0] / self.ts.iloc[0] # first trade # loop over days, running the strategy for t, tm1 in zip(self.backtest.index[1:], self.backtest.index[:-1]): # calculate pnl as q x change in price prices_t = self.ts.loc[:t].iloc[-1] previous_prices = self.ts.loc[:tm1].iloc[-1] self.pnl[t] = (self.holdings.loc[tm1].copy() * (prices_t -previous_prices)).sum() # acumulate the pnl in the backtest series self.backtest[t] = self.backtest[tm1] + self.pnl[t] # check if it is a rebalancing day, if so, recalculate the holdings based on new weights, i.e., rebalance if t in self.weights.index: self.holdings.loc[t] = self.backtest.loc[tm1]*self.weights.loc[t] / self.ts.loc[t] else: self.holdings.loc[t] = self.holdings.loc[tm1].copy() self.backtest = self.backtest.astype(float).to_frame(backtest_name).copy() return self.backtest class FHSignalBasedWeights(object): """ Implements long-short portfolio strategies Attributes ---------- underlyings : a list or index with the name of the underlyings of the strategy ts : a Pandas DataFrame containing the indexed time series of returns for a set of underlying trackers rebalance_dates : DatetimeIndex with the rebalancing dates of the strategy weights : a Pandas DataFrame containing the time series of notional allocation (weights) on each underlying tracker for each rebalancing date holdings : a Pandas DataFrame containing the time series of the quantitiy held on each underlying tracker on all dates traded_notional : a Pandas DataFrame containing the notional traded on each underlying on each date of the strategy pnl : a Pandas Series containing the time series of the daily pnl of the strategy backtest : a Pandas Series containing the time series of the indexed cumulative pnl of the strategy Methods ---------- run_backtest : runs the strategy, calculating the performance and the attributes backtest, pnl and holdings It also returns the backtest as a Pandas DataFrame """ def __init__(self, ts, signals, DTINI='1997-12-31', DTEND='today', weighting_scheme = 'IVP', rebalance='M', vol_target = 0.1, cov_type='rolling', cov_period=21, cov_window=756, halflife=60): """ This class implements long-short portfolio strategies. Parameters ---------- ts : a Pandas DataFrame containing the indexed time series of returns for a set of trackers. The time series do not need to start or end all at the same time and the code deals with missing data signals : a Pandas DataFrame containing the time series of the signals used to go long or short each underlying The time series do not need to start or end all at the same time and the code deals with missing data DTINI : a string containing the initial date for the backtest (default is '1997-12-31') DTEND : a string containing the end date for the backtest (default is 'today') weighting_scheme : a string that defines the strategy weighting scheme to be used as argument on the cross_sectional_weights_from_signals method in the FHBacktestAncilliaryFunctions class. See FHBacktestAncilliaryFunctions.cross_sectional_weights_from_signals for different weighting scheme options. rebalance : a string, list or DatetimeIndex that defines the rebalancing frequency of the strategy. The string is used as argument on the resample_dates method in the FHBacktestAncilliaryFunctions class. See FHBacktestAncilliaryFunctions.resample_dates for rebalancing options Month-end rebalancing is the default rebalancing scheme. vol_target : a float used in some weighting schemes to set the overall volatility of the portfolio cov_type : is a string with the type of covariance calulation. See the cov_type parameter on the get_cov_matrix_on_date method of the FHBacktestAncilliaryFunctions class. The default is 'rolling' cov_period : an integer used to calculate the rolling returns that will be used in the covariance calculation. See the h parameter on the get_cov_matrix_on_date method of the FHBacktestAncilliaryFunctions class. The default is 21 business days, so 1 month of rolling returns cov_window : an integer used to determine how far back in history to calculate the rolling returns that will be used in the covariance calculation. See the cov_window parameter on the get_cov_matrix_on_date method of the FHBacktestAncilliaryFunctions class The default is 756 business days, so 3 years of data halflife : for cov_type equal to 'ewma' a halflife paramter may be specified. See the cov_window parameter on the get_cov_matrix_on_date method of the FHBacktestAncilliaryFunctions class. The default is 60 bdays, about 3 months, if no parameter is specified """ assert isinstance(ts, pd.DataFrame), "input 'ts' must be a pandas DataFrame" assert isinstance(signals, pd.DataFrame), "input 'signals' must be a pandas DataFrame" # store the names of the underlyings self.underlyings = pd.Index([x for x in ts.columns if x in signals.columns]) # fill na's and store time series data ts = ts.copy().fillna(method='ffill').dropna(how='all') ts.index = pd.DatetimeIndex(pd.to_datetime(ts.index)) t0 = max(signals.index.min(),pd.to_datetime(DTINI)) relevant_time_period = pd.DatetimeIndex([t for t in ts.index if t0 <= t <= pd.to_datetime(DTEND)]) self.ts = ts.loc[relevant_time_period,self.underlyings] # find and store the rebalancing dates baf = FHBacktestAncilliaryFunctions() self.rebalance_dates = baf.resample_dates(relevant_time_period, rebalance) # get weights according to given weighting scheme dynamic_weights = pd.DataFrame(index=self.rebalance_dates, columns=self.underlyings) for r in dynamic_weights.index: if weighting_scheme in ['vol_target','ERC','IVP']: cov = baf.get_cov_matrix_on_date(r, ts, h=cov_period, cov_type=cov_type, cov_window=cov_window, halflife=halflife) else: cov = None static_weights = baf.cross_sectional_weights_from_signals(signals.loc[r], weighting_scheme=weighting_scheme, cov=cov, vol_target=vol_target) dynamic_weights.loc[r] = static_weights.values self.weights = dynamic_weights.copy() def run_backtest(self, backtest_name = 'backtest', holdings_costs_bps_pa = 0, rebalance_costs_bps = 0): """" Runs the strategy, calculating the performance and the attributes backtest, pnl and holdings Parameters ---------- backtest_name : a string. The resulting single-column Pandas DataFrame with the backtest will be stored in the backtest attribute with backtest_name as sole column name holdings_costs_bps_pa : a Pandas Series with the cost per year in bps of holding 100% notional of each underlying if a float or an integer is given, that number will be used for all underlyings Default is zero holdings costs rebalance_costs_bps : a Pandas Series with the cost of trading in/out of 100% notional of each underlying if a float or an integer is given, that number will be used for all underlyings Default is zero holdings costs """ # set up backtest series. Same calendar as the underlying time series and indexed to start at one self.backtest = pd.Series(index=self.ts.index) self.backtest.iloc[0] = 1 # set up pnl series. Same calendar as the underlying time series and indexed to start at zero pnl on day one self.pnl = pd.Series(index=self.ts.index) self.pnl.iloc[0] = 0 # take the first set of weights available and use those at the start of the backtest if min(self.weights.index)>min(self.ts.index): w0 = pd.DataFrame(columns=[min(self.ts.index)], index=self.weights.columns, data=self.weights.iloc[0].values) self.weights = self.weights.append(w0.T).sort_index() # set up the DataFrame that will store the quantities of each underlying held during the backtest self.holdings = pd.DataFrame(index=self.ts.index,columns=self.ts.columns) self.holdings.iloc[0] = self.weights.iloc[0] / self.ts.iloc[0] # set up the DataFrame that will store the traded notionals of each underlying per day self.traded_notional =
pd.DataFrame(index=self.ts.index,columns=self.ts.columns,data=0)
pandas.DataFrame
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from nntransfer.analysis.results.base import Analyzer from nntransfer.analysis.plot import plot class BiasTransferAnalyzer(Analyzer): def generate_table( self, objective=("Test", "img_classification", "accuracy"), last_n=0, label_steps=False, ): row_list = [] for desc, results in self.data.items(): if label_steps: name_split = desc.name.split(" ") name = " ".join(name_split[:-1]) labels = name_split[-1][1:-1].split(";") else: name, labels = (desc.name, None) row = {"name": name} levels = sorted(list(results.keys())) if last_n: levels = levels[(-1) * last_n :] for level, tracker in results.items(): try: if level in levels: l = levels.index(level) if labels: l = labels[l] row[l] = tracker.get_current_objective(objective) except: pass # no valid entry for this objective row_list.append(row) df =
pd.DataFrame(row_list)
pandas.DataFrame
import json import os from collections import defaultdict from typing import Dict import numpy as np import pandas as pd from scipy.optimize import linear_sum_assignment from scipy.spatial import KDTree, distance_matrix from .constants import PIX_TO_M, MAX_OBJECT_LENGTH_M __all__ = ["drop_low_confidence_preds", "official_metric_scoring", "score_thresholded"] def official_metric_scoring_per_scene(pred, gt, shore_root, objectness_threshold, is_vessel_threshold, is_fishing_threshold): scores_per_scene = defaultdict(list) for scene_id in gt.scene_id.unique(): scores = official_metric_scoring( pred[pred.scene_id == scene_id].reset_index(drop=True), gt[gt.scene_id == scene_id].reset_index(drop=True), shore_root ) scores["objectness_threshold"] = float(objectness_threshold) scores_for_global_thresholds = scores[ (scores.objectness_threshold == objectness_threshold) & (scores.is_vessel_threshold == is_vessel_threshold) & (scores.is_fishing_threshold == is_fishing_threshold) ] local_thresholds_score = scores.loc[scores["aggregate"].idxmax(), "aggregate"] local_is_vessel_threshold = scores.loc[scores["aggregate"].idxmax(), "is_vessel_threshold"] local_is_fishing_threshold = scores.loc[scores["aggregate"].idxmax(), "is_fishing_threshold"] scores_per_scene["scene_id"].append(scene_id) scores_per_scene["global_thresholds_score"].append(scores_for_global_thresholds["aggregate"].values[0]) scores_per_scene["global_is_vessel_threshold"].append(is_vessel_threshold) scores_per_scene["global_is_fishing_threshold"].append(is_fishing_threshold) scores_per_scene["local_thresholds_score"].append(local_thresholds_score) scores_per_scene["local_is_vessel_threshold"].append(local_is_vessel_threshold) scores_per_scene["local_is_fishing_threshold"].append(local_is_fishing_threshold) return pd.DataFrame.from_dict(scores_per_scene) def official_metric_scoring(pred, gt, shore_root) -> pd.DataFrame: inference = drop_low_confidence_preds(pred, gt, distance_tolerance=200, costly_dist=True) ground_truth = gt[gt["confidence"].isin(["HIGH", "MEDIUM"])].reset_index(drop=True) scores = score_multithreshold(inference, ground_truth, shore_root, distance_tolerance=200, shore_tolerance=2, costly_dist=True) return scores def drop_low_confidence_preds(pred, gt, distance_tolerance=200, costly_dist=False): """ Matches detections in a predictions dataframe to a ground truth data frame and isolate the low confidence matches Args: preds (pd.DataFrame): contains inference results for a single scene gt (pd.DataFrame): contains ground truth labels for a single scene distance_tolerance (int, optional): Maximum distance for valid detection. Defaults to 200. costly_dist (bool): whether to assign 9999999 to entries in the distance metrics greater than distance_tolerance; defaults to False Returns: df_out (pd.DataFrame): preds dataframe without the low confidence matches """ low_inds = [] # For each scene, obtain the tp, fp, and fn indices for maritime # object detection in the *global* pred and gt dataframes for scene_id in gt["scene_id"].unique(): pred_sc = pred[pred["scene_id"] == scene_id] gt_sc = gt[gt["scene_id"] == scene_id] low_inds_scene = match_low_confidence_preds(pred_sc, gt_sc, distance_tolerance=distance_tolerance, costly_dist=costly_dist) low_inds += low_inds_scene # Check matched pairs came from "LOW" labels for pair in low_inds: assert gt.iloc[pair["gt_idx"]]["confidence"] == "LOW", f"Index {pair['gt_idx']} is {gt.iloc[pair['gt_idx']]['confidence']}" low_pred_inds = [a["pred_idx"] for a in low_inds] df_out = pred.drop(index=low_pred_inds) df_out = df_out.reset_index() return df_out def match_low_confidence_preds(preds, gt, distance_tolerance=200, costly_dist=False): """ Matches detections in a predictions dataframe to a ground truth data frame and isolate the low confidence matches Args: preds (pd.DataFrame): contains inference results for a single scene gt (pd.DataFrame): contains ground truth labels for a single scene distance_tolerance (int, optional): Maximum distance for valid detection. Defaults to 200. costly_dist (bool): whether to assign 9999999 to entries in the distance metrics greater than distance_tolerance; defaults to False Returns: low_inds (list, int): list of indices for the preds dataframe that are associated as (1) correct detection in the *global* preds dataframe; (2) low confidence in the corresponding gt dataframe """ # Getting pixel-level predicted and ground-truth detections pred_array = np.array(list(zip(preds["detect_scene_row"], preds["detect_scene_column"]))).reshape((-1, 2)) gt_array = np.array(list(zip(gt["detect_scene_row"], gt["detect_scene_column"]))).reshape((-1, 2)) # Getting a list of index with LOW in the ground truth dataframe low_gt_inds = list(gt[gt["confidence"] == "LOW"].index) # Building distance matrix using Euclidean distance pixel space # multiplied by the UTM resolution (10 m per pixel) dist_mat = distance_matrix(pred_array, gt_array, p=2) * PIX_TO_M if costly_dist: dist_mat[dist_mat > distance_tolerance] = 9999999 * PIX_TO_M # Using Hungarian matching algorithm to assign lowest-cost gt-pred pairs rows, cols = linear_sum_assignment(dist_mat) low_inds = [ {"pred_idx": preds.index[rows[ii]], "gt_idx": gt.index[cols[ii]]} for ii in range(len(rows)) if (dist_mat[rows[ii], cols[ii]] < distance_tolerance) and (gt.index[cols[ii]] in low_gt_inds) ] return low_inds def get_shoreline_shoreline_contours(shoreline_root, scene_id) -> np.ndarray: shoreline_places = [ f"{shoreline_root}/{scene_id}_shoreline.npy", f"{shoreline_root}/train/{scene_id}_shoreline.npy", f"{shoreline_root}/validation/{scene_id}_shoreline.npy", ] shoreline_contours = None for shoreline_path in shoreline_places: if os.path.isfile(shoreline_path): shoreline_contours = np.load(shoreline_path, allow_pickle=True) break if shoreline_contours is None: raise RuntimeError("Could not locate shoreline_contours path") if len(shoreline_contours): contour_points = np.vstack(shoreline_contours) return contour_points.reshape((-1, 2)) else: return np.array([]).reshape((-1, 2)) def get_shore_preds(df, shoreline_root, scene_id, shore_tolerance_km): """ Getting detections that are close to the shoreline Args: df (pd.DataFrame): dataframe containing detections shoreline_root (str): path to shoreline contour files scene_id (str): scene_id shore_tolerance_km (float): "close to shore" tolerance in km Returns: df_close (pd.DataFrame): subset of df containing only detections close to shore """ # Loading shoreline contours for distance-to-shore calculation shoreline_contours = get_shoreline_shoreline_contours(shoreline_root, scene_id) # If there are no shorelines in the scene if len(shoreline_contours) == 0 or len(df) == 0: return
pd.DataFrame()
pandas.DataFrame
""" Functions useful in finance related applications """ import numpy as np import pandas as pd import datetime import dateutil.relativedelta as relativedelta def project_to_first(dt): return datetime.datetime(dt.year, dt.month, 1) def multiple_returns_from_levels_vec(df_in, period=1): df_out = df = (df_in - df_in.shift(period)) / df_in.shift(period) return df_out def df_restrict_dates(df_in, start_date, end_date, multi_index=False, date_name='date'): """ restrict input dataframe to certain date range boundaries are inclusive index must be in date format :param df_in: pandas data frame, index must be in datetime format; can deal with multi-index now as well :param start_date: datetime.datetime (date or certain string formats might also work) :param end_date: datetime.datetime (date or certain string formats might also work) :return: reduced dateframe """ df_out = df_in.copy() if multi_index: mask = (df_out.index.get_level_values(date_name) >= start_date) & \ (df_out.index.get_level_values(date_name) <= end_date) else: mask = (df_out.index >= start_date) & (df_out.index <= end_date) return df_out[mask] def levels_from_returns(df_in, infield='return', outfield='level', starting_level=1, frequency='daily', initial_date=None): assert frequency in ['daily', 'monthly', 'quarterly'], 'not implemented' start_date = df_in.index.min() df_out = df_in[[infield]].copy() if initial_date is None: if frequency == 'daily': initial_date = start_date + relativedelta.relativedelta(days=-1) if frequency == 'monthly': initial_date = start_date + relativedelta.relativedelta(months=-1) if frequency == 'quarterly': initial_date = start_date + relativedelta.relativedelta(months=-3) df_out.loc[initial_date] = starting_level df_out.sort_index(ascending=True, inplace=True) df_out[outfield + '_temp'] = compute_levels(starting_level, df_in[infield].values) df_out.drop(infield, axis=1, inplace=True) df_out.rename(columns={outfield + '_temp': outfield}, inplace=True) return df_out def monthly_returns(df_in, field='Close', out_name='monthly_return', day_of_month='last'): assert day_of_month in ['first', 'last'], 'not implemented' start_date = df_in.index.min() end_date = df_in.index.max() shift_start_date = start_date + relativedelta.relativedelta(months=1) first_date_returns = datetime.datetime(shift_start_date.year, shift_start_date.month, 1) last_date_returns = datetime.datetime(end_date.year, end_date.month, 1) date = first_date_returns l_monthly_returns = [] l_dates = [] while date <= last_date_returns: this_year = date.year this_month = date.month final_day = find_day_in_month(df_in.index, this_year, this_month, which=day_of_month) mask = df_in.index == final_day final_val = df_in[mask][field].iloc[0] prev_date = date + relativedelta.relativedelta(months=-1) prev_year = prev_date.year prev_month = prev_date.month initial_day = find_day_in_month(df_in.index, prev_year, prev_month, which=day_of_month) mask = df_in.index == initial_day prev_val = df_in[mask][field].iloc[0] #print(prev_initial_day, prev_val) if abs(prev_val) > 0.0: monthly_return = (final_val - prev_val) / prev_val else: monthly_return = np.nan l_monthly_returns.append(monthly_return) l_dates.append(date) date += relativedelta.relativedelta(months=1) df_out =
pd.DataFrame({out_name: l_monthly_returns}, index=l_dates)
pandas.DataFrame
#!/usr/bin/env python3 """ Tests the integration between: - grand_trade_auto.model.model_meta - grand_trade_auto.orm.orm_meta While unit tests already test this integration to some degree, this is to a more exhaustive degree. Those unit tests are mostly using integrative approaches due to minimizing mock complexity and making tests practically useful, but do aim to minimize how much of the integration is invoked. Per [pytest](https://docs.pytest.org/en/reorganize-docs/new-docs/user/naming_conventions.html), all tiles, classes, and methods will be prefaced with `test_/Test` to comply with auto-discovery (others may exist, but will not be part of test suite directly). Module Attributes: logger (Logger): Logger for this module (used for testing). (C) Copyright 2022 <NAME>. All Rights Reserved Worldwide. """ #pylint: disable=protected-access # Allow for purpose of testing those elements #pylint: disable=use-implicit-booleaness-not-comparison # +-> want to specifically check type in most tests -- `None` is a fail import copy import logging import pandas as pd import psycopg2.errors import pytest from grand_trade_auto.model import model_meta from grand_trade_auto.orm import orm_meta logger = logging.getLogger(__name__) class ModelTest(model_meta.Model): """ A test model to use for testing within this module. """ _table_name = 'test_model_meta' # NOTE: Order of attributes swapped to trick dupe code pylint check _read_only_columns = ( 'col_auto_ro', ) _columns = ( 'id', 'col_1', 'col_2', 'col_auto_ro', ) # Column Attributes -- MUST match _columns! # id defined in super col_1 = None col_2 = None col_auto_ro = None # End of Column Attributes def __copy__(self): """ Return an effective shallow copy for these testing purposes. """ shallow_copy = ModelTest(self._orm) for attr in ['id', 'col_1', 'col_2', 'col_auto_ro']: setattr(shallow_copy, attr, getattr(self, attr)) return shallow_copy class OrmTest(orm_meta.Orm): """ A barebones Orm that can be used for most tests. Instance Attributes: _mock_db_results ([]): A list of objects that would be in the database if there were a db. Meant to store results for add() so they can be checked later, etc. """ def __init__(self, db): """ Add the `_mock_db_results` instance attribute. """ super().__init__(db) self._mock_db_results = [] # NOTE: Tables before Enums below to trick dupe code pylint check def _create_schema_table_company(self): """ Not needed / will not be used. """ def _create_schema_table_datafeed_src(self): """ Not needed / will not be used. """ def _create_schema_table_exchange(self): """ Not needed / will not be used. """ def _create_schema_table_security(self): """ Not needed / will not be used. """ def _create_schema_table_security_price(self): """ Not needed / will not be used. """ def _create_schema_table_stock_adjustment(self): """ Not needed / will not be used. """ def _create_schema_enum_currency(self): """ Not needed / will not be used. """ def _create_schema_enum_market(self): """ Not needed / will not be used. """ def _create_schema_enum_price_frequency(self): """ Not needed / will not be used. """ def add(self, model_cls, data, **kwargs): """ Fake adding something to mock results, and check cols. Expected to check afterwards. Raises: (psycopg2.errors.GeneratedAlways): Raised as a simulated error if attempting to update a read only column. This should be triggered and tested as part of a test. [Pass through expected] """ OrmTest._validate_cols(data.keys(), model_cls) if any(c in data for c in model_cls._read_only_columns): raise psycopg2.errors.GeneratedAlways( # pylint: disable=no-member '...can only be updated to DEFAULT') res = { 'model': model_cls(self, data), 'extra_args': kwargs, } self._mock_db_results.append(res) def update(self, model_cls, data, where, **kwargs): """ Fake updating something in mock results, and check cols. Expected to have existing data. Limited 'where' clause support. Raises: (psycopg2.errors.GeneratedAlways): Raised as a simulated error if attempting to update a read only column. This should be triggered and tested as part of a test. (ValueError): Raised if an unsupported LogicOp is provided. This has much more limited support for LogicOps to limit how much needs to be implemented here. If this is raised, the test should be redesigned to avoid it rather than catching it. [Pass through expected] """ OrmTest._validate_cols(data.keys(), model_cls) if where[1] is not model_meta.LogicOp.EQUALS: raise ValueError('Test Error: Provided LogicOp not supported') if any(c in data for c in model_cls._read_only_columns): raise psycopg2.errors.GeneratedAlways( # pylint: disable=no-member '...can only be updated to DEFAULT') for res in self._mock_db_results: if getattr(res['model'], where[0]) == where[2]: for k, v in data.items(): setattr(res['model'], k, v) # Intentionally override extra_args to be able to test res['extra_args'] = kwargs def delete(self, model_cls, where, really_delete_all=False, **kwargs): """ Fake deleting something in mock results, and check cols. Expected to have existing data. Limited 'where' clause support. Raises: (ValueError): [with respect to LogicOp] Raised if an unsupported LogicOp is provided. This has much more limited support for LogicOps to limit how much needs to be implemented here. If this is raised, the test should be redesigned to avoid it rather than catching it. [with respect to really_delete_all] Raised as a simulated error if the where clause is empty but `really_delete_all` was not set to True. This should be triggered and tested as part of a test. """ if where and where[1] is not model_meta.LogicOp.EQUALS: raise ValueError('Test Error: Provided LogicOp not supported') if not where and really_delete_all: self._mock_db_results = [] return if not where: raise ValueError('Need to confirm w/ really_delete_all') for res in self._mock_db_results: if getattr(res['model'], where[0]) == where[2]: del res['model'] # Intentionally override extra_args to be able to test res['extra_args'] = kwargs def query(self, model_cls, return_as, columns_to_return=None, where=None, limit=None, order=None, **kwargs): """ Fake querying something from mock results, and check cols. Expected to have existing data. Limited 'where' and 'order' clause support. Raises: (psycopg2.errors.GeneratedAlways): Raised as a simulated error if attempting to update a read only column. This should be triggered and tested as part of a test. (ValueError): Raised if an unsupported LogicOp, SortOrder, or ReturnAs is provided. This has much more limited support for LogicOps, SortOrders, and ReturnAs options to limit how much needs to be implemented here. If this is raised, the test should be redesigned to avoid it rather than catching it. [Pass through expected] """ #pylint: disable=too-many-branches if columns_to_return is not None: OrmTest._validate_cols(columns_to_return, model_cls) if where and where[1] is not model_meta.LogicOp.EQUALS: raise ValueError('Test Error: Provided LogicOp not supported') if order and order[1] is not model_meta.SortOrder.DESC: raise ValueError('Test Error: Provided SortOrder not supported') cols_to_omit = [] if columns_to_return: for col in ModelTest._columns: if col not in columns_to_return: cols_to_omit.append(col) results = [] for res in self._mock_db_results: if not where or getattr(res['model'], where[0]) == where[2]: # Intentionally override extra_args to be able to test res_copy = { 'model': copy.copy(res['model']), 'extra_args': kwargs, } for col in cols_to_omit: setattr(res_copy['model'], col, None) results.append(res_copy) if order: # Hard-coded to only support DESC, hence reverse is True results.sort(key=lambda mdl: getattr(mdl['model'], order[0]), reverse=True) if limit is not None and limit < len(results): results = results[:limit] if model_meta.ReturnAs(return_as) is model_meta.ReturnAs.MODEL: return [r['model'] for r in results] if model_meta.ReturnAs(return_as) is model_meta.ReturnAs.PANDAS: # Flatten 'model' level of dict for pd.df import mdl_cols = columns_to_return or ModelTest._columns for res in results: for col in mdl_cols: res[col] = getattr(res['model'], col) del res['model'] return
pd.DataFrame(results)
pandas.DataFrame
# Import standard python libraries. import pandas as pd import numpy as np import pathlib import warnings import sys # Import the functions used throughout this project from the function dictionary library file fileDir = pathlib.Path(__file__).parents[2] code_library_folder = fileDir / 'Code' / 'function_dictionary_library' sys.path.append(str(code_library_folder)) from coal_data_processing_functions import state_abbreviations, generic_coal_rank, lower_case_data_keys from statistical_functions import ecdf, weighted_ecdf from statistics import mean def weighted_coal_ecdf(coal): warnings # Read in (1) COALQUAL Data (2) and the amount of coal mining done in each county. We use skipfooter to not read in the # search criteria rows. coalqual_filename = fileDir / 'Data' / 'COALQUAL Data' / 'CQ_upper_level.csv' COALQUAL = pd.read_csv(coalqual_filename, header=0, names=['Sample_ID', 'State', 'County', 'Province', 'Region', 'Field', 'Formation', 'Bed', 'Apparent_Rank', 'Sulfur', 'Heat', 'Arsenic', 'Boron', 'Bromine', 'Chlorides', 'Mercury', 'Lead', 'Selenium'], usecols=[0, 1, 2, 5, 6, 7, 9, 11, 28, 84, 87, 147, 151, 159, 165, 191, 219, 239]) mining_volume_filename = fileDir / 'Intermediate' / 'Coal Mining By Counties.csv' Mining_Volume = pd.read_csv(mining_volume_filename, header=0, names=['Coal_Sales', 'FIPS_Code_State', 'County_Name_State_Normal_Capitalization'], usecols=[1, 2, 8]) # Drop COALQUAL anthracite and samples with blank apparent rank. COALQUAL = COALQUAL[COALQUAL.Apparent_Rank != 'Anthracite'] COALQUAL = COALQUAL[COALQUAL.Apparent_Rank != 'Semianthracite'] COALQUAL = COALQUAL[COALQUAL.Apparent_Rank != 'Rock'] COALQUAL = COALQUAL.dropna(subset=['Apparent_Rank']) # Classify apparent ranks into broad categories. COALQUAL['Rank'] = generic_coal_rank(COALQUAL.Apparent_Rank) # Process the columns that will serve as keys for the data merging. COALQUAL['State_Abbreviation'] = state_abbreviations(COALQUAL.State) County_Name_State_Normal_Capitalization = COALQUAL['County'] + ' County, ' + COALQUAL['State_Abbreviation'] COALQUAL['County_Name_State'] = lower_case_data_keys(County_Name_State_Normal_Capitalization) Mining_Volume['County_Name_State'] = lower_case_data_keys(Mining_Volume['County_Name_State_Normal_Capitalization']) # mask = pd.Series(np.isfinite(COALQUAL['Chlorides'])) COALQUAL_all_samples_Cl = COALQUAL.loc[pd.Series(np.isfinite(COALQUAL['Chlorides']))] COALQUAL_all_samples_Br = COALQUAL.loc[pd.Series(np.isfinite(COALQUAL['Bromine']))] COALQUAL_all_samples_Cl = COALQUAL_all_samples_Cl.groupby(['County_Name_State']).mean() COALQUAL_all_samples_Cl['County_Name_State'] = COALQUAL_all_samples_Cl.index COALQUAL_all_samples_Cl = pd.merge(COALQUAL_all_samples_Cl, Mining_Volume, on='County_Name_State') COALQUAL_all_samples_Br = COALQUAL_all_samples_Br.groupby(['County_Name_State']).mean() COALQUAL_all_samples_Br['County_Name_State'] = COALQUAL_all_samples_Br.index COALQUAL_all_samples_Br = pd.merge(COALQUAL_all_samples_Br, Mining_Volume, on='County_Name_State') qe_Cl_All, pe_Cl_All = weighted_ecdf(COALQUAL_all_samples_Cl['Chlorides'], COALQUAL_all_samples_Cl['Coal_Sales']) qe_Br_All, pe_Br_All = weighted_ecdf(COALQUAL_all_samples_Br['Bromine'], COALQUAL_all_samples_Br['Coal_Sales']) # For Appalachian Low Sulfur Coal if coal == 'Appalachian Low Sulfur': COALQUAL = COALQUAL[ (COALQUAL['Region'] == 'SOUTHERN APPALACHIAN') | (COALQUAL['Region'] == 'CENTRAL APPALACHIAN') | (COALQUAL['Region'] == 'NORTHERN APPALACHIAN')] # USGS Circular 891 defines "low sulfur coal" as less than 1% total sulfur (https://pubs.usgs.gov/circ/c891/glossary.htm). # This is identical to the standard used by the EIA. COALQUAL = COALQUAL[COALQUAL['Sulfur'] < 1] COALQUAL = COALQUAL.groupby(['County_Name_State']).mean() COALQUAL['County_Name_State'] = COALQUAL.index COALQUAL = pd.merge(COALQUAL, Mining_Volume, on='County_Name_State') #Chlorides = [x for x in COALQUAL['Chlorides'] if x != ''] chlorine = COALQUAL[np.isfinite(COALQUAL['Chlorides'])] selenium = COALQUAL[np.isfinite(COALQUAL['Selenium'])] boron = COALQUAL[np.isfinite(COALQUAL['Boron'])] bromine = COALQUAL[np.isfinite(COALQUAL['Bromine'])] lead = COALQUAL[np.isfinite(COALQUAL['Lead'])] arsenic = COALQUAL[np.isfinite(COALQUAL['Arsenic'])] mercury = COALQUAL[np.isfinite(COALQUAL['Mercury'])] heat = COALQUAL[np.isfinite(COALQUAL['Heat'])] sulfur = COALQUAL[np.isfinite(COALQUAL['Sulfur'])] qe_Cl, pe_Cl = weighted_ecdf(chlorine['Chlorides'], chlorine['Coal_Sales']) qe_Se, pe_Se = weighted_ecdf(selenium['Selenium'], selenium['Coal_Sales']) qe_B, pe_B = weighted_ecdf(boron['Boron'], boron['Coal_Sales']) qe_Br, pe_Br = weighted_ecdf(bromine['Bromine'], bromine['Coal_Sales']) qe_Pb, pe_Pb = weighted_ecdf(lead['Lead'], lead['Coal_Sales']) qe_As, pe_As = weighted_ecdf(arsenic['Arsenic'], arsenic['Coal_Sales']) qe_Hg, pe_Hg = weighted_ecdf(mercury['Mercury'], mercury['Coal_Sales']) qe_Heat, pe_Heat = weighted_ecdf(heat['Heat'], heat['Coal_Sales']) qe_Sulfur, pe_Sulfur = weighted_ecdf(sulfur['Sulfur'], sulfur['Coal_Sales']) gross_heat_rate = 8188 # Btu/kWh FGD_water_treatment = 2.14e-4 # m^3/kWh # For Appalachian Medium Sulfur Coal elif coal == 'Appalachian Med Sulfur': COALQUAL = COALQUAL[ (COALQUAL['Region'] == 'SOUTHERN APPALACHIAN') | (COALQUAL['Region'] == 'CENTRAL APPALACHIAN') | ( COALQUAL['Region'] == 'NORTHERN APPALACHIAN')] COALQUAL = COALQUAL[(COALQUAL['Sulfur'] > 1) & (COALQUAL['Sulfur'] < 3)] COALQUAL = COALQUAL.groupby(['County_Name_State']).mean() COALQUAL['County_Name_State'] = COALQUAL.index COALQUAL = pd.merge(COALQUAL, Mining_Volume, on='County_Name_State') chlorine = COALQUAL[np.isfinite(COALQUAL['Chlorides'])] selenium = COALQUAL[np.isfinite(COALQUAL['Selenium'])] boron = COALQUAL[np.isfinite(COALQUAL['Boron'])] bromine = COALQUAL[np.isfinite(COALQUAL['Bromine'])] lead = COALQUAL[np.isfinite(COALQUAL['Lead'])] arsenic = COALQUAL[np.isfinite(COALQUAL['Arsenic'])] mercury = COALQUAL[np.isfinite(COALQUAL['Mercury'])] heat = COALQUAL[np.isfinite(COALQUAL['Heat'])] sulfur = COALQUAL[np.isfinite(COALQUAL['Sulfur'])] qe_Cl, pe_Cl = weighted_ecdf(chlorine['Chlorides'], chlorine['Coal_Sales']) qe_Se, pe_Se = weighted_ecdf(selenium['Selenium'], selenium['Coal_Sales']) qe_B, pe_B = weighted_ecdf(boron['Boron'], boron['Coal_Sales']) qe_Br, pe_Br = weighted_ecdf(bromine['Bromine'], bromine['Coal_Sales']) qe_Pb, pe_Pb = weighted_ecdf(lead['Lead'], lead['Coal_Sales']) qe_As, pe_As = weighted_ecdf(arsenic['Arsenic'], arsenic['Coal_Sales']) qe_Hg, pe_Hg = weighted_ecdf(mercury['Mercury'], mercury['Coal_Sales']) qe_Heat, pe_Heat = weighted_ecdf(heat['Heat'], heat['Coal_Sales']) qe_Sulfur, pe_Sulfur = weighted_ecdf(sulfur['Sulfur'], sulfur['Coal_Sales']) gross_heat_rate = 8210 # Btu/kWh FGD_water_treatment = 2.20e-4 # m^3/kWh # For Beulah-Zap Bed Coal elif coal == 'Beulah-Zap': COALQUAL = COALQUAL[(COALQUAL['Bed'] == 'BEULAH-ZAP')] COALQUAL = COALQUAL.groupby(['County_Name_State']).mean() COALQUAL['County_Name_State'] = COALQUAL.index COALQUAL = pd.merge(COALQUAL, Mining_Volume, on='County_Name_State') chlorine = COALQUAL[np.isfinite(COALQUAL['Chlorides'])] selenium = COALQUAL[np.isfinite(COALQUAL['Selenium'])] boron = COALQUAL[np.isfinite(COALQUAL['Boron'])] lead = COALQUAL[np.isfinite(COALQUAL['Lead'])] arsenic = COALQUAL[np.isfinite(COALQUAL['Arsenic'])] mercury = COALQUAL[np.isfinite(COALQUAL['Mercury'])] heat = COALQUAL[np.isfinite(COALQUAL['Heat'])] sulfur = COALQUAL[np.isfinite(COALQUAL['Sulfur'])] qe_Cl, pe_Cl = weighted_ecdf(chlorine['Chlorides'], chlorine['Coal_Sales']) qe_Se, pe_Se = weighted_ecdf(selenium['Selenium'], selenium['Coal_Sales']) qe_B, pe_B = weighted_ecdf(boron['Boron'], boron['Coal_Sales']) qe_Pb, pe_Pb = weighted_ecdf(lead['Lead'], lead['Coal_Sales']) qe_As, pe_As = weighted_ecdf(arsenic['Arsenic'], arsenic['Coal_Sales']) qe_Hg, pe_Hg = weighted_ecdf(mercury['Mercury'], mercury['Coal_Sales']) qe_Heat, pe_Heat = weighted_ecdf(heat['Heat'], heat['Coal_Sales']) qe_Sulfur, pe_Sulfur = weighted_ecdf(sulfur['Sulfur'], sulfur['Coal_Sales']) qe_Br = qe_Br_All pe_Br = pe_Br_All gross_heat_rate = 8680 # Btu/kWh FGD_water_treatment = 2.36e-4 # m^3/kWh # For Illinois #6 Coal elif coal == 'Illinois #6': COALQUAL = COALQUAL[(COALQUAL['Bed'] == 'HERRIN NO 6')] COALQUAL = COALQUAL.groupby(['County_Name_State']).mean() COALQUAL['County_Name_State'] = COALQUAL.index COALQUAL =
pd.merge(COALQUAL, Mining_Volume, on='County_Name_State')
pandas.merge
from os.path import join import numpy as np import streamlit as st import pandas as pd import datetime import plotly.express as px import plotly.graph_objects as go import requests from streamlit import caching st.set_page_config(page_title="Covid Dashboard", page_icon="🕸", layout='wide', initial_sidebar_state='expanded') hide_streamlit_style = """ <style> #MainMenu {visibility: hidden;} footer {visibility: hidden;} </style> """ st.markdown(hide_streamlit_style, unsafe_allow_html=True) pd.options.mode.chained_assignment=None def new_cases_global(data,days=False,column_name=None): if not days: days=len(data) orginal_data_column = list(data.columns)[-days:] edited_data=data[orginal_data_column].T last=list(data.columns[-days:]) new_case_list=[] for i in range(len(orginal_data_column)): if last[0]==orginal_data_column[i]: add_date=orginal_data_column[i-1] for i in range(len(last)): if i == 0: columns = list(data.columns) for j in range(len(columns)): if columns[j] == last[0]: new_case = int(abs(sum(data[columns[j-1]]) - sum(data[last[0]]))) new_case_list.append({column_name:new_case}) else: new_case = int(abs(sum(edited_data.loc[last[i-1]])-sum(edited_data.loc[last[i]]))) new_case_list.append({column_name:new_case}) new_cases_data=pd.DataFrame(new_case_list,index=last) new_cases_data.index= pd.to_datetime(new_cases_data.index) return new_cases_data option_1,option_2,option_3 = "Covid Global dashboard","Covid Vaccination (India)","Covid India dashboard" dashboard_options = st.sidebar.selectbox("How would you like to be contacted?",(option_1,option_2,option_3)) if dashboard_options == option_1: st.title(option_1) column_1 , column_2 , column_3 , column_4 = st.beta_columns((2, 1, 1, 1)) col1 , col2 ,col3 = st.beta_columns(3) st.sidebar.write('Developed with ❤ by [<NAME>](https://www.Abhay.dev/)') #st.sidebar.write('Data is obtained from [JHU](https://github.com/CSSEGISandData/COVID-19)') def format_as_indian(value): input_list = list(str(value)) if len(input_list) <= 1: formatted_input = value else: first_number = input_list.pop(0) last_number = input_list.pop() formatted_input = first_number + ((''.join(l + ',' * (n % 2 == 1) for n, l in enumerate(reversed(input_list)))[::-1] + last_number)) if len(input_list) % 2 == 0: formatted_input.lstrip(',') return formatted_input @st.cache def fetch_data(url): try: data = pd.read_csv(url) columns = [] for i in list(data.columns): if i.lower() == "long" or i.lower() == "long_": columns.append("lon") else: columns.append(i.lower()) data.columns=columns return data except: return 0 @st.cache def get_data(url): data =
pd.read_csv(url)
pandas.read_csv
# %% [markdown] # This notebook is a VSCode notebook version of: # https://www.kaggle.com/georsara1/lightgbm-all-tables-included-0-778 # # You could find the data from: # https://www.kaggle.com/c/home-credit-default-risk/data ## All the data files should be in the same directory with this file! #%% Importing necessary libraries import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler, LabelEncoder from sklearn.feature_selection import VarianceThreshold #%% # Importing data data =
pd.read_csv('application_train.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Wed Mar 7 09:40:49 2018 @author: yuwei """ import pandas as pd import numpy as np import math import random import time import scipy as sp import xgboost as xgb def loadData(): "下载数据" trainSet = pd.read_table('round1_ijcai_18_train_20180301.txt',sep=' ') testSet = pd.read_table('round1_ijcai_18_test_a_20180301.txt',sep=' ') return trainSet,testSet def splitData(trainSet,testSet): "按时间划分验证集" #转化测试集时间戳为标准时间 time_local = testSet.context_timestamp.map(lambda x :time.localtime(x)) time_local = time_local.map(lambda x :time.strftime("%Y-%m-%d %H:%M:%S",x)) testSet['context_timestamp'] = time_local #转化训练集时间戳为标准时间 time_local = trainSet.context_timestamp.map(lambda x :time.localtime(x)) time_local = time_local.map(lambda x :time.strftime("%Y-%m-%d %H:%M:%S",x)) trainSet['context_timestamp'] = time_local del time_local #处理训练集item_category_list属性 trainSet['item_category_list'] = trainSet.item_category_list.map(lambda x :x.split(';')) trainSet['item_category_list_2'] = trainSet.item_category_list.map(lambda x :x[1]) trainSet['item_category_list_3'] = trainSet.item_category_list.map(lambda x :x[2] if len(x) >2 else -1) trainSet['item_category_list_2'] = list(map(lambda x,y : x if (y == -1) else y,trainSet['item_category_list_2'],trainSet['item_category_list_3'])) #处理测试集item_category_list属性 testSet['item_category_list'] = testSet.item_category_list.map(lambda x :x.split(';')) testSet['item_category_list_2'] = testSet.item_category_list.map(lambda x :x[1]) testSet['item_category_list_3'] = testSet.item_category_list.map(lambda x :x[2] if len(x) >2 else -1) testSet['item_category_list_2'] = list(map(lambda x,y : x if (y == -1) else y,testSet['item_category_list_2'],testSet['item_category_list_3'])) del trainSet['item_category_list_3'];del testSet['item_category_list_3']; #处理predict_category_property的排名 trainSet['predict_category'] = trainSet['predict_category_property'].map(lambda x :[y.split(':')[0] for y in x.split(';')]) trainSet['predict_category_property_rank'] = list(map(lambda x,y:y.index(x) if x in y else -1,trainSet['item_category_list_2'],trainSet['predict_category'])) testSet['predict_category'] = testSet['predict_category_property'].map(lambda x :[y.split(':')[0] for y in x.split(';')]) testSet['predict_category_property_rank'] = list(map(lambda x,y:y.index(x) if x in y else -1,testSet['item_category_list_2'],testSet['predict_category'])) #统计item_category_list中和predict_category共同的个数 trainSet['item_category_count'] = list(map(lambda x,y:len(set(x)&set(y)),trainSet.item_category_list,trainSet.predict_category)) testSet['item_category_count'] = list(map(lambda x,y:len(set(x)&set(y)),testSet.item_category_list,testSet.predict_category)) #不同个数 trainSet['item_category_count'] = list(map(lambda x,y:len(set(x)) - len(set(x)&set(y)),trainSet.item_category_list,trainSet.predict_category)) testSet['item_category_count'] = list(map(lambda x,y:len(set(x)) - len(set(x)&set(y)),testSet.item_category_list,testSet.predict_category)) del trainSet['predict_category']; del testSet['predict_category'] "划分数据集" #测试集 23-24号特征提取,25号打标 test = testSet testFeat = trainSet[trainSet['context_timestamp']>'2018-09-23'] #验证集 22-23号特征提取,24号打标 validate = trainSet[trainSet['context_timestamp']>'2018-09-24'] validateFeat = trainSet[(trainSet['context_timestamp']>'2018-09-22') & (trainSet['context_timestamp']<'2018-09-24')] #训练集 21-22号特征提取,23号打标;20-21号特征提取,22号打标;19-20号特征提取,21号打标;18-19号特征提取,20号打标 #标签区间 train1 = trainSet[(trainSet['context_timestamp']>'2018-09-23') & (trainSet['context_timestamp']<'2018-09-24')] train2 = trainSet[(trainSet['context_timestamp']>'2018-09-22') & (trainSet['context_timestamp']<'2018-09-23')] train3 = trainSet[(trainSet['context_timestamp']>'2018-09-21') & (trainSet['context_timestamp']<'2018-09-22')] train4 = trainSet[(trainSet['context_timestamp']>'2018-09-20') & (trainSet['context_timestamp']<'2018-09-21')] #特征区间 trainFeat1 = trainSet[(trainSet['context_timestamp']>'2018-09-21') & (trainSet['context_timestamp']<'2018-09-23')] trainFeat2 = trainSet[(trainSet['context_timestamp']>'2018-09-20') & (trainSet['context_timestamp']<'2018-09-22')] trainFeat3 = trainSet[(trainSet['context_timestamp']>'2018-09-19') & (trainSet['context_timestamp']<'2018-09-21')] trainFeat4 = trainSet[(trainSet['context_timestamp']>'2018-09-18') & (trainSet['context_timestamp']<'2018-09-20')] return test,testFeat,validate,validateFeat,train1,trainFeat1,train2,trainFeat2,train3,trainFeat3,train4,trainFeat4 def modelXgb(train,test): "xgb模型" train_y = train['is_trade'].values # train_x = train.drop(['item_brand_id','item_city_id','user_id','shop_id','context_id','instance_id', 'item_id','item_category_list','item_property_list', 'context_timestamp', # 'predict_category_property','is_trade' # ],axis=1).values # test_x = test.drop(['item_brand_id','item_city_id','user_id','shop_id','context_id','instance_id', 'item_id','item_category_list','item_property_list', 'context_timestamp', # 'predict_category_property','is_trade' # ],axis=1).values # test_x = test.drop(['item_brand_id','item_city_id','user_id','shop_id','context_id','instance_id', 'item_id','item_category_list','item_property_list', 'context_timestamp', # 'predict_category_property' # ],axis=1).values #根据皮卡尔相关系数,drop相关系数低于-0.2的属性 train_x = train.drop(['item_brand_id', 'item_city_id','user_id','shop_id','context_id', 'instance_id', 'item_id','item_category_list', 'item_property_list', 'context_timestamp', 'predict_category_property','is_trade', 'item_price_level','user_rank_down', 'item_category_list_2_not_buy_count', 'item_category_list_2_count', 'user_first' # 'user_count_label', # 'item_city_not_buy_count', # 'item_city_count', # 'user_shop_rank_down', # 'item_city_buy_count', # 'user_item_rank_down', # 'shop_score_description', # 'shop_review_positive_rate', # 'shop_score_delivery', # 'shop_score_service', ],axis=1).values # test_x = test.drop(['item_brand_id', # 'item_city_id','user_id','shop_id','context_id', # 'instance_id', 'item_id','item_category_list', # 'item_property_list', 'context_timestamp', # 'predict_category_property','is_trade', # 'item_price_level','user_rank_down', # 'item_category_list_2_not_buy_count', # 'item_category_list_2_count', # 'user_first', # 'user_count_label', # 'item_city_not_buy_count', # 'item_city_count', # 'user_shop_rank_down', # 'item_city_buy_count', # 'user_item_rank_down', # 'shop_score_description', # 'shop_review_positive_rate', # 'shop_score_delivery', # 'shop_score_service' # ],axis=1).values test_x = test.drop(['item_brand_id', 'item_city_id','user_id','shop_id','context_id', 'instance_id', 'item_id','item_category_list', 'item_property_list', 'context_timestamp', 'predict_category_property', 'item_price_level','user_rank_down', 'item_category_list_2_not_buy_count', 'item_category_list_2_count', 'user_first', # 'user_count_label', # 'item_city_not_buy_count', # 'item_city_count', # 'user_shop_rank_down', # 'item_city_buy_count', # 'user_item_rank_down', # 'shop_score_description', # 'shop_review_positive_rate', # 'shop_score_delivery', # 'shop_score_service' ],axis=1).values dtrain = xgb.DMatrix(train_x, label=train_y) dtest = xgb.DMatrix(test_x) # 模型参数 params = {'booster': 'gbtree', 'objective':'binary:logistic', 'eval_metric':'logloss', 'eta': 0.03, 'max_depth': 5, # 6 'colsample_bytree': 0.8,#0.8 'subsample': 0.8, 'scale_pos_weight': 1, 'min_child_weight': 18 # 2 } # 训练 watchlist = [(dtrain,'train')] bst = xgb.train(params, dtrain, num_boost_round=700,evals=watchlist) # 预测 predict = bst.predict(dtest) # test_xy = test[['instance_id','is_trade']] test_xy = test[['instance_id']] test_xy['predicted_score'] = predict return test_xy def get_item_feat(data,dataFeat): "item的特征提取" result = pd.DataFrame(dataFeat['item_id']) result = result.drop_duplicates(['item_id'],keep='first') "1.统计item出现次数" dataFeat['item_count'] = dataFeat['item_id'] feat = pd.pivot_table(dataFeat,index=['item_id'],values='item_count',aggfunc='count').reset_index() del dataFeat['item_count'] result = pd.merge(result,feat,on=['item_id'],how='left') "2.统计item历史被购买的次数" dataFeat['item_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['item_id'],values='item_buy_count',aggfunc='sum').reset_index() del dataFeat['item_buy_count'] result = pd.merge(result,feat,on=['item_id'],how='left') "3.统计item转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.item_buy_count,result.item_count)) result['item_buy_ratio'] = buy_ratio "4.统计item历史未被够买的次数" result['item_not_buy_count'] = result['item_count'] - result['item_buy_count'] return result def get_user_feat(data,dataFeat): "user的特征提取" result = pd.DataFrame(dataFeat['user_id']) result = result.drop_duplicates(['user_id'],keep='first') "1.统计user出现次数" dataFeat['user_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id'],values='user_count',aggfunc='count').reset_index() del dataFeat['user_count'] result = pd.merge(result,feat,on=['user_id'],how='left') "2.统计user历史被购买的次数" dataFeat['user_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id'],values='user_buy_count',aggfunc='sum').reset_index() del dataFeat['user_buy_count'] result = pd.merge(result,feat,on=['user_id'],how='left') "3.统计user转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_buy_count,result.user_count)) result['user_buy_ratio'] = buy_ratio "4.统计user历史未被够买的次数" result['user_not_buy_count'] = result['user_count'] - result['user_buy_count'] return result def get_context_feat(data,dataFeat): "context的特征提取" result = pd.DataFrame(dataFeat['context_id']) result = result.drop_duplicates(['context_id'],keep='first') "1.统计context出现次数" dataFeat['context_count'] = dataFeat['context_id'] feat = pd.pivot_table(dataFeat,index=['context_id'],values='context_count',aggfunc='count').reset_index() del dataFeat['context_count'] result = pd.merge(result,feat,on=['context_id'],how='left') "2.统计context历史被购买的次数" dataFeat['context_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['context_id'],values='context_buy_count',aggfunc='sum').reset_index() del dataFeat['context_buy_count'] result = pd.merge(result,feat,on=['context_id'],how='left') "3.统计context转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.context_buy_count,result.context_count)) result['context_buy_ratio'] = buy_ratio "4.统计context历史未被够买的次数" result['context_not_buy_count'] = result['context_count'] - result['context_buy_count'] return result def get_shop_feat(data,dataFeat): "shop的特征提取" result = pd.DataFrame(dataFeat['shop_id']) result = result.drop_duplicates(['shop_id'],keep='first') "1.统计shop出现次数" dataFeat['shop_count'] = dataFeat['shop_id'] feat = pd.pivot_table(dataFeat,index=['shop_id'],values='shop_count',aggfunc='count').reset_index() del dataFeat['shop_count'] result = pd.merge(result,feat,on=['shop_id'],how='left') "2.统计shop历史被购买的次数" dataFeat['shop_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['shop_id'],values='shop_buy_count',aggfunc='sum').reset_index() del dataFeat['shop_buy_count'] result = pd.merge(result,feat,on=['shop_id'],how='left') "3.统计shop转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.shop_buy_count,result.shop_count)) result['shop_buy_ratio'] = buy_ratio "4.统计shop历史未被够买的次数" result['shop_not_buy_count'] = result['shop_count'] - result['shop_buy_count'] return result def get_timestamp_feat(data,dataFeat): "context_timestamp的特征提取" result = pd.DataFrame(dataFeat['context_timestamp']) result = result.drop_duplicates(['context_timestamp'],keep='first') "1.统计context_timestamp出现次数" dataFeat['context_timestamp_count'] = dataFeat['context_timestamp'] feat = pd.pivot_table(dataFeat,index=['context_timestamp'],values='context_timestamp_count',aggfunc='count').reset_index() del dataFeat['context_timestamp_count'] result = pd.merge(result,feat,on=['context_timestamp'],how='left') "2.统计context_timestamp历史被购买的次数" dataFeat['context_timestamp_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['context_timestamp'],values='context_timestamp_buy_count',aggfunc='sum').reset_index() del dataFeat['context_timestamp_buy_count'] result = pd.merge(result,feat,on=['context_timestamp'],how='left') "3.统计context_timestamp转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.context_timestamp_buy_count,result.context_timestamp_count)) result['context_timestamp_buy_ratio'] = buy_ratio "4.统计context_timestamp历史未被够买的次数" result['context_timestamp_not_buy_count'] = result['context_timestamp_count'] - result['context_timestamp_buy_count'] return result def get_item_brand_feat(data,dataFeat): "item_brand的特征提取" result = pd.DataFrame(dataFeat['item_brand_id']) result = result.drop_duplicates(['item_brand_id'],keep='first') "1.统计item_brand出现次数" dataFeat['item_brand_count'] = dataFeat['item_brand_id'] feat = pd.pivot_table(dataFeat,index=['item_brand_id'],values='item_brand_count',aggfunc='count').reset_index() del dataFeat['item_brand_count'] result = pd.merge(result,feat,on=['item_brand_id'],how='left') "2.统计item_brand历史被购买的次数" dataFeat['item_brand_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['item_brand_id'],values='item_brand_buy_count',aggfunc='sum').reset_index() del dataFeat['item_brand_buy_count'] result = pd.merge(result,feat,on=['item_brand_id'],how='left') "3.统计item_brand转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.item_brand_buy_count,result.item_brand_count)) result['item_brand_buy_ratio'] = buy_ratio "4.统计item_brand历史未被够买的次数" result['item_brand_not_buy_count'] = result['item_brand_count'] - result['item_brand_buy_count'] return result def get_item_city_feat(data,dataFeat): "item_city的特征提取" result = pd.DataFrame(dataFeat['item_city_id']) result = result.drop_duplicates(['item_city_id'],keep='first') "1.统计item_city出现次数" dataFeat['item_city_count'] = dataFeat['item_city_id'] feat = pd.pivot_table(dataFeat,index=['item_city_id'],values='item_city_count',aggfunc='count').reset_index() del dataFeat['item_city_count'] result = pd.merge(result,feat,on=['item_city_id'],how='left') "2.统计item_city历史被购买的次数" dataFeat['item_city_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['item_city_id'],values='item_city_buy_count',aggfunc='sum').reset_index() del dataFeat['item_city_buy_count'] result = pd.merge(result,feat,on=['item_city_id'],how='left') "3.统计item_city转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.item_city_buy_count,result.item_city_count)) result['item_city_buy_ratio'] = buy_ratio "4.统计item_city历史未被够买的次数" result['item_city_not_buy_count'] = result['item_city_count'] - result['item_city_buy_count'] return result def get_user_gender_feat(data,dataFeat): "user_gender的特征提取" result = pd.DataFrame(dataFeat['user_gender_id']) result = result.drop_duplicates(['user_gender_id'],keep='first') "1.统计user_gender出现次数" dataFeat['user_gender_count'] = dataFeat['user_gender_id'] feat = pd.pivot_table(dataFeat,index=['user_gender_id'],values='user_gender_count',aggfunc='count').reset_index() del dataFeat['user_gender_count'] result = pd.merge(result,feat,on=['user_gender_id'],how='left') "2.统计user_gender历史被购买的次数" dataFeat['user_gender_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_gender_id'],values='user_gender_buy_count',aggfunc='sum').reset_index() del dataFeat['user_gender_buy_count'] result = pd.merge(result,feat,on=['user_gender_id'],how='left') "3.统计user_gender转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_gender_buy_count,result.user_gender_count)) result['user_gender_buy_ratio'] = buy_ratio "4.统计user_gender历史未被够买的次数" result['user_gender_not_buy_count'] = result['user_gender_count'] - result['user_gender_buy_count'] return result def get_user_occupation_feat(data,dataFeat): "user_occupation的特征提取" result = pd.DataFrame(dataFeat['user_occupation_id']) result = result.drop_duplicates(['user_occupation_id'],keep='first') "1.统计user_occupation出现次数" dataFeat['user_occupation_count'] = dataFeat['user_occupation_id'] feat = pd.pivot_table(dataFeat,index=['user_occupation_id'],values='user_occupation_count',aggfunc='count').reset_index() del dataFeat['user_occupation_count'] result = pd.merge(result,feat,on=['user_occupation_id'],how='left') "2.统计user_occupation历史被购买的次数" dataFeat['user_occupation_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_occupation_id'],values='user_occupation_buy_count',aggfunc='sum').reset_index() del dataFeat['user_occupation_buy_count'] result = pd.merge(result,feat,on=['user_occupation_id'],how='left') "3.统计user_occupation转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_occupation_buy_count,result.user_occupation_count)) result['user_occupation_buy_ratio'] = buy_ratio "4.统计user_occupation历史未被够买的次数" result['user_occupation_not_buy_count'] = result['user_occupation_count'] - result['user_occupation_buy_count'] return result def get_context_page_feat(data,dataFeat): "context_page的特征提取" result = pd.DataFrame(dataFeat['context_page_id']) result = result.drop_duplicates(['context_page_id'],keep='first') "1.统计context_page出现次数" dataFeat['context_page_count'] = dataFeat['context_page_id'] feat = pd.pivot_table(dataFeat,index=['context_page_id'],values='context_page_count',aggfunc='count').reset_index() del dataFeat['context_page_count'] result = pd.merge(result,feat,on=['context_page_id'],how='left') "2.统计context_page历史被购买的次数" dataFeat['context_page_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['context_page_id'],values='context_page_buy_count',aggfunc='sum').reset_index() del dataFeat['context_page_buy_count'] result = pd.merge(result,feat,on=['context_page_id'],how='left') "3.统计context_page转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.context_page_buy_count,result.context_page_count)) result['context_page_buy_ratio'] = buy_ratio "4.统计context_page历史未被够买的次数" result['context_page_not_buy_count'] = result['context_page_count'] - result['context_page_buy_count'] return result def get_shop_review_num_level_feat(data,dataFeat): "context_page的特征提取" result = pd.DataFrame(dataFeat['shop_review_num_level']) result = result.drop_duplicates(['shop_review_num_level'],keep='first') "1.统计shop_review_num_level出现次数" dataFeat['shop_review_num_level_count'] = dataFeat['shop_review_num_level'] feat = pd.pivot_table(dataFeat,index=['shop_review_num_level'],values='shop_review_num_level_count',aggfunc='count').reset_index() del dataFeat['shop_review_num_level_count'] result = pd.merge(result,feat,on=['shop_review_num_level'],how='left') "2.统计shop_review_num_level历史被购买的次数" dataFeat['shop_review_num_level_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['shop_review_num_level'],values='shop_review_num_level_buy_count',aggfunc='sum').reset_index() del dataFeat['shop_review_num_level_buy_count'] result = pd.merge(result,feat,on=['shop_review_num_level'],how='left') "3.统计shop_review_num_level转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.shop_review_num_level_buy_count,result.shop_review_num_level_count)) result['shop_review_num_level_buy_ratio'] = buy_ratio "4.统计shop_review_num_level历史未被够买的次数" result['shop_review_num_level_not_buy_count'] = result['shop_review_num_level_count'] - result['shop_review_num_level_buy_count'] return result def get_item_category_list_2_feat(data,dataFeat): "item_category_list_2的特征提取" result = pd.DataFrame(dataFeat['item_category_list_2']) result = result.drop_duplicates(['item_category_list_2'],keep='first') "1.统计item_category_list_2出现次数" dataFeat['item_category_list_2_count'] = dataFeat['item_category_list_2'] feat = pd.pivot_table(dataFeat,index=['item_category_list_2'],values='item_category_list_2_count',aggfunc='count').reset_index() del dataFeat['item_category_list_2_count'] result = pd.merge(result,feat,on=['item_category_list_2'],how='left') "2.统计item_category_list_2历史被购买的次数" dataFeat['item_category_list_2_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['item_category_list_2'],values='item_category_list_2_buy_count',aggfunc='sum').reset_index() del dataFeat['item_category_list_2_buy_count'] result = pd.merge(result,feat,on=['item_category_list_2'],how='left') "3.统计item_category_list_2转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.item_category_list_2_buy_count,result.item_category_list_2_count)) result['item_category_list_2_buy_ratio'] = buy_ratio "4.统计item_category_list_2历史未被够买的次数" result['item_category_list_2_not_buy_count'] = result['item_category_list_2_count'] - result['item_category_list_2_buy_count'] return result def get_user_item_feat(data,dataFeat): "user-item的特征提取" result = pd.DataFrame(dataFeat[['user_id','item_id']]) result = result.drop_duplicates(['user_id','item_id'],keep='first') "1.统计user-item出现次数" dataFeat['user_item_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','item_id'],values='user_item_count',aggfunc='count').reset_index() del dataFeat['user_item_count'] result = pd.merge(result,feat,on=['user_id','item_id'],how='left') "2.统计user-item历史被购买的次数" dataFeat['user_item_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','item_id'],values='user_item_buy_count',aggfunc='sum').reset_index() del dataFeat['user_item_buy_count'] result = pd.merge(result,feat,on=['user_id','item_id'],how='left') "3.统计user-item转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_item_buy_count,result.user_item_count)) result['user_item_buy_ratio'] = buy_ratio "4.统计user-item历史未被够买的次数" result['user_item_not_buy_count'] = result['user_item_count'] - result['user_item_buy_count'] return result def get_user_shop_feat(data,dataFeat): "user-shop的特征提取" result = pd.DataFrame(dataFeat[['user_id','shop_id']]) result = result.drop_duplicates(['user_id','shop_id'],keep='first') "1.统计user-shop出现次数" dataFeat['user_shop_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','shop_id'],values='user_shop_count',aggfunc='count').reset_index() del dataFeat['user_shop_count'] result = pd.merge(result,feat,on=['user_id','shop_id'],how='left') "2.统计user-shop历史被购买的次数" dataFeat['user_shop_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','shop_id'],values='user_shop_buy_count',aggfunc='sum').reset_index() del dataFeat['user_shop_buy_count'] result = pd.merge(result,feat,on=['user_id','shop_id'],how='left') "3.统计user-shop转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_shop_buy_count,result.user_shop_count)) result['user_shop_buy_ratio'] = buy_ratio "4.统计user-shop历史未被够买的次数" result['user_shop_not_buy_count'] = result['user_shop_count'] - result['user_shop_buy_count'] return result def get_user_context_feat(data,dataFeat): "user-context的特征提取" result = pd.DataFrame(dataFeat[['user_id','context_id']]) result = result.drop_duplicates(['user_id','context_id'],keep='first') "1.统计user-context出现次数" dataFeat['user_context_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','context_id'],values='user_context_count',aggfunc='count').reset_index() del dataFeat['user_context_count'] result = pd.merge(result,feat,on=['user_id','context_id'],how='left') "2.统计user-context历史被购买的次数" dataFeat['user_context_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','context_id'],values='user_context_buy_count',aggfunc='sum').reset_index() del dataFeat['user_context_buy_count'] result = pd.merge(result,feat,on=['user_id','context_id'],how='left') "3.统计user-context转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_context_buy_count,result.user_context_count)) result['user_context_buy_ratio'] = buy_ratio "4.统计user-context历史未被够买的次数" result['user_context_not_buy_count'] = result['user_context_count'] - result['user_context_buy_count'] return result def get_user_timestamp_feat(data,dataFeat): "user-context_timestamp的特征提取" result = pd.DataFrame(dataFeat[['user_id','context_timestamp']]) result = result.drop_duplicates(['user_id','context_timestamp'],keep='first') "1.统计user-context_timestamp出现次数" dataFeat['user_context_timestamp_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','context_timestamp'],values='user_context_timestamp_count',aggfunc='count').reset_index() del dataFeat['user_context_timestamp_count'] result = pd.merge(result,feat,on=['user_id','context_timestamp'],how='left') "2.统计user-context_timestamp历史被购买的次数" dataFeat['user_context_timestamp_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','context_timestamp'],values='user_context_timestamp_buy_count',aggfunc='sum').reset_index() del dataFeat['user_context_timestamp_buy_count'] result = pd.merge(result,feat,on=['user_id','context_timestamp'],how='left') "3.统计user-context_timestamp转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_context_timestamp_buy_count,result.user_context_timestamp_count)) result['user_context_timestamp_buy_ratio'] = buy_ratio "4.统计user-context_timestamp历史未被够买的次数" result['user_context_timestamp_not_buy_count'] = result['user_context_timestamp_count'] - result['user_context_timestamp_buy_count'] return result def get_user_item_brand_feat(data,dataFeat): "user-item_brand的特征提取" result = pd.DataFrame(dataFeat[['user_id','item_brand_id']]) result = result.drop_duplicates(['user_id','item_brand_id'],keep='first') "1.统计user-item_brand_id出现次数" dataFeat['user_item_brand_id_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','item_brand_id'],values='user_item_brand_id_count',aggfunc='count').reset_index() del dataFeat['user_item_brand_id_count'] result = pd.merge(result,feat,on=['user_id','item_brand_id'],how='left') "2.统计user-item_brand_id历史被购买的次数" dataFeat['user_item_brand_id_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','item_brand_id'],values='user_item_brand_id_buy_count',aggfunc='sum').reset_index() del dataFeat['user_item_brand_id_buy_count'] result = pd.merge(result,feat,on=['user_id','item_brand_id'],how='left') "3.统计user-item_brand_id转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_item_brand_id_buy_count,result.user_item_brand_id_count)) result['user_item_brand_id_buy_ratio'] = buy_ratio "4.统计user-item_brand_id历史未被够买的次数" result['user_item_brand_id_not_buy_count'] = result['user_item_brand_id_count'] - result['user_item_brand_id_buy_count'] return result def get_user_user_gender_feat(data,dataFeat): "user-user_gender的特征提取" result = pd.DataFrame(dataFeat[['user_id','user_gender_id']]) result = result.drop_duplicates(['user_id','user_gender_id'],keep='first') "1.统计user-user_gender_id出现次数" dataFeat['user_user_gender_id_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','user_gender_id'],values='user_user_gender_id_count',aggfunc='count').reset_index() del dataFeat['user_user_gender_id_count'] result = pd.merge(result,feat,on=['user_id','user_gender_id'],how='left') "2.统计user-user_gender_id历史被购买的次数" dataFeat['user_user_gender_id_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','user_gender_id'],values='user_user_gender_id_buy_count',aggfunc='sum').reset_index() del dataFeat['user_user_gender_id_buy_count'] result = pd.merge(result,feat,on=['user_id','user_gender_id'],how='left') "3.统计user-user_gender_id转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_user_gender_id_buy_count,result.user_user_gender_id_count)) result['user_user_gender_id_buy_ratio'] = buy_ratio "4.统计user-user_gender_id历史未被够买的次数" result['user_user_gender_id_not_buy_count'] = result['user_user_gender_id_count'] - result['user_user_gender_id_buy_count'] return result def get_user_item_city_feat(data,dataFeat): "user-item_city的特征提取" result = pd.DataFrame(dataFeat[['user_id','item_city_id']]) result = result.drop_duplicates(['user_id','item_city_id'],keep='first') "1.统计user-item_city_id出现次数" dataFeat['user_item_city_id_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','item_city_id'],values='user_item_city_id_count',aggfunc='count').reset_index() del dataFeat['user_item_city_id_count'] result = pd.merge(result,feat,on=['user_id','item_city_id'],how='left') "2.统计user-item_city_id历史被购买的次数" dataFeat['user_item_city_id_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','item_city_id'],values='user_item_city_id_buy_count',aggfunc='sum').reset_index() del dataFeat['user_item_city_id_buy_count'] result = pd.merge(result,feat,on=['user_id','item_city_id'],how='left') "3.统计user-item_city_id转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_item_city_id_buy_count,result.user_item_city_id_count)) result['user_item_city_id_buy_ratio'] = buy_ratio "4.统计user-item_city_id历史未被够买的次数" result['user_item_city_id_not_buy_count'] = result['user_item_city_id_count'] - result['user_item_city_id_buy_count'] return result def get_user_context_page_feat(data,dataFeat): "user-context_page的特征提取" result = pd.DataFrame(dataFeat[['user_id','context_page_id']]) result = result.drop_duplicates(['user_id','context_page_id'],keep='first') "1.统计user-context_page_id出现次数" dataFeat['user_context_page_id_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','context_page_id'],values='user_context_page_id_count',aggfunc='count').reset_index() del dataFeat['user_context_page_id_count'] result = pd.merge(result,feat,on=['user_id','context_page_id'],how='left') "2.统计user-context_page_id历史被购买的次数" dataFeat['user_context_page_id_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','context_page_id'],values='user_context_page_id_buy_count',aggfunc='sum').reset_index() del dataFeat['user_context_page_id_buy_count'] result = pd.merge(result,feat,on=['user_id','context_page_id'],how='left') "3.统计user-context_page_id转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_context_page_id_buy_count,result.user_context_page_id_count)) result['user_context_page_id_buy_ratio'] = buy_ratio "4.统计user-context_page_id历史未被够买的次数" result['user_context_page_id_not_buy_count'] = result['user_context_page_id_count'] - result['user_context_page_id_buy_count'] return result def get_user_user_occupation_feat(data,dataFeat): "user-user_occupation的特征提取" result = pd.DataFrame(dataFeat[['user_id','user_occupation_id']]) result = result.drop_duplicates(['user_id','user_occupation_id'],keep='first') "1.统计user-user_occupation_id出现次数" dataFeat['user_user_occupation_id_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','user_occupation_id'],values='user_user_occupation_id_count',aggfunc='count').reset_index() del dataFeat['user_user_occupation_id_count'] result = pd.merge(result,feat,on=['user_id','user_occupation_id'],how='left') "2.统计user-user_occupation_id历史被购买的次数" dataFeat['user_user_occupation_id_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','user_occupation_id'],values='user_user_occupation_id_buy_count',aggfunc='sum').reset_index() del dataFeat['user_user_occupation_id_buy_count'] result = pd.merge(result,feat,on=['user_id','user_occupation_id'],how='left') "3.统计user-user_occupation_id转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_user_occupation_id_buy_count,result.user_user_occupation_id_count)) result['user_user_occupation_id_buy_ratio'] = buy_ratio "4.统计user-user_occupation_id历史未被够买的次数" result['user_user_occupation_id_not_buy_count'] = result['user_user_occupation_id_count'] - result['user_user_occupation_id_buy_count'] return result def get_user_shop_review_num_level_feat(data,dataFeat): "user-shop_review_num_level的特征提取" result = pd.DataFrame(dataFeat[['user_id','shop_review_num_level']]) result = result.drop_duplicates(['user_id','shop_review_num_level'],keep='first') "1.统计user-shop_review_num_level出现次数" dataFeat['user_shop_review_num_level_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','shop_review_num_level'],values='user_shop_review_num_level_count',aggfunc='count').reset_index() del dataFeat['user_shop_review_num_level_count'] result = pd.merge(result,feat,on=['user_id','shop_review_num_level'],how='left') "2.统计user-shop_review_num_level历史被购买的次数" dataFeat['user_shop_review_num_level_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','shop_review_num_level'],values='user_shop_review_num_level_buy_count',aggfunc='sum').reset_index() del dataFeat['user_shop_review_num_level_buy_count'] result = pd.merge(result,feat,on=['user_id','shop_review_num_level'],how='left') "3.统计user-shop_review_num_level转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_shop_review_num_level_buy_count,result.user_shop_review_num_level_count)) result['user_shop_review_num_level_buy_ratio'] = buy_ratio "4.统计user-shop_review_num_level历史未被够买的次数" result['user_shop_review_num_level_not_buy_count'] = result['user_shop_review_num_level_count'] - result['user_shop_review_num_level_buy_count'] return result def get_user_item_category_list_2_feat(data,dataFeat): "user-item_category_list_2的特征提取" result = pd.DataFrame(dataFeat[['user_id','item_category_list_2']]) result = result.drop_duplicates(['user_id','item_category_list_2'],keep='first') "1.统计user-item_category_list_2出现次数" dataFeat['user_item_category_list_2_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','item_category_list_2'],values='user_item_category_list_2_count',aggfunc='count').reset_index() del dataFeat['user_item_category_list_2_count'] result = pd.merge(result,feat,on=['user_id','item_category_list_2'],how='left') "2.统计user-item_category_list_2历史被购买的次数" dataFeat['user_item_category_list_2_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','item_category_list_2'],values='user_item_category_list_2_buy_count',aggfunc='sum').reset_index() del dataFeat['user_item_category_list_2_buy_count'] result = pd.merge(result,feat,on=['user_id','item_category_list_2'],how='left') "3.统计user-item_category_list_2转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_item_category_list_2_buy_count,result.user_item_category_list_2_count)) result['user_item_category_list_2_buy_ratio'] = buy_ratio "4.统计user-item_category_list_2历史未被够买的次数" result['user_item_category_list_2_not_buy_count'] = result['user_item_category_list_2_count'] - result['user_item_category_list_2_buy_count'] return result def merge_feat(data,dataFeat): "特征的merge" #生成特征 item = get_item_feat(data,dataFeat) user = get_user_feat(data,dataFeat) context = get_context_feat(data,dataFeat) shop = get_shop_feat(data,dataFeat) timestamp = get_timestamp_feat(data,dataFeat) item_brand = get_item_brand_feat(data,dataFeat) user_gender = get_user_gender_feat(data,dataFeat) item_city = get_item_city_feat(data,dataFeat) context_page = get_context_page_feat(data,dataFeat) user_occupation = get_user_occupation_feat(data,dataFeat) shop_review_num_level = get_shop_review_num_level_feat(data,dataFeat) item_category_list_2 = get_item_category_list_2_feat(data,dataFeat) #交互特征 user_item = get_user_item_feat(data,dataFeat) user_shop = get_user_shop_feat(data,dataFeat) user_context = get_user_context_feat(data,dataFeat) user_timestamp = get_user_timestamp_feat(data,dataFeat) user_item_brand = get_user_item_brand_feat(data,dataFeat) user_user_gender = get_user_user_gender_feat(data,dataFeat) user_item_city = get_user_item_city_feat(data,dataFeat) user_context_page = get_user_context_page_feat(data,dataFeat) user_user_occupation = get_user_user_occupation_feat(data,dataFeat) user_shop_review_num_level = get_user_shop_review_num_level_feat(data,dataFeat) user_item_category_list_2 = get_user_item_category_list_2_feat(data,dataFeat) #merge特征 data = pd.merge(data,item,on='item_id',how='left') data = pd.merge(data,user,on='user_id',how='left') data = pd.merge(data,context,on='context_id',how='left') data = pd.merge(data,timestamp,on='context_timestamp',how='left') data = pd.merge(data,shop,on='shop_id',how='left') data = pd.merge(data,item_brand,on='item_brand_id',how='left') data = pd.merge(data,user_gender,on='user_gender_id',how='left') data = pd.merge(data,item_city,on='item_city_id',how='left') data = pd.merge(data,context_page,on='context_page_id',how='left') data = pd.merge(data,user_occupation,on='user_occupation_id',how='left') data = pd.merge(data,shop_review_num_level,on='shop_review_num_level',how='left') data = pd.merge(data,item_category_list_2,on='item_category_list_2',how='left') #交互特征 data = pd.merge(data,user_item,on=['user_id','item_id'],how='left') data = pd.merge(data,user_shop,on=['user_id','shop_id'],how='left') data = pd.merge(data,user_context,on=['user_id','context_id'],how='left') data = pd.merge(data,user_timestamp,on=['user_id','context_timestamp'],how='left') data = pd.merge(data,user_item_brand,on=['user_id','item_brand_id'],how='left') data = pd.merge(data,user_user_gender,on=['user_id','user_gender_id'],how='left') data = pd.merge(data,user_item_city,on=['user_id','item_city_id'],how='left') data = pd.merge(data,user_context_page,on=['user_id','context_page_id'],how='left') data =
pd.merge(data,user_user_occupation,on=['user_id','user_occupation_id'],how='left')
pandas.merge
import pandas as pd import numpy as np import itertools import warnings import scipy.cluster.hierarchy as sch from scipy.spatial import distance from joblib import Parallel, delayed __all__ = ['hcluster_tally', 'neighborhood_tally', 'running_neighborhood_tally', 'any_cluster_tally'] """TODO: * Incorporate running_neighbors into TCRdist, wrapping the standard metrics so they can work easily. * Verify that running_neighbor uses all CPUs and less memory: see how it could be further optimized with joblib caching, expecially for the metrics that include the CDR2 and CDR1.5 etc. """ def _counts_to_cols(counts): """Encodes the counts Series as columns that can be added to a takky result row Example counts table: trait1 trait2 cmember 0 0 0 233 1 226 1 0 71 1 79 1 0 0 0 1 0 1 0 0 1 9""" j = 0 cols = tuple(counts.index.names) levels = [] for name, lev in zip(counts.index.names, counts.index.levels): if len(lev) == 1: """This solves the problem of when a variable with one level is included by accident or e.g. all instances are cmember = 1 (top node, big R)""" if name == 'cmember': levels.append(('MEM+', 'MEM-')) elif isinstance(lev[0], int): levels.append(tuple(sorted((0, lev[0])))) else: levels.append(tuple(sorted(('REF', lev[0])))) else: levels.append(tuple(lev)) levels = tuple(levels) out = {'ct_columns':cols} for xis in itertools.product(*(range(len(u)) for u in levels)): vals = [] for ui, (col, u, xi) in enumerate(zip(counts.index.names, levels, xis)): vals.append(u[xi]) try: ct = counts.loc[tuple(vals)] except (pd.core.indexing.IndexingError, KeyError): ct = 0 out.update({'val_%d' % j:tuple(vals), 'ct_%d' % j:ct}) j += 1 return out def _dict_to_nby2(d): """Takes the encoded columns of counts from a results row and re-creates the counts table""" cols = d['ct_columns'] n = np.max([int(k.split('_')[1]) for k in d if 'val_' in k]) + 1 cts = [d['ct_%d' % j] for j in range(n)] idx = pd.MultiIndex.from_tuples([d['val_%d' % j] for j in range(n)], names=cols) counts = pd.Series(cts, index=idx) return counts def _prep_counts(cdf, xcols, ycol, count_col): """Returns a dict with keys that can be added to a result row to store tallies For a 2x2 table the data is encoded as follows X+MEM+ encodes the first level in Y (cluster membership = MEM+) and X and out contains columns named val_j and ct_j where j is ravel order, such that the values of a 2x2 table (a, b, c, d) are: ct_0 X-MEM+ a First level of X and a cluster member ("M+" which sorts before "M-" so is also first level) ct_1 X-MEM- b First level of X and a non member ct_2 X+MEM+ c Second level of X and a cluster member ct_3 X+MEM- d Second level of X and a non member val_j also encodes explictly the values of the X levels and cluster membership indicator (MEM+ = member) This means that an OR > 1 is enrichment of the SECOND level of X in the cluster. Longer tables are stored in ravel order with ct_j/val_j pairs with val_j containing the values of each column/variable. Key "ct_columns" contains the xcols and ycol as a list Ket levels contains the levels of xcols and ycol as lists from a pd.Series.MultiIndex""" counts = cdf.groupby(xcols + [ycol], sort=True)[count_col].agg(np.sum) out = _counts_to_cols(counts) counts = _dict_to_nby2(out) out['levels'] = [list(lev) for lev in counts.index.levels] if len(xcols) == 1 and counts.shape[0] == 4: """For a 2x2 add helpful count and probability columns Note that the first level of a column/variable is "negative" because its index in levels is 0""" n = counts.sum() levels = counts.index.levels tmp = {'X+MEM+':counts[(levels[0][1], 'MEM+')], 'X+MEM-':counts[(levels[0][1], 'MEM-')], 'X-MEM+':counts[(levels[0][0], 'MEM+')], 'X-MEM-':counts[(levels[0][0], 'MEM-')]} with warnings.catch_warnings(): warnings.simplefilter('ignore') tmp.update({'X_marg':(tmp['X+MEM+'] + tmp['X+MEM-']) / n, 'MEM_marg':(tmp['X+MEM+'] + tmp['X-MEM+']) / n, 'X|MEM+':tmp['X+MEM+'] / (tmp['X+MEM+'] + tmp['X-MEM+']), 'X|MEM-':tmp['X+MEM-'] / (tmp['X+MEM-'] + tmp['X-MEM-']), 'MEM|X+':tmp['X+MEM+'] / (tmp['X+MEM+'] + tmp['X+MEM-']), 'MEM|X-':tmp['X-MEM+'] / (tmp['X-MEM+'] + tmp['X-MEM-'])}) out.update(tmp) return out def neighborhood_tally(df_pop, pwmat, x_cols, df_centroids=None, count_col='count', knn_neighbors=50, knn_radius=None): """Forms a cluster around each row of df and tallies the number of instances with/without traits in x_cols. The contingency table for each cluster/row of df can be used to test for enrichments of the traits in x_cols with the distances between each row provided in pwmat. The neighborhood is defined by the K closest neighbors using pairwise distances in pwmat, or defined by a distance radius. For TCR analysis this can be used to test whether the TCRs in a neighborhood are associated with a certain trait or phenotype. You can use hier_diff.cluster_association_test with the output of this function to test for significnt enrichment. Note on output: val_j/ct_j pairs provide the counts for each element of the n x 2 continency table where the last dimension is always 'cmember' (MEM+ or MEM-) indicating cluster membership for each row. The X+MEM+ notation is provided for convenience for 2x2 tables and X+ indicates the second level of x_col when sorted (e.g. 1 for [0, 1]). Params ------ df_pop : pd.DataFrame [nclones x metadata] Contains metadata for each clone in the population to be tallied. pwmat : np.ndarray [df_centroids.shape[0] x df_pop.shape[0]] Pairwise distance matrix for defining neighborhoods. Number of rows in pwmat must match the number of rows in df_centroids, which may be the number of rows in df_pop if df_centroids=None x_cols : list List of columns to be tested for association with the neighborhood df_centroids : pd.DataFrame [nclones x 1] An optional DataFrame containing clones that will act as centroids in the neighborhood clustering. These can be a subset of df_pop or not, however the number of rows in df_centroids must match the number of rows in pwmat. If df_centroids=None then df_centroids = df_pop and all clones in df_pop are used. count_col : str Column in df that specifies counts. Default none assumes count of 1 cell for each row. knn_neighbors : int Number of neighbors to include in the neighborhood, or fraction of all data if K < 1 knn_radius : float Radius for inclusion of neighbors within the neighborhood. Specify K or R but not both. Returns ------- res_df : pd.DataFrame [nclones x results] Counts of clones within each neighborhood, grouped by x_cols. The "neighbors" column provides the pd.DataFrame indices of the elements in df_pop that are within the neighborhood of each centroid (not the integer/vector based indices)""" if knn_neighbors is None and knn_radius is None: raise(ValueError('Must specify K or radius')) if not knn_neighbors is None and not knn_radius is None: raise(ValueError('Must specify K or radius (not both)')) if df_centroids is None: df_centroids = df_pop if pwmat.shape[0] != df_pop.shape[0]: raise ValueError(f'Number of rows in pwmat {pwmat.shape[0]} does not match df_pop {df_pop.shape[0]}') if pwmat.shape[1] != df_pop.shape[0]: raise ValueError(f'Number of columns in pwmat {pwmat.shape[1]} does not match df_pop {df_pop.shape[0]}') else: if pwmat.shape[0] != df_centroids.shape[0]: raise ValueError(f'Number of rows in pwmat {pwmat.shape[0]} does not match df_centroids {df_centroids.shape[0]}') if pwmat.shape[1] != df_pop.shape[0]: raise ValueError(f'Number of columns in pwmat {pwmat.shape[1]} does not match df_pop {df_pop.shape[0]}') if count_col is None: df = df_pop.assign(count=1) count_col = 'count' ycol = 'cmember' res = [] for ii in range(df_centroids.shape[0]): if not knn_neighbors is None: if knn_neighbors < 1: frac = knn_neighbors K = int(knn_neighbors * df_pop.shape[0]) # print('Using K = %d (%1.0f%% of %d)' % (K, 100*frac, n)) else: K = int(knn_neighbors) R = np.partition(pwmat[ii, :], K)[K] else: R = knn_radius y_lu = {True:'MEM+', False:'MEM-'} y_float = (pwmat[ii, :] <= R).astype(float) y = np.array([y_lu[yy] for yy in y_float]) K = int(np.sum(y_float)) cdf = df_pop.assign(**{ycol:y})[[ycol, count_col] + x_cols] out = _prep_counts(cdf, x_cols, ycol, count_col) out.update({'index':ii, 'neighbors':list(df_pop.index[np.nonzero(y_float)[0]]), 'K_neighbors':K, 'R_radius':R}) res.append(out) res_df = pd.DataFrame(res) return res_df def any_cluster_tally(df, cluster_df, x_cols, cluster_ind_col='neighbors', count_col='count'): """Tallies clones inside (outside) each cluster for testing enrichment of other categorical variables defined by x_cols in df. Clusters are defined in cluster_df using the cluster_ind_col (default: 'neighbors') which should contain *positional* indices into df for cluster members. This function only organizes the counts for testing such that each row of the output represents a cluster that could be tested for enrichment. As an example, one could use Fisher's exact test to detect enrichment/association of the neighborhood/cluster with one variable. Tests the 2 x 2 table for each clone: +----+----+-------+--------+ | | Cluster | | +-------+--------+ | | Y | N | +----+----+-------+--------+ |VAR | 1 | a | b | | +----+-------+--------+ | | 0 | c | d | +----+----+-------+--------+ This and other tests are available with the cluster_association_test function that takes the output of this function as input. Params ------ df : pd.DataFrame [nclones x metadata] Contains metadata for each clone. cluster_df : pd.DataFrame, one row per cluster Contains the column in cluster_ind_col (default: "neighbors") that should contain positional indices into df indicating cluster membership x_cols : list List of columns to be tested for association with the neighborhood count_col : str Column in df that specifies counts. Default none assumes count of 1 cell for each row. cluster_ind_col : str, column in cluster_df Values should be lists or tuples of positional indices into df Returns ------- res_df : pd.DataFrame [nclusters x results] A 2xN table for each cluster.""" ycol = 'cmember' if count_col is None: df = df.assign(count=1) count_col = 'count' n = df.shape[0] res = [] for cid, m in cluster_df[cluster_ind_col].values: not_m = [i for i in range(n) if not i in m] y_float = np.zeros(n, dtype=np.int) y_float[m] = 1 y_lu = {1:'MEM+', 0:'MEM-'} y = np.array([y_lu[yy] for yy in y_float]) K = int(np.sum(y_float)) cdf = df.assign(**{ycol:y})[[ycol, count_col] + x_cols] out = _prep_counts(cdf, x_cols, ycol, count_col) out.update({'cid':cid, 'neighbors':list(df.index[m]), 'neighbors_i':m, 'K_neighbors':K}) res.append(out) res_df = pd.DataFrame(res) return res_df def hcluster_tally(df, pwmat, x_cols, Z=None, count_col='count', subset_ind=None, method='complete', optimal_ordering=True): """Hierarchical clustering of clones with distances in pwmat. Tallies clones inside (outside) each cluster in preparation for testing enrichment of other categorical variables defined by x_cols. This function only organizes the counts for testing such that each row of the output represents a cluster that could be tested for enrichment. One example test is Fisher's exact test to detect enrichment/association of the neighborhood/cluster with one binary variable. Tests the 2 x 2 table for each clone: +----+----+-------+--------+ | | Cluster | | +-------+--------+ | | Y | N | +----+----+-------+--------+ |VAR | 1 | a | b | | +----+-------+--------+ | | 0 | c | d | +----+----+-------+--------+ This and other tests are available with the cluster_association_test function that takes the output of this function as input. Params ------ df : pd.DataFrame [nclones x metadata] Contains metadata for each clone. pwmat : np.ndarray [nclones x nclones] Square or compressed (see scipy.spatial.distance.squareform) distance matrix for defining clusters. x_cols : list List of columns to be tested for association with the neighborhood count_col : str Column in df that specifies counts. Default none assumes count of 1 cell for each row. subset_ind : partial index of df, optional Provides option to tally counts only within a subset of df, but to maintain the clustering of all individuals. Allows for one clustering of pooled TCRs, but tallying/testing within a subset (e.g. participants or conditions) optimal_ordering : bool If True, the linkage matrix will be reordered so that the distance between successive leaves is minimal. This results in a more intuitive tree structure when the data are visualized. defaults to False, because this algorithm can be slow, particularly on large datasets. Returns ------- res_df : pd.DataFrame [nclusters x results] A 2xN table for each cluster. Z : linkage matrix [nclusters, df.shape[0] - 1, 4] Clustering result returned from scipy.cluster.hierarchy.linkage""" ycol = 'cmember' if Z is None: if pwmat.shape[0] == pwmat.shape[1] and pwmat.shape[0] == df.shape[0]: compressed = distance.squareform(pwmat) else: compressed = pwmat pwmat = distance.squareform(pwmat) Z = sch.linkage(compressed, method=method, optimal_ordering=optimal_ordering) else: """Shape of correct Z asserted here""" if not Z.shape == (df.shape[0] - 1, 4): raise ValueError('First dimension of Z (%d) does not match that of df (%d,)' % (Z.shape[0], df.shape[0])) if count_col is None: df = df.assign(count=1) count_col = 'count' clusters = {} for i, merge in enumerate(Z): """Cluster ID number starts at a number after all the leaves""" cid = 1 + i + Z.shape[0] clusters[cid] = [merge[0], merge[1]] def _get_indices(clusters, i): if i <= Z.shape[0]: return [int(i)] else: return _get_indices(clusters, clusters[i][0]) + _get_indices(clusters, clusters[i][1]) def _get_cluster_indices(clusters, i): if i <= Z.shape[0]: return [] else: return [int(i)] + _get_cluster_indices(clusters, clusters[i][0]) + _get_cluster_indices(clusters, clusters[i][1]) members = {i:_get_indices(clusters, i) for i in range(Z.shape[0] + 1, max(clusters.keys()) + 1)} """Note that the list of clusters within each cluster includes the current cluster""" cluster_members = {i:_get_cluster_indices(clusters, i) for i in range(Z.shape[0] + 1, max(clusters.keys()) + 1)} n = df.shape[0] res = [] """Setting non-group counts to zero""" if not subset_ind is None: clone_tmp = df.copy() """Set counts to zero for all clones that are not in the group being tested""" not_ss = [ii for ii in df.index if not ii in subset_ind] clone_tmp.loc[not_ss, count_col] = 0 else: clone_tmp = df for cid, m in members.items(): not_m = [i for i in range(n) if not i in m] y_float = np.zeros(n, dtype=np.int) y_float[m] = 1 y_lu = {1:'MEM+', 0:'MEM-'} y = np.array([y_lu[yy] for yy in y_float]) K = int(np.sum(y_float)) R = np.max(pwmat[m, :][:, m]) cdf = clone_tmp.assign(**{ycol:y})[[ycol, count_col] + x_cols] out = _prep_counts(cdf, x_cols, ycol, count_col) out.update({'cid':cid, 'neighbors':list(clone_tmp.index[m]), 'neighbors_i':m, 'children':cluster_members[cid], 'K_neighbors':K, 'R_radius':R}) res.append(out) res_df = pd.DataFrame(res) return res_df, Z def running_neighborhood_tally(df, dist_func, dist_cols, x_cols, count_col='count', knn_neighbors=50, knn_radius=None, cluster_ind=None, ncpus=1): """Forms a cluster around each row of df and tallies the number of instances with/without traits in x_cols. The contingency table for each cluster/row of df can be used to test for enrichments of the traits in x_cols. The neighborhood is defined by the K closest neighbors using dist_func, or defined by a distance radius. Identical output to neighborhood_tally, however memory footprint will be lower for large datasets, at the cost of increased computation. Computation is parallelized using joblib, with memory caching optional. For TCR analysis this can be used to test whether the TCRs in a neighborhood are associated with a certain trait or phenotype. You can use hier_diff.cluster_association_test with the output of this function to test for significnt enrichment. Note on output: val_j/ct_j pairs provide the counts for each element of the n x 2 continency table where the last dimension is always 'cmember' (MEM+ or MEM-) indicating cluster membership for each row. The X+MEM+ notation is provided for convenience for 2x2 tables and X+ indicates the second level of x_col when sorted (e.g. 1 for [0, 1]). Params ------ df : pd.DataFrame [nclones x metadata] Contains metadata for each clone. dist_func : function Function that accepts two dicts representing the two TCRs being compared, as well as an optional third dict that will maintain a cache of components of the distance that should be stored for fast, repeated access (e.g. pairwise distances among CDR2 loops, which are much less diverse) x_cols : list List of columns to be tested for association with the neighborhood count_col : str Column in df that specifies counts. Default none assumes count of 1 cell for each row. knn_neighbors : int Number of neighbors to include in the neighborhood, or fraction of all data if K < 1 knn_radius : float Radius for inclusion of neighbors within the neighborhood. Specify K or R but not both. subset_ind : None or np.ndarray with partial index of df, optional Provides option to tally counts only within a subset of df, but to maintain the clustering of all individuals. Allows for one clustering of pooled TCRs, but tallying/testing within a subset (e.g. participants or conditions) cluster_ind : None or np.ndarray Indices into df specifying the neighborhoods for testing. Returns ------- res_df : pd.DataFrame [nclones x results] Results from testing the neighborhood around each clone.""" if knn_neighbors is None and knn_radius is None: raise(ValueError('Must specify K or radius')) if not knn_neighbors is None and not knn_radius is None: raise(ValueError('Must specify K or radius (not both)')) if count_col is None: df = df.assign(count=1) count_col = 'count' if cluster_ind is None: cluster_ind = df.index tally_params = dict(df=df, dist_func=dist_func, dist_cols=dist_cols, x_cols=x_cols, count_col=count_col, knn_neighbors=knn_neighbors, knn_radius=knn_radius) res = Parallel(n_jobs=ncpus)(delayed(_tally_one)(clonei=clonei, **tally_params) for clonei in cluster_ind) """ res = [] for clonei in cluster_ind: out = _tally_one(df, clonei, dist_func, dist_cols, x_cols, count_col, knn_neighbors, knn_radius) res.append(out) """ res_df =
pd.DataFrame(res)
pandas.DataFrame
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT, Timestamp("2011-01-03")], ), ( [Timedelta("1 days"), NaT, Timedelta("3 days")], [NaT, NaT, Timedelta("3 days")], ), ( [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], [NaT, NaT, Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) @pytest.mark.parametrize( "op, expected", [ (operator.eq, Series([False, False, True])), (operator.ne, Series([True, True, False])), (operator.lt, Series([False, False, False])), (operator.gt, Series([False, False, False])), (operator.ge, Series([False, False, True])), (operator.le, Series([False, False, True])), ], ) def test_nat_comparisons( self, dtype, index_or_series, reverse, pair, op, expected, ): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) result = op(left, right) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [Timedelta("1 days"), NaT, Timedelta("3 days")], [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], ], ) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons_scalar(self, dtype, data, box_with_array): box = box_with_array left = Series(data, dtype=dtype) left = tm.box_expected(left, box) xbox = get_upcast_box(left, NaT, True) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left == NaT, expected) tm.assert_equal(NaT == left, expected) expected = [True, True, True] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left != NaT, expected) tm.assert_equal(NaT != left, expected) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left < NaT, expected) tm.assert_equal(NaT > left, expected) tm.assert_equal(left <= NaT, expected) tm.assert_equal(NaT >= left, expected) tm.assert_equal(left > NaT, expected) tm.assert_equal(NaT < left, expected) tm.assert_equal(left >= NaT, expected) tm.assert_equal(NaT <= left, expected) @pytest.mark.parametrize("val", [datetime(2000, 1, 4), datetime(2000, 1, 5)]) def test_series_comparison_scalars(self, val): series = Series(date_range("1/1/2000", periods=10)) result = series > val expected = Series([x > val for x in series]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "left,right", [("lt", "gt"), ("le", "ge"), ("eq", "eq"), ("ne", "ne")] ) def test_timestamp_compare_series(self, left, right): # see gh-4982 # Make sure we can compare Timestamps on the right AND left hand side. ser = Series(date_range("20010101", periods=10), name="dates") s_nat = ser.copy(deep=True) ser[0] = Timestamp("nat") ser[3] = Timestamp("nat") left_f = getattr(operator, left) right_f = getattr(operator, right) # No NaT expected = left_f(ser, Timestamp("20010109")) result = right_f(Timestamp("20010109"), ser) tm.assert_series_equal(result, expected) # NaT expected = left_f(ser, Timestamp("nat")) result = right_f(Timestamp("nat"), ser) tm.assert_series_equal(result, expected) # Compare to Timestamp with series containing NaT expected = left_f(s_nat, Timestamp("20010109")) result = right_f(Timestamp("20010109"), s_nat) tm.assert_series_equal(result, expected) # Compare to NaT with series containing NaT expected = left_f(s_nat, NaT) result = right_f(NaT, s_nat) tm.assert_series_equal(result, expected) def test_dt64arr_timestamp_equality(self, box_with_array): # GH#11034 ser = Series([Timestamp("2000-01-29 01:59:00"), Timestamp("2000-01-30"), NaT]) ser = tm.box_expected(ser, box_with_array) xbox = get_upcast_box(ser, ser, True) result = ser != ser expected = tm.box_expected([False, False, True], xbox) tm.assert_equal(result, expected) warn = FutureWarning if box_with_array is pd.DataFrame else None with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[0] expected = tm.box_expected([False, True, True], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[2] expected = tm.box_expected([True, True, True], xbox) tm.assert_equal(result, expected) result = ser == ser expected = tm.box_expected([True, True, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[0] expected = tm.box_expected([True, False, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[2] expected = tm.box_expected([False, False, False], xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "datetimelike", [ Timestamp("20130101"), datetime(2013, 1, 1), np.datetime64("2013-01-01T00:00", "ns"), ], ) @pytest.mark.parametrize( "op,expected", [ (operator.lt, [True, False, False, False]), (operator.le, [True, True, False, False]), (operator.eq, [False, True, False, False]), (operator.gt, [False, False, False, True]), ], ) def test_dt64_compare_datetime_scalar(self, datetimelike, op, expected): # GH#17965, test for ability to compare datetime64[ns] columns # to datetimelike ser = Series( [ Timestamp("20120101"), Timestamp("20130101"), np.nan, Timestamp("20130103"), ], name="A", ) result = op(ser, datetimelike) expected = Series(expected, name="A") tm.assert_series_equal(result, expected) class TestDatetimeIndexComparisons: # TODO: moved from tests.indexes.test_base; parametrize and de-duplicate def test_comparators(self, comparison_op): index = tm.makeDateIndex(100) element = index[len(index) // 2] element = Timestamp(element).to_datetime64() arr = np.array(index) arr_result = comparison_op(arr, element) index_result = comparison_op(index, element) assert isinstance(index_result, np.ndarray) tm.assert_numpy_array_equal(arr_result, index_result) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) def test_dti_cmp_datetimelike(self, other, tz_naive_fixture): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=2, tz=tz) if tz is not None: if isinstance(other, np.datetime64): # no tzaware version available return other = localize_pydatetime(other, dti.tzinfo) result = dti == other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = dti > other expected = np.array([False, True]) tm.assert_numpy_array_equal(result, expected) result = dti >= other expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) result = dti < other expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) result = dti <= other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [None, object]) def test_dti_cmp_nat(self, dtype, box_with_array): left = DatetimeIndex([Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")]) right = DatetimeIndex([NaT, NaT, Timestamp("2011-01-03")]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) xbox = get_upcast_box(left, right, True) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = lhs != rhs expected = np.array([True, True, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs == NaT, expected) tm.assert_equal(NaT == rhs, expected) expected = np.array([True, True, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs != NaT, expected) tm.assert_equal(NaT != lhs, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs < NaT, expected) tm.assert_equal(NaT > lhs, expected) def test_dti_cmp_nat_behaves_like_float_cmp_nan(self): fidx1 = pd.Index([1.0, np.nan, 3.0, np.nan, 5.0, 7.0]) fidx2 = pd.Index([2.0, 3.0, np.nan, np.nan, 6.0, 7.0]) didx1 = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) didx2 = DatetimeIndex( ["2014-02-01", "2014-03-01", NaT, NaT, "2014-06-01", "2014-07-01"] ) darr = np.array( [ np.datetime64("2014-02-01 00:00"), np.datetime64("2014-03-01 00:00"), np.datetime64("nat"), np.datetime64("nat"), np.datetime64("2014-06-01 00:00"), np.datetime64("2014-07-01 00:00"), ] ) cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)] # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) with tm.assert_produces_warning(None): for idx1, val in [(fidx1, np.nan), (didx1, NaT)]: result = idx1 < val expected = np.array([False, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val tm.assert_numpy_array_equal(result, expected) result = idx1 <= val tm.assert_numpy_array_equal(result, expected) result = idx1 >= val tm.assert_numpy_array_equal(result, expected) result = idx1 == val tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, True, True, True, True]) tm.assert_numpy_array_equal(result, expected) # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, val in [(fidx1, 3), (didx1, datetime(2014, 3, 1))]: result = idx1 < val expected = np.array([True, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val expected = np.array([False, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= val expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 >= val expected = np.array([False, False, True, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == val expected = np.array([False, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, False, True, True, True]) tm.assert_numpy_array_equal(result, expected) def test_comparison_tzawareness_compat(self, comparison_op, box_with_array): # GH#18162 op = comparison_op box = box_with_array dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box) dz = tm.box_expected(dz, box) if box is pd.DataFrame: tolist = lambda x: x.astype(object).values.tolist()[0] else: tolist = list if op not in [operator.eq, operator.ne]: msg = ( r"Invalid comparison between dtype=datetime64\[ns.*\] " "and (Timestamp|DatetimeArray|list|ndarray)" ) with pytest.raises(TypeError, match=msg): op(dr, dz) with pytest.raises(TypeError, match=msg): op(dr, tolist(dz)) with pytest.raises(TypeError, match=msg): op(dr, np.array(tolist(dz), dtype=object)) with pytest.raises(TypeError, match=msg): op(dz, dr) with pytest.raises(TypeError, match=msg): op(dz, tolist(dr)) with pytest.raises(TypeError, match=msg): op(dz, np.array(tolist(dr), dtype=object)) # The aware==aware and naive==naive comparisons should *not* raise assert np.all(dr == dr) assert np.all(dr == tolist(dr)) assert np.all(tolist(dr) == dr) assert np.all(np.array(tolist(dr), dtype=object) == dr) assert np.all(dr == np.array(tolist(dr), dtype=object)) assert np.all(dz == dz) assert np.all(dz == tolist(dz)) assert np.all(tolist(dz) == dz) assert np.all(np.array(tolist(dz), dtype=object) == dz) assert np.all(dz == np.array(tolist(dz), dtype=object)) def test_comparison_tzawareness_compat_scalars(self, comparison_op, box_with_array): # GH#18162 op = comparison_op dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box_with_array) dz = tm.box_expected(dz, box_with_array) # Check comparisons against scalar Timestamps ts = Timestamp("2000-03-14 01:59") ts_tz = Timestamp("2000-03-14 01:59", tz="Europe/Amsterdam") assert np.all(dr > ts) msg = r"Invalid comparison between dtype=datetime64\[ns.*\] and Timestamp" if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dr, ts_tz) assert np.all(dz > ts_tz) if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dz, ts) if op not in [operator.eq, operator.ne]: # GH#12601: Check comparison against Timestamps and DatetimeIndex with pytest.raises(TypeError, match=msg): op(ts, dz) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) # Bug in NumPy? https://github.com/numpy/numpy/issues/13841 # Raising in __eq__ will fallback to NumPy, which warns, fails, # then re-raises the original exception. So we just need to ignore. @pytest.mark.filterwarnings("ignore:elementwise comp:DeprecationWarning") @pytest.mark.filterwarnings("ignore:Converting timezone-aware:FutureWarning") def test_scalar_comparison_tzawareness( self, comparison_op, other, tz_aware_fixture, box_with_array ): op = comparison_op tz = tz_aware_fixture dti = date_range("2016-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) xbox = get_upcast_box(dtarr, other, True) if op in [operator.eq, operator.ne]: exbool = op is operator.ne expected = np.array([exbool, exbool], dtype=bool) expected = tm.box_expected(expected, xbox) result = op(dtarr, other) tm.assert_equal(result, expected) result = op(other, dtarr) tm.assert_equal(result, expected) else: msg = ( r"Invalid comparison between dtype=datetime64\[ns, .*\] " f"and {type(other).__name__}" ) with pytest.raises(TypeError, match=msg): op(dtarr, other) with pytest.raises(TypeError, match=msg): op(other, dtarr) def test_nat_comparison_tzawareness(self, comparison_op): # GH#19276 # tzaware DatetimeIndex should not raise when compared to NaT op = comparison_op dti = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) expected = np.array([op == operator.ne] * len(dti)) result = op(dti, NaT) tm.assert_numpy_array_equal(result, expected) result = op(dti.tz_localize("US/Pacific"), NaT) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_str(self, tz_naive_fixture): # GH#22074 # regardless of tz, we expect these comparisons are valid tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) other = "1/1/2000" result = rng == other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng != other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng < other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = rng <= other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng > other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng >= other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_list(self): rng = date_range("1/1/2000", periods=10) result = rng == list(rng) expected = rng == rng tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "other", [ pd.timedelta_range("1D", periods=10), pd.timedelta_range("1D", periods=10).to_series(), pd.timedelta_range("1D", periods=10).asi8.view("m8[ns]"), ], ids=lambda x: type(x).__name__, ) def test_dti_cmp_tdi_tzawareness(self, other): # GH#22074 # reversion test that we _don't_ call _assert_tzawareness_compat # when comparing against TimedeltaIndex dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") result = dti == other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = dti != other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) msg = "Invalid comparison between" with pytest.raises(TypeError, match=msg): dti < other with pytest.raises(TypeError, match=msg): dti <= other with pytest.raises(TypeError, match=msg): dti > other with pytest.raises(TypeError, match=msg): dti >= other def test_dti_cmp_object_dtype(self): # GH#22074 dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") other = dti.astype("O") result = dti == other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) other = dti.tz_localize(None) result = dti != other tm.assert_numpy_array_equal(result, expected) other = np.array(list(dti[:5]) + [Timedelta(days=1)] * 5) result = dti == other expected = np.array([True] * 5 + [False] * 5) tm.assert_numpy_array_equal(result, expected) msg = ">=' not supported between instances of 'Timestamp' and 'Timedelta'" with pytest.raises(TypeError, match=msg): dti >= other # ------------------------------------------------------------------ # Arithmetic class TestDatetime64Arithmetic: # This class is intended for "finished" tests that are fully parametrized # over DataFrame/Series/Index/DatetimeArray # ------------------------------------------------------------- # Addition/Subtraction of timedelta-like @pytest.mark.arm_slow def test_dt64arr_add_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): # GH#22005, GH#22163 check DataFrame doesn't raise TypeError tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("2000-01-01 02:00", "2000-02-01 02:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng + two_hours tm.assert_equal(result, expected) rng += two_hours tm.assert_equal(rng, expected) def test_dt64arr_sub_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("1999-12-31 22:00", "2000-01-31 22:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng - two_hours tm.assert_equal(result, expected) rng -= two_hours tm.assert_equal(rng, expected) # TODO: redundant with test_dt64arr_add_timedeltalike_scalar def test_dt64arr_add_td64_scalar(self, box_with_array): # scalar timedeltas/np.timedelta64 objects # operate with np.timedelta64 correctly ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:01"), Timestamp("20130101 9:02:01")] ) dtarr = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(1, "s") tm.assert_equal(result, expected) result = np.timedelta64(1, "s") + dtarr tm.assert_equal(result, expected) expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(5, "ms") tm.assert_equal(result, expected) result = np.timedelta64(5, "ms") + dtarr tm.assert_equal(result, expected) def test_dt64arr_add_sub_td64_nat(self, box_with_array, tz_naive_fixture): # GH#23320 special handling for timedelta64("NaT") tz = tz_naive_fixture dti = date_range("1994-04-01", periods=9, tz=tz, freq="QS") other = np.timedelta64("NaT") expected = DatetimeIndex(["NaT"] * 9, tz=tz) obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): other - obj def test_dt64arr_add_sub_td64ndarray(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) tdi = TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = date_range("2015-12-31", "2016-01-02", periods=3, tz=tz) dtarr = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + tdarr tm.assert_equal(result, expected) result = tdarr + dtarr tm.assert_equal(result, expected) expected = date_range("2016-01-02", "2016-01-04", periods=3, tz=tz) expected = tm.box_expected(expected, box_with_array) result = dtarr - tdarr tm.assert_equal(result, expected) msg = "cannot subtract|(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): tdarr - dtarr # ----------------------------------------------------------------- # Subtraction of datetime-like scalars @pytest.mark.parametrize( "ts", [ Timestamp("2013-01-01"), Timestamp("2013-01-01").to_pydatetime(), Timestamp("2013-01-01").to_datetime64(), ], ) def test_dt64arr_sub_dtscalar(self, box_with_array, ts): # GH#8554, GH#22163 DataFrame op should _not_ return dt64 dtype idx = date_range("2013-01-01", periods=3)._with_freq(None) idx = tm.box_expected(idx, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = idx - ts tm.assert_equal(result, expected) def test_dt64arr_sub_datetime64_not_ns(self, box_with_array): # GH#7996, GH#22163 ensure non-nano datetime64 is converted to nano # for DataFrame operation dt64 = np.datetime64("2013-01-01") assert dt64.dtype == "datetime64[D]" dti = date_range("20130101", periods=3)._with_freq(None) dtarr = tm.box_expected(dti, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = dtarr - dt64 tm.assert_equal(result, expected) result = dt64 - dtarr tm.assert_equal(result, -expected) def test_dt64arr_sub_timestamp(self, box_with_array): ser = date_range("2014-03-17", periods=2, freq="D", tz="US/Eastern") ser = ser._with_freq(None) ts = ser[0] ser = tm.box_expected(ser, box_with_array) delta_series = Series([np.timedelta64(0, "D"), np.timedelta64(1, "D")]) expected = tm.box_expected(delta_series, box_with_array) tm.assert_equal(ser - ts, expected) tm.assert_equal(ts - ser, -expected) def test_dt64arr_sub_NaT(self, box_with_array): # GH#18808 dti = DatetimeIndex([NaT, Timestamp("19900315")]) ser = tm.box_expected(dti, box_with_array) result = ser - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) dti_tz = dti.tz_localize("Asia/Tokyo") ser_tz = tm.box_expected(dti_tz, box_with_array) result = ser_tz - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) # ------------------------------------------------------------- # Subtraction of datetime-like array-like def test_dt64arr_sub_dt64object_array(self, box_with_array, tz_naive_fixture): dti = date_range("2016-01-01", periods=3, tz=tz_naive_fixture) expected = dti - dti obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) with tm.assert_produces_warning(PerformanceWarning): result = obj - obj.astype(object) tm.assert_equal(result, expected) def test_dt64arr_naive_sub_dt64ndarray(self, box_with_array): dti = date_range("2016-01-01", periods=3, tz=None) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) expected = dtarr - dtarr result = dtarr - dt64vals tm.assert_equal(result, expected) result = dt64vals - dtarr tm.assert_equal(result, expected) def test_dt64arr_aware_sub_dt64ndarray_raises( self, tz_aware_fixture, box_with_array ): tz = tz_aware_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) msg = "subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dtarr - dt64vals with pytest.raises(TypeError, match=msg): dt64vals - dtarr # ------------------------------------------------------------- # Addition of datetime-like others (invalid) def test_dt64arr_add_dt64ndarray_raises(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) assert_cannot_add(dtarr, dt64vals) def test_dt64arr_add_timestamp_raises(self, box_with_array): # GH#22163 ensure DataFrame doesn't cast Timestamp to i8 idx = DatetimeIndex(["2011-01-01", "2011-01-02"]) ts = idx[0] idx = tm.box_expected(idx, box_with_array) assert_cannot_add(idx, ts) # ------------------------------------------------------------- # Other Invalid Addition/Subtraction @pytest.mark.parametrize( "other", [ 3.14, np.array([2.0, 3.0]), # GH#13078 datetime +/- Period is invalid Period("2011-01-01", freq="D"), # https://github.com/pandas-dev/pandas/issues/10329 time(1, 2, 3), ], ) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_invalid(self, dti_freq, other, box_with_array): dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) dtarr = tm.box_expected(dti, box_with_array) msg = "|".join( [ "unsupported operand type", "cannot (add|subtract)", "cannot use operands with types", "ufunc '?(add|subtract)'? cannot use operands with types", "Concatenation operation is not implemented for NumPy arrays", ] ) assert_invalid_addsub_type(dtarr, other, msg) @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"]) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_parr( self, dti_freq, pi_freq, box_with_array, box_with_array2 ): # GH#20049 subtracting PeriodIndex should raise TypeError dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) pi = dti.to_period(pi_freq) dtarr = tm.box_expected(dti, box_with_array) parr = tm.box_expected(pi, box_with_array2) msg = "|".join( [ "cannot (add|subtract)", "unsupported operand", "descriptor.*requires", "ufunc.*cannot use operands", ] ) assert_invalid_addsub_type(dtarr, parr, msg) def test_dt64arr_addsub_time_objects_raises(self, box_with_array, tz_naive_fixture): # https://github.com/pandas-dev/pandas/issues/10329 tz = tz_naive_fixture obj1 = date_range("2012-01-01", periods=3, tz=tz) obj2 = [time(i, i, i) for i in range(3)] obj1 = tm.box_expected(obj1, box_with_array) obj2 = tm.box_expected(obj2, box_with_array) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) # If `x + y` raises, then `y + x` should raise here as well msg = ( r"unsupported operand type\(s\) for -: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 - obj2 msg = "|".join( [ "cannot subtract DatetimeArray from ndarray", "ufunc (subtract|'subtract') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 - obj1 msg = ( r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 + obj2 msg = "|".join( [ r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'", "ufunc (add|'add') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 + obj1 class TestDatetime64DateOffsetArithmetic: # ------------------------------------------------------------- # Tick DateOffsets # TODO: parametrize over timezone? def test_dt64arr_series_add_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:05"), Timestamp("20130101 9:02:05")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser + pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) def test_dt64arr_series_sub_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:00:55"), Timestamp("20130101 9:01:55")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser - pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = -pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): pd.offsets.Second(5) - ser @pytest.mark.parametrize( "cls_name", ["Day", "Hour", "Minute", "Second", "Milli", "Micro", "Nano"] ) def test_dt64arr_add_sub_tick_DateOffset_smoke(self, cls_name, box_with_array): # GH#4532 # smoke tests for valid DateOffsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) ser = tm.box_expected(ser, box_with_array) offset_cls = getattr(pd.offsets, cls_name) ser + offset_cls(5) offset_cls(5) + ser ser - offset_cls(5) def test_dti_add_tick_tzaware(self, tz_aware_fixture, box_with_array): # GH#21610, GH#22163 ensure DataFrame doesn't return object-dtype tz = tz_aware_fixture if tz == "US/Pacific": dates = date_range("2012-11-01", periods=3, tz=tz) offset = dates + pd.offsets.Hour(5) assert dates[0] + pd.offsets.Hour(5) == offset[0] dates = date_range("2010-11-01 00:00", periods=3, tz=tz, freq="H") expected = DatetimeIndex( ["2010-11-01 05:00", "2010-11-01 06:00", "2010-11-01 07:00"], freq="H", tz=tz, ) dates = tm.box_expected(dates, box_with_array) expected = tm.box_expected(expected, box_with_array) # TODO: sub? for scalar in [pd.offsets.Hour(5), np.timedelta64(5, "h"), timedelta(hours=5)]: offset = dates + scalar tm.assert_equal(offset, expected) offset = scalar + dates tm.assert_equal(offset, expected) # ------------------------------------------------------------- # RelativeDelta DateOffsets def test_dt64arr_add_sub_relativedelta_offsets(self, box_with_array): # GH#10699 vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec # DateOffset relativedelta fastpath relative_kwargs = [ ("years", 2), ("months", 5), ("days", 3), ("hours", 5), ("minutes", 10), ("seconds", 2), ("microseconds", 5), ] for i, (unit, value) in enumerate(relative_kwargs): off = DateOffset(**{unit: value}) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) off = DateOffset(**dict(relative_kwargs[: i + 1])) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): off - vec # ------------------------------------------------------------- # Non-Tick, Non-RelativeDelta DateOffsets # TODO: redundant with test_dt64arr_add_sub_DateOffset? that includes # tz-aware cases which this does not @pytest.mark.parametrize( "cls_and_kwargs", [ "YearBegin", ("YearBegin", {"month": 5}), "YearEnd", ("YearEnd", {"month": 5}), "MonthBegin", "MonthEnd", "SemiMonthEnd", "SemiMonthBegin", "Week", ("Week", {"weekday": 3}), "Week", ("Week", {"weekday": 6}), "BusinessDay", "BDay", "QuarterEnd", "QuarterBegin", "CustomBusinessDay", "CDay", "CBMonthEnd", "CBMonthBegin", "BMonthBegin", "BMonthEnd", "BusinessHour", "BYearBegin", "BYearEnd", "BQuarterBegin", ("LastWeekOfMonth", {"weekday": 2}), ( "FY5253Quarter", { "qtr_with_extra_week": 1, "startingMonth": 1, "weekday": 2, "variation": "nearest", }, ), ("FY5253", {"weekday": 0, "startingMonth": 2, "variation": "nearest"}), ("WeekOfMonth", {"weekday": 2, "week": 2}), "Easter", ("DateOffset", {"day": 4}), ("DateOffset", {"month": 5}), ], ) @pytest.mark.parametrize("normalize", [True, False]) @pytest.mark.parametrize("n", [0, 5]) def test_dt64arr_add_sub_DateOffsets( self, box_with_array, n, normalize, cls_and_kwargs ): # GH#10699 # assert vectorized operation matches pointwise operations if isinstance(cls_and_kwargs, tuple): # If cls_name param is a tuple, then 2nd entry is kwargs for # the offset constructor cls_name, kwargs = cls_and_kwargs else: cls_name = cls_and_kwargs kwargs = {} if n == 0 and cls_name in [ "WeekOfMonth", "LastWeekOfMonth", "FY5253Quarter", "FY5253", ]: # passing n = 0 is invalid for these offset classes return vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec offset_cls = getattr(pd.offsets, cls_name) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) offset = offset_cls(n, normalize=normalize, **kwargs) expected = DatetimeIndex([x + offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + offset) expected = DatetimeIndex([x - offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - offset) expected = DatetimeIndex([offset + x for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, offset + vec) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): offset - vec def test_dt64arr_add_sub_DateOffset(self, box_with_array): # GH#10699 s = date_range("2000-01-01", "2000-01-31", name="a") s = tm.box_expected(s, box_with_array) result = s + DateOffset(years=1) result2 = DateOffset(years=1) + s exp = date_range("2001-01-01", "2001-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) result = s - DateOffset(years=1) exp = date_range("1999-01-01", "1999-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.Day() result2 = pd.offsets.Day() + s exp = DatetimeIndex( [ Timestamp("2000-01-16 00:15:00", tz="US/Central"), Timestamp("2000-02-16", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.MonthEnd() result2 = pd.offsets.MonthEnd() + s exp = DatetimeIndex( [ Timestamp("2000-01-31 00:15:00", tz="US/Central"), Timestamp("2000-02-29", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) @pytest.mark.parametrize( "other", [ np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]), np.array([pd.offsets.DateOffset(years=1), pd.offsets.MonthEnd()]), np.array( # matching offsets [pd.offsets.DateOffset(years=1), pd.offsets.DateOffset(years=1)] ), ], ) @pytest.mark.parametrize("op", [operator.add, roperator.radd, operator.sub]) @pytest.mark.parametrize("box_other", [True, False]) def test_dt64arr_add_sub_offset_array( self, tz_naive_fixture, box_with_array, box_other, op, other ): # GH#18849 # GH#10699 array of offsets tz = tz_naive_fixture dti = date_range("2017-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) other = np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) expected = DatetimeIndex([op(dti[n], other[n]) for n in range(len(dti))]) expected = tm.box_expected(expected, box_with_array) if box_other: other = tm.box_expected(other, box_with_array) with tm.assert_produces_warning(PerformanceWarning): res = op(dtarr, other) tm.assert_equal(res, expected) @pytest.mark.parametrize( "op, offset, exp, exp_freq", [ ( "__add__", DateOffset(months=3, days=10), [ Timestamp("2014-04-11"), Timestamp("2015-04-11"), Timestamp("2016-04-11"), Timestamp("2017-04-11"), ], None, ), ( "__add__", DateOffset(months=3), [ Timestamp("2014-04-01"), Timestamp("2015-04-01"), Timestamp("2016-04-01"), Timestamp("2017-04-01"), ], "AS-APR", ), ( "__sub__", DateOffset(months=3, days=10), [ Timestamp("2013-09-21"), Timestamp("2014-09-21"), Timestamp("2015-09-21"), Timestamp("2016-09-21"), ], None, ), ( "__sub__", DateOffset(months=3), [ Timestamp("2013-10-01"), Timestamp("2014-10-01"), Timestamp("2015-10-01"), Timestamp("2016-10-01"), ], "AS-OCT", ), ], ) def test_dti_add_sub_nonzero_mth_offset( self, op, offset, exp, exp_freq, tz_aware_fixture, box_with_array ): # GH 26258 tz = tz_aware_fixture date = date_range(start="01 Jan 2014", end="01 Jan 2017", freq="AS", tz=tz) date = tm.box_expected(date, box_with_array, False) mth = getattr(date, op) result = mth(offset) expected = DatetimeIndex(exp, tz=tz) expected = tm.box_expected(expected, box_with_array, False) tm.assert_equal(result, expected) class TestDatetime64OverflowHandling: # TODO: box + de-duplicate def test_dt64_overflow_masking(self, box_with_array): # GH#25317 left = Series([Timestamp("1969-12-31")]) right = Series([NaT]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) expected = TimedeltaIndex([NaT]) expected = tm.box_expected(expected, box_with_array) result = left - right tm.assert_equal(result, expected) def test_dt64_series_arith_overflow(self): # GH#12534, fixed by GH#19024 dt = Timestamp("1700-01-31") td = Timedelta("20000 Days") dti = date_range("1949-09-30", freq="100Y", periods=4) ser = Series(dti) msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): ser - dt with pytest.raises(OverflowError, match=msg): dt - ser with pytest.raises(OverflowError, match=msg): ser + td with pytest.raises(OverflowError, match=msg): td + ser ser.iloc[-1] = NaT expected = Series( ["2004-10-03", "2104-10-04", "2204-10-04", "NaT"], dtype="datetime64[ns]" ) res = ser + td tm.assert_series_equal(res, expected) res = td + ser tm.assert_series_equal(res, expected) ser.iloc[1:] = NaT expected = Series(["91279 Days", "NaT", "NaT", "NaT"], dtype="timedelta64[ns]") res = ser - dt tm.assert_series_equal(res, expected) res = dt - ser tm.assert_series_equal(res, -expected) def test_datetimeindex_sub_timestamp_overflow(self): dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) tsneg = Timestamp("1950-01-01") ts_neg_variants = [ tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype("datetime64[ns]"), tsneg.to_datetime64().astype("datetime64[D]"), ] tspos = Timestamp("1980-01-01") ts_pos_variants = [ tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype("datetime64[ns]"), tspos.to_datetime64().astype("datetime64[D]"), ] msg = "Overflow in int64 addition" for variant in ts_neg_variants: with pytest.raises(OverflowError, match=msg): dtimax - variant expected = Timestamp.max.value - tspos.value for variant in ts_pos_variants: res = dtimax - variant assert res[1].value == expected expected = Timestamp.min.value - tsneg.value for variant in ts_neg_variants: res = dtimin - variant assert res[1].value == expected for variant in ts_pos_variants: with pytest.raises(OverflowError, match=msg): dtimin - variant def test_datetimeindex_sub_datetimeindex_overflow(self): # GH#22492, GH#22508 dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) ts_neg = pd.to_datetime(["1950-01-01", "1950-01-01"]) ts_pos = pd.to_datetime(["1980-01-01", "1980-01-01"]) # General tests expected = Timestamp.max.value - ts_pos[1].value result = dtimax - ts_pos assert result[1].value == expected expected = Timestamp.min.value - ts_neg[1].value result = dtimin - ts_neg assert result[1].value == expected msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): dtimax - ts_neg with pytest.raises(OverflowError, match=msg): dtimin - ts_pos # Edge cases tmin = pd.to_datetime([Timestamp.min]) t1 = tmin + Timedelta.max + Timedelta("1us") with pytest.raises(OverflowError, match=msg): t1 - tmin tmax = pd.to_datetime([Timestamp.max]) t2 = tmax + Timedelta.min - Timedelta("1us") with pytest.raises(OverflowError, match=msg): tmax - t2 class TestTimestampSeriesArithmetic: def test_empty_series_add_sub(self): # GH#13844 a = Series(dtype="M8[ns]") b = Series(dtype="m8[ns]") tm.assert_series_equal(a, a + b) tm.assert_series_equal(a, a - b) tm.assert_series_equal(a, b + a) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): b - a def test_operators_datetimelike(self): # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [ Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103"), ] ) dt1.iloc[2] = np.nan dt2 = Series( [ Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104"), ] ) dt1 - dt2 dt2 - dt1 # datetime64 with timetimedelta dt1 + td1 td1 + dt1 dt1 - td1 # timetimedelta with datetime64 td1 + dt1 dt1 + td1 def test_dt64ser_sub_datetime_dtype(self): ts = Timestamp(datetime(1993, 1, 7, 13, 30, 00)) dt = datetime(1993, 6, 22, 13, 30) ser = Series([ts]) result = pd.to_timedelta(np.abs(ser - dt)) assert result.dtype == "timedelta64[ns]" # ------------------------------------------------------------- # TODO: This next block of tests came from tests.series.test_operators, # needs to be de-duplicated and parametrized over `box` classes def test_operators_datetimelike_invalid(self, all_arithmetic_operators): # these are all TypeEror ops op_str = all_arithmetic_operators def check(get_ser, test_ser): # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined op = getattr(get_ser, op_str, None) # Previously, _validate_for_numeric_binop in core/indexes/base.py # did this for us. with pytest.raises( TypeError, match="operate|[cC]annot|unsupported operand" ): op(test_ser) # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103")] ) dt1.iloc[2] = np.nan dt2 = Series( [Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104")] ) if op_str not in ["__sub__", "__rsub__"]: check(dt1, dt2) # ## datetime64 with timetimedelta ### # TODO(jreback) __rsub__ should raise? if op_str not in ["__add__", "__radd__", "__sub__"]: check(dt1, td1) # 8260, 10763 # datetime64 with tz tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan if op_str not in ["__add__", "__radd__", "__sub__", "__rsub__"]: check(dt2, td2) def test_sub_single_tz(self): # GH#12290 s1 = Series([Timestamp("2016-02-10", tz="America/Sao_Paulo")]) s2 = Series([Timestamp("2016-02-08", tz="America/Sao_Paulo")]) result = s1 - s2 expected = Series([Timedelta("2days")]) tm.assert_series_equal(result, expected) result = s2 - s1 expected = Series([Timedelta("-2days")]) tm.assert_series_equal(result, expected) def test_dt64tz_series_sub_dtitz(self): # GH#19071 subtracting tzaware DatetimeIndex from tzaware Series # (with same tz) raises, fixed by #19024 dti = date_range("1999-09-30", periods=10, tz="US/Pacific") ser = Series(dti) expected = Series(TimedeltaIndex(["0days"] * 10)) res = dti - ser tm.assert_series_equal(res, expected) res = ser - dti tm.assert_series_equal(res, expected) def test_sub_datetime_compat(self): # see GH#14088 s = Series([datetime(2016, 8, 23, 12, tzinfo=pytz.utc), NaT]) dt = datetime(2016, 8, 22, 12, tzinfo=pytz.utc) exp = Series([Timedelta("1 days"), NaT]) tm.assert_series_equal(s - dt, exp) tm.assert_series_equal(s - Timestamp(dt), exp) def test_dt64_series_add_mixed_tick_DateOffset(self): # GH#4532 # operate with pd.offsets s = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series( [Timestamp("20130101 9:06:00.005"), Timestamp("20130101 9:07:00.005")] ) tm.assert_series_equal(result, expected) def test_datetime64_ops_nat(self): # GH#11349 datetime_series = Series([NaT, Timestamp("19900315")]) nat_series_dtype_timestamp = Series([NaT, NaT], dtype="datetime64[ns]") single_nat_dtype_datetime = Series([NaT], dtype="datetime64[ns]") # subtraction tm.assert_series_equal(-NaT + datetime_series, nat_series_dtype_timestamp) msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + datetime_series tm.assert_series_equal( -NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + nat_series_dtype_timestamp # addition tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) # ------------------------------------------------------------- # Invalid Operations # TODO: this block also needs to be de-duplicated and parametrized @pytest.mark.parametrize( "dt64_series", [ Series([Timestamp("19900315"), Timestamp("19900315")]), Series([NaT, Timestamp("19900315")]), Series([NaT, NaT], dtype="datetime64[ns]"), ], ) @pytest.mark.parametrize("one", [1, 1.0, np.array(1)]) def test_dt64_mul_div_numeric_invalid(self, one, dt64_series): # multiplication msg = "cannot perform .* with this index type" with pytest.raises(TypeError, match=msg): dt64_series * one with pytest.raises(TypeError, match=msg): one * dt64_series # division with pytest.raises(TypeError, match=msg): dt64_series / one with pytest.raises(TypeError, match=msg): one / dt64_series # TODO: parametrize over box def test_dt64_series_add_intlike(self, tz_naive_fixture): # GH#19123 tz = tz_naive_fixture dti = DatetimeIndex(["2016-01-02", "2016-02-03", "NaT"], tz=tz) ser = Series(dti) other = Series([20, 30, 40], dtype="uint8") msg = "|".join( [ "Addition/subtraction of integers and integer-arrays", "cannot subtract .* from ndarray", ] ) assert_invalid_addsub_type(ser, 1, msg) assert_invalid_addsub_type(ser, other, msg) assert_invalid_addsub_type(ser, np.array(other), msg) assert_invalid_addsub_type(ser, pd.Index(other), msg) # ------------------------------------------------------------- # Timezone-Centric Tests def test_operators_datetimelike_with_timezones(self): tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan assert td2._values.freq is None result = dt1 + td1[0] exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 + td2[0] exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) # odd numpy behavior with scalar timedeltas result = td1[0] + dt1 exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = td2[0] + dt2 exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt1 - td1[0] exp = (dt1.dt.tz_localize(None) - td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): td1[0] - dt1 result = dt2 - td2[0] exp = (dt2.dt.tz_localize(None) - td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) with pytest.raises(TypeError, match=msg): td2[0] - dt2 result = dt1 + td1 exp = (dt1.dt.tz_localize(None) + td1).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 + td2 exp = (dt2.dt.tz_localize(None) + td2).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt1 - td1 exp = (dt1.dt.tz_localize(None) - td1).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 - td2 exp = (dt2.dt.tz_localize(None) - td2).dt.tz_localize(tz) tm.assert_series_equal(result, exp) msg = "cannot (add|subtract)" with pytest.raises(TypeError, match=msg): td1 - dt1 with pytest.raises(TypeError, match=msg): td2 - dt2 class TestDatetimeIndexArithmetic: # ------------------------------------------------------------- # Binary operations DatetimeIndex and int def test_dti_addsub_int(self, tz_naive_fixture, one): # Variants of `one` for #19012 tz = tz_naive_fixture rng = date_range("2000-01-01 09:00", freq="H", periods=10, tz=tz) msg = "Addition/subtraction of integers" with pytest.raises(TypeError, match=msg): rng + one with pytest.raises(TypeError, match=msg): rng += one with pytest.raises(TypeError, match=msg): rng - one with pytest.raises(TypeError, match=msg): rng -= one # ------------------------------------------------------------- # __add__/__sub__ with integer arrays @pytest.mark.parametrize("freq", ["H", "D"]) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_tick(self, int_holder, freq): # GH#19959 dti = date_range("2016-01-01", periods=2, freq=freq) other = int_holder([4, -1]) msg = "|".join( ["Addition/subtraction of integers", "cannot subtract DatetimeArray from"] ) assert_invalid_addsub_type(dti, other, msg) @pytest.mark.parametrize("freq", ["W", "M", "MS", "Q"]) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_non_tick(self, int_holder, freq): # GH#19959 dti = date_range("2016-01-01", periods=2, freq=freq) other = int_holder([4, -1]) msg = "|".join( ["Addition/subtraction of integers", "cannot subtract DatetimeArray from"] ) assert_invalid_addsub_type(dti, other, msg) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_no_freq(self, int_holder): # GH#19959 dti = DatetimeIndex(["2016-01-01", "NaT", "2017-04-05 06:07:08"]) other = int_holder([9, 4, -1]) msg = "|".join( ["cannot subtract DatetimeArray from", "Addition/subtraction of integers"] ) assert_invalid_addsub_type(dti, other, msg) # ------------------------------------------------------------- # Binary operations DatetimeIndex and TimedeltaIndex/array def test_dti_add_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz) expected = expected._with_freq(None) # add with TimdeltaIndex result = dti + tdi tm.assert_index_equal(result, expected) result = tdi + dti tm.assert_index_equal(result, expected) # add with timedelta64 array result = dti + tdi.values tm.assert_index_equal(result, expected) result = tdi.values + dti tm.assert_index_equal(result, expected) def test_dti_iadd_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz) expected = expected._with_freq(None) # iadd with TimdeltaIndex result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result += tdi tm.assert_index_equal(result, expected) result = pd.timedelta_range("0 days", periods=10) result += dti tm.assert_index_equal(result, expected) # iadd with timedelta64 array result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result += tdi.values tm.assert_index_equal(result, expected) result = pd.timedelta_range("0 days", periods=10) result += dti tm.assert_index_equal(result, expected) def test_dti_sub_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz, freq="-1D") expected = expected._with_freq(None) # sub with TimedeltaIndex result = dti - tdi tm.assert_index_equal(result, expected) msg = "cannot subtract .*TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi - dti # sub with timedelta64 array result = dti - tdi.values tm.assert_index_equal(result, expected) msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi.values - dti def test_dti_isub_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz, freq="-1D") expected = expected._with_freq(None) # isub with TimedeltaIndex result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result -= tdi tm.assert_index_equal(result, expected) # DTA.__isub__ GH#43904 dta = dti._data.copy() dta -= tdi tm.assert_datetime_array_equal(dta, expected._data) out = dti._data.copy() np.subtract(out, tdi, out=out) tm.assert_datetime_array_equal(out, expected._data) msg = "cannot subtract .* from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi -= dti # isub with timedelta64 array result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result -= tdi.values tm.assert_index_equal(result, expected) msg = "cannot subtract DatetimeArray from ndarray" with pytest.raises(TypeError, match=msg): tdi.values -= dti msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi._values -= dti # ------------------------------------------------------------- # Binary Operations DatetimeIndex and datetime-like # TODO: A couple other tests belong in this section. Move them in # A PR where there isn't already a giant diff. @pytest.mark.parametrize( "addend", [ datetime(2011, 1, 1), DatetimeIndex(["2011-01-01", "2011-01-02"]), DatetimeIndex(["2011-01-01", "2011-01-02"]).tz_localize("US/Eastern"), np.datetime64("2011-01-01"), Timestamp("2011-01-01"), ], ids=lambda x: type(x).__name__, ) @pytest.mark.parametrize("tz", [None, "US/Eastern"]) def test_add_datetimelike_and_dtarr(self, box_with_array, addend, tz): # GH#9631 dti = DatetimeIndex(["2011-01-01", "2011-01-02"]).tz_localize(tz) dtarr = tm.box_expected(dti, box_with_array) msg = "cannot add DatetimeArray and" assert_cannot_add(dtarr, addend, msg) # ------------------------------------------------------------- def test_dta_add_sub_index(self, tz_naive_fixture): # Check that DatetimeArray defers to Index classes dti = date_range("20130101", periods=3, tz=tz_naive_fixture) dta = dti.array result = dta - dti expected = dti - dti tm.assert_index_equal(result, expected) tdi = result result = dta + tdi expected = dti + tdi tm.assert_index_equal(result, expected) result = dta - tdi expected = dti - tdi tm.assert_index_equal(result, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range("20130101", periods=3) dti_tz = date_range("20130101", periods=3).tz_localize("US/Eastern") dti_tz2 = date_range("20130101", periods=3).tz_localize("UTC") expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) msg = "DatetimeArray subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dti_tz - dti with pytest.raises(TypeError, match=msg): dti - dti_tz with pytest.raises(TypeError, match=msg): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range("20130101", periods=3) dti2 = date_range("20130101", periods=4) msg = "cannot add indices of unequal length" with pytest.raises(ValueError, match=msg): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(["2012-01-01", np.nan, "2012-01-03"]) dti2 = DatetimeIndex(["2012-01-02", "2012-01-03", np.nan]) expected = TimedeltaIndex(["1 days", np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) # ------------------------------------------------------------------- # TODO: Most of this block is moved from series or frame tests, needs # cleanup, box-parametrization, and de-duplication @pytest.mark.parametrize("op", [operator.add, operator.sub]) def test_timedelta64_equal_timedelta_supported_ops(self, op, box_with_array): ser = Series( [ Timestamp("20130301"), Timestamp("20130228 23:00:00"), Timestamp("20130228 22:00:00"), Timestamp("20130228 21:00:00"), ] ) obj = box_with_array(ser) intervals = ["D", "h", "m", "s", "us"] def timedelta64(*args): # see casting notes in NumPy gh-12927 return np.sum(list(starmap(np.timedelta64, zip(args, intervals)))) for d, h, m, s, us in product(*([range(2)] * 5)): nptd = timedelta64(d, h, m, s, us) pytd = timedelta(days=d, hours=h, minutes=m, seconds=s, microseconds=us) lhs = op(obj, nptd) rhs = op(obj, pytd) tm.assert_equal(lhs, rhs) def test_ops_nat_mixed_datetime64_timedelta64(self): # GH#11349 timedelta_series = Series([NaT, Timedelta("1s")]) datetime_series = Series([NaT, Timestamp("19900315")]) nat_series_dtype_timedelta = Series([NaT, NaT], dtype="timedelta64[ns]") nat_series_dtype_timestamp = Series([NaT, NaT], dtype="datetime64[ns]") single_nat_dtype_datetime = Series([NaT], dtype="datetime64[ns]") single_nat_dtype_timedelta = Series([NaT], dtype="timedelta64[ns]") # subtraction tm.assert_series_equal( datetime_series - single_nat_dtype_datetime, nat_series_dtype_timedelta ) tm.assert_series_equal( datetime_series - single_nat_dtype_timedelta, nat_series_dtype_timestamp ) tm.assert_series_equal( -single_nat_dtype_timedelta + datetime_series, nat_series_dtype_timestamp ) # without a Series wrapping the NaT, it is ambiguous # whether it is a datetime64 or timedelta64 # defaults to interpreting it as timedelta64 tm.assert_series_equal( nat_series_dtype_timestamp - single_nat_dtype_datetime, nat_series_dtype_timedelta, ) tm.assert_series_equal( nat_series_dtype_timestamp - single_nat_dtype_timedelta, nat_series_dtype_timestamp, ) tm.assert_series_equal( -single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp, ) msg = "cannot subtract a datelike" with pytest.raises(TypeError, match=msg): timedelta_series - single_nat_dtype_datetime # addition tm.assert_series_equal( nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp, ) tm.assert_series_equal( single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp, ) tm.assert_series_equal( nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp, ) tm.assert_series_equal( single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp, ) tm.assert_series_equal( nat_series_dtype_timedelta + single_nat_dtype_datetime, nat_series_dtype_timestamp, ) tm.assert_series_equal( single_nat_dtype_datetime + nat_series_dtype_timedelta, nat_series_dtype_timestamp, ) def test_ufunc_coercions(self): idx = date_range("2011-01-01", periods=3, freq="2D", name="x") delta = np.timedelta64(1, "D") exp = date_range("2011-01-02", periods=3, freq="2D", name="x") for result in [idx + delta, np.add(idx, delta)]: assert isinstance(result, DatetimeIndex) tm.assert_index_equal(result, exp) assert result.freq == "2D" exp = date_range("2010-12-31", periods=3, freq="2D", name="x") for result in [idx - delta, np.subtract(idx, delta)]: assert isinstance(result, DatetimeIndex) tm.assert_index_equal(result, exp) assert result.freq == "2D" # When adding/subtracting an ndarray (which has no .freq), the result # does not infer freq idx = idx._with_freq(None) delta = np.array( [np.timedelta64(1, "D"), np.timedelta64(2, "D"), np.timedelta64(3, "D")] ) exp = DatetimeIndex(["2011-01-02", "2011-01-05", "2011-01-08"], name="x") for result in [idx + delta, np.add(idx, delta)]: tm.assert_index_equal(result, exp) assert result.freq == exp.freq exp = DatetimeIndex(["2010-12-31", "2011-01-01", "2011-01-02"], name="x") for result in [idx - delta, np.subtract(idx, delta)]: assert isinstance(result, DatetimeIndex) tm.assert_index_equal(result, exp) assert result.freq == exp.freq def test_dti_add_series(self, tz_naive_fixture, names): # GH#13905 tz = tz_naive_fixture index = DatetimeIndex( ["2016-06-28 05:30", "2016-06-28 05:31"], tz=tz, name=names[0] ) ser = Series([Timedelta(seconds=5)] * 2, index=index, name=names[1]) expected = Series(index + Timedelta(seconds=5), index=index, name=names[2]) # passing name arg isn't enough when names[2] is None expected.name = names[2] assert expected.dtype == index.dtype result = ser + index tm.assert_series_equal(result, expected) result2 = index + ser tm.assert_series_equal(result2, expected) expected = index + Timedelta(seconds=5) result3 = ser.values + index tm.assert_index_equal(result3, expected) result4 = index + ser.values tm.assert_index_equal(result4, expected) @pytest.mark.parametrize("op", [operator.add, roperator.radd, operator.sub]) def test_dti_addsub_offset_arraylike( self, tz_naive_fixture, names, op, index_or_series ): # GH#18849, GH#19744 other_box = index_or_series tz = tz_naive_fixture dti = date_range("2017-01-01", periods=2, tz=tz, name=names[0]) other = other_box([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)], name=names[1]) xbox = get_upcast_box(dti, other) with tm.assert_produces_warning(PerformanceWarning): res = op(dti, other) expected = DatetimeIndex( [op(dti[n], other[n]) for n in range(len(dti))], name=names[2], freq="infer" ) expected = tm.box_expected(expected, xbox) tm.assert_equal(res, expected) @pytest.mark.parametrize("other_box", [pd.Index, np.array]) def test_dti_addsub_object_arraylike( self, tz_naive_fixture, box_with_array, other_box ): tz = tz_naive_fixture dti = date_range("2017-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) other = other_box([pd.offsets.MonthEnd(), Timedelta(days=4)]) xbox = get_upcast_box(dtarr, other) expected = DatetimeIndex(["2017-01-31", "2017-01-06"], tz=tz_naive_fixture) expected = tm.box_expected(expected, xbox) with tm.assert_produces_warning(PerformanceWarning): result = dtarr + other
tm.assert_equal(result, expected)
pandas._testing.assert_equal
import operator import warnings import numpy as np import pandas as pd from pandas import DataFrame, Series, Timestamp, date_range, to_timedelta import pandas._testing as tm from pandas.core.algorithms import checked_add_with_arr from .pandas_vb_common import numeric_dtypes try: import pandas.core.computation.expressions as expr except ImportError: import pandas.computation.expressions as expr try: import pandas.tseries.holiday except ImportError: pass class IntFrameWithScalar: params = [ [np.float64, np.int64], [2, 3.0, np.int32(4), np.float64(5)], [ operator.add, operator.sub, operator.mul, operator.truediv, operator.floordiv, operator.pow, operator.mod, operator.eq, operator.ne, operator.gt, operator.ge, operator.lt, operator.le, ], ] param_names = ["dtype", "scalar", "op"] def setup(self, dtype, scalar, op): arr = np.random.randn(20000, 100) self.df = DataFrame(arr.astype(dtype)) def time_frame_op_with_scalar(self, dtype, scalar, op): op(self.df, scalar) class OpWithFillValue: def setup(self): # GH#31300 arr = np.arange(10 ** 6) df = DataFrame({"A": arr}) ser = df["A"] self.df = df self.ser = ser def time_frame_op_with_fill_value_no_nas(self): self.df.add(self.df, fill_value=4) def time_series_op_with_fill_value_no_nas(self): self.ser.add(self.ser, fill_value=4) class MixedFrameWithSeriesAxis: params = [ [ "eq", "ne", "lt", "le", "ge", "gt", "add", "sub", "truediv", "floordiv", "mul", "pow", ] ] param_names = ["opname"] def setup(self, opname): arr = np.arange(10 ** 6).reshape(1000, -1) df = DataFrame(arr) df["C"] = 1.0 self.df = df self.ser = df[0] self.row = df.iloc[0] def time_frame_op_with_series_axis0(self, opname): getattr(self.df, opname)(self.ser, axis=0) def time_frame_op_with_series_axis1(self, opname): getattr(operator, opname)(self.df, self.ser) class Ops: params = [[True, False], ["default", 1]] param_names = ["use_numexpr", "threads"] def setup(self, use_numexpr, threads): self.df = DataFrame(np.random.randn(20000, 100)) self.df2 = DataFrame(np.random.randn(20000, 100)) if threads != "default": expr.set_numexpr_threads(threads) if not use_numexpr: expr.set_use_numexpr(False) def time_frame_add(self, use_numexpr, threads): self.df + self.df2 def time_frame_mult(self, use_numexpr, threads): self.df * self.df2 def time_frame_multi_and(self, use_numexpr, threads): self.df[(self.df > 0) & (self.df2 > 0)] def time_frame_comparison(self, use_numexpr, threads): self.df > self.df2 def teardown(self, use_numexpr, threads): expr.set_use_numexpr(True) expr.set_numexpr_threads() class Ops2: def setup(self): N = 10 ** 3 self.df = DataFrame(np.random.randn(N, N)) self.df2 = DataFrame(np.random.randn(N, N)) self.df_int = DataFrame( np.random.randint( np.iinfo(np.int16).min, np.iinfo(np.int16).max, size=(N, N) ) ) self.df2_int = DataFrame( np.random.randint( np.iinfo(np.int16).min, np.iinfo(np.int16).max, size=(N, N) ) ) self.s = Series(np.random.randn(N)) # Division def time_frame_float_div(self): self.df // self.df2 def time_frame_float_div_by_zero(self): self.df / 0 def time_frame_float_floor_by_zero(self): self.df // 0 def time_frame_int_div_by_zero(self): self.df_int / 0 # Modulo def time_frame_int_mod(self): self.df_int % self.df2_int def time_frame_float_mod(self): self.df % self.df2 # Dot product def time_frame_dot(self): self.df.dot(self.df2) def time_series_dot(self): self.s.dot(self.s) def time_frame_series_dot(self): self.df.dot(self.s) class Timeseries: params = [None, "US/Eastern"] param_names = ["tz"] def setup(self, tz): N = 10 ** 6 halfway = (N // 2) - 1 self.s = Series(date_range("20010101", periods=N, freq="T", tz=tz)) self.ts = self.s[halfway] self.s2 = Series(date_range("20010101", periods=N, freq="s", tz=tz)) def time_series_timestamp_compare(self, tz): self.s <= self.ts def time_timestamp_series_compare(self, tz): self.ts >= self.s def time_timestamp_ops_diff(self, tz): self.s2.diff() def time_timestamp_ops_diff_with_shift(self, tz): self.s - self.s.shift() class IrregularOps: def setup(self): N = 10 ** 5 idx = date_range(start="1/1/2000", periods=N, freq="s") s = Series(np.random.randn(N), index=idx) self.left = s.sample(frac=1) self.right = s.sample(frac=1) def time_add(self): self.left + self.right class TimedeltaOps: def setup(self): self.td = to_timedelta(np.arange(1000000)) self.ts = Timestamp("2000") def time_add_td_ts(self): self.td + self.ts class CategoricalComparisons: params = ["__lt__", "__le__", "__eq__", "__ne__", "__ge__", "__gt__"] param_names = ["op"] def setup(self, op): N = 10 ** 5 self.cat = pd.Categorical(list("aabbcd") * N, ordered=True) def time_categorical_op(self, op): getattr(self.cat, op)("b") class IndexArithmetic: params = ["float", "int"] param_names = ["dtype"] def setup(self, dtype): N = 10 ** 6 indexes = {"int": "makeIntIndex", "float": "makeFloatIndex"} self.index = getattr(tm, indexes[dtype])(N) def time_add(self, dtype): self.index + 2 def time_subtract(self, dtype): self.index - 2 def time_multiply(self, dtype): self.index * 2 def time_divide(self, dtype): self.index / 2 def time_modulo(self, dtype): self.index % 2 class NumericInferOps: # from GH 7332 params = numeric_dtypes param_names = ["dtype"] def setup(self, dtype): N = 5 * 10 ** 5 self.df = DataFrame( {"A": np.arange(N).astype(dtype), "B": np.arange(N).astype(dtype)} ) def time_add(self, dtype): self.df["A"] + self.df["B"] def time_subtract(self, dtype): self.df["A"] - self.df["B"] def time_multiply(self, dtype): self.df["A"] * self.df["B"] def time_divide(self, dtype): self.df["A"] / self.df["B"] def time_modulo(self, dtype): self.df["A"] % self.df["B"] class DateInferOps: # from GH 7332 def setup_cache(self): N = 5 * 10 ** 5 df = DataFrame({"datetime64": np.arange(N).astype("datetime64[ms]")}) df["timedelta"] = df["datetime64"] - df["datetime64"] return df def time_subtract_datetimes(self, df): df["datetime64"] - df["datetime64"] def time_timedelta_plus_datetime(self, df): df["timedelta"] + df["datetime64"] def time_add_timedeltas(self, df): df["timedelta"] + df["timedelta"] class AddOverflowScalar: params = [1, -1, 0] param_names = ["scalar"] def setup(self, scalar): N = 10 ** 6 self.arr = np.arange(N) def time_add_overflow_scalar(self, scalar): checked_add_with_arr(self.arr, scalar) class AddOverflowArray: def setup(self): N = 10 ** 6 self.arr = np.arange(N) self.arr_rev = np.arange(-N, 0) self.arr_mixed = np.array([1, -1]).repeat(N / 2) self.arr_nan_1 = np.random.choice([True, False], size=N) self.arr_nan_2 = np.random.choice([True, False], size=N) def time_add_overflow_arr_rev(self): checked_add_with_arr(self.arr, self.arr_rev) def time_add_overflow_arr_mask_nan(self): checked_add_with_arr(self.arr, self.arr_mixed, arr_mask=self.arr_nan_1) def time_add_overflow_b_mask_nan(self): checked_add_with_arr(self.arr, self.arr_mixed, b_mask=self.arr_nan_1) def time_add_overflow_both_arg_nan(self): checked_add_with_arr( self.arr, self.arr_mixed, arr_mask=self.arr_nan_1, b_mask=self.arr_nan_2 ) hcal = pd.tseries.holiday.USFederalHolidayCalendar() # These offsets currently raise a NotImplimentedError with .apply_index() non_apply = [
pd.offsets.Day()
pandas.offsets.Day
# how to run locally # python text_loc_data.py $(cat ../../debugcommand.txt) import base64 import io import json import math import os import re import sys import warnings from urllib.parse import quote import cv2 import numpy as np import pandas as pd from deskew import determine_skew from google.cloud import vision from google.cloud.vision_v1 import types warnings.filterwarnings("ignore") os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = r'ServiceAccountToken.json' client = vision.ImageAnnotatorClient() content = "" img = "" FILE_NAME = 'debugImage.png' FOLDER_PATH = 'text_images' def readb64(data): nparr = np.fromstring(base64.b64decode(data), np.uint8) img = cv2.imdecode(nparr, cv2.IMREAD_COLOR) # print(type(img)) # <class 'numpy.ndarray'> return img def load_in_from_cli(): raw_data = sys.argv[1] image_data = re.sub('^data:image/.+;base64,', '', raw_data) with open("debugcommand.txt", "w") as file: file.write(raw_data) img = readb64(image_data) content = base64.b64decode(image_data) with open("debugImage.png", "wb") as fh: # saves to backend/debugImage.png fh.write(content) return content def get_old_content(): # Read original image with io.open(os.path.join(FOLDER_PATH, FILE_NAME), 'rb') as image_file: content = image_file.read() return content try: # ez error handling # if we have cli, load it - otherwise use the directories and whatnot cli_mode = len(sys.argv) > 1 if (cli_mode): content = load_in_from_cli() else: content = get_old_content() image = types.Image(content=content) response = client.text_detection(image=image) if not cli_mode: print(response) with open('debug.txt', 'w') as file: file.write(str(response)) file.close() bound_text = response.text_annotations[0].bounding_poly bound_width = bound_text.vertices[2].x - bound_text.vertices[0].x bound_height = bound_text.vertices[2].y - bound_text.vertices[0].y def deskew(img, theta, bkg): old_w, old_h = img.shape[:2] theta_rad = math.radians(theta) width = abs(np.sin(theta_rad) * old_h) + abs(np.cos(theta_rad) * old_w) height = abs(np.sin(theta_rad) * old_w) + abs(np.cos(theta_rad) * old_h) image_center = tuple(np.array(img.shape[1::-1]) / 2) rot_mat = cv2.getRotationMatrix2D(image_center, theta, 1.0) rot_mat[1, 2] += (width - old_w) / 2 rot_mat[0, 2] += (height - old_h) / 2 return cv2.warpAffine(img, rot_mat, (int( round(height)), int(round(width))), borderValue=bkg) grayscale = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) angle = determine_skew(grayscale) # Deskewed image rotated = deskew(img, angle, (0, 0, 0)) if bound_height > bound_width: rotated = np.rot90(rotated) deskewed_fname = os.path.join(FOLDER_PATH, ('deskewed_' + FILE_NAME + '.png')) cv2.imwrite(deskewed_fname, rotated) with io.open(deskewed_fname, 'rb') as image_file: content = image_file.read() image = types.Image(content=content) response = client.text_detection(image=image) blocks = response.text_annotations[1:] paras = response.full_text_annotation.pages[0].blocks[0].paragraphs char_list = [] bound_poly = [] conf_scores = [] is_upper = [] words = [] bound_poly_w = [] conf_scores_w = [] for b in blocks: words.append(b.description) bound_poly_w.append(b.bounding_poly) conf_scores_w.append(b.confidence) for p in paras: for w in p.words: for c in w.symbols: if 'detected_break' in c.property and \ c.property.detected_break.type_.name == 'SPACE': char_list.append(c.text) char_list.append('SP') for i in range(2): bound_poly.append(c.bounding_box) for i in range(2): conf_scores.append(c.confidence) if c.text.isupper(): for i in range(2): is_upper.append(1) else: for i in range(2): is_upper.append(0) else: if c.text.isupper(): is_upper.append(1) else: is_upper.append(0) char_list.append(c.text) bound_poly.append(c.bounding_box) conf_scores.append(c.confidence) df = pd.DataFrame({ 'char': char_list, 'bound_poly': bound_poly, 'conf': conf_scores, 'is_upper': is_upper }) words_df = pd.DataFrame({ 'word': words, 'bound_poly': bound_poly_w, 'conf': conf_scores_w }) def split_str(text): str_list = text.split('\n') x_points = [] y_points = [] for s in str_list: if 'x: ' in s: x_points.append(s.strip()) elif 'y: ' in s: y_points.append(s.strip()) x_dict = {} y_dict = {} for i, x in enumerate(x_points): x_dict['x_' + str(i + 1)] = [ int(s) for s in x.split() if s.isdigit() ][0] for i, y in enumerate(y_points): y_dict['y_' + str(i + 1)] = [ int(s) for s in y.split() if s.isdigit() ][0] x_dict.update(y_dict) return x_dict def merge_dicts(df): pos_dicts = [] for idx, row in df['bound_poly'].iteritems(): pos_dicts.append(split_str(str(row))) d_keys = list(pos_dicts[0].keys()) final_dict = {k: [] for k in d_keys} for d in pos_dicts: for k in d_keys: final_dict[k].append(d[k]) return final_dict merged_dicts = merge_dicts(df) merged_dicts_df = pd.DataFrame(merged_dicts) df = pd.concat([df.char, merged_dicts_df, df.conf, df.is_upper], axis=1) merged_dicts_w = merge_dicts(words_df) merged_dicts_w_df =
pd.DataFrame(merged_dicts_w)
pandas.DataFrame
from datetime import datetime, timedelta from io import StringIO import re import sys import numpy as np import pytest from pandas._libs.tslib import iNaT from pandas.compat import PYPY from pandas.compat.numpy import np_array_datetime64_compat from pandas.core.dtypes.common import ( is_datetime64_dtype, is_datetime64tz_dtype, is_object_dtype, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd from pandas import ( CategoricalIndex, DataFrame, DatetimeIndex, Index, Interval, IntervalIndex, PeriodIndex, Series, Timedelta, TimedeltaIndex, Timestamp, ) from pandas.core.accessor import PandasDelegate from pandas.core.arrays import DatetimeArray, PandasArray, TimedeltaArray from pandas.core.base import NoNewAttributesMixin, PandasObject from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin import pandas.util.testing as tm class CheckStringMixin: def test_string_methods_dont_fail(self): repr(self.container) str(self.container) bytes(self.container) def test_tricky_container(self): if not hasattr(self, "unicode_container"): pytest.skip("Need unicode_container to test with this") repr(self.unicode_container) str(self.unicode_container) class CheckImmutable: mutable_regex = re.compile("does not support mutable operations") def check_mutable_error(self, *args, **kwargs): # Pass whatever function you normally would to pytest.raises # (after the Exception kind). with pytest.raises(TypeError): self.mutable_regex(*args, **kwargs) def test_no_mutable_funcs(self): def setitem(): self.container[0] = 5 self.check_mutable_error(setitem) def setslice(): self.container[1:2] = 3 self.check_mutable_error(setslice) def delitem(): del self.container[0] self.check_mutable_error(delitem) def delslice(): del self.container[0:3] self.check_mutable_error(delslice) mutable_methods = getattr(self, "mutable_methods", []) for meth in mutable_methods: self.check_mutable_error(getattr(self.container, meth)) def test_slicing_maintains_type(self): result = self.container[1:2] expected = self.lst[1:2] self.check_result(result, expected) def check_result(self, result, expected, klass=None): klass = klass or self.klass assert isinstance(result, klass) assert result == expected class TestPandasDelegate: class Delegator: _properties = ["foo"] _methods = ["bar"] def _set_foo(self, value): self.foo = value def _get_foo(self): return self.foo foo = property(_get_foo, _set_foo, doc="foo property") def bar(self, *args, **kwargs): """ a test bar method """ pass class Delegate(PandasDelegate, PandasObject): def __init__(self, obj): self.obj = obj def setup_method(self, method): pass def test_invalid_delegation(self): # these show that in order for the delegation to work # the _delegate_* methods need to be overridden to not raise # a TypeError self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._properties, typ="property", ) self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._methods, typ="method" ) delegate = self.Delegate(self.Delegator()) with pytest.raises(TypeError): delegate.foo with pytest.raises(TypeError): delegate.foo = 5 with pytest.raises(TypeError): delegate.foo() @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): # Delegate does not implement memory_usage. # Check that we fall back to in-built `__sizeof__` # GH 12924 delegate = self.Delegate(self.Delegator()) sys.getsizeof(delegate) class Ops: def _allow_na_ops(self, obj): """Whether to skip test cases including NaN""" if (isinstance(obj, Index) and obj.is_boolean()) or not obj._can_hold_na: # don't test boolean / integer dtypes return False return True def setup_method(self, method): self.bool_index = tm.makeBoolIndex(10, name="a") self.int_index = tm.makeIntIndex(10, name="a") self.float_index = tm.makeFloatIndex(10, name="a") self.dt_index = tm.makeDateIndex(10, name="a") self.dt_tz_index = tm.makeDateIndex(10, name="a").tz_localize(tz="US/Eastern") self.period_index = tm.makePeriodIndex(10, name="a") self.string_index = tm.makeStringIndex(10, name="a") self.unicode_index = tm.makeUnicodeIndex(10, name="a") arr = np.random.randn(10) self.bool_series = Series(arr, index=self.bool_index, name="a") self.int_series = Series(arr, index=self.int_index, name="a") self.float_series = Series(arr, index=self.float_index, name="a") self.dt_series = Series(arr, index=self.dt_index, name="a") self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True) self.period_series = Series(arr, index=self.period_index, name="a") self.string_series = Series(arr, index=self.string_index, name="a") self.unicode_series = Series(arr, index=self.unicode_index, name="a") types = ["bool", "int", "float", "dt", "dt_tz", "period", "string", "unicode"] self.indexes = [getattr(self, "{}_index".format(t)) for t in types] self.series = [getattr(self, "{}_series".format(t)) for t in types] # To test narrow dtypes, we use narrower *data* elements, not *index* elements index = self.int_index self.float32_series = Series(arr.astype(np.float32), index=index, name="a") arr_int = np.random.choice(10, size=10, replace=False) self.int8_series = Series(arr_int.astype(np.int8), index=index, name="a") self.int16_series = Series(arr_int.astype(np.int16), index=index, name="a") self.int32_series = Series(arr_int.astype(np.int32), index=index, name="a") self.uint8_series = Series(arr_int.astype(np.uint8), index=index, name="a") self.uint16_series = Series(arr_int.astype(np.uint16), index=index, name="a") self.uint32_series = Series(arr_int.astype(np.uint32), index=index, name="a") nrw_types = ["float32", "int8", "int16", "int32", "uint8", "uint16", "uint32"] self.narrow_series = [getattr(self, "{}_series".format(t)) for t in nrw_types] self.objs = self.indexes + self.series + self.narrow_series def check_ops_properties(self, props, filter=None, ignore_failures=False): for op in props: for o in self.is_valid_objs: # if a filter, skip if it doesn't match if filter is not None: filt = o.index if isinstance(o, Series) else o if not filter(filt): continue try: if isinstance(o, Series): expected = Series(getattr(o.index, op), index=o.index, name="a") else: expected = getattr(o, op) except (AttributeError): if ignore_failures: continue result = getattr(o, op) # these could be series, arrays or scalars if isinstance(result, Series) and isinstance(expected, Series): tm.assert_series_equal(result, expected) elif isinstance(result, Index) and isinstance(expected, Index): tm.assert_index_equal(result, expected) elif isinstance(result, np.ndarray) and isinstance( expected, np.ndarray ): tm.assert_numpy_array_equal(result, expected) else: assert result == expected # freq raises AttributeError on an Int64Index because its not # defined we mostly care about Series here anyhow if not ignore_failures: for o in self.not_valid_objs: # an object that is datetimelike will raise a TypeError, # otherwise an AttributeError err = AttributeError if issubclass(type(o), DatetimeIndexOpsMixin): err = TypeError with pytest.raises(err): getattr(o, op) @pytest.mark.parametrize("klass", [Series, DataFrame]) def test_binary_ops_docs(self, klass): op_map = { "add": "+", "sub": "-", "mul": "*", "mod": "%", "pow": "**", "truediv": "/", "floordiv": "//", } for op_name in op_map: operand1 = klass.__name__.lower() operand2 = "other" op = op_map[op_name] expected_str = " ".join([operand1, op, operand2]) assert expected_str in getattr(klass, op_name).__doc__ # reverse version of the binary ops expected_str = " ".join([operand2, op, operand1]) assert expected_str in getattr(klass, "r" + op_name).__doc__ class TestIndexOps(Ops): def setup_method(self, method): super().setup_method(method) self.is_valid_objs = self.objs self.not_valid_objs = [] def test_none_comparison(self): # bug brought up by #1079 # changed from TypeError in 0.17.0 for o in self.is_valid_objs: if isinstance(o, Series): o[0] = np.nan # noinspection PyComparisonWithNone result = o == None # noqa assert not result.iat[0] assert not result.iat[1] # noinspection PyComparisonWithNone result = o != None # noqa assert result.iat[0] assert result.iat[1] result = None == o # noqa assert not result.iat[0] assert not result.iat[1] result = None != o # noqa assert result.iat[0] assert result.iat[1] if is_datetime64_dtype(o) or is_datetime64tz_dtype(o): # Following DatetimeIndex (and Timestamp) convention, # inequality comparisons with Series[datetime64] raise with pytest.raises(TypeError): None > o with pytest.raises(TypeError): o > None else: result = None > o assert not result.iat[0] assert not result.iat[1] result = o < None assert not result.iat[0] assert not result.iat[1] def test_ndarray_compat_properties(self): for o in self.objs: # Check that we work. for p in ["shape", "dtype", "T", "nbytes"]: assert getattr(o, p, None) is not None # deprecated properties for p in ["flags", "strides", "itemsize"]: with tm.assert_produces_warning(FutureWarning): assert getattr(o, p, None) is not None with tm.assert_produces_warning(FutureWarning): assert hasattr(o, "base") # If we have a datetime-like dtype then needs a view to work # but the user is responsible for that try: with tm.assert_produces_warning(FutureWarning): assert o.data is not None except ValueError: pass with pytest.raises(ValueError): with tm.assert_produces_warning(FutureWarning): o.item() # len > 1 assert o.ndim == 1 assert o.size == len(o) with tm.assert_produces_warning(FutureWarning): assert Index([1]).item() == 1 assert Series([1]).item() == 1 def test_value_counts_unique_nunique(self): for orig in self.objs: o = orig.copy() klass = type(o) values = o._values if isinstance(values, Index): # reset name not to affect latter process values.name = None # create repeated values, 'n'th element is repeated by n+1 times # skip boolean, because it only has 2 values at most if isinstance(o, Index) and o.is_boolean(): continue elif isinstance(o, Index): expected_index = Index(o[::-1]) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = "a" else: expected_index = Index(values[::-1]) idx = o.index.repeat(range(1, len(o) + 1)) # take-based repeat indices = np.repeat(np.arange(len(o)), range(1, len(o) + 1)) rep = values.take(indices) o = klass(rep, index=idx, name="a") # check values has the same dtype as the original assert o.dtype == orig.dtype expected_s = Series( range(10, 0, -1), index=expected_index, dtype="int64", name="a" ) result = o.value_counts() tm.assert_series_equal(result, expected_s) assert result.index.name is None assert result.name == "a" result = o.unique() if isinstance(o, Index): assert isinstance(result, o.__class__) tm.assert_index_equal(result, orig) assert result.dtype == orig.dtype elif is_datetime64tz_dtype(o): # datetimetz Series returns array of Timestamp assert result[0] == orig[0] for r in result: assert isinstance(r, Timestamp) tm.assert_numpy_array_equal( result.astype(object), orig._values.astype(object) ) else: tm.assert_numpy_array_equal(result, orig.values) assert result.dtype == orig.dtype assert o.nunique() == len(np.unique(o.values)) @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_value_counts_unique_nunique_null(self, null_obj): for orig in self.objs: o = orig.copy() klass = type(o) values = o._ndarray_values if not self._allow_na_ops(o): continue # special assign to the numpy array if is_datetime64tz_dtype(o): if isinstance(o, DatetimeIndex): v = o.asi8 v[0:2] = iNaT values = o._shallow_copy(v) else: o = o.copy() o[0:2] = pd.NaT values = o._values elif needs_i8_conversion(o): values[0:2] = iNaT values = o._shallow_copy(values) else: values[0:2] = null_obj # check values has the same dtype as the original assert values.dtype == o.dtype # create repeated values, 'n'th element is repeated by n+1 # times if isinstance(o, (DatetimeIndex, PeriodIndex)): expected_index = o.copy() expected_index.name = None # attach name to klass o = klass(values.repeat(range(1, len(o) + 1))) o.name = "a" else: if isinstance(o, DatetimeIndex): expected_index = orig._values._shallow_copy(values) else: expected_index = Index(values) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = "a" # check values has the same dtype as the original assert o.dtype == orig.dtype # check values correctly have NaN nanloc = np.zeros(len(o), dtype=np.bool) nanloc[:3] = True if isinstance(o, Index): tm.assert_numpy_array_equal(pd.isna(o), nanloc) else: exp = Series(nanloc, o.index, name="a") tm.assert_series_equal(pd.isna(o), exp) expected_s_na = Series( list(range(10, 2, -1)) + [3], index=expected_index[9:0:-1], dtype="int64", name="a", ) expected_s = Series( list(range(10, 2, -1)), index=expected_index[9:1:-1], dtype="int64", name="a", ) result_s_na = o.value_counts(dropna=False) tm.assert_series_equal(result_s_na, expected_s_na) assert result_s_na.index.name is None assert result_s_na.name == "a" result_s = o.value_counts() tm.assert_series_equal(o.value_counts(), expected_s) assert result_s.index.name is None assert result_s.name == "a" result = o.unique() if isinstance(o, Index): tm.assert_index_equal(result, Index(values[1:], name="a")) elif is_datetime64tz_dtype(o): # unable to compare NaT / nan tm.assert_extension_array_equal(result[1:], values[2:]) assert result[0] is pd.NaT else: tm.assert_numpy_array_equal(result[1:], values[2:]) assert pd.isna(result[0]) assert result.dtype == orig.dtype assert o.nunique() == 8 assert o.nunique(dropna=False) == 9 @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_inferred(self, klass): s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) expected = Series([4, 3, 2, 1], index=["b", "a", "d", "c"]) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(np.unique(np.array(s_values, dtype=np.object_))) tm.assert_index_equal(s.unique(), exp) else: exp = np.unique(np.array(s_values, dtype=np.object_)) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 4 # don't sort, have to sort after the fact as not sorting is # platform-dep hist = s.value_counts(sort=False).sort_values() expected = Series([3, 1, 4, 2], index=list("acbd")).sort_values() tm.assert_series_equal(hist, expected) # sort ascending hist = s.value_counts(ascending=True) expected = Series([1, 2, 3, 4], index=list("cdab")) tm.assert_series_equal(hist, expected) # relative histogram. hist = s.value_counts(normalize=True) expected = Series([0.4, 0.3, 0.2, 0.1], index=["b", "a", "d", "c"]) tm.assert_series_equal(hist, expected) @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_bins(self, klass): s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) # bins with pytest.raises(TypeError): s.value_counts(bins=1) s1 = Series([1, 1, 2, 3]) res1 = s1.value_counts(bins=1) exp1 = Series({Interval(0.997, 3.0): 4}) tm.assert_series_equal(res1, exp1) res1n = s1.value_counts(bins=1, normalize=True) exp1n = Series({Interval(0.997, 3.0): 1.0}) tm.assert_series_equal(res1n, exp1n) if isinstance(s1, Index): tm.assert_index_equal(s1.unique(), Index([1, 2, 3])) else: exp = np.array([1, 2, 3], dtype=np.int64) tm.assert_numpy_array_equal(s1.unique(), exp) assert s1.nunique() == 3 # these return the same res4 = s1.value_counts(bins=4, dropna=True) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4 = s1.value_counts(bins=4, dropna=False) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4n = s1.value_counts(bins=4, normalize=True) exp4n = Series([0.5, 0.25, 0.25, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4n, exp4n) # handle NA's properly s_values = ["a", "b", "b", "b", np.nan, np.nan, "d", "d", "a", "a", "b"] s = klass(s_values) expected = Series([4, 3, 2], index=["b", "a", "d"]) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(["a", "b", np.nan, "d"]) tm.assert_index_equal(s.unique(), exp) else: exp = np.array(["a", "b", np.nan, "d"], dtype=object) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 3 s = klass({}) expected = Series([], dtype=np.int64) tm.assert_series_equal(s.value_counts(), expected, check_index_type=False) # returned dtype differs depending on original if isinstance(s, Index): tm.assert_index_equal(s.unique(), Index([]), exact=False) else: tm.assert_numpy_array_equal(s.unique(), np.array([]), check_dtype=False) assert s.nunique() == 0 @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_datetime64(self, klass): # GH 3002, datetime64[ns] # don't test names though txt = "\n".join( [ "xxyyzz20100101PIE", "xxyyzz20100101GUM", "xxyyzz20100101EGG", "xxyyww20090101EGG", "foofoo20080909PIE", "foofoo20080909GUM", ] ) f = StringIO(txt) df = pd.read_fwf( f, widths=[6, 8, 3], names=["person_id", "dt", "food"], parse_dates=["dt"] ) s = klass(df["dt"].copy()) s.name = None idx = pd.to_datetime( ["2010-01-01 00:00:00", "2008-09-09 00:00:00", "2009-01-01 00:00:00"] ) expected_s = Series([3, 2, 1], index=idx) tm.assert_series_equal(s.value_counts(), expected_s) expected = np_array_datetime64_compat( ["2010-01-01 00:00:00", "2009-01-01 00:00:00", "2008-09-09 00:00:00"], dtype="datetime64[ns]", ) if isinstance(s, Index): tm.assert_index_equal(s.unique(), DatetimeIndex(expected)) else: tm.assert_numpy_array_equal(s.unique(), expected) assert s.nunique() == 3 # with NaT s = df["dt"].copy() s = klass(list(s.values) + [pd.NaT]) result = s.value_counts() assert result.index.dtype == "datetime64[ns]" tm.assert_series_equal(result, expected_s) result = s.value_counts(dropna=False) expected_s[pd.NaT] = 1 tm.assert_series_equal(result, expected_s) unique = s.unique() assert unique.dtype == "datetime64[ns]" # numpy_array_equal cannot compare pd.NaT if isinstance(s, Index): exp_idx = DatetimeIndex(expected.tolist() + [pd.NaT]) tm.assert_index_equal(unique, exp_idx) else: tm.assert_numpy_array_equal(unique[:3], expected) assert pd.isna(unique[3]) assert s.nunique() == 3 assert s.nunique(dropna=False) == 4 # timedelta64[ns] td = df.dt - df.dt + timedelta(1) td = klass(td, name="dt") result = td.value_counts() expected_s = Series([6], index=[Timedelta("1day")], name="dt") tm.assert_series_equal(result, expected_s) expected = TimedeltaIndex(["1 days"], name="dt") if isinstance(td, Index): tm.assert_index_equal(td.unique(), expected) else: tm.assert_numpy_array_equal(td.unique(), expected.values) td2 = timedelta(1) + (df.dt - df.dt) td2 = klass(td2, name="dt") result2 = td2.value_counts() tm.assert_series_equal(result2, expected_s) def test_factorize(self): for orig in self.objs: o = orig.copy() if isinstance(o, Index) and o.is_boolean(): exp_arr = np.array([0, 1] + [0] * 8, dtype=np.intp) exp_uniques = o exp_uniques = Index([False, True]) else: exp_arr = np.array(range(len(o)), dtype=np.intp) exp_uniques = o codes, uniques = o.factorize() tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): tm.assert_index_equal(uniques, Index(orig), check_names=False) else: # factorize explicitly resets name tm.assert_index_equal(uniques, exp_uniques, check_names=False) def test_factorize_repeated(self): for orig in self.objs: o = orig.copy() # don't test boolean if isinstance(o, Index) and o.is_boolean(): continue # sort by value, and create duplicates if isinstance(o, Series): o = o.sort_values() n = o.iloc[5:].append(o) else: indexer = o.argsort() o = o.take(indexer) n = o[5:].append(o) exp_arr = np.array( [5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.intp ) codes, uniques = n.factorize(sort=True) tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): tm.assert_index_equal( uniques, Index(orig).sort_values(), check_names=False ) else: tm.assert_index_equal(uniques, o, check_names=False) exp_arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4], np.intp) codes, uniques = n.factorize(sort=False) tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): expected = Index(o.iloc[5:10].append(o.iloc[:5])) tm.assert_index_equal(uniques, expected, check_names=False) else: expected = o[5:10].append(o[:5]) tm.assert_index_equal(uniques, expected, check_names=False) def test_duplicated_drop_duplicates_index(self): # GH 4060 for original in self.objs: if isinstance(original, Index): # special case if original.is_boolean(): result = original.drop_duplicates() expected = Index([False, True], name="a") tm.assert_index_equal(result, expected) continue # original doesn't have duplicates expected = np.array([False] * len(original), dtype=bool) duplicated = original.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = original.drop_duplicates() tm.assert_index_equal(result, original) assert result is not original # has_duplicates assert not original.has_duplicates # create repeated values, 3rd and 5th values are duplicated idx = original[list(range(len(original))) + [5, 3]] expected = np.array([False] * len(original) + [True, True], dtype=bool) duplicated = idx.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool tm.assert_index_equal(idx.drop_duplicates(), original) base = [False] * len(idx) base[3] = True base[5] = True expected = np.array(base) duplicated = idx.duplicated(keep="last") tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = idx.drop_duplicates(keep="last") tm.assert_index_equal(result, idx[~expected]) base = [False] * len(original) + [True, True] base[3] = True base[5] = True expected = np.array(base) duplicated = idx.duplicated(keep=False) tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = idx.drop_duplicates(keep=False) tm.assert_index_equal(result, idx[~expected]) with pytest.raises( TypeError, match=( r"drop_duplicates\(\) got an " r"unexpected keyword argument" ), ): idx.drop_duplicates(inplace=True) else: expected = Series( [False] * len(original), index=original.index, name="a" ) tm.assert_series_equal(original.duplicated(), expected) result = original.drop_duplicates() tm.assert_series_equal(result, original) assert result is not original idx = original.index[list(range(len(original))) + [5, 3]] values = original._values[list(range(len(original))) + [5, 3]] s = Series(values, index=idx, name="a") expected = Series( [False] * len(original) + [True, True], index=idx, name="a" ) tm.assert_series_equal(s.duplicated(), expected) tm.assert_series_equal(s.drop_duplicates(), original) base = [False] * len(idx) base[3] = True base[5] = True expected = Series(base, index=idx, name="a") tm.assert_series_equal(s.duplicated(keep="last"), expected) tm.assert_series_equal( s.drop_duplicates(keep="last"), s[~np.array(base)] ) base = [False] * len(original) + [True, True] base[3] = True base[5] = True expected = Series(base, index=idx, name="a") tm.assert_series_equal(s.duplicated(keep=False), expected) tm.assert_series_equal( s.drop_duplicates(keep=False), s[~np.array(base)] ) s.drop_duplicates(inplace=True) tm.assert_series_equal(s, original) def test_drop_duplicates_series_vs_dataframe(self): # GH 14192 df = pd.DataFrame( { "a": [1, 1, 1, "one", "one"], "b": [2, 2, np.nan, np.nan, np.nan], "c": [3, 3, np.nan, np.nan, "three"], "d": [1, 2, 3, 4, 4], "e": [ datetime(2015, 1, 1), datetime(2015, 1, 1), datetime(2015, 2, 1), pd.NaT, pd.NaT, ], } ) for column in df.columns: for keep in ["first", "last", False]: dropped_frame = df[[column]].drop_duplicates(keep=keep) dropped_series = df[column].drop_duplicates(keep=keep) tm.assert_frame_equal(dropped_frame, dropped_series.to_frame()) def test_fillna(self): # # GH 11343 # though Index.fillna and Series.fillna has separate impl, # test here to confirm these works as the same for orig in self.objs: o = orig.copy() values = o.values # values will not be changed result = o.fillna(o.astype(object).values[0]) if isinstance(o, Index): tm.assert_index_equal(o, result) else: tm.assert_series_equal(o, result) # check shallow_copied assert o is not result for null_obj in [np.nan, None]: for orig in self.objs: o = orig.copy() klass = type(o) if not self._allow_na_ops(o): continue if needs_i8_conversion(o): values = o.astype(object).values fill_value = values[0] values[0:2] = pd.NaT else: values = o.values.copy() fill_value = o.values[0] values[0:2] = null_obj expected = [fill_value] * 2 + list(values[2:]) expected = klass(expected, dtype=orig.dtype) o = klass(values) # check values has the same dtype as the original assert o.dtype == orig.dtype result = o.fillna(fill_value) if isinstance(o, Index): tm.assert_index_equal(result, expected) else: tm.assert_series_equal(result, expected) # check shallow_copied assert o is not result @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): for o in self.objs: res = o.memory_usage() res_deep = o.memory_usage(deep=True) if is_object_dtype(o) or ( isinstance(o, Series) and is_object_dtype(o.index) ): # if there are objects, only deep will pick them up assert res_deep > res else: assert res == res_deep if isinstance(o, Series): assert ( o.memory_usage(index=False) + o.index.memory_usage() ) == o.memory_usage(index=True) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = res_deep - sys.getsizeof(o) assert abs(diff) < 100 def test_searchsorted(self): # See gh-12238 for o in self.objs: index = np.searchsorted(o, max(o)) assert 0 <= index <= len(o) index = np.searchsorted(o, max(o), sorter=range(len(o))) assert 0 <= index <= len(o) def test_validate_bool_args(self): invalid_values = [1, "True", [1, 2, 3], 5.0] for value in invalid_values: with pytest.raises(ValueError): self.int_series.drop_duplicates(inplace=value) def test_getitem(self): for i in self.indexes: s = pd.Series(i) assert i[0] == s.iloc[0] assert i[5] == s.iloc[5] assert i[-1] == s.iloc[-1] assert i[-1] == i[9] with pytest.raises(IndexError): i[20] with pytest.raises(IndexError): s.iloc[20] @pytest.mark.parametrize("indexer_klass", [list, pd.Index]) @pytest.mark.parametrize( "indexer", [ [True] * 10, [False] * 10, [True, False, True, True, False, False, True, True, False, True], ], ) def test_bool_indexing(self, indexer_klass, indexer): # GH 22533 for idx in self.indexes: exp_idx = [i for i in range(len(indexer)) if indexer[i]] tm.assert_index_equal(idx[indexer_klass(indexer)], idx[exp_idx]) s = pd.Series(idx) tm.assert_series_equal(s[indexer_klass(indexer)], s.iloc[exp_idx]) def test_get_indexer_non_unique_dtype_mismatch(self): # GH 25459 indexes, missing = pd.Index(["A", "B"]).get_indexer_non_unique(pd.Index([0])) tm.assert_numpy_array_equal(np.array([-1], dtype=np.intp), indexes) tm.assert_numpy_array_equal(np.array([0], dtype=np.int64), missing) class TestTranspose(Ops): errmsg = "the 'axes' parameter is not supported" def test_transpose(self): for obj in self.objs: tm.assert_equal(obj.transpose(), obj) def test_transpose_non_default_axes(self): for obj in self.objs: with pytest.raises(ValueError, match=self.errmsg): obj.transpose(1) with pytest.raises(ValueError, match=self.errmsg): obj.transpose(axes=1) def test_numpy_transpose(self): for obj in self.objs: tm.assert_equal(np.transpose(obj), obj) with pytest.raises(ValueError, match=self.errmsg): np.transpose(obj, axes=1) class TestNoNewAttributesMixin: def test_mixin(self): class T(NoNewAttributesMixin): pass t = T() assert not hasattr(t, "__frozen") t.a = "test" assert t.a == "test" t._freeze() assert "__frozen" in dir(t) assert getattr(t, "__frozen") with pytest.raises(AttributeError): t.b = "test" assert not hasattr(t, "b") class TestToIterable: # test that we convert an iterable to python types dtypes = [ ("int8", int), ("int16", int), ("int32", int), ("int64", int), ("uint8", int), ("uint16", int), ("uint32", int), ("uint64", int), ("float16", float), ("float32", float), ("float64", float), ("datetime64[ns]", Timestamp), ("datetime64[ns, US/Eastern]", Timestamp), ("timedelta64[ns]", Timedelta), ] @pytest.mark.parametrize("dtype, rdtype", dtypes) @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) @pytest.mark.parametrize("typ", [Series, Index]) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") # TODO(GH-24559): Remove the filterwarnings def test_iterable(self, typ, method, dtype, rdtype): # gh-10904 # gh-13258 # coerce iteration to underlying python / pandas types s = typ([1], dtype=dtype) result = method(s)[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( "dtype, rdtype, obj", [ ("object", object, "a"), ("object", int, 1), ("category", object, "a"), ("category", int, 1), ], ) @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) @pytest.mark.parametrize("typ", [Series, Index]) def test_iterable_object_and_category(self, typ, method, dtype, rdtype, obj): # gh-10904 # gh-13258 # coerce iteration to underlying python / pandas types s = typ([obj], dtype=dtype) result = method(s)[0] assert isinstance(result, rdtype) @pytest.mark.parametrize("dtype, rdtype", dtypes) def test_iterable_items(self, dtype, rdtype): # gh-13258 # test if items yields the correct boxed scalars # this only applies to series s = Series([1], dtype=dtype) _, result = list(s.items())[0] assert isinstance(result, rdtype) _, result = list(s.items())[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( "dtype, rdtype", dtypes + [("object", int), ("category", int)] ) @pytest.mark.parametrize("typ", [Series, Index]) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") # TODO(GH-24559): Remove the filterwarnings def test_iterable_map(self, typ, dtype, rdtype): # gh-13236 # coerce iteration to underlying python / pandas types s = typ([1], dtype=dtype) result = s.map(type)[0] if not isinstance(rdtype, tuple): rdtype = tuple([rdtype]) assert result in rdtype @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) def test_categorial_datetimelike(self, method): i = CategoricalIndex([Timestamp("1999-12-31"), Timestamp("2000-12-31")]) result = method(i)[0] assert isinstance(result, Timestamp) def test_iter_box(self): vals = [Timestamp("2011-01-01"), Timestamp("2011-01-02")] s = Series(vals) assert s.dtype == "datetime64[ns]" for res, exp in zip(s, vals): assert isinstance(res, Timestamp) assert res.tz is None assert res == exp vals = [ Timestamp("2011-01-01", tz="US/Eastern"),
Timestamp("2011-01-02", tz="US/Eastern")
pandas.Timestamp
# -*- coding: utf-8 -*- from __future__ import division from functools import wraps import numpy as np from pandas import DataFrame, Series #from pandas.stats import moments import pandas as pd def simple_moving_average(prices, period=26): """ :param df: pandas dataframe object :param period: periods for calculating SMA :return: a pandas series """ weights = np.repeat(1.0, period) / period sma = np.convolve(prices, weights, 'valid') return sma def stochastic_oscillator_k(df): """Calculate stochastic oscillator %K for given data. :param df: pandas.DataFrame :return: pandas.DataFrame """ SOk = pd.Series((df['close'] - df['low']) / (df['high'] - df['low']), name='SO%k') df = df.join(SOk) return df def stochastic_oscillator_d(df, n): """Calculate stochastic oscillator %D for given data. :param df: pandas.DataFrame :param n: :return: pandas.DataFrame """ SOk = pd.Series((df['close'] - df['low']) / (df['high'] - df['low']), name='SO%k') SOd = pd.Series(SOk.ewm(span=n, min_periods=n).mean(), name='SO%d') df = df.join(SOd) return df def bollinger_bands(df, n, std, add_ave=True): """ :param df: pandas.DataFrame :param n: :return: pandas.DataFrame """ ave = df['close'].rolling(window=n, center=False).mean() sd = df['close'].rolling(window=n, center=False).std() upband = pd.Series(ave + (sd * std), name='bband_upper_' + str(n)) dnband = pd.Series(ave - (sd * std), name='bband_lower_' + str(n)) if add_ave: ave = pd.Series(ave, name='bband_ave_' + str(n)) df = df.join(pd.concat([upband, dnband, ave], axis=1)) else: df = df.join(pd.concat([upband, dnband], axis=1)) return df def money_flow_index(df, n): """Calculate Money Flow Index and Ratio for given data. :param df: pandas.DataFrame :param n: :return: pandas.DataFrame """ PP = (df['high'] + df['low'] + df['close']) / 3 i = 0 PosMF = [0] while i < df.index[-1]: if PP[i + 1] > PP[i]: PosMF.append(PP[i + 1] * df.loc[i + 1, 'volume']) else: PosMF.append(0) i = i + 1 PosMF = pd.Series(PosMF) TotMF = PP * df['volume'] MFR = pd.Series(PosMF / TotMF) MFI = pd.Series(MFR.rolling(n, min_periods=n).mean()) # df = df.join(MFI) return MFI def series_indicator(col): def inner_series_indicator(f): @wraps(f) def wrapper(s, *args, **kwargs): if isinstance(s, DataFrame): s = s[col] return f(s, *args, **kwargs) return wrapper return inner_series_indicator def _wilder_sum(s, n): s = s.dropna() nf = (n - 1) / n ws = [np.nan] * (n - 1) + [s[n - 1] + nf * sum(s[:n - 1])] for v in s[n:]: ws.append(v + ws[-1] * nf) return Series(ws, index=s.index) @series_indicator('high') def hhv(s, n): return pd.rolling_max(s, n) @series_indicator('low') def llv(s, n): return pd.rolling_min(s, n) @series_indicator('close') def ema(s, n, wilder=False): span = n if not wilder else 2 * n - 1 return pd.ewma(s, span=span) @series_indicator('close') def macd(s, nfast=12, nslow=26, nsig=9, percent=True): fast, slow = ema(s, nfast), ema(s, nslow) if percent: macd = 100 * (fast / slow - 1) else: macd = fast - slow sig = ema(macd, nsig) hist = macd - sig return DataFrame(dict(macd=macd, signal=sig, hist=hist, fast=fast, slow=slow)) def aroon(s, n=25): up = 100 * pd.rolling_apply(s.high, n + 1, lambda x: x.argmax()) / n dn = 100 * pd.rolling_apply(s.low, n + 1, lambda x: x.argmin()) / n return DataFrame(dict(up=up, down=dn)) @series_indicator('close') def rsi(s, n=14): diff = s.diff() which_dn = diff < 0 up, dn = diff, diff * 0 up[which_dn], dn[which_dn] = 0, -up[which_dn] emaup = ema(up, n, wilder=True) emadn = ema(dn, n, wilder=True) return 100 * emaup / (emaup + emadn) def stoch(s, nfastk=14, nfullk=3, nfulld=3): if not isinstance(s, DataFrame): s = DataFrame(dict(high=s, low=s, close=s)) hmax, lmin = hhv(s, nfastk), llv(s, nfastk) fastk = 100 * (s.close - lmin) / (hmax - lmin) fullk = pd.rolling_mean(fastk, nfullk) fulld = pd.rolling_mean(fullk, nfulld) return DataFrame(dict(fastk=fastk, fullk=fullk, fulld=fulld)) @series_indicator('close') def dtosc(s, nrsi=13, nfastk=8, nfullk=5, nfulld=3): srsi = stoch(rsi(s, nrsi), nfastk, nfullk, nfulld) return DataFrame(dict(fast=srsi.fullk, slow=srsi.fulld)) def atr(s, n=14): cs = s.close.shift(1) tr = s.high.combine(cs, max) - s.low.combine(cs, min) return ema(tr, n, wilder=True) def cci(s, n=20, c=0.015): if isinstance(s, DataFrame): s = s[['high', 'low', 'close']].mean(axis=1) mavg = pd.rolling_mean(s, n) mdev = pd.rolling_apply(s, n, lambda x: np.fabs(x - x.mean()).mean()) return (s - mavg) / (c * mdev) def cmf(s, n=20): clv = (2 * s.close - s.high - s.low) / (s.high - s.low) vol = s.volume return pd.rolling_sum(clv * vol, n) / pd.rolling_sum(vol, n) def force(s, n=2): return ema(s.close.diff() * s.volume, n) @series_indicator('close') def kst(s, r1=10, r2=15, r3=20, r4=30, n1=10, n2=10, n3=10, n4=15, nsig=9): rocma1 = pd.rolling_mean(s / s.shift(r1) - 1, n1) rocma2 = pd.rolling_mean(s / s.shift(r2) - 1, n2) rocma3 = pd.rolling_mean(s / s.shift(r3) - 1, n3) rocma4 = pd.rolling_mean(s / s.shift(r4) - 1, n4) kst = 100 * (rocma1 + 2 * rocma2 + 3 * rocma3 + 4 * rocma4) sig = pd.rolling_mean(kst, nsig) return DataFrame(dict(kst=kst, signal=sig)) def ichimoku(s, n1=9, n2=26, n3=52): conv = (hhv(s, n1) + llv(s, n1)) / 2 base = (hhv(s, n2) + llv(s, n2)) / 2 spana = (conv + base) / 2 spanb = (hhv(s, n3) + llv(s, n3)) / 2 return DataFrame(dict(conv=conv, base=base, spana=spana.shift(n2), spanb=spanb.shift(n2), lspan=s.close.shift(-n2))) def ultimate(s, n1=7, n2=14, n3=28): cs = s.close.shift(1) bp = s.close - s.low.combine(cs, min) tr = s.high.combine(cs, max) - s.low.combine(cs, min) avg1 =
pd.rolling_sum(bp, n1)
pandas.rolling_sum
# Boston housing demo import superimport import numpy as np import matplotlib.pyplot as plt import os figdir = "../figures" def save_fig(fname): plt.savefig(os.path.join(figdir, fname)) import pandas as pd import sklearn.datasets import sklearn.linear_model as lm from sklearn.model_selection import train_test_split # Prevent numpy from printing too many digits np.set_printoptions(precision=3) # Load data (creates numpy arrays) boston = sklearn.datasets.load_boston() X = boston.data y = boston.target # Convert to Pandas format df =
pd.DataFrame(X)
pandas.DataFrame
# -*- coding: utf-8 -*- import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from mabwiser.mab import MAB, LearningPolicy, NeighborhoodPolicy from tests.test_base import BaseTest class MABTest(BaseTest): ################################################# # Test context free predict() method ################################################ def test_arm_list_int(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_arm_list_str(self): for lp in MABTest.lps: self.predict(arms=["A", "B", "C"], decisions=["A", "A", "A", "B", "B", "B", "C", "C", "C"], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=["A", "B", "C"], decisions=["A", "A", "A", "B", "B", "B", "C", "C", "C"], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_decision_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=
pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1])
pandas.Series
# This code extract the features from the raw joined dataset (data.csv) # and save it in the LibSVM format. # Usage: python construct_features.py import pandas as pd import numpy as np from sklearn.datasets import dump_svmlight_file df = pd.read_csv("data.csv", low_memory=False) # NPU NPU = df.NPU.copy() NPU[NPU == ' '] = np.nan NPU = pd.get_dummies(NPU, prefix="NPU") # SiteZip SiteZip = df.SiteZip.copy() SiteZip = SiteZip.str.replace(',','') SiteZip = SiteZip.str.replace('\.00','') SiteZip = SiteZip.replace('0',np.nan) SiteZip = pd.get_dummies(SiteZip, prefix="SiteZip") # Submarket1 Submarket1 = df.Submarket1.copy() Submarket1 = pd.get_dummies(Submarket1, prefix="Submarket1") # TAX_DISTR TAX_DISTR = df.TAX_DISTR.copy() TAX_DISTR[TAX_DISTR == ' '] = np.nan TAX_DISTR = pd.get_dummies(TAX_DISTR, prefix="TAX_DISTR") # NBHD NBHD = df.NBHD.copy() NBHD[NBHD == ' '] = np.nan NBHD = pd.get_dummies(NBHD, prefix="NBHD") # ZONING_NUM ZONING_NUM = df.ZONING_NUM.copy() ZONING_NUM[ZONING_NUM == ' '] = np.nan ZONING_NUM = pd.get_dummies(ZONING_NUM, prefix="ZONING_NUM") # building_c building_c = df.building_c.copy() building_c[building_c == ' '] = np.nan building_c = pd.get_dummies(building_c, prefix="building_c") # PROP_CLASS PROP_CLASS = df.PROP_CLASS.copy() PROP_CLASS[PROP_CLASS == ' '] = np.nan PROP_CLASS = pd.get_dummies(PROP_CLASS, prefix="PROP_CLASS") # Existing_p Existing_p = df.Existing_p.copy() Existing_p[Existing_p == ' '] = np.nan Existing_p = pd.get_dummies(Existing_p, prefix="Existing_p") # PropertyTy PropertyTy = df.PropertyTy.copy() PropertyTy = pd.get_dummies(PropertyTy, prefix="PropertyTy") # secondaryT secondaryT = df.secondaryT.copy() secondaryT[secondaryT == ' '] = np.nan secondaryT = pd.get_dummies(secondaryT, prefix="secondaryT") # LUC LUC = df.LUC.copy() LUC[LUC == ' '] = np.nan LUC = pd.get_dummies(LUC, prefix="LUC") # Taxes_Per_ Taxes_Per_ = df.Taxes_Per_.copy() Taxes_Per_zero = (Taxes_Per_ == "0").apply(int) Taxes_Per_zero.name = 'Taxes_Per_zero' Taxes_Per_ = Taxes_Per_.str.replace(',','').astype(float) Taxes_Per_ = np.log1p(Taxes_Per_) Taxes_Per_ = Taxes_Per_ / Taxes_Per_.max() Taxes_Per_ = pd.concat([Taxes_Per_, Taxes_Per_zero], axis=1) # Taxes_Tota Taxes_Tota = df.Taxes_Tota.copy() Taxes_Tota_zero = (Taxes_Tota == "0").apply(int) Taxes_Tota_zero.name = 'Taxes_Tota_zero' Taxes_Tota = Taxes_Tota.str.replace(',','').astype(float) Taxes_Tota = np.log1p(Taxes_Tota) Taxes_Tota = Taxes_Tota / Taxes_Tota.max() Taxes_Tota = pd.concat([Taxes_Tota, Taxes_Tota_zero], axis=1) # TOT_APPR TOT_APPR = df.TOT_APPR.copy() TOT_APPR_zero = (TOT_APPR == "0").apply(int) TOT_APPR_zero.name = 'TOT_APPR_zero' TOT_APPR = TOT_APPR.str.replace(',','').astype(float) TOT_APPR = np.log1p(TOT_APPR) TOT_APPR = TOT_APPR / TOT_APPR.max() TOT_APPR = pd.concat([TOT_APPR, TOT_APPR_zero], axis=1) # VAL_ACRES VAL_ACRES = df.VAL_ACRES.copy() VAL_ACRES_zero = (VAL_ACRES == 0).apply(int) VAL_ACRES_zero.name = 'VAL_ACRES_zero' VAL_ACRES = np.log1p(VAL_ACRES) VAL_ACRES = VAL_ACRES / VAL_ACRES.max() VAL_ACRES = pd.concat([VAL_ACRES, VAL_ACRES_zero], axis=1) # For_Sale_P For_Sale_P = df.For_Sale_P.copy() For_Sale_P_notNA = (For_Sale_P != " ").apply(int) For_Sale_P_notNA.name = 'For_Sale_P_notNA' For_Sale_P[For_Sale_P == ' '] = 0 For_Sale_P = For_Sale_P.astype(float) For_Sale_P = np.log1p(For_Sale_P) For_Sale_P = For_Sale_P / For_Sale_P.max() For_Sale_P = pd.concat([For_Sale_P, For_Sale_P_notNA], axis=1) # Last_Sale1 Last_Sale1 = df.Last_Sale1.copy() Last_Sale1_zero = (Last_Sale1 == "0").apply(int) Last_Sale1_zero.name = "Last_Sale1_zero" Last_Sale1 = Last_Sale1.str.replace(',','').astype(float) Last_Sale1 = np.log1p(Last_Sale1) Last_Sale1 = (Last_Sale1 - Last_Sale1.min()) / (Last_Sale1.max() - Last_Sale1.min()) Last_Sale1 = pd.concat([Last_Sale1, Last_Sale1_zero], axis=1) # yearbuilt yearbuilt = df.yearbuilt.copy() yearbuilt_zero = (yearbuilt == "0").apply(int) yearbuilt_zero.name = "yearbuilt_zero" yearbuilt[yearbuilt == "0"] = np.nan yearbuilt = yearbuilt.str.replace(',','').astype(float) yearbuilt = (yearbuilt - yearbuilt.min()) / (yearbuilt.max() - yearbuilt.min()) yearbuilt = yearbuilt.fillna(0) yearbuilt =
pd.concat([yearbuilt, yearbuilt_zero], axis=1)
pandas.concat
import numpy as np import pandas as pd from numba import njit, typeof from numba.typed import List from datetime import datetime, timedelta import pytest from copy import deepcopy import vectorbt as vbt from vectorbt.portfolio.enums import * from vectorbt.generic.enums import drawdown_dt from vectorbt.utils.random_ import set_seed from vectorbt.portfolio import nb from tests.utils import record_arrays_close seed = 42 day_dt = np.timedelta64(86400000000000) price = pd.Series([1., 2., 3., 4., 5.], index=pd.Index([ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5) ])) price_wide = price.vbt.tile(3, keys=['a', 'b', 'c']) big_price = pd.DataFrame(np.random.uniform(size=(1000,))) big_price.index = [datetime(2018, 1, 1) + timedelta(days=i) for i in range(1000)] big_price_wide = big_price.vbt.tile(1000) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.portfolio['attach_call_seq'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# nb ############# # def assert_same_tuple(tup1, tup2): for i in range(len(tup1)): assert tup1[i] == tup2[i] or np.isnan(tup1[i]) and np.isnan(tup2[i]) def test_execute_order_nb(): # Errors, ignored and rejected orders with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(-100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.nan, 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., np.inf, 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., np.nan, 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., np.nan, 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., -10., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., np.nan, 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, size_type=-2)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, size_type=20)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=-2)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=20)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., -100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.LongOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.ShortOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, -10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fees=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fees=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, slippage=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, slippage=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, max_size=0)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, max_size=-10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=np.nan)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=2)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., np.nan, 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=3)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., -10., 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=4)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.inf, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., -10., 1100, 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.nan, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.inf, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., -10., 1100, 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.nan, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=2)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -10., 0., 100., 10., 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.ShortOnly)) assert exec_state == ExecuteOrderState(cash=200.0, position=-20.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -10., 0., 100., 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.Both)) assert exec_state == ExecuteOrderState(cash=200.0, position=-20.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 10., 0., 100., 10., 1100., 0, 0), nb.order_nb(0, 10)) assert exec_state == ExecuteOrderState(cash=100.0, position=10.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=5)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(15, 10, max_size=10, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=9)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=1.)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=10)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 100., 0., 0., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.LongOnly)) assert exec_state == ExecuteOrderState(cash=0.0, position=100.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 100., 0., 0., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.Both)) assert exec_state == ExecuteOrderState(cash=0.0, position=100.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100, 0., np.inf, np.nan, 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.LongOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.Both)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, direction=Direction.ShortOnly)) assert exec_state == ExecuteOrderState(cash=100.0, position=0.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.ShortOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.Both)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, direction=Direction.LongOnly)) assert exec_state == ExecuteOrderState(cash=100.0, position=0.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(100, 10, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, min_size=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-200, 10, direction=Direction.LongOnly, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, fixed_fees=1000)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) # Calculations exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(10, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=0.0, position=8.18181818181818, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=0.0, position=8.18181818181818, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-10, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=180.0, position=-10.0, debt=90.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=9.0, fees=10.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=909.0, position=-100.0, debt=900.0, free_cash=-891.0) assert_same_tuple(order_result, OrderResult( size=100.0, price=9.0, fees=91.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetAmount)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-10, 10, size_type=SizeType.TargetAmount)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=7.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=125.0, position=-2.5, debt=25.0, free_cash=75.0) assert_same_tuple(order_result, OrderResult( size=7.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=2.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=75.0, position=-2.5, debt=25.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=100.0, position=-5.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=0.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=-2.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=75.0, position=-7.5, debt=25.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=100.0, position=-10.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(np.inf, 10)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -5., 0., 100., 10., 100., 0, 0), nb.order_nb(np.inf, 10)) assert exec_state == ExecuteOrderState(cash=0.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-np.inf, 10)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(150., -5., 0., 150., 10., 100., 0, 0), nb.order_nb(-np.inf, 10)) assert exec_state == ExecuteOrderState(cash=300.0, position=-20.0, debt=150.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=50.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(1000., -5., 50., 50., 10., 100., 0, 0), nb.order_nb(10, 17.5, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=850.0, position=3.571428571428571, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.571428571428571, price=17.5, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -5., 50., 50., 10., 100., 0, 0), nb.order_nb(10, 100, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=37.5, position=-4.375, debt=43.75, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=0.625, price=100.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 10., 0., -50., 10., 100., 0, 0), nb.order_nb(-20, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=150.0, position=-5.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 1., 0., -50., 10., 100., 0, 0), nb.order_nb(-10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=10.0, position=0.0, debt=0.0, free_cash=-40.0) assert_same_tuple(order_result, OrderResult( size=1.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 0., 0., -100., 10., 100., 0, 0), nb.order_nb(-10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=0.0, position=0.0, debt=0.0, free_cash=-100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=6)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-20, 10, fees=0.1, slippage=0.1, fixed_fees=1., lock_cash=True)) assert exec_state == ExecuteOrderState(cash=80.0, position=-10.0, debt=90.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=9.0, fees=10.0, side=1, status=0, status_info=-1)) def test_build_call_seq_nb(): group_lens = np.array([1, 2, 3, 4]) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Default), nb.build_call_seq((10, 10), group_lens, CallSeqType.Default) ) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Reversed), nb.build_call_seq((10, 10), group_lens, CallSeqType.Reversed) ) set_seed(seed) out1 = nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Random) set_seed(seed) out2 = nb.build_call_seq((10, 10), group_lens, CallSeqType.Random) np.testing.assert_array_equal(out1, out2) # ############# from_orders ############# # order_size = pd.Series([np.inf, -np.inf, np.nan, np.inf, -np.inf], index=price.index) order_size_wide = order_size.vbt.tile(3, keys=['a', 'b', 'c']) order_size_one = pd.Series([1, -1, np.nan, 1, -1], index=price.index) def from_orders_both(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='both', **kwargs) def from_orders_longonly(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='longonly', **kwargs) def from_orders_shortonly(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='shortonly', **kwargs) class TestFromOrders: def test_one_column(self): record_arrays_close( from_orders_both().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) pf = from_orders_both() pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert pf.wrapper.ndim == 1 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_multiple_columns(self): record_arrays_close( from_orders_both(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0), (6, 2, 0, 100.0, 1.0, 0.0, 0), (7, 2, 1, 200.0, 2.0, 0.0, 1), (8, 2, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1), (4, 1, 0, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 1, 3, 50.0, 4.0, 0.0, 0), (7, 1, 4, 50.0, 5.0, 0.0, 1), (8, 2, 0, 100.0, 1.0, 0.0, 0), (9, 2, 1, 100.0, 2.0, 0.0, 1), (10, 2, 3, 50.0, 4.0, 0.0, 0), (11, 2, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0), (4, 2, 0, 100.0, 1.0, 0.0, 1), (5, 2, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) pf = from_orders_both(close=price_wide) pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert pf.wrapper.ndim == 2 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_size_inf(self): record_arrays_close( from_orders_both(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_orders_both(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 1, 198.01980198019803, 2.02, 0.0, 1), (2, 0, 3, 99.00990099009901, 4.04, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 1, 99.00990099009901, 2.02, 0.0, 1), (2, 0, 3, 49.504950495049506, 4.04, 0.0, 0), (3, 0, 4, 49.504950495049506, 5.05, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 0, 1, 99.00990099009901, 2.02, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 1), (1, 0, 3, 66.66666666666667, 3.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=-np.inf).order_records, np.array([ (0, 0, 3, 33.333333333333336, 3.0, 0.0, 0), (1, 0, 4, 33.333333333333336, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=-np.inf).order_records, np.array([ (0, 0, 3, 33.333333333333336, 3.0, 0.0, 1), (1, 0, 4, 33.333333333333336, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_val_price(self): price_nan = pd.Series([1, 2, np.nan, 4, 5], index=price.index) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) shift_price = price_nan.ffill().shift(1) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) shift_price_nan = price_nan.shift(1) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) def test_fees(self): record_arrays_close( from_orders_both(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 1, 3, 1.0, 4.0, 0.4, 0), (7, 1, 4, 1.0, 5.0, 0.5, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 2.0, 1), (10, 2, 3, 1.0, 4.0, 4.0, 0), (11, 2, 4, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 1, 3, 1.0, 4.0, 0.4, 0), (7, 1, 4, 1.0, 5.0, 0.5, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 2.0, 1), (10, 2, 3, 1.0, 4.0, 4.0, 0), (11, 2, 4, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.2, 0), (6, 1, 3, 1.0, 4.0, 0.4, 1), (7, 1, 4, 1.0, 5.0, 0.5, 0), (8, 2, 0, 1.0, 1.0, 1.0, 1), (9, 2, 1, 1.0, 2.0, 2.0, 0), (10, 2, 3, 1.0, 4.0, 4.0, 1), (11, 2, 4, 1.0, 5.0, 5.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_orders_both(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 1, 3, 1.0, 4.0, 0.1, 0), (7, 1, 4, 1.0, 5.0, 0.1, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 1.0, 1), (10, 2, 3, 1.0, 4.0, 1.0, 0), (11, 2, 4, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 1, 3, 1.0, 4.0, 0.1, 0), (7, 1, 4, 1.0, 5.0, 0.1, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 1.0, 1), (10, 2, 3, 1.0, 4.0, 1.0, 0), (11, 2, 4, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.1, 0), (6, 1, 3, 1.0, 4.0, 0.1, 1), (7, 1, 4, 1.0, 5.0, 0.1, 0), (8, 2, 0, 1.0, 1.0, 1.0, 1), (9, 2, 1, 1.0, 2.0, 1.0, 0), (10, 2, 3, 1.0, 4.0, 1.0, 1), (11, 2, 4, 1.0, 5.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_orders_both(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 1, 3, 1.0, 4.4, 0.0, 0), (7, 1, 4, 1.0, 4.5, 0.0, 1), (8, 2, 0, 1.0, 2.0, 0.0, 0), (9, 2, 1, 1.0, 0.0, 0.0, 1), (10, 2, 3, 1.0, 8.0, 0.0, 0), (11, 2, 4, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 1, 3, 1.0, 4.4, 0.0, 0), (7, 1, 4, 1.0, 4.5, 0.0, 1), (8, 2, 0, 1.0, 2.0, 0.0, 0), (9, 2, 1, 1.0, 0.0, 0.0, 1), (10, 2, 3, 1.0, 8.0, 0.0, 0), (11, 2, 4, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 0.9, 0.0, 1), (5, 1, 1, 1.0, 2.2, 0.0, 0), (6, 1, 3, 1.0, 3.6, 0.0, 1), (7, 1, 4, 1.0, 5.5, 0.0, 0), (8, 2, 0, 1.0, 0.0, 0.0, 1), (9, 2, 1, 1.0, 4.0, 0.0, 0), (10, 2, 3, 1.0, 0.0, 0.0, 1), (11, 2, 4, 1.0, 10.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_orders_both(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 1, 3, 1.0, 4.0, 0.0, 1), (7, 1, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_orders_both(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.5, 4.0, 0.0, 0), (3, 0, 4, 0.5, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1), (8, 2, 0, 1.0, 1.0, 0.0, 0), (9, 2, 1, 1.0, 2.0, 0.0, 1), (10, 2, 3, 1.0, 4.0, 0.0, 0), (11, 2, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.5, 4.0, 0.0, 0), (3, 0, 4, 0.5, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1), (8, 2, 0, 1.0, 1.0, 0.0, 0), (9, 2, 1, 1.0, 2.0, 0.0, 1), (10, 2, 3, 1.0, 4.0, 0.0, 0), (11, 2, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 0, 1, 0.5, 2.0, 0.0, 0), (2, 0, 3, 0.5, 4.0, 0.0, 1), (3, 0, 4, 0.5, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 1, 3, 1.0, 4.0, 0.0, 1), (7, 1, 4, 1.0, 5.0, 0.0, 0), (8, 2, 0, 1.0, 1.0, 0.0, 1), (9, 2, 1, 1.0, 2.0, 0.0, 0), (10, 2, 3, 1.0, 4.0, 0.0, 1), (11, 2, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_orders_both(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 1, 1.0, 2.0, 0.0, 1), (5, 1, 3, 1.0, 4.0, 0.0, 0), (6, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 3, 1.0, 4.0, 0.0, 0), (5, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 3, 1.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_lock_cash(self): pf = vbt.Portfolio.from_orders( pd.Series([1, 1]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=False, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [143.12812469365747, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [0.0, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [-49.5, -49.5] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 1]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=True, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [94.6034702480149, 47.54435839623566] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [49.5, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [0.0, 0.0] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 100]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=False, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [1.4312812469365748, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [0.0, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [-96.16606313106556, -96.16606313106556] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 100]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=True, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [0.4699090272918124, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [98.06958012596222, 98.06958012596222] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [0.0, 0.0] ]) ) pf = from_orders_both(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 1000., 2., 0., 1), (2, 0, 3, 500., 4., 0., 0), (3, 0, 4, 1000., 5., 0., 1), (4, 1, 0, 100., 1., 0., 0), (5, 1, 1, 200., 2., 0., 1), (6, 1, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [0.0, 0.0], [-1600.0, 0.0], [-1600.0, 0.0], [-1600.0, 0.0], [-6600.0, 0.0] ]) ) pf = from_orders_longonly(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 100., 2., 0., 1), (2, 0, 3, 50., 4., 0., 0), (3, 0, 4, 50., 5., 0., 1), (4, 1, 0, 100., 1., 0., 0), (5, 1, 1, 100., 2., 0., 1), (6, 1, 3, 50., 4., 0., 0), (7, 1, 4, 50., 5., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [0.0, 0.0], [200.0, 200.0], [200.0, 200.0], [0.0, 0.0], [250.0, 250.0] ]) ) pf = from_orders_shortonly(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 1000., 1., 0., 1), (1, 0, 1, 550., 2., 0., 0), (2, 0, 3, 1000., 4., 0., 1), (3, 0, 4, 800., 5., 0., 0), (4, 1, 0, 100., 1., 0., 1), (5, 1, 1, 100., 2., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [-900.0, 0.0], [-900.0, 0.0], [-900.0, 0.0], [-4900.0, 0.0], [-3989.6551724137926, 0.0] ]) ) def test_allow_partial(self): record_arrays_close( from_orders_both(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 1000.0, 2.0, 0.0, 1), (2, 0, 3, 500.0, 4.0, 0.0, 0), (3, 0, 4, 1000.0, 5.0, 0.0, 1), (4, 1, 1, 1000.0, 2.0, 0.0, 1), (5, 1, 4, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 1, 550.0, 2.0, 0.0, 0), (2, 0, 3, 1000.0, 4.0, 0.0, 1), (3, 0, 4, 800.0, 5.0, 0.0, 0), (4, 1, 0, 1000.0, 1.0, 0.0, 1), (5, 1, 3, 1000.0, 4.0, 0.0, 1), (6, 1, 4, 1000.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1), (4, 1, 0, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 1, 3, 50.0, 4.0, 0.0, 0), (7, 1, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_orders_both(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 1000.0, 2.0, 0.0, 1), (2, 0, 3, 500.0, 4.0, 0.0, 0), (3, 0, 4, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 1, 550.0, 2.0, 0.0, 0), (2, 0, 3, 1000.0, 4.0, 0.0, 1), (3, 0, 4, 800.0, 5.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_orders_both(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_orders_longonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_orders_shortonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records def test_log(self): record_arrays_close( from_orders_both(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, 1.0, 100.0, np.inf, 1.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 100.0, 0.0, 0.0, 1.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 0, 0, 1, 0.0, 100.0, 0.0, 0.0, 2.0, 200.0, -np.inf, 2.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 400.0, -100.0, 200.0, 0.0, 2.0, 200.0, 200.0, 2.0, 0.0, 1, 0, -1, 1), (2, 0, 0, 2, 400.0, -100.0, 200.0, 0.0, 3.0, 100.0, np.nan, 3.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 400.0, -100.0, 200.0, 0.0, 3.0, 100.0, np.nan, np.nan, np.nan, -1, 1, 0, -1), (3, 0, 0, 3, 400.0, -100.0, 200.0, 0.0, 4.0, 0.0, np.inf, 4.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 100.0, 4.0, 0.0, 0, 0, -1, 2), (4, 0, 0, 4, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0, -np.inf, 5.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0, np.nan, np.nan, np.nan, -1, 2, 6, -1) ], dtype=log_dt) ) def test_group_by(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0), (6, 2, 0, 100.0, 1.0, 0.0, 0), (7, 2, 1, 200.0, 2.0, 0.0, 1), (8, 2, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not pf.cash_sharing def test_cash_sharing(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 200., 2., 0., 1), (2, 0, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert pf.cash_sharing with pytest.raises(Exception): _ = pf.regroup(group_by=False) def test_call_seq(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 200., 2., 0., 1), (2, 0, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) pf = from_orders_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 1, 200., 2., 0., 1), (2, 1, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) pf = from_orders_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 1, 200., 2., 0., 1), (2, 1, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( close=1., size=pd.DataFrame([ [0., 0., np.inf], [0., np.inf, -np.inf], [np.inf, -np.inf, 0.], [-np.inf, 0., np.inf], [0., np.inf, -np.inf], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) pf = from_orders_both(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 200., 1., 0., 1), (2, 1, 1, 200., 1., 0., 0), (3, 1, 2, 200., 1., 0., 1), (4, 0, 2, 200., 1., 0., 0), (5, 0, 3, 200., 1., 0., 1), (6, 2, 3, 200., 1., 0., 0), (7, 2, 4, 200., 1., 0., 1), (8, 1, 4, 200., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_orders_longonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 100., 1., 0., 1), (2, 1, 1, 100., 1., 0., 0), (3, 1, 2, 100., 1., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 0, 3, 100., 1., 0., 1), (6, 2, 3, 100., 1., 0., 0), (7, 2, 4, 100., 1., 0., 1), (8, 1, 4, 100., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_orders_shortonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 1), (1, 2, 1, 100., 1., 0., 0), (2, 0, 2, 100., 1., 0., 1), (3, 0, 3, 100., 1., 0., 0), (4, 1, 4, 100., 1., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 2, 1], [2, 1, 0], [1, 0, 2] ]) ) def test_value(self): record_arrays_close( from_orders_both(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.25, 4.0, 0.0, 0), (3, 0, 4, 0.2, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.25, 4.0, 0.0, 0), (3, 0, 4, 0.2, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 0.5, 2.0, 0.0, 0), (2, 0, 3, 0.25, 4.0, 0.0, 1), (3, 0, 4, 0.2, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_target_amount(self): record_arrays_close( from_orders_both(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 1, 0, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=75., size_type='targetamount', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 1, 0, 25.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_target_value(self): record_arrays_close( from_orders_both(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 25.0, 2.0, 0.0, 1), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (4, 0, 4, 2.5, 5.0, 0.0, 1), (5, 1, 0, 50.0, 1.0, 0.0, 1), (6, 1, 1, 25.0, 2.0, 0.0, 0), (7, 1, 2, 8.333333333333332, 3.0, 0.0, 0), (8, 1, 3, 4.166666666666668, 4.0, 0.0, 0), (9, 1, 4, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 25.0, 2.0, 0.0, 1), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (4, 0, 4, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 0, 1, 25.0, 2.0, 0.0, 0), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 0), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 0), (4, 0, 4, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=50., size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 50.0, 1.0, 0.0, 0), (2, 0, 1, 25.0, 2.0, 0.0, 1), (3, 1, 1, 25.0, 2.0, 0.0, 1), (4, 2, 1, 25.0, 2.0, 0.0, 0), (5, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (6, 1, 2, 8.333333333333332, 3.0, 0.0, 1), (7, 2, 2, 8.333333333333332, 3.0, 0.0, 1), (8, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (9, 1, 3, 4.166666666666668, 4.0, 0.0, 1), (10, 2, 3, 4.166666666666668, 4.0, 0.0, 1), (11, 0, 4, 2.5, 5.0, 0.0, 1), (12, 1, 4, 2.5, 5.0, 0.0, 1), (13, 2, 4, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) def test_target_percent(self): record_arrays_close( from_orders_both(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 1), (2, 0, 2, 6.25, 3.0, 0.0, 1), (3, 0, 3, 3.90625, 4.0, 0.0, 1), (4, 0, 4, 2.734375, 5.0, 0.0, 1), (5, 1, 0, 50.0, 1.0, 0.0, 1), (6, 1, 1, 37.5, 2.0, 0.0, 0), (7, 1, 2, 6.25, 3.0, 0.0, 0), (8, 1, 3, 2.34375, 4.0, 0.0, 0), (9, 1, 4, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 1), (2, 0, 2, 6.25, 3.0, 0.0, 1), (3, 0, 3, 3.90625, 4.0, 0.0, 1), (4, 0, 4, 2.734375, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 0, 1, 37.5, 2.0, 0.0, 0), (2, 0, 2, 6.25, 3.0, 0.0, 0), (3, 0, 3, 2.34375, 4.0, 0.0, 0), (4, 0, 4, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 50.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_update_value(self): record_arrays_close( from_orders_both(size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, update_value=False).order_records, from_orders_both(size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, update_value=True).order_records ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, group_by=np.array([0, 0, 0]), cash_sharing=True, update_value=False).order_records, np.array([ (0, 0, 0, 50.0, 1.01, 0.505, 0), (1, 1, 0, 48.02960494069208, 1.01, 0.485099009900992, 0), (2, 0, 1, 0.9851975296539592, 1.98, 0.019506911087148394, 1), (3, 1, 1, 0.9465661198057499, 2.02, 0.019120635620076154, 0), (4, 0, 2, 0.019315704924103727, 2.9699999999999998, 0.0005736764362458806, 1), (5, 1, 2, 0.018558300554959377, 3.0300000000000002, 0.0005623165068152705, 0), (6, 0, 3, 0.00037870218456959037, 3.96, 1.4996606508955778e-05, 1), (7, 1, 3, 0.0003638525743521767, 4.04, 1.4699644003827875e-05, 0), (8, 0, 4, 7.424805112066224e-06, 4.95, 3.675278530472781e-07, 1), (9, 1, 4, 7.133664827307231e-06, 5.05, 3.6025007377901643e-07, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, group_by=np.array([0, 0, 0]), cash_sharing=True, update_value=True).order_records, np.array([ (0, 0, 0, 50.0, 1.01, 0.505, 0), (1, 1, 0, 48.02960494069208, 1.01, 0.485099009900992, 0), (2, 0, 1, 0.9851975296539592, 1.98, 0.019506911087148394, 1), (3, 1, 1, 0.7303208018821721, 2.02, 0.014752480198019875, 0), (4, 2, 1, 0.21624531792357785, 2.02, 0.0043681554220562635, 0), (5, 0, 2, 0.019315704924103727, 2.9699999999999998, 0.0005736764362458806, 1), (6, 1, 2, 0.009608602243410758, 2.9699999999999998, 0.00028537548662929945, 1), (7, 2, 2, 0.02779013180558861, 3.0300000000000002, 0.0008420409937093393, 0), (8, 0, 3, 0.0005670876809631409, 3.96, 2.2456672166140378e-05, 1), (9, 1, 3, 0.00037770350099464167, 3.96, 1.4957058639387809e-05, 1), (10, 2, 3, 0.0009077441794302741, 4.04, 3.6672864848982974e-05, 0), (11, 0, 4, 1.8523501267964093e-05, 4.95, 9.169133127642227e-07, 1), (12, 1, 4, 1.2972670177191503e-05, 4.95, 6.421471737709794e-07, 1), (13, 2, 4, 3.0261148547590434e-05, 5.05, 1.5281880016533242e-06, 0) ], dtype=order_dt) ) def test_percent(self): record_arrays_close( from_orders_both(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 1, 12.5, 2., 0., 0), (2, 0, 2, 4.16666667, 3., 0., 0), (3, 0, 3, 1.5625, 4., 0., 0), (4, 0, 4, 0.625, 5., 0., 0), (5, 1, 0, 50., 1., 0., 1), (6, 1, 1, 12.5, 2., 0., 1), (7, 1, 2, 4.16666667, 3., 0., 1), (8, 1, 3, 1.5625, 4., 0., 1), (9, 1, 4, 0.625, 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 1, 12.5, 2., 0., 0), (2, 0, 2, 4.16666667, 3., 0., 0), (3, 0, 3, 1.5625, 4., 0., 0), (4, 0, 4, 0.625, 5., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 1), (1, 0, 1, 12.5, 2., 0., 1), (2, 0, 2, 4.16666667, 3., 0., 1), (3, 0, 3, 1.5625, 4., 0., 1), (4, 0, 4, 0.625, 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 5.00000000e+01, 1., 0., 0), (1, 1, 0, 2.50000000e+01, 1., 0., 0), (2, 2, 0, 1.25000000e+01, 1., 0., 0), (3, 0, 1, 3.12500000e+00, 2., 0., 0), (4, 1, 1, 1.56250000e+00, 2., 0., 0), (5, 2, 1, 7.81250000e-01, 2., 0., 0), (6, 0, 2, 2.60416667e-01, 3., 0., 0), (7, 1, 2, 1.30208333e-01, 3., 0., 0), (8, 2, 2, 6.51041667e-02, 3., 0., 0), (9, 0, 3, 2.44140625e-02, 4., 0., 0), (10, 1, 3, 1.22070312e-02, 4., 0., 0), (11, 2, 3, 6.10351562e-03, 4., 0., 0), (12, 0, 4, 2.44140625e-03, 5., 0., 0), (13, 1, 4, 1.22070312e-03, 5., 0., 0), (14, 2, 4, 6.10351562e-04, 5., 0., 0) ], dtype=order_dt) ) def test_auto_seq(self): target_hold_value = pd.DataFrame({ 'a': [0., 70., 30., 0., 70.], 'b': [30., 0., 70., 30., 30.], 'c': [70., 30., 0., 70., 0.] }, index=price.index) pd.testing.assert_frame_equal( from_orders_both( close=1., size=target_hold_value, size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').asset_value(group_by=False), target_hold_value ) pd.testing.assert_frame_equal( from_orders_both( close=1., size=target_hold_value / 100, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').asset_value(group_by=False), target_hold_value ) def test_max_orders(self): _ = from_orders_both(close=price_wide) _ = from_orders_both(close=price_wide, max_orders=9) with pytest.raises(Exception): _ = from_orders_both(close=price_wide, max_orders=8) def test_max_logs(self): _ = from_orders_both(close=price_wide, log=True) _ = from_orders_both(close=price_wide, log=True, max_logs=15) with pytest.raises(Exception): _ = from_orders_both(close=price_wide, log=True, max_logs=14) # ############# from_signals ############# # entries = pd.Series([True, True, True, False, False], index=price.index) entries_wide = entries.vbt.tile(3, keys=['a', 'b', 'c']) exits = pd.Series([False, False, True, True, True], index=price.index) exits_wide = exits.vbt.tile(3, keys=['a', 'b', 'c']) def from_signals_both(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='both', **kwargs) def from_signals_longonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='longonly', **kwargs) def from_signals_shortonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='shortonly', **kwargs) def from_ls_signals_both(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, False, exits, False, **kwargs) def from_ls_signals_longonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, False, False, **kwargs) def from_ls_signals_shortonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, False, False, entries, exits, **kwargs) class TestFromSignals: @pytest.mark.parametrize( "test_ls", [False, True], ) def test_one_column(self, test_ls): _from_signals_both = from_ls_signals_both if test_ls else from_signals_both _from_signals_longonly = from_ls_signals_longonly if test_ls else from_signals_longonly _from_signals_shortonly = from_ls_signals_shortonly if test_ls else from_signals_shortonly record_arrays_close( _from_signals_both().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_longonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_shortonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 0, 3, 50., 4., 0., 0) ], dtype=order_dt) ) pf = _from_signals_both() pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert pf.wrapper.ndim == 1 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None @pytest.mark.parametrize( "test_ls", [False, True], ) def test_multiple_columns(self, test_ls): _from_signals_both = from_ls_signals_both if test_ls else from_signals_both _from_signals_longonly = from_ls_signals_longonly if test_ls else from_signals_longonly _from_signals_shortonly = from_ls_signals_shortonly if test_ls else from_signals_shortonly record_arrays_close( _from_signals_both(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1), (2, 1, 0, 100., 1., 0., 0), (3, 1, 3, 200., 4., 0., 1), (4, 2, 0, 100., 1., 0., 0), (5, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_longonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 100., 4., 0., 1), (2, 1, 0, 100., 1., 0., 0), (3, 1, 3, 100., 4., 0., 1), (4, 2, 0, 100., 1., 0., 0), (5, 2, 3, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_shortonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 0, 3, 50., 4., 0., 0), (2, 1, 0, 100., 1., 0., 1), (3, 1, 3, 50., 4., 0., 0), (4, 2, 0, 100., 1., 0., 1), (5, 2, 3, 50., 4., 0., 0) ], dtype=order_dt) ) pf = _from_signals_both(close=price_wide) pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert pf.wrapper.ndim == 2 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_custom_signal_func(self): @njit def signal_func_nb(c, long_num_arr, short_num_arr): long_num = nb.get_elem_nb(c, long_num_arr) short_num = nb.get_elem_nb(c, short_num_arr) is_long_entry = long_num > 0 is_long_exit = long_num < 0 is_short_entry = short_num > 0 is_short_exit = short_num < 0 return is_long_entry, is_long_exit, is_short_entry, is_short_exit pf_base = vbt.Portfolio.from_signals( pd.Series([1, 2, 3, 4, 5]), entries=pd.Series([True, False, False, False, False]), exits=pd.Series([False, False, True, False, False]), short_entries=pd.Series([False, True, False, True, False]), short_exits=pd.Series([False, False, False, False, True]), size=1, upon_opposite_entry='ignore' ) pf = vbt.Portfolio.from_signals( pd.Series([1, 2, 3, 4, 5]), signal_func_nb=signal_func_nb, signal_args=(vbt.Rep('long_num_arr'), vbt.Rep('short_num_arr')), broadcast_named_args=dict( long_num_arr=pd.Series([1, 0, -1, 0, 0]), short_num_arr=pd.Series([0, 1, 0, 1, -1]) ), size=1, upon_opposite_entry='ignore' ) record_arrays_close( pf_base.order_records, pf.order_records ) def test_amount(self): record_arrays_close( from_signals_both(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 2.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 1), (1, 1, 3, 1.0, 4.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 2, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_value(self): record_arrays_close( from_signals_both(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 0.3125, 4.0, 0.0, 1), (2, 1, 4, 0.1775, 5.0, 0.0, 1), (3, 2, 0, 100.0, 1.0, 0.0, 0), (4, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 1), (1, 1, 3, 1.0, 4.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 2, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_percent(self): with pytest.raises(Exception): _ = from_signals_both(size=0.5, size_type='percent') record_arrays_close( from_signals_both(size=0.5, size_type='percent', upon_opposite_entry='close').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 3, 50., 4., 0., 1), (2, 0, 4, 25., 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(size=0.5, size_type='percent', upon_opposite_entry='close', accumulate=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 0), (2, 0, 3, 62.5, 4.0, 0.0, 1), (3, 0, 4, 27.5, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=0.5, size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 3, 50., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=0.5, size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 1), (1, 0, 3, 37.5, 4., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 1, 0, 25., 1., 0., 0), (2, 2, 0, 12.5, 1., 0., 0), (3, 0, 3, 50., 4., 0., 1), (4, 1, 3, 25., 4., 0., 1), (5, 2, 3, 12.5, 4., 0., 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_signals_both(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 3, 198.01980198019803, 4.04, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099, 1.01, 0., 0), (1, 0, 3, 99.00990099, 4.04, 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 0, 3, 49.504950495049506, 4.04, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_both(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_both(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 1), (1, 0, 3, 66.66666666666667, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_val_price(self): price_nan = pd.Series([1, 2, np.nan, 4, 5], index=price.index) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_both(close=price_nan, size=1, val_price=price, size_type='value').order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_longonly(close=price_nan, size=1, val_price=price, size_type='value').order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_shortonly(close=price_nan, size=1, val_price=price, size_type='value').order_records ) shift_price = price_nan.ffill().shift(1) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_both(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_longonly(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_shortonly(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_both(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_longonly(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_shortonly(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) shift_price_nan = price_nan.shift(1) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_both(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_longonly(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_shortonly(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) def test_fees(self): record_arrays_close( from_signals_both(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 2.0, 4.0, 0.8, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 2.0, 4.0, 8.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 1.0, 4.0, 0.4, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 1.0, 4.0, 4.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.1, 1), (3, 1, 3, 1.0, 4.0, 0.4, 0), (4, 2, 0, 1.0, 1.0, 1.0, 1), (5, 2, 3, 1.0, 4.0, 4.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_signals_both(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 2.0, 4.0, 0.1, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 2.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 1.0, 4.0, 0.1, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 1.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.1, 1), (3, 1, 3, 1.0, 4.0, 0.1, 0), (4, 2, 0, 1.0, 1.0, 1.0, 1), (5, 2, 3, 1.0, 4.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_signals_both(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.1, 0.0, 0), (3, 1, 3, 2.0, 3.6, 0.0, 1), (4, 2, 0, 1.0, 2.0, 0.0, 0), (5, 2, 3, 2.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.1, 0.0, 0), (3, 1, 3, 1.0, 3.6, 0.0, 1), (4, 2, 0, 1.0, 2.0, 0.0, 0), (5, 2, 3, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 0.9, 0.0, 1), (3, 1, 3, 1.0, 4.4, 0.0, 0), (4, 2, 0, 1.0, 0.0, 0.0, 1), (5, 2, 3, 1.0, 8.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_signals_both(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_signals_both(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 3, 0.5, 4.0, 0.0, 1), (2, 0, 4, 0.5, 5.0, 0.0, 1), (3, 1, 0, 1.0, 1.0, 0.0, 0), (4, 1, 3, 1.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 1), (6, 2, 0, 1.0, 1.0, 0.0, 0), (7, 2, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 3, 0.5, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1), (4, 2, 0, 1.0, 1.0, 0.0, 0), (5, 2, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 0, 3, 0.5, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_signals_both(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_allow_partial(self): record_arrays_close( from_signals_both(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 1100.0, 4.0, 0.0, 1), (2, 1, 3, 1000.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 3, 275.0, 4.0, 0.0, 0), (2, 1, 0, 1000.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 3, 50.0, 4.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_signals_both(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 1100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_signals_shortonly(size=1000, allow_partial=True, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_both(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_longonly(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_shortonly(size=1000, allow_partial=False, raise_reject=True).order_records def test_log(self): record_arrays_close( from_signals_both(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, 1.0, 100.0, np.inf, 1.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 100.0, 0.0, 0.0, 1.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 0, 0, 3, 0.0, 100.0, 0.0, 0.0, 4.0, 400.0, -np.inf, 4.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 800.0, -100.0, 400.0, 0.0, 4.0, 400.0, 200.0, 4.0, 0.0, 1, 0, -1, 1) ], dtype=log_dt) ) def test_accumulate(self): record_arrays_close( from_signals_both(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 1, 1.0, 2.0, 0.0, 0), (4, 1, 3, 3.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 1), (6, 2, 0, 1.0, 1.0, 0.0, 0), (7, 2, 3, 1.0, 4.0, 0.0, 1), (8, 2, 4, 1.0, 5.0, 0.0, 1), (9, 3, 0, 1.0, 1.0, 0.0, 0), (10, 3, 1, 1.0, 2.0, 0.0, 0), (11, 3, 3, 1.0, 4.0, 0.0, 1), (12, 3, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 1, 1.0, 2.0, 0.0, 0), (4, 1, 3, 2.0, 4.0, 0.0, 1), (5, 2, 0, 1.0, 1.0, 0.0, 0), (6, 2, 3, 1.0, 4.0, 0.0, 1), (7, 3, 0, 1.0, 1.0, 0.0, 0), (8, 3, 1, 1.0, 2.0, 0.0, 0), (9, 3, 3, 1.0, 4.0, 0.0, 1), (10, 3, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 1, 1.0, 2.0, 0.0, 1), (4, 1, 3, 2.0, 4.0, 0.0, 0), (5, 2, 0, 1.0, 1.0, 0.0, 1), (6, 2, 3, 1.0, 4.0, 0.0, 0), (7, 3, 0, 1.0, 1.0, 0.0, 1), (8, 3, 1, 1.0, 2.0, 0.0, 1), (9, 3, 3, 1.0, 4.0, 0.0, 0), (10, 3, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_long_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_long_conflict=[[ 'ignore', 'entry', 'exit', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_longonly(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 2, 1.0, 3.0, 0.0, 0), (4, 2, 1, 1.0, 2.0, 0.0, 0), (5, 2, 2, 1.0, 3.0, 0.0, 1), (6, 3, 1, 1.0, 2.0, 0.0, 0), (7, 3, 2, 1.0, 3.0, 0.0, 0), (8, 5, 1, 1.0, 2.0, 0.0, 0), (9, 5, 2, 1.0, 3.0, 0.0, 1) ], dtype=order_dt) ) def test_upon_short_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_short_conflict=[[ 'ignore', 'entry', 'exit', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_shortonly(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 1), (1, 1, 0, 1.0, 1.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 1, 2, 1.0, 3.0, 0.0, 1), (4, 2, 1, 1.0, 2.0, 0.0, 1), (5, 2, 2, 1.0, 3.0, 0.0, 0), (6, 3, 1, 1.0, 2.0, 0.0, 1), (7, 3, 2, 1.0, 3.0, 0.0, 1), (8, 5, 1, 1.0, 2.0, 0.0, 1), (9, 5, 2, 1.0, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_dir_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_dir_conflict=[[ 'ignore', 'long', 'short', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_both(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 2, 1.0, 3.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 1, 1.0, 2.0, 0.0, 0), (6, 2, 2, 1.0, 3.0, 0.0, 1), (7, 3, 1, 1.0, 2.0, 0.0, 0), (8, 3, 2, 1.0, 3.0, 0.0, 0), (9, 4, 1, 1.0, 2.0, 0.0, 1), (10, 4, 2, 1.0, 3.0, 0.0, 1), (11, 5, 1, 1.0, 2.0, 0.0, 0), (12, 5, 2, 1.0, 3.0, 0.0, 1), (13, 6, 1, 1.0, 2.0, 0.0, 1), (14, 6, 2, 1.0, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_opposite_entry(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, False, True, False, True, False, True, False, True, False], [False, True, False, True, False, True, False, True, False, True], [True, False, True, False, True, False, True, False, True, False] ]), exits=pd.DataFrame([ [False, True, False, True, False, True, False, True, False, True], [True, False, True, False, True, False, True, False, True, False], [False, True, False, True, False, True, False, True, False, True] ]), size=1., upon_opposite_entry=[[ 'ignore', 'ignore', 'close', 'close', 'closereduce', 'closereduce', 'reverse', 'reverse', 'reversereduce', 'reversereduce' ]] ) record_arrays_close( from_signals_both(**kwargs).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 1), (2, 2, 0, 1.0, 1.0, 0.0, 0), (3, 2, 1, 1.0, 2.0, 0.0, 1), (4, 2, 2, 1.0, 3.0, 0.0, 0), (5, 3, 0, 1.0, 1.0, 0.0, 1), (6, 3, 1, 1.0, 2.0, 0.0, 0), (7, 3, 2, 1.0, 3.0, 0.0, 1), (8, 4, 0, 1.0, 1.0, 0.0, 0), (9, 4, 1, 1.0, 2.0, 0.0, 1), (10, 4, 2, 1.0, 3.0, 0.0, 0), (11, 5, 0, 1.0, 1.0, 0.0, 1), (12, 5, 1, 1.0, 2.0, 0.0, 0), (13, 5, 2, 1.0, 3.0, 0.0, 1), (14, 6, 0, 1.0, 1.0, 0.0, 0), (15, 6, 1, 2.0, 2.0, 0.0, 1), (16, 6, 2, 2.0, 3.0, 0.0, 0), (17, 7, 0, 1.0, 1.0, 0.0, 1), (18, 7, 1, 2.0, 2.0, 0.0, 0), (19, 7, 2, 2.0, 3.0, 0.0, 1), (20, 8, 0, 1.0, 1.0, 0.0, 0), (21, 8, 1, 2.0, 2.0, 0.0, 1), (22, 8, 2, 2.0, 3.0, 0.0, 0), (23, 9, 0, 1.0, 1.0, 0.0, 1), (24, 9, 1, 2.0, 2.0, 0.0, 0), (25, 9, 2, 2.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(**kwargs, accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 2, 1.0, 3.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 2, 1.0, 3.0, 0.0, 1), (4, 2, 0, 1.0, 1.0, 0.0, 0), (5, 2, 1, 1.0, 2.0, 0.0, 1), (6, 2, 2, 1.0, 3.0, 0.0, 0), (7, 3, 0, 1.0, 1.0, 0.0, 1), (8, 3, 1, 1.0, 2.0, 0.0, 0), (9, 3, 2, 1.0, 3.0, 0.0, 1), (10, 4, 0, 1.0, 1.0, 0.0, 0), (11, 4, 1, 1.0, 2.0, 0.0, 1), (12, 4, 2, 1.0, 3.0, 0.0, 0), (13, 5, 0, 1.0, 1.0, 0.0, 1), (14, 5, 1, 1.0, 2.0, 0.0, 0), (15, 5, 2, 1.0, 3.0, 0.0, 1), (16, 6, 0, 1.0, 1.0, 0.0, 0), (17, 6, 1, 2.0, 2.0, 0.0, 1), (18, 6, 2, 2.0, 3.0, 0.0, 0), (19, 7, 0, 1.0, 1.0, 0.0, 1), (20, 7, 1, 2.0, 2.0, 0.0, 0), (21, 7, 2, 2.0, 3.0, 0.0, 1), (22, 8, 0, 1.0, 1.0, 0.0, 0), (23, 8, 1, 1.0, 2.0, 0.0, 1), (24, 8, 2, 1.0, 3.0, 0.0, 0), (25, 9, 0, 1.0, 1.0, 0.0, 1), (26, 9, 1, 1.0, 2.0, 0.0, 0), (27, 9, 2, 1.0, 3.0, 0.0, 1) ], dtype=order_dt) ) def test_init_cash(self): record_arrays_close( from_signals_both(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 3, 1.0, 4.0, 0.0, 1), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 3, 2.0, 4.0, 0.0, 1), (3, 2, 0, 1.0, 1.0, 0.0, 0), (4, 2, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 1.0, 1.0, 0.0, 0), (3, 2, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 0.25, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 0.5, 4.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_signals_both(init_cash=np.inf).order_records with pytest.raises(Exception): _ = from_signals_longonly(init_cash=np.inf).order_records with pytest.raises(Exception): _ = from_signals_shortonly(init_cash=np.inf).order_records def test_group_by(self): pf = from_signals_both(close=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 200.0, 4.0, 0.0, 1), (4, 2, 0, 100.0, 1.0, 0.0, 0), (5, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not pf.cash_sharing def test_cash_sharing(self): pf = from_signals_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert pf.cash_sharing with pytest.raises(Exception): _ = pf.regroup(group_by=False) def test_call_seq(self): pf = from_signals_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) pf = from_signals_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) pf = from_signals_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( close=1., entries=pd.DataFrame([ [False, False, True], [False, True, False], [True, False, False], [False, False, True], [False, True, False], ]), exits=pd.DataFrame([ [False, False, False], [False, False, True], [False, True, False], [True, False, False], [False, False, True], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) pf = from_signals_both(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 200., 1., 0., 1), (2, 1, 1, 200., 1., 0., 0), (3, 1, 2, 200., 1., 0., 1), (4, 0, 2, 200., 1., 0., 0), (5, 0, 3, 200., 1., 0., 1), (6, 2, 3, 200., 1., 0., 0), (7, 2, 4, 200., 1., 0., 1), (8, 1, 4, 200., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_signals_longonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 100., 1., 0., 1), (2, 1, 1, 100., 1., 0., 0), (3, 1, 2, 100., 1., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 0, 3, 100., 1., 0., 1), (6, 2, 3, 100., 1., 0., 0), (7, 2, 4, 100., 1., 0., 1), (8, 1, 4, 100., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_signals_shortonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 1), (1, 2, 1, 100., 1., 0., 0), (2, 0, 2, 100., 1., 0., 1), (3, 0, 3, 100., 1., 0., 0), (4, 1, 4, 100., 1., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 1, 2], [2, 1, 0], [1, 0, 2] ]) ) pf = from_signals_longonly(**kwargs, size=1., size_type='percent') record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100.0, 1.0, 0.0, 0), (1, 2, 1, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.0, 0.0, 0), (3, 1, 2, 100.0, 1.0, 0.0, 1), (4, 0, 2, 100.0, 1.0, 0.0, 0), (5, 0, 3, 100.0, 1.0, 0.0, 1), (6, 2, 3, 100.0, 1.0, 0.0, 0), (7, 2, 4, 100.0, 1.0, 0.0, 1), (8, 1, 4, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 0, 2], [0, 1, 2], [2, 0, 1] ]) ) def test_sl_stop(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) with pytest.raises(Exception): _ = from_signals_both(sl_stop=-0.1) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 1, 1, 20.0, 4.0, 0.0, 1), (3, 2, 0, 20.0, 5.0, 0.0, 0), (4, 2, 3, 20.0, 2.0, 0.0, 1), (5, 3, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 2, 0, 20.0, 5.0, 0.0, 1), (3, 3, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 1, 1, 20.0, 4.25, 0.0, 1), (3, 2, 0, 20.0, 5.0, 0.0, 0), (4, 2, 1, 20.0, 4.25, 0.0, 1), (5, 3, 0, 20.0, 5.0, 0.0, 0), (6, 3, 1, 20.0, 4.0, 0.0, 1), (7, 4, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 2, 0, 20.0, 5.0, 0.0, 1), (3, 3, 0, 20.0, 5.0, 0.0, 1), (4, 4, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) close = pd.Series([1., 2., 3., 4., 5.], index=price.index) open = close - 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 3, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 2.0, 0.0, 0), (3, 2, 0, 100.0, 1.0, 0.0, 1), (4, 2, 3, 50.0, 4.0, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 3, 0, 100.0, 1.0, 0.0, 0), (4, 4, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.75, 0.0, 0), (3, 2, 0, 100.0, 1.0, 0.0, 1), (4, 2, 1, 100.0, 1.75, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1), (6, 3, 1, 100.0, 2.0, 0.0, 0), (7, 4, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_ts_stop(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) with pytest.raises(Exception): _ = from_signals_both(ts_stop=-0.1) close = pd.Series([4., 5., 4., 3., 2.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 0), (1, 1, 0, 25.0, 4.0, 0.0, 0), (2, 1, 2, 25.0, 4.0, 0.0, 1), (3, 2, 0, 25.0, 4.0, 0.0, 0), (4, 2, 4, 25.0, 2.0, 0.0, 1), (5, 3, 0, 25.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 1), (1, 1, 0, 25.0, 4.0, 0.0, 1), (2, 1, 1, 25.0, 5.0, 0.0, 0), (3, 2, 0, 25.0, 4.0, 0.0, 1), (4, 3, 0, 25.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records ) print('here') record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.15, 0.2, 0.25, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 0), (1, 1, 0, 25.0, 4.0, 0.0, 0), (2, 1, 2, 25.0, 4.25, 0.0, 1), (3, 2, 0, 25.0, 4.0, 0.0, 0), (4, 2, 2, 25.0, 4.25, 0.0, 1), (5, 3, 0, 25.0, 4.0, 0.0, 0), (6, 3, 2, 25.0, 4.125, 0.0, 1), (7, 4, 0, 25.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.15, 0.2, 0.25, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 1), (1, 1, 0, 25.0, 4.0, 0.0, 1), (2, 1, 1, 25.0, 5.25, 0.0, 0), (3, 2, 0, 25.0, 4.0, 0.0, 1), (4, 2, 1, 25.0, 5.25, 0.0, 0), (5, 3, 0, 25.0, 4.0, 0.0, 1), (6, 3, 1, 25.0, 5.25, 0.0, 0), (7, 4, 0, 25.0, 4.0, 0.0, 1) ], dtype=order_dt) ) close = pd.Series([2., 1., 2., 3., 4.], index=price.index) open = close - 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 50.0, 2.0, 0.0, 0), (2, 1, 1, 50.0, 1.0, 0.0, 1), (3, 2, 0, 50.0, 2.0, 0.0, 0), (4, 3, 0, 50.0, 2.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 1), (1, 1, 0, 50.0, 2.0, 0.0, 1), (2, 1, 2, 50.0, 2.0, 0.0, 0), (3, 2, 0, 50.0, 2.0, 0.0, 1), (4, 2, 4, 50.0, 4.0, 0.0, 0), (5, 3, 0, 50.0, 2.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 50.0, 2.0, 0.0, 0), (2, 1, 1, 50.0, 0.75, 0.0, 1), (3, 2, 0, 50.0, 2.0, 0.0, 0), (4, 2, 1, 50.0, 0.5, 0.0, 1), (5, 3, 0, 50.0, 2.0, 0.0, 0), (6, 4, 0, 50.0, 2.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 1), (1, 1, 0, 50.0, 2.0, 0.0, 1), (2, 1, 2, 50.0, 1.75, 0.0, 0), (3, 2, 0, 50.0, 2.0, 0.0, 1), (4, 2, 2, 50.0, 1.75, 0.0, 0), (5, 3, 0, 50.0, 2.0, 0.0, 1), (6, 3, 2, 50.0, 1.75, 0.0, 0), (7, 4, 0, 50.0, 2.0, 0.0, 1) ], dtype=order_dt) ) def test_tp_stop(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) with pytest.raises(Exception): _ = from_signals_both(sl_stop=-0.1) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 2, 0, 20.0, 5.0, 0.0, 0), (3, 3, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 1, 1, 20.0, 4.0, 0.0, 0), (3, 2, 0, 20.0, 5.0, 0.0, 1), (4, 2, 3, 20.0, 2.0, 0.0, 0), (5, 3, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 2, 0, 20.0, 5.0, 0.0, 0), (3, 3, 0, 20.0, 5.0, 0.0, 0), (4, 4, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 1, 1, 20.0, 4.25, 0.0, 0), (3, 2, 0, 20.0, 5.0, 0.0, 1), (4, 2, 1, 20.0, 4.25, 0.0, 0), (5, 3, 0, 20.0, 5.0, 0.0, 1), (6, 3, 1, 20.0, 4.0, 0.0, 0), (7, 4, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) close = pd.Series([1., 2., 3., 4., 5.], index=price.index) open = close - 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 1, 1, 100.0, 2.0, 0.0, 1), (3, 2, 0, 100.0, 1.0, 0.0, 0), (4, 2, 3, 100.0, 4.0, 0.0, 1), (5, 3, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 3, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 1, 1, 100.0, 1.75, 0.0, 1), (3, 2, 0, 100.0, 1.0, 0.0, 0), (4, 2, 1, 100.0, 1.75, 0.0, 1), (5, 3, 0, 100.0, 1.0, 0.0, 0), (6, 3, 1, 100.0, 2.0, 0.0, 1), (7, 4, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 3, 0, 100.0, 1.0, 0.0, 1), (4, 4, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_stop_entry_price(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='val_price', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 2.625, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 4, 16.52892561983471, 1.25, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='price', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 2.75, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 4, 16.52892561983471, 1.25, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='fillprice', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 3.0250000000000004, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 3, 16.52892561983471, 1.5125000000000002, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='close', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 2.5, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 4, 16.52892561983471, 1.25, 0.0, 1) ], dtype=order_dt) ) def test_stop_exit_price(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 4.25, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.5, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 1.25, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='stopmarket', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 3.825, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.25, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 1.125, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='close', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 3.6, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.7, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 0.9, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='price', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 3.9600000000000004, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.97, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 0.9900000000000001, 0.0, 1) ], dtype=order_dt) ) def test_upon_stop_exit(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, size=1, sl_stop=0.1, upon_stop_exit=[['close', 'closereduce', 'reverse', 'reversereduce']], accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 5.0, 0.0, 0), (1, 0, 1, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 5.0, 0.0, 0), (3, 1, 1, 1.0, 4.0, 0.0, 1), (4, 2, 0, 1.0, 5.0, 0.0, 0), (5, 2, 1, 2.0, 4.0, 0.0, 1), (6, 3, 0, 1.0, 5.0, 0.0, 0), (7, 3, 1, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, size=1, sl_stop=0.1, upon_stop_exit=[['close', 'closereduce', 'reverse', 'reversereduce']]).order_records, np.array([ (0, 0, 0, 1.0, 5.0, 0.0, 0), (1, 0, 1, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 5.0, 0.0, 0), (3, 1, 1, 1.0, 4.0, 0.0, 1), (4, 2, 0, 1.0, 5.0, 0.0, 0), (5, 2, 1, 2.0, 4.0, 0.0, 1), (6, 3, 0, 1.0, 5.0, 0.0, 0), (7, 3, 1, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) def test_upon_stop_update(self): entries = pd.Series([True, True, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) sl_stop = pd.Series([0.4, np.nan, np.nan, np.nan, np.nan]) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, accumulate=True, size=1., sl_stop=sl_stop, upon_stop_update=[['keep', 'override', 'overridenan']]).order_records, np.array([ (0, 0, 0, 1.0, 5.0, 0.0, 0), (1, 0, 1, 1.0, 4.0, 0.0, 0), (2, 0, 2, 2.0, 3.0, 0.0, 1), (3, 1, 0, 1.0, 5.0, 0.0, 0), (4, 1, 1, 1.0, 4.0, 0.0, 0), (5, 1, 2, 2.0, 3.0, 0.0, 1), (6, 2, 0, 1.0, 5.0, 0.0, 0), (7, 2, 1, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) sl_stop = pd.Series([0.4, 0.4, np.nan, np.nan, np.nan]) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, accumulate=True, size=1., sl_stop=sl_stop, upon_stop_update=[['keep', 'override']]).order_records, np.array([ (0, 0, 0, 1.0, 5.0, 0.0, 0), (1, 0, 1, 1.0, 4.0, 0.0, 0), (2, 0, 2, 2.0, 3.0, 0.0, 1), (3, 1, 0, 1.0, 5.0, 0.0, 0), (4, 1, 1, 1.0, 4.0, 0.0, 0), (5, 1, 3, 2.0, 2.0, 0.0, 1) ], dtype=order_dt) ) def test_adjust_sl_func(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) @njit def adjust_sl_func_nb(c, dur): return 0. if c.i - c.init_i >= dur else c.curr_stop, c.curr_trail record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=np.inf, adjust_sl_func_nb=adjust_sl_func_nb, adjust_sl_args=(2,)).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 0, 2, 20.0, 3.0, 0.0, 1) ], dtype=order_dt) ) def test_adjust_ts_func(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([10., 11., 12., 11., 10.], index=price.index) @njit def adjust_sl_func_nb(c, dur): return 0. if c.i - c.curr_i >= dur else c.curr_stop, c.curr_trail record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=np.inf, adjust_sl_func_nb=adjust_sl_func_nb, adjust_sl_args=(2,)).order_records, np.array([ (0, 0, 0, 10.0, 10.0, 0.0, 0), (1, 0, 4, 10.0, 10.0, 0.0, 1) ], dtype=order_dt) ) def test_adjust_tp_func(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([1., 2., 3., 4., 5.], index=price.index) @njit def adjust_tp_func_nb(c, dur): return 0. if c.i - c.init_i >= dur else c.curr_stop record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=np.inf, adjust_tp_func_nb=adjust_tp_func_nb, adjust_tp_args=(2,)).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 2, 100.0, 3.0, 0.0, 1) ], dtype=order_dt) ) def test_max_orders(self): _ = from_signals_both(close=price_wide) _ = from_signals_both(close=price_wide, max_orders=6) with pytest.raises(Exception): _ = from_signals_both(close=price_wide, max_orders=5) def test_max_logs(self): _ = from_signals_both(close=price_wide, log=True) _ = from_signals_both(close=price_wide, log=True, max_logs=6) with pytest.raises(Exception): _ = from_signals_both(close=price_wide, log=True, max_logs=5) # ############# from_holding ############# # class TestFromHolding: def test_from_holding(self): record_arrays_close( vbt.Portfolio.from_holding(price).order_records, vbt.Portfolio.from_signals(price, True, False, accumulate=False).order_records ) # ############# from_random_signals ############# # class TestFromRandomSignals: def test_from_random_n(self): result = vbt.Portfolio.from_random_signals(price, n=2, seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [True, False, True, False, False], [False, True, False, False, True] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, price.vbt.wrapper.index ) pd.testing.assert_index_equal( result.wrapper.columns, price.vbt.wrapper.columns ) result = vbt.Portfolio.from_random_signals(price, n=[1, 2], seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [[False, True], [True, False], [False, True], [False, False], [False, False]], [[False, False], [False, True], [False, False], [False, True], [True, False]] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, pd.DatetimeIndex([ '2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05' ], dtype='datetime64[ns]', freq=None) ) pd.testing.assert_index_equal( result.wrapper.columns, pd.Int64Index([1, 2], dtype='int64', name='randnx_n') ) def test_from_random_prob(self): result = vbt.Portfolio.from_random_signals(price, prob=0.5, seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [True, False, False, False, False], [False, False, False, False, True] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, price.vbt.wrapper.index ) pd.testing.assert_index_equal( result.wrapper.columns, price.vbt.wrapper.columns ) result = vbt.Portfolio.from_random_signals(price, prob=[0.25, 0.5], seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [[False, True], [False, False], [False, False], [False, False], [True, False]], [[False, False], [False, True], [False, False], [False, False], [False, False]] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, pd.DatetimeIndex([ '2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05' ], dtype='datetime64[ns]', freq=None) ) pd.testing.assert_index_equal( result.wrapper.columns, pd.MultiIndex.from_tuples( [(0.25, 0.25), (0.5, 0.5)], names=['rprobnx_entry_prob', 'rprobnx_exit_prob']) ) # ############# from_order_func ############# # @njit def order_func_nb(c, size): _size = nb.get_elem_nb(c, size) return nb.order_nb(_size if c.i % 2 == 0 else -_size) @njit def log_order_func_nb(c, size): _size = nb.get_elem_nb(c, size) return nb.order_nb(_size if c.i % 2 == 0 else -_size, log=True) @njit def flex_order_func_nb(c, size): if c.call_idx < c.group_len: _size = nb.get_col_elem_nb(c, c.from_col + c.call_idx, size) return c.from_col + c.call_idx, nb.order_nb(_size if c.i % 2 == 0 else -_size) return -1, nb.order_nothing_nb() @njit def log_flex_order_func_nb(c, size): if c.call_idx < c.group_len: _size = nb.get_col_elem_nb(c, c.from_col + c.call_idx, size) return c.from_col + c.call_idx, nb.order_nb(_size if c.i % 2 == 0 else -_size, log=True) return -1, nb.order_nothing_nb() class TestFromOrderFunc: @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_one_column(self, test_row_wise, test_flexible): order_func = flex_order_func_nb if test_flexible else order_func_nb pf = vbt.Portfolio.from_order_func( price.tolist(), order_func, np.asarray(np.inf), row_wise=test_row_wise, flexible=test_flexible) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 2, 133.33333333333334, 3.0, 0.0, 0), (3, 0, 3, 66.66666666666669, 4.0, 0.0, 1), (4, 0, 4, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pf = vbt.Portfolio.from_order_func( price, order_func, np.asarray(np.inf), row_wise=test_row_wise, flexible=test_flexible) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 2, 133.33333333333334, 3.0, 0.0, 0), (3, 0, 3, 66.66666666666669, 4.0, 0.0, 1), (4, 0, 4, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert pf.wrapper.ndim == 1 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) @pytest.mark.parametrize("test_use_numba", [False, True]) def test_multiple_columns(self, test_row_wise, test_flexible, test_use_numba): order_func = flex_order_func_nb if test_flexible else order_func_nb pf = vbt.Portfolio.from_order_func( price_wide, order_func, vbt.Rep('size'), broadcast_named_args=dict(size=[0, 1, np.inf]), row_wise=test_row_wise, flexible=test_flexible, use_numba=test_use_numba) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 2, 0, 100.0, 1.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 2, 1, 200.0, 2.0, 0.0, 1), (4, 1, 2, 1.0, 3.0, 0.0, 0), (5, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (6, 1, 3, 1.0, 4.0, 0.0, 1), (7, 2, 3, 66.66666666666669, 4.0, 0.0, 1), (8, 1, 4, 1.0, 5.0, 0.0, 0), (9, 2, 4, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 1, 1.0, 2.0, 0.0, 1), (2, 1, 2, 1.0, 3.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1), (4, 1, 4, 1.0, 5.0, 0.0, 0), (5, 2, 0, 100.0, 1.0, 0.0, 0), (6, 2, 1, 200.0, 2.0, 0.0, 1), (7, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (8, 2, 3, 66.66666666666669, 4.0, 0.0, 1), (9, 2, 4, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert pf.wrapper.ndim == 2 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_group_by(self, test_row_wise, test_flexible): order_func = flex_order_func_nb if test_flexible else order_func_nb pf = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(np.inf), group_by=np.array([0, 0, 1]), row_wise=test_row_wise, flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 0, 1, 200.0, 2.0, 0.0, 1), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 2, 1, 200.0, 2.0, 0.0, 1), (6, 0, 2, 133.33333333333334, 3.0, 0.0, 0), (7, 1, 2, 133.33333333333334, 3.0, 0.0, 0), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 0, 3, 66.66666666666669, 4.0, 0.0, 1), (10, 1, 3, 66.66666666666669, 4.0, 0.0, 1), (11, 2, 3, 66.66666666666669, 4.0, 0.0, 1), (12, 0, 4, 53.33333333333335, 5.0, 0.0, 0), (13, 1, 4, 53.33333333333335, 5.0, 0.0, 0), (14, 2, 4, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 0, 1, 200.0, 2.0, 0.0, 1), (3, 1, 1, 200.0, 2.0, 0.0, 1), (4, 0, 2, 133.33333333333334, 3.0, 0.0, 0), (5, 1, 2, 133.33333333333334, 3.0, 0.0, 0), (6, 0, 3, 66.66666666666669, 4.0, 0.0, 1), (7, 1, 3, 66.66666666666669, 4.0, 0.0, 1), (8, 0, 4, 53.33333333333335, 5.0, 0.0, 0), (9, 1, 4, 53.33333333333335, 5.0, 0.0, 0), (10, 2, 0, 100.0, 1.0, 0.0, 0), (11, 2, 1, 200.0, 2.0, 0.0, 1), (12, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (13, 2, 3, 66.66666666666669, 4.0, 0.0, 1), (14, 2, 4, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not pf.cash_sharing @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_cash_sharing(self, test_row_wise, test_flexible): order_func = flex_order_func_nb if test_flexible else order_func_nb pf = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(np.inf), group_by=np.array([0, 0, 1]), cash_sharing=True, row_wise=test_row_wise, flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 2, 0, 100., 1., 0., 0), (2, 0, 1, 200., 2., 0., 1), (3, 2, 1, 200., 2., 0., 1), (4, 0, 2, 133.33333333, 3., 0., 0), (5, 2, 2, 133.33333333, 3., 0., 0), (6, 0, 3, 66.66666667, 4., 0., 1), (7, 2, 3, 66.66666667, 4., 0., 1), (8, 0, 4, 53.33333333, 5., 0., 0), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 200., 2., 0., 1), (2, 0, 2, 133.33333333, 3., 0., 0), (3, 0, 3, 66.66666667, 4., 0., 1), (4, 0, 4, 53.33333333, 5., 0., 0), (5, 2, 0, 100., 1., 0., 0), (6, 2, 1, 200., 2., 0., 1), (7, 2, 2, 133.33333333, 3., 0., 0), (8, 2, 3, 66.66666667, 4., 0., 1), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert pf.cash_sharing @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_call_seq(self, test_row_wise): pf = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.asarray(np.inf), group_by=np.array([0, 0, 1]), cash_sharing=True, row_wise=test_row_wise) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 2, 0, 100., 1., 0., 0), (2, 0, 1, 200., 2., 0., 1), (3, 2, 1, 200., 2., 0., 1), (4, 0, 2, 133.33333333, 3., 0., 0), (5, 2, 2, 133.33333333, 3., 0., 0), (6, 0, 3, 66.66666667, 4., 0., 1), (7, 2, 3, 66.66666667, 4., 0., 1), (8, 0, 4, 53.33333333, 5., 0., 0), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 200., 2., 0., 1), (2, 0, 2, 133.33333333, 3., 0., 0), (3, 0, 3, 66.66666667, 4., 0., 1), (4, 0, 4, 53.33333333, 5., 0., 0), (5, 2, 0, 100., 1., 0., 0), (6, 2, 1, 200., 2., 0., 1), (7, 2, 2, 133.33333333, 3., 0., 0), (8, 2, 3, 66.66666667, 4., 0., 1), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) pf = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.asarray(np.inf), group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed', row_wise=test_row_wise) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 2, 0, 100., 1., 0., 0), (2, 1, 1, 200., 2., 0., 1), (3, 2, 1, 200., 2., 0., 1), (4, 1, 2, 133.33333333, 3., 0., 0), (5, 2, 2, 133.33333333, 3., 0., 0), (6, 1, 3, 66.66666667, 4., 0., 1), (7, 2, 3, 66.66666667, 4., 0., 1), (8, 1, 4, 53.33333333, 5., 0., 0), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 1, 200., 2., 0., 1), (2, 1, 2, 133.33333333, 3., 0., 0), (3, 1, 3, 66.66666667, 4., 0., 1), (4, 1, 4, 53.33333333, 5., 0., 0), (5, 2, 0, 100., 1., 0., 0), (6, 2, 1, 200., 2., 0., 1), (7, 2, 2, 133.33333333, 3., 0., 0), (8, 2, 3, 66.66666667, 4., 0., 1), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) pf = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.asarray(np.inf), group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed, row_wise=test_row_wise) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 2, 0, 100., 1., 0., 0), (2, 1, 1, 200., 2., 0., 1), (3, 2, 1, 200., 2., 0., 1), (4, 1, 2, 133.33333333, 3., 0., 0), (5, 2, 2, 133.33333333, 3., 0., 0), (6, 1, 3, 66.66666667, 4., 0., 1), (7, 2, 3, 66.66666667, 4., 0., 1), (8, 1, 4, 53.33333333, 5., 0., 0), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 1, 200., 2., 0., 1), (2, 1, 2, 133.33333333, 3., 0., 0), (3, 1, 3, 66.66666667, 4., 0., 1), (4, 1, 4, 53.33333333, 5., 0., 0), (5, 2, 0, 100., 1., 0., 0), (6, 2, 1, 200., 2., 0., 1), (7, 2, 2, 133.33333333, 3., 0., 0), (8, 2, 3, 66.66666667, 4., 0., 1), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) with pytest.raises(Exception): _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.asarray(np.inf), group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='auto', row_wise=test_row_wise ) target_hold_value = pd.DataFrame({ 'a': [0., 70., 30., 0., 70.], 'b': [30., 0., 70., 30., 30.], 'c': [70., 30., 0., 70., 0.] }, index=price.index) @njit def pre_segment_func_nb(c, target_hold_value): order_size = np.copy(target_hold_value[c.i, c.from_col:c.to_col]) order_size_type = np.full(c.group_len, SizeType.TargetValue) direction = np.full(c.group_len, Direction.Both) order_value_out = np.empty(c.group_len, dtype=np.float_) c.last_val_price[c.from_col:c.to_col] = c.close[c.i, c.from_col:c.to_col] nb.sort_call_seq_nb(c, order_size, order_size_type, direction, order_value_out) return order_size, order_size_type, direction @njit def pct_order_func_nb(c, order_size, order_size_type, direction): col_i = c.call_seq_now[c.call_idx] return nb.order_nb( order_size[col_i], c.close[c.i, col_i], size_type=order_size_type[col_i], direction=direction[col_i] ) pf = vbt.Portfolio.from_order_func( price_wide * 0 + 1, pct_order_func_nb, group_by=np.array([0, 0, 0]), cash_sharing=True, pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(target_hold_value.values,), row_wise=test_row_wise) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 1, 0], [0, 2, 1], [1, 0, 2], [2, 1, 0] ]) ) pd.testing.assert_frame_equal( pf.asset_value(group_by=False), target_hold_value ) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_target_value(self, test_row_wise, test_flexible): @njit def target_val_pre_segment_func_nb(c, val_price): c.last_val_price[c.from_col:c.to_col] = val_price[c.i] return () if test_flexible: @njit def target_val_order_func_nb(c): col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, nb.order_nb(50., nb.get_col_elem_nb(c, col, c.close), size_type=SizeType.TargetValue) return -1, nb.order_nothing_nb() else: @njit def target_val_order_func_nb(c): return nb.order_nb(50., nb.get_elem_nb(c, c.close), size_type=SizeType.TargetValue) pf = vbt.Portfolio.from_order_func( price.iloc[1:], target_val_order_func_nb, row_wise=test_row_wise, flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 1, 25.0, 3.0, 0.0, 0), (1, 0, 2, 8.333333333333332, 4.0, 0.0, 1), (2, 0, 3, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 1, 25.0, 3.0, 0.0, 0), (1, 0, 2, 8.333333333333332, 4.0, 0.0, 1), (2, 0, 3, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) pf = vbt.Portfolio.from_order_func( price.iloc[1:], target_val_order_func_nb, pre_segment_func_nb=target_val_pre_segment_func_nb, pre_segment_args=(price.iloc[:-1].values,), row_wise=test_row_wise, flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 0, 1, 25.0, 3.0, 0.0, 1), (2, 0, 2, 8.333333333333332, 4.0, 0.0, 1), (3, 0, 3, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 0, 1, 25.0, 3.0, 0.0, 1), (2, 0, 2, 8.333333333333332, 4.0, 0.0, 1), (3, 0, 3, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_target_percent(self, test_row_wise, test_flexible): @njit def target_pct_pre_segment_func_nb(c, val_price): c.last_val_price[c.from_col:c.to_col] = val_price[c.i] return () if test_flexible: @njit def target_pct_order_func_nb(c): col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, nb.order_nb(0.5, nb.get_col_elem_nb(c, col, c.close), size_type=SizeType.TargetPercent) return -1, nb.order_nothing_nb() else: @njit def target_pct_order_func_nb(c): return nb.order_nb(0.5, nb.get_elem_nb(c, c.close), size_type=SizeType.TargetPercent) pf = vbt.Portfolio.from_order_func( price.iloc[1:], target_pct_order_func_nb, row_wise=test_row_wise, flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 1, 25.0, 3.0, 0.0, 0), (1, 0, 2, 8.333333333333332, 4.0, 0.0, 1), (2, 0, 3, 1.0416666666666679, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 1, 25.0, 3.0, 0.0, 0), (1, 0, 2, 8.333333333333332, 4.0, 0.0, 1), (2, 0, 3, 1.0416666666666679, 5.0, 0.0, 1) ], dtype=order_dt) ) pf = vbt.Portfolio.from_order_func( price.iloc[1:], target_pct_order_func_nb, pre_segment_func_nb=target_pct_pre_segment_func_nb, pre_segment_args=(price.iloc[:-1].values,), row_wise=test_row_wise, flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 0, 1, 25.0, 3.0, 0.0, 1), (2, 0, 3, 3.125, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 0, 1, 25.0, 3.0, 0.0, 1), (2, 0, 3, 3.125, 5.0, 0.0, 1) ], dtype=order_dt) ) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_update_value(self, test_row_wise, test_flexible): if test_flexible: @njit def order_func_nb(c): col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, nb.order_nb( np.inf if c.i % 2 == 0 else -np.inf, nb.get_col_elem_nb(c, col, c.close), fees=0.01, fixed_fees=1., slippage=0.01 ) return -1, nb.order_nothing_nb() else: @njit def order_func_nb(c): return nb.order_nb( np.inf if c.i % 2 == 0 else -np.inf, nb.get_elem_nb(c, c.close), fees=0.01, fixed_fees=1., slippage=0.01 ) @njit def post_order_func_nb(c, value_before, value_now): value_before[c.i, c.col] = c.value_before value_now[c.i, c.col] = c.value_now value_before = np.empty_like(price.values[:, None]) value_now = np.empty_like(price.values[:, None]) _ = vbt.Portfolio.from_order_func( price, order_func_nb, post_order_func_nb=post_order_func_nb, post_order_args=(value_before, value_now), row_wise=test_row_wise, update_value=False, flexible=test_flexible) np.testing.assert_array_equal( value_before, value_now ) _ = vbt.Portfolio.from_order_func( price, order_func_nb, post_order_func_nb=post_order_func_nb, post_order_args=(value_before, value_now), row_wise=test_row_wise, update_value=True, flexible=test_flexible) np.testing.assert_array_equal( value_before, np.array([ [100.0], [97.04930889128518], [185.46988117104038], [82.47853456223025], [104.65775576218027] ]) ) np.testing.assert_array_equal( value_now, np.array([ [98.01980198019803], [187.36243097890815], [83.30331990785257], [105.72569204546781], [73.54075125567473] ]) ) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_states(self, test_row_wise, test_flexible): close = np.array([ [1, 1, 1], [np.nan, 2, 2], [3, np.nan, 3], [4, 4, np.nan], [5, 5, 5] ]) size = np.array([ [1, 1, 1], [-1, -1, -1], [1, 1, 1], [-1, -1, -1], [1, 1, 1] ]) value_arr1 = np.empty((size.shape[0], 2), dtype=np.float_) value_arr2 = np.empty(size.shape, dtype=np.float_) value_arr3 = np.empty(size.shape, dtype=np.float_) return_arr1 = np.empty((size.shape[0], 2), dtype=np.float_) return_arr2 = np.empty(size.shape, dtype=np.float_) return_arr3 = np.empty(size.shape, dtype=np.float_) pos_record_arr1 = np.empty(size.shape, dtype=trade_dt) pos_record_arr2 = np.empty(size.shape, dtype=trade_dt) pos_record_arr3 = np.empty(size.shape, dtype=trade_dt) def pre_segment_func_nb(c): value_arr1[c.i, c.group] = c.last_value[c.group] return_arr1[c.i, c.group] = c.last_return[c.group] for col in range(c.from_col, c.to_col): pos_record_arr1[c.i, col] = c.last_pos_record[col] if c.i > 0: c.last_val_price[c.from_col:c.to_col] = c.last_val_price[c.from_col:c.to_col] + 0.5 return () if test_flexible: def order_func_nb(c): col = c.from_col + c.call_idx if c.call_idx < c.group_len: value_arr2[c.i, col] = c.last_value[c.group] return_arr2[c.i, col] = c.last_return[c.group] pos_record_arr2[c.i, col] = c.last_pos_record[col] return col, nb.order_nb(size[c.i, col], fixed_fees=1.) return -1, nb.order_nothing_nb() else: def order_func_nb(c): value_arr2[c.i, c.col] = c.value_now return_arr2[c.i, c.col] = c.return_now pos_record_arr2[c.i, c.col] = c.pos_record_now return nb.order_nb(size[c.i, c.col], fixed_fees=1.) def post_order_func_nb(c): value_arr3[c.i, c.col] = c.value_now return_arr3[c.i, c.col] = c.return_now pos_record_arr3[c.i, c.col] = c.pos_record_now _ = vbt.Portfolio.from_order_func( close, order_func_nb, pre_segment_func_nb=pre_segment_func_nb, post_order_func_nb=post_order_func_nb, use_numba=False, row_wise=test_row_wise, update_value=True, ffill_val_price=True, group_by=[0, 0, 1], cash_sharing=True, flexible=test_flexible ) np.testing.assert_array_equal( value_arr1, np.array([ [100.0, 100.0], [98.0, 99.0], [98.5, 99.0], [99.0, 98.0], [99.0, 98.5] ]) ) np.testing.assert_array_equal( value_arr2, np.array([ [100.0, 99.0, 100.0], [99.0, 99.0, 99.5], [99.0, 99.0, 99.0], [100.0, 100.0, 98.5], [99.0, 98.5, 99.0] ]) ) np.testing.assert_array_equal( value_arr3, np.array([ [99.0, 98.0, 99.0], [99.0, 98.5, 99.0], [99.0, 99.0, 98.0], [100.0, 99.0, 98.5], [98.5, 97.0, 99.0] ]) ) np.testing.assert_array_equal( return_arr1, np.array([ [np.nan, np.nan], [-0.02, -0.01], [0.00510204081632653, 0.0], [0.005076142131979695, -0.010101010101010102], [0.0, 0.00510204081632653] ]) ) np.testing.assert_array_equal( return_arr2, np.array([ [0.0, -0.01, 0.0], [-0.01, -0.01, -0.005], [0.01020408163265306, 0.01020408163265306, 0.0], [0.015228426395939087, 0.015228426395939087, -0.005050505050505051], [0.0, -0.005050505050505051, 0.01020408163265306] ]) ) np.testing.assert_array_equal( return_arr3, np.array([ [-0.01, -0.02, -0.01], [-0.01, -0.015, -0.01], [0.01020408163265306, 0.01020408163265306, -0.010101010101010102], [0.015228426395939087, 0.005076142131979695, -0.005050505050505051], [-0.005050505050505051, -0.020202020202020204, 0.01020408163265306] ]) ) record_arrays_close( pos_record_arr1.flatten()[3:], np.array([ (0, 0, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -1.0, -1.0, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -1.0, -1.0, 0, 0, 0), (0, 2, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -1.0, -1.0, 0, 0, 0), (0, 0, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -0.5, -0.5, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (0, 2, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (0, 0, 2.0, 0, 2.0, 2.0, -1, np.nan, 0.0, 0.0, 0.0, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (1, 2, 1.0, 2, 3.0, 1.0, -1, np.nan, 0.0, -1.0, -0.3333333333333333, 0, 0, 1), (0, 0, 2.0, 0, 2.0, 2.0, -1, 4.0, 1.0, 1.0, 0.25, 0, 0, 0), (1, 1, 1.0, 3, 4.0, 1.0, -1, np.nan, 0.0, -1.0, -0.25, 1, 0, 1), (1, 2, 1.0, 2, 3.0, 1.0, -1, np.nan, 0.0, -0.5, -0.16666666666666666, 0, 0, 1) ], dtype=trade_dt) ) record_arrays_close( pos_record_arr2.flatten()[3:], np.array([ (0, 0, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -0.5, -0.5, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -0.5, -0.5, 0, 0, 0), (0, 2, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -0.5, -0.5, 0, 0, 0), (0, 0, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, 0.0, 0.0, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (0, 2, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (0, 0, 2.0, 0, 2.0, 2.0, -1, np.nan, 0.0, 1.0, 0.25, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (1, 2, 1.0, 2, 3.0, 1.0, -1, np.nan, 0.0, -0.5, -0.16666666666666666, 0, 0, 1), (0, 0, 2.0, 0, 2.0, 2.0, -1, 4.0, 1.0, 1.5, 0.375, 0, 0, 0), (1, 1, 1.0, 3, 4.0, 1.0, -1, np.nan, 0.0, -1.5, -0.375, 1, 0, 1), (1, 2, 1.0, 2, 3.0, 1.0, -1, np.nan, 0.0, 0.0, 0.0, 0, 0, 1) ], dtype=trade_dt) ) record_arrays_close( pos_record_arr3.flatten(), np.array([ (0, 0, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -1.0, -1.0, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -1.0, -1.0, 0, 0, 0), (0, 2, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -1.0, -1.0, 0, 0, 0), (0, 0, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -0.5, -0.5, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (0, 2, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (0, 0, 2.0, 0, 2.0, 2.0, -1, np.nan, 0.0, 0.0, 0.0, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (1, 2, 1.0, 2, 3.0, 1.0, -1, np.nan, 0.0, -1.0, -0.3333333333333333, 0, 0, 1), (0, 0, 2.0, 0, 2.0, 2.0, -1, 4.0, 1.0, 1.0, 0.25, 0, 0, 0), (1, 1, 1.0, 3, 4.0, 1.0, -1, np.nan, 0.0, -1.0, -0.25, 1, 0, 1), (1, 2, 1.0, 2, 3.0, 1.0, -1, np.nan, 0.0, -0.5, -0.16666666666666666, 0, 0, 1), (0, 0, 3.0, 0, 3.0, 3.0, -1, 4.0, 1.0, 1.0, 0.1111111111111111, 0, 0, 0), (1, 1, 1.0, 3, 4.0, 1.0, 4, 5.0, 1.0, -3.0, -0.75, 1, 1, 1), (1, 2, 2.0, 2, 4.0, 2.0, -1, np.nan, 0.0, 0.0, 0.0, 0, 0, 1) ], dtype=trade_dt) ) cash_arr = np.empty((size.shape[0], 2), dtype=np.float_) position_arr = np.empty(size.shape, dtype=np.float_) val_price_arr = np.empty(size.shape, dtype=np.float_) value_arr = np.empty((size.shape[0], 2), dtype=np.float_) return_arr = np.empty((size.shape[0], 2), dtype=np.float_) sim_order_cash_arr = np.empty(size.shape, dtype=np.float_) sim_order_value_arr = np.empty(size.shape, dtype=np.float_) sim_order_return_arr = np.empty(size.shape, dtype=np.float_) def post_order_func_nb(c): sim_order_cash_arr[c.i, c.col] = c.cash_now sim_order_value_arr[c.i, c.col] = c.value_now sim_order_return_arr[c.i, c.col] = c.value_now if c.i == 0 and c.call_idx == 0: sim_order_return_arr[c.i, c.col] -= c.init_cash[c.group] sim_order_return_arr[c.i, c.col] /= c.init_cash[c.group] else: if c.call_idx == 0: prev_i = c.i - 1 prev_col = c.to_col - 1 else: prev_i = c.i prev_col = c.from_col + c.call_idx - 1 sim_order_return_arr[c.i, c.col] -= sim_order_value_arr[prev_i, prev_col] sim_order_return_arr[c.i, c.col] /= sim_order_value_arr[prev_i, prev_col] def post_segment_func_nb(c): cash_arr[c.i, c.group] = c.last_cash[c.group] for col in range(c.from_col, c.to_col): position_arr[c.i, col] = c.last_position[col] val_price_arr[c.i, col] = c.last_val_price[col] value_arr[c.i, c.group] = c.last_value[c.group] return_arr[c.i, c.group] = c.last_return[c.group] pf = vbt.Portfolio.from_order_func( close, order_func_nb, post_order_func_nb=post_order_func_nb, post_segment_func_nb=post_segment_func_nb, use_numba=False, row_wise=test_row_wise, update_value=True, ffill_val_price=True, group_by=[0, 0, 1], cash_sharing=True, flexible=test_flexible ) np.testing.assert_array_equal( cash_arr, pf.cash().values ) np.testing.assert_array_equal( position_arr, pf.assets().values ) np.testing.assert_array_equal( val_price_arr, pf.get_filled_close().values ) np.testing.assert_array_equal( value_arr, pf.value().values ) np.testing.assert_array_equal( return_arr, pf.returns().values ) if test_flexible: with pytest.raises(Exception): pf.cash(in_sim_order=True, group_by=False) with pytest.raises(Exception): pf.value(in_sim_order=True, group_by=False) with pytest.raises(Exception): pf.returns(in_sim_order=True, group_by=False) else: np.testing.assert_array_equal( sim_order_cash_arr, pf.cash(in_sim_order=True, group_by=False).values ) np.testing.assert_array_equal( sim_order_value_arr, pf.value(in_sim_order=True, group_by=False).values ) np.testing.assert_array_equal( sim_order_return_arr, pf.returns(in_sim_order=True, group_by=False).values ) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_post_sim_ctx(self, test_row_wise, test_flexible): if test_flexible: def order_func(c): col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, nb.order_nb( 1., nb.get_col_elem_nb(c, col, c.close), fees=0.01, fixed_fees=1., slippage=0.01, log=True ) return -1, nb.order_nothing_nb() else: def order_func(c): return nb.order_nb( 1., nb.get_elem_nb(c, c.close), fees=0.01, fixed_fees=1., slippage=0.01, log=True ) def post_sim_func(c, lst): lst.append(deepcopy(c)) lst = [] _ = vbt.Portfolio.from_order_func( price_wide, order_func, post_sim_func_nb=post_sim_func, post_sim_args=(lst,), row_wise=test_row_wise, update_value=True, max_logs=price_wide.shape[0] * price_wide.shape[1], use_numba=False, group_by=[0, 0, 1], cash_sharing=True, flexible=test_flexible ) c = lst[-1] assert c.target_shape == price_wide.shape np.testing.assert_array_equal( c.close, price_wide.values ) np.testing.assert_array_equal( c.group_lens, np.array([2, 1]) ) np.testing.assert_array_equal( c.init_cash, np.array([100., 100.]) ) assert c.cash_sharing if test_flexible: assert c.call_seq is None else: np.testing.assert_array_equal( c.call_seq, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) np.testing.assert_array_equal( c.segment_mask, np.array([ [True, True], [True, True], [True, True], [True, True], [True, True] ]) ) assert c.ffill_val_price assert c.update_value if test_row_wise: record_arrays_close( c.order_records, np.array([ (0, 0, 0, 1.0, 1.01, 1.0101, 0), (1, 1, 0, 1.0, 1.01, 1.0101, 0), (2, 2, 0, 1.0, 1.01, 1.0101, 0), (3, 0, 1, 1.0, 2.02, 1.0202, 0), (4, 1, 1, 1.0, 2.02, 1.0202, 0), (5, 2, 1, 1.0, 2.02, 1.0202, 0), (6, 0, 2, 1.0, 3.0300000000000002, 1.0303, 0), (7, 1, 2, 1.0, 3.0300000000000002, 1.0303, 0), (8, 2, 2, 1.0, 3.0300000000000002, 1.0303, 0), (9, 0, 3, 1.0, 4.04, 1.0404, 0), (10, 1, 3, 1.0, 4.04, 1.0404, 0), (11, 2, 3, 1.0, 4.04, 1.0404, 0), (12, 0, 4, 1.0, 5.05, 1.0505, 0), (13, 1, 4, 1.0, 5.05, 1.0505, 0), (14, 2, 4, 1.0, 5.05, 1.0505, 0) ], dtype=order_dt) ) else: record_arrays_close( c.order_records, np.array([ (0, 0, 0, 1.0, 1.01, 1.0101, 0), (1, 1, 0, 1.0, 1.01, 1.0101, 0), (2, 0, 1, 1.0, 2.02, 1.0202, 0), (3, 1, 1, 1.0, 2.02, 1.0202, 0), (4, 0, 2, 1.0, 3.0300000000000002, 1.0303, 0), (5, 1, 2, 1.0, 3.0300000000000002, 1.0303, 0), (6, 0, 3, 1.0, 4.04, 1.0404, 0), (7, 1, 3, 1.0, 4.04, 1.0404, 0), (8, 0, 4, 1.0, 5.05, 1.0505, 0), (9, 1, 4, 1.0, 5.05, 1.0505, 0), (10, 2, 0, 1.0, 1.01, 1.0101, 0), (11, 2, 1, 1.0, 2.02, 1.0202, 0), (12, 2, 2, 1.0, 3.0300000000000002, 1.0303, 0), (13, 2, 3, 1.0, 4.04, 1.0404, 0), (14, 2, 4, 1.0, 5.05, 1.0505, 0) ], dtype=order_dt) ) if test_row_wise: record_arrays_close( c.log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, np.nan, 100.0, 1.0, 1.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 97.9799, 1.0, 0.0, 97.9799, 1.01, 98.9899, 1.0, 1.01, 1.0101, 0, 0, -1, 0), (1, 0, 1, 0, 97.9799, 0.0, 0.0, 97.9799, np.nan, 98.9899, 1.0, 1.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 95.9598, 1.0, 0.0, 95.9598, 1.01, 97.97980000000001, 1.0, 1.01, 1.0101, 0, 0, -1, 1), (2, 1, 2, 0, 100.0, 0.0, 0.0, 100.0, np.nan, 100.0, 1.0, 1.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 97.9799, 1.0, 0.0, 97.9799, 1.01, 98.9899, 1.0, 1.01, 1.0101, 0, 0, -1, 2), (3, 0, 0, 1, 95.9598, 1.0, 0.0, 95.9598, 1.0, 97.9598, 1.0, 2.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 92.9196, 2.0, 0.0, 92.9196, 2.02, 97.95960000000001, 1.0, 2.02, 1.0202, 0, 0, -1, 3), (4, 0, 1, 1, 92.9196, 1.0, 0.0, 92.9196, 1.0, 97.95960000000001, 1.0, 2.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 89.8794, 2.0, 0.0, 89.8794, 2.02, 97.95940000000002, 1.0, 2.02, 1.0202, 0, 0, -1, 4), (5, 1, 2, 1, 97.9799, 1.0, 0.0, 97.9799, 1.0, 98.9799, 1.0, 2.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 94.9397, 2.0, 0.0, 94.9397, 2.02, 98.97970000000001, 1.0, 2.02, 1.0202, 0, 0, -1, 5), (6, 0, 0, 2, 89.8794, 2.0, 0.0, 89.8794, 2.0, 97.8794, 1.0, 3.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 85.8191, 3.0, 0.0, 85.8191, 3.0300000000000002, 98.90910000000001, 1.0, 3.0300000000000002, 1.0303, 0, 0, -1, 6), (7, 0, 1, 2, 85.8191, 2.0, 0.0, 85.8191, 2.0, 98.90910000000001, 1.0, 3.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 81.75880000000001, 3.0, 0.0, 81.75880000000001, 3.0300000000000002, 99.93880000000001, 1.0, 3.0300000000000002, 1.0303, 0, 0, -1, 7), (8, 1, 2, 2, 94.9397, 2.0, 0.0, 94.9397, 2.0, 98.9397, 1.0, 3.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 90.8794, 3.0, 0.0, 90.8794, 3.0300000000000002, 99.96940000000001, 1.0, 3.0300000000000002, 1.0303, 0, 0, -1, 8), (9, 0, 0, 3, 81.75880000000001, 3.0, 0.0, 81.75880000000001, 3.0, 99.75880000000001, 1.0, 4.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 76.67840000000001, 4.0, 0.0, 76.67840000000001, 4.04, 101.83840000000001, 1.0, 4.04, 1.0404, 0, 0, -1, 9), (10, 0, 1, 3, 76.67840000000001, 3.0, 0.0, 76.67840000000001, 3.0, 101.83840000000001, 1.0, 4.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 71.59800000000001, 4.0, 0.0, 71.59800000000001, 4.04, 103.918, 1.0, 4.04, 1.0404, 0, 0, -1, 10), (11, 1, 2, 3, 90.8794, 3.0, 0.0, 90.8794, 3.0, 99.8794, 1.0, 4.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 85.799, 4.0, 0.0, 85.799, 4.04, 101.959, 1.0, 4.04, 1.0404, 0, 0, -1, 11), (12, 0, 0, 4, 71.59800000000001, 4.0, 0.0, 71.59800000000001, 4.0, 103.59800000000001, 1.0, 5.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 65.49750000000002, 5.0, 0.0, 65.49750000000002, 5.05, 106.74750000000002, 1.0, 5.05, 1.0505, 0, 0, -1, 12), (13, 0, 1, 4, 65.49750000000002, 4.0, 0.0, 65.49750000000002, 4.0, 106.74750000000002, 1.0, 5.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 59.39700000000002, 5.0, 0.0, 59.39700000000002, 5.05, 109.89700000000002, 1.0, 5.05, 1.0505, 0, 0, -1, 13), (14, 1, 2, 4, 85.799, 4.0, 0.0, 85.799, 4.0, 101.799, 1.0, 5.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 79.69850000000001, 5.0, 0.0, 79.69850000000001, 5.05, 104.94850000000001, 1.0, 5.05, 1.0505, 0, 0, -1, 14) ], dtype=log_dt) ) else: record_arrays_close( c.log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, np.nan, 100.0, 1.0, 1.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 97.9799, 1.0, 0.0, 97.9799, 1.01, 98.9899, 1.0, 1.01, 1.0101, 0, 0, -1, 0), (1, 0, 1, 0, 97.9799, 0.0, 0.0, 97.9799, np.nan, 98.9899, 1.0, 1.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 95.9598, 1.0, 0.0, 95.9598, 1.01, 97.97980000000001, 1.0, 1.01, 1.0101, 0, 0, -1, 1), (2, 0, 0, 1, 95.9598, 1.0, 0.0, 95.9598, 1.0, 97.9598, 1.0, 2.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 92.9196, 2.0, 0.0, 92.9196, 2.02, 97.95960000000001, 1.0, 2.02, 1.0202, 0, 0, -1, 2), (3, 0, 1, 1, 92.9196, 1.0, 0.0, 92.9196, 1.0, 97.95960000000001, 1.0, 2.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 89.8794, 2.0, 0.0, 89.8794, 2.02, 97.95940000000002, 1.0, 2.02, 1.0202, 0, 0, -1, 3), (4, 0, 0, 2, 89.8794, 2.0, 0.0, 89.8794, 2.0, 97.8794, 1.0, 3.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 85.8191, 3.0, 0.0, 85.8191, 3.0300000000000002, 98.90910000000001, 1.0, 3.0300000000000002, 1.0303, 0, 0, -1, 4), (5, 0, 1, 2, 85.8191, 2.0, 0.0, 85.8191, 2.0, 98.90910000000001, 1.0, 3.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 81.75880000000001, 3.0, 0.0, 81.75880000000001, 3.0300000000000002, 99.93880000000001, 1.0, 3.0300000000000002, 1.0303, 0, 0, -1, 5), (6, 0, 0, 3, 81.75880000000001, 3.0, 0.0, 81.75880000000001, 3.0, 99.75880000000001, 1.0, 4.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 76.67840000000001, 4.0, 0.0, 76.67840000000001, 4.04, 101.83840000000001, 1.0, 4.04, 1.0404, 0, 0, -1, 6), (7, 0, 1, 3, 76.67840000000001, 3.0, 0.0, 76.67840000000001, 3.0, 101.83840000000001, 1.0, 4.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 71.59800000000001, 4.0, 0.0, 71.59800000000001, 4.04, 103.918, 1.0, 4.04, 1.0404, 0, 0, -1, 7), (8, 0, 0, 4, 71.59800000000001, 4.0, 0.0, 71.59800000000001, 4.0, 103.59800000000001, 1.0, 5.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 65.49750000000002, 5.0, 0.0, 65.49750000000002, 5.05, 106.74750000000002, 1.0, 5.05, 1.0505, 0, 0, -1, 8), (9, 0, 1, 4, 65.49750000000002, 4.0, 0.0, 65.49750000000002, 4.0, 106.74750000000002, 1.0, 5.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 59.39700000000002, 5.0, 0.0, 59.39700000000002, 5.05, 109.89700000000002, 1.0, 5.05, 1.0505, 0, 0, -1, 9), (10, 1, 2, 0, 100.0, 0.0, 0.0, 100.0, np.nan, 100.0, 1.0, 1.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 97.9799, 1.0, 0.0, 97.9799, 1.01, 98.9899, 1.0, 1.01, 1.0101, 0, 0, -1, 10), (11, 1, 2, 1, 97.9799, 1.0, 0.0, 97.9799, 1.0, 98.9799, 1.0, 2.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 94.9397, 2.0, 0.0, 94.9397, 2.02, 98.97970000000001, 1.0, 2.02, 1.0202, 0, 0, -1, 11), (12, 1, 2, 2, 94.9397, 2.0, 0.0, 94.9397, 2.0, 98.9397, 1.0, 3.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 90.8794, 3.0, 0.0, 90.8794, 3.0300000000000002, 99.96940000000001, 1.0, 3.0300000000000002, 1.0303, 0, 0, -1, 12), (13, 1, 2, 3, 90.8794, 3.0, 0.0, 90.8794, 3.0, 99.8794, 1.0, 4.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 85.799, 4.0, 0.0, 85.799, 4.04, 101.959, 1.0, 4.04, 1.0404, 0, 0, -1, 13), (14, 1, 2, 4, 85.799, 4.0, 0.0, 85.799, 4.0, 101.799, 1.0, 5.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 79.69850000000001, 5.0, 0.0, 79.69850000000001, 5.05, 104.94850000000001, 1.0, 5.05, 1.0505, 0, 0, -1, 14) ], dtype=log_dt) ) np.testing.assert_array_equal( c.last_cash, np.array([59.39700000000002, 79.69850000000001]) ) np.testing.assert_array_equal( c.last_position, np.array([5., 5., 5.]) ) np.testing.assert_array_equal( c.last_val_price, np.array([5.0, 5.0, 5.0]) ) np.testing.assert_array_equal( c.last_value, np.array([109.39700000000002, 104.69850000000001]) ) np.testing.assert_array_equal( c.second_last_value, np.array([103.59800000000001, 101.799]) ) np.testing.assert_array_equal( c.last_return, np.array([0.05597598409235705, 0.028482598060884715]) ) np.testing.assert_array_equal( c.last_debt, np.array([0., 0., 0.]) ) np.testing.assert_array_equal( c.last_free_cash, np.array([59.39700000000002, 79.69850000000001]) ) if test_row_wise: np.testing.assert_array_equal( c.last_oidx, np.array([12, 13, 14]) ) np.testing.assert_array_equal( c.last_lidx, np.array([12, 13, 14]) ) else: np.testing.assert_array_equal( c.last_oidx, np.array([8, 9, 14]) ) np.testing.assert_array_equal( c.last_lidx, np.array([8, 9, 14]) ) assert c.order_records[c.last_oidx[0]]['col'] == 0 assert c.order_records[c.last_oidx[1]]['col'] == 1 assert c.order_records[c.last_oidx[2]]['col'] == 2 assert c.log_records[c.last_lidx[0]]['col'] == 0 assert c.log_records[c.last_lidx[1]]['col'] == 1 assert c.log_records[c.last_lidx[2]]['col'] == 2 @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_free_cash(self, test_row_wise, test_flexible): if test_flexible: def order_func(c, size): col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, nb.order_nb( size[c.i, col], nb.get_col_elem_nb(c, col, c.close), fees=0.01, fixed_fees=1., slippage=0.01 ) return -1, nb.order_nothing_nb() else: def order_func(c, size): return nb.order_nb( size[c.i, c.col], nb.get_elem_nb(c, c.close), fees=0.01, fixed_fees=1., slippage=0.01 ) def post_order_func(c, debt, free_cash): debt[c.i, c.col] = c.debt_now if c.cash_sharing: free_cash[c.i, c.group] = c.free_cash_now else: free_cash[c.i, c.col] = c.free_cash_now size = np.array([ [5, -5, 5], [5, -5, -10], [-5, 5, 10], [-5, 5, -10], [-5, 5, 10] ]) debt = np.empty(price_wide.shape, dtype=np.float_) free_cash = np.empty(price_wide.shape, dtype=np.float_) pf = vbt.Portfolio.from_order_func( price_wide, order_func, size, post_order_func_nb=post_order_func, post_order_args=(debt, free_cash,), row_wise=test_row_wise, use_numba=False, flexible=test_flexible ) np.testing.assert_array_equal( debt, np.array([ [0.0, 4.95, 0.0], [0.0, 14.850000000000001, 9.9], [0.0, 7.425000000000001, 0.0], [0.0, 0.0, 19.8], [24.75, 0.0, 0.0] ]) ) np.testing.assert_array_equal( free_cash, np.array([ [93.8995, 94.0005, 93.8995], [82.6985, 83.00150000000001, 92.70150000000001], [96.39999999999999, 81.55000000000001, 80.8985], [115.002, 74.998, 79.5025], [89.0045, 48.49550000000001, 67.0975] ]) ) np.testing.assert_almost_equal( free_cash, pf.cash(free=True).values ) debt = np.empty(price_wide.shape, dtype=np.float_) free_cash = np.empty(price_wide.shape, dtype=np.float_) pf = vbt.Portfolio.from_order_func( price_wide.vbt.wrapper.wrap(price_wide.values[::-1]), order_func, size, post_order_func_nb=post_order_func, post_order_args=(debt, free_cash,), row_wise=test_row_wise, use_numba=False, flexible=test_flexible ) np.testing.assert_array_equal( debt, np.array([ [0.0, 24.75, 0.0], [0.0, 44.55, 19.8], [0.0, 22.275, 0.0], [0.0, 0.0, 9.9], [4.95, 0.0, 0.0] ]) ) np.testing.assert_array_equal( free_cash, np.array([ [73.4975, 74.0025, 73.4975], [52.0955, 53.00449999999999, 72.1015], [65.797, 81.25299999999999, 80.0985], [74.598, 114.60199999999998, 78.9005], [68.5985, 108.50149999999998, 87.49949999999998] ]) ) np.testing.assert_almost_equal( free_cash, pf.cash(free=True).values ) debt = np.empty(price_wide.shape, dtype=np.float_) free_cash = np.empty((price_wide.shape[0], 2), dtype=np.float_) pf = vbt.Portfolio.from_order_func( price_wide, order_func, size, post_order_func_nb=post_order_func, post_order_args=(debt, free_cash,), row_wise=test_row_wise, use_numba=False, group_by=[0, 0, 1], cash_sharing=True, flexible=test_flexible ) np.testing.assert_array_equal( debt, np.array([ [0.0, 4.95, 0.0], [0.0, 14.850000000000001, 9.9], [0.0, 7.425000000000001, 0.0], [0.0, 0.0, 19.8], [24.75, 0.0, 0.0] ]) ) np.testing.assert_array_equal( free_cash, np.array([ [87.9, 93.8995], [65.70000000000002, 92.70150000000001], [77.95000000000002, 80.8985], [90.00000000000001, 79.5025], [37.500000000000014, 67.0975] ]) ) np.testing.assert_almost_equal( free_cash, pf.cash(free=True).values ) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_init_cash(self, test_row_wise, test_flexible): order_func = flex_order_func_nb if test_flexible else order_func_nb pf = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(10.), row_wise=test_row_wise, init_cash=[1., 10., np.inf], flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 10.0, 1.0, 0.0, 0), (2, 2, 0, 10.0, 1.0, 0.0, 0), (3, 0, 1, 10.0, 2.0, 0.0, 1), (4, 1, 1, 10.0, 2.0, 0.0, 1), (5, 2, 1, 10.0, 2.0, 0.0, 1), (6, 0, 2, 6.666666666666667, 3.0, 0.0, 0), (7, 1, 2, 6.666666666666667, 3.0, 0.0, 0), (8, 2, 2, 10.0, 3.0, 0.0, 0), (9, 0, 3, 10.0, 4.0, 0.0, 1), (10, 1, 3, 10.0, 4.0, 0.0, 1), (11, 2, 3, 10.0, 4.0, 0.0, 1), (12, 0, 4, 8.0, 5.0, 0.0, 0), (13, 1, 4, 8.0, 5.0, 0.0, 0), (14, 2, 4, 10.0, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 10.0, 2.0, 0.0, 1), (2, 0, 2, 6.666666666666667, 3.0, 0.0, 0), (3, 0, 3, 10.0, 4.0, 0.0, 1), (4, 0, 4, 8.0, 5.0, 0.0, 0), (5, 1, 0, 10.0, 1.0, 0.0, 0), (6, 1, 1, 10.0, 2.0, 0.0, 1), (7, 1, 2, 6.666666666666667, 3.0, 0.0, 0), (8, 1, 3, 10.0, 4.0, 0.0, 1), (9, 1, 4, 8.0, 5.0, 0.0, 0), (10, 2, 0, 10.0, 1.0, 0.0, 0), (11, 2, 1, 10.0, 2.0, 0.0, 1), (12, 2, 2, 10.0, 3.0, 0.0, 0), (13, 2, 3, 10.0, 4.0, 0.0, 1), (14, 2, 4, 10.0, 5.0, 0.0, 0) ], dtype=order_dt) ) assert type(pf._init_cash) == np.ndarray base_pf = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(10.), row_wise=test_row_wise, init_cash=np.inf, flexible=test_flexible) pf = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(10.), row_wise=test_row_wise, init_cash=InitCashMode.Auto, flexible=test_flexible) record_arrays_close( pf.order_records, base_pf.orders.values ) assert pf._init_cash == InitCashMode.Auto pf = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(10.), row_wise=test_row_wise, init_cash=InitCashMode.AutoAlign, flexible=test_flexible) record_arrays_close( pf.order_records, base_pf.orders.values ) assert pf._init_cash == InitCashMode.AutoAlign def test_func_calls(self): @njit def pre_sim_func_nb(c, call_i, pre_sim_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_sim_lst.append(call_i[0]) return (call_i,) @njit def post_sim_func_nb(c, call_i, post_sim_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_sim_lst.append(call_i[0]) return (call_i,) @njit def pre_group_func_nb(c, call_i, pre_group_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_group_lst.append(call_i[0]) return (call_i,) @njit def post_group_func_nb(c, call_i, post_group_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_group_lst.append(call_i[0]) return (call_i,) @njit def pre_segment_func_nb(c, call_i, pre_segment_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_segment_lst.append(call_i[0]) return (call_i,) @njit def post_segment_func_nb(c, call_i, post_segment_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_segment_lst.append(call_i[0]) return (call_i,) @njit def order_func_nb(c, call_i, order_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 order_lst.append(call_i[0]) return NoOrder @njit def post_order_func_nb(c, call_i, post_order_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_order_lst.append(call_i[0]) sub_arg = vbt.RepEval('np.prod([target_shape[0], target_shape[1]])') call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_group_lst = List.empty_list(typeof(0)) post_group_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_group_func_nb=pre_group_func_nb, pre_group_args=(pre_group_lst, sub_arg), post_group_func_nb=post_group_func_nb, post_group_args=(post_group_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), row_wise=False, template_mapping=dict(np=np) ) assert call_i[0] == 56 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [56] assert list(pre_group_lst) == [2, 34] assert list(post_group_lst) == [33, 55] assert list(pre_segment_lst) == [3, 9, 15, 21, 27, 35, 39, 43, 47, 51] assert list(post_segment_lst) == [8, 14, 20, 26, 32, 38, 42, 46, 50, 54] assert list(order_lst) == [4, 6, 10, 12, 16, 18, 22, 24, 28, 30, 36, 40, 44, 48, 52] assert list(post_order_lst) == [5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 45, 49, 53] segment_mask = np.array([ [False, False], [False, True], [True, False], [True, True], [False, False], ]) call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_group_lst = List.empty_list(typeof(0)) post_group_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_group_func_nb=pre_group_func_nb, pre_group_args=(pre_group_lst, sub_arg), post_group_func_nb=post_group_func_nb, post_group_args=(post_group_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), segment_mask=segment_mask, call_pre_segment=True, call_post_segment=True, row_wise=False, template_mapping=dict(np=np) ) assert call_i[0] == 38 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [38] assert list(pre_group_lst) == [2, 22] assert list(post_group_lst) == [21, 37] assert list(pre_segment_lst) == [3, 5, 7, 13, 19, 23, 25, 29, 31, 35] assert list(post_segment_lst) == [4, 6, 12, 18, 20, 24, 28, 30, 34, 36] assert list(order_lst) == [8, 10, 14, 16, 26, 32] assert list(post_order_lst) == [9, 11, 15, 17, 27, 33] call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_group_lst = List.empty_list(typeof(0)) post_group_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_group_func_nb=pre_group_func_nb, pre_group_args=(pre_group_lst, sub_arg), post_group_func_nb=post_group_func_nb, post_group_args=(post_group_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), segment_mask=segment_mask, call_pre_segment=False, call_post_segment=False, row_wise=False, template_mapping=dict(np=np) ) assert call_i[0] == 26 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [26] assert list(pre_group_lst) == [2, 16] assert list(post_group_lst) == [15, 25] assert list(pre_segment_lst) == [3, 9, 17, 21] assert list(post_segment_lst) == [8, 14, 20, 24] assert list(order_lst) == [4, 6, 10, 12, 18, 22] assert list(post_order_lst) == [5, 7, 11, 13, 19, 23] def test_func_calls_flexible(self): @njit def pre_sim_func_nb(c, call_i, pre_sim_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_sim_lst.append(call_i[0]) return (call_i,) @njit def post_sim_func_nb(c, call_i, post_sim_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_sim_lst.append(call_i[0]) return (call_i,) @njit def pre_group_func_nb(c, call_i, pre_group_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_group_lst.append(call_i[0]) return (call_i,) @njit def post_group_func_nb(c, call_i, post_group_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_group_lst.append(call_i[0]) return (call_i,) @njit def pre_segment_func_nb(c, call_i, pre_segment_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_segment_lst.append(call_i[0]) return (call_i,) @njit def post_segment_func_nb(c, call_i, post_segment_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_segment_lst.append(call_i[0]) return (call_i,) @njit def flex_order_func_nb(c, call_i, order_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 order_lst.append(call_i[0]) col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, NoOrder return -1, NoOrder @njit def post_order_func_nb(c, call_i, post_order_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_order_lst.append(call_i[0]) sub_arg = vbt.RepEval('np.prod([target_shape[0], target_shape[1]])') call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_group_lst = List.empty_list(typeof(0)) post_group_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, flex_order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_group_func_nb=pre_group_func_nb, pre_group_args=(pre_group_lst, sub_arg), post_group_func_nb=post_group_func_nb, post_group_args=(post_group_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), row_wise=False, flexible=True, template_mapping=dict(np=np) ) assert call_i[0] == 66 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [66] assert list(pre_group_lst) == [2, 39] assert list(post_group_lst) == [38, 65] assert list(pre_segment_lst) == [3, 10, 17, 24, 31, 40, 45, 50, 55, 60] assert list(post_segment_lst) == [9, 16, 23, 30, 37, 44, 49, 54, 59, 64] assert list(order_lst) == [ 4, 6, 8, 11, 13, 15, 18, 20, 22, 25, 27, 29, 32, 34, 36, 41, 43, 46, 48, 51, 53, 56, 58, 61, 63 ] assert list(post_order_lst) == [5, 7, 12, 14, 19, 21, 26, 28, 33, 35, 42, 47, 52, 57, 62] segment_mask = np.array([ [False, False], [False, True], [True, False], [True, True], [False, False], ]) call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_group_lst = List.empty_list(typeof(0)) post_group_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, flex_order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_group_func_nb=pre_group_func_nb, pre_group_args=(pre_group_lst, sub_arg), post_group_func_nb=post_group_func_nb, post_group_args=(post_group_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), segment_mask=segment_mask, call_pre_segment=True, call_post_segment=True, row_wise=False, flexible=True, template_mapping=dict(np=np) ) assert call_i[0] == 42 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [42] assert list(pre_group_lst) == [2, 24] assert list(post_group_lst) == [23, 41] assert list(pre_segment_lst) == [3, 5, 7, 14, 21, 25, 27, 32, 34, 39] assert list(post_segment_lst) == [4, 6, 13, 20, 22, 26, 31, 33, 38, 40] assert list(order_lst) == [8, 10, 12, 15, 17, 19, 28, 30, 35, 37] assert list(post_order_lst) == [9, 11, 16, 18, 29, 36] call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_group_lst = List.empty_list(typeof(0)) post_group_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, flex_order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_group_func_nb=pre_group_func_nb, pre_group_args=(pre_group_lst, sub_arg), post_group_func_nb=post_group_func_nb, post_group_args=(post_group_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), segment_mask=segment_mask, call_pre_segment=False, call_post_segment=False, row_wise=False, flexible=True, template_mapping=dict(np=np) ) assert call_i[0] == 30 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [30] assert list(pre_group_lst) == [2, 18] assert list(post_group_lst) == [17, 29] assert list(pre_segment_lst) == [3, 10, 19, 24] assert list(post_segment_lst) == [9, 16, 23, 28] assert list(order_lst) == [4, 6, 8, 11, 13, 15, 20, 22, 25, 27] assert list(post_order_lst) == [5, 7, 12, 14, 21, 26] def test_func_calls_row_wise(self): @njit def pre_sim_func_nb(c, call_i, pre_sim_lst): call_i[0] += 1 pre_sim_lst.append(call_i[0]) return (call_i,) @njit def post_sim_func_nb(c, call_i, post_sim_lst): call_i[0] += 1 post_sim_lst.append(call_i[0]) return (call_i,) @njit def pre_row_func_nb(c, call_i, pre_row_lst): call_i[0] += 1 pre_row_lst.append(call_i[0]) return (call_i,) @njit def post_row_func_nb(c, call_i, post_row_lst): call_i[0] += 1 post_row_lst.append(call_i[0]) return (call_i,) @njit def pre_segment_func_nb(c, call_i, pre_segment_lst): call_i[0] += 1 pre_segment_lst.append(call_i[0]) return (call_i,) @njit def post_segment_func_nb(c, call_i, post_segment_lst): call_i[0] += 1 post_segment_lst.append(call_i[0]) return (call_i,) @njit def order_func_nb(c, call_i, order_lst): call_i[0] += 1 order_lst.append(call_i[0]) return NoOrder @njit def post_order_func_nb(c, call_i, post_order_lst): call_i[0] += 1 post_order_lst.append(call_i[0]) sub_arg = vbt.RepEval('np.prod([target_shape[0], target_shape[1]])') call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_row_lst = List.empty_list(typeof(0)) post_row_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst), pre_row_func_nb=pre_row_func_nb, pre_row_args=(pre_row_lst,), post_row_func_nb=post_row_func_nb, post_row_args=(post_row_lst,), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst,), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst,), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst,), row_wise=True, template_mapping=dict(np=np) ) assert call_i[0] == 62 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [62] assert list(pre_row_lst) == [2, 14, 26, 38, 50] assert list(post_row_lst) == [13, 25, 37, 49, 61] assert list(pre_segment_lst) == [3, 9, 15, 21, 27, 33, 39, 45, 51, 57] assert list(post_segment_lst) == [8, 12, 20, 24, 32, 36, 44, 48, 56, 60] assert list(order_lst) == [4, 6, 10, 16, 18, 22, 28, 30, 34, 40, 42, 46, 52, 54, 58] assert list(post_order_lst) == [5, 7, 11, 17, 19, 23, 29, 31, 35, 41, 43, 47, 53, 55, 59] segment_mask = np.array([ [False, False], [False, True], [True, False], [True, True], [False, False], ]) call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_row_lst = List.empty_list(typeof(0)) post_row_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst), pre_row_func_nb=pre_row_func_nb, pre_row_args=(pre_row_lst,), post_row_func_nb=post_row_func_nb, post_row_args=(post_row_lst,), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst,), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst,), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst,), segment_mask=segment_mask, call_pre_segment=True, call_post_segment=True, row_wise=True, template_mapping=dict(np=np) ) assert call_i[0] == 44 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [44] assert list(pre_row_lst) == [2, 8, 16, 26, 38] assert list(post_row_lst) == [7, 15, 25, 37, 43] assert list(pre_segment_lst) == [3, 5, 9, 11, 17, 23, 27, 33, 39, 41] assert list(post_segment_lst) == [4, 6, 10, 14, 22, 24, 32, 36, 40, 42] assert list(order_lst) == [12, 18, 20, 28, 30, 34] assert list(post_order_lst) == [13, 19, 21, 29, 31, 35] call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_row_lst = List.empty_list(typeof(0)) post_row_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst), pre_row_func_nb=pre_row_func_nb, pre_row_args=(pre_row_lst,), post_row_func_nb=post_row_func_nb, post_row_args=(post_row_lst,), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst,), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst,), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst,), segment_mask=segment_mask, call_pre_segment=False, call_post_segment=False, row_wise=True, template_mapping=dict(np=np) ) assert call_i[0] == 32 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [32] assert list(pre_row_lst) == [2, 4, 10, 18, 30] assert list(post_row_lst) == [3, 9, 17, 29, 31] assert list(pre_segment_lst) == [5, 11, 19, 25] assert list(post_segment_lst) == [8, 16, 24, 28] assert list(order_lst) == [6, 12, 14, 20, 22, 26] assert list(post_order_lst) == [7, 13, 15, 21, 23, 27] def test_func_calls_row_wise_flexible(self): @njit def pre_sim_func_nb(c, call_i, pre_sim_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_sim_lst.append(call_i[0]) return (call_i,) @njit def post_sim_func_nb(c, call_i, post_sim_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_sim_lst.append(call_i[0]) return (call_i,) @njit def pre_row_func_nb(c, call_i, pre_row_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_row_lst.append(call_i[0]) return (call_i,) @njit def post_row_func_nb(c, call_i, post_row_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_row_lst.append(call_i[0]) return (call_i,) @njit def pre_segment_func_nb(c, call_i, pre_segment_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_segment_lst.append(call_i[0]) return (call_i,) @njit def post_segment_func_nb(c, call_i, post_segment_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_segment_lst.append(call_i[0]) return (call_i,) @njit def flex_order_func_nb(c, call_i, order_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 order_lst.append(call_i[0]) col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, NoOrder return -1, NoOrder @njit def post_order_func_nb(c, call_i, post_order_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_order_lst.append(call_i[0]) sub_arg = vbt.RepEval('np.prod([target_shape[0], target_shape[1]])') call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_row_lst = List.empty_list(typeof(0)) post_row_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, flex_order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_row_func_nb=pre_row_func_nb, pre_row_args=(pre_row_lst, sub_arg), post_row_func_nb=post_row_func_nb, post_row_args=(post_row_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), row_wise=True, flexible=True, template_mapping=dict(np=np) ) assert call_i[0] == 72 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [72] assert list(pre_row_lst) == [2, 16, 30, 44, 58] assert list(post_row_lst) == [15, 29, 43, 57, 71] assert list(pre_segment_lst) == [3, 10, 17, 24, 31, 38, 45, 52, 59, 66] assert list(post_segment_lst) == [9, 14, 23, 28, 37, 42, 51, 56, 65, 70] assert list(order_lst) == [ 4, 6, 8, 11, 13, 18, 20, 22, 25, 27, 32, 34, 36, 39, 41, 46, 48, 50, 53, 55, 60, 62, 64, 67, 69 ] assert list(post_order_lst) == [5, 7, 12, 19, 21, 26, 33, 35, 40, 47, 49, 54, 61, 63, 68] segment_mask = np.array([ [False, False], [False, True], [True, False], [True, True], [False, False], ]) call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_row_lst = List.empty_list(typeof(0)) post_row_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, flex_order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_row_func_nb=pre_row_func_nb, pre_row_args=(pre_row_lst, sub_arg), post_row_func_nb=post_row_func_nb, post_row_args=(post_row_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), segment_mask=segment_mask, call_pre_segment=True, call_post_segment=True, row_wise=True, flexible=True, template_mapping=dict(np=np) ) assert call_i[0] == 48 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [48] assert list(pre_row_lst) == [2, 8, 17, 28, 42] assert list(post_row_lst) == [7, 16, 27, 41, 47] assert list(pre_segment_lst) == [3, 5, 9, 11, 18, 25, 29, 36, 43, 45] assert list(post_segment_lst) == [4, 6, 10, 15, 24, 26, 35, 40, 44, 46] assert list(order_lst) == [12, 14, 19, 21, 23, 30, 32, 34, 37, 39] assert list(post_order_lst) == [13, 20, 22, 31, 33, 38] call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_row_lst = List.empty_list(typeof(0)) post_row_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, flex_order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_row_func_nb=pre_row_func_nb, pre_row_args=(pre_row_lst, sub_arg), post_row_func_nb=post_row_func_nb, post_row_args=(post_row_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), segment_mask=segment_mask, call_pre_segment=False, call_post_segment=False, row_wise=True, flexible=True, template_mapping=dict(np=np) ) assert call_i[0] == 36 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [36] assert list(pre_row_lst) == [2, 4, 11, 20, 34] assert list(post_row_lst) == [3, 10, 19, 33, 35] assert list(pre_segment_lst) == [5, 12, 21, 28] assert list(post_segment_lst) == [9, 18, 27, 32] assert list(order_lst) == [6, 8, 13, 15, 17, 22, 24, 26, 29, 31] assert list(post_order_lst) == [7, 14, 16, 23, 25, 30] @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_max_orders(self, test_row_wise, test_flexible): order_func = flex_order_func_nb if test_flexible else order_func_nb _ = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(np.inf), row_wise=test_row_wise, flexible=test_flexible) _ = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(np.inf), row_wise=test_row_wise, max_orders=15, flexible=test_flexible) with pytest.raises(Exception): _ = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(np.inf), row_wise=test_row_wise, max_orders=14, flexible=test_flexible) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_max_logs(self, test_row_wise, test_flexible): log_order_func = log_flex_order_func_nb if test_flexible else log_order_func_nb _ = vbt.Portfolio.from_order_func( price_wide, log_order_func, np.asarray(np.inf), row_wise=test_row_wise, flexible=test_flexible) _ = vbt.Portfolio.from_order_func( price_wide, log_order_func, np.asarray(np.inf), row_wise=test_row_wise, max_logs=15, flexible=test_flexible) with pytest.raises(Exception): _ = vbt.Portfolio.from_order_func( price_wide, log_order_func, np.asarray(np.inf), row_wise=test_row_wise, max_logs=14, flexible=test_flexible) # ############# Portfolio ############# # price_na = pd.DataFrame({ 'a': [np.nan, 2., 3., 4., 5.], 'b': [1., 2., np.nan, 4., 5.], 'c': [1., 2., 3., 4., np.nan] }, index=price.index) order_size_new = pd.Series([1., 0.1, -1., -0.1, 1.]) directions = ['longonly', 'shortonly', 'both'] group_by = pd.Index(['first', 'first', 'second'], name='group') pf = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='amount', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=None, init_cash=[100., 100., 100.], freq='1D', attach_call_seq=True ) # independent pf_grouped = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='amount', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=group_by, cash_sharing=False, init_cash=[100., 100., 100.], freq='1D', attach_call_seq=True ) # grouped pf_shared = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='amount', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=group_by, cash_sharing=True, init_cash=[200., 100.], freq='1D', attach_call_seq=True ) # shared class TestPortfolio: def test_config(self, tmp_path): pf2 = pf.copy() pf2._metrics = pf2._metrics.copy() pf2.metrics['hello'] = 'world' pf2._subplots = pf2.subplots.copy() pf2.subplots['hello'] = 'world' assert vbt.Portfolio.loads(pf2['a'].dumps()) == pf2['a'] assert vbt.Portfolio.loads(pf2.dumps()) == pf2 pf2.save(tmp_path / 'pf') assert vbt.Portfolio.load(tmp_path / 'pf') == pf2 def test_wrapper(self): pd.testing.assert_index_equal( pf.wrapper.index, price_na.index ) pd.testing.assert_index_equal( pf.wrapper.columns, price_na.columns ) assert pf.wrapper.ndim == 2 assert pf.wrapper.grouper.group_by is None assert pf.wrapper.grouper.allow_enable assert pf.wrapper.grouper.allow_disable assert pf.wrapper.grouper.allow_modify pd.testing.assert_index_equal( pf_grouped.wrapper.index, price_na.index ) pd.testing.assert_index_equal( pf_grouped.wrapper.columns, price_na.columns ) assert pf_grouped.wrapper.ndim == 2 pd.testing.assert_index_equal( pf_grouped.wrapper.grouper.group_by, group_by ) assert pf_grouped.wrapper.grouper.allow_enable assert pf_grouped.wrapper.grouper.allow_disable assert pf_grouped.wrapper.grouper.allow_modify pd.testing.assert_index_equal( pf_shared.wrapper.index, price_na.index ) pd.testing.assert_index_equal( pf_shared.wrapper.columns, price_na.columns ) assert pf_shared.wrapper.ndim == 2 pd.testing.assert_index_equal( pf_shared.wrapper.grouper.group_by, group_by ) assert not pf_shared.wrapper.grouper.allow_enable assert pf_shared.wrapper.grouper.allow_disable assert not pf_shared.wrapper.grouper.allow_modify def test_indexing(self): assert pf['a'].wrapper == pf.wrapper['a'] assert pf['a'].orders == pf.orders['a'] assert pf['a'].logs == pf.logs['a'] assert pf['a'].init_cash == pf.init_cash['a'] pd.testing.assert_series_equal(pf['a'].call_seq, pf.call_seq['a']) assert pf['c'].wrapper == pf.wrapper['c'] assert pf['c'].orders == pf.orders['c'] assert pf['c'].logs == pf.logs['c'] assert pf['c'].init_cash == pf.init_cash['c'] pd.testing.assert_series_equal(pf['c'].call_seq, pf.call_seq['c']) assert pf[['c']].wrapper == pf.wrapper[['c']] assert pf[['c']].orders == pf.orders[['c']] assert pf[['c']].logs == pf.logs[['c']] pd.testing.assert_series_equal(pf[['c']].init_cash, pf.init_cash[['c']]) pd.testing.assert_frame_equal(pf[['c']].call_seq, pf.call_seq[['c']]) assert pf_grouped['first'].wrapper == pf_grouped.wrapper['first'] assert pf_grouped['first'].orders == pf_grouped.orders['first'] assert pf_grouped['first'].logs == pf_grouped.logs['first'] assert pf_grouped['first'].init_cash == pf_grouped.init_cash['first'] pd.testing.assert_frame_equal(pf_grouped['first'].call_seq, pf_grouped.call_seq[['a', 'b']]) assert pf_grouped[['first']].wrapper == pf_grouped.wrapper[['first']] assert pf_grouped[['first']].orders == pf_grouped.orders[['first']] assert pf_grouped[['first']].logs == pf_grouped.logs[['first']] pd.testing.assert_series_equal( pf_grouped[['first']].init_cash, pf_grouped.init_cash[['first']]) pd.testing.assert_frame_equal(pf_grouped[['first']].call_seq, pf_grouped.call_seq[['a', 'b']]) assert pf_grouped['second'].wrapper == pf_grouped.wrapper['second'] assert pf_grouped['second'].orders == pf_grouped.orders['second'] assert pf_grouped['second'].logs == pf_grouped.logs['second'] assert pf_grouped['second'].init_cash == pf_grouped.init_cash['second'] pd.testing.assert_series_equal(pf_grouped['second'].call_seq, pf_grouped.call_seq['c']) assert pf_grouped[['second']].orders == pf_grouped.orders[['second']] assert pf_grouped[['second']].wrapper == pf_grouped.wrapper[['second']] assert pf_grouped[['second']].orders == pf_grouped.orders[['second']] assert pf_grouped[['second']].logs == pf_grouped.logs[['second']] pd.testing.assert_series_equal( pf_grouped[['second']].init_cash, pf_grouped.init_cash[['second']]) pd.testing.assert_frame_equal(pf_grouped[['second']].call_seq, pf_grouped.call_seq[['c']]) assert pf_shared['first'].wrapper == pf_shared.wrapper['first'] assert pf_shared['first'].orders == pf_shared.orders['first'] assert pf_shared['first'].logs == pf_shared.logs['first'] assert pf_shared['first'].init_cash == pf_shared.init_cash['first'] pd.testing.assert_frame_equal(pf_shared['first'].call_seq, pf_shared.call_seq[['a', 'b']]) assert pf_shared[['first']].orders == pf_shared.orders[['first']] assert pf_shared[['first']].wrapper == pf_shared.wrapper[['first']] assert pf_shared[['first']].orders == pf_shared.orders[['first']] assert pf_shared[['first']].logs == pf_shared.logs[['first']] pd.testing.assert_series_equal( pf_shared[['first']].init_cash, pf_shared.init_cash[['first']]) pd.testing.assert_frame_equal(pf_shared[['first']].call_seq, pf_shared.call_seq[['a', 'b']]) assert pf_shared['second'].wrapper == pf_shared.wrapper['second'] assert pf_shared['second'].orders == pf_shared.orders['second'] assert pf_shared['second'].logs == pf_shared.logs['second'] assert pf_shared['second'].init_cash == pf_shared.init_cash['second'] pd.testing.assert_series_equal(pf_shared['second'].call_seq, pf_shared.call_seq['c']) assert pf_shared[['second']].wrapper == pf_shared.wrapper[['second']] assert pf_shared[['second']].orders == pf_shared.orders[['second']] assert pf_shared[['second']].logs == pf_shared.logs[['second']] pd.testing.assert_series_equal( pf_shared[['second']].init_cash, pf_shared.init_cash[['second']]) pd.testing.assert_frame_equal(pf_shared[['second']].call_seq, pf_shared.call_seq[['c']]) def test_regroup(self): assert pf.regroup(None) == pf assert pf.regroup(False) == pf assert pf.regroup(group_by) != pf pd.testing.assert_index_equal(pf.regroup(group_by).wrapper.grouper.group_by, group_by) assert pf_grouped.regroup(None) == pf_grouped assert pf_grouped.regroup(False) != pf_grouped assert pf_grouped.regroup(False).wrapper.grouper.group_by is None assert pf_grouped.regroup(group_by) == pf_grouped assert pf_shared.regroup(None) == pf_shared with pytest.raises(Exception): _ = pf_shared.regroup(False) assert pf_shared.regroup(group_by) == pf_shared def test_cash_sharing(self): assert not pf.cash_sharing assert not pf_grouped.cash_sharing assert pf_shared.cash_sharing def test_call_seq(self): pd.testing.assert_frame_equal( pf.call_seq, pd.DataFrame( np.array([ [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf_grouped.call_seq, pd.DataFrame( np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf_shared.call_seq, pd.DataFrame( np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) def test_orders(self): record_arrays_close( pf.orders.values, np.array([ (0, 0, 1, 0.1, 2.02, 0.10202, 0), (1, 0, 2, 0.1, 2.9699999999999998, 0.10297, 1), (2, 0, 4, 1.0, 5.05, 0.1505, 0), (3, 1, 0, 1.0, 0.99, 0.10990000000000001, 1), (4, 1, 1, 0.1, 1.98, 0.10198, 1), (5, 1, 3, 0.1, 4.04, 0.10404000000000001, 0), (6, 1, 4, 1.0, 4.95, 0.14950000000000002, 1), (7, 2, 0, 1.0, 1.01, 0.1101, 0), (8, 2, 1, 0.1, 2.02, 0.10202, 0), (9, 2, 2, 1.0, 2.9699999999999998, 0.1297, 1), (10, 2, 3, 0.1, 3.96, 0.10396000000000001, 1) ], dtype=order_dt) ) result = pd.Series( np.array([3, 4, 4]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( pf.orders.count(), result ) pd.testing.assert_series_equal( pf_grouped.get_orders(group_by=False).count(), result ) pd.testing.assert_series_equal( pf_shared.get_orders(group_by=False).count(), result ) result = pd.Series( np.array([7, 4]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( pf.get_orders(group_by=group_by).count(), result ) pd.testing.assert_series_equal( pf_grouped.orders.count(), result ) pd.testing.assert_series_equal( pf_shared.orders.count(), result ) def test_logs(self): record_arrays_close( pf.logs.values, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, np.nan, 100.0, 1.0, np.nan, 0, 0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 100.0, 0.0, 0.0, 100.0, np.nan, 100.0, np.nan, np.nan, np.nan, -1, 1, 1, -1), (1, 0, 0, 1, 100.0, 0.0, 0.0, 100.0, 2.0, 100.0, 0.1, 2.0, 0, 0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 99.69598, 0.1, 0.0, 99.69598, 2.0, 100.0, 0.1, 2.02, 0.10202, 0, 0, -1, 0), (2, 0, 0, 2, 99.69598, 0.1, 0.0, 99.69598, 3.0, 99.99598, -1.0, 3.0, 0, 0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 99.89001, 0.0, 0.0, 99.89001, 3.0, 99.99598, 0.1, 2.9699999999999998, 0.10297, 1, 0, -1, 1), (3, 0, 0, 3, 99.89001, 0.0, 0.0, 99.89001, 4.0, 99.89001, -0.1, 4.0, 0, 0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 99.89001, 0.0, 0.0, 99.89001, 4.0, 99.89001, np.nan, np.nan, np.nan, -1, 2, 8, -1), (4, 0, 0, 4, 99.89001, 0.0, 0.0, 99.89001, 5.0, 99.89001, 1.0, 5.0, 0, 0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 94.68951, 1.0, 0.0, 94.68951, 5.0, 99.89001, 1.0, 5.05, 0.1505, 0, 0, -1, 2), (5, 1, 1, 0, 100.0, 0.0, 0.0, 100.0, 1.0, 100.0, 1.0, 1.0, 0, 1, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 100.8801, -1.0, 0.99, 98.9001, 1.0, 100.0, 1.0, 0.99, 0.10990000000000001, 1, 0, -1, 3), (6, 1, 1, 1, 100.8801, -1.0, 0.99, 98.9001, 2.0, 98.8801, 0.1, 2.0, 0, 1, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 100.97612, -1.1, 1.188, 98.60011999999999, 2.0, 98.8801, 0.1, 1.98, 0.10198, 1, 0, -1, 4), (7, 1, 1, 2, 100.97612, -1.1, 1.188, 98.60011999999999, 2.0, 98.77611999999999, -1.0, np.nan, 0, 1, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 100.97612, -1.1, 1.188, 98.60011999999999, 2.0, 98.77611999999999, np.nan, np.nan, np.nan, -1, 1, 1, -1), (8, 1, 1, 3, 100.97612, -1.1, 1.188, 98.60011999999999, 4.0, 96.57611999999999, -0.1, 4.0, 0, 1, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 100.46808, -1.0, 1.08, 98.30807999999999, 4.0, 96.57611999999999, 0.1, 4.04, 0.10404000000000001, 0, 0, -1, 5), (9, 1, 1, 4, 100.46808, -1.0, 1.08, 98.30807999999999, 5.0, 95.46808, 1.0, 5.0, 0, 1, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 105.26858, -2.0, 6.03, 93.20857999999998, 5.0, 95.46808, 1.0, 4.95, 0.14950000000000002, 1, 0, -1, 6), (10, 2, 2, 0, 100.0, 0.0, 0.0, 100.0, 1.0, 100.0, 1.0, 1.0, 0, 2, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 98.8799, 1.0, 0.0, 98.8799, 1.0, 100.0, 1.0, 1.01, 0.1101, 0, 0, -1, 7), (11, 2, 2, 1, 98.8799, 1.0, 0.0, 98.8799, 2.0, 100.8799, 0.1, 2.0, 0, 2, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 98.57588000000001, 1.1, 0.0, 98.57588000000001, 2.0, 100.8799, 0.1, 2.02, 0.10202, 0, 0, -1, 8), (12, 2, 2, 2, 98.57588000000001, 1.1, 0.0, 98.57588000000001, 3.0, 101.87588000000001, -1.0, 3.0, 0, 2, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 101.41618000000001, 0.10000000000000009, 0.0, 101.41618000000001, 3.0, 101.87588000000001, 1.0, 2.9699999999999998, 0.1297, 1, 0, -1, 9), (13, 2, 2, 3, 101.41618000000001, 0.10000000000000009, 0.0, 101.41618000000001, 4.0, 101.81618000000002, -0.1, 4.0, 0, 2, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 101.70822000000001, 0.0, 0.0, 101.70822000000001, 4.0, 101.81618000000002, 0.1, 3.96, 0.10396000000000001, 1, 0, -1, 10), (14, 2, 2, 4, 101.70822000000001, 0.0, 0.0, 101.70822000000001, 4.0, 101.70822000000001, 1.0, np.nan, 0, 2, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 101.70822000000001, 0.0, 0.0, 101.70822000000001, 4.0, 101.70822000000001, np.nan, np.nan, np.nan, -1, 1, 1, -1) ], dtype=log_dt) ) result = pd.Series( np.array([5, 5, 5]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( pf.logs.count(), result ) pd.testing.assert_series_equal( pf_grouped.get_logs(group_by=False).count(), result ) pd.testing.assert_series_equal( pf_shared.get_logs(group_by=False).count(), result ) result = pd.Series( np.array([10, 5]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( pf.get_logs(group_by=group_by).count(), result ) pd.testing.assert_series_equal( pf_grouped.logs.count(), result ) pd.testing.assert_series_equal( pf_shared.logs.count(), result ) def test_entry_trades(self): record_arrays_close( pf.entry_trades.values, np.array([ (0, 0, 0.1, 1, 2.02, 0.10202, 2, 2.9699999999999998, 0.10297, -0.10999000000000003, -0.5445049504950497, 0, 1, 0), (1, 0, 1.0, 4, 5.05, 0.1505, 4, 5.0, 0.0, -0.20049999999999982, -0.03970297029702967, 0, 0, 1), (2, 1, 1.0, 0, 0.99, 0.10990000000000001, 4, 4.954285714285714, 0.049542857142857145, -4.12372857142857, -4.165382395382394, 1, 0, 2), (3, 1, 0.1, 1, 1.98, 0.10198, 4, 4.954285714285714, 0.004954285714285714, -0.4043628571428571, -2.0422366522366517, 1, 0, 2), (4, 1, 1.0, 4, 4.95, 0.14950000000000002, 4, 4.954285714285714, 0.049542857142857145, -0.20332857142857072, -0.04107647907647893, 1, 0, 2), (5, 2, 1.0, 0, 1.01, 0.1101, 3, 3.0599999999999996, 0.21241818181818184, 1.727481818181818, 1.71037803780378, 0, 1, 3), (6, 2, 0.1, 1, 2.02, 0.10202, 3, 3.0599999999999996, 0.021241818181818185, -0.019261818181818203, -0.09535553555355546, 0, 1, 3) ], dtype=trade_dt) ) result = pd.Series( np.array([2, 3, 2]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( pf.entry_trades.count(), result ) pd.testing.assert_series_equal( pf_grouped.get_entry_trades(group_by=False).count(), result ) pd.testing.assert_series_equal( pf_shared.get_entry_trades(group_by=False).count(), result ) result = pd.Series( np.array([5, 2]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( pf.get_entry_trades(group_by=group_by).count(), result ) pd.testing.assert_series_equal( pf_grouped.entry_trades.count(), result ) pd.testing.assert_series_equal( pf_shared.entry_trades.count(), result ) def test_exit_trades(self): record_arrays_close( pf.exit_trades.values, np.array([ (0, 0, 0.1, 1, 2.02, 0.10202, 2, 2.9699999999999998, 0.10297, -0.10999000000000003, -0.5445049504950497, 0, 1, 0), (1, 0, 1.0, 4, 5.05, 0.1505, 4, 5.0, 0.0, -0.20049999999999982, -0.03970297029702967, 0, 0, 1), (2, 1, 0.1, 0, 1.0799999999999998, 0.019261818181818182, 3, 4.04, 0.10404000000000001, -0.4193018181818182, -3.882424242424243, 1, 1, 2), (3, 1, 2.0, 0, 3.015, 0.3421181818181819, 4, 5.0, 0.0, -4.312118181818182, -0.7151108095884214, 1, 0, 2), (4, 2, 1.0, 0, 1.1018181818181818, 0.19283636363636364, 2, 2.9699999999999998, 0.1297, 1.5456454545454543, 1.4028135313531351, 0, 1, 3), (5, 2, 0.10000000000000009, 0, 1.1018181818181818, 0.019283636363636378, 3, 3.96, 0.10396000000000001, 0.1625745454545457, 1.4755115511551162, 0, 1, 3) ], dtype=trade_dt) ) result = pd.Series( np.array([2, 2, 2]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( pf.exit_trades.count(), result ) pd.testing.assert_series_equal( pf_grouped.get_exit_trades(group_by=False).count(), result ) pd.testing.assert_series_equal( pf_shared.get_exit_trades(group_by=False).count(), result ) result = pd.Series( np.array([4, 2]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( pf.get_exit_trades(group_by=group_by).count(), result ) pd.testing.assert_series_equal( pf_grouped.exit_trades.count(), result ) pd.testing.assert_series_equal( pf_shared.exit_trades.count(), result ) def test_positions(self): record_arrays_close( pf.positions.values, np.array([ (0, 0, 0.1, 1, 2.02, 0.10202, 2, 2.9699999999999998, 0.10297, -0.10999000000000003, -0.5445049504950497, 0, 1, 0), (1, 0, 1.0, 4, 5.05, 0.1505, 4, 5.0, 0.0, -0.20049999999999982, -0.03970297029702967, 0, 0, 1), (2, 1, 2.1, 0, 2.9228571428571426, 0.36138000000000003, 4, 4.954285714285714, 0.10404000000000001, -4.731420000000001, -0.7708406647116326, 1, 0, 2), (3, 2, 1.1, 0, 1.1018181818181818, 0.21212000000000003, 3, 3.06, 0.23366000000000003, 1.7082200000000003, 1.4094224422442245, 0, 1, 3) ], dtype=trade_dt) ) result = pd.Series( np.array([2, 1, 1]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( pf.positions.count(), result ) pd.testing.assert_series_equal( pf_grouped.get_positions(group_by=False).count(), result ) pd.testing.assert_series_equal( pf_shared.get_positions(group_by=False).count(), result ) result = pd.Series( np.array([3, 1]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( pf.get_positions(group_by=group_by).count(), result ) pd.testing.assert_series_equal( pf_grouped.positions.count(), result ) pd.testing.assert_series_equal( pf_shared.positions.count(), result ) def test_drawdowns(self): record_arrays_close( pf.drawdowns.values, np.array([ (0, 0, 0, 1, 4, 4, 100.0, 99.68951, 99.68951, 0), (1, 1, 0, 1, 4, 4, 99.8801, 95.26858, 95.26858, 0), (2, 2, 2, 3, 3, 4, 101.71618000000001, 101.70822000000001, 101.70822000000001, 0) ], dtype=drawdown_dt) ) result = pd.Series( np.array([1, 1, 1]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( pf.drawdowns.count(), result ) pd.testing.assert_series_equal( pf_grouped.get_drawdowns(group_by=False).count(), result ) pd.testing.assert_series_equal( pf_shared.get_drawdowns(group_by=False).count(), result ) result = pd.Series( np.array([1, 1]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( pf.get_drawdowns(group_by=group_by).count(), result ) pd.testing.assert_series_equal( pf_grouped.drawdowns.count(), result ) pd.testing.assert_series_equal( pf_shared.drawdowns.count(), result ) def test_close(self): pd.testing.assert_frame_equal(pf.close, price_na) pd.testing.assert_frame_equal(pf_grouped.close, price_na) pd.testing.assert_frame_equal(pf_shared.close, price_na) def test_get_filled_close(self): pd.testing.assert_frame_equal( pf.get_filled_close(), price_na.ffill().bfill() ) def test_asset_flow(self): pd.testing.assert_frame_equal( pf.asset_flow(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 1.], [0.1, 0., 0.1], [-0.1, 0., -1.], [0., 0., -0.1], [1., 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf.asset_flow(direction='shortonly'), pd.DataFrame( np.array([ [0., 1., 0.], [0., 0.1, 0.], [0., 0., 0.], [0., -0.1, 0.], [0., 1., 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -1., 1.], [0.1, -0.1, 0.1], [-0.1, 0., -1.], [0., 0.1, -0.1], [1., -1., 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.asset_flow(), result ) pd.testing.assert_frame_equal( pf_grouped.asset_flow(), result ) pd.testing.assert_frame_equal( pf_shared.asset_flow(), result ) def test_assets(self): pd.testing.assert_frame_equal( pf.assets(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 1.], [0.1, 0., 1.1], [0., 0., 0.1], [0., 0., 0.], [1., 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf.assets(direction='shortonly'), pd.DataFrame( np.array([ [0., 1., 0.], [0., 1.1, 0.], [0., 1.1, 0.], [0., 1., 0.], [0., 2., 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -1., 1.], [0.1, -1.1, 1.1], [0., -1.1, 0.1], [0., -1., 0.], [1., -2., 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.assets(), result ) pd.testing.assert_frame_equal( pf_grouped.assets(), result ) pd.testing.assert_frame_equal( pf_shared.assets(), result ) def test_position_mask(self): pd.testing.assert_frame_equal( pf.position_mask(direction='longonly'), pd.DataFrame( np.array([ [False, False, True], [True, False, True], [False, False, True], [False, False, False], [True, False, False] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf.position_mask(direction='shortonly'), pd.DataFrame( np.array([ [False, True, False], [False, True, False], [False, True, False], [False, True, False], [False, True, False] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [False, True, True], [True, True, True], [False, True, True], [False, True, False], [True, True, False] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.position_mask(), result ) pd.testing.assert_frame_equal( pf_grouped.position_mask(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.position_mask(group_by=False), result ) result = pd.DataFrame( np.array([ [True, True], [True, True], [True, True], [True, False], [True, False] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.position_mask(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.position_mask(), result ) pd.testing.assert_frame_equal( pf_shared.position_mask(), result ) def test_position_coverage(self): pd.testing.assert_series_equal( pf.position_coverage(direction='longonly'), pd.Series(np.array([0.4, 0., 0.6]), index=price_na.columns).rename('position_coverage') ) pd.testing.assert_series_equal( pf.position_coverage(direction='shortonly'), pd.Series(np.array([0., 1., 0.]), index=price_na.columns).rename('position_coverage') ) result = pd.Series(np.array([0.4, 1., 0.6]), index=price_na.columns).rename('position_coverage') pd.testing.assert_series_equal( pf.position_coverage(), result ) pd.testing.assert_series_equal( pf_grouped.position_coverage(group_by=False), result ) pd.testing.assert_series_equal( pf_shared.position_coverage(group_by=False), result ) result = pd.Series( np.array([0.7, 0.6]), pd.Index(['first', 'second'], dtype='object', name='group') ).rename('position_coverage') pd.testing.assert_series_equal( pf.position_coverage(group_by=group_by), result ) pd.testing.assert_series_equal( pf_grouped.position_coverage(), result ) pd.testing.assert_series_equal( pf_shared.position_coverage(), result ) def test_cash_flow(self): pd.testing.assert_frame_equal( pf.cash_flow(free=True), pd.DataFrame( np.array([ [0.0, -1.0998999999999999, -1.1201], [-0.30402, -0.2999800000000002, -0.3040200000000002], [0.19402999999999998, 0.0, 2.8402999999999996], [0.0, -0.2920400000000002, 0.29204000000000035], [-5.2005, -5.0995, 0.0] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., 0.8801, -1.1201], [-0.30402, 0.09602, -0.30402], [0.19403, 0., 2.8403], [0., -0.50804, 0.29204], [-5.2005, 4.8005, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.cash_flow(), result ) pd.testing.assert_frame_equal( pf_grouped.cash_flow(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.cash_flow(group_by=False), result ) result = pd.DataFrame( np.array([ [0.8801, -1.1201], [-0.208, -0.30402], [0.19403, 2.8403], [-0.50804, 0.29204], [-0.4, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.cash_flow(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.cash_flow(), result ) pd.testing.assert_frame_equal( pf_shared.cash_flow(), result ) def test_init_cash(self): pd.testing.assert_series_equal( pf.init_cash, pd.Series(np.array([100., 100., 100.]), index=price_na.columns).rename('init_cash') ) pd.testing.assert_series_equal( pf_grouped.get_init_cash(group_by=False), pd.Series(np.array([100., 100., 100.]), index=price_na.columns).rename('init_cash') ) pd.testing.assert_series_equal( pf_shared.get_init_cash(group_by=False), pd.Series(np.array([200., 200., 100.]), index=price_na.columns).rename('init_cash') ) result = pd.Series( np.array([200., 100.]), pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') pd.testing.assert_series_equal( pf.get_init_cash(group_by=group_by), result ) pd.testing.assert_series_equal( pf_grouped.init_cash, result ) pd.testing.assert_series_equal( pf_shared.init_cash, result ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=None).init_cash, pd.Series( np.array([14000., 12000., 10000.]), index=price_na.columns ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=group_by).init_cash, pd.Series( np.array([26000.0, 10000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=group_by, cash_sharing=True).init_cash, pd.Series( np.array([26000.0, 10000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.AutoAlign, group_by=None).init_cash, pd.Series( np.array([14000., 14000., 14000.]), index=price_na.columns ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.AutoAlign, group_by=group_by).init_cash, pd.Series( np.array([26000.0, 26000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.AutoAlign, group_by=group_by, cash_sharing=True).init_cash, pd.Series( np.array([26000.0, 26000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) def test_cash(self): pd.testing.assert_frame_equal( pf.cash(free=True), pd.DataFrame( np.array([ [100.0, 98.9001, 98.8799], [99.69598, 98.60011999999999, 98.57588000000001], [99.89001, 98.60011999999999, 101.41618000000001], [99.89001, 98.30807999999999, 101.70822000000001], [94.68951, 93.20857999999998, 101.70822000000001] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [100., 100.8801, 98.8799], [99.69598, 100.97612, 98.57588], [99.89001, 100.97612, 101.41618], [99.89001, 100.46808, 101.70822], [94.68951, 105.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.cash(), result ) pd.testing.assert_frame_equal( pf_grouped.cash(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.cash(group_by=False), pd.DataFrame( np.array([ [200., 200.8801, 98.8799], [199.69598, 200.97612, 98.57588], [199.89001, 200.97612, 101.41618], [199.89001, 200.46808, 101.70822], [194.68951, 205.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf_shared.cash(group_by=False, in_sim_order=True), pd.DataFrame( np.array([ [200.8801, 200.8801, 98.8799], [200.6721, 200.97612, 98.57588000000001], [200.86613, 200.6721, 101.41618000000001], [200.35809, 200.35809, 101.70822000000001], [199.95809, 205.15859, 101.70822000000001] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [200.8801, 98.8799], [200.6721, 98.57588], [200.86613, 101.41618], [200.35809, 101.70822], [199.95809, 101.70822] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.cash(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.cash(), result ) pd.testing.assert_frame_equal( pf_shared.cash(), result ) def test_asset_value(self): pd.testing.assert_frame_equal( pf.asset_value(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 1.], [0.2, 0., 2.2], [0., 0., 0.3], [0., 0., 0.], [5., 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf.asset_value(direction='shortonly'), pd.DataFrame( np.array([ [0., 1., 0.], [0., 2.2, 0.], [0., 2.2, 0.], [0., 4., 0.], [0., 10., 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -1., 1.], [0.2, -2.2, 2.2], [0., -2.2, 0.3], [0., -4., 0.], [5., -10., 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.asset_value(), result ) pd.testing.assert_frame_equal( pf_grouped.asset_value(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.asset_value(group_by=False), result ) result = pd.DataFrame( np.array([ [-1., 1.], [-2., 2.2], [-2.2, 0.3], [-4., 0.], [-5., 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.asset_value(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.asset_value(), result ) pd.testing.assert_frame_equal( pf_shared.asset_value(), result ) def test_gross_exposure(self): pd.testing.assert_frame_equal( pf.gross_exposure(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 0.01001202], [0.00200208, 0., 0.02183062], [0., 0., 0.00294938], [0., 0., 0.], [0.05015573, 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf.gross_exposure(direction='shortonly'), pd.DataFrame( np.array([ [0.0, 0.01000999998999, 0.0], [0.0, 0.021825370842812494, 0.0], [0.0, 0.021825370842812494, 0.0], [0.0, 0.03909759620159034, 0.0], [0.0, 0.09689116931945001, 0.0] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0.0, -0.010214494162927312, 0.010012024441354066], [0.00200208256628545, -0.022821548354919067, 0.021830620581035857], [0.0, -0.022821548354919067, 0.002949383274126105], [0.0, -0.04241418126633477, 0.0], [0.050155728521486365, -0.12017991413866216, 0.0] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.gross_exposure(), result ) pd.testing.assert_frame_equal( pf_grouped.gross_exposure(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.gross_exposure(group_by=False), pd.DataFrame( np.array([ [0.0, -0.00505305454620791, 0.010012024441354066], [0.0010005203706447724, -0.011201622483733716, 0.021830620581035857], [0.0, -0.011201622483733716, 0.002949383274126105], [0.0, -0.020585865497718882, 0.0], [0.025038871596209537, -0.0545825965137659, 0.0] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [-0.00505305454620791, 0.010012024441354066], [-0.010188689433972452, 0.021830620581035857], [-0.0112078992458765, 0.002949383274126105], [-0.02059752492931316, 0.0], [-0.027337628293439265, 0.0] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.gross_exposure(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.gross_exposure(), result ) pd.testing.assert_frame_equal( pf_shared.gross_exposure(), result ) def test_net_exposure(self): result = pd.DataFrame( np.array([ [0.0, -0.01000999998999, 0.010012024441354066], [0.00200208256628545, -0.021825370842812494, 0.021830620581035857], [0.0, -0.021825370842812494, 0.002949383274126105], [0.0, -0.03909759620159034, 0.0], [0.050155728521486365, -0.09689116931945001, 0.0] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.net_exposure(), result ) pd.testing.assert_frame_equal( pf_grouped.net_exposure(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.net_exposure(group_by=False), pd.DataFrame( np.array([ [0.0, -0.005002498748124688, 0.010012024441354066], [0.0010005203706447724, -0.010956168751293576, 0.021830620581035857], [0.0, -0.010956168751293576, 0.002949383274126105], [0.0, -0.019771825228137207, 0.0], [0.025038871596209537, -0.049210520540028384, 0.0] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [-0.005002498748124688, 0.010012024441354066], [-0.009965205542937988, 0.021830620581035857], [-0.010962173376438594, 0.002949383274126105], [-0.019782580537729116, 0.0], [-0.0246106361476199, 0.0] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.net_exposure(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.net_exposure(), result ) pd.testing.assert_frame_equal( pf_shared.net_exposure(), result ) def test_value(self): result = pd.DataFrame( np.array([ [100., 99.8801, 99.8799], [99.89598, 98.77612, 100.77588], [99.89001, 98.77612, 101.71618], [99.89001, 96.46808, 101.70822], [99.68951, 95.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.value(), result ) pd.testing.assert_frame_equal( pf_grouped.value(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.value(group_by=False), pd.DataFrame( np.array([ [200., 199.8801, 99.8799], [199.89598, 198.77612, 100.77588], [199.89001, 198.77612, 101.71618], [199.89001, 196.46808, 101.70822], [199.68951, 195.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf_shared.value(group_by=False, in_sim_order=True), pd.DataFrame( np.array([ [199.8801, 199.8801, 99.8799], [198.6721, 198.77612000000002, 100.77588000000002], [198.66613, 198.6721, 101.71618000000001], [196.35809, 196.35809, 101.70822000000001], [194.95809, 195.15859, 101.70822000000001] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [199.8801, 99.8799], [198.6721, 100.77588], [198.66613, 101.71618], [196.35809, 101.70822], [194.95809, 101.70822] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.value(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.value(), result ) pd.testing.assert_frame_equal( pf_shared.value(), result ) def test_total_profit(self): result = pd.Series( np.array([-0.31049, -4.73142, 1.70822]), index=price_na.columns ).rename('total_profit') pd.testing.assert_series_equal( pf.total_profit(), result ) pd.testing.assert_series_equal( pf_grouped.total_profit(group_by=False), result ) pd.testing.assert_series_equal( pf_shared.total_profit(group_by=False), result ) result = pd.Series( np.array([-5.04191, 1.70822]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('total_profit') pd.testing.assert_series_equal( pf.total_profit(group_by=group_by), result ) pd.testing.assert_series_equal( pf_grouped.total_profit(), result ) pd.testing.assert_series_equal( pf_shared.total_profit(), result ) def test_final_value(self): result = pd.Series( np.array([99.68951, 95.26858, 101.70822]), index=price_na.columns ).rename('final_value') pd.testing.assert_series_equal( pf.final_value(), result ) pd.testing.assert_series_equal( pf_grouped.final_value(group_by=False), result ) pd.testing.assert_series_equal( pf_shared.final_value(group_by=False), pd.Series( np.array([199.68951, 195.26858, 101.70822]), index=price_na.columns ).rename('final_value') ) result = pd.Series( np.array([194.95809, 101.70822]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('final_value') pd.testing.assert_series_equal( pf.final_value(group_by=group_by), result ) pd.testing.assert_series_equal( pf_grouped.final_value(), result ) pd.testing.assert_series_equal( pf_shared.final_value(), result ) def test_total_return(self): result = pd.Series( np.array([-0.0031049, -0.0473142, 0.0170822]), index=price_na.columns ).rename('total_return') pd.testing.assert_series_equal( pf.total_return(), result ) pd.testing.assert_series_equal( pf_grouped.total_return(group_by=False), result ) pd.testing.assert_series_equal( pf_shared.total_return(group_by=False), pd.Series( np.array([-0.00155245, -0.0236571, 0.0170822]), index=price_na.columns ).rename('total_return') ) result = pd.Series( np.array([-0.02520955, 0.0170822]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('total_return') pd.testing.assert_series_equal( pf.total_return(group_by=group_by), result ) pd.testing.assert_series_equal( pf_grouped.total_return(), result ) pd.testing.assert_series_equal( pf_shared.total_return(), result ) def test_returns(self): result = pd.DataFrame( np.array([ [0.00000000e+00, -1.19900000e-03, -1.20100000e-03], [-1.04020000e-03, -1.10530526e-02, 8.97057366e-03], [-5.97621646e-05, 0.0, 9.33060570e-03], [0.00000000e+00, -0.023366376407576966, -7.82569695e-05], [-2.00720773e-03, -1.24341648e-02, 0.00000000e+00] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.returns(), result ) pd.testing.assert_frame_equal( pf_grouped.returns(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.returns(group_by=False), pd.DataFrame( np.array([ [0.00000000e+00, -5.99500000e-04, -1.20100000e-03], [-5.20100000e-04, -5.52321117e-03, 8.97057366e-03], [-2.98655331e-05, 0.0, 9.33060570e-03], [0.00000000e+00, -0.011611253907159497, -7.82569695e-05], [-1.00305163e-03, -6.10531746e-03, 0.00000000e+00] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf_shared.returns(group_by=False, in_sim_order=True), pd.DataFrame( np.array([ [0.0, -0.0005995000000000062, -1.20100000e-03], [-0.0005233022960706736, -0.005523211165093367, 8.97057366e-03], [-3.0049513746473233e-05, 0.0, 9.33060570e-03], [0.0, -0.011617682390048093, -7.82569695e-05], [-0.0010273695869600474, -0.0061087373583639994, 0.00000000e+00] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [-5.99500000e-04, -1.20100000e-03], [-6.04362315e-03, 8.97057366e-03], [-3.0049513746473233e-05, 9.33060570e-03], [-0.011617682390048093, -7.82569695e-05], [-7.12983101e-03, 0.00000000e+00] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.returns(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.returns(), result ) pd.testing.assert_frame_equal( pf_shared.returns(), result ) def test_asset_returns(self): result = pd.DataFrame( np.array([ [0., -np.inf, -np.inf], [-np.inf, -1.10398, 0.89598], [-0.02985, 0.0, 0.42740909], [0., -1.0491090909090908, -0.02653333], [-np.inf, -0.299875, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.asset_returns(), result ) pd.testing.assert_frame_equal( pf_grouped.asset_returns(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.asset_returns(group_by=False), result ) result = pd.DataFrame( np.array([ [-np.inf, -np.inf], [-1.208, 0.89598], [-0.0029850000000000154, 0.42740909], [-1.0491090909090908, -0.02653333], [-0.35, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.asset_returns(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.asset_returns(), result ) pd.testing.assert_frame_equal( pf_shared.asset_returns(), result ) def test_benchmark_value(self): result = pd.DataFrame( np.array([ [100., 100., 100.], [100., 200., 200.], [150., 200., 300.], [200., 400., 400.], [250., 500., 400.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.benchmark_value(), result ) pd.testing.assert_frame_equal( pf_grouped.benchmark_value(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.benchmark_value(group_by=False), pd.DataFrame( np.array([ [200., 200., 100.], [200., 400., 200.], [300., 400., 300.], [400., 800., 400.], [500., 1000., 400.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [200., 100.], [300., 200.], [350., 300.], [600., 400.], [750., 400.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.benchmark_value(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.benchmark_value(), result ) pd.testing.assert_frame_equal( pf_shared.benchmark_value(), result ) def test_benchmark_returns(self): result = pd.DataFrame( np.array([ [0., 0., 0.], [0., 1., 1.], [0.5, 0., 0.5], [0.33333333, 1., 0.33333333], [0.25, 0.25, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.benchmark_returns(), result ) pd.testing.assert_frame_equal( pf_grouped.benchmark_returns(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.benchmark_returns(group_by=False), result ) result = pd.DataFrame( np.array([ [0., 0.], [0.5, 1.], [0.16666667, 0.5], [0.71428571, 0.33333333], [0.25, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.benchmark_returns(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.benchmark_returns(), result ) pd.testing.assert_frame_equal( pf_shared.benchmark_returns(), result ) def test_total_benchmark_return(self): result = pd.Series( np.array([1.5, 4., 3.]), index=price_na.columns ).rename('total_benchmark_return') pd.testing.assert_series_equal( pf.total_benchmark_return(), result ) pd.testing.assert_series_equal( pf_grouped.total_benchmark_return(group_by=False), result ) pd.testing.assert_series_equal( pf_shared.total_benchmark_return(group_by=False), result ) result = pd.Series( np.array([2.75, 3.]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('total_benchmark_return') pd.testing.assert_series_equal( pf.total_benchmark_return(group_by=group_by), result ) pd.testing.assert_series_equal( pf_grouped.total_benchmark_return(), result ) pd.testing.assert_series_equal( pf_shared.total_benchmark_return(), result ) def test_return_method(self): pd.testing.assert_frame_equal( pf_shared.cumulative_returns(), pd.DataFrame( np.array([ [-0.000599499999999975, -0.0012009999999998966], [-0.006639499999999909, 0.007758800000000177], [-0.006669349999999907, 0.017161800000000005], [-0.01820955000000002, 0.017082199999999936], [-0.025209550000000136, 0.017082199999999936] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) ) pd.testing.assert_frame_equal( pf_shared.cumulative_returns(group_by=False), pd.DataFrame( np.array([ [0.0, -0.000599499999999975, -0.0012009999999998966], [-0.0005201000000001343, -0.006119399999999886, 0.007758800000000177], [-0.0005499500000001323, -0.006119399999999886, 0.017161800000000005], [-0.0005499500000001323, -0.017659599999999886, 0.017082199999999936], [-0.0015524500000001495, -0.023657099999999875, 0.017082199999999936] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_series_equal( pf_shared.sharpe_ratio(), pd.Series( np.array([-20.095906945591288, 12.345065267401496]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( pf_shared.sharpe_ratio(risk_free=0.01), pd.Series( np.array([-59.62258787402645, -23.91718815937344]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( pf_shared.sharpe_ratio(year_freq='365D'), pd.Series( np.array([-20.095906945591288, 12.345065267401496]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( pf_shared.sharpe_ratio(group_by=False), pd.Series( np.array([-13.30950646054953, -19.278625117344564, 12.345065267401496]), index=price_na.columns ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( pf_shared.information_ratio(group_by=False), pd.Series( np.array([-0.9988561334618041, -0.8809478746008806, -0.884780642352239]), index=price_na.columns ).rename('information_ratio') ) with pytest.raises(Exception): _ = pf_shared.information_ratio(pf_shared.benchmark_returns(group_by=False) * 2) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Start Value', 'End Value', 'Total Return [%]', 'Benchmark Return [%]', 'Max Gross Exposure [%]', 'Total Fees Paid', 'Max Drawdown [%]', 'Max Drawdown Duration', 'Total Trades', 'Total Closed Trades', 'Total Open Trades', 'Open Trade PnL', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg Winning Trade [%]', 'Avg Losing Trade [%]', 'Avg Winning Trade Duration', 'Avg Losing Trade Duration', 'Profit Factor', 'Expectancy', 'Sharpe Ratio', 'Calmar Ratio', 'Omega Ratio', 'Sortino Ratio' ], dtype='object') pd.testing.assert_series_equal( pf.stats(), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, 98.88877000000001, -1.11123, 283.3333333333333, 2.05906183131983, 0.42223000000000005, 1.6451238489727062, pd.Timedelta('3 days 08:00:00'), 2.0, 1.3333333333333333, 0.6666666666666666, -1.5042060606060605, 33.333333333333336, -98.38058805880588, -100.8038553855386, 143.91625412541256, -221.34645964596464, pd.Timedelta('2 days 12:00:00'), pd.Timedelta('2 days 00:00:00'), np.inf, 0.10827272727272726, -6.751008013903537, 10378.930331014584, 4.768700318817701, 31.599760994679134 ]), index=stats_index, name='agg_func_mean') ) pd.testing.assert_series_equal( pf.stats(column='a'), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'),
pd.Timestamp('2020-01-05 00:00:00')
pandas.Timestamp
import pandas as pd all_genes = pd.read_csv("https://raw.githubusercontent.com/s-a-nersisyan/HSE_bioinformatics_2021/master/seminar13/all_genes.txt", header=None)[0] df =
pd.DataFrame(index=all_genes)
pandas.DataFrame
import warnings warnings.simplefilter(action='ignore', category=Warning) from IMLearn import BaseEstimator from challenge.agoda_cancellation_estimator import AgodaCancellationEstimator import numpy as np import pandas as pd from sklearn import metrics from sklearn.preprocessing import MinMaxScaler # conversions from USD to all currencies TO_USD = {'USD': 1, 'AED': 3.6725, 'AFN': 87.5007, 'ALL': 111.4952, 'AMD': 467.558, 'ANG': 1.79, 'AOA': 404.0973, 'ARS': 114.04, 'AUD': 1.3726, 'AWG': 1.79, 'AZN': 1.6979, 'BAM': 1.8108, 'BBD': 2.0, 'BDT': 85.438, 'BGN': 1.8106, 'BHD': 0.376, 'BIF': 2024.8096, 'BMD': 1.0, 'BND': 1.3669, 'BOB': 6.8653, 'BRL': 4.6806, 'BSD': 1.0, 'BTN': 76.4959, 'BWP': 11.973, 'BYN': 2.8555, 'BZD': 2.0, 'CAD': 1.2669, 'CDF': 1999.8809, 'CHF': 0.9563, 'CLP': 822.3729, 'CNY': 6.5225, 'COP': 3728.9547, 'CRC': 657.6806, 'CUP': 24.0, 'CVE': 102.0895, 'CZK': 22.4939, 'DJF': 177.721, 'DKK': 6.9072, 'DOP': 54.912, 'DZD': 143.832, 'EGP': 18.5802, 'ERN': 15.0, 'ETB': 51.3614, 'EUR': 0.9259, 'FJD': 2.1163, 'FKP': 0.7787, 'FOK': 6.9072, 'GBP': 0.7788, 'GEL': 3.0339, 'GGP': 0.7787, 'GHS': 7.7553, 'GIP': 0.7787, 'GMD': 54.0333, 'GNF': 8896.9671, 'GTQ': 7.6475, 'GYD': 209.0387, 'HKD': 7.8479, 'HNL': 24.5693, 'HRK': 6.9759, 'HTG': 107.894, 'HUF': 343.295, 'IDR': 14341.489, 'ILS': 3.2735, 'IMP': 0.7787, 'INR': 76.4723, 'IQD': 1458.072, 'IRR': 42051.3384, 'ISK': 128.7315, 'JEP': 0.7787, 'JMD': 154.654, 'JOD': 0.709, 'JPY': 128.7001, 'KES': 115.7729, 'KGS': 82.9306, 'KHR': 4041.021, 'KID': 1.3734, 'KMF': 455.4913, 'KRW': 1241.5203, 'KWD': 0.2996, 'KYD': 0.8333, 'KZT': 443.6302, 'LAK': 13106.4208, 'LBP': 1507.5, 'LKR': 330.8464, 'LRD': 152.0024, 'LSL': 15.5633, 'LYD': 4.712, 'MAD': 9.6981, 'MDL': 18.4927, 'MGA': 3991.8343, 'MKD': 56.6224, 'MMK': 1835.3117, 'MNT': 3052.3832, 'MOP': 8.0833, 'MRU': 36.4208, 'MUR': 42.6761, 'MVR': 15.4107, 'MWK': 819.5117, 'MXN': 20.2706, 'MYR': 4.3037, 'MZN': 64.6108, 'NAD': 15.5633, 'NGN': 414.9575, 'NIO': 35.8503, 'NOK': 8.9409, 'NPR': 122.3934, 'NZD': 1.5043, 'OMR': 0.3845, 'PAB': 1.0, 'PEN': 3.7455, 'PGK': 3.5245, 'PHP': 52.3739, 'PKR': 186.6637, 'PLN': 4.2895, 'PYG': 6827.8499, 'QAR': 3.64, 'RON': 4.5623, 'RSD': 108.8545, 'RUB': 77.0753, 'RWF': 1051.2487, 'SAR': 3.75, 'SBD': 7.9427, 'SCR': 14.4082, 'SDG': 445.0241, 'SEK': 9.5371, 'SGD': 1.3669, 'SHP': 0.7787, 'SLL': 12368.3272, 'SOS': 577.9904, 'SRD': 20.7337, 'SSP': 425.1448, 'STN': 22.6835, 'SYP': 2517.89, 'SZL': 15.5633, 'THB': 34.0252, 'TJS': 12.4745, 'TMT': 3.4991, 'TND': 2.819, 'TOP': 2.2329, 'TRY': 14.7711, 'TTD': 6.7809, 'TVD': 1.3734, 'TWD': 29.2194, 'TZS': 2316.5256, 'UAH': 29.523, 'UGX': 3522.2721, 'UYU': 40.3923, 'UZS': 11347.4483, 'VES': 4.4354, 'VND': 22974.0933, 'VUV': 111.8606, 'WST': 2.5658, 'XAF': 607.3217, 'XCD': 2.7, 'XDR': 0.7358, 'XOF': 607.3217, 'XPF': 110.4843, 'YER': 250.3169, 'ZAR': 15.5636, 'ZMW': 17.0195, 'ZWL': 153.7166} WEEKLY_LABELS_FILES = {1: 'test_set_week_1_labels.csv', 2: 'test_set_labels_week_2.csv', 3: 'test_set_week_3_labels.csv', 4: 'test_set_week_4_labels.csv'} def undersample(df: pd.DataFrame, label_col_name: str) -> pd.DataFrame: # find the number of observations in the smallest group label_1 = df[df[label_col_name] == 1] label_0 = df[df[label_col_name] == 0] label_0 = label_0.sample(n=len(label_1) * 10, random_state=1) df = pd.concat([label_1, label_0], axis=0) return df def days_to_P(policy, days): d_idx = policy.find('D') fine_days = int(policy[d_idx + 1: -1]) if policy[-1] == 'N': P = str(int(round((fine_days / days) * 100, 0))) else: P = str(int(policy[d_idx + 1: -1])) fine_days = policy[:d_idx] return fine_days, P def parse_policy2(policy, stay_days): if policy == 'UNKNOWN': return 100100 if stay_days < 0: return 100100 policies = policy.split("_") if len(policies) == 1: days, P = days_to_P(policies[0], stay_days) return int(days + P) if len(policies) == 2: if 'D' not in policies[1]: # no second step day1, P1 = days_to_P(policies[0], stay_days) day2, P2 = days_to_P(policies[1], stay_days) return int(day1 + P1 + P2) else: day1, P1 = days_to_P(policies[0], stay_days) day2, P2 = days_to_P(policies[1], stay_days) return int(day1 + P1 + day2 + P2) else: day1, P1 = days_to_P(policies[0], stay_days) day2, P2 = days_to_P(policies[1], stay_days) day3, P3 = days_to_P(policies[2], stay_days) return int(day1 + P1 + day2 + P2 + P3) def load_data(train_filename: str, test_filename, week_sets=iter([])): """ Load Agoda booking cancellation dataset Parameters ---------- train_filename: str Path to house prices dataset test_filename: str path to test dataset week_sets: iterable the number of weeks to learn on in addition to train dataset Returns ------- Design matrix and response vector in either of the following formats: 1) Single dataframe with last column representing the response 2) Tuple of pandas.DataFrame and Series 3) Tuple of ndarray of shape (n_samples, n_features) and ndarray of shape (n_samples,) """ df = pd.read_csv(train_filename).drop_duplicates() df['cancellation_datetime'] = df['cancellation_datetime'].fillna(0) df['cancellation_datetime'] = pd.to_datetime(df['cancellation_datetime']) df['booking_datetime'] = pd.to_datetime(df['booking_datetime']) df['checkin_date'] = pd.to_datetime(df['checkin_date']) df['checkout_date'] = pd.to_datetime(df['checkout_date']) df['new_datetime'] = (df['cancellation_datetime'] - df['booking_datetime']).dt.days df['new_datetime'][df['new_datetime'] > 45] = 0 df['new_datetime'][df['new_datetime'] < 7] = 0 df['another_datetime'] = (df['checkin_date'] - df['cancellation_datetime']).dt.days df['new_datetime'][df['another_datetime'] < 2] = 0 df['new_datetime'][df['new_datetime'] != 0] = 1 df['cancellation_datetime'] = df['new_datetime'] df.drop(['new_datetime', 'another_datetime'], axis=1, inplace=True) # add weekly data with labels for k in week_sets: weekly_set = pd.read_csv(f'test_weeks_data/test_set_week_{k}.csv') weekly_labels = pd.read_csv(f'test_weeks_labels/{WEEKLY_LABELS_FILES[k]}') weekly_data = pd.concat([weekly_set, weekly_labels], axis=1) weekly_data['cancellation_datetime'] = [int(x.strip()[-1]) for x in weekly_data['h_booking_id|label']] weekly_data = weekly_data.drop('h_booking_id|label', axis=1) df = pd.concat([df, weekly_data], ignore_index=True) # add test data to be processed together with train data test_data = pd.read_csv(test_filename) test_size = test_data.shape[0] full_data = pd.concat([df, test_data]) df = pd.DataFrame(full_data, columns=['booking_datetime', 'checkin_date', 'checkout_date', 'hotel_star_rating', # 'accommadation_type_name', 'charge_option', 'customer_nationality', 'guest_is_not_the_customer', # 'guest_nationality_country_name', 'no_of_adults', 'no_of_children', # 'no_of_extra_bed' 'no_of_room', 'original_selling_amount', 'original_payment_method', # 'original_payment_type', 'original_payment_currency', 'is_user_logged_in', 'is_first_booking', 'request_nonesmoke', 'request_latecheckin', 'request_highfloor', 'request_largebed', 'request_twinbeds', 'request_airport', 'request_earlycheckin', 'cancellation_policy_code', 'cancellation_datetime', # 'hotel_city_code', 'hotel_chain_code', 'hotel_brand_code', 'hotel_area_code', # 'hotel_country_code' ]) # df = df[df['original_selling_amount'] < 20000] df = pd.get_dummies(data=df, columns=[ # 'accommadation_type_name', 'charge_option', 'customer_nationality', # 'guest_nationality_country_name', 'original_payment_method', # 'original_payment_type' # 'original_payment_currency' ], drop_first=True) df['booking_datetime'] = pd.to_datetime(df['booking_datetime']) df['checkin_date'] =
pd.to_datetime(df['checkin_date'])
pandas.to_datetime
from read_data import read_data import matplotlib.pyplot as plt import pandas as pd import matplotlib.patches as ptc import matplotlib.dates as mdt import datetime as dt import numpy as np import math #This visualization shows time series of raw volume recorded in each time step # as well as a color coded rectangle to show the time and duration of each event raw, evn, mf, tdc = read_data() # gets unique list of each date in the dataset dates = evn['start'].map(lambda t: t.date()).unique() #all 15 days are a lot to put on one plot so, do 'daysper' per plot daysper = 3 n=1 # Option to toggle collapsing colored events to one line or keep separate collapse = 1 #0 to show on different y values, 1 to show on same y for d in range(len(dates)): #initialize dataframe to keep track of totals in each type for showing in legend tots =
pd.DataFrame(index=tdc[0], columns=['vol'])
pandas.DataFrame
'''Train CIFAR10 with PyTorch.''' import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.backends.cudnn as cudnn import torchvision import torchvision.transforms as transforms import os import argparse from tqdm import trange import pandas as pd from PIL import Image def make_train_anno(data_root_dir, anno_path): # Set data directories. train_dir = data_root_dir + 'bounding_box_train/' # Get image names. train_img_names = sorted([d for d in os.listdir(train_dir) if d.split('.')[-1].lower() in ('jpg', 'jpeg', 'png')]) # Organize anntation data. train_list = __org_data(train_dir, train_img_names, 'train') df = pd.DataFrame(train_list) df = __add_person_index(df) # Save DataFrame. __save_dataframe(df, anno_path, 'train') def make_qng_anno(data_root_dir, anno_path): # Set data directories. gallery_dir = data_root_dir + 'bounding_box_test/' query_dir = data_root_dir + 'query/' # Get image names. gallery_img_names = sorted([d for d in os.listdir(gallery_dir) if d.split('.')[-1].lower() in ('jpg', 'jpeg', 'png')]) query_img_names = sorted([d for d in os.listdir(query_dir) if d.split('.')[-1].lower() in ('jpg', 'jpeg', 'png')]) # Organize anntation data. gallery_list = __org_data(gallery_dir, gallery_img_names, 'gallery') query_list = __org_data(query_dir, query_img_names, 'query') data_list = gallery_list + query_list df = pd.DataFrame(data_list) # Save DataFrame. __save_dataframe(df, anno_path, 'test') def __org_data(data_dir, img_names, mode): lis = [] for i in trange(len(img_names), desc='Organizing {} data'.format(mode)): dic = {} dic['image_name'] = img_names[i] dic['image_path'] = data_dir + img_names[i] splited = img_names[i].split('_') dic['person_id'] = splited[0] dic['camera_id'] = splited[1][:2] dic['sequence_id'] = splited[1][2:] dic['frame_no'] = splited[2] dic['dpm_bbox_no'] = splited[3].split('.')[0] # DPM: Deformable Part Model, bbox: bounding box dic['mode'] = mode lis.append(dic) return lis def __add_person_index(df): # Make person ID and index dictonary. train_person_ids = sorted(set(df.loc[df['mode']=='train', 'person_id'].values)) train_person_dic = {train_person_ids[i]: i for i in range(len(train_person_ids))} # Set person indexes. df['person_index'] = -999 for p_id, p_idx in train_person_dic.items(): cond = df['person_id']==p_id df.loc[cond, 'person_index'] = p_idx return df def __save_dataframe(df, anno_path, mode): cols = ['person_id', 'camera_id', 'sequence_id', 'frame_no', 'dpm_bbox_no', 'mode', 'image_name', 'image_path'] if mode == 'train': cols = ['person_index'] + cols df = df[cols] df.to_csv(anno_path, index=False) print('Saved "{}" annotation data of Market1501 to {}'.format(mode, anno_path)) class Market1501Train(object): def __init__(self, anno_path, mode, transforms=None): df_all = pd.read_csv(anno_path) self.df = df_all[df_all['mode']==mode].reset_index(drop=True) self.transforms = transforms def __getitem__(self, idx): # Filter data df = self.df.copy() # Image img_path = df.loc[idx, 'image_path'] assert os.path.exists(img_path) img = Image.open(img_path).convert('RGB') img = img.resize([img.size[0], img.size[0]], Image.NEAREST) # Target #person_id = df.loc[idx, 'person_id'] person_index = df.loc[idx, 'person_index'] # Transform if self.transforms is not None: img = self.transforms(img) return img, person_index def __len__(self): return len(set(self.df['image_path'].values.tolist())) class Market1501Test(object): def __init__(self, anno_path, mode, transforms=None): df_all = pd.read_csv(anno_path) self.df = df_all[df_all['mode']==mode].reset_index(drop=True) self.transforms = transforms def __getitem__(self, idx): # Filter data df = self.df.copy() # Image img_path = df.loc[idx, 'image_path'] assert os.path.exists(img_path) img = Image.open(img_path).convert('RGB') img = img.resize([img.size[0], img.size[0]], Image.NEAREST) # Target person_id = df.loc[idx, 'person_id'] #person_index = df.loc[idx, 'person_index'] # Transform if self.transforms is not None: img = self.transforms(img) return img, person_id, img_path def __len__(self): return len(set(self.df['image_path'].values.tolist())) def load_train_data(anno_path, n_batch=32): # cf. https://github.com/GNAYUOHZ/ReID-MGN/blob/master/data.py transform_train = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) train_set = Market1501Train(anno_path, 'train', transforms=transform_train) train_loader = torch.utils.data.DataLoader(train_set, batch_size=n_batch, shuffle=True, num_workers=0) df =
pd.read_csv(anno_path)
pandas.read_csv
import unittest import numpy as np import pandas as pd from scipy.optimize import curve_fit import matplotlib.pyplot as plt import matplotlib as mpl import os from openiec.property.coherentenergy_OC import CoherentGibbsEnergy_OC from openiec.calculate.calcsigma_OC import SigmaCoherent_OC from pyOC import opencalphad as oc from pyOC import GridMinimizerStatus as gmStat def run_NUCLEA(): print('### test U-O coherent interface in the liquid miscibility gap ###\n') # tdb filepath tdbFile=os.environ['TDBDATA_PRIVATE']+'/feouzr.tdb' # tdbFile=os.environ['TDBDATA_PRIVATE']+'/NUCLEA-17_1_mod.TDB' # tdbFile='tests/TAF_uzrofe_V10.TDB' # components comps = ['O', 'U'] # mass density laws (from Barrachin2004) constituentDensityLaws = { 'U1' : lambda T: 17270.0-1.358*(T-1408), 'ZR1' : lambda T: 6844.51-0.609898*T+2.05008E-4*T**2-4.47829E-8*T**3+3.26469E-12*T**4, 'O2U1' : lambda T: 8860.0-9.285E-1*(T-3120), 'O2ZR1': lambda T: 5150-0.445*(T-2983), 'O1' : lambda T: 1.141 # set to meaningless value but ok as, no 'free' oxygen in the considered mixtures } # phase names phasenames = ['LIQUID#1', 'LIQUID#2'] # pressure & temp P = 1E5 T = 3200 # Given initial alloy composition. x0 is the mole fraction of U. x0min = [0.5] x0max = [0.7] x0range = np.linspace(x0min[0],x0max[0],num=20, endpoint=True) # Composition step for searching initial interfacial equilibrium composition. dx = 0.05 results =
pd.DataFrame(columns=['X_U', 'n_phase1', 'n_phase2', 'mu_U', 'mu_O'])
pandas.DataFrame
import pandas as pd from scripts.python.routines.manifest import get_manifest from tqdm import tqdm from scripts.python.EWAS.routines.correction import correct_pvalues import plotly.graph_objects as go from scripts.python.routines.plot.save import save_figure from scripts.python.routines.plot.scatter import add_scatter_trace from scripts.python.routines.plot.layout import add_layout import os import numpy as np from pingouin import ancova from scripts.python.routines.filter.pheno import filter_pheno platform = "GPL13534" path = f"E:/YandexDisk/Work/pydnameth/datasets" datasets = ["GSE53740"] is_rerun = True num_cpgs_to_plot = 10 for dataset in datasets: print(dataset) status_col = get_column_name(dataset, 'Status').replace(' ', '_') age_col = get_column_name(dataset, 'Age').replace(' ', '_') sex_col = get_column_name(dataset, 'Sex').replace(' ', '_') status_dict = get_status_dict(dataset) status_vals = sorted(list(status_dict.values())) status_names_dict = get_status_names_dict(dataset) sex_dict = get_sex_dict(dataset) terms = [status_col, age_col] aim = f"Age_Status" path_save = f"{path}/{platform}/{dataset}/EWAS/ancova/{aim}" if not os.path.exists(f"{path_save}/figs"): os.makedirs(f"{path_save}/figs") continuous_vars = {'Age': age_col} categorical_vars = {status_col: status_dict, sex_col: sex_dict} pheno =
pd.read_pickle(f"{path}/{platform}/{dataset}/pheno_xtd.pkl")
pandas.read_pickle
import numpy as np import pandas as pd import pytest import woodwork as ww from pandas.testing import assert_frame_equal from woodwork.logical_types import ( Boolean, Categorical, Double, Integer, NaturalLanguage ) from evalml.pipelines.components import Imputer @pytest.fixture def imputer_test_data(): return pd.DataFrame({ "categorical col": pd.Series(["zero", "one", "two", "zero", "three"], dtype='category'), "int col": [0, 1, 2, 0, 3], "object col": ["b", "b", "a", "c", "d"], "float col": [0.0, 1.0, 0.0, -2.0, 5.], "bool col": [True, False, False, True, True], "categorical with nan": pd.Series([np.nan, "1", np.nan, "0", "3"], dtype='category'), "int with nan": [np.nan, 1, 0, 0, 1], "float with nan": [0.0, 1.0, np.nan, -1.0, 0.], "object with nan": ["b", "b", np.nan, "c", np.nan], "bool col with nan": pd.Series([True, np.nan, False, np.nan, True], dtype='boolean'), "all nan": [np.nan, np.nan, np.nan, np.nan, np.nan], "all nan cat": pd.Series([np.nan, np.nan, np.nan, np.nan, np.nan], dtype='category') }) def test_invalid_strategy_parameters(): with pytest.raises(ValueError, match="Valid impute strategies are"): Imputer(numeric_impute_strategy="not a valid strategy") with pytest.raises(ValueError, match="Valid categorical impute strategies are"): Imputer(categorical_impute_strategy="mean") def test_imputer_default_parameters(): imputer = Imputer() expected_parameters = { 'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean', 'categorical_fill_value': None, 'numeric_fill_value': None } assert imputer.parameters == expected_parameters @pytest.mark.parametrize("categorical_impute_strategy", ["most_frequent", "constant"]) @pytest.mark.parametrize("numeric_impute_strategy", ["mean", "median", "most_frequent", "constant"]) def test_imputer_init(categorical_impute_strategy, numeric_impute_strategy): imputer = Imputer(categorical_impute_strategy=categorical_impute_strategy, numeric_impute_strategy=numeric_impute_strategy, categorical_fill_value="str_fill_value", numeric_fill_value=-1) expected_parameters = { 'categorical_impute_strategy': categorical_impute_strategy, 'numeric_impute_strategy': numeric_impute_strategy, 'categorical_fill_value': 'str_fill_value', 'numeric_fill_value': -1 } expected_hyperparameters = { "categorical_impute_strategy": ["most_frequent"], "numeric_impute_strategy": ["mean", "median", "most_frequent"] } assert imputer.name == "Imputer" assert imputer.parameters == expected_parameters assert imputer.hyperparameter_ranges == expected_hyperparameters def test_numeric_only_input(imputer_test_data): X = imputer_test_data[["int col", "float col", "int with nan", "float with nan", "all nan"]] y = pd.Series([0, 0, 1, 0, 1]) imputer = Imputer(numeric_impute_strategy="median") imputer.fit(X, y) transformed = imputer.transform(X, y) expected = pd.DataFrame({ "int col": [0, 1, 2, 0, 3], "float col": [0.0, 1.0, 0.0, -2.0, 5.], "int with nan": [0.5, 1.0, 0.0, 0.0, 1.0], "float with nan": [0.0, 1.0, 0, -1.0, 0.] }) assert_frame_equal(transformed.to_dataframe(), expected, check_dtype=False) imputer = Imputer() transformed = imputer.fit_transform(X, y) assert_frame_equal(transformed.to_dataframe(), expected, check_dtype=False) def test_categorical_only_input(imputer_test_data): X = imputer_test_data[["categorical col", "object col", "bool col", "categorical with nan", "object with nan", "bool col with nan", "all nan cat"]] y = pd.Series([0, 0, 1, 0, 1]) imputer = Imputer() imputer.fit(X, y) transformed = imputer.transform(X, y) expected = pd.DataFrame({ "categorical col": pd.Series(["zero", "one", "two", "zero", "three"], dtype='category'), "object col": pd.Series(["b", "b", "a", "c", "d"], dtype='category'), "bool col": [True, False, False, True, True], "categorical with nan": pd.Series(["0", "1", "0", "0", "3"], dtype='category'), "object with nan": pd.Series(["b", "b", "b", "c", "b"], dtype='category'), "bool col with nan": [True, True, False, True, True] }) imputer = Imputer() transformed = imputer.fit_transform(X, y) assert_frame_equal(transformed.to_dataframe(), expected, check_dtype=False) def test_categorical_and_numeric_input(imputer_test_data): X = imputer_test_data y = pd.Series([0, 0, 1, 0, 1]) imputer = Imputer() imputer.fit(X, y) transformed = imputer.transform(X, y) expected = pd.DataFrame({ "categorical col": pd.Series(["zero", "one", "two", "zero", "three"], dtype='category'), "int col": [0, 1, 2, 0, 3], "object col": pd.Series(["b", "b", "a", "c", "d"], dtype='category'), "float col": [0.0, 1.0, 0.0, -2.0, 5.], "bool col": [True, False, False, True, True], "categorical with nan": pd.Series(["0", "1", "0", "0", "3"], dtype='category'), "int with nan": [0.5, 1.0, 0.0, 0.0, 1.0], "float with nan": [0.0, 1.0, 0, -1.0, 0.], "object with nan": pd.Series(["b", "b", "b", "c", "b"], dtype='category'), "bool col with nan": [True, True, False, True, True] }) assert_frame_equal(transformed.to_dataframe(), expected, check_dtype=False) imputer = Imputer() transformed = imputer.fit_transform(X, y) assert_frame_equal(transformed.to_dataframe(), expected, check_dtype=False) def test_drop_all_columns(imputer_test_data): X = imputer_test_data[["all nan cat", "all nan"]] y =
pd.Series([0, 0, 1, 0, 1])
pandas.Series
#!/usr/bin/env python # Copyright 2021 Owkin, inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import configargparse import torch import pandas as pd import numpy as np from src.models.logistic_regression_model import LogisticRegression from src.utils.format_data import create_test_dataset_without_split from src.utils.genes_selection import genes_selection_extraction from src.utils.pytorch_evaluation import predict def main(args): sizemodel = int(args.model_path.split("sizemodel")[1].split(".")[0]) model = LogisticRegression(sizemodel).cpu() model.load_state_dict(torch.load(args.model_path)) X_test = create_test_dataset_without_split(args.test_file) if sizemodel == 69: X_test = genes_selection_extraction(X_test, "rotterdam") else: X_test = genes_selection_extraction(X_test, "citbcmst") prediction_results =
pd.DataFrame()
pandas.DataFrame
import os, sys import shutil from pathlib import Path import pandas as pd import urllib import configparser try: from bing import Bing except ImportError: # Python 3 from .bing import Bing def download(query, limit=100, output_dir='dataset', adult_filter_off=False, force_replace=False, timeout=60, verbose=True, filters=''): # engine = 'bing' if adult_filter_off: adult = 'off' else: adult = 'on' image_dir = Path(output_dir).joinpath(query).absolute() if force_replace: if Path.isdir(image_dir): shutil.rmtree(image_dir) # check directory and create if necessary try: if not Path.is_dir(image_dir): Path.mkdir(image_dir, parents=True) except Exception as e: print('[Error]Failed to create directory.', e) sys.exit(1) print("[%] Downloading Images to {}".format(str(image_dir.absolute()))) bing = Bing(query, limit, image_dir, adult, timeout, filters, verbose) bing.run() def str2bool(v): return v.lower() in ("yes", "true", "t", "1") def main(): config = configparser.RawConfigParser() config.read('filters.cfg') details_dict = dict(config.items('settings')) # print(f"details_dict: ", details_dict) task_filename = "task_list.xlsx" df =
pd.read_excel(task_filename)
pandas.read_excel
# -*- coding: utf-8 -*- import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from mabwiser.mab import MAB, LearningPolicy, NeighborhoodPolicy from tests.test_base import BaseTest class MABTest(BaseTest): ################################################# # Test context free predict() method ################################################ def test_arm_list_int(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_arm_list_str(self): for lp in MABTest.lps: self.predict(arms=["A", "B", "C"], decisions=["A", "A", "A", "B", "B", "B", "C", "C", "C"], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=["A", "B", "C"], decisions=["A", "A", "A", "B", "B", "B", "C", "C", "C"], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_decision_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_series_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_array_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) ################################################# # Test context free predict_expectation() method ################################################ def test_exp_arm_list_int(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_arm_list_str(self): for lp in MABTest.lps: self.predict(arms=["A", "B", "C"], decisions=["A", "A", "A", "B", "B", "B", "C", "C", "C"], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_series_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_array_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_context_history_series(self): contexts = pd.DataFrame({'column1': [1, 2, 3], 'column2': [2, 3, 1]}) for lp in BaseTest.para_lps: arm, mab = self.predict(arms=[0, 1], decisions=[1, 1, 1], rewards=[0, 0, 0], learning_policy=lp, context_history=contexts['column1'], contexts=[[1]], seed=123456, num_run=1, is_predict=True) self.assertEqual(mab._imp.arm_to_model[0].beta.shape[0], 1) for cp in BaseTest.nps: for lp in BaseTest.lps: arm, mab = self.predict(arms=[0, 1], decisions=[1, 1, 1], rewards=[0, 0, 0], learning_policy=lp, neighborhood_policy=cp, context_history=contexts['column1'], contexts=[[1]], seed=123456, num_run=1, is_predict=True) self.assertEqual(np.ndim(mab._imp.contexts), 2) for cp in BaseTest.cps: for lp in BaseTest.lps: arm, mab = self.predict(arms=[0, 1], decisions=[1, 1, 1], rewards=[0, 0, 0], learning_policy=lp, neighborhood_policy=cp, context_history=contexts['column1'], contexts=[[1]], seed=123456, num_run=1, is_predict=True) self.assertEqual(np.ndim(mab._imp.contexts), 2) def test_context_series(self): contexts = pd.DataFrame({'column1': [1, 2, 3, 3, 2, 1], 'column2': [2, 3, 1, 1, 2, 3]}) for lp in BaseTest.para_lps: arm, mab = self.predict(arms=[0, 1], decisions=[1, 1, 1, 1, 1, 1], rewards=[0, 0, 0, 0, 0, 0], learning_policy=lp, context_history=contexts['column1'], contexts=pd.Series([1]), seed=123456, num_run=1, is_predict=True) self.assertEqual(mab._imp.arm_to_model[0].beta.shape[0], 1) for cp in BaseTest.nps: for lp in BaseTest.lps: arm, mab = self.predict(arms=[0, 1], decisions=[1, 1, 1, 1, 1, 1], rewards=[0, 0, 0, 0, 0, 0], learning_policy=lp, neighborhood_policy=cp, context_history=contexts['column1'], contexts=pd.Series([1]), seed=123456, num_run=1, is_predict=True) self.assertEqual(np.ndim(mab._imp.contexts), 2) for cp in BaseTest.cps: for lp in BaseTest.lps: arm, mab = self.predict(arms=[0, 1], decisions=[1, 1, 1, 1, 1, 1], rewards=[0, 0, 0, 0, 0, 0], learning_policy=lp, neighborhood_policy=cp, context_history=contexts['column1'], contexts=pd.Series([1]), seed=123456, num_run=1, is_predict=True) self.assertEqual(np.ndim(mab._imp.contexts), 2) ################################################# # Test contextual predict() method ################################################ def test_context_arm_list_int(self): for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3, 4], decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3], rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.nps: for lp in MABTest.lps: self.predict(arms=[1, 2, 3, 4], decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3], rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, neighborhood_policy=cp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.cps: for lp in MABTest.lps: self.predict(arms=[1, 2, 3, 4], decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3], rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, neighborhood_policy=cp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_context_arm_list_str(self): for lp in MABTest.para_lps: self.predict(arms=["A", "B", "C", "D"], decisions=["A", "A", "A", "B", "B", "C", "C", "C", "C", "C"], rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.nps: for lp in MABTest.lps: self.predict(arms=["A", "B", "C", "D"], decisions=["A", "A", "A", "B", "B", "C", "C", "C", "C", "C"], rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, neighborhood_policy=cp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.cps: for lp in MABTest.lps: self.predict(arms=["A", "B", "C", "D"], decisions=["A", "A", "A", "B", "B", "C", "C", "C", "C", "C"], rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, neighborhood_policy=cp, context_history=[[0, -2, 2, 3, 11], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, -5, 2, 3, 10], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, -2, 4, 3, 9], [20, 19, 18, 17, 16], [1, 2, 1, 1, 3], [17, 18, 17, 19, 18]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_context_decision_series(self): for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3, 4], decisions=pd.Series([1, 1, 1, 2, 2, 3, 3, 3, 3, 3]), rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.nps: for lp in MABTest.lps: self.predict(arms=[1, 2, 3, 4], decisions=pd.Series([1, 1, 1, 2, 2, 3, 3, 3, 3, 3]), rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, neighborhood_policy=cp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.cps: for lp in MABTest.lps: self.predict(arms=[1, 2, 3, 4], decisions=pd.Series([1, 1, 1, 2, 2, 3, 3, 3, 3, 3]), rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, neighborhood_policy=cp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_context_reward_series(self): for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3, 4], decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3], rewards=
pd.Series([0, 1, 1, 0, 0, 0, 0, 1, 1, 1])
pandas.Series
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, confusion_matrix from sklearn.metrics import precision_score, recall_score, f1_score from sklearn.metrics import roc_curve, auc from sklearn.metrics import classification_report # Read a csv using the pandas read_csv function data = pd.read_csv('bank.csv',sep=',',header='infer') # Remove columns named day, poutcome, contact data = data.drop(['day','poutcome','contact'],axis=1) def normalize(data): # Before we can feed the data to train # and test the classifier, we need to normalize # the data to acceptable and convenient values # for cross validation and prediction purposes later on data.y.replace(('yes', 'no'), (1, 0), inplace=True) data.default.replace(('yes','no'),(1,0),inplace=True) data.housing.replace(('yes','no'),(1,0),inplace=True) data.loan.replace(('yes','no'),(1,0),inplace=True) data.marital.replace(('married','single','divorced'),(1,2,3),inplace=True) data.month.replace(('jan','feb','mar','apr','may','jun','jul','aug','sep','oct','nov','dec'),(1,2,3,4,5,6,7,8,9,10,11,12),inplace=True) data.education.replace(('primary','secondary','tertiary','unknown'),(1,2,3,4),inplace=True) data.job.replace(('technician','services','retired','blue-collar','entrepreneur','admin.', 'housemaid','student','self-employed','management', 'unemployed','unknown'),(1,2,3,4,5,6,7,8,9,10,11,12),inplace=True ) return data def experiment_generator(train_feats, train_class): # Initialize the plotting sets for later use accuracy, penalties = [], [] # Set your G & C parameters G = .00000001 # Should be really small to allow better curviture values penalty = 1 # Use large value to minimize the prediction error N = 10 # Number of experiments for item in range(N): # Create a new classifier using the G & C parameters clf = SVC(kernel='rbf', random_state = 0, gamma = G, C = penalty, probability=True) # Train the rbf classifier using training features and training class clf.fit(train_feats, train_class.values.ravel()) # Make prediction using training features pred_train = clf.predict(train_feats) # Accuracy score s_train = accuracy_score(train_class, pred_train) # Store values for plotting penalties.append(penalty) accuracy.append(s_train) # Increase experiment parameters penalty += 1 G += .00000001 # Initialize plot for accuracy and penalty (C) plt.scatter(penalties, accuracy) plt.ylabel('Accuracy (%)') plt.xlabel('Penalty - C Parameter') plt.show() data = normalize(data) plt.hist((data.duration),bins=100) plt.ylabel('Occurences (Frequency)') plt.xlabel('Client Call Duration') plt.show() plt.hist((data.job),bins=10) plt.ylabel('Occurences (Frequency)') plt.xlabel('Client Job Indices') plt.show() plt.hist((data.balance),bins=10) plt.ylabel('Occurences (Frequency)') plt.xlabel('Client Balance') plt.show() # Create training and testing vars X_train, X_test, y_train, y_test = train_test_split(data, data.y, test_size=0.2) # Debugging print(X_train.shape, y_train.shape) print(X_test.shape, y_test.shape) # Define your initial features df_train = X_train df_test = X_test # Initialize a dataframe using the target training y column df_train_class = pd.DataFrame(df_train['y']) # Set the features to the rest of the columns (columns that are not 'y') df_train_features = df_train.loc[:, df_train.columns != 'y'] # Initialize a dataframe using the target test y column df_test_class =
pd.DataFrame(df_test['y'])
pandas.DataFrame
# coding: utf-8 # In[ ]: from __future__ import division import os as os from IPython.display import HTML import pandas as pd import numpy as np import os as os from matplotlib import pyplot as plt import seaborn as sns from numpy import random as random from matplotlib.colors import ListedColormap plt.rcParams['figure.figsize'] = (12, 12) plt.rcParams['font.size'] = 11 plt.rcParams['font.family'] = 'Times New Roman' plt.rcParams['axes.labelsize'] = plt.rcParams['font.size'] plt.rcParams['axes.titlesize'] = 1.5*plt.rcParams['font.size'] plt.rcParams['legend.fontsize'] = plt.rcParams['font.size'] plt.rcParams['xtick.labelsize'] = plt.rcParams['font.size'] plt.rcParams['ytick.labelsize'] = plt.rcParams['font.size'] #plt.rcParams['savefig.dpi'] = 3*plt.rcParams['savefig.dpi'] plt.rcParams['xtick.major.size'] = 3 plt.rcParams['xtick.minor.size'] = 3 plt.rcParams['xtick.major.width'] = 1 plt.rcParams['xtick.minor.width'] = 1 plt.rcParams['ytick.major.size'] = 3 plt.rcParams['ytick.minor.size'] = 3 plt.rcParams['ytick.major.width'] = 1 plt.rcParams['ytick.minor.width'] = 1 plt.rcParams['legend.frameon'] = False plt.rcParams['legend.loc'] = 'center left' plt.rcParams['axes.linewidth'] = 1 plt.gca().spines['right'].set_color('none') plt.gca().spines['top'].set_color('none') plt.gca().xaxis.set_ticks_position('bottom') plt.gca().yaxis.set_ticks_position('left') sns.set_style('whitegrid') plt.close() import re from statsmodels.tsa.stattools import adfuller, acf, pacf from statsmodels.tsa.arima_model import ARIMA from statsmodels.tsa.seasonal import seasonal_decompose from sklearn.metrics import mean_squared_error import matplotlib.pylab as plt from matplotlib.pylab import rcParams from statsmodels.tsa.seasonal import seasonal_decompose from itertools import count #,izip import matplotlib.pyplot as plt from numpy import linspace, loadtxt, ones, convolve import numpy as np import pandas as pd import collections import plotly.offline as offline import plotly.graph_objs as go from plotly.offline import download_plotlyjs, init_notebook_mode, plot,iplot #import plotly.plotly as py import chart_studio.plotly as py #import plotly.io as pio py.sign_in('PranavPandit', '<KEY>') #import cufflinks as cf ##################################################################################################################### ##################################################################################################################### def read_data(filename): data = pd.read_csv(filename, encoding= 'unicode_escape') #data = pd.merge(data, sc_names, left_on='Species', right_on='Training_data_name', how='left') #data = pd.read_csv(filename, low_memory=False, skiprows= [0]) #data.columns = ['ID', 'Case', 'Admitted_at', 'Species', 'Organization','Reasons', 'Address_found', 'Latitude', 'Longitude', # 'Care_rescuer', 'Disposition', 'Dispositioned_at', 'Diagnosis', 'Sex', 'Weight', 'Age', 'Condition'] data['Admitted_at'] = pd.to_datetime(data['Admitted_at']).dt.strftime('%Y-%m-%d') data.set_index(pd.DatetimeIndex(data['Admitted_at']), inplace= True, drop= False) return data ##################################################################################################################### ##################################################################################################################### def test_stationarity(SpeciesName, syndrome, data): vo = data[(data.ScientificName == SpeciesName) & (data.prediction_adjusted == syndrome)] weekly_vo = vo.resample('W')['WRMD_ID'].count() #Determing rolling statistics rolmean = weekly_vo.rolling(window=4,center=False).mean() rolstd = weekly_vo.rolling(window=4,center=False).std() sp_data = pd.concat([weekly_vo, rolmean, rolstd], axis=1) sp_data.columns = ['original', 'rolling mean', 'std deviation'] layout = go.Layout( title= str(SpeciesName)+': admissions, rolling mean & std deviation', yaxis=dict(title='# admissions'), xaxis=dict(title='time')) #Plot rolling statistics: sp_data.iplot(kind='scatter',layout=layout) #Perform Dickey-Fuller test: print ('Results of Dickey-Fuller Test:') dftest = adfuller(weekly_vo, autolag='AIC') dfoutput =
pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags Used','Number of Observations Used'])
pandas.Series
import sys from datetime import datetime import statistics import pandas from scipy.stats import linregress import src.point as point def main(): if len(sys.argv) not in (3, 4): exit("Invalid number of arguments. Input and output .csv files' names required, may be followed by cities csv") input_file = sys.argv[1] output_file = sys.argv[2] data_frame = pandas.read_csv(input_file, usecols=["dt", "AverageTemperature", "City", "Latitude", "Longitude"]) data_by_location = data_frame.groupby(by=["City", "Latitude", "Longitude"], as_index=False) data_by_location = data_by_location.apply(temperature_series_to_regression) data_by_location = data_by_location.reset_index() if len(sys.argv) == 4: cities_file = sys.argv[3] cities_data_frame = pandas.read_csv(cities_file, usecols=["AccentCity", "Latitude", "Longitude"], encoding="ISO-8859-1") cities_data_frame = cities_data_frame\ .assign(acccity=lambda df: df['AccentCity'].str.lower())\ .set_index('acccity') data_by_location = data_by_location.apply(fix_cities_location, axis=1, cities_data_frame=cities_data_frame) data_by_location = data_by_location.drop_duplicates(subset=["Latitude", "Longitude"]) data_by_location.to_csv(output_file, header=True) points = point.load_from_csv(output_file) locations = [(p.longitude, p.latitude) for p in points] unique_locations = set(locations) print("Points: {}, Unique points: {}".format(len(locations), len(unique_locations))) median, mean = count_stats(data_by_location) print("Average regression: {}, median: {}".format(mean, median)) def temperature_series_to_regression(temperatures: pandas.Series): temperatures = temperatures.dropna() regression = linregress(temperatures["dt"].map(map_date), temperatures["AverageTemperature"])[0] print("{}: {}".format(list(temperatures["City"])[0], regression)) return
pandas.Series(regression, index=["Regression"])
pandas.Series
import numpy as np import re from enum import Enum import pandas as pd ORIGINAL_DATA_DIR = "./original_transactions/" CLEAN_DATA_DIR = "./clean_transactions/" BOA_COLS = ["Posted Date", "Payee", "Amount"] CHASE_COLS = ["Transaction Date", "Description", "Amount"] CITI_COLS = ["Date", "Description", "Amount"] GENERIC_COLS = ["Date", "Description", "Amount"] # to convert raw data (downloaded from various bank site) to clean data # definition of clean data: transaction_date, description, amount # raw data will be used as 1)training data for labeling 2) for testing class Bank(Enum): AMEX = 1 BOA = 2 CHASE = 3 CITI = 4 DISCOVER = 5 class DataProcessor: # input file: /path/to/files/AMEX_3008.csv # eg. ./original_transactions/AMEX_ def __init__(self, input_file): self.raw_transaction_file = input_file self.bank, self.input_file_name = self._get_bank_name(input_file) self.output_file = None def generate_clean_data(self): output_file_name = self._get_output_file_name(self.input_file_name) self.output_file = CLEAN_DATA_DIR + output_file_name if self.bank == Bank.AMEX.name: self._parse_AMEX() elif self.bank == Bank.BOA.name: self._parse_BOA() elif self.bank == Bank.CHASE.name: self._parse_CHASE() elif self.bank == Bank.CITI.name: self._parse_CITI() pass elif self.bank == Bank.DISCOVER.name: # TODO pass else: print("Unsupported Bank type -- " + self.bank_name) def _parse_AMEX(self): df = pd.read_csv(self.raw_transaction_file) # In Amex raw data, 1st, 3rd, 4th col are # date, amount, description df = df.iloc[:, [0, 3, 2]] df.columns = GENERIC_COLS df.to_csv(self.output_file, index=False) def _parse_BOA(self): df = pd.read_csv(self.raw_transaction_file) df = df[BOA_COLS] df.columns = GENERIC_COLS df.to_csv(self.output_file, index=False) def _parse_CHASE(self): df = pd.read_csv(self.raw_transaction_file) df = df[CHASE_COLS] df.columns = GENERIC_COLS df.to_csv(self.output_file, index=False) def _parse_CITI(self): """ In Citi csv file, Debit is positive value, Credit is negative value, They are of 2 different columns. Need to create a new col "Amount" that reverse the original sign. """ df = pd.read_csv(self.raw_transaction_file) # print(df) df["Amount"] = df.apply(lambda row: row.Debit * (-1) if not
pd.isnull(row.Debit)
pandas.isnull
import numpy as np import pytest import pandas as pd from pandas import DataFrame, Series, concat from pandas.core.base import DataError from pandas.util import testing as tm def test_rank_apply(): lev1 = tm.rands_array(10, 100) lev2 = tm.rands_array(10, 130) lab1 = np.random.randint(0, 100, size=500) lab2 = np.random.randint(0, 130, size=500) df = DataFrame( { "value": np.random.randn(500), "key1": lev1.take(lab1), "key2": lev2.take(lab2), } ) result = df.groupby(["key1", "key2"]).value.rank() expected = [piece.value.rank() for key, piece in df.groupby(["key1", "key2"])] expected = concat(expected, axis=0) expected = expected.reindex(result.index) tm.assert_series_equal(result, expected) result = df.groupby(["key1", "key2"]).value.rank(pct=True) expected = [ piece.value.rank(pct=True) for key, piece in df.groupby(["key1", "key2"]) ] expected = concat(expected, axis=0) expected = expected.reindex(result.index) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("grps", [["qux"], ["qux", "quux"]]) @pytest.mark.parametrize( "vals", [ [2, 2, 8, 2, 6], [ pd.Timestamp("2018-01-02"), pd.Timestamp("2018-01-02"), pd.Timestamp("2018-01-08"), pd.Timestamp("2018-01-02"), pd.Timestamp("2018-01-06"), ], ], ) @pytest.mark.parametrize( "ties_method,ascending,pct,exp", [ ("average", True, False, [2.0, 2.0, 5.0, 2.0, 4.0]), ("average", True, True, [0.4, 0.4, 1.0, 0.4, 0.8]), ("average", False, False, [4.0, 4.0, 1.0, 4.0, 2.0]), ("average", False, True, [0.8, 0.8, 0.2, 0.8, 0.4]), ("min", True, False, [1.0, 1.0, 5.0, 1.0, 4.0]), ("min", True, True, [0.2, 0.2, 1.0, 0.2, 0.8]), ("min", False, False, [3.0, 3.0, 1.0, 3.0, 2.0]), ("min", False, True, [0.6, 0.6, 0.2, 0.6, 0.4]), ("max", True, False, [3.0, 3.0, 5.0, 3.0, 4.0]), ("max", True, True, [0.6, 0.6, 1.0, 0.6, 0.8]), ("max", False, False, [5.0, 5.0, 1.0, 5.0, 2.0]), ("max", False, True, [1.0, 1.0, 0.2, 1.0, 0.4]), ("first", True, False, [1.0, 2.0, 5.0, 3.0, 4.0]), ("first", True, True, [0.2, 0.4, 1.0, 0.6, 0.8]), ("first", False, False, [3.0, 4.0, 1.0, 5.0, 2.0]), ("first", False, True, [0.6, 0.8, 0.2, 1.0, 0.4]), ("dense", True, False, [1.0, 1.0, 3.0, 1.0, 2.0]), ("dense", True, True, [1.0 / 3.0, 1.0 / 3.0, 3.0 / 3.0, 1.0 / 3.0, 2.0 / 3.0]), ("dense", False, False, [3.0, 3.0, 1.0, 3.0, 2.0]), ("dense", False, True, [3.0 / 3.0, 3.0 / 3.0, 1.0 / 3.0, 3.0 / 3.0, 2.0 / 3.0]), ], ) def test_rank_args(grps, vals, ties_method, ascending, pct, exp): key = np.repeat(grps, len(vals)) vals = vals * len(grps) df = DataFrame({"key": key, "val": vals}) result = df.groupby("key").rank(method=ties_method, ascending=ascending, pct=pct) exp_df = DataFrame(exp * len(grps), columns=["val"]) tm.assert_frame_equal(result, exp_df) @pytest.mark.parametrize("grps", [["qux"], ["qux", "quux"]]) @pytest.mark.parametrize( "vals", [[-np.inf, -np.inf, np.nan, 1.0, np.nan, np.inf, np.inf]] ) @pytest.mark.parametrize( "ties_method,ascending,na_option,exp", [ ("average", True, "keep", [1.5, 1.5, np.nan, 3, np.nan, 4.5, 4.5]), ("average", True, "top", [3.5, 3.5, 1.5, 5.0, 1.5, 6.5, 6.5]), ("average", True, "bottom", [1.5, 1.5, 6.5, 3.0, 6.5, 4.5, 4.5]), ("average", False, "keep", [4.5, 4.5, np.nan, 3, np.nan, 1.5, 1.5]), ("average", False, "top", [6.5, 6.5, 1.5, 5.0, 1.5, 3.5, 3.5]), ("average", False, "bottom", [4.5, 4.5, 6.5, 3.0, 6.5, 1.5, 1.5]), ("min", True, "keep", [1.0, 1.0, np.nan, 3.0, np.nan, 4.0, 4.0]), ("min", True, "top", [3.0, 3.0, 1.0, 5.0, 1.0, 6.0, 6.0]), ("min", True, "bottom", [1.0, 1.0, 6.0, 3.0, 6.0, 4.0, 4.0]), ("min", False, "keep", [4.0, 4.0, np.nan, 3.0, np.nan, 1.0, 1.0]), ("min", False, "top", [6.0, 6.0, 1.0, 5.0, 1.0, 3.0, 3.0]), ("min", False, "bottom", [4.0, 4.0, 6.0, 3.0, 6.0, 1.0, 1.0]), ("max", True, "keep", [2.0, 2.0, np.nan, 3.0, np.nan, 5.0, 5.0]), ("max", True, "top", [4.0, 4.0, 2.0, 5.0, 2.0, 7.0, 7.0]), ("max", True, "bottom", [2.0, 2.0, 7.0, 3.0, 7.0, 5.0, 5.0]), ("max", False, "keep", [5.0, 5.0, np.nan, 3.0, np.nan, 2.0, 2.0]), ("max", False, "top", [7.0, 7.0, 2.0, 5.0, 2.0, 4.0, 4.0]), ("max", False, "bottom", [5.0, 5.0, 7.0, 3.0, 7.0, 2.0, 2.0]), ("first", True, "keep", [1.0, 2.0, np.nan, 3.0, np.nan, 4.0, 5.0]), ("first", True, "top", [3.0, 4.0, 1.0, 5.0, 2.0, 6.0, 7.0]), ("first", True, "bottom", [1.0, 2.0, 6.0, 3.0, 7.0, 4.0, 5.0]), ("first", False, "keep", [4.0, 5.0, np.nan, 3.0, np.nan, 1.0, 2.0]), ("first", False, "top", [6.0, 7.0, 1.0, 5.0, 2.0, 3.0, 4.0]), ("first", False, "bottom", [4.0, 5.0, 6.0, 3.0, 7.0, 1.0, 2.0]), ("dense", True, "keep", [1.0, 1.0, np.nan, 2.0, np.nan, 3.0, 3.0]), ("dense", True, "top", [2.0, 2.0, 1.0, 3.0, 1.0, 4.0, 4.0]), ("dense", True, "bottom", [1.0, 1.0, 4.0, 2.0, 4.0, 3.0, 3.0]), ("dense", False, "keep", [3.0, 3.0, np.nan, 2.0, np.nan, 1.0, 1.0]), ("dense", False, "top", [4.0, 4.0, 1.0, 3.0, 1.0, 2.0, 2.0]), ("dense", False, "bottom", [3.0, 3.0, 4.0, 2.0, 4.0, 1.0, 1.0]), ], ) def test_infs_n_nans(grps, vals, ties_method, ascending, na_option, exp): # GH 20561 key = np.repeat(grps, len(vals)) vals = vals * len(grps) df = DataFrame({"key": key, "val": vals}) result = df.groupby("key").rank( method=ties_method, ascending=ascending, na_option=na_option ) exp_df = DataFrame(exp * len(grps), columns=["val"]) tm.assert_frame_equal(result, exp_df) @pytest.mark.parametrize("grps", [["qux"], ["qux", "quux"]]) @pytest.mark.parametrize( "vals", [ [2, 2, np.nan, 8, 2, 6, np.nan, np.nan], [ pd.Timestamp("2018-01-02"), pd.Timestamp("2018-01-02"), np.nan,
pd.Timestamp("2018-01-08")
pandas.Timestamp
import sys import os import math import datetime import itertools import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np from statsmodels.tsa.stattools import grangercausalitytests import scipy.stats as stats from mesa.batchrunner import BatchRunner, BatchRunnerMP from mesa.datacollection import DataCollector from project_material.model.network import HostNetwork class CustomBatchRunner(BatchRunner): def run_model(self, model): while model.schedule.steps < self.max_steps: model.step() def track_params(model): return ( model.num_nodes, model.avg_node_degree, model.initial_outbreak_size, model.prob_spread_virus_gamma_shape, model.prob_spread_virus_gamma_scale, model.prob_spread_virus_gamma_loc, model.prob_spread_virus_gamma_magnitude_multiplier, model.prob_recover_gamma_shape, model.prob_recover_gamma_scale, model.prob_recover_gamma_loc, model.prob_recover_gamma_magnitude_multiplier, model.prob_virus_kill_host_gamma_shape, model.prob_virus_kill_host_gamma_scale, model.prob_virus_kill_host_gamma_loc, model.prob_virus_kill_host_gamma_magnitude_multiplier, model.prob_infectious_no_to_mild_symptom_gamma_shape, model.prob_infectious_no_to_mild_symptom_gamma_scale, model.prob_infectious_no_to_mild_symptom_gamma_loc, model.prob_infectious_no_to_mild_symptom_gamma_magnitude_multiplier, model.prob_infectious_no_to_severe_symptom_gamma_shape, model.prob_infectious_no_to_severe_symptom_gamma_scale, model.prob_infectious_no_to_severe_symptom_gamma_loc, model.prob_infectious_no_to_severe_symptom_gamma_magnitude_multiplier, model.prob_infectious_no_to_critical_symptom_gamma_shape, model.prob_infectious_no_to_critical_symptom_gamma_scale, model.prob_infectious_no_to_critical_symptom_gamma_loc, model.prob_infectious_no_to_critical_symptom_gamma_magnitude_multiplier, model.prob_infectious_mild_to_no_symptom_gamma_shape, model.prob_infectious_mild_to_no_symptom_gamma_scale, model.prob_infectious_mild_to_no_symptom_gamma_loc, model.prob_infectious_mild_to_no_symptom_gamma_magnitude_multiplier, model.prob_infectious_mild_to_severe_symptom_gamma_shape, model.prob_infectious_mild_to_severe_symptom_gamma_scale, model.prob_infectious_mild_to_severe_symptom_gamma_loc, model.prob_infectious_mild_to_severe_symptom_gamma_magnitude_multiplier, model.prob_infectious_mild_to_critical_symptom_gamma_shape, model.prob_infectious_mild_to_critical_symptom_gamma_scale, model.prob_infectious_mild_to_critical_symptom_gamma_loc, model.prob_infectious_mild_to_critical_symptom_gamma_magnitude_multiplier, model.prob_infectious_severe_to_no_symptom_gamma_shape, model.prob_infectious_severe_to_no_symptom_gamma_scale, model.prob_infectious_severe_to_no_symptom_gamma_loc, model.prob_infectious_severe_to_no_symptom_gamma_magnitude_multiplier, model.prob_infectious_severe_to_mild_symptom_gamma_shape, model.prob_infectious_severe_to_mild_symptom_gamma_scale, model.prob_infectious_severe_to_mild_symptom_gamma_loc, model.prob_infectious_severe_to_mild_symptom_gamma_magnitude_multiplier, model.prob_infectious_severe_to_critical_symptom_gamma_shape, model.prob_infectious_severe_to_critical_symptom_gamma_scale, model.prob_infectious_severe_to_critical_symptom_gamma_loc, model.prob_infectious_severe_to_critical_symptom_gamma_magnitude_multiplier, model.prob_infectious_critical_to_no_symptom_gamma_shape, model.prob_infectious_critical_to_no_symptom_gamma_scale, model.prob_infectious_critical_to_no_symptom_gamma_loc, model.prob_infectious_critical_to_no_symptom_gamma_magnitude_multiplier, model.prob_infectious_critical_to_mild_symptom_gamma_shape, model.prob_infectious_critical_to_mild_symptom_gamma_scale, model.prob_infectious_critical_to_mild_symptom_gamma_loc, model.prob_infectious_critical_to_mild_symptom_gamma_magnitude_multiplier, model.prob_infectious_critical_to_severe_symptom_gamma_shape, model.prob_infectious_critical_to_severe_symptom_gamma_scale, model.prob_infectious_critical_to_severe_symptom_gamma_loc, model.prob_infectious_critical_to_severe_symptom_gamma_magnitude_multiplier, model.prob_recovered_no_to_mild_complication, model.prob_recovered_no_to_severe_complication, model.prob_recovered_mild_to_no_complication, model.prob_recovered_mild_to_severe_complication, model.prob_recovered_severe_to_no_complication, model.prob_recovered_severe_to_mild_complication, model.prob_gain_immunity, model.hospital_bed_capacity_as_percent_of_population, model.hospital_bed_cost_per_day, model.icu_bed_capacity_as_percent_of_population, model.icu_bed_cost_per_day, model.ventilator_capacity_as_percent_of_population, model.ventilator_cost_per_day, model.drugX_capacity_as_percent_of_population, model.drugX_cost_per_day, ) def track_run(model): return model.uid class BatchHostNetwork(HostNetwork): # id generator to track run number in batch run data id_gen = itertools.count(1) def __init__(self, num_nodes, avg_node_degree, initial_outbreak_size, prob_spread_virus_gamma_shape, prob_spread_virus_gamma_scale, prob_spread_virus_gamma_loc, prob_spread_virus_gamma_magnitude_multiplier, prob_recover_gamma_shape, prob_recover_gamma_scale, prob_recover_gamma_loc, prob_recover_gamma_magnitude_multiplier, prob_virus_kill_host_gamma_shape, prob_virus_kill_host_gamma_scale, prob_virus_kill_host_gamma_loc, prob_virus_kill_host_gamma_magnitude_multiplier, prob_infectious_no_to_mild_symptom_gamma_shape, prob_infectious_no_to_mild_symptom_gamma_scale, prob_infectious_no_to_mild_symptom_gamma_loc, prob_infectious_no_to_mild_symptom_gamma_magnitude_multiplier, prob_infectious_no_to_severe_symptom_gamma_shape, prob_infectious_no_to_severe_symptom_gamma_scale, prob_infectious_no_to_severe_symptom_gamma_loc, prob_infectious_no_to_severe_symptom_gamma_magnitude_multiplier, prob_infectious_no_to_critical_symptom_gamma_shape, prob_infectious_no_to_critical_symptom_gamma_scale, prob_infectious_no_to_critical_symptom_gamma_loc, prob_infectious_no_to_critical_symptom_gamma_magnitude_multiplier, prob_infectious_mild_to_no_symptom_gamma_shape, prob_infectious_mild_to_no_symptom_gamma_scale, prob_infectious_mild_to_no_symptom_gamma_loc, prob_infectious_mild_to_no_symptom_gamma_magnitude_multiplier, prob_infectious_mild_to_severe_symptom_gamma_shape, prob_infectious_mild_to_severe_symptom_gamma_scale, prob_infectious_mild_to_severe_symptom_gamma_loc, prob_infectious_mild_to_severe_symptom_gamma_magnitude_multiplier, prob_infectious_mild_to_critical_symptom_gamma_shape, prob_infectious_mild_to_critical_symptom_gamma_scale, prob_infectious_mild_to_critical_symptom_gamma_loc, prob_infectious_mild_to_critical_symptom_gamma_magnitude_multiplier, prob_infectious_severe_to_no_symptom_gamma_shape, prob_infectious_severe_to_no_symptom_gamma_scale, prob_infectious_severe_to_no_symptom_gamma_loc, prob_infectious_severe_to_no_symptom_gamma_magnitude_multiplier, prob_infectious_severe_to_mild_symptom_gamma_shape, prob_infectious_severe_to_mild_symptom_gamma_scale, prob_infectious_severe_to_mild_symptom_gamma_loc, prob_infectious_severe_to_mild_symptom_gamma_magnitude_multiplier, prob_infectious_severe_to_critical_symptom_gamma_shape, prob_infectious_severe_to_critical_symptom_gamma_scale, prob_infectious_severe_to_critical_symptom_gamma_loc, prob_infectious_severe_to_critical_symptom_gamma_magnitude_multiplier, prob_infectious_critical_to_no_symptom_gamma_shape, prob_infectious_critical_to_no_symptom_gamma_scale, prob_infectious_critical_to_no_symptom_gamma_loc, prob_infectious_critical_to_no_symptom_gamma_magnitude_multiplier, prob_infectious_critical_to_mild_symptom_gamma_shape, prob_infectious_critical_to_mild_symptom_gamma_scale, prob_infectious_critical_to_mild_symptom_gamma_loc, prob_infectious_critical_to_mild_symptom_gamma_magnitude_multiplier, prob_infectious_critical_to_severe_symptom_gamma_shape, prob_infectious_critical_to_severe_symptom_gamma_scale, prob_infectious_critical_to_severe_symptom_gamma_loc, prob_infectious_critical_to_severe_symptom_gamma_magnitude_multiplier, prob_recovered_no_to_mild_complication, prob_recovered_no_to_severe_complication, prob_recovered_mild_to_no_complication, prob_recovered_mild_to_severe_complication, prob_recovered_severe_to_no_complication, prob_recovered_severe_to_mild_complication, prob_gain_immunity, hospital_bed_capacity_as_percent_of_population, hospital_bed_cost_per_day, icu_bed_capacity_as_percent_of_population, icu_bed_cost_per_day, ventilator_capacity_as_percent_of_population, ventilator_cost_per_day, drugX_capacity_as_percent_of_population, drugX_cost_per_day, ): super().__init__( num_nodes, avg_node_degree, initial_outbreak_size, prob_spread_virus_gamma_shape, prob_spread_virus_gamma_scale, prob_spread_virus_gamma_loc, prob_spread_virus_gamma_magnitude_multiplier, prob_recover_gamma_shape, prob_recover_gamma_scale, prob_recover_gamma_loc, prob_recover_gamma_magnitude_multiplier, prob_virus_kill_host_gamma_shape, prob_virus_kill_host_gamma_scale, prob_virus_kill_host_gamma_loc, prob_virus_kill_host_gamma_magnitude_multiplier, prob_infectious_no_to_mild_symptom_gamma_shape, prob_infectious_no_to_mild_symptom_gamma_scale, prob_infectious_no_to_mild_symptom_gamma_loc, prob_infectious_no_to_mild_symptom_gamma_magnitude_multiplier, prob_infectious_no_to_severe_symptom_gamma_shape, prob_infectious_no_to_severe_symptom_gamma_scale, prob_infectious_no_to_severe_symptom_gamma_loc, prob_infectious_no_to_severe_symptom_gamma_magnitude_multiplier, prob_infectious_no_to_critical_symptom_gamma_shape, prob_infectious_no_to_critical_symptom_gamma_scale, prob_infectious_no_to_critical_symptom_gamma_loc, prob_infectious_no_to_critical_symptom_gamma_magnitude_multiplier, prob_infectious_mild_to_no_symptom_gamma_shape, prob_infectious_mild_to_no_symptom_gamma_scale, prob_infectious_mild_to_no_symptom_gamma_loc, prob_infectious_mild_to_no_symptom_gamma_magnitude_multiplier, prob_infectious_mild_to_severe_symptom_gamma_shape, prob_infectious_mild_to_severe_symptom_gamma_scale, prob_infectious_mild_to_severe_symptom_gamma_loc, prob_infectious_mild_to_severe_symptom_gamma_magnitude_multiplier, prob_infectious_mild_to_critical_symptom_gamma_shape, prob_infectious_mild_to_critical_symptom_gamma_scale, prob_infectious_mild_to_critical_symptom_gamma_loc, prob_infectious_mild_to_critical_symptom_gamma_magnitude_multiplier, prob_infectious_severe_to_no_symptom_gamma_shape, prob_infectious_severe_to_no_symptom_gamma_scale, prob_infectious_severe_to_no_symptom_gamma_loc, prob_infectious_severe_to_no_symptom_gamma_magnitude_multiplier, prob_infectious_severe_to_mild_symptom_gamma_shape, prob_infectious_severe_to_mild_symptom_gamma_scale, prob_infectious_severe_to_mild_symptom_gamma_loc, prob_infectious_severe_to_mild_symptom_gamma_magnitude_multiplier, prob_infectious_severe_to_critical_symptom_gamma_shape, prob_infectious_severe_to_critical_symptom_gamma_scale, prob_infectious_severe_to_critical_symptom_gamma_loc, prob_infectious_severe_to_critical_symptom_gamma_magnitude_multiplier, prob_infectious_critical_to_no_symptom_gamma_shape, prob_infectious_critical_to_no_symptom_gamma_scale, prob_infectious_critical_to_no_symptom_gamma_loc, prob_infectious_critical_to_no_symptom_gamma_magnitude_multiplier, prob_infectious_critical_to_mild_symptom_gamma_shape, prob_infectious_critical_to_mild_symptom_gamma_scale, prob_infectious_critical_to_mild_symptom_gamma_loc, prob_infectious_critical_to_mild_symptom_gamma_magnitude_multiplier, prob_infectious_critical_to_severe_symptom_gamma_shape, prob_infectious_critical_to_severe_symptom_gamma_scale, prob_infectious_critical_to_severe_symptom_gamma_loc, prob_infectious_critical_to_severe_symptom_gamma_magnitude_multiplier, prob_recovered_no_to_mild_complication, prob_recovered_no_to_severe_complication, prob_recovered_mild_to_no_complication, prob_recovered_mild_to_severe_complication, prob_recovered_severe_to_no_complication, prob_recovered_severe_to_mild_complication, prob_gain_immunity, hospital_bed_capacity_as_percent_of_population, hospital_bed_cost_per_day, icu_bed_capacity_as_percent_of_population, icu_bed_cost_per_day, ventilator_capacity_as_percent_of_population, ventilator_cost_per_day, drugX_capacity_as_percent_of_population, drugX_cost_per_day, ) self.model_reporters_dict.update({'Model params': track_params, 'Run': track_run}) self.datacollector = DataCollector(model_reporters=self.model_reporters_dict) # parameter lists for each parameter to be tested in batch run br_params = { 'num_nodes': [500], 'avg_node_degree': [10], 'initial_outbreak_size': [2], 'prob_spread_virus_gamma_shape': [1], 'prob_spread_virus_gamma_scale': [3], 'prob_spread_virus_gamma_loc': [0], 'prob_spread_virus_gamma_magnitude_multiplier': [0.25], 'prob_recover_gamma_shape': [7], 'prob_recover_gamma_scale': [3], 'prob_recover_gamma_loc': [0], 'prob_recover_gamma_magnitude_multiplier': [0.75], 'prob_virus_kill_host_gamma_shape': [5.2], 'prob_virus_kill_host_gamma_scale': [3.2], 'prob_virus_kill_host_gamma_loc': [0], 'prob_virus_kill_host_gamma_magnitude_multiplier': [0.069], 'prob_infectious_no_to_mild_symptom_gamma_shape': [4.1], 'prob_infectious_no_to_mild_symptom_gamma_scale': [1], 'prob_infectious_no_to_mild_symptom_gamma_loc': [0], 'prob_infectious_no_to_mild_symptom_gamma_magnitude_multiplier': [0.75], 'prob_infectious_no_to_severe_symptom_gamma_shape': [1], 'prob_infectious_no_to_severe_symptom_gamma_scale': [2], 'prob_infectious_no_to_severe_symptom_gamma_loc': [0], 'prob_infectious_no_to_severe_symptom_gamma_magnitude_multiplier': [0.1], 'prob_infectious_no_to_critical_symptom_gamma_shape': [1], 'prob_infectious_no_to_critical_symptom_gamma_scale': [2.8], 'prob_infectious_no_to_critical_symptom_gamma_loc': [0], 'prob_infectious_no_to_critical_symptom_gamma_magnitude_multiplier': [0.15], 'prob_infectious_mild_to_no_symptom_gamma_shape': [3], 'prob_infectious_mild_to_no_symptom_gamma_scale': [3], 'prob_infectious_mild_to_no_symptom_gamma_loc': [0], 'prob_infectious_mild_to_no_symptom_gamma_magnitude_multiplier': [0.25], 'prob_infectious_mild_to_severe_symptom_gamma_shape': [4.9], 'prob_infectious_mild_to_severe_symptom_gamma_scale': [2.2], 'prob_infectious_mild_to_severe_symptom_gamma_loc': [0], 'prob_infectious_mild_to_severe_symptom_gamma_magnitude_multiplier': [0.11], 'prob_infectious_mild_to_critical_symptom_gamma_shape': [3.3], 'prob_infectious_mild_to_critical_symptom_gamma_scale': [3.1], 'prob_infectious_mild_to_critical_symptom_gamma_loc': [0], 'prob_infectious_mild_to_critical_symptom_gamma_magnitude_multiplier': [0.11], 'prob_infectious_severe_to_no_symptom_gamma_shape': [3], 'prob_infectious_severe_to_no_symptom_gamma_scale': [2], 'prob_infectious_severe_to_no_symptom_gamma_loc': [0], 'prob_infectious_severe_to_no_symptom_gamma_magnitude_multiplier': [0.001], 'prob_infectious_severe_to_mild_symptom_gamma_shape': [5], 'prob_infectious_severe_to_mild_symptom_gamma_scale': [3], 'prob_infectious_severe_to_mild_symptom_gamma_loc': [0], 'prob_infectious_severe_to_mild_symptom_gamma_magnitude_multiplier': [0.001], 'prob_infectious_severe_to_critical_symptom_gamma_shape': [7], 'prob_infectious_severe_to_critical_symptom_gamma_scale': [3], 'prob_infectious_severe_to_critical_symptom_gamma_loc': [0], 'prob_infectious_severe_to_critical_symptom_gamma_magnitude_multiplier': [0.01], 'prob_infectious_critical_to_no_symptom_gamma_shape': [7], 'prob_infectious_critical_to_no_symptom_gamma_scale': [1], 'prob_infectious_critical_to_no_symptom_gamma_loc': [0], 'prob_infectious_critical_to_no_symptom_gamma_magnitude_multiplier': [0.001], 'prob_infectious_critical_to_mild_symptom_gamma_shape': [4], 'prob_infectious_critical_to_mild_symptom_gamma_scale': [2], 'prob_infectious_critical_to_mild_symptom_gamma_loc': [0], 'prob_infectious_critical_to_mild_symptom_gamma_magnitude_multiplier': [0.001], 'prob_infectious_critical_to_severe_symptom_gamma_shape': [5], 'prob_infectious_critical_to_severe_symptom_gamma_scale': [2], 'prob_infectious_critical_to_severe_symptom_gamma_loc': [0], 'prob_infectious_critical_to_severe_symptom_gamma_magnitude_multiplier': [0.25], 'prob_recovered_no_to_mild_complication': [0.016], 'prob_recovered_no_to_severe_complication': [0], 'prob_recovered_mild_to_no_complication': [0.02], 'prob_recovered_mild_to_severe_complication': [0.02], 'prob_recovered_severe_to_no_complication': [0.001], 'prob_recovered_severe_to_mild_complication': [0.001], 'prob_gain_immunity': [0.005], 'hospital_bed_capacity_as_percent_of_population': [0.10], 'hospital_bed_cost_per_day': [2000], 'icu_bed_capacity_as_percent_of_population': [0.10], 'icu_bed_cost_per_day': [3000], 'ventilator_capacity_as_percent_of_population': [0.1], 'ventilator_cost_per_day': [100], 'drugX_capacity_as_percent_of_population': [0.1], 'drugX_cost_per_day': [20], } start_date = datetime.datetime(2020, 2, 20) # Setting num_iterations = 1 # Setting num_max_steps_in_reality = 95 # Setting num_max_steps_in_simulation = 165 # Setting end_date_in_reality = start_date + datetime.timedelta(days=num_max_steps_in_reality) # 2020-05-25 end_date_in_simulation = start_date + datetime.timedelta(days=num_max_steps_in_simulation) # 2020-09-22 if num_max_steps_in_simulation == 215 try: br = BatchRunnerMP(BatchHostNetwork, br_params, iterations=num_iterations, max_steps=num_max_steps_in_simulation, model_reporters={'Data Collector': lambda m: m.datacollector}) except Exception as e: print('Multiprocessing batch run not applied, reason as:', e) br = CustomBatchRunner(BatchHostNetwork, br_params, iterations=num_iterations, max_steps=num_max_steps_in_simulation, model_reporters={'Data Collector': lambda m: m.datacollector}) def main(on_switch=False, graph_switch=False, stats_test_switch=False, save_switch=False, realworld_prediction_switch=False, filename_tag=''): if on_switch: br.run_all() br_df = br.get_model_vars_dataframe() br_step_data = pd.DataFrame() for i in range(len(br_df['Data Collector'])): if isinstance(br_df['Data Collector'][i], DataCollector): print('>>>>> Run #{}'.format(i)) i_run_data = br_df['Data Collector'][i].get_model_vars_dataframe() i_run_data['Date'] = i_run_data.apply(lambda row: convert_time_to_date(row, 'Time', start_date), axis=1) br_step_data = br_step_data.append(i_run_data, ignore_index=True) model_param = i_run_data['Model params'][0] df_real = prepare_realworld_data().copy() df_real['date_formatted'] = pd.to_datetime(df_real['date_formatted']) df_real.sort_values(by=['date_formatted']) df_sim = i_run_data.copy() df_sim['Date'] = pd.to_datetime(df_sim['Date']) df_sim.sort_values(by=['Date']) df_merged = pd.merge(df_real, df_sim, how='outer', left_on=['date_formatted'], right_on=['Date']) if graph_switch: print('>> For graphs') print('Model param:', model_param) graphing(df=df_merged) if stats_test_switch: print('>> For statistical tests') print('Model param:', model_param) df_merged_sliced = df_merged[(df_merged['date_formatted'] >= start_date) & (df_merged['date_formatted'] <= end_date_in_reality)] statistical_test_validation(df=df_merged_sliced) if realworld_prediction_switch: print('>> For real-world predictions') print('Model param:', model_param) df_merged = predict_by_percent_change_of_another_col( df=df_merged, predicted_col='cumulative_cases', feature_col='Cumulative test-confirmed infectious' ) df_merged = predict_by_percent_change_of_another_col( df=df_merged, predicted_col='cumulative_deaths', feature_col='Cumulative test-confirmed dead' ) df_merged = predict_by_percent_change_of_another_col( df=df_merged, predicted_col='active_cases', feature_col='Test-confirmed infectious' ) br_step_data['File ID'] = filename_tag if save_switch: br_step_data.to_csv(os.getcwd() + '\\project_result\\disease_model_step_data{}_p{}.csv'.format(filename_tag, i), index=False) df_merged.to_csv(os.getcwd() + '\\project_result\\disease_model_merged_data{}_p{}.csv'.format(filename_tag, i), index=False) # Helper functions curr_dir = os.getcwd() covid19_dir = '\\data\Covid19Canada' covid19_timeseries_prov_dir = covid19_dir+'\\timeseries_prov' cases_timeseries_filename = 'cases_timeseries_prov.csv' mortality_timeseries_filename = 'mortality_timeseries_prov.csv' overall_timeseries_filename = 'active_timeseries_prov.csv' testing_timeseries_filename = 'testing_timeseries_prov.csv' project_result_dir = '\\project_result' output_real_data_filename = 'realworldCovid19_step_data_processed.csv' popn_factor = 1000000 # Setting def convert_time_to_date(row, var, start_date): current_date = start_date + datetime.timedelta(days=(int(row[var]-1))) return current_date def get_realworld_data(): path_overall = curr_dir+covid19_timeseries_prov_dir+'\\'+overall_timeseries_filename path_testing = curr_dir+covid19_timeseries_prov_dir+'\\'+testing_timeseries_filename df_overall = pd.read_csv(path_overall, encoding='utf-8', low_memory=False) df_overall.rename(columns={'date_active': 'date'}, inplace=True) df_testing = pd.read_csv(path_testing, encoding='utf-8', low_memory=False) df_testing.rename(columns={'date_testing': 'date'}, inplace=True) df_merged = pd.merge(df_overall, df_testing, on=['province', 'date'], how='outer') df_merged['testing'].fillna(0, inplace=True) df_merged['cumulative_testing'].fillna(0, inplace=True) del df_merged['testing_info'] return df_merged def prepare_realworld_data(): df_canada = get_realworld_data().copy() # Restrict location prov = 'Alberta' if prov == 'Alberta': prov_popn = 4.41 * 1000000 # Source: https://economicdashboard.alberta.ca/Population df = df_canada[df_canada['province'] == 'Alberta'] # Restrict date range df['date_formatted'] = pd.to_datetime(df['date'], format='%d-%m-%Y') df = df[(df['date_formatted'] >= start_date) & (df['date_formatted'] <= end_date_in_reality)] # Additional calculations df['total_n'] = prov_popn df['rate_per_1M_cumulative_test_done'] = df.apply(get_proportion, numerator='cumulative_testing', denominator='total_n', multiplier = popn_factor, axis=1) df['rate_per_1M_cumulative_test-confirmed_infectious'] = df.apply(get_proportion, numerator='cumulative_cases', denominator='total_n', multiplier = popn_factor, axis=1) df['rate_per_1M_cumulative_test-confirmed_dead'] = df.apply(get_proportion, numerator='cumulative_deaths', denominator='total_n', multiplier = popn_factor, axis=1) return df def graphing(df): display_vars_for_df_real = ['rate_per_1M_cumulative_test_done', 'rate_per_1M_cumulative_test-confirmed_infectious', 'rate_per_1M_cumulative_test-confirmed_dead', ] display_vars_for_df_sim = [ 'Rate per 1M cumulative test done', 'Rate per 1M cumulative infectious', 'Rate per 1M cumulative test-confirmed infectious', 'Rate per 1M cumulative dead', 'Rate per 1M cumulative test-confirmed dead', ] for var in display_vars_for_df_real: sns.lineplot(x='date_formatted', y=var, data=df) plt.xticks(rotation=15) plt.title('Title: Real-world '+var) plt.show() for var in display_vars_for_df_sim: sns.lineplot(x='Date', y=var, data=df) plt.xticks(rotation=15) plt.title('Title: Simulated '+var) plt.show() def statistical_test_validation(df): maxlag = 10 granger_test = 'ssr_ftest' # options are 'params_ftest', 'ssr_ftest', 'ssr_chi2test', and 'lrtest' var_pair_p1 = ['rate_per_1M_cumulative_test_done', 'Rate per 1M cumulative test done'] var_pair_p2 = ['rate_per_1M_cumulative_test-confirmed_infectious', 'Rate per 1M cumulative test-confirmed infectious'] var_pair_p3 = ['rate_per_1M_cumulative_test-confirmed_dead', 'Rate per 1M cumulative test-confirmed dead'] granger_test_result_p1 = grangercausalitytests(df[var_pair_p1], maxlag=maxlag, verbose=False) granger_test_result_p2 = grangercausalitytests(df[var_pair_p2], maxlag=maxlag, verbose=False) granger_test_result_p3 = grangercausalitytests(df[var_pair_p3], maxlag=maxlag, verbose=False) granger_p_values_p1 = [round(granger_test_result_p1[i + 1][0][granger_test][1], 4) for i in range(maxlag)] granger_min_p_value_p1 = np.min(granger_p_values_p1) granger_max_p_value_p1 = np.max(granger_p_values_p1) granger_mean_p_value_p1 = np.mean(granger_p_values_p1) granger_p_values_p2 = [round(granger_test_result_p2[i + 1][0][granger_test][1], 4) for i in range(maxlag)] granger_min_p_value_p2 = np.min(granger_p_values_p2) granger_max_p_value_p2 = np.max(granger_p_values_p2) granger_mean_p_value_p2 = np.mean(granger_p_values_p2) granger_p_values_p3 = [round(granger_test_result_p3[i + 1][0][granger_test][1], 4) for i in range(maxlag)] granger_min_p_value_p3 = np.min(granger_p_values_p3) granger_max_p_value_p3 = np.max(granger_p_values_p3) granger_mean_p_value_p3 = np.mean(granger_p_values_p3) print('p-value of {}: min={}, max={}, mean={}'.format(granger_test, granger_min_p_value_p1, granger_max_p_value_p1, granger_mean_p_value_p1)) print('p-value of {}: min={}, max={}, mean={}'.format(granger_test, granger_min_p_value_p2, granger_max_p_value_p2, granger_mean_p_value_p2)) print('p-value of {}: min={}, max={}, mean={}'.format(granger_test, granger_min_p_value_p3, granger_max_p_value_p3, granger_mean_p_value_p3)) pearson_r1, pearson_p1 = stats.pearsonr(df.dropna()[var_pair_p1[0]], df.dropna()[var_pair_p1[1]]) pearson_r2, pearson_p2 = stats.pearsonr(df.dropna()[var_pair_p2[0]], df.dropna()[var_pair_p2[1]]) pearson_r3, pearson_p3 = stats.pearsonr(df.dropna()[var_pair_p3[0]], df.dropna()[var_pair_p3[1]]) print(f'Pearson r: {pearson_r1} and p-value: {pearson_p1}') print(f'Pearson r: {pearson_r2} and p-value: {pearson_p2}') print(f'Pearson r: {pearson_r3} and p-value: {pearson_p3}') def predict_by_percent_change_of_another_col(df, predicted_col, feature_col): pct_chg_col = feature_col+' percent change' df[pct_chg_col] = (df[feature_col] - df[feature_col].shift(1).fillna(0))/\ df[feature_col].shift(1).fillna(0) empty_cells = df[predicted_col].isna() percents = df[pct_chg_col].where(empty_cells, 0) + 1 df[predicted_col] = df[predicted_col].ffill() * percents.cumprod() return df def get_proportion(df, numerator, denominator, multiplier=1): try: return (df[numerator]/df[denominator])*multiplier except ZeroDivisionError: return math.inf def pandas_output_setting():
pd.set_option('display.max_rows', 500)
pandas.set_option
import os from hilbertcurve.hilbertcurve import HilbertCurve from pyqtree import Index import pickle import sys import math import json import pandas from epivizfileserver.parser import BigWig import struct class QuadTreeManager(object): def __init__(self, genome, max_items = 128, base_path = os.getcwd()): self.file_mapping = {} self.file_objects = {} # self.file_chrids = {} self.genome = genome self.max_items = max_items self.base_path = base_path self.file_counter = 0 def hcoords(self, x, chromLength, dims = 2): hlevel = math.ceil(math.log2(chromLength)/dims) # print("hlevel, ", hlevel) hilbert_curve = HilbertCurve(hlevel, dims) [x,y] = hilbert_curve.coordinates_from_distance(x) return x, y, hlevel def get_file_btree(self, file, zoomlvl): bw = BigWig(file) bw.getZoomHeader() tree = bw.getTree(-2) return tree, bw def read_node(self, tree, offset, endian="="): data = tree[offset:offset + 4] (rIsLeaf, rReserved, rCount) = struct.unpack(endian + "BBH", data) return {"rIsLeaf": rIsLeaf, "rCount": rCount, "rOffset": offset + 4} def traverse_nodes(self, node, zoomlvl = -2, tree = None, result = [], fullIndexOffset = None, endian="="): offset = node.get("rOffset") if node.get("rIsLeaf"): for i in range(0, node.get("rCount")): data = tree[offset + (i * 32) : offset + ( (i+1) * 32 )] (rStartChromIx, rStartBase, rEndChromIx, rEndBase, rdataOffset, rDataSize) = struct.unpack(endian + "IIIIQQ", data) result.append((rStartChromIx, rStartBase, rEndChromIx, rEndBase, rdataOffset, rDataSize)) else: for i in range(0, node.get("rCount")): data = tree[offset + (i * 24) : offset + ( (i+1) * 24 )] (rStartChromIx, rStartBase, rEndChromIx, rEndBase, rdataOffset) = struct.unpack(endian + "IIIIQ", data) # remove index offset since the stored binary starts from 0 diffOffset = fullIndexOffset childNode = self.read_node(tree, rdataOffset - diffOffset, endian) self.traverse_nodes(childNode, zoomlvl, result=result, tree = tree, fullIndexOffset = fullIndexOffset, endian = endian) return result def get_leaf_nodes(self, tree, bw, zoomlvl): findexOffset = bw.header.get("fullIndexOffset") offset = 48 root = self.read_node(tree, offset, endian = bw.endian) records = self.traverse_nodes(root, zoomlvl, tree = tree, fullIndexOffset = findexOffset, endian = bw.endian) df = pandas.DataFrame(records, columns=["rStartChromIx", "rStartBase", "rEndChromIx", "rEndBase", "rdataOffset", "rDataSize"]) return df def get_file_chr(self, bw): bw.getId("chr1") return bw.chrmIds def add_to_index(self, file, zoomlvl = -2): tree, bw = self.get_file_btree(file, zoomlvl) df = self.get_leaf_nodes(tree, bw, zoomlvl) chrmTree = self.get_file_chr(bw) self.file_mapping[file] = self.file_counter self.file_counter += 1 self.file_objects[file] = bw for chrm in chrmTree.keys(): chromLength = self.genome[chrm] dims = 2 hlevel = math.ceil(math.log2(chromLength)/dims) # print("hlevel", hlevel) x_y_dim = math.ceil(math.pow(2, hlevel)) # print("max x|y =", x_y_dim) tree = Index(bbox=(0, 0, x_y_dim, x_y_dim), disk = base_path + "quadtree." + chrm + ".index") chrmId = chrmTree[chrm] df = df[df["rStartChromIx"] == chrmId] # print("\t df shape - ", df.shape) for i, row in df.iterrows(): x, y, _ = hcoords(row["rStartBase"], chromLength) tree.insert((row["rStartBase"], row["rEndBase"], row["rdataOffset"], row["rDataSize"], fileIds[file]), (x, y, x+1, y+1)) def query(self, file, chr, start, end, zoomlvl = -2): chromLength = self.genome[chr] dims = 2 hlevel = math.ceil(math.log2(chromLength)/dims) # print("hlevel", hlevel) x_y_dim = math.ceil(math.pow(2, hlevel)) # print("max x|y =", x_y_dim) tree = Index(bbox=(0, 0, x_y_dim, x_y_dim), disk = base_path + "quadtree." + chr + ".index") xstart, ystart, _ = hcoords(start, chromLength) xend, yend, _ = hcoords(end, chromLength) overlapbbox = (start - 1, start - 1, end + 1, end + 1) matches = tree.intersect(overlapbbox) df =
pandas.DataFrame(matches, columns=["start", "end", "offset", "size", "fileid"])
pandas.DataFrame
from snsql import * import pandas as pd import numpy as np privacy = Privacy(epsilon=3.0, delta=0.1) class TestPreAggregatedSuccess: # Test input checks for pre_aggregated def test_list_success(self, test_databases): # pass in properly formatted list pre_aggregated = [ ('keycount', 'sex', 'count_star'), (1000, 2, 2000), (1000, 1, 2000) ] query = 'SELECT sex, COUNT(*) AS n, COUNT(*) AS foo FROM PUMS.PUMS GROUP BY sex ORDER BY sex' priv = test_databases.get_private_reader( privacy=privacy, database="PUMS_pid", engine="pandas" ) if priv: res = priv.execute(query, pre_aggregated=pre_aggregated) assert(str(res[1][0]) == '1') # it's sorted def test_pandas_success(self, test_databases): # pass in properly formatted dataframe pre_aggregated = [ ('keycount', 'sex', 'count_star'), (1000, 2, 2000), (1000, 1, 2000) ] colnames = pre_aggregated[0] pre_aggregated = pd.DataFrame(data=pre_aggregated[1:], index=None) pre_aggregated.columns = colnames priv = test_databases.get_private_reader( privacy=privacy, database="PUMS_pid", engine="pandas" ) if priv: query = 'SELECT sex, COUNT(*) AS n, COUNT(*) AS foo FROM PUMS.PUMS GROUP BY sex ORDER BY sex' res = priv.execute(query, pre_aggregated=pre_aggregated) assert(str(res[1][0]) == '1') # it's sorted def test_pandas_success_df(self, test_databases): # pass in properly formatted dataframe pre_aggregated = [ ('keycount', 'sex', 'count_star'), (1000, 2, 2000), (1000, 1, 2000) ] colnames = pre_aggregated[0] pre_aggregated = pd.DataFrame(data=pre_aggregated[1:], index=None) pre_aggregated.columns = colnames priv = test_databases.get_private_reader( privacy=privacy, database="PUMS_pid", engine="pandas" ) if priv: query = 'SELECT sex, COUNT(*) AS n, COUNT(*) AS foo FROM PUMS.PUMS GROUP BY sex ORDER BY sex' res = priv.execute_df(query, pre_aggregated=pre_aggregated) assert(str(res['sex'][0]) == '1') # it's sorted def test_np_ndarray_success(self, test_databases): # pass in properly formatted dataframe pre_aggregated = [ ('keycount', 'sex', 'count_star'), (1000, 2, 2000), (1000, 1, 2000) ] colnames = pre_aggregated[0] pre_aggregated =
pd.DataFrame(data=pre_aggregated[1:], index=None)
pandas.DataFrame
import datasets import training import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score import time from itertools import combinations def run_linear_regression_model(train_query_x, test_query_x, train_y, test_y, real_x, real_y): start_time = time.time() reg_map = LinearRegression().fit(train_query_x, train_y) end_time = time.time() duration = end_time - start_time print("--- Trained in %s seconds ---" % duration) pred_y = reg_map.predict(test_query_x) diff = pred_y.flatten() - test_y percent_diff = (diff / test_y) abs_percent_diff = np.abs(percent_diff) synthetic_mean = np.mean(abs_percent_diff) synthetic_std = np.std(abs_percent_diff) print ('mean = {}, std = {}'.format(synthetic_mean, synthetic_std)) pred_y = reg_map.predict(real_x) diff = pred_y.flatten() - real_y percent_diff = (diff / test_y) abs_percent_diff = np.abs(percent_diff) real_mean = np.mean(abs_percent_diff) real_std = np.std(abs_percent_diff) print ('mean = {}, std = {}'.format(real_mean, real_std)) return duration, synthetic_mean, synthetic_std, real_mean, real_std def main(): print ("Train and test a prediction model for SE problem using baseline model") output_f = open('data/output_accuracy_prediction_baseline.csv', 'w') query_attributes_files_list = [] distributions = ['uniform', 'diagonal', 'gauss', 'parcel', 'combo'] for r in range(1, len(distributions) + 1): groups = combinations(distributions, r) for g in groups: query_attributes_files = [] for dist in g: query_attributes_files.append('data/query_accuracies_{}.csv'.format(dist)) query_attributes_files_list.append(query_attributes_files) query_attributes_all = datasets.load_query_attributes_from_multiple_files(['data/query_accuracies_all.csv']) train_query_attributes_all, test_query_attributes_all = train_test_split( query_attributes_all, test_size=0.25, random_state=42) for query_attributes_files in query_attributes_files_list: query_attributes = datasets.load_query_attributes_from_multiple_files(query_attributes_files) train_query_attributes, test_query_attributes = train_test_split( query_attributes, test_size=0.25, random_state=42) real_query_attributes = datasets.load_query_attributes('data/lakes_query_accuracies.csv') # train_query_x = pd.DataFrame.to_numpy(train_query_attributes[['sampling_budget', 'query_ratio']]) # test_query_x = pd.DataFrame.to_numpy(test_query_attributes_all[['sampling_budget', 'query_ratio']]) # train_y = train_query_attributes['mean_accuracy'] # test_y = test_query_attributes_all['mean_accuracy'] # real_x = pd.DataFrame.to_numpy(real_query_attributes[['sampling_budget', 'query_ratio']]) # real_y = real_query_attributes['mean_accuracy'] train_query_x = pd.DataFrame.to_numpy(train_query_attributes[['query_ratio', 'mean_accuracy']]) test_query_x = pd.DataFrame.to_numpy(test_query_attributes_all[['query_ratio', 'mean_accuracy']]) train_y = train_query_attributes['sampling_budget'] test_y = test_query_attributes_all['sampling_budget'] real_x =
pd.DataFrame.to_numpy(real_query_attributes[['query_ratio', 'mean_accuracy']])
pandas.DataFrame.to_numpy
import numpy as np import pandas as pd from classifier2 import what1, what import matplotlib.pyplot as plt """ dataframe that provides very good info about individual classes! """ #v = what['value(in%)'].cumsum() what2 = what1.join(what['value(in%)']) what3 = what2.sort_values(by='value(in%)',ascending= False) what4 = what3.set_index('SKU',drop=True,inplace=False) what5 = pd.DataFrame(what4) what6 = pd.concat([what5['value(in%)']]).cumsum() #.join(what5['Name'], what5['Quantity'], what5['Unit_cost']) what7 = pd.concat([what6, what5['Quantity'], what5['Unit_cost'], what5['Category'], what5['SubCategory']], axis=1) #print(what7) classAA = what7[(what7['value(in%)'] <= 40)] classA = what7[(what7['value(in%)'] > 40) & (what7['value(in%)']<80)] classB = what7[(what7['value(in%)'] > 80) & (what7['value(in%)']<90)] classC = what7[(what7['value(in%)'] > 90) & (what7['value(in%)'] <99)] classD = what7[(what7['value(in%)'] > 99) & (what7['value(in%)'] <102)] classAA =
pd.DataFrame(classAA)
pandas.DataFrame
import argparse import os import warnings import boto3, time, json, warnings, os, re import urllib.request from datetime import date, timedelta import numpy as np import pandas as pd import geopandas as gpd from multiprocessing import Pool # the train test split date is used to split each time series into train and test sets train_test_split_date = date.today() - timedelta(days = 30) # the sampling frequency determines the number of hours per sample # and is used for aggregating and filling missing values frequency = '1' warnings.filterwarnings('ignore') def athena_create_table(bucket_name, query_file, wait=None): create_table_uri = athena_execute(bucket_name, query_file, 'txt', wait) return create_table_uri def athena_query_table(bucket_name, query_file, wait=None): results_uri = athena_execute(bucket_name, query_file, 'csv', wait) return results_uri def athena_execute(bucket_name, query_file, ext, wait): with open(query_file) as f: query_str = f.read() athena = boto3.client('athena') s3_dest = f's3://{bucket_name}/athena/results/' query_id = athena.start_query_execution( QueryString= query_str, ResultConfiguration={'OutputLocation': s3_dest} )['QueryExecutionId'] results_uri = f'{s3_dest}{query_id}.{ext}' start = time.time() while wait == None or wait == 0 or time.time() - start < wait: result = athena.get_query_execution(QueryExecutionId=query_id) status = result['QueryExecution']['Status']['State'] if wait == 0 or status == 'SUCCEEDED': break elif status in ['QUEUED','RUNNING']: continue else: raise Exception(f'query {query_id} failed with status {status}') time.sleep(3) return results_uri def map_s3_bucket_path(s3_uri): pattern = re.compile('^s3://([^/]+)/(.*?([^/]+)/?)$') value = pattern.match(s3_uri) return value.group(1), value.group(2) def get_sydney_openaq_data(bucket_name, sql_query_file_path = "/opt/ml/processing/sql/sydney.dml"): query_results_uri = athena_query_table(bucket_name, sql_query_file_path) print (f'reading {query_results_uri}') bucket_name, key = map_s3_bucket_path(query_results_uri) print(f'bucket: {bucket_name}; with key: {key}') local_result_file = 'result.csv' s3 = boto3.resource('s3') s3.Bucket(bucket_name).download_file(key, local_result_file) raw = pd.read_csv(local_result_file, parse_dates=['timestamp']) return raw def featurize(raw): def fill_missing_hours(df): df = df.reset_index(level=categorical_levels, drop=True) index = pd.date_range(df.index.min(), df.index.max(), freq='1H') return df.reindex(pd.Index(index, name='timestamp')) # Sort and index by location and time categorical_levels = ['country', 'city', 'location', 'parameter'] index_levels = categorical_levels + ['timestamp'] indexed = raw.sort_values(index_levels, ascending=True) indexed = indexed.set_index(index_levels) # indexed.head() # Downsample to hourly samples by maximum value downsampled = indexed.groupby(categorical_levels + [pd.Grouper(level='timestamp', freq='1H')]).max() # Back fill missing values filled = downsampled.groupby(level=categorical_levels).apply(fill_missing_hours) #filled[filled['value'].isnull()].groupby('location').count().describe() filled['value'] = filled['value'].interpolate().round(2) filled['point_latitude'] = filled['point_latitude'].fillna(method='pad') filled['point_longitude'] = filled['point_longitude'].fillna(method='pad') # Create Features aggregated = filled.reset_index(level=4)\ .groupby(level=categorical_levels)\ .agg(dict(timestamp='first', value=list, point_latitude='first', point_longitude='first'))\ .rename(columns=dict(timestamp='start', value='target')) aggregated['id'] = np.arange(len(aggregated)) aggregated.reset_index(inplace=True) aggregated.set_index(['id']+categorical_levels, inplace=True) # Add Categorical features level_ids = [level+'_id' for level in categorical_levels] for l in level_ids: aggregated[l], index = pd.factorize(aggregated.index.get_level_values(l[:-3])) aggregated['cat'] = aggregated.apply(lambda columns: [columns[l] for l in level_ids], axis=1) features = aggregated.drop(columns=level_ids+ ['point_longitude', 'point_latitude']) features.reset_index(level=categorical_levels, inplace=True, drop=True) return features def filter_dates(df, min_time, max_time, frequency): min_time = None if min_time is None else pd.to_datetime(min_time) max_time = None if max_time is None else
pd.to_datetime(max_time)
pandas.to_datetime
import pytest from mapping import mappings from pandas.util.testing import assert_frame_equal, assert_series_equal import pandas as pd from pandas import Timestamp as TS import numpy as np from pandas.tseries.offsets import BDay @pytest.fixture def dates(): return pd.Series( [TS('2016-10-20'), TS('2016-11-21'), TS('2016-12-20')], index=['CLX16', 'CLZ16', 'CLF17'] ) def test_not_in_roll_one_generic_static_roller(dates): dt = dates.iloc[0] contract_dates = dates.iloc[0:2] sd, ed = (dt + BDay(-8), dt + BDay(-7)) timestamps = pd.date_range(sd, ed, freq='b') cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] trans = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) midx = pd.MultiIndex.from_product([timestamps, ['CLX16']]) midx.names = ['date', 'contract'] cols = pd.Index([0], name='generic') wts_exp = pd.DataFrame([1.0, 1.0], index=midx, columns=cols) # with DatetimeIndex wts = mappings.roller(timestamps, contract_dates, mappings.static_transition, transition=trans) assert_frame_equal(wts, wts_exp) # with tuple wts = mappings.roller(tuple(timestamps), contract_dates, mappings.static_transition, transition=trans) assert_frame_equal(wts, wts_exp) def test_not_in_roll_one_generic_static_transition(dates): contract_dates = dates.iloc[0:2] ts = dates.iloc[0] + BDay(-8) cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLX16', 1.0, ts)] assert wts == wts_exp def test_non_numeric_column_static_transition(dates): contract_dates = dates.iloc[0:2] ts = dates.iloc[0] + BDay(-8) cols = pd.MultiIndex.from_product([["CL1"], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [("CL1", 'CLX16', 1.0, ts)] assert wts == wts_exp def test_finished_roll_pre_expiry_static_transition(dates): contract_dates = dates.iloc[0:2] ts = dates.iloc[0] + BDay(-2) cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-9, -8] transition = pd.DataFrame([[1.0, 0.0], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLZ16', 1.0, ts)] assert wts == wts_exp def test_not_in_roll_one_generic_filtering_front_contracts_static_transition(dates): # NOQA contract_dates = dates.iloc[0:2] ts = dates.iloc[1] + BDay(-8) cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLZ16', 1.0, ts)] assert wts == wts_exp def test_roll_with_holiday(dates): contract_dates = dates.iloc[-2:] ts = pd.Timestamp("2016-11-17") cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) holidays = [np.datetime64("2016-11-18")] # the holiday moves the roll schedule up one day, since Friday is # excluded as a day wts = mappings.static_transition(ts, contract_dates, transition, holidays) wts_exp = [(0, 'CLZ16', 0.5, ts), (0, 'CLF17', 0.5, ts)] assert wts == wts_exp def test_not_in_roll_one_generic_zero_weight_back_contract_no_contract_static_transition(dates): # NOQA contract_dates = dates.iloc[0:1] ts = dates.iloc[0] + BDay(-8) cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLX16', 1.0, ts)] assert wts == wts_exp def test_aggregate_weights(): ts = pd.Timestamp("2015-01-01") wts_list = [(0, 'CLX16', 1.0, ts), (1, 'CLZ16', 1.0, ts)] wts = mappings.aggregate_weights(wts_list) idx = pd.MultiIndex.from_product([[ts], ["CLX16", "CLZ16"]], names=["date", "contract"]) cols = pd.Index([0, 1], name="generic") wts_exp = pd.DataFrame([[1.0, 0], [0, 1.0]], index=idx, columns=cols) assert_frame_equal(wts, wts_exp) def test_aggregate_weights_drop_date(): ts = pd.Timestamp("2015-01-01") wts_list = [(0, 'CLX16', 1.0, ts), (1, 'CLZ16', 1.0, ts)] wts = mappings.aggregate_weights(wts_list, drop_date=True) idx = pd.Index(["CLX16", "CLZ16"], name="contract") cols = pd.Index([0, 1], name="generic") wts_exp = pd.DataFrame([[1.0, 0], [0, 1.0]], index=idx, columns=cols) assert_frame_equal(wts, wts_exp) def test_static_bad_transitions(dates): contract_dates = dates.iloc[[0]] ts = dates.iloc[0] + BDay(-8) # transition does not contain 'front' column cols = pd.MultiIndex.from_product([[0], ['not_front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) with pytest.raises(ValueError): mappings.static_transition(ts, contract_dates, transition) # transition does not sum to one across rows cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.0], [0.0, 1.0]], index=idx, columns=cols) with pytest.raises(ValueError): mappings.static_transition(ts, contract_dates, transition) # transition is not monotonic increasing in back transition = pd.DataFrame([[0.7, 0.3], [0.8, 0.2], [0.0, 1.0]], index=idx, columns=cols) with pytest.raises(ValueError): mappings.static_transition(ts, contract_dates, transition) def test_no_roll_date_two_generics_static_transition(dates): dt = dates.iloc[0] contract_dates = dates ts = dt + BDay(-8) cols = pd.MultiIndex.from_product([[0, 1], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0, 1.0, 0.0], [0.5, 0.5, 0.5, 0.5], [0.0, 1.0, 0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLX16', 1.0, ts), (1, 'CLZ16', 1.0, ts)] assert wts == wts_exp def test_not_in_roll_two_generics_static_roller(dates): dt = dates.iloc[0] contract_dates = dates.iloc[0:3] sd, ed = (dt + BDay(-8), dt + BDay(-7)) timestamps = pd.date_range(sd, ed, freq='b') cols = pd.MultiIndex.from_product([[0, 1], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0, 1.0, 0.0], [0.5, 0.5, 0.5, 0.5], [0.0, 1.0, 0.0, 1.0]], index=idx, columns=cols) wts = mappings.roller(timestamps, contract_dates, mappings.static_transition, transition=transition) midx = pd.MultiIndex.from_product([timestamps, ['CLX16', 'CLZ16']]) midx.names = ['date', 'contract'] cols = pd.Index([0, 1], name='generic') wts_exp = pd.DataFrame([[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0]], index=midx, columns=cols) assert_frame_equal(wts, wts_exp) def test_during_roll_two_generics_one_day_static_transition(dates): contract_dates = dates ts = dates.iloc[0] + BDay(-1) cols = pd.MultiIndex.from_product([[0, 1], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0, 1.0, 0.0], [0.5, 0.5, 0.5, 0.5], [0.0, 1.0, 0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLX16', 0.5, ts), (0, 'CLZ16', 0.5, ts), (1, 'CLZ16', 0.5, ts), (1, 'CLF17', 0.5, ts)] assert wts == wts_exp def test_invalid_contract_dates(): ts = [pd.Timestamp("2016-10-19")] cols = pd.MultiIndex.from_product([[0, 1], ['front', 'back']]) idx = [-1, 0] trans = pd.DataFrame([[1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0]], index=idx, columns=cols) non_unique_index = pd.Series([pd.Timestamp('2016-10-20'), pd.Timestamp('2016-11-21')], index=['instr1', 'instr1']) with pytest.raises(ValueError): mappings.roller(ts, non_unique_index, mappings.static_transition, transition=trans) non_unique_vals = pd.Series([pd.Timestamp('2016-10-20'), pd.Timestamp('2016-10-20')], index=['instr1', 'instr2']) with pytest.raises(ValueError): mappings.roller(ts, non_unique_vals, mappings.static_transition, transition=trans) non_monotonic_vals = pd.Series([pd.Timestamp('2016-10-20'), pd.Timestamp('2016-10-19')], index=['instr1', 'instr2']) with pytest.raises(ValueError): mappings.static_transition(ts[0], non_monotonic_vals, transition=trans) not_enough_vals = pd.Series([pd.Timestamp('2016-10-19')], index=['instr1']) with pytest.raises(IndexError): mappings.static_transition(ts[0], not_enough_vals, transition=trans) def test_during_roll_two_generics_one_day_static_roller(dates): dt = dates.iloc[0] contract_dates = dates timestamps = pd.DatetimeIndex([dt + BDay(-1)]) cols = pd.MultiIndex.from_product([[0, 1], ['front', 'back']]) idx = [-2, -1, 0] trans = pd.DataFrame([[1.0, 0.0, 1.0, 0.0], [0.5, 0.5, 0.5, 0.5], [0.0, 1.0, 0.0, 1.0]], index=idx, columns=cols) wts = mappings.roller(timestamps, contract_dates, mappings.static_transition, transition=trans) midx = pd.MultiIndex.from_product([timestamps, ['CLF17', 'CLX16', 'CLZ16']]) midx.names = ['date', 'contract'] cols = pd.Index([0, 1], name='generic') wts_exp = pd.DataFrame([[0, 0.5], [0.5, 0], [0.5, 0.5]], index=midx, columns=cols) assert_frame_equal(wts, wts_exp) def test_whole_roll_roll_two_generics_static_roller(dates): dt = dates.iloc[0] contract_dates = dates timestamps = pd.DatetimeIndex([dt + BDay(-2), dt + BDay(-1), dt]) cols = pd.MultiIndex.from_product([[0, 1], ['front', 'back']]) idx = [-2, -1, 0] trans = pd.DataFrame([[1, 0, 1, 0], [0.5, 0.5, 0.5, 0.5], [0, 1, 0, 1]], index=idx, columns=cols) wts = mappings.roller(timestamps, contract_dates, mappings.static_transition, transition=trans) midx = pd.MultiIndex.from_tuples([(timestamps[0], 'CLX16'), (timestamps[0], 'CLZ16'), (timestamps[1], 'CLF17'), (timestamps[1], 'CLX16'), (timestamps[1], 'CLZ16'), (timestamps[2], 'CLF17'), (timestamps[2], 'CLZ16')]) midx.names = ['date', 'contract'] cols = pd.Index([0, 1], name='generic') wts_exp = pd.DataFrame([[1, 0], [0, 1], [0, 0.5], [0.5, 0], [0.5, 0.5], [0, 1], [1, 0]], index=midx, columns=cols) assert_frame_equal(wts, wts_exp) def test_roll_to_roll_two_generics(): contract_dates = pd.Series( [TS('2016-10-10'), TS('2016-10-13'), TS('2016-10-17'), TS('2016-10-20')], index=['A', 'B', 'C', 'D'] ) timestamps = pd.date_range(contract_dates.iloc[0] + BDay(-2), contract_dates.iloc[1], freq='b') cols = pd.MultiIndex.from_product([[0, 1], ['front', 'back']]) idx = [-2, -1, 0] trans = pd.DataFrame([[1, 0, 1, 0], [0.5, 0.5, 0.5, 0.5], [0, 1, 0, 1]], index=idx, columns=cols) wts = mappings.roller(timestamps, contract_dates, mappings.static_transition, transition=trans) midx = pd.MultiIndex.from_tuples([(timestamps[0], 'A'), (timestamps[0], 'B'), (timestamps[1], 'A'), (timestamps[1], 'B'), (timestamps[1], 'C'), (timestamps[2], 'B'), (timestamps[2], 'C'), (timestamps[3], 'B'), (timestamps[3], 'C'), (timestamps[4], 'B'), (timestamps[4], 'C'), (timestamps[4], 'D'), (timestamps[5], 'C'), (timestamps[5], 'D')]) midx.names = ['date', 'contract'] cols = pd.Index([0, 1], name='generic') vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1], [1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] wts_exp = pd.DataFrame(vals, index=midx, columns=cols) assert_frame_equal(wts, wts_exp) def test_to_generics_two_generics_exact_soln(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=['CLX16', 'CLZ16', 'CLF17'], columns=[0, 1]) instrs = pd.Series([10, 20, 10], index=["CLX16", "CLZ16", "CLF17"]) generics = mappings.to_generics(instrs, wts) exp_generics = pd.Series([20.0, 20.0], index=[0, 1]) assert_series_equal(generics, exp_generics) def test_to_generics_two_generics_exact_soln_negative(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=['CLX16', 'CLZ16', 'CLF17'], columns=[0, 1]) instrs = pd.Series([10, 0, -10], index=["CLX16", "CLZ16", "CLF17"]) generics = mappings.to_generics(instrs, wts) exp_generics = pd.Series([20.0, -20.0], index=[0, 1]) assert_series_equal(generics, exp_generics) def test_to_generics_two_generics_zero_generics_weight(): # scenario where one generic has 0 weight, tests for bug where result # has epsilon weight on CL1 wts = pd.DataFrame([[0, 1]], index=["CLZ16"], columns=["CL1", "CL2"]) notional = pd.Series([-13900.0], index=["CLZ16"]) generics = mappings.to_generics(notional, wts) exp_generics = pd.Series([-13900.0], index=["CL2"]) assert_series_equal(generics, exp_generics) def test_to_generics_two_generics_minimize_error_non_integer_soln(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=['CLX16', 'CLZ16', 'CLF17'], columns=[0, 1]) instrs =
pd.Series([10, 20, 11], index=["CLX16", "CLZ16", "CLF17"])
pandas.Series
import time import copy from lxml import html import numpy as np import pandas as pd import requests from bs4 import BeautifulSoup from datetime import datetime from selenium import webdriver def get_benzinga_data(stock, days_to_look_back): ffox_options = webdriver.FirefoxOptions() minimum_date = pd.Timestamp(datetime.utcnow(), tz = 'UTC') - pd.Timedelta('{} days'.format(days_to_look_back)) ffox_options.set_headless() tol_amount = 5 tols_curr = 0 bp = False ff = webdriver.Firefox(options = ffox_options) try: ff.get('https://benzinga.com/stock/{}'.format(stock.lower())) time.sleep(5) analyst_ratings = [] current_index = 1 while True: try: elem = ff.find_element_by_xpath('/html/body/div[6]/div/div[2]/div[2]/div[1]/div/div[7]/div/div/div[1]/a/span[1]') ff.execute_script("arguments[0].scrollIntoView();", elem) time.sleep(0.3) elem.click() time.sleep(2) while True: try: header = '/html/body/div[6]/div/div[2]/div[2]/div[1]/div/div[7]/div/div/div[1]/ul/li[{}]/a'.format(current_index) headline = ff.find_element_by_xpath(header).text url = ff.find_element_by_xpath(header).get_attribute('href') publisher = ff.find_element_by_xpath('/html/body/div[6]/div/div[2]/div[2]/div[1]/div/div[7]/div/div/div[1]/ul/li[{}]/span[1]'.format(current_index)).text date = ff.find_element_by_xpath('/html/body/div[6]/div/div[2]/div[2]/div[1]/div/div[7]/div/div/div[1]/ul/li[{}]/span[2]'.format(current_index)).text # print(date) # print([headline, date]) if ('-0400' not in date) & ('-0500' not in date): # # print(date) if 'ago' in date: if date == 'a day ago': pass else: # # print(date) timeperiod = date[::-1] timeperiod = timeperiod[timeperiod.find(' ') + 1:][::-1] timeperiod =
pd.Timedelta(timeperiod)
pandas.Timedelta
""" This module merges temperature, humidity, and influenza data together """ import pandas as pd import ast __author__ = '<NAME>' __license__ = 'MIT' __status__ = 'release' __url__ = 'https://github.com/caominhduy/TH-Flu-Modulation' __version__ = '1.0.0' def merge_flu(path='data/epidemiology/processed_CDC_2008_2021.csv'): df = pd.read_csv(path, low_memory=False) df['week'] = df['week'].astype('int') df['year'] = df['year'].astype('int') cols = ['state', 'week', 'year', 'level'] df = df.reindex(columns=cols) return df def merge_weather(): with open('data/geodata/state_abbr.txt', 'r') as f: contents = f.read() state_abbr_dict = ast.literal_eval(contents) states = list(state_abbr_dict.values()) df_temp = pd.DataFrame(columns=['week', 'temp', 'state', 'year']) df_humid = pd.DataFrame(columns=['week', 'humid', 'state', 'year']) for year in list(range(2008, 2020)): y = str(year) df = pd.read_csv('data/weather/' + y + '-temp.csv') temps = df[states[0]] weeks = df['week'] snames = pd.Series(states) snames = snames.repeat(len(weeks)).reset_index(drop=True) for s in states[1:]: temps = temps.append(df[s]).reset_index(drop=True) weeks = weeks.append(df['week']).reset_index(drop=True) frames = {'week': weeks, 'temp': temps, 'state': snames} df2 = pd.DataFrame(frames) df2['year'] = y df_temp = df_temp.append(df2) for year in list(range(2008, 2020)): y = str(year) df = pd.read_csv('data/weather/' + y + '-humid.csv') humids = df[states[0]] weeks = df['week'] snames = pd.Series(states) snames = snames.repeat(len(weeks)).reset_index(drop=True) for s in states[1:]: humids = humids.append(df[s]).reset_index(drop=True) weeks = weeks.append(df['week']).reset_index(drop=True) frames = {'week': weeks, 'humid': humids, 'state': snames} df2 =
pd.DataFrame(frames)
pandas.DataFrame
#!/usr/bin/python2 from __future__ import nested_scopes, generators, division, absolute_import, with_statement, print_function, unicode_literals import pandas as pd from sklearn.model_selection import train_test_split RANDOM_STATE = 3 all_cols = 'linenum text id subreddit meta time author ups downs authorlinkkarma authorkarma authorisgold'.split() use_cols = 'text subreddit'.split() all_files = 'entertainment_anime.csv entertainment_comicbooks.csv gaming_dota2.csv gaming_leagueoflegends.csv news_conservative.csv news_libertarian.csv learning_askscience.csv learning_explainlikeimfive.csv television_gameofthrones.csv television_thewalkingdead.csv'.split() malformed_files = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0] def open_with_pandas_read_csv(filename): if malformed_files[all_files.index(filename[7:])] == 1: df = pd.read_csv(filename, header=0, usecols=use_cols, names=['linenum'] + all_cols, skiprows=1) else: df = pd.read_csv(filename, header=0, usecols=use_cols, names=all_cols) return df def clean_data(df): df = df.dropna() df = df.drop_duplicates() def remove_links(text): # remove word after each word in banned_prewords banned_prewords = "http https v".split() words = text.split() to_delete = [] for i, word in enumerate(words): if word in banned_prewords: if i + 1 < len(words): to_delete.append(i + 1) for i in reversed(to_delete): del words[i] text = " ".join(words) return text df['text'] = df['text'].apply(remove_links) df = df[df['text'] != ''] return df def file_to_dataframe(filename): df = open_with_pandas_read_csv(filename) df = clean_data(df) return df def main(): print("Reading all files") frames = [file_to_dataframe('../res/' + filename) for filename in all_files] all_data = pd.concat(frames) all_data.to_csv('../res/data_all.csv') print("Creating small sample for testing purposes") small_sample = pd.concat([df.sample(n=100, random_state=RANDOM_STATE) for df in frames]) small_sample.to_csv('../res/data_sample.csv') print("splitting all data into train & test sets") train_test_splits = [train_test_split(df, test_size=0.2, random_state=RANDOM_STATE) for df in frames] training_and_validation = [train for (train, test) in train_test_splits] print("splitting training set into train & validation sets") validation_splits = [train_test_split(df, test_size=1.0 / 8, random_state=RANDOM_STATE) for df in training_and_validation] training = [train for (train, valid) in validation_splits] validation = [valid for (train, valid) in validation_splits] training =
pd.concat(training)
pandas.concat
from typing import Dict, List, Tuple, Union import geopandas import numpy as np import pandas as pd from .matches import iter_matches from .static import ADMINISTRATIVE_DIVISIONS, POSTCODE_MUNICIPALITY_LOOKUP from .static import df as STATIC_DF INDEX_COLS = ["municipality", "postcode", "street_nominative", "house_nr"] def is_valid_idx(x: Tuple[str, str, str, str]): if not x[0] and not x[1] and not x[2]: return False return True def merge_tuples( sq: Tuple[ Union[str, slice], Union[str, slice], Union[str, slice], Union[str, slice] ], res: pd.MultiIndex, ) -> Tuple[str, str, str, str]: """Replace tuple values where the index is an empty slice. Behaviour change in pandas 1.4, in previous versions the full index was returned. Post 1.4, pandas returns only the missing levels. :param sq: query tuple :type sq: Tuple[ Union[str, slice], Union[str, slice], Union[str, slice], Union[str, slice] ] :param res: index part :type res: Tuple :return: Full lookup value :rtype: Tuple[str, str, str, str] """ out = list(sq) for n in res.names: idx = INDEX_COLS.index(n) out[idx] = res.get_level_values(n)[0] return tuple(out) def _build_municipality_street_to_postcode( df: pd.DataFrame, ) -> Dict[Tuple[str, str], str]: """Builds a lookup table of (municipality, street) => postcode Non unique matches, i.e. a street spanning more than a single postcode are dropped. :param df: [description] :type df: pd.DataFrame :return: [description] :rtype: Dict[Tuple[str, str], str] """ out = {} delete_list = [] for t, sn, sd, pc in ( df[["municipality", "street_nominative", "street_dative", "postcode"]] .drop_duplicates() .values ): if (t, sn) in out and out[(t, sn)] != str(pc): delete_list.append((t, sn)) continue out[(t, sn)] = str(pc) out[(t, sd)] = str(pc) for k in delete_list: out.pop(k, None) return out class Lookup: """ Utility class for doing reverse geocoding lookups from the dataframe. How it works: - The dataframe has a few categorical columns whose code values are used for constructing a multidimensional search tree. - When querying, a best-effort approach is used to translate the input string into a vector to query the tree. """ df: pd.DataFrame town_street_to_postcode: Dict[Tuple[str, str], str] streets: List[str] house_nrs: List[str] postcodes: List[str] municipalities: List[str] street_dative: Dict[str, str] def __init__(self) -> "Lookup": self.df = STATIC_DF.copy().sort_index() self.town_street_to_postcode = _build_municipality_street_to_postcode(self.df) self.streets = self.df.index.levels[2] self.house_nrs = self.df.index.levels[3] self.postcodes = self.df.index.levels[1] self.municipalities = self.df.index.levels[0] self.street_dative = dict( self.df[["street_dative", "street_nominative"]] .reset_index(drop=True) .values ) def text_to_vec( # pylint: disable=too-many-branches self, s: str ) -> Tuple[str, str, str, str]: """Builds a tuple out of an address string. * index 0, category value of the "municipality" category. * index 1, category value of the "postcode" category. * index 2, category value of the "street_nominative" category. * index 3, category value of the "house_nr" category. :param s: string containing address :type s: str :return: Address tuple :rtype: Tuple[str, str, str, str] """ municipality = "" postcode = "" street = "" house_nr = "" admin_unit = "" # Exit early if the string is empty if not s: return ("", "", "", "") for w in s.split(" "): w = w.strip(",.") if not street and w in self.streets: street = w if not house_nr and (w.upper() in self.house_nrs or "-" in w): house_nr = w if not postcode and w in self.postcodes and w != house_nr: postcode = w municipality = POSTCODE_MUNICIPALITY_LOOKUP.get(int(postcode), "") if not postcode and not municipality and w in self.municipalities: municipality = w if not municipality and w in ADMINISTRATIVE_DIVISIONS: admin_unit = w if admin_unit and street: for tn in ADMINISTRATIVE_DIVISIONS[admin_unit]: postcode = self.town_street_to_postcode.get((tn, street), "") if not postcode: continue municipality = tn break # if we have municipality and street but no postcode, try looking it up if municipality and street and not postcode: postcode = self.town_street_to_postcode.get((municipality, street), "") # Álftanes has a special case if not postcode and municipality == "Garðabær": postcode = self.town_street_to_postcode.get( ("Garðabær (Álftanes)", street) ) if postcode: municipality = "Garðabær (Álftanes)" if house_nr and "-" in house_nr: house_nr = house_nr.split("-")[0] return ( municipality or "", postcode or "", street or "", (house_nr or "").upper(), ) def __query_vector_dataframe(self, q: pd.DataFrame) -> pd.DataFrame: """Given a data frame with index: [municipality, postcode, street_nominative, house_nr] and columns "qidx" (query index) and "order", matches exact and partial matches to the address dataframe. :param q: query dataframe :type q: pd.DataFrame :return: query dataframe with additional address columns :rtype: pd.DataFrame """ # get intersecting indexes found = self.df.index.intersection(q.index) idx_names = self.df.index.names # find indexes in the query dataframe which couldn't be found, # these could be empty queries or partial matches. missing = q.index.difference(found).unique() if len(missing): # create a set of the found values, the purpose is to have a mutable # data structure to work with. found_missing = set(found.values) # get unique set of missing queries miss_df = q.loc[missing].drop_duplicates() # keep track of query idx that have not been found not_found_qidx = set() missing_data = [] miss_df = miss_df.loc[miss_df.index.map(is_valid_idx)] # as the address dataframe is fairly large, constrict the search # space to the records loosely matching what's being queried for. For # large datasets, this speeds up querying considerably. search_selector = [ slice(None) if (i[0] == "" and len(i) == 1) else i for i in [ i.values.tolist() for i in miss_df.index.remove_unused_levels().levels ] ] search_space = self.df.loc[tuple(search_selector), :] # iterate rows of valid missing indexes for tvec, row in miss_df.iterrows(): qidx = row["qidx"] # the index is 4 levels, [municipality, postcode, street, house_nr], # all of these values are allowed to be an empty string, except at # this point it is clear that a key with an empty string could not # be found in the index. # Replace all empty strings with a None slice and query the address dataframe sq = tuple((i or slice(None) for i in tvec)) # NOTE: Author has not founded a vectorized approach to querying the # source dataframe and matching the query index back with the result. try: res = search_space.loc[sq] except KeyError: continue # if an exact match could be found, assign it as the value of the query # dataframe for the given index. In case there are duplicates, check # if it's already been found if len(res) == 1: # mark the returned tuple for addition to the found indexes res_val = merge_tuples(sq, res.index) found_missing.add(res_val) # create a new row for the missing data missing_data.append(res_val + tuple(row)) # mark old data query index for deletion not_found_qidx.add(qidx) # NOTE: here there are multiple matches, theoretically possible to train # a model which would give higher priority to a generic address determined # by its frequency over a corpus. # delete found qidx from the original query frame q = q[~q["qidx"].isin(not_found_qidx)] # concat the missing data found with the query data frame q = pd.concat( [ q, pd.DataFrame( missing_data, columns=idx_names + q.columns.tolist() ).set_index(idx_names), ] ) # rebuild the multiindex after mutating it found = pd.MultiIndex.from_tuples(list(found_missing), names=idx_names) # select indexable records, right join with the query dataframe # and sort by the original query order. out = self.df.loc[found].join(q, how="right").sort_values("order") # fill NaN string values out[ [ "municipality", "postcode", "special_name", "house_nr", "street_dative", "street_nominative", ] ] = out[ [ "municipality", "postcode", "special_name", "house_nr", "street_dative", "street_nominative", ] ].fillna( value="" ) out.reset_index(level=[0, 1, 2, 3], drop=True, inplace=True) return out def query_dataframe( self, q: pd.DataFrame, ) -> pd.DataFrame: """Queries a data frame containing structued data, columns [postcode, house_nr, street/street_nominative] are required, [municipality] is optional. :param q: query dataframe :type q: pd.DataFrame :return: query dataframe with additional address columns :rtype: pd.DataFrame """ cols = q.columns q["postcode"] = q["postcode"].astype(str) if "municipality" not in cols: q["municipality"] = q["postcode"].apply( lambda pc: POSTCODE_MUNICIPALITY_LOOKUP.get( int(pc) if pc.isdigit() else -1, "" ) ) q["house_nr"] = q["house_nr"].astype(str) if "street" in cols and "street_nominative" not in cols: q = q.rename(columns={"street": "street_nominative"}) q["street_nominative"] = q["street_nominative"].apply( lambda v: self.street_dative.get(v, v) ) q["qidx"] = pd.Categorical( q[self.df.index.names].apply( lambda x: "/".join(x.dropna().astype(str).values), axis=1 ) ).codes q["order"] = list(range(len(q))) q = q.set_index(keys=self.df.index.names) return self.__query_vector_dataframe(q) def query( # pylint: disable=too-many-locals self, text: Union[str, List[str], np.ndarray] ) -> geopandas.GeoDataFrame: """Given text input, returns a dataframe with matching addresses :param text: string containing a single address or an iterator containing multiple addresses. :type text: Union[str, List[str], np.ndarray] :return: Data frame containg addresses :rtype: geopandas.GeoDataFrame """ if isinstance(text, str): text = [text] # strip whitespace from text text = [t.strip() for t in text] # tokenize strings into a list of tuples, # [municipality, postcode, street_nominative, house_nr] vecs = [self.text_to_vec(t) for t in text] # construct dataframe from parsed results q =
pd.DataFrame(vecs, columns=self.df.index.names)
pandas.DataFrame
#python3 LED_inference.py arg1 where arg1 is the dataset -> transformers or 'others' #if the dataset is 'others' it must exist a csv on 'datasets' folder with the name introduced from datasets import Dataset import pandas as pd import torch import os import csv import sys import gcc from transformers import LEDForConditionalGeneration, LEDTokenizer from datasets import load_dataset, load_metric BUCKET_NAME = 'transformers-lucia' #dataset to summarize source_dataset=sys.argv[1] num_dataset=int(sys.argv[2]) #Dowload model pre-trained print("Downloading pre-trained model...") tokenizer = LEDTokenizer.from_pretrained("allenai/led-large-16384-arxiv") model = LEDForConditionalGeneration.from_pretrained("allenai/led-large-16384-arxiv").to("cuda").half() #Function to generate predictions def generate_answer(batch): inputs_dict = tokenizer(batch['Text'], padding="max_length", max_length=16384, return_tensors="pt", truncation=True) input_ids = inputs_dict.input_ids.to("cuda") attention_mask = inputs_dict.attention_mask.to("cuda") global_attention_mask = torch.zeros_like(attention_mask) # put global attention on <s> token global_attention_mask[:, 0] = 1 predicted_abstract_ids = model.generate(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask, max_length=512, num_beams=4) batch["predicted_abstract"] = tokenizer.batch_decode(predicted_abstract_ids, skip_special_tokens=True) return batch #Function to generate csv with results def generate_csv(source_summary, results, csv_name): #Create csv with results createCSV=[["input_text","gold_summary","predicted_summary"]] for number, element in enumerate(results): print(element['Text']) print() print(source_summary[number]) print() print(element['predicted_abstract']) createCSV.append([element['Text'],source_summary[number],element['predicted_abstract']]) with open(csv_name, 'w', newline='') as file: writer = csv.writer(file,delimiter='|') writer.writerows(createCSV) #To evaluate with transformers datasets if(source_dataset=='transformers'): #List with the datasets datasetInfo = [['cnn_dailymail', '3.0.0', 'article', 'highlights'], ['gigaword', '1.2.0', 'document', 'summary'], ['xsum', '1.1.0', 'document', 'summary'], ['biomrc', 'biomrc_large_B', 'abstract','title']] #Execute all the transformer's datasets if (num_dataset == -1): print("Executing all transformer's datasets") #execute the code for all the datasets for datasetToSummarize in datasetInfo: name_dataset=datasetToSummarize[0] version_dataset=datasetToSummarize[1] test_dataset_full = load_dataset(name_dataset, version_dataset, split="test") print("Dataset selected: "+name_dataset) #Create a dataframe with column name text to process after text_column_name = datasetToSummarize[2] text_column = test_dataset_full[text_column_name] text_column = pd.DataFrame(text_column, columns=["Text"]) test_dataset = Dataset.from_pandas(text_column) summary_column = datasetToSummarize[3] #Generate results results = test_dataset.map(generate_answer, batched=True, batch_size=2) #Save results path_results = "./led_inference/summaries/"+name_dataset+".csv" generate_csv(test_dataset_full[summary_column], results, path_results) #Move results to bucket and remove from notebook gcc.upload_blob(BUCKET_NAME,path_results,'tfg/summaries/LED/'+name_dataset+'.csv' ) os.remove(path_results) #Save results generate_csv(results, "summaries/"+name_dataset+".csv") #Execute specific huggingface dataset elif (num_dataset < 4 and num_dataset > -1): name_dataset = datasetInfo[num_dataset][0] print("Dataset selected: "+name_dataset) version_dataset = datasetInfo[num_dataset][1] test_dataset_full = load_dataset(name_dataset, version_dataset, split="test") #Create a dataframe with column name text to process after text_column_name = datasetInfo[num_dataset][2] text_column = test_dataset_full[text_column_name] text_column =
pd.DataFrame(text_column, columns=["Text"])
pandas.DataFrame
import matplotlib #matplotlib.use('TkAgg') from config import * from plot_utils import * from shared_utils import * import pickle as pkl import numpy as np from collections import OrderedDict from matplotlib import pyplot as plt from pymc3.stats import quantiles import os import pandas as pd from pathlib import Path # def curves(use_interactions=True, use_report_delay=True, prediction_day=30, save_plot=False): # Load only one county def curves(start, county, n_weeks=3, model_i=35, save_plot=False): with open('../data/counties/counties.pkl', "rb") as f: counties = pkl.load(f) start = int(start) n_weeks = int(n_weeks) model_i = int(model_i) # with open('../data/comparison.pkl', "rb") as f: # best_model = pkl.load(f) # update to day and new limits! xlim = (5.5, 15.5) ylim = (47, 56) # <- 10 weeks #countyByName = OrderedDict( # [('Düsseldorf', '05111'), ('Leipzig', '14713'), ('Nürnberg', '09564'), ('München', '09162')]) countyByName = make_county_dict() # Hier dann das reinspeisen plot_county_names = {"covid19": [county]} start_day = pd.Timestamp('2020-01-28') + pd.Timedelta(days=start) year = str(start_day)[:4] month = str(start_day)[5:7] day = str(start_day)[8:10] # if os.path.exists("../figures/{}_{}_{}/curve_trend_{}.png".format(year, month, day,countyByName[county])): # return day_folder_path = "../figures/{}_{}_{}".format(year, month, day) Path(day_folder_path).mkdir(parents=True, exist_ok=True) # check for metadata file: if not os.path.isfile("../figures/{}_{}_{}/metadata.csv".format(year, month, day)): ids = [] for key in counties: ids.append(int(key)) df = pd.DataFrame(data=ids, columns=["countyID"]) df["probText"] = "" df.to_csv("../figures/{}_{}_{}/metadata.csv".format(year, month, day)) # colors for curves #red C1 = "#D55E00" C2 = "#E69F00" #C3 = "#0073CF" #green C4 = "#188500" C5 = "#29c706" #C6 = "#0073CF" # quantiles we want to plot qs = [0.25, 0.50, 0.75] fig = plt.figure(figsize=(12, 6)) grid = plt.GridSpec( 1, 1, top=0.9, bottom=0.2, left=0.07, right=0.97, hspace=0.25, wspace=0.15, ) # for i, disease in enumerate(diseases): i = 0 disease = "covid19" prediction_region = "germany" data = load_daily_data_n_weeks(start, n_weeks, disease, prediction_region, counties) start_day = pd.Timestamp('2020-01-28') + pd.Timedelta(days=start) i_start_day = 0 day_0 = start_day + pd.Timedelta(days=n_weeks*7+5) day_m5 = day_0 -
pd.Timedelta(days=5)
pandas.Timedelta
# -*- coding: utf-8 -*- """ Created on Sun May 8 18:29:53 2016 @author: bmanubay """ # Check what moelcules we have appear in Chris's list import pandas as pd # read in ; delimited csv of comp/mix counts created in thermomlcnts.py a0 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/allcomp_counts_all.csv", sep=';') a1 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/allcomp_counts_interesting.csv", sep=';') a2 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/bincomp_counts_all.csv", sep=';') a3 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/bincomp_counts_interesting.csv", sep=';') a4 =
pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/mix_counts_all.csv", sep=';')
pandas.read_csv
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2022, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import collections import os.path import pkg_resources import tempfile import unittest import numpy as np import pandas as pd from qiime2.metadata import (Metadata, CategoricalMetadataColumn, NumericMetadataColumn, MetadataFileError) def get_data_path(filename): return pkg_resources.resource_filename('qiime2.metadata.tests', 'data/%s' % filename) # NOTE: many of the test files in the `data` directory intentionally have # leading/trailing whitespace characters on some lines, as well as mixed usage # of spaces, tabs, carriage returns, and newlines. When editing these files, # please make sure your code editor doesn't strip these leading/trailing # whitespace characters (e.g. Atom does this by default), nor automatically # modify the files in some other way such as converting Windows-style CRLF # line terminators to Unix-style newlines. # # When committing changes to the files, carefully review the diff to make sure # unintended changes weren't introduced. class TestLoadErrors(unittest.TestCase): def test_path_does_not_exist(self): with self.assertRaisesRegex(MetadataFileError, "Metadata file path doesn't exist"): Metadata.load( '/qiime2/unit/tests/hopefully/this/path/does/not/exist') def test_path_is_directory(self): fp = get_data_path('valid') with self.assertRaisesRegex(MetadataFileError, "path points to something other than a " "file"): Metadata.load(fp) def test_non_utf_8_file(self): fp = get_data_path('invalid/non-utf-8.tsv') with self.assertRaisesRegex(MetadataFileError, 'encoded as UTF-8 or ASCII'): Metadata.load(fp) def test_utf_16_le_file(self): fp = get_data_path('invalid/simple-utf-16le.txt') with self.assertRaisesRegex(MetadataFileError, 'UTF-16 Unicode'): Metadata.load(fp) def test_utf_16_be_file(self): fp = get_data_path('invalid/simple-utf-16be.txt') with self.assertRaisesRegex(MetadataFileError, 'UTF-16 Unicode'): Metadata.load(fp) def test_empty_file(self): fp = get_data_path('invalid/empty-file') with self.assertRaisesRegex(MetadataFileError, 'locate header.*file may be empty'): Metadata.load(fp) def test_comments_and_empty_rows_only(self): fp = get_data_path('invalid/comments-and-empty-rows-only.tsv') with self.assertRaisesRegex(MetadataFileError, 'locate header.*only of comments or empty ' 'rows'): Metadata.load(fp) def test_header_only(self): fp = get_data_path('invalid/header-only.tsv') with self.assertRaisesRegex(MetadataFileError, 'at least one ID'): Metadata.load(fp) def test_header_only_with_comments_and_empty_rows(self): fp = get_data_path( 'invalid/header-only-with-comments-and-empty-rows.tsv') with self.assertRaisesRegex(MetadataFileError, 'at least one ID'): Metadata.load(fp) def test_qiime1_empty_mapping_file(self): fp = get_data_path('invalid/qiime1-empty.tsv') with self.assertRaisesRegex(MetadataFileError, 'at least one ID'): Metadata.load(fp) def test_invalid_header(self): fp = get_data_path('invalid/invalid-header.tsv') with self.assertRaisesRegex(MetadataFileError, 'unrecognized ID column name.*' 'invalid_id_header'): Metadata.load(fp) def test_empty_id(self): fp = get_data_path('invalid/empty-id.tsv') with self.assertRaisesRegex(MetadataFileError, 'empty metadata ID'): Metadata.load(fp) def test_whitespace_only_id(self): fp = get_data_path('invalid/whitespace-only-id.tsv') with self.assertRaisesRegex(MetadataFileError, 'empty metadata ID'): Metadata.load(fp) def test_empty_column_name(self): fp = get_data_path('invalid/empty-column-name.tsv') with self.assertRaisesRegex(MetadataFileError, 'column without a name'): Metadata.load(fp) def test_whitespace_only_column_name(self): fp = get_data_path('invalid/whitespace-only-column-name.tsv') with self.assertRaisesRegex(MetadataFileError, 'column without a name'): Metadata.load(fp) def test_duplicate_ids(self): fp = get_data_path('invalid/duplicate-ids.tsv') with self.assertRaisesRegex(MetadataFileError, 'IDs must be unique.*id1'): Metadata.load(fp) def test_duplicate_ids_with_whitespace(self): fp = get_data_path('invalid/duplicate-ids-with-whitespace.tsv') with self.assertRaisesRegex(MetadataFileError, 'IDs must be unique.*id1'): Metadata.load(fp) def test_duplicate_column_names(self): fp = get_data_path('invalid/duplicate-column-names.tsv') with self.assertRaisesRegex(MetadataFileError, 'Column names must be unique.*col1'): Metadata.load(fp) def test_duplicate_column_names_with_whitespace(self): fp = get_data_path( 'invalid/duplicate-column-names-with-whitespace.tsv') with self.assertRaisesRegex(MetadataFileError, 'Column names must be unique.*col1'): Metadata.load(fp) def test_id_conflicts_with_id_header(self): fp = get_data_path('invalid/id-conflicts-with-id-header.tsv') with self.assertRaisesRegex(MetadataFileError, "ID 'id' conflicts.*ID column header"): Metadata.load(fp) def test_column_name_conflicts_with_id_header(self): fp = get_data_path( 'invalid/column-name-conflicts-with-id-header.tsv') with self.assertRaisesRegex(MetadataFileError, "column name 'featureid' conflicts.*ID " "column header"): Metadata.load(fp) def test_column_types_unrecognized_column_name(self): fp = get_data_path('valid/simple.tsv') with self.assertRaisesRegex(MetadataFileError, 'not_a_column.*column_types.*not a column ' 'in the metadata file'): Metadata.load(fp, column_types={'not_a_column': 'numeric'}) def test_column_types_unrecognized_column_type(self): fp = get_data_path('valid/simple.tsv') with self.assertRaisesRegex(MetadataFileError, 'col2.*column_types.*unrecognized column ' 'type.*CATEGORICAL'): Metadata.load(fp, column_types={'col1': 'numeric', 'col2': 'CATEGORICAL'}) def test_column_types_not_convertible_to_numeric(self): fp = get_data_path('valid/simple.tsv') with self.assertRaisesRegex(MetadataFileError, "column 'col3' to numeric.*could not be " "interpreted as numeric: 'bar', 'foo'"): Metadata.load(fp, column_types={'col1': 'numeric', 'col2': 'categorical', 'col3': 'numeric'}) def test_column_types_override_directive_not_convertible_to_numeric(self): fp = get_data_path('valid/simple-with-directive.tsv') with self.assertRaisesRegex(MetadataFileError, "column 'col3' to numeric.*could not be " "interpreted as numeric: 'bar', 'foo'"): Metadata.load(fp, column_types={'col3': 'numeric'}) def test_directive_before_header(self): fp = get_data_path('invalid/directive-before-header.tsv') with self.assertRaisesRegex(MetadataFileError, 'directive.*#q2:types.*searching for ' 'header'): Metadata.load(fp) def test_unrecognized_directive(self): fp = get_data_path('invalid/unrecognized-directive.tsv') with self.assertRaisesRegex(MetadataFileError, 'Unrecognized directive.*#q2:foo.*' '#q2:types directive is supported'): Metadata.load(fp) def test_duplicate_directives(self): fp = get_data_path('invalid/duplicate-directives.tsv') with self.assertRaisesRegex(MetadataFileError, 'duplicate directive.*#q2:types'): Metadata.load(fp) def test_unrecognized_column_type_in_directive(self): fp = get_data_path('invalid/unrecognized-column-type.tsv') with self.assertRaisesRegex(MetadataFileError, 'col2.*unrecognized column type.*foo.*' '#q2:types directive'): Metadata.load(fp) def test_column_types_directive_not_convertible_to_numeric(self): fp = get_data_path('invalid/types-directive-non-numeric.tsv') # This error message regex is intentionally verbose because we want to # assert that many different types of non-numeric strings aren't # interpreted as numbers. The error message displays a sorted list of # all values that couldn't be converted to numbers, making it possible # to test a variety of non-numeric strings in a single test case. msg = (r"column 'col2' to numeric.*could not be interpreted as " r"numeric: '\$42', '\+inf', '-inf', '0xAF', '1,000', " r"'1\.000\.0', '1_000_000', '1e3e4', 'Infinity', 'NA', 'NaN', " "'a', 'e3', 'foo', 'inf', 'nan', 'sample-1'") with self.assertRaisesRegex(MetadataFileError, msg): Metadata.load(fp) def test_directive_after_directives_section(self): fp = get_data_path( 'invalid/directive-after-directives-section.tsv') with self.assertRaisesRegex(MetadataFileError, '#q2:types.*outside of the directives ' 'section'): Metadata.load(fp) def test_directive_longer_than_header(self): fp = get_data_path('invalid/directive-longer-than-header.tsv') with self.assertRaisesRegex(MetadataFileError, 'row has 5 cells.*header declares 4 ' 'cells'): Metadata.load(fp) def test_data_longer_than_header(self): fp = get_data_path('invalid/data-longer-than-header.tsv') with self.assertRaisesRegex(MetadataFileError, 'row has 5 cells.*header declares 4 ' 'cells'): Metadata.load(fp) class TestLoadSuccess(unittest.TestCase): def setUp(self): self.temp_dir_obj = tempfile.TemporaryDirectory( prefix='qiime2-metadata-tests-temp-') self.temp_dir = self.temp_dir_obj.name # This Metadata object is compared against observed Metadata objects in # many of the tests, so just define it once here. self.simple_md = Metadata( pd.DataFrame({'col1': [1.0, 2.0, 3.0], 'col2': ['a', 'b', 'c'], 'col3': ['foo', 'bar', '42']}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) # Basic sanity check to make sure the columns are ordered and typed as # expected. It'd be unfortunate to compare observed results to expected # results that aren't representing what we think they are! obs_columns = [(name, props.type) for name, props in self.simple_md.columns.items()] exp_columns = [('col1', 'numeric'), ('col2', 'categorical'), ('col3', 'categorical')] self.assertEqual(obs_columns, exp_columns) def tearDown(self): self.temp_dir_obj.cleanup() def test_simple(self): # Simple metadata file without comments, empty rows, jaggedness, # missing data, odd IDs or column names, directives, etc. The file has # multiple column types (numeric, categorical, and something that has # mixed numbers and strings, which must be interpreted as categorical). fp = get_data_path('valid/simple.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_bom_simple_txt(self): # This is the encoding that notepad.exe will use most commonly fp = get_data_path('valid/BOM-simple.txt') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_different_file_extension(self): fp = get_data_path('valid/simple.txt') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_no_newline_at_eof(self): fp = get_data_path('valid/no-newline-at-eof.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_unix_line_endings(self): fp = get_data_path('valid/unix-line-endings.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_windows_line_endings(self): fp = get_data_path('valid/windows-line-endings.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_mac_line_endings(self): fp = get_data_path('valid/mac-line-endings.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_no_source_artifacts(self): fp = get_data_path('valid/simple.tsv') metadata = Metadata.load(fp) self.assertEqual(metadata.artifacts, ()) def test_retains_column_order(self): # Explicitly test that the file's column order is retained in the # Metadata object. Many of the test cases use files with column names # in alphabetical order (e.g. "col1", "col2", "col3"), which matches # how pandas orders columns in a DataFrame when supplied with a dict # (many of the test cases use this feature of the DataFrame # constructor when constructing the expected DataFrame). fp = get_data_path('valid/column-order.tsv') obs_md = Metadata.load(fp) # Supply DataFrame constructor with explicit column ordering instead of # a dict. exp_index = pd.Index(['id1', 'id2', 'id3'], name='id') exp_columns = ['z', 'y', 'x'] exp_data = [ [1.0, 'a', 'foo'], [2.0, 'b', 'bar'], [3.0, 'c', '42'] ] exp_df = pd.DataFrame(exp_data, index=exp_index, columns=exp_columns) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_leading_trailing_whitespace(self): fp = get_data_path('valid/leading-trailing-whitespace.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_comments(self): fp = get_data_path('valid/comments.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_empty_rows(self): fp = get_data_path('valid/empty-rows.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_qiime1_mapping_file(self): fp = get_data_path('valid/qiime1.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id1', 'id2', 'id3'], name='#SampleID') exp_df = pd.DataFrame({'col1': [1.0, 2.0, 3.0], 'col2': ['a', 'b', 'c'], 'col3': ['foo', 'bar', '42']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_qiita_sample_information_file(self): fp = get_data_path('valid/qiita-sample-information.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id.1', 'id.2'], name='sample_name') exp_df = pd.DataFrame({ 'DESCRIPTION': ['description 1', 'description 2'], 'TITLE': ['A Title', 'Another Title']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_qiita_preparation_information_file(self): fp = get_data_path('valid/qiita-preparation-information.tsv') obs_md = Metadata.load(fp) exp_index =
pd.Index(['id.1', 'id.2'], name='sample_name')
pandas.Index
#!/usr/bin/env python # coding: utf-8 ''' ''' import time import pandas as pd import datarobot as dr from datarobot.models.modeljob import wait_for_async_model_creation import numpy as np import re import os from datarobot.errors import JobAlreadyRequested token_id = "" ts_setting = {"project_name":"fake_job_posting_210123","filename":"../Data/fake_job_postings.csv", \ "project_id": "60089b3d23aace3eea1810d0","model_id":"", \ "feature_list": "Informative Features","features":[],"set":"validation" , \ "AUC":"Weighted AUC", "LogLoss":"Weighted LogLoss", \ "downsampling": 36,"holdout_pct": 20,"validation_pct":16,"target":"fraudulent" } parameter_name = ['stop_words','stemmer','num_ngram',"use_idf","pos_tagging"] value = [1,"porter",[1,2,3,4],1,1] param_df = pd.DataFrame(list(zip(parameter_name, value)), columns =['parameter_name', 'value']) dr.Client(token=token_id, endpoint='https://app.datarobot.com/api/v2') def check_if_number(st): tp = re.search("\d+",st) if tp: return int(tp.group()) else: return np.nan def get_min_max_salary (text): ''' Get the min and max from the salary_range :param text: string :return: the min and max of a salary_range ''' if type(text) == str: if re.search("\-",text): tp = text.split("-") min_salary = check_if_number(tp[0].strip()) max_salary = check_if_number(tp[1].strip()) return min_salary,max_salary else: return np.nan,np.nan else: return np.nan, np.nan def cleaned_location(text): ''' Extract country, and country_and state from location :param text: string with country, state, city :return: ''' country_state = "" st = str(text) if type(st) is str: tp = re.search("[a-zA-Z]{2,}\s?\,(\s*[a-zA-Z0-9]+|\s)",st) if tp: country_state = tp.group().strip() country = st.strip()[0:2] else: return "","" return country,country_state else: return "","" def create_binary_cat_for_education(text): if pd.isnull(text) or pd.isna(text): return "no" elif text == "unspecified": return "no" else: return "yes" def PrepareDataSet(): ''' Prepare the dataset for fake_job_postings by adding new features. :return: enriched original dataset with new features ''' fake_jobs_df = pd.read_csv(ts_setting["filename"]) fake_jobs_df.min_salary = np.nan fake_jobs_df.max_salary = np.nan fake_jobs_df.salary_diff = np.nan fake_jobs_df["min_salary"],fake_jobs_df["max_salary"] = zip(*fake_jobs_df["salary_range"].apply(get_min_max_salary)) fake_jobs_df["min_salary"] = pd.to_numeric(fake_jobs_df["min_salary"]) fake_jobs_df["max_salary"] = pd.to_numeric(fake_jobs_df["max_salary"]) fake_jobs_df["education_flag"] = [create_binary_cat_for_education(x) for x in fake_jobs_df["required_education"]] fake_jobs_df["salary_range"] = fake_jobs_df.max_salary - fake_jobs_df.min_salary fake_jobs_df["salary_diff"] = fake_jobs_df["salary_range"]/fake_jobs_df["min_salary"] return fake_jobs_df def start_project_with_settings(fake_jobs_df): ''' Run a project for fake_jobs_df :param fake_jobs_df: already enriched dataset :return: project ''' global ts_setting advanced_options = dr.AdvancedOptions( response_cap=0.7, blueprint_threshold=2, smart_downsampled=True, majority_downsampling_rate=ts_setting["downsampling"]) partition = dr.StratifiedTVH(ts_setting["holdout_pct"],ts_setting["validation_pct"], seed=0) pandas_dataset = dr.Dataset.create_from_in_memory_data(data_frame=fake_jobs_df.drop(columns = ["job_id"])) project = pandas_dataset.create_project(project_name = ts_setting["project_name"]) project.set_target(target= ts_setting["target"],mode = dr.enums.AUTOPILOT_MODE.QUICK, partitioning_method=partition, advanced_options = advanced_options, worker_count = -1) project.unlock_holdout() project.wait_for_autopilot(verbosity=dr.VERBOSITY_LEVEL.SILENT) return project ''' From the project, find features, DataRobot set as text features ''' def get_text_features(project): ''' get text features :param project: DataRobot Project :return: list of features of type text ''' raw = [feat_list for feat_list in project.get_featurelists()\ if feat_list.name == ts_setting["feature_list"]][0] text_features = [ feat for feat in raw.features if dr.Feature.get(project.id, feat).feature_type == "Text" ] return text_features #Get all the models for a given text field def get_1_model_performance(model_p,text_feature,num_modified): ''' Extract a model metrics :param model_p: model of interest :param text_feature: list of features of type text :param num_modified: number of parameters modified :return: performance of type dict ''' global ts_setting performance = {} try: roc = model_p.get_roc_curve(ts_setting["set"]) threshold = roc.get_best_f1_threshold() metrics = roc.estimate_threshold(threshold) performance = {"model_id":model_p.id,"text_feature":text_feature,"AUC":model_p.metrics[ts_setting["AUC"]][ts_setting["set"]], \ "sample_pct":model_p.sample_pct, "LogLoss":model_p.metrics[ts_setting["LogLoss"]][ts_setting["set"]], 'f1_score':metrics['f1_score'],"sample_pct":model_p.sample_pct,\ 'true_negative_rate': metrics['true_negative_rate'], 'false_positive_rate':metrics['false_positive_rate'], 'true_positive_rate':metrics['true_positive_rate'],\ 'positive_predictive_value':metrics['positive_predictive_value'],\ 'negative_predictive_value':metrics['negative_predictive_value'],\ 'threshold':metrics['threshold'],'parameters_modified': num_modified} return performance except: performance = {"model_id": model_p.id, "text_feature": text_feature, "AUC": 0, \ "sample_pct": model_p.sample_pct, "LogLoss": 1, 'f1_score': 0, "sample_pct": model_p.sample_pct, \ 'true_negative_rate': 0, 'false_positive_rate': 0, 'true_positive_rate': 0, \ 'positive_predictive_value': 0, \ 'negative_predictive_value': 0, \ 'threshold': 0, 'parameters_modified': num_modified} return performance #Get all the models for a given text field #This function will have 2 uses: First, it will be used to find the best AutoTuned model for the #text features, and then it will be used to compare the best model before the pre-processing and #after the pre-processing. Keep only models that used less than 100 of dataset def models_performance_for_text(text_feature,project): ''' extract all models built only for text features :param text_feature: list of features of type text :param project: DataRobot project :return: all models trained on less than 100% and trained on only the text features (Auto-Tuned Word N-gram ) ''' models_desc =project.get_models( search_params={ 'name': text_feature }) df=
pd.DataFrame()
pandas.DataFrame
""" Test model.py module. """ import numpy as np import pandas as pd import pytest from src import model @pytest.fixture def dummy_df(): """Example data to test modeling utility functions""" dummy_df = pd.DataFrame(data={"col1": list(range(100)), "target": list(range(100))}) return dummy_df def test_parse_ratio(): """Parses ratio as expected.""" ratio = "6:2:2" sizes = model._parse_ratio(ratio) assert sizes == [0.6, 0.2, 0.2] def test_parse_ratio_missing_component(): """Ratio only provides two components.""" ratio = "6:4" sizes = model._parse_ratio(ratio) assert sizes == [0.6, 0., 0.4] def test_parse_ratio_invalid_ratio(): """Ratio uses incorrect separator.""" ratio = "6;2;2" with pytest.raises(ValueError): model._parse_ratio(ratio) def test_split_predictors_response(dummy_df): """Separate predictor variables from response.""" nrows, ncols = dummy_df.shape features, target = model.split_predictors_response(dummy_df, target_col="target") assert features.shape == (nrows, ncols - 1) assert target.shape == (nrows, ) def test_split_predictors_response_invalid_target_col(dummy_df): """Specified target column does not exist in DataFrame.""" with pytest.raises(KeyError): model.split_predictors_response(dummy_df, "class_dne") def test_split_predictors_response_only_one_column(): """Splitting a 1-column DataFrame yields a 0-col DF and Series.""" df = pd.DataFrame(data={"col1": list(range(100))}) features, target = model.split_predictors_response(df, target_col="col1") pd.testing.assert_frame_equal(features, pd.DataFrame(index=list(range(100)))) pd.testing.assert_series_equal(target, pd.Series(data=list(range(100)), name="col1")) def test_split_train_val_test(dummy_df): """Splits into train/val/test with dimensions as expected.""" target = dummy_df["target"] features = dummy_df.drop("target", axis=1) splits = model.split_train_val_test(features, target, "6:2:2") assert len(splits) == 6 # Features and response for each of train/val/test X_train, X_val, X_test, y_train, y_val, y_test = splits assert X_train.shape == (60, 1) assert X_val.shape == (20, 1) assert X_test.shape == (20, 1) assert y_train.shape == (60, ) assert y_val.shape == (20, ) assert y_test.shape == (20, ) def test_split_train_val_test_no_validation(dummy_df): """Splits into train/test (no val) with dimensions as expected.""" target = dummy_df["target"] features = dummy_df.drop("target", axis=1) # Ratio specifies all three numbers X_train, X_test, y_train, y_test = model.split_train_val_test(features, target, "3:0:1") assert X_train.shape == (75, 1) assert X_test.shape == (25, 1) assert y_train.shape == (75,) assert y_test.shape == (25,) # Ratio provides only two numbers X_train, X_test, y_train, y_test = model.split_train_val_test(features, target, "3:1") assert X_train.shape == (75, 1) assert X_test.shape == (25, 1) assert y_train.shape == (75, ) assert y_test.shape == (25, ) def test_split_train_val_test_bad_ratio(dummy_df): """Ratio results in an empty train, validation, or test set.""" target = dummy_df["target"] features = dummy_df.drop("target", axis=1) with pytest.raises(ValueError): model.split_train_val_test(features, target, "10:0:0") with pytest.raises(ValueError): model.split_train_val_test(features, target, "0:10:0") with pytest.raises(ValueError): model.split_train_val_test(features, target, "0:0:10") def test_parse_dict_to_dataframe(): """Convert a dictionary to `pandas.DataFrame` format.""" colnames = ["col1", "col2", "col3"] sample_data = [1.5, 3.0, 4.5] data_dict = dict(zip(colnames, sample_data)) actual_df = model.parse_dict_to_dataframe(data_dict) expected_df =
pd.DataFrame(data=[sample_data], columns=colnames)
pandas.DataFrame
''' Created on April 15, 2012 Last update on July 18, 2015 @author: <NAME> @author: <NAME> @author: <NAME> ''' import pandas as pd class Columns(object): OPEN='Open' HIGH='High' LOW='Low' CLOSE='Close' VOLUME='Volume' # def get(df, col): # return(df[col]) # df['Close'] => get(df, COL.CLOSE) # price=COL.CLOSE indicators=["MA", "EMA", "MOM", "ROC", "ATR", "BBANDS", "PPSR", "STOK", "STO", "TRIX", "ADX", "MACD", "MassI", "Vortex", "KST", "RSI", "TSI", "ACCDIST", "Chaikin", "MFI", "OBV", "FORCE", "EOM", "CCI", "COPP", "KELCH", "ULTOSC", "DONCH", "STDDEV"] class Settings(object): join=True col=Columns() SETTINGS=Settings() def out(settings, df, result): if not settings.join: return result else: df=df.join(result) return df def MA(df, n, price='Close'): """ Moving Average """ name='MA_{n}'.format(n=n) result = pd.Series(pd.rolling_mean(df[price], n), name=name) return out(SETTINGS, df, result) def EMA(df, n, price='Close'): """ Exponential Moving Average """ result=pd.Series(pd.ewma(df[price], span=n, min_periods=n - 1), name='EMA_' + str(n)) return out(SETTINGS, df, result) def MOM(df, n, price='Close'): """ Momentum """ result=pd.Series(df[price].diff(n), name='Momentum_' + str(n)) return out(SETTINGS, df, result) def ROC(df, n, price='Close'): """ Rate of Change """ M = df[price].diff(n - 1) N = df[price].shift(n - 1) result = pd.Series(M / N, name='ROC_' + str(n)) return out(SETTINGS, df, result) def ATR(df, n): """ Average True Range """ i = 0 TR_l = [0] while i < len(df) - 1: # df.index[-1]: # for i, idx in enumerate(df.index) # TR=max(df.get_value(i + 1, 'High'), df.get_value(i, 'Close')) - min(df.get_value(i + 1, 'Low'), df.get_value(i, 'Close')) TR = max(df['High'].iloc[i + 1], df['Close'].iloc[i] - min(df['Low'].iloc[i + 1], df['Close'].iloc[i])) TR_l.append(TR) i = i + 1 TR_s = pd.Series(TR_l) result = pd.Series(pd.ewma(TR_s, span=n, min_periods=n), name='ATR_' + str(n)) return out(SETTINGS, df, result) def BBANDS(df, n, price='Close'): """ Bollinger Bands """ MA = pd.Series(pd.rolling_mean(df[price], n)) MSD = pd.Series(pd.rolling_std(df[price], n)) b1 = 4 * MSD / MA B1 = pd.Series(b1, name='BollingerB_' + str(n)) b2 = (df[price] - MA + 2 * MSD) / (4 * MSD) B2 = pd.Series(b2, name='Bollinger%b_' + str(n)) result = pd.DataFrame([B1, B2]).transpose() return out(SETTINGS, df, result) def PPSR(df): """ Pivot Points, Supports and Resistances """ PP = pd.Series((df['High'] + df['Low'] + df['Close']) / 3) R1 = pd.Series(2 * PP - df['Low']) S1 = pd.Series(2 * PP - df['High']) R2 = pd.Series(PP + df['High'] - df['Low']) S2 = pd.Series(PP - df['High'] + df['Low']) R3 = pd.Series(df['High'] + 2 * (PP - df['Low'])) S3 = pd.Series(df['Low'] - 2 * (df['High'] - PP)) result = pd.DataFrame([PP, R1, S1, R2, S2, R3, S3]).transpose() return out(SETTINGS, df, result) def STOK(df): """ Stochastic oscillator %K """ result = pd.Series((df['Close'] - df['Low']) / (df['High'] - df['Low']), name='SO%k') return out(SETTINGS, df, result) def STO(df, n): """ Stochastic oscillator %D """ SOk = pd.Series((df['Close'] - df['Low']) / (df['High'] - df['Low']), name='SO%k') result = pd.Series(pd.ewma(SOk, span=n, min_periods=n - 1), name='SO%d_' + str(n)) return out(SETTINGS, df, result) def SMA(df, timeperiod, key='Close'): result = pd.Series(pd.rolling_mean(df[key], timeperiod, min_periods=timeperiod), name='SMA_' + str(timeperiod)) return out(SETTINGS, df, result) def TRIX(df, n): """ Trix """ EX1 = pd.ewma(df['Close'], span=n, min_periods=n - 1) EX2 = pd.ewma(EX1, span=n, min_periods=n - 1) EX3 = pd.ewma(EX2, span=n, min_periods=n - 1) i = 0 ROC_l = [0] while i + 1 <= len(df) - 1: # df.index[-1]: ROC = (EX3[i + 1] - EX3[i]) / EX3[i] ROC_l.append(ROC) i = i + 1 result = pd.Series(ROC_l, name='Trix_' + str(n)) return out(SETTINGS, df, result) def ADX(df, n, n_ADX): """ Average Directional Movement Index """ i = 0 UpI = [] DoI = [] while i + 1 <= len(df) - 1: # df.index[-1]: UpMove = df.get_value(i + 1, 'High') - df.get_value(i, 'High') DoMove = df.get_value(i, 'Low') - df.get_value(i + 1, 'Low') if UpMove > DoMove and UpMove > 0: UpD = UpMove else: UpD = 0 UpI.append(UpD) if DoMove > UpMove and DoMove > 0: DoD = DoMove else: DoD = 0 DoI.append(DoD) i = i + 1 i = 0 TR_l = [0] while i < len(df) - 1: # df.index[-1]: TR = max(df.get_value(i + 1, 'High'), df.get_value(i, 'Close')) - min(df.get_value(i + 1, 'Low'), df.get_value(i, 'Close')) TR_l.append(TR) i = i + 1 TR_s = pd.Series(TR_l) ATR = pd.Series(pd.ewma(TR_s, span=n, min_periods=n)) UpI = pd.Series(UpI) DoI = pd.Series(DoI) PosDI = pd.Series(pd.ewma(UpI, span=n, min_periods=n - 1) / ATR,name='PosDI') NegDI = pd.Series(pd.ewma(DoI, span=n, min_periods=n - 1) / ATR,name='NegDI') result = pd.Series(pd.ewma(abs(PosDI - NegDI) / (PosDI + NegDI), span=n_ADX, min_periods=n_ADX - 1), name='ADX_' + str(n) + '_' + str(n_ADX)) result = pd.concat([df,PosDI,NegDI,result], join='outer', axis=1,ignore_index=True) result.columns=["High","Low","Close","PosDI","NegDI","ADX"] return result def MACD(df, n_fast, n_slow, price='Close'): """ MACD, MACD Signal and MACD difference """ EMAfast = pd.Series(pd.ewma(df[price], span=n_fast, min_periods=n_slow - 1)) EMAslow = pd.Series(pd.ewma(df[price], span=n_slow, min_periods=n_slow - 1)) MACD = pd.Series(EMAfast - EMAslow, name='MACD_%d_%d' % (n_fast, n_slow)) MACDsign = pd.Series(pd.ewma(MACD, span=9, min_periods=8), name='MACDsign_%d_%d' % (n_fast, n_slow)) MACDdiff = pd.Series(MACD - MACDsign, name='MACDdiff_%d_%d' % (n_fast, n_slow)) result = pd.DataFrame([MACD, MACDsign, MACDdiff]).transpose() return out(SETTINGS, df, result) def MassI(df): """ Mass Index """ Range = df['High'] - df['Low'] EX1 = pd.ewma(Range, span=9, min_periods=8) EX2 = pd.ewma(EX1, span=9, min_periods=8) Mass = EX1 / EX2 result = pd.Series(pd.rolling_sum(Mass, 25), name='Mass Index') return out(SETTINGS, df, result) def Vortex(df, n): """ Vortex Indicator """ i = 0 TR = [0] while i < len(df) - 1: # df.index[-1]: Range = max(df.get_value(i + 1, 'High'), df.get_value(i, 'Close')) - min(df.get_value(i + 1, 'Low'), df.get_value(i, 'Close')) TR.append(Range) i = i + 1 i = 0 VM = [0] while i < len(df) - 1: # df.index[-1]: Range = abs(df.get_value(i + 1, 'High') - df.get_value(i, 'Low')) - abs(df.get_value(i + 1, 'Low') - df.get_value(i, 'High')) VM.append(Range) i = i + 1 result = pd.Series(pd.rolling_sum(pd.Series(VM), n) / pd.rolling_sum(pd.Series(TR), n), name='Vortex_' + str(n)) return out(SETTINGS, df, result) def KST(df, r1, r2, r3, r4, n1, n2, n3, n4): """ KST Oscillator """ M = df['Close'].diff(r1 - 1) N = df['Close'].shift(r1 - 1) ROC1 = M / N M = df['Close'].diff(r2 - 1) N = df['Close'].shift(r2 - 1) ROC2 = M / N M = df['Close'].diff(r3 - 1) N = df['Close'].shift(r3 - 1) ROC3 = M / N M = df['Close'].diff(r4 - 1) N = df['Close'].shift(r4 - 1) ROC4 = M / N result = pd.Series(pd.rolling_sum(ROC1, n1) + pd.rolling_sum(ROC2, n2) * 2 + pd.rolling_sum(ROC3, n3) * 3 + pd.rolling_sum(ROC4, n4) * 4, name='KST_' + str(r1) + '_' + str(r2) + '_' + str(r3) + '_' + str(r4) + '_' + str(n1) + '_' + str(n2) + '_' + str(n3) + '_' + str(n4)) return out(SETTINGS, df, result) def RSI(df, n): """ Relative Strength Index """ i = 0 UpI = [0] DoI = [0] while i + 1 <= len(df) - 1: # df.index[-1] UpMove = df.iloc[i + 1]['High'] - df.iloc[i]['High'] DoMove = df.iloc[i]['Low'] - df.iloc[i + 1]['Low'] if UpMove > DoMove and UpMove > 0: UpD = UpMove else: UpD = 0 UpI.append(UpD) if DoMove > UpMove and DoMove > 0: DoD = DoMove else: DoD = 0 DoI.append(DoD) i = i + 1 UpI = pd.Series(UpI) DoI = pd.Series(DoI) PosDI = pd.Series(pd.ewma(UpI, span=n, min_periods=n - 1)) NegDI = pd.Series(pd.ewma(DoI, span=n, min_periods=n - 1)) result = pd.Series(PosDI / (PosDI + NegDI), name='RSI_' + str(n)) return out(SETTINGS, df, result) def TSI(df, r, s): """ True Strength Index """ M = pd.Series(df['Close'].diff(1)) aM = abs(M) EMA1 = pd.Series(pd.ewma(M, span=r, min_periods=r - 1)) aEMA1 = pd.Series(pd.ewma(aM, span=r, min_periods=r - 1)) EMA2 = pd.Series(
pd.ewma(EMA1, span=s, min_periods=s - 1)
pandas.ewma
import matplotlib.pyplot as plt import pandas as pd from oneibl.one import ONE from ibllib.time import isostr2date # import sys # sys.path.extend('/home/owinter/PycharmProjects/WGs/BehaviourAnaysis/python') from load_mouse_data import get_behavior from behavior_plots import plot_psychometric one = ONE() # https://alyx.internationalbrainlab.org/admin/actions/session/e752b02d-b54d-4373-b51e-0b31be5f8ee5/change/ # first get the subject information subject_details = one.alyx.rest('subjects', 'read', 'IBL_14') # plot the weight curve # https://alyx.internationalbrainlab.org/admin-actions/water-history/37c8f897-cbcc-4743-bad6-764ccbbfb190 wei =
pd.DataFrame(subject_details['weighings'])
pandas.DataFrame
import pandas as pd import requests # class name,必須跟檔案名一致,例如 class demo,檔名也是 demo.py class demo: def __init__(self, stock_price, **kwargs, ): # ------------------------------------------------------------------- # 此區塊請勿更動 stock_price = stock_price.sort_values('date') # 股價 self.stock_price = stock_price # 融資融券 self.MarginPurchaseShortSale = kwargs.get("MarginPurchaseShortSale", pd.DataFrame()) # 三大法人買賣 self.InstitutionalInvestorsBuySell = kwargs.get("InstitutionalInvestorsBuySell",
pd.DataFrame()
pandas.DataFrame
import pandas as pd import matplotlib.pyplot as plt import sys import os from scipy.signal import find_peaks from scipy.signal import butter, lfilter, freqz import matplotlib.pyplot as plt from get_peaks import load_dat_file def get_mcell_observables_counts(dir): counts = {} seed_dirs = os.listdir(dir) for seed_dir in seed_dirs: if not seed_dir.startswith('seed_'): continue file_list = os.listdir(os.path.join(dir, seed_dir)) for file in file_list: file_path = os.path.join(dir, seed_dir, file) if os.path.isfile(file_path) and file.endswith('.dat'): observable = os.path.splitext(file)[0] if observable.endswith('_MDLString'): observable = observable[:-len('_MDLString')] if observable not in counts: index = 0 else: index = counts[observable].shape[1] - 1 col_name = 'count' + str(index) df = pd.read_csv(file_path, sep=' ', names=['time', col_name]) if observable not in counts: counts[observable] = df else: # add new column counts[observable][col_name] = df[col_name] return counts def get_averages(dir): dfA = pd.DataFrame() dfR = pd.DataFrame() counts = get_mcell_observables_counts(dir) print(counts) df =
pd.DataFrame()
pandas.DataFrame
# Copyright (c) 2020 Huawei Technologies Co., Ltd. # <EMAIL> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from src.cpePaser import week_extract from src.cpePaser import day_extract from src.cpePaser import month_extract from src.cpePaser import extract_data import os from src.compress import compress import pandas as pd from src.setting import setting from src.timeOperator import timeOpt import time import multiprocessing from src.logger_setting.my_logger import get_logger logger = get_logger() MONTH1 = '1' MONTH2 = '2' TRAIN = '0' PREDICT = '1' MAX_INVALID_VALUE = 9999 def get_data_by_range(first_day, last_day): df =
pd.DataFrame(columns=setting.month_column_name)
pandas.DataFrame
from typing import Tuple import numpy as np import pandas as pd class DecisionStump: def __init__(self, epsilon: float = 1e-6): r"""A depth-1 decision tree classifier Args: epsilon: float To classify all the points in the training set as +1, the model will set the dividing line (threshold) to threshold = min(x_best_feature) - epsilon """ self.epsilon = epsilon self.best_feature = '' # label of the best feature column self.threshold = 0.0 # dividing line self.inverse = False def train(self, X_train: pd.DataFrame, y_train: pd.Series, weights: pd.Series = None, full_error: bool = False): n_data = len(X_train) # Compute errors for all possible dividing lines errors = [] for feature in X_train.columns: x_col = X_train[feature] # Iterate over all data points err = [self.weighted_error(y_train, self._predict(x_col, threshold=xi, inverse=False), weights) for xi in x_col] # Set the threshold below the minimum of current feature threshold_min = min(x_col) - self.epsilon y_pred = self._predict(x_col, threshold=threshold_min, inverse=False) err.append(self.weighted_error(y_train, y_pred, weights)) # Store the errors errors.append(pd.Series(err, name=f"{feature}")) # Inverse the decision # Iterate over all data points err = [self.weighted_error(y_train, self._predict(x_col, threshold=xi, inverse=True), weights) for xi in x_col] # Set the threshold below the minimum of current feature threshold_min = min(x_col) - self.epsilon y_pred = self._predict(x_col, threshold=threshold_min, inverse=True) err.append(self.weighted_error(y_train, y_pred, weights)) # Store the errors errors.append(
pd.Series(err, name=f"{feature}-inverse")
pandas.Series
#%% # CARGO LOS DATASETS import pandas as pd import numpy as np from shapely.geometry import Point import shapely as shp import geopandas as gpd from geopandas.array import points_from_xy path = "merged1_listas.pkl" df_merge1 = pd.read_pickle(path) df_merge1.reset_index(inplace=True) #%% #region PART 1: DESDE EL PRIMER MERGE HASTA COMPLETAR SPEAKERS #Pasamos todas las string-lista a listas de verdad por si quedó alguna def sep(x): """para pasar posibles string-listas a listas-listas""" if (isinstance(x, str)) and ("[" in x): return x.replace("'", "").strip("][").split(", ") else: return x def sep_float(x): """para pasar posibles string-listas-float a listas-float""" if (isinstance(x, str)) and ("[" in x): lista = x.replace("'", "").strip("][").split(", ") return [float(x_n) for x_n in lista] elif isinstance(x,list): return [float(x_n) for x_n in x] else: print(x) return float(x) #para cargar los points en geopandas como coordenadas def topoint(x): if isinstance(x, list): return [shp.wkt.loads(point) for point in x] else: return shp.wkt.loads(x) #%% df1 = df_merge1.applymap(sep) print('Ahora las columnas problematicas solo tienen listas-listas \n\n#Listas por columna:') print(df1.applymap(lambda x: isinstance(x,list)).sum()) print('\nY las que tienen valores numéricos no tienen ningún string \n\n#Strings por columna:') print(df1.applymap(lambda x: isinstance(x,str)).sum()) #%% # MACROAREA: llenamos a mano los 14 NaN que encontramos macronan = df1[df1["Macroarea"].isnull()] # Agregamos macroareas en una copia del dataframe original df2 = df1.copy() macroareas_faltantes = [ "Papunesia", "South America", "Africa", "Eurasia", "Eurasia", "Eurasia", "Australia", "Australia", "North America", "North America", "Australia", "Eurasia", "Africa", "Australia", ] df2.loc[macronan.index, "Macroarea"] = macroareas_faltantes #%% # LENGUAJE DE SEÑAS: Quitamos las filas correspondientes # cambio el nombre de la columna porque se confunde con los espacios y la ñ df3 = df2.rename(columns={"Lenguaje de Señas": "senas"}) indexNames = df3[df3["senas"] == 1].index df3.drop(indexNames, inplace=True) df3 = df3.reset_index(drop=True) #%% # NUM_SPEAKER: Despues de haber chequado algunos datos en Ethnologe # concluimos que le valor mas grande que aparece en la lista es el # nro de hablantes total. Nos quedamos solo con este elemento # de cada lista # entradas que son listas list_bool = df3["num_speakers"].apply( lambda x: isinstance(x, list) ) # lista de las listas num_speaker_lists = df3["num_speakers"][list_bool] # con la función lambda tomo el máximo, reemplazo esos valores en el df df3.loc[num_speaker_lists.index, "num_speakers"] = num_speaker_lists.apply( lambda x: max(x) ) #%% COMENZAMOS CON EL ARMADO DE FEAUTURES # Nueva feauture con la cantidad de paises # Cantidad de elementos de la lista o no lista def num_countries(x): if isinstance(x,list): return len(x) else: return 1 df3['cant_paises'] = df3['countryISO'].apply(lambda x: num_countries(x)) #%% # Armo una nueva feauture hable de la cercania entre lenguajes # La feauture sera cuantos lenguajes tiene a menos de cierta medida # de distancia #transformo los string-point a un objeto de la clase Point de shapely df4 = df3.copy() df4['Country_coord'] = df4['Country_coord'].apply(topoint) col_latitude = [] col_longitude = [] for i, item in df4['Country_coord'].items(): if isinstance(item,Point): col_latitude.append(item.x) col_longitude.append(item.y) elif isinstance(item,list): sublist_lat = [subitem.x for subitem in item] sublist_long = [subitem.y for subitem in item] col_latitude.append(sublist_lat) col_longitude.append(sublist_long) df4['Country_lat'] = col_latitude df4['Country_long'] = col_longitude #%% #esta parte la comento porque tarda en correr, por las dudas # largo = len(df4) # col_nearest = np.zeros(largo) # print('Corremos el loop de euge para armar la feature nearest languages') # for i in range(largo): # print(i) # if df4["cant_paises"][i] == 1: # lat = df4["Latitude"][i] # long = df4["Longitude"][i] # cercanos = 0 # for j in range(largo): # if j != i: # if df4["cant_paises"][j] == 1: # lat1 = df4["Latitude"][j] # long1 = df4["Longitude"][j] # dif_lat = lat1 - lat # dif_long = long1 - long # if (abs(dif_lat) < 10) and (abs(dif_long) < 10): # cercanos = cercanos + 1 # else: # for k in range(df4["cant_paises"][j]): # lat1 = df4["Country_lat"][j][k] # long1 = df4["Country_long"][j][k] # dif_lat = lat1 - lat # dif_long1 = long1 - long # if (abs(dif_lat) < 10) and (abs(dif_long) < 10): # cercanos = cercanos + 1 # else: # cercanos = 0 # for m in range(df4["cant_paises"][i]): # lat = df4["Country_lat"][i][m] # long = df4["Country_long"][i][m] # for j in range(largo): # if j != i: # if df4["cant_paises"][j] == 1: # lat1 = df4["Latitude"][j] # long1 = df4["Longitude"][j] # dif_lat = lat1 - lat # dif_long = long1 - long # if (abs(dif_lat) < 10) and (abs(dif_long) < 10): # cercanos = cercanos + 1 # else: # for k in range(df4["cant_paises"][j]): # lat1 = df4["Country_lat"][j][k] # long1 = df4["Country_long"][j][k] # dif_lat = lat1 - lat # dif_long1 = long1 - long # if (abs(dif_lat) < 10) and (abs(dif_long) < 10): # cercanos = cercanos + 1 # col_nearest[i] = cercanos #endregion #%% # df4.to_pickle('paso1.pkl') # df4.to_csv('paso1.csv') #%% #region PART 2: AGREGAR SPEAKERS DE CADA UNA AL DF PRINCIPAL #df4 = pd.read_pickle('paso1.pkl') #df_principal = df4.copy() ingrid = pd.read_csv('/home/ingrid/Documents/labodatos/TP_final/df_principal/completados_INGRID.csv') euge = pd.read_excel('/home/ingrid/Documents/labodatos/TP_final/df_principal/df_num_speakers_euge_arreglado_v2.xlsx') mai = pd.read_csv('/home/ingrid/Documents/labodatos/TP_final/df_principal/completados_MAIA.csv') romi =
pd.read_csv('/home/ingrid/Documents/labodatos/TP_final/df_principal/romi_completos.csv')
pandas.read_csv
import psycopg2 import pandas as pd import db.db_access as access CONST_SQL_GET_TWITTER_DET = 'SELECT id, main_company_id, twitter_keyword, twitter_cashtag, twitter_url, is_parent_company FROM company' CONST_SQL_GET_MAIN_COMPANY = 'SELECT * FROM maincompany' CONST_SQL_GET_COMPANY_DETAIL = 'SELECT * FROM company_detail' CONST_SQL_GET_MAT_VIEW_KEYWORD = 'SELECT * FROM public.day_keyword_materialised' CONST_SQL_GET_MAT_VIEW_CASHTAG = 'SELECT * FROM public.day_cashtag_materialised' CONST_SQL_LAST_DATE_TWEET = """SELECT MAX(date_utc) FROM {TABLE} WHERE company_id = '{COMPANY_ID}';""" CONST_SQL_GET_MAT_VIEW_FOR_COMPANY = """SELECT """ # for daily twitter webservice CONST_SQL_GET_TWEETS_BY_CASHTAG = """SELECT * FROM "public"."parsing_twitter_cashtag" t WHERE t.search = {CASHTAG} AND TO_CHAR(t.date, 'yyyy-mm-dd')= + {DATE}""" class TwitterConnectorDbSignal(object): def __init__(self): self.host, self.port, self.database, self.user, self.password = access.postgre_access_google_cloud() def get_psql_context(self): cnx = psycopg2.connect(host=self.host, port=self.port, database=self.database, user=self.user, password=self.password) return cnx def get_twitter_detail(self): cnx = self.get_psql_context() cur = cnx.cursor() try: CONST_SQL_GET_TWITTER_DET = 'SELECT * FROM twitter_detail' cur.execute(CONST_SQL_GET_TWITTER_DET) result = cur.fetchall() result = pd.DataFrame.from_records(result, columns=[x[0] for x in cur.description]) return result except (Exception, psycopg2.DatabaseError) as error: print(error) finally: cur.close() def get_last_date_tweet(self, company_id, table_name): cnx = self.get_psql_context() cur = cnx.cursor() query = CONST_SQL_LAST_DATE_TWEET.format(TABLE=str(table_name), COMPANY_ID=str(company_id)) cur.execute(query) result = cur.fetchall() return result[0][0] def get_main_company(self): cnx = self.get_psql_context() cur = cnx.cursor() try: cur.execute(CONST_SQL_GET_MAIN_COMPANY) result = cur.fetchall() result = pd.DataFrame.from_records(result, columns=[x[0] for x in cur.description]) return result except (Exception, psycopg2.DatabaseError) as error: print(error) finally: cur.close() def get_company_detail(self): cnx = self.get_psql_context() cur = cnx.cursor() try: cur.execute(CONST_SQL_GET_COMPANY_DETAIL) result = cur.fetchall() result = pd.DataFrame.from_records(result, columns=[x[0] for x in cur.description]) return result except (Exception, psycopg2.DatabaseError) as error: print(error) finally: cur.close() def get_link_tweet_from_period_range(self, company_id, date_utc, table_name): cnx = self.get_psql_context() cur = cnx.cursor() try: CONST_SQL_GET_LINK_LIKES_PERIOD_RANGE = """SELECT tweet_id, link, tweet, nlikes, sentiment_score_vader, cashtags FROM {TABLE} WHERE is_spam is False AND company_id = '{COMPANY_ID}' AND date_utc BETWEEN '{DATE_UTC}' AND '{DATE_UTC_2} 23:59:59.997';""" query = CONST_SQL_GET_LINK_LIKES_PERIOD_RANGE.format(TABLE=str(table_name), COMPANY_ID=str(company_id), DATE_UTC=str(date_utc), DATE_UTC_2=str(date_utc)) cur.execute(query) result = cur.fetchall() result = pd.DataFrame.from_records(result, columns=[x[0] for x in cur.description]) return result except (Exception, psycopg2.DatabaseError) as error: print(error) finally: cur.close() def get_more_tweet(self, company_id, table_name): cnx = self.get_psql_context() cur = cnx.cursor() try: CONST_SQL_GET_LINK_LIKES_PERIOD_RANGE = """SELECT tweet_id, link, tweet, nlikes, sentiment_score_vader, cashtags FROM {TABLE} WHERE is_spam is False AND company_id = '{COMPANY_ID}' AND nlikes >=1 ORDER BY date_utc DESC LIMIT 40""" query = CONST_SQL_GET_LINK_LIKES_PERIOD_RANGE.format(TABLE=str(table_name), COMPANY_ID=str(company_id)) cur.execute(query) result = cur.fetchall() result = pd.DataFrame.from_records(result, columns=[x[0] for x in cur.description]) return result except (Exception, psycopg2.DatabaseError) as error: print(error) finally: cur.close() def get_materialised_view_keyword(self): cnx = self.get_psql_context() cur = cnx.cursor() try: cur.execute(CONST_SQL_GET_MAT_VIEW_KEYWORD) result = cur.fetchall() result = pd.DataFrame.from_records(result, columns=[x[0] for x in cur.description]) return result except (Exception, psycopg2.DatabaseError) as error: print(error) finally: cur.close() def get_materialised_view_cashtag(self): cnx = self.get_psql_context() cur = cnx.cursor() try: cur.execute(CONST_SQL_GET_MAT_VIEW_CASHTAG) result = cur.fetchall() result = pd.DataFrame.from_records(result, columns=[x[0] for x in cur.description]) return result except (Exception, psycopg2.DatabaseError) as error: print(error) finally: cur.close() def get_materialised_view_for_company_id(self): cnx = self.get_psql_context() cur = cnx.cursor() try: cur.execute(CONST_SQL_GET_MAT_VIEW_FOR_COMPANY) result = cur.fetchall() result =
pd.DataFrame.from_records(result, columns=[x[0] for x in cur.description])
pandas.DataFrame.from_records
# -*- coding: utf-8 -*- # pylint: disable=E1101,E1103,W0232 import os import sys from datetime import datetime from distutils.version import LooseVersion import numpy as np import pandas as pd import pandas.compat as compat import pandas.core.common as com import pandas.util.testing as tm from pandas import (Categorical, Index, Series, DataFrame, PeriodIndex, Timestamp, CategoricalIndex) from pandas.compat import range, lrange, u, PY3 from pandas.core.config import option_context # GH 12066 # flake8: noqa class TestCategorical(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) def test_getitem(self): self.assertEqual(self.factor[0], 'a') self.assertEqual(self.factor[-1], 'c') subf = self.factor[[0, 1, 2]] tm.assert_almost_equal(subf._codes, [0, 1, 1]) subf = self.factor[np.asarray(self.factor) == 'c'] tm.assert_almost_equal(subf._codes, [2, 2, 2]) def test_getitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype(np.int8)) result = c.codes[np.array([100000]).astype(np.int64)] expected = c[np.array([100000]).astype(np.int64)].codes self.assert_numpy_array_equal(result, expected) def test_setitem(self): # int/positional c = self.factor.copy() c[0] = 'b' self.assertEqual(c[0], 'b') c[-1] = 'a' self.assertEqual(c[-1], 'a') # boolean c = self.factor.copy() indexer = np.zeros(len(c), dtype='bool') indexer[0] = True indexer[-1] = True c[indexer] = 'c' expected = Categorical.from_array(['c', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assert_categorical_equal(c, expected) def test_setitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype( np.int8)).add_categories([-1000]) indexer = np.array([100000]).astype(np.int64) c[indexer] = -1000 # we are asserting the code result here # which maps to the -1000 category result = c.codes[np.array([100000]).astype(np.int64)] self.assertEqual(result, np.array([5], dtype='int8')) def test_constructor_unsortable(self): # it works! arr = np.array([1, 2, 3, datetime.now()], dtype='O') factor = Categorical.from_array(arr, ordered=False) self.assertFalse(factor.ordered) if compat.PY3: self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: # this however will raise as cannot be sorted (on PY3 or older # numpies) if LooseVersion(np.__version__) < "1.10": self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: Categorical.from_array(arr, ordered=True) def test_is_equal_dtype(self): # test dtype comparisons between cats c1 = Categorical(list('aabca'), categories=list('abc'), ordered=False) c2 = Categorical(list('aabca'), categories=list('cab'), ordered=False) c3 = Categorical(list('aabca'), categories=list('cab'), ordered=True) self.assertTrue(c1.is_dtype_equal(c1)) self.assertTrue(c2.is_dtype_equal(c2)) self.assertTrue(c3.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(c2)) self.assertFalse(c1.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(Index(list('aabca')))) self.assertFalse(c1.is_dtype_equal(c1.astype(object))) self.assertTrue(c1.is_dtype_equal(CategoricalIndex(c1))) self.assertFalse(c1.is_dtype_equal( CategoricalIndex(c1, categories=list('cab')))) self.assertFalse(c1.is_dtype_equal(CategoricalIndex(c1, ordered=True))) def test_constructor(self): exp_arr = np.array(["a", "b", "c", "a", "b", "c"]) c1 = Categorical(exp_arr) self.assert_numpy_array_equal(c1.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["c", "b", "a"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) # categories must be unique def f(): Categorical([1, 2], [1, 2, 2]) self.assertRaises(ValueError, f) def f(): Categorical(["a", "b"], ["a", "b", "b"]) self.assertRaises(ValueError, f) def f(): with tm.assert_produces_warning(FutureWarning): Categorical([1, 2], [1, 2, np.nan, np.nan]) self.assertRaises(ValueError, f) # The default should be unordered c1 = Categorical(["a", "b", "c", "a"]) self.assertFalse(c1.ordered) # Categorical as input c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c1.__array__(), c2.__array__()) self.assert_numpy_array_equal(c2.categories, np.array(["a", "b", "c"])) # Series of dtype category c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) # Series c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(Series(["a", "b", "c", "a"])) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical( Series(["a", "b", "c", "a"]), categories=["a", "b", "c", "d"]) self.assertTrue(c1.equals(c2)) # This should result in integer categories, not float! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # https://github.com/pydata/pandas/issues/3678 cat = pd.Categorical([np.nan, 1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # this should result in floats cat = pd.Categorical([np.nan, 1, 2., 3]) self.assertTrue(com.is_float_dtype(cat.categories)) cat = pd.Categorical([np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # Deprecating NaNs in categoires (GH #10748) # preserve int as far as possible by converting to object if NaN is in # categories with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1, 2, 3], categories=[np.nan, 1, 2, 3]) self.assertTrue(com.is_object_dtype(cat.categories)) # This doesn't work -> this would probably need some kind of "remember # the original type" feature to try to cast the array interface result # to... # vals = np.asarray(cat[cat.notnull()]) # self.assertTrue(com.is_integer_dtype(vals)) with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, "a", "b", "c"], categories=[np.nan, "a", "b", "c"]) self.assertTrue(com.is_object_dtype(cat.categories)) # but don't do it for floats with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1., 2., 3.], categories=[np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # corner cases cat = pd.Categorical([1]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical(["a"]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == "a") self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Scalars should be converted to lists cat = pd.Categorical(1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical([1], categories=1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Catch old style constructor useage: two arrays, codes + categories # We can only catch two cases: # - when the first is an integer dtype and the second is not # - when the resulting codes are all -1/NaN with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], categories=["a", "b", "c"]) # noqa with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], # noqa categories=[3, 4, 5]) # the next one are from the old docs, but unfortunately these don't # trigger :-( with tm.assert_produces_warning(None): c_old2 = Categorical([0, 1, 2, 0, 1, 2], [1, 2, 3]) # noqa cat = Categorical([1, 2], categories=[1, 2, 3]) # this is a legitimate constructor with tm.assert_produces_warning(None): c = Categorical(np.array([], dtype='int64'), # noqa categories=[3, 2, 1], ordered=True) def test_constructor_with_index(self): ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical(ci))) ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical( ci.astype(object), categories=ci.categories))) def test_constructor_with_generator(self): # This was raising an Error in isnull(single_val).any() because isnull # returned a scalar for a generator xrange = range exp = Categorical([0, 1, 2]) cat = Categorical((x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = Categorical(xrange(3)) self.assertTrue(cat.equals(exp)) # This uses xrange internally from pandas.core.index import MultiIndex MultiIndex.from_product([range(5), ['a', 'b', 'c']]) # check that categories accept generators and sequences cat = pd.Categorical([0, 1, 2], categories=(x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = pd.Categorical([0, 1, 2], categories=xrange(3)) self.assertTrue(cat.equals(exp)) def test_from_codes(self): # too few categories def f(): Categorical.from_codes([1, 2], [1, 2]) self.assertRaises(ValueError, f) # no int codes def f(): Categorical.from_codes(["a"], [1, 2]) self.assertRaises(ValueError, f) # no unique categories def f(): Categorical.from_codes([0, 1, 2], ["a", "a", "b"]) self.assertRaises(ValueError, f) # too negative def f(): Categorical.from_codes([-2, 1, 2], ["a", "b", "c"]) self.assertRaises(ValueError, f) exp = Categorical(["a", "b", "c"], ordered=False) res = Categorical.from_codes([0, 1, 2], ["a", "b", "c"]) self.assertTrue(exp.equals(res)) # Not available in earlier numpy versions if hasattr(np.random, "choice"): codes = np.random.choice([0, 1], 5, p=[0.9, 0.1]) pd.Categorical.from_codes(codes, categories=["train", "test"]) def test_comparisons(self): result = self.factor[self.factor == 'a'] expected = self.factor[np.asarray(self.factor) == 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor != 'a'] expected = self.factor[np.asarray(self.factor) != 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor < 'c'] expected = self.factor[np.asarray(self.factor) < 'c'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor > 'a'] expected = self.factor[np.asarray(self.factor) > 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor >= 'b'] expected = self.factor[np.asarray(self.factor) >= 'b'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor <= 'b'] expected = self.factor[np.asarray(self.factor) <= 'b'] self.assertTrue(result.equals(expected)) n = len(self.factor) other = self.factor[np.random.permutation(n)] result = self.factor == other expected = np.asarray(self.factor) == np.asarray(other) self.assert_numpy_array_equal(result, expected) result = self.factor == 'd' expected = np.repeat(False, len(self.factor)) self.assert_numpy_array_equal(result, expected) # comparisons with categoricals cat_rev = pd.Categorical(["a", "b", "c"], categories=["c", "b", "a"], ordered=True) cat_rev_base = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a"], ordered=True) cat = pd.Categorical(["a", "b", "c"], ordered=True) cat_base = pd.Categorical(["b", "b", "b"], categories=cat.categories, ordered=True) # comparisons need to take categories ordering into account res_rev = cat_rev > cat_rev_base exp_rev = np.array([True, False, False]) self.assert_numpy_array_equal(res_rev, exp_rev) res_rev = cat_rev < cat_rev_base exp_rev = np.array([False, False, True]) self.assert_numpy_array_equal(res_rev, exp_rev) res = cat > cat_base exp = np.array([False, False, True]) self.assert_numpy_array_equal(res, exp) # Only categories with same categories can be compared def f(): cat > cat_rev self.assertRaises(TypeError, f) cat_rev_base2 = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a", "d"]) def f(): cat_rev > cat_rev_base2 self.assertRaises(TypeError, f) # Only categories with same ordering information can be compared cat_unorderd = cat.set_ordered(False) self.assertFalse((cat > cat).any()) def f(): cat > cat_unorderd self.assertRaises(TypeError, f) # comparison (in both directions) with Series will raise s = Series(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > s) self.assertRaises(TypeError, lambda: cat_rev > s) self.assertRaises(TypeError, lambda: s < cat) self.assertRaises(TypeError, lambda: s < cat_rev) # comparison with numpy.array will raise in both direction, but only on # newer numpy versions a = np.array(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > a) self.assertRaises(TypeError, lambda: cat_rev > a) # The following work via '__array_priority__ = 1000' # works only on numpy >= 1.7.1 if LooseVersion(np.__version__) > "1.7.1": self.assertRaises(TypeError, lambda: a < cat) self.assertRaises(TypeError, lambda: a < cat_rev) # Make sure that unequal comparison take the categories order in # account cat_rev = pd.Categorical( list("abc"), categories=list("cba"), ordered=True) exp = np.array([True, False, False]) res = cat_rev > "b" self.assert_numpy_array_equal(res, exp) def test_na_flags_int_categories(self): # #1457 categories = lrange(10) labels = np.random.randint(0, 10, 20) labels[::5] = -1 cat = Categorical(labels, categories, fastpath=True) repr(cat) self.assert_numpy_array_equal(com.isnull(cat), labels == -1) def test_categories_none(self): factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assertTrue(factor.equals(self.factor)) def test_describe(self): # string type desc = self.factor.describe() expected = DataFrame({'counts': [3, 2, 3], 'freqs': [3 / 8., 2 / 8., 3 / 8.]}, index=pd.CategoricalIndex(['a', 'b', 'c'], name='categories')) tm.assert_frame_equal(desc, expected) # check unused categories cat = self.factor.copy() cat.set_categories(["a", "b", "c", "d"], inplace=True) desc = cat.describe() expected = DataFrame({'counts': [3, 2, 3, 0], 'freqs': [3 / 8., 2 / 8., 3 / 8., 0]}, index=pd.CategoricalIndex(['a', 'b', 'c', 'd'], name='categories')) tm.assert_frame_equal(desc, expected) # check an integer one desc = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1]).describe() expected = DataFrame({'counts': [5, 3, 3], 'freqs': [5 / 11., 3 / 11., 3 / 11.]}, index=pd.CategoricalIndex([1, 2, 3], name='categories')) tm.assert_frame_equal(desc, expected) # https://github.com/pydata/pandas/issues/3678 # describe should work with NaN cat = pd.Categorical([np.nan, 1, 2, 2]) desc = cat.describe() expected = DataFrame({'counts': [1, 2, 1], 'freqs': [1 / 4., 2 / 4., 1 / 4.]}, index=pd.CategoricalIndex([1, 2, np.nan], categories=[1, 2], name='categories')) tm.assert_frame_equal(desc, expected) # NA as a category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c", np.nan]) result = cat.describe() expected = DataFrame([[0, 0], [1, 0.25], [2, 0.5], [1, 0.25]], columns=['counts', 'freqs'], index=pd.CategoricalIndex(['b', 'a', 'c', np.nan], name='categories')) tm.assert_frame_equal(result, expected) # NA as an unused category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c"], categories=["b", "a", "c", np.nan]) result = cat.describe() exp_idx = pd.CategoricalIndex( ['b', 'a', 'c', np.nan], name='categories') expected = DataFrame([[0, 0], [1, 1 / 3.], [2, 2 / 3.], [0, 0]], columns=['counts', 'freqs'], index=exp_idx) tm.assert_frame_equal(result, expected) def test_print(self): expected = ["[a, b, b, a, a, c, c, c]", "Categories (3, object): [a < b < c]"] expected = "\n".join(expected) actual = repr(self.factor) self.assertEqual(actual, expected) def test_big_print(self): factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ['a', 'b', 'c'], name='cat', fastpath=True) expected = ["[a, b, c, a, b, ..., b, c, a, b, c]", "Length: 600", "Categories (3, object): [a, b, c]"] expected = "\n".join(expected) actual = repr(factor) self.assertEqual(actual, expected) def test_empty_print(self): factor = Categorical([], ["a", "b", "c"]) expected = ("[], Categories (3, object): [a, b, c]") # hack because array_repr changed in numpy > 1.6.x actual = repr(factor) self.assertEqual(actual, expected) self.assertEqual(expected, actual) factor = Categorical([], ["a", "b", "c"], ordered=True) expected = ("[], Categories (3, object): [a < b < c]") actual = repr(factor) self.assertEqual(expected, actual) factor = Categorical([], []) expected = ("[], Categories (0, object): []") self.assertEqual(expected, repr(factor)) def test_print_none_width(self): # GH10087 a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") with option_context("display.width", None): self.assertEqual(exp, repr(a)) def test_unicode_print(self): if PY3: _rep = repr else: _rep = unicode # noqa c = pd.Categorical(['aaaaa', 'bb', 'cccc'] * 20) expected = u"""\ [aaaaa, bb, cccc, aaaaa, bb, ..., bb, cccc, aaaaa, bb, cccc] Length: 60 Categories (3, object): [aaaaa, bb, cccc]""" self.assertEqual(_rep(c), expected) c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""\ [ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) # unicode option should not affect to Categorical, as it doesn't care # the repr width with option_context('display.unicode.east_asian_width', True): c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""[ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) def test_periodindex(self): idx1 = PeriodIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03'], freq='M') cat1 = Categorical.from_array(idx1) str(cat1) exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype='int64') exp_idx = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat1._codes, exp_arr) self.assertTrue(cat1.categories.equals(exp_idx)) idx2 = PeriodIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01'], freq='M') cat2 = Categorical.from_array(idx2, ordered=True) str(cat2) exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype='int64') exp_idx2 = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat2._codes, exp_arr) self.assertTrue(cat2.categories.equals(exp_idx2)) idx3 = PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07', '2013-05'], freq='M') cat3 = Categorical.from_array(idx3, ordered=True) exp_arr = np.array([6, 5, 4, 3, 2, 1, 0], dtype='int64') exp_idx = PeriodIndex(['2013-05', '2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M') self.assert_numpy_array_equal(cat3._codes, exp_arr) self.assertTrue(cat3.categories.equals(exp_idx)) def test_categories_assigments(self): s = pd.Categorical(["a", "b", "c", "a"]) exp = np.array([1, 2, 3, 1]) s.categories = [1, 2, 3] self.assert_numpy_array_equal(s.__array__(), exp) self.assert_numpy_array_equal(s.categories, np.array([1, 2, 3])) # lengthen def f(): s.categories = [1, 2, 3, 4] self.assertRaises(ValueError, f) # shorten def f(): s.categories = [1, 2] self.assertRaises(ValueError, f) def test_construction_with_ordered(self): # GH 9347, 9190 cat = Categorical([0, 1, 2]) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=False) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=True) self.assertTrue(cat.ordered) def test_ordered_api(self): # GH 9347 cat1 = pd.Categorical(["a", "c", "b"], ordered=False) self.assertTrue(cat1.categories.equals(Index(['a', 'b', 'c']))) self.assertFalse(cat1.ordered) cat2 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=False) self.assertTrue(cat2.categories.equals(Index(['b', 'c', 'a']))) self.assertFalse(cat2.ordered) cat3 = pd.Categorical(["a", "c", "b"], ordered=True) self.assertTrue(cat3.categories.equals(Index(['a', 'b', 'c']))) self.assertTrue(cat3.ordered) cat4 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=True) self.assertTrue(cat4.categories.equals(Index(['b', 'c', 'a']))) self.assertTrue(cat4.ordered) def test_set_ordered(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) cat2 = cat.as_unordered() self.assertFalse(cat2.ordered) cat2 = cat.as_ordered() self.assertTrue(cat2.ordered) cat2.as_unordered(inplace=True) self.assertFalse(cat2.ordered) cat2.as_ordered(inplace=True) self.assertTrue(cat2.ordered) self.assertTrue(cat2.set_ordered(True).ordered) self.assertFalse(cat2.set_ordered(False).ordered) cat2.set_ordered(True, inplace=True) self.assertTrue(cat2.ordered) cat2.set_ordered(False, inplace=True) self.assertFalse(cat2.ordered) # deperecated in v0.16.0 with tm.assert_produces_warning(FutureWarning): cat.ordered = False self.assertFalse(cat.ordered) with tm.assert_produces_warning(FutureWarning): cat.ordered = True self.assertTrue(cat.ordered) def test_set_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) res = cat.set_categories(["c", "b", "a"], inplace=True) self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) self.assertIsNone(res) res = cat.set_categories(["a", "b", "c"]) # cat must be the same as before self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) # only res is changed exp_categories_back = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(res.categories, exp_categories_back) self.assert_numpy_array_equal(res.__array__(), exp_values) # not all "old" included in "new" -> all not included ones are now # np.nan cat = Categorical(["a", "b", "c", "a"], ordered=True) res = cat.set_categories(["a"]) self.assert_numpy_array_equal(res.codes, np.array([0, -1, -1, 0])) # still not all "old" in "new" res = cat.set_categories(["a", "b", "d"]) self.assert_numpy_array_equal(res.codes, np.array([0, 1, -1, 0])) self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "d"])) # all "old" included in "new" cat = cat.set_categories(["a", "b", "c", "d"]) exp_categories = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(cat.categories, exp_categories) # internals... c = Categorical([1, 2, 3, 4, 1], categories=[1, 2, 3, 4], ordered=True) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 3, 0])) self.assert_numpy_array_equal(c.categories, np.array([1, 2, 3, 4])) self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1])) c = c.set_categories( [4, 3, 2, 1 ]) # all "pointers" to '4' must be changed from 3 to 0,... self.assert_numpy_array_equal(c._codes, np.array([3, 2, 1, 0, 3]) ) # positions are changed self.assert_numpy_array_equal(c.categories, np.array([4, 3, 2, 1]) ) # categories are now in new order self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1]) ) # output is the same self.assertTrue(c.min(), 4) self.assertTrue(c.max(), 1) # set_categories should set the ordering if specified c2 = c.set_categories([4, 3, 2, 1], ordered=False) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) # set_categories should pass thru the ordering c2 = c.set_ordered(False).set_categories([4, 3, 2, 1]) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) def test_rename_categories(self): cat = pd.Categorical(["a", "b", "c", "a"]) # inplace=False: the old one must not be changed res = cat.rename_categories([1, 2, 3]) self.assert_numpy_array_equal(res.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(res.categories, np.array([1, 2, 3])) self.assert_numpy_array_equal(cat.__array__(), np.array(["a", "b", "c", "a"])) self.assert_numpy_array_equal(cat.categories, np.array(["a", "b", "c"])) res = cat.rename_categories([1, 2, 3], inplace=True) # and now inplace self.assertIsNone(res) self.assert_numpy_array_equal(cat.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(cat.categories, np.array([1, 2, 3])) # lengthen def f(): cat.rename_categories([1, 2, 3, 4]) self.assertRaises(ValueError, f) # shorten def f(): cat.rename_categories([1, 2]) self.assertRaises(ValueError, f) def test_reorder_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["c", "b", "a"], ordered=True) # first inplace == False res = cat.reorder_categories(["c", "b", "a"]) # cat must be the same as before self.assert_categorical_equal(cat, old) # only res is changed self.assert_categorical_equal(res, new) # inplace == True res = cat.reorder_categories(["c", "b", "a"], inplace=True) self.assertIsNone(res) self.assert_categorical_equal(cat, new) # not all "old" included in "new" cat = Categorical(["a", "b", "c", "a"], ordered=True) def f(): cat.reorder_categories(["a"]) self.assertRaises(ValueError, f) # still not all "old" in "new" def f(): cat.reorder_categories(["a", "b", "d"]) self.assertRaises(ValueError, f) # all "old" included in "new", but too long def f(): cat.reorder_categories(["a", "b", "c", "d"]) self.assertRaises(ValueError, f) def test_add_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"], ordered=True) # first inplace == False res = cat.add_categories("d") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.add_categories(["d"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.add_categories("d", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # new is in old categories def f(): cat.add_categories(["d"]) self.assertRaises(ValueError, f) # GH 9927 cat = Categorical(list("abc"), ordered=True) expected = Categorical( list("abc"), categories=list("abcde"), ordered=True) # test with Series, np.array, index, list res = cat.add_categories(Series(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(np.array(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(Index(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(["d", "e"]) self.assert_categorical_equal(res, expected) def test_remove_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", np.nan, "a"], categories=["a", "b"], ordered=True) # first inplace == False res = cat.remove_categories("c") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.remove_categories(["c"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.remove_categories("c", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # removal is not in categories def f(): cat.remove_categories(["c"]) self.assertRaises(ValueError, f) def test_remove_unused_categories(self): c = Categorical(["a", "b", "c", "d", "a"], categories=["a", "b", "c", "d", "e"]) exp_categories_all = np.array(["a", "b", "c", "d", "e"]) exp_categories_dropped = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, exp_categories_dropped) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories(inplace=True) self.assert_numpy_array_equal(c.categories, exp_categories_dropped) self.assertIsNone(res) # with NaN values (GH11599) c = Categorical(["a", "b", "c", np.nan], categories=["a", "b", "c", "d", "e"]) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "c"])) self.assert_numpy_array_equal(c.categories, exp_categories_all) val = ['F', np.nan, 'D', 'B', 'D', 'F', np.nan] cat = pd.Categorical(values=val, categories=list('ABCDEFG')) out = cat.remove_unused_categories() self.assert_numpy_array_equal(out.categories, ['B', 'D', 'F']) self.assert_numpy_array_equal(out.codes, [2, -1, 1, 0, 1, 2, -1]) self.assertEqual(out.get_values().tolist(), val) alpha = list('abcdefghijklmnopqrstuvwxyz') val = np.random.choice(alpha[::2], 10000).astype('object') val[np.random.choice(len(val), 100)] = np.nan cat = pd.Categorical(values=val, categories=alpha) out = cat.remove_unused_categories() self.assertEqual(out.get_values().tolist(), val.tolist()) def test_nan_handling(self): # Nans are represented as -1 in codes c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, -1, -1, 0])) # If categories have nan included, the code should point to that # instead with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan, "a"], categories=["a", "b", np.nan]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, 2, 0])) # Changing categories should also make the replaced category np.nan c = Categorical(["a", "b", "c", "a"]) with tm.assert_produces_warning(FutureWarning): c.categories = ["a", "b", np.nan] # noqa self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) # Adding nan to categories should make assigned nan point to the # category! c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, -1, 0])) # Remove null categories (GH 10156) cases = [ ([1.0, 2.0, np.nan], [1.0, 2.0]), (['a', 'b', None], ['a', 'b']), ([pd.Timestamp('2012-05-01'), pd.NaT], [pd.Timestamp('2012-05-01')]) ] null_values = [np.nan, None, pd.NaT] for with_null, without in cases: with tm.assert_produces_warning(FutureWarning): base = Categorical([], with_null) expected = Categorical([], without) for nullval in null_values: result = base.remove_categories(nullval) self.assert_categorical_equal(result, expected) # Different null values are indistinguishable for i, j in [(0, 1), (0, 2), (1, 2)]: nulls = [null_values[i], null_values[j]] def f(): with tm.assert_produces_warning(FutureWarning): Categorical([], categories=nulls) self.assertRaises(ValueError, f) def test_isnull(self): exp = np.array([False, False, True]) c = Categorical(["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan], categories=["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) # test both nan in categories and as -1 exp = np.array([True, False, True]) c = Categorical(["a", "b", np.nan]) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) c[0] = np.nan res = c.isnull() self.assert_numpy_array_equal(res, exp) def test_codes_immutable(self): # Codes should be read only c = Categorical(["a", "b", "c", "a", np.nan]) exp = np.array([0, 1, 2, 0, -1], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) # Assignments to codes should raise def f(): c.codes = np.array([0, 1, 2, 0, 1], dtype='int8') self.assertRaises(ValueError, f) # changes in the codes array should raise # np 1.6.1 raises RuntimeError rather than ValueError codes = c.codes def f(): codes[4] = 1 self.assertRaises(ValueError, f) # But even after getting the codes, the original array should still be # writeable! c[4] = "a" exp = np.array([0, 1, 2, 0, 0], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) c._codes[4] = 2 exp = np.array([0, 1, 2, 0, 2], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) def test_min_max(self): # unordered cats have no min/max cat = Categorical(["a", "b", "c", "d"], ordered=False) self.assertRaises(TypeError, lambda: cat.min()) self.assertRaises(TypeError, lambda: cat.max()) cat = Categorical(["a", "b", "c", "d"], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "a") self.assertEqual(_max, "d") cat = Categorical(["a", "b", "c", "d"], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "d") self.assertEqual(_max, "a") cat = Categorical([np.nan, "b", "c", np.nan], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, "b") _min = cat.min(numeric_only=True) self.assertEqual(_min, "c") _max = cat.max(numeric_only=True) self.assertEqual(_max, "b") cat = Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, 1) _min = cat.min(numeric_only=True) self.assertEqual(_min, 2) _max = cat.max(numeric_only=True) self.assertEqual(_max, 1) def test_unique(self): # categories are reordered based on value when ordered=False cat = Categorical(["a", "b"]) exp = np.asarray(["a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) cat = Categorical(["a", "b", "a", "a"], categories=["a", "b", "c"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical(exp)) cat = Categorical(["c", "a", "b", "a", "a"], categories=["a", "b", "c"]) exp = np.asarray(["c", "a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( exp, categories=['c', 'a', 'b'])) # nan must be removed cat = Categorical(["b", np.nan, "b", np.nan, "a"], categories=["a", "b", "c"]) res = cat.unique() exp = np.asarray(["b", np.nan, "a"], dtype=object) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( ["b", np.nan, "a"], categories=["b", "a"])) def test_unique_ordered(self): # keep categories order when ordered=True cat = Categorical(['b', 'a', 'b'], categories=['a', 'b'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['c', 'b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['c', 'b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b', 'c'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'b', np.nan, 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', np.nan, 'a'], dtype=object) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) def test_mode(self): s = Categorical([1, 1, 2, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 1, 1, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5, 1], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 2, 3, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) # NaN should not become the mode! s = Categorical([np.nan, np.nan, np.nan, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) def test_sort(self): # unordered cats are sortable cat = Categorical(["a", "b", "b", "a"], ordered=False) cat.sort_values() cat.sort() cat = Categorical(["a", "c", "b", "d"], ordered=True) # sort_values res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) cat = Categorical(["a", "c", "b", "d"], categories=["a", "b", "c", "d"], ordered=True) res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) res = cat.sort_values(ascending=False) exp = np.array(["d", "c", "b", "a"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) # sort (inplace order) cat1 = cat.copy() cat1.sort() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(cat1.__array__(), exp) def test_slicing_directly(self): cat = Categorical(["a", "b", "c", "d", "a", "b", "c"]) sliced = cat[3] tm.assert_equal(sliced, "d") sliced = cat[3:5] expected = Categorical(["d", "a"], categories=['a', 'b', 'c', 'd']) self.assert_numpy_array_equal(sliced._codes, expected._codes) tm.assert_index_equal(sliced.categories, expected.categories) def test_set_item_nan(self): cat = pd.Categorical([1, 2, 3]) exp = pd.Categorical([1, np.nan, 3], categories=[1, 2, 3]) cat[1] = np.nan self.assertTrue(cat.equals(exp)) # if nan in categories, the proper code should be set! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1] = np.nan exp = np.array([0, 3, 2, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = np.nan exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, 1] exp = np.array([0, 3, 0, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, np.nan] exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, np.nan, 3], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[pd.isnull(cat)] = np.nan exp = np.array([0, 1, 3, 2]) self.assert_numpy_array_equal(cat.codes, exp) def test_shift(self): # GH 9416 cat = pd.Categorical(['a', 'b', 'c', 'd', 'a']) # shift forward sp1 = cat.shift(1) xp1 = pd.Categorical([np.nan, 'a', 'b', 'c', 'd']) self.assert_categorical_equal(sp1, xp1) self.assert_categorical_equal(cat[:-1], sp1[1:]) # shift back sn2 = cat.shift(-2) xp2 = pd.Categorical(['c', 'd', 'a', np.nan, np.nan], categories=['a', 'b', 'c', 'd']) self.assert_categorical_equal(sn2, xp2) self.assert_categorical_equal(cat[2:], sn2[:-2]) # shift by zero self.assert_categorical_equal(cat, cat.shift(0)) def test_nbytes(self): cat = pd.Categorical([1, 2, 3]) exp = cat._codes.nbytes + cat._categories.values.nbytes self.assertEqual(cat.nbytes, exp) def test_memory_usage(self): cat = pd.Categorical([1, 2, 3]) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertEqual(cat.nbytes, cat.memory_usage(deep=True)) cat = pd.Categorical(['foo', 'foo', 'bar']) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertTrue(cat.memory_usage(deep=True) > cat.nbytes) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = cat.memory_usage(deep=True) - sys.getsizeof(cat) self.assertTrue(abs(diff) < 100) def test_searchsorted(self): # https://github.com/pydata/pandas/issues/8420 s1 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk']) s2 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk', 'donuts']) c1 = pd.Categorical(s1, ordered=True) c2 = pd.Categorical(s2, ordered=True) # Single item array res = c1.searchsorted(['bread']) chk = s1.searchsorted(['bread']) exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Scalar version of single item array # Categorical return np.array like pd.Series, but different from # np.array.searchsorted() res = c1.searchsorted('bread') chk = s1.searchsorted('bread') exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present in the Categorical res = c1.searchsorted(['bread', 'eggs']) chk = s1.searchsorted(['bread', 'eggs']) exp = np.array([1, 4]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present, to the right res = c1.searchsorted(['bread', 'eggs'], side='right') chk = s1.searchsorted(['bread', 'eggs'], side='right') exp = np.array([3, 4]) # eggs before milk self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # As above, but with a sorter array to reorder an unsorted array res = c2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) chk = s2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) exp = np.array([3, 5] ) # eggs after donuts, after switching milk and donuts self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) def test_deprecated_labels(self): # TODO: labels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.codes with tm.assert_produces_warning(FutureWarning): res = cat.labels self.assert_numpy_array_equal(res, exp) self.assertFalse(LooseVersion(pd.__version__) >= '0.18') def test_deprecated_levels(self): # TODO: levels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.categories with tm.assert_produces_warning(FutureWarning): res = cat.levels self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): res = pd.Categorical([1, 2, 3, np.nan], levels=[1, 2, 3]) self.assert_numpy_array_equal(res.categories, exp) self.assertFalse(LooseVersion(pd.__version__) >= '0.18') def test_removed_names_produces_warning(self): # 10482 with tm.assert_produces_warning(UserWarning): Categorical([0, 1], name="a") with tm.assert_produces_warning(UserWarning): Categorical.from_codes([1, 2], ["a", "b", "c"], name="a") def test_datetime_categorical_comparison(self): dt_cat = pd.Categorical( pd.date_range('2014-01-01', periods=3), ordered=True) self.assert_numpy_array_equal(dt_cat > dt_cat[0], [False, True, True]) self.assert_numpy_array_equal(dt_cat[0] < dt_cat, [False, True, True]) def test_reflected_comparison_with_scalars(self): # GH8658 cat = pd.Categorical([1, 2, 3], ordered=True) self.assert_numpy_array_equal(cat > cat[0], [False, True, True]) self.assert_numpy_array_equal(cat[0] < cat, [False, True, True]) def test_comparison_with_unknown_scalars(self): # https://github.com/pydata/pandas/issues/9836#issuecomment-92123057 # and following comparisons with scalars not in categories should raise # for unequal comps, but not for equal/not equal cat = pd.Categorical([1, 2, 3], ordered=True) self.assertRaises(TypeError, lambda: cat < 4) self.assertRaises(TypeError, lambda: cat > 4) self.assertRaises(TypeError, lambda: 4 < cat) self.assertRaises(TypeError, lambda: 4 > cat) self.assert_numpy_array_equal(cat == 4, [False, False, False]) self.assert_numpy_array_equal(cat != 4, [True, True, True]) class TestCategoricalAsBlock(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels) self.cat = df def test_dtypes(self): # GH8143 index = ['cat', 'obj', 'num'] cat = pd.Categorical(['a', 'b', 'c']) obj = pd.Series(['a', 'b', 'c']) num = pd.Series([1, 2, 3]) df = pd.concat([pd.Series(cat), obj, num], axis=1, keys=index) result = df.dtypes == 'object' expected = Series([False, True, False], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == 'int64' expected = Series([False, False, True], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == 'category' expected = Series([True, False, False], index=index) tm.assert_series_equal(result, expected) def test_codes_dtypes(self): # GH 8453 result = Categorical(['foo', 'bar', 'baz']) self.assertTrue(result.codes.dtype == 'int8') result = Categorical(['foo%05d' % i for i in range(400)]) self.assertTrue(result.codes.dtype == 'int16') result = Categorical(['foo%05d' % i for i in range(40000)]) self.assertTrue(result.codes.dtype == 'int32') # adding cats result = Categorical(['foo', 'bar', 'baz']) self.assertTrue(result.codes.dtype == 'int8') result = result.add_categories(['foo%05d' % i for i in range(400)]) self.assertTrue(result.codes.dtype == 'int16') # removing cats result = result.remove_categories(['foo%05d' % i for i in range(300)]) self.assertTrue(result.codes.dtype == 'int8') def test_basic(self): # test basic creation / coercion of categoricals s = Series(self.factor, name='A') self.assertEqual(s.dtype, 'category') self.assertEqual(len(s), len(self.factor)) str(s.values) str(s) # in a frame df = DataFrame({'A': self.factor}) result = df['A'] tm.assert_series_equal(result, s) result = df.iloc[:, 0] tm.assert_series_equal(result, s) self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) df = DataFrame({'A': s}) result = df['A'] tm.assert_series_equal(result, s) self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) # multiples df = DataFrame({'A': s, 'B': s, 'C': 1}) result1 = df['A'] result2 = df['B'] tm.assert_series_equal(result1, s) tm.assert_series_equal(result2, s, check_names=False) self.assertEqual(result2.name, 'B') self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) # GH8623 x = pd.DataFrame([[1, '<NAME>'], [2, '<NAME>'], [1, '<NAME>']], columns=['person_id', 'person_name']) x['person_name'] = pd.Categorical(x.person_name ) # doing this breaks transform expected = x.iloc[0].person_name result = x.person_name.iloc[0] self.assertEqual(result, expected) result = x.person_name[0] self.assertEqual(result, expected) result = x.person_name.loc[0] self.assertEqual(result, expected) def test_creation_astype(self): l = ["a", "b", "c", "a"] s = pd.Series(l) exp = pd.Series(Categorical(l)) res = s.astype('category') tm.assert_series_equal(res, exp) l = [1, 2, 3, 1] s = pd.Series(l) exp = pd.Series(Categorical(l)) res = s.astype('category') tm.assert_series_equal(res, exp) df = pd.DataFrame({"cats": [1, 2, 3, 4, 5, 6], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical([1, 2, 3, 4, 5, 6]) exp_df = pd.DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) df = pd.DataFrame({"cats": ['a', 'b', 'b', 'a', 'a', 'd'], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical(['a', 'b', 'b', 'a', 'a', 'd']) exp_df = pd.DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) # with keywords l = ["a", "b", "c", "a"] s = pd.Series(l) exp = pd.Series(Categorical(l, ordered=True)) res = s.astype('category', ordered=True) tm.assert_series_equal(res, exp) exp = pd.Series(Categorical( l, categories=list('abcdef'), ordered=True)) res = s.astype('category', categories=list('abcdef'), ordered=True) tm.assert_series_equal(res, exp) def test_construction_series(self): l = [1, 2, 3, 1] exp = Series(l).astype('category') res = Series(l, dtype='category') tm.assert_series_equal(res, exp) l = ["a", "b", "c", "a"] exp = Series(l).astype('category') res = Series(l, dtype='category') tm.assert_series_equal(res, exp) # insert into frame with different index # GH 8076 index = pd.date_range('20000101', periods=3) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index expected = DataFrame({'x': expected}) df = DataFrame( {'x': Series(['a', 'b', 'c'], dtype='category')}, index=index) tm.assert_frame_equal(df, expected) def test_construction_frame(self): # GH8626 # dict creation df = DataFrame({'A': list('abc')}, dtype='category') expected = Series(list('abc'), dtype='category', name='A') tm.assert_series_equal(df['A'], expected) # to_frame s = Series(list('abc'), dtype='category') result = s.to_frame() expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(result[0], expected) result = s.to_frame(name='foo') expected = Series(list('abc'), dtype='category', name='foo') tm.assert_series_equal(result['foo'], expected) # list-like creation df = DataFrame(list('abc'), dtype='category') expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(df[0], expected) # ndim != 1 df = DataFrame([pd.Categorical(list('abc'))]) expected = DataFrame({0: Series(list('abc'), dtype='category')}) tm.assert_frame_equal(df, expected) df = DataFrame([pd.Categorical(list('abc')), pd.Categorical(list( 'abd'))]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: Series(list('abd'), dtype='category')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # mixed df = DataFrame([pd.Categorical(list('abc')), list('def')]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: list('def')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # invalid (shape) self.assertRaises( ValueError, lambda: DataFrame([pd.Categorical(list('abc')), pd.Categorical(list('abdefg'))])) # ndim > 1 self.assertRaises(NotImplementedError, lambda: pd.Categorical(np.array([list('abcd')]))) def test_reshaping(self): p = tm.makePanel() p['str'] = 'foo' df = p.to_frame() df['category'] = df['str'].astype('category') result = df['category'].unstack() c = Categorical(['foo'] * len(p.major_axis)) expected = DataFrame({'A': c.copy(), 'B': c.copy(), 'C': c.copy(), 'D': c.copy()}, columns=Index(list('ABCD'), name='minor'), index=p.major_axis.set_names('major')) tm.assert_frame_equal(result, expected) def test_reindex(self): index = pd.date_range('20000101', periods=3) # reindexing to an invalid Categorical s = Series(['a', 'b', 'c'], dtype='category') result = s.reindex(index) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index tm.assert_series_equal(result, expected) # partial reindexing expected = Series(Categorical(values=['b', 'c'], categories=['a', 'b', 'c'])) expected.index = [1, 2] result = s.reindex([1, 2]) tm.assert_series_equal(result, expected) expected = Series(Categorical( values=['c', np.nan], categories=['a', 'b', 'c'])) expected.index = [2, 3] result = s.reindex([2, 3]) tm.assert_series_equal(result, expected) def test_sideeffects_free(self): # Passing a categorical to a Series and then changing values in either # the series or the categorical should not change the values in the # other one, IF you specify copy! cat = Categorical(["a", "b", "c", "a"]) s = pd.Series(cat, copy=True) self.assertFalse(s.cat is cat) s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1]) exp_cat = np.array(["a", "b", "c", "a"]) self.assert_numpy_array_equal(s.__array__(), exp_s) self.assert_numpy_array_equal(cat.__array__(), exp_cat) # setting s[0] = 2 exp_s2 = np.array([2, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s2) self.assert_numpy_array_equal(cat.__array__(), exp_cat) # however, copy is False by default # so this WILL change values cat = Categorical(["a", "b", "c", "a"]) s = pd.Series(cat) self.assertTrue(s.values is cat) s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s) self.assert_numpy_array_equal(cat.__array__(), exp_s) s[0] = 2 exp_s2 = np.array([2, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s2) self.assert_numpy_array_equal(cat.__array__(), exp_s2) def test_nan_handling(self): # Nans are represented as -1 in labels s = Series(Categorical(["a", "b", np.nan, "a"])) self.assert_numpy_array_equal(s.cat.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(s.values.codes, np.array([0, 1, -1, 0])) # If categories have nan included, the label should point to that # instead with tm.assert_produces_warning(FutureWarning): s2 = Series(Categorical( ["a", "b", np.nan, "a"], categories=["a", "b", np.nan])) self.assert_numpy_array_equal(s2.cat.categories, np.array( ["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(s2.values.codes, np.array([0, 1, 2, 0])) # Changing categories should also make the replaced category np.nan s3 = Series(Categorical(["a", "b", "c", "a"])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): s3.cat.categories = ["a", "b", np.nan] self.assert_numpy_array_equal(s3.cat.categories, np.array( ["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(s3.values.codes, np.array([0, 1, 2, 0])) def test_cat_accessor(self): s = Series(Categorical(["a", "b", np.nan, "a"])) self.assert_numpy_array_equal(s.cat.categories, np.array(["a", "b"])) self.assertEqual(s.cat.ordered, False) exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s.cat.set_categories(["b", "a"], inplace=True) self.assertTrue(s.values.equals(exp)) res = s.cat.set_categories(["b", "a"]) self.assertTrue(res.values.equals(exp)) exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s[:] = "a" s = s.cat.remove_unused_categories() self.assert_numpy_array_equal(s.cat.categories, np.array(["a"])) def test_sequence_like(self): # GH 7839 # make sure can iterate df = DataFrame({"id": [1, 2, 3, 4, 5, 6], "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']}) df['grade'] = Categorical(df['raw_grade']) # basic sequencing testing result = list(df.grade.values) expected = np.array(df.grade.values).tolist() tm.assert_almost_equal(result, expected) # iteration for t in df.itertuples(index=False): str(t) for row, s in df.iterrows(): str(s) for c, col in df.iteritems(): str(s) def test_series_delegations(self): # invalid accessor self.assertRaises(AttributeError, lambda: Series([1, 2, 3]).cat) tm.assertRaisesRegexp( AttributeError, r"Can only use .cat accessor with a 'category' dtype", lambda: Series([1, 2, 3]).cat) self.assertRaises(AttributeError, lambda: Series(['a', 'b', 'c']).cat) self.assertRaises(AttributeError, lambda: Series(np.arange(5.)).cat) self.assertRaises(AttributeError, lambda: Series([Timestamp('20130101')]).cat) # Series should delegate calls to '.categories', '.codes', '.ordered' # and the methods '.set_categories()' 'drop_unused_categories()' to the # categorical s = Series(Categorical(["a", "b", "c", "a"], ordered=True)) exp_categories = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) s.cat.categories = [1, 2, 3] exp_categories = np.array([1, 2, 3]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) exp_codes = Series([0, 1, 2, 0], dtype='int8') tm.assert_series_equal(s.cat.codes, exp_codes) self.assertEqual(s.cat.ordered, True) s = s.cat.as_unordered() self.assertEqual(s.cat.ordered, False) s.cat.as_ordered(inplace=True) self.assertEqual(s.cat.ordered, True) # reorder s = Series(Categorical(["a", "b", "c", "a"], ordered=True)) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) s = s.cat.set_categories(["c", "b", "a"]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) self.assert_numpy_array_equal(s.values.__array__(), exp_values) self.assert_numpy_array_equal(s.__array__(), exp_values) # remove unused categories s = Series(Categorical(["a", "b", "b", "a"], categories=["a", "b", "c" ])) exp_categories = np.array(["a", "b"]) exp_values = np.array(["a", "b", "b", "a"]) s = s.cat.remove_unused_categories() self.assert_numpy_array_equal(s.cat.categories, exp_categories) self.assert_numpy_array_equal(s.values.__array__(), exp_values) self.assert_numpy_array_equal(s.__array__(), exp_values) # This method is likely to be confused, so test that it raises an error # on wrong inputs: def f(): s.set_categories([4, 3, 2, 1]) self.assertRaises(Exception, f) # right: s.cat.set_categories([4,3,2,1]) def test_series_functions_no_warnings(self): df = pd.DataFrame({'value': np.random.randint(0, 100, 20)}) labels = ["{0} - {1}".format(i, i + 9) for i in range(0, 100, 10)] with tm.assert_produces_warning(False): df['group'] = pd.cut(df.value, range(0, 105, 10), right=False, labels=labels) def test_assignment_to_dataframe(self): # assignment df = DataFrame({'value': np.array( np.random.randint(0, 10000, 100), dtype='int32')}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] df = df.sort_values(by=['value'], ascending=True) s = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels) d = s.values df['D'] = d str(df) result = df.dtypes expected = Series( [np.dtype('int32'), com.CategoricalDtype()], index=['value', 'D']) tm.assert_series_equal(result, expected) df['E'] = s str(df) result = df.dtypes expected = Series([np.dtype('int32'), com.CategoricalDtype(), com.CategoricalDtype()], index=['value', 'D', 'E']) tm.assert_series_equal(result, expected) result1 = df['D'] result2 = df['E'] self.assertTrue(result1._data._block.values.equals(d)) # sorting s.name = 'E' self.assertTrue(result2.sort_index().equals(s.sort_index())) cat = pd.Categorical([1, 2, 3, 10], categories=[1, 2, 3, 4, 10]) df = pd.DataFrame(pd.Series(cat)) def test_describe(self): # Categoricals should not show up together with numerical columns result = self.cat.describe() self.assertEqual(len(result.columns), 1) # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical(["a", "b", "b", "b"], categories=['a', 'b', 'c'], ordered=True) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=['count', 'unique', 'top', 'freq']) tm.assert_series_equal(result, expected) cat = pd.Series(pd.Categorical(["a", "b", "c", "c"])) df3 = pd.DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) res = df3.describe() self.assert_numpy_array_equal(res["cat"].values, res["s"].values) def test_repr(self): a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") self.assertEqual(exp, a.__unicode__()) a = pd.Series(pd.Categorical(["a", "b"] * 25)) exp = u("0 a\n1 b\n" + " ..\n" + "48 a\n49 b\n" + "dtype: category\nCategories (2, object): [a, b]") with option_context("display.max_rows", 5): self.assertEqual(exp, repr(a)) levs = list("abcdefghijklmnopqrstuvwxyz") a = pd.Series(pd.Categorical( ["a", "b"], categories=levs, ordered=True)) exp = u("0 a\n1 b\n" + "dtype: category\n" "Categories (26, object): [a < b < c < d ... w < x < y < z]") self.assertEqual(exp, a.__unicode__()) def test_categorical_repr(self): c = pd.Categorical([1, 2, 3]) exp = """[1, 2, 3] Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3]) exp = """[1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 4, 5] * 10) exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5] Length: 50 Categories (5, int64): [1, 2, 3, 4, 5]""" self.assertEqual(repr(c), exp) c = pd.Categorical(np.arange(20)) exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19] Length: 20 Categories (20, int64): [0, 1, 2, 3, ..., 16, 17, 18, 19]""" self.assertEqual(repr(c), exp) def test_categorical_repr_ordered(self): c = pd.Categorical([1, 2, 3], ordered=True) exp = """[1, 2, 3] Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3], ordered=True) exp = """[1, 2, 3, 1, 2, 3] Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 4, 5] * 10, ordered=True) exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5] Length: 50 Categories (5, int64): [1 < 2 < 3 < 4 < 5]""" self.assertEqual(repr(c), exp) c = pd.Categorical(np.arange(20), ordered=True) exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19] Length: 20 Categories (20, int64): [0 < 1 < 2 < 3 ... 16 < 17 < 18 < 19]""" self.assertEqual(repr(c), exp) def test_categorical_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx) # TODO(wesm): exceeding 80 characters in the console is not good # behavior exp = ( "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, " "2011-01-01 12:00:00, 2011-01-01 13:00:00]\n" "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n" " 2011-01-01 12:00:00, " "2011-01-01 13:00:00]""") self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = ( "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, " "2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, " "2011-01-01 13:00:00]\n" "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n" " 2011-01-01 12:00:00, " "2011-01-01 13:00:00]") self.assertEqual(repr(c), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') c = pd.Categorical(idx) exp = ( "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, " "2011-01-01 13:00:00-05:00]\n" "Categories (5, datetime64[ns, US/Eastern]): " "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n" " " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n" " " "2011-01-01 13:00:00-05:00]") self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = ( "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, " "2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, " "2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, " "2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]\n" "Categories (5, datetime64[ns, US/Eastern]): " "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n" " " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n" " " "2011-01-01 13:00:00-05:00]") self.assertEqual(repr(c), exp) def test_categorical_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00] Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00] Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa self.assertEqual(repr(c), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00] Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" # noqa self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00] Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(c), exp) def test_categorical_repr_period(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) idx = pd.period_range('2011-01', freq='M', periods=5) c = pd.Categorical(idx) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" self.assertEqual(repr(c), exp) def test_categorical_repr_period_ordered(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) idx = pd.period_range('2011-01', freq='M', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" self.assertEqual(repr(c), exp) def test_categorical_repr_timedelta(self): idx = pd.timedelta_range('1 days', periods=5) c = pd.Categorical(idx) exp = """[1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" self.assertEqual(repr(c), exp) idx = pd.timedelta_range('1 hours', periods=20) c = pd.Categorical(idx) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 20 Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 40 Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]""" self.assertEqual(repr(c), exp) def test_categorical_repr_timedelta_ordered(self): idx = pd.timedelta_range('1 days', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" self.assertEqual(repr(c), exp) idx = pd.timedelta_range('1 hours', periods=20) c = pd.Categorical(idx, ordered=True) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 20 Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 < 18 days 01:00:00 < 19 days 01:00:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 40 Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 < 18 days 01:00:00 < 19 days 01:00:00]""" self.assertEqual(repr(c), exp) def test_categorical_series_repr(self): s = pd.Series(pd.Categorical([1, 2, 3])) exp = """0 1 1 2 2 3 dtype: category Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(s), exp) s = pd.Series(pd.Categorical(np.arange(10))) exp = """0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 dtype: category Categories (10, int64): [0, 1, 2, 3, ..., 6, 7, 8, 9]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_ordered(self): s = pd.Series(pd.Categorical([1, 2, 3], ordered=True)) exp = """0 1 1 2 2 3 dtype: category Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(s), exp) s = pd.Series(pd.Categorical(np.arange(10), ordered=True)) exp = """0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 dtype: category Categories (10, int64): [0 < 1 < 2 < 3 ... 6 < 7 < 8 < 9]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00:00 1 2011-01-01 10:00:00 2 2011-01-01 11:00:00 3 2011-01-01 12:00:00 4 2011-01-01 13:00:00 dtype: category Categories (5, datetime64[ns]): [2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00]""" self.assertEqual(repr(s), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 2011-01-01 11:00:00-05:00 3 2011-01-01 12:00:00-05:00 4 2011-01-01 13:00:00-05:00 dtype: category Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01-01 09:00:00 1 2011-01-01 10:00:00 2 2011-01-01 11:00:00 3 2011-01-01 12:00:00 4 2011-01-01 13:00:00 dtype: category Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" self.assertEqual(repr(s), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 2011-01-01 11:00:00-05:00 3 2011-01-01 12:00:00-05:00 4 2011-01-01 13:00:00-05:00 dtype: category Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_period(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00 1 2011-01-01 10:00 2 2011-01-01 11:00 3 2011-01-01 12:00 4 2011-01-01 13:00 dtype: category Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(s), exp) idx = pd.period_range('2011-01', freq='M', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01 1 2011-02 2 2011-03 3 2011-04 4 2011-05 dtype: category Categories (5, period): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_period_ordered(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01-01 09:00 1 2011-01-01 10:00 2 2011-01-01 11:00 3 2011-01-01 12:00 4 2011-01-01 13:00 dtype: category Categories (5, period): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" self.assertEqual(repr(s), exp) idx = pd.period_range('2011-01', freq='M', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01 1 2011-02 2 2011-03 3 2011-04 4 2011-05 dtype: category Categories (5, period): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_timedelta(self): idx = pd.timedelta_range('1 days', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 1 days 1 2 days 2 3 days 3 4 days 4 5 days dtype: category Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" self.assertEqual(repr(s), exp) idx = pd.timedelta_range('1 hours', periods=10) s = pd.Series(pd.Categorical(idx)) exp = """0 0 days 01:00:00 1 1 days 01:00:00 2 2 days 01:00:00 3 3 days 01:00:00 4 4 days 01:00:00 5 5 days 01:00:00 6 6 days 01:00:00 7 7 days 01:00:00 8 8 days 01:00:00 9 9 days 01:00:00 dtype: category Categories (10, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 6 days 01:00:00, 7 days 01:00:00, 8 days 01:00:00, 9 days 01:00:00]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_timedelta_ordered(self): idx = pd.timedelta_range('1 days', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 1 days 1 2 days 2 3 days 3 4 days 4 5 days dtype: category Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" self.assertEqual(repr(s), exp) idx = pd.timedelta_range('1 hours', periods=10) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 0 days 01:00:00 1 1 days 01:00:00 2 2 days 01:00:00 3 3 days 01:00:00 4 4 days 01:00:00 5 5 days 01:00:00 6 6 days 01:00:00 7 7 days 01:00:00 8 8 days 01:00:00 9 9 days 01:00:00 dtype: category Categories (10, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 6 days 01:00:00 < 7 days 01:00:00 < 8 days 01:00:00 < 9 days 01:00:00]""" self.assertEqual(repr(s), exp) def test_categorical_index_repr(self): idx = pd.CategoricalIndex(pd.Categorical([1, 2, 3])) exp = """CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=False, dtype='category')""" self.assertEqual(repr(idx), exp) i = pd.CategoricalIndex(pd.Categorical(np.arange(10))) exp = """CategoricalIndex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], categories=[0, 1, 2, 3, 4, 5, 6, 7, ...], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_ordered(self): i = pd.CategoricalIndex(pd.Categorical([1, 2, 3], ordered=True)) exp = """CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) i = pd.CategoricalIndex(pd.Categorical(np.arange(10), ordered=True)) exp = """CategoricalIndex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], categories=[0, 1, 2, 3, 4, 5, 6, 7, ...], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00:00', '2011-01-01 10:00:00', '2011-01-01 11:00:00', '2011-01-01 12:00:00', '2011-01-01 13:00:00'], categories=[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00', '2011-01-01 10:00:00', '2011-01-01 11:00:00', '2011-01-01 12:00:00', '2011-01-01 13:00:00'], categories=[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) i = pd.CategoricalIndex(pd.Categorical(idx.append(idx), ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00', '2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_period(self): # test all length idx = pd.period_range('2011-01-01 09:00', freq='H', periods=1) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00'], categories=[2011-01-01 09:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01-01 09:00', freq='H', periods=2) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01-01 09:00', freq='H', periods=3) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) i = pd.CategoricalIndex(pd.Categorical(idx.append(idx))) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00', '2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01', freq='M', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05'], categories=[2011-01, 2011-02, 2011-03, 2011-04, 2011-05], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_period_ordered(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01', freq='M', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05'], categories=[2011-01, 2011-02, 2011-03, 2011-04, 2011-05], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_timedelta(self): idx = pd.timedelta_range('1 days', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], categories=[1 days 00:00:00, 2 days 00:00:00, 3 days 00:00:00, 4 days 00:00:00, 5 days 00:00:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.timedelta_range('1 hours', periods=10) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['0 days 01:00:00', '1 days 01:00:00', '2 days 01:00:00', '3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00', '6 days 01:00:00', '7 days 01:00:00', '8 days 01:00:00', '9 days 01:00:00'], categories=[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, 5 days 01:00:00, 6 days 01:00:00, 7 days 01:00:00, ...], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_timedelta_ordered(self): idx = pd.timedelta_range('1 days', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], categories=[1 days 00:00:00, 2 days 00:00:00, 3 days 00:00:00, 4 days 00:00:00, 5 days 00:00:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.timedelta_range('1 hours', periods=10) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['0 days 01:00:00', '1 days 01:00:00', '2 days 01:00:00', '3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00', '6 days 01:00:00', '7 days 01:00:00', '8 days 01:00:00', '9 days 01:00:00'], categories=[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, 5 days 01:00:00, 6 days 01:00:00, 7 days 01:00:00, ...], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_frame(self): # normal DataFrame dt = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') p = pd.period_range('2011-01', freq='M', periods=5) df = pd.DataFrame({'dt': dt, 'p': p}) exp = """ dt p 0 2011-01-01 09:00:00-05:00 2011-01 1 2011-01-01 10:00:00-05:00 2011-02 2 2011-01-01 11:00:00-05:00 2011-03 3 2011-01-01 12:00:00-05:00 2011-04 4 2011-01-01 13:00:00-05:00 2011-05""" df = pd.DataFrame({'dt': pd.Categorical(dt), 'p': pd.Categorical(p)}) self.assertEqual(repr(df), exp) def test_info(self): # make sure it works n = 2500 df = DataFrame({'int64': np.random.randint(100, size=n)}) df['category'] = Series(np.array(list('abcdefghij')).take( np.random.randint(0, 10, size=n))).astype('category') df.isnull() df.info() df2 = df[df['category'] == 'd'] df2.info() def test_groupby_sort(self): # http://stackoverflow.com/questions/23814368/sorting-pandas-categorical-labels-after-groupby # This should result in a properly sorted Series so that the plot # has a sorted x axis # self.cat.groupby(['value_group'])['value_group'].count().plot(kind='bar') res = self.cat.groupby(['value_group'])['value_group'].count() exp = res[sorted(res.index, key=lambda x: float(x.split()[0]))] exp.index = pd.CategoricalIndex(exp.index, name=exp.index.name) tm.assert_series_equal(res, exp) def test_min_max(self): # unordered cats have no min/max cat = Series(Categorical(["a", "b", "c", "d"], ordered=False)) self.assertRaises(TypeError, lambda: cat.min()) self.assertRaises(TypeError, lambda: cat.max()) cat = Series(Categorical(["a", "b", "c", "d"], ordered=True)) _min = cat.min() _max = cat.max() self.assertEqual(_min, "a") self.assertEqual(_max, "d") cat = Series(Categorical(["a", "b", "c", "d"], categories=[ 'd', 'c', 'b', 'a'], ordered=True)) _min = cat.min() _max = cat.max() self.assertEqual(_min, "d") self.assertEqual(_max, "a") cat = Series(Categorical( [np.nan, "b", "c", np.nan], categories=['d', 'c', 'b', 'a' ], ordered=True)) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, "b") cat = Series(Categorical( [np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True)) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, 1) def test_mode(self): s = Series(Categorical([1, 1, 2, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True)) res = s.mode() exp = Series(Categorical([5], categories=[ 5, 4, 3, 2, 1], ordered=True)) tm.assert_series_equal(res, exp) s = Series(Categorical([1, 1, 1, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True)) res = s.mode() exp = Series(Categorical([5, 1], categories=[ 5, 4, 3, 2, 1], ordered=True)) tm.assert_series_equal(res, exp) s = Series(Categorical([1, 2, 3, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True)) res = s.mode() exp = Series(Categorical([], categories=[5, 4, 3, 2, 1], ordered=True)) tm.assert_series_equal(res, exp) def test_value_counts(self): s = pd.Series(pd.Categorical( ["a", "b", "c", "c", "c", "b"], categories=["c", "a", "b", "d"])) res = s.value_counts(sort=False) exp = Series([3, 1, 2, 0], index=pd.CategoricalIndex(["c", "a", "b", "d"])) tm.assert_series_equal(res, exp) res = s.value_counts(sort=True) exp = Series([3, 2, 1, 0], index=pd.CategoricalIndex(["c", "b", "a", "d"])) tm.assert_series_equal(res, exp) def test_value_counts_with_nan(self): # https://github.com/pydata/pandas/issues/9443 s = pd.Series(["a", "b", "a"], dtype="category") tm.assert_series_equal( s.value_counts(dropna=True), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) tm.assert_series_equal( s.value_counts(dropna=False), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) s = pd.Series(["a", "b", None, "a", None, None], dtype="category") tm.assert_series_equal( s.value_counts(dropna=True), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) tm.assert_series_equal( s.value_counts(dropna=False), pd.Series([3, 2, 1], index=pd.CategoricalIndex([np.nan, "a", "b"]))) # When we aren't sorting by counts, and np.nan isn't a # category, it should be last. tm.assert_series_equal( s.value_counts(dropna=False, sort=False), pd.Series([2, 1, 3], index=pd.CategoricalIndex(["a", "b", np.nan]))) with
tm.assert_produces_warning(FutureWarning)
pandas.util.testing.assert_produces_warning
#!/usr/bin/python3 # -*- coding: utf-8 -*- # # Laps.py # Interact with the RaceMonitor lap timing system # TODO: # When in live race mode timestamps are tagging with an offset different than the historical view. # If this time offset can be adjusted it would be preferable to store the data in live view format over the weekend. from __future__ import print_function, unicode_literals from PyInquirer import prompt, print_json from pprint import pprint from operator import itemgetter from influxdb import InfluxDBClient import os import sys import subprocess import requests import json import pickle import time import signal import csv import pandas import logging import argparse new_competitor = True underline = "-" * 80 race_id = '' racer_id = '' car_number = '' selected_class = '' upper_class = '' race_live = True parser = argparse.ArgumentParser(description='Interact with lap data') parser.add_argument('race_id', metavar='race_id', nargs=1, type=int, action='store') parser.add_argument('car_number', metavar='car_number', nargs=1, type=int, action='store') parser.add_argument('-c', '--class', metavar='A/B/C', dest='selected_class', nargs='?', type=ascii, action='store', help='Group or filter by class (A/B/C)') parser.add_argument('-m', '--monitor', dest='monitor_mode', default=False, action='store_true', help='Update when new data received') parser.add_argument('-n', '--network', dest='network_mode', default=False, action='store_true', help='Forward lap data via influx') parser.add_argument('-o', '--out', dest='save_file', default=False, action='store_true', help='Write lap times to CSV') parser.add_argument('-v', '--verbose', help="Set debug logging", action='store_true') parser.set_defaults(monitor_mode=False, network_mode=False) args = parser.parse_args() def main(): if args.verbose: print(args) # Set logging level - https://docs.python.org/3/howto/logging.html#logging-basic-tutorial logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') else: logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Pandas default max rows truncating lap times. I don't expect a team to do more than 1024 laps.
pandas.set_option("display.max_rows", 1024)
pandas.set_option
from sales_analysis.data_pipeline import BASEPATH from sales_analysis.data_pipeline._pipeline import SalesPipeline import pytest import os import pandas as pd # -------------------------------------------------------------------------- # Fixtures @pytest.fixture def pipeline(): FILEPATH = os.path.join(BASEPATH, "data") DATA_FILES = [f for f in os.listdir(FILEPATH) if f.endswith('.csv')] DATA = {f : pd.read_csv(os.path.join(FILEPATH, f)) for f in DATA_FILES} return SalesPipeline(**DATA) # -------------------------------------------------------------------------- # Data data = {'customers': {pd.Timestamp('2019-08-01 00:00:00'): 9, pd.Timestamp('2019-08-02 00:00:00'): 10, pd.Timestamp('2019-08-03 00:00:00'): 10, pd.Timestamp('2019-08-04 00:00:00'): 10,
pd.Timestamp('2019-08-05 00:00:00')
pandas.Timestamp
import numpy as np import pandas as pd #import scipy.stats as stats import matplotlib.pyplot as plt #factores (constantes) para grupos de 4 observaciones factorA2 = 0.729 factorD4 = 2.282 factorD3 = 0 #6 observaciones, 24 instancias arrayDatos = np.array([[1010,991,985,986], [995,996,1009,1001], [990,1003,994,997], [1015,1020,998,981], [1013,1019,997,999], [994,1001,1009,1011], [989,992,1021,1000], [1001,986,1005,987], [1006,989,999,982], [992,1007,996,979], [996,1006,1009,989], [1019,996,978,999], [981,991,1000,1017], [1015,993,980,1009], [1023,1008,1000,998], [993,1011,987,998], [998,998,996,997], [999,995,1009,1000], [1020,1023,998,978], [1018,1016,990,983], [989,998,1010,999], [992,997,1023,1003], [988,1015,992,987], [1009,1011,1009,983], [991,996,980,972], [1000,989,990,994], [990,987,999,1008], [993,1001,1018,1020], [991,1017,988,999], [1020,999,987,1011]]) datos =
pd.DataFrame(arrayDatos)
pandas.DataFrame
# Zip lists: zipped_lists zipped_lists = zip(feature_names, row_vals) # Create a dictionary: rs_dict rs_dict = dict(zipped_lists) # Print the dictionary print(rs_dict) # Define lists2dict() def lists2dict(list1, list2): """Return a dictionary where list1 provides the keys and list2 provides the values.""" # Zip lists: zipped_lists zipped_lists = zip(list1, list2) # Create a dictionary: rs_dict rs_dict = dict(zipped_lists) # Return the dictionary return rs_dict # Call lists2dict: rs_fxn rs_fxn = lists2dict(feature_names, row_vals) # Print rs_fxn print(rs_fxn) # Print the first two lists in row_lists print(row_lists[0]) print(row_lists[1]) # Turn list of lists into list of dicts: list_of_dicts list_of_dicts = [lists2dict(feature_names, sublist) for sublist in row_lists] # Print the first two dictionaries in list_of_dicts print(list_of_dicts[0]) print(list_of_dicts[1]) # Import the pandas package import pandas as pd # Turn list of lists into list of dicts: list_of_dicts list_of_dicts = [lists2dict(feature_names, sublist) for sublist in row_lists] # Turn list of dicts into a DataFrame: df df = pd.DataFrame(list_of_dicts) # Print the head of the DataFrame print(df.head()) # Open a connection to the file with open("world_dev_ind.csv") as file: # Skip the column names file.readline() # Initialize an empty dictionary: counts_dict counts_dict = {} # Process only the first 1000 rows for j in range(1000): # Split the current line into a list: line line = file.readline().split(',') # Get the value for the first column: first_col first_col = line[0] # If the column value is in the dict, increment its value if first_col in counts_dict.keys(): counts_dict[first_col] += 1 # Else, add to the dict and set value to 1 else: counts_dict[first_col] = 1 # Print the resulting dictionary print(counts_dict) # Define read_large_file() def read_large_file(file_object): """A generator function to read a large file lazily.""" # Loop indefinitely until the end of the file while True: # Read a line from the file: data data = file_object.readline() # Break if this is the end of the file if not data: break # Yield the line of data yield data # Open a connection to the file with open('world_dev_ind.csv') as file: # Create a generator object for the file: gen_file gen_file = read_large_file(file) # Print the first three lines of the file print(next(gen_file)) print(next(gen_file)) print(next(gen_file)) # Initialize an empty dictionary: counts_dict counts_dict = {} # Open a connection to the file with open("world_dev_ind.csv") as file: # Iterate over the generator from read_large_file() for line in read_large_file(file): row = line.split(',') first_col = row[0] if first_col in counts_dict.keys(): counts_dict[first_col] += 1 else: counts_dict[first_col] = 1 # Print print(counts_dict) # Import the pandas package import pandas as pd # Initialize reader object: df_reader df_reader = pd.read_csv("ind_pop.csv", chunksize=10) # Print two chunks print(next(df_reader)) print(next(df_reader)) # Initialize reader object: urb_pop_reader urb_pop_reader = pd.read_csv("ind_pop_data.csv", chunksize=1000) # Get the first DataFrame chunk: df_urb_pop df_urb_pop = next(urb_pop_reader) # Check out the head of the DataFrame print(df_urb_pop.head()) # Check out specific country: df_pop_ceb df_pop_ceb = df_urb_pop[df_urb_pop["CountryCode"] == "CEB"] # Zip DataFrame columns of interest: pops pops = zip(df_pop_ceb["Total Population"], df_pop_ceb["Urban population (% of total)"]) # Turn zip object into list: pops_list pops_list = list(pops) # Print pops_list print(pops_list) # Initialize reader object: urb_pop_reader urb_pop_reader = pd.read_csv("ind_pop_data.csv", chunksize=1000) # Get the first DataFrame chunk: df_urb_pop df_urb_pop = next(urb_pop_reader) # Check out specific country: df_pop_ceb df_pop_ceb = df_urb_pop[df_urb_pop['CountryCode'] == 'CEB'] # Zip DataFrame columns of interest: pops pops = zip(df_pop_ceb['Total Population'], df_pop_ceb['Urban population (% of total)']) # Turn zip object into list: pops_list pops_list = list(pops) # Use list comprehension to create new DataFrame column 'Total Urban Population' df_pop_ceb['Total Urban Population'] = [int(tup[0]*tup[1]/100) for tup in pops_list] # Plot urban population data df_pop_ceb.plot(kind="scatter", x="Year", y="Total Urban Population") plt.show() # Initialize reader object: urb_pop_reader urb_pop_reader =
pd.read_csv('ind_pop_data.csv', chunksize=1000)
pandas.read_csv
#!/usr/bin/env python import argparse import glob import os from abc import abstractmethod, ABC from collections import defaultdict import logging import numpy as np import pandas as pd from sklearn.model_selection import RepeatedKFold from qpputils import dataparser as dp # TODO: change the functions to work with pandas methods such as idxmax # TODO: Consider change to the folds file to be more convenient for pandas DF parser = argparse.ArgumentParser(description='Cross Validation script', usage='Use CV to optimize correlation', epilog='Prints the average correlation') parser.add_argument('-p', '--predictions', metavar='predictions_dir', default='predictions', help='path to prediction results files directory') parser.add_argument('--labeled', default='baseline/QLmap1000', help='path to labeled list res') parser.add_argument('-r', '--repeats', default=30, help='number of repeats') parser.add_argument('-k', '--splits', default=2, help='number of k-fold') parser.add_argument('-m', '--measure', default='pearson', type=str, help='default correlation measure type is pearson', choices=['pearson', 'spearman', 'kendall'], ) parser.add_argument("-g", "--generate", help="generate new CrossValidation sets", action="store_true") parser.add_argument('-f', "--folds_file", metavar='CV_FILE_PATH', help="load existing CrossValidation JSON res", default='2_folds_30_repetitions.json') logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%d-%b-%y %H:%M:%S', level=logging.INFO) class CrossValidation: def __init__(self, folds_map_file=None, k=2, rep=30, predictions_dir=None, test='pearson', ap_file=None, generate_folds=False, **kwargs): logging.debug("testing logger") self.k = k self.rep = rep self.test = test assert predictions_dir, 'Specify predictions dir' assert folds_map_file, 'Specify path for CV folds file' predictions_dir = os.path.abspath(os.path.normpath(os.path.expanduser(predictions_dir))) assert os.listdir(predictions_dir), f'{predictions_dir} is empty' self.output_dir = dp.ensure_dir(predictions_dir.replace('predictions', 'evaluation')) if ap_file: self.full_set = self._build_full_set(predictions_dir, ap_file) if '-' in ap_file: self.ap_func = ap_file.split('-')[-1] else: self.ap_func = 'basic' else: self.full_set = self._build_full_set(predictions_dir) if generate_folds: self.index = self.full_set.index self.folds_file = self._generate_k_folds() self.__load_k_folds() else: try: self.folds_file = dp.ensure_file(folds_map_file) except FileExistsError: print("The folds file specified doesn't exist, going to generate the file and save") self.__load_k_folds() # self.corr_df = NotImplemented @abstractmethod def calc_function(self, df: pd.DataFrame): raise NotImplementedError @staticmethod def _build_full_set(predictions_dir, ap_file=None): """Assuming the predictions files are named : predictions-[*]""" all_files = glob.glob(predictions_dir + "/*predictions*") if 'uef' in predictions_dir: # Excluding all the 5 and 10 docs predictions if 'qf' in predictions_dir: all_files = [fn for fn in all_files if not os.path.basename(fn).endswith('-5+', 11, 14) and not os.path.basename(fn).endswith( '-10+', 11, 15)] else: all_files = [fn for fn in all_files if not os.path.basename(fn).endswith('-5') and not os.path.basename(fn).endswith('-10')] list_ = [] for file_ in all_files: fname = file_.split('-')[-1] df = dp.ResultsReader(file_, 'predictions').data_df df = df.rename(columns={"score": f'score_{fname}'}) list_.append(df) if ap_file: ap_df = dp.ResultsReader(ap_file, 'ap').data_df list_.append(ap_df) full_set = pd.concat(list_, axis=1, sort=True) assert not full_set.empty, f'The Full set DF is empty, make sure that {predictions_dir} is not empty' return full_set def _generate_k_folds(self): # FIXME: Need to fix it to generate a DF with folds, without redundancy """ Generates a k-folds json res :rtype: str (returns the saved JSON filename) """ rkf = RepeatedKFold(n_splits=self.k, n_repeats=self.rep) count = 1 # {'set_id': {'train': [], 'test': []}} results = defaultdict(dict) for train, test in rkf.split(self.index): train_index, test_index = self.index[train], self.index[test] if count % 1 == 0: results[int(count)]['a'] = {'train': train_index, 'test': test_index} else: results[int(count)]['b'] = {'train': train_index, 'test': test_index} count += 0.5 temp = pd.DataFrame(results) temp.to_json(f'{self.k}_folds_{self.rep}_repetitions.json') return f'{self.k}_folds_{self.rep}_repetitions.json' def __load_k_folds(self): # self.data_sets_map = pd.read_json(self.file_name).T['a'].apply(pd.Series).rename( # mapper={'train': 'fold-1', 'test': 'fold-2'}, axis='columns') self.data_sets_map =
pd.read_json(self.folds_file)
pandas.read_json
# -*- coding: utf-8 -*- import pandas as pd import pymysql import pymysql.cursors from functools import reduce import numpy as np import pandas as pd import uuid import datetime from sklearn.feature_extraction import DictVectorizer from sklearn.metrics.pairwise import pairwise_distances import json import common.common as common import common.config as cfg np.set_printoptions(precision=3) np.set_printoptions(suppress=True) import common.schedule_util as sched_util # 处理mqlog中记录的新的电影评分, 通过sql读取mqlog中类型为c的电影评分动作, 查询出相关的用户\电影\评分信息, 然后追加到训练集的csv上(训练集的csv会变大) def process_comment_by_log(process_func): connection = common.get_connection() sql = 'select * from mqlog where logtype = \'c\' and pulled = 0 limit 0, 1000' try: comment_id_list = [] movie_id_list = [] user_id_list = [] message_id_list = [] with connection.cursor() as cursor: cursor.execute(sql) while True: r = cursor.fetchone() if r is None: break message = json.loads(r[2]) comment_id = message['id'] comment_id_list.append(comment_id) movie_id = message['movieid'] movie_id_list.append(movie_id) user_id = message['userid'] user_id_list.append(user_id) message_id_list.append(r[0]) print('process comment\'s id collection is:' + str(comment_id_list)) if len(comment_id_list) == 0 or len(movie_id_list) == 0 or len(user_id_list) == 0: print('No new available comment') return process_func(comment_id_list, movie_id_list, user_id_list, connection) # 把mqlog表的pulled表标记为1, 即处理过此消息,不再二次处理 with connection.cursor() as cursor4update: for id_ in message_id_list: update_sql = 'update mqlog set pulled=1 where id=\'%s\'' % id_ cursor4update.execute(update_sql) connection.commit() except Exception as e: print(e) connection.close() connection.close() # 处理新的电影评分的具体处理函数,作为回调函数被传递使用 def process_new_comment_collection(comment_list, movie_list, user_list, conn): exp_comment = '(\'' + reduce(lambda x, y: x+'\',\''+y, comment_list) + '\')' c_sql = 'select * from comment_new where id in ' + exp_comment print(c_sql) exp_movie = '(\'' + reduce(lambda x, y: x+'\',\''+y, movie_list) + '\')' m_sql = 'select * from movie where id in ' + exp_movie print(m_sql) exp_user = '(\'' + reduce(lambda x, y: x+'\',\''+y, user_list) + '\')' u_sql = "select * from userproex_new where userid in " + exp_user print(u_sql) df_incremental = pd.read_sql_query(c_sql, conn) df_movie =
pd.read_sql_query(m_sql, conn)
pandas.read_sql_query
""" Tests for the pandas.io.common functionalities """ import mmap import os import re import pytest from pandas.compat import FileNotFoundError, StringIO, is_platform_windows import pandas.util._test_decorators as td import pandas as pd import pandas.util.testing as tm import pandas.io.common as icom class CustomFSPath(object): """For testing fspath on unknown objects""" def __init__(self, path): self.path = path def __fspath__(self): return self.path # Functions that consume a string path and return a string or path-like object path_types = [str, CustomFSPath] try: from pathlib import Path path_types.append(Path) except ImportError: pass try: from py.path import local as LocalPath path_types.append(LocalPath) except ImportError: pass HERE = os.path.abspath(os.path.dirname(__file__)) # https://github.com/cython/cython/issues/1720 @pytest.mark.filterwarnings("ignore:can't resolve package:ImportWarning") class TestCommonIOCapabilities(object): data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def test_expand_user(self): filename = '~/sometest' expanded_name = icom._expand_user(filename) assert expanded_name != filename assert os.path.isabs(expanded_name) assert os.path.expanduser(filename) == expanded_name def test_expand_user_normal_path(self): filename = '/somefolder/sometest' expanded_name = icom._expand_user(filename) assert expanded_name == filename assert os.path.expanduser(filename) == expanded_name @td.skip_if_no('pathlib') def test_stringify_path_pathlib(self): rel_path = icom._stringify_path(Path('.')) assert rel_path == '.' redundant_path = icom._stringify_path(Path('foo//bar')) assert redundant_path == os.path.join('foo', 'bar') @td.skip_if_no('py.path') def test_stringify_path_localpath(self): path = os.path.join('foo', 'bar') abs_path = os.path.abspath(path) lpath = LocalPath(path) assert icom._stringify_path(lpath) == abs_path def test_stringify_path_fspath(self): p = CustomFSPath('foo/bar.csv') result = icom._stringify_path(p) assert result == 'foo/bar.csv' @pytest.mark.parametrize('extension,expected', [ ('', None), ('.gz', 'gzip'), ('.bz2', 'bz2'), ('.zip', 'zip'), ('.xz', 'xz'), ]) @pytest.mark.parametrize('path_type', path_types) def test_infer_compression_from_path(self, extension, expected, path_type): path = path_type('foo/bar.csv' + extension) compression = icom._infer_compression(path, compression='infer') assert compression == expected def test_get_filepath_or_buffer_with_path(self): filename = '~/sometest' filepath_or_buffer, _, _, should_close = icom.get_filepath_or_buffer( filename) assert filepath_or_buffer != filename assert os.path.isabs(filepath_or_buffer) assert os.path.expanduser(filename) == filepath_or_buffer assert not should_close def test_get_filepath_or_buffer_with_buffer(self): input_buffer = StringIO() filepath_or_buffer, _, _, should_close = icom.get_filepath_or_buffer( input_buffer) assert filepath_or_buffer == input_buffer assert not should_close def test_iterator(self): reader = pd.read_csv(StringIO(self.data1), chunksize=1) result = pd.concat(reader, ignore_index=True) expected = pd.read_csv(StringIO(self.data1)) tm.assert_frame_equal(result, expected) # GH12153 it = pd.read_csv(StringIO(self.data1), chunksize=1) first = next(it) tm.assert_frame_equal(first, expected.iloc[[0]]) tm.assert_frame_equal(pd.concat(it), expected.iloc[1:]) @pytest.mark.parametrize('reader, module, error_class, fn_ext', [ (pd.read_csv, 'os', FileNotFoundError, 'csv'), (pd.read_fwf, 'os', FileNotFoundError, 'txt'), (pd.read_excel, 'xlrd', FileNotFoundError, 'xlsx'), (pd.read_feather, 'feather', Exception, 'feather'), (pd.read_hdf, 'tables', FileNotFoundError, 'h5'), (pd.read_stata, 'os', FileNotFoundError, 'dta'), (pd.read_sas, 'os', FileNotFoundError, 'sas7bdat'), (pd.read_json, 'os', ValueError, 'json'), (pd.read_msgpack, 'os', ValueError, 'mp'), (pd.read_pickle, 'os', FileNotFoundError, 'pickle'), ]) def test_read_non_existant(self, reader, module, error_class, fn_ext): pytest.importorskip(module) path = os.path.join(HERE, 'data', 'does_not_exist.' + fn_ext) with pytest.raises(error_class): reader(path) @pytest.mark.parametrize('reader, module, error_class, fn_ext', [ (pd.read_csv, 'os', FileNotFoundError, 'csv'), (pd.read_fwf, 'os', FileNotFoundError, 'txt'), (pd.read_excel, 'xlrd', FileNotFoundError, 'xlsx'), (pd.read_feather, 'feather', Exception, 'feather'), (pd.read_hdf, 'tables', FileNotFoundError, 'h5'), (pd.read_stata, 'os', FileNotFoundError, 'dta'), (pd.read_sas, 'os', FileNotFoundError, 'sas7bdat'), (pd.read_json, 'os', ValueError, 'json'), (pd.read_msgpack, 'os', ValueError, 'mp'), (pd.read_pickle, 'os', FileNotFoundError, 'pickle'), ]) def test_read_expands_user_home_dir(self, reader, module, error_class, fn_ext, monkeypatch): pytest.importorskip(module) path = os.path.join('~', 'does_not_exist.' + fn_ext) monkeypatch.setattr(icom, '_expand_user', lambda x: os.path.join('foo', x)) message = "".join(["foo", os.path.sep, "does_not_exist.", fn_ext]) with pytest.raises(error_class, message=re.escape(message)): reader(path) def test_read_non_existant_read_table(self): path = os.path.join(HERE, 'data', 'does_not_exist.' + 'csv') with pytest.raises(FileNotFoundError): with tm.assert_produces_warning(FutureWarning): pd.read_table(path) @pytest.mark.parametrize('reader, module, path', [ (pd.read_csv, 'os', ('io', 'data', 'iris.csv')), (pd.read_fwf, 'os', ('io', 'data', 'fixed_width_format.txt')), (pd.read_excel, 'xlrd', ('io', 'data', 'test1.xlsx')), (pd.read_feather, 'feather', ('io', 'data', 'feather-0_3_1.feather')), (pd.read_hdf, 'tables', ('io', 'data', 'legacy_hdf', 'datetimetz_object.h5')), (pd.read_stata, 'os', ('io', 'data', 'stata10_115.dta')), (pd.read_sas, 'os', ('io', 'sas', 'data', 'test1.sas7bdat')), (pd.read_json, 'os', ('io', 'json', 'data', 'tsframe_v012.json')), (pd.read_msgpack, 'os', ('io', 'msgpack', 'data', 'frame.mp')), (pd.read_pickle, 'os', ('io', 'data', 'categorical_0_14_1.pickle')), ]) def test_read_fspath_all(self, reader, module, path, datapath): pytest.importorskip(module) path = datapath(*path) mypath = CustomFSPath(path) result = reader(mypath) expected = reader(path) if path.endswith('.pickle'): # categorical tm.assert_categorical_equal(result, expected) else: tm.assert_frame_equal(result, expected) def test_read_fspath_all_read_table(self, datapath): path = datapath('io', 'data', 'iris.csv') mypath = CustomFSPath(path) with tm.assert_produces_warning(FutureWarning): result = pd.read_table(mypath) with tm.assert_produces_warning(FutureWarning): expected = pd.read_table(path) if path.endswith('.pickle'): # categorical tm.assert_categorical_equal(result, expected) else: tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('writer_name, writer_kwargs, module', [ ('to_csv', {}, 'os'), ('to_excel', {'engine': 'xlwt'}, 'xlwt'), ('to_feather', {}, 'feather'), ('to_html', {}, 'os'), ('to_json', {}, 'os'), ('to_latex', {}, 'os'), ('to_msgpack', {}, 'os'), ('to_pickle', {}, 'os'), ('to_stata', {}, 'os'), ]) def test_write_fspath_all(self, writer_name, writer_kwargs, module): p1 = tm.ensure_clean('string') p2 =
tm.ensure_clean('fspath')
pandas.util.testing.ensure_clean
import spotipy import pandas as pd from spotipy.oauth2 import SpotifyClientCredentials #-- IMPORTANT --# ''' for this script to work you have to have a credentials.py file in the same directory with the following variables cid = 'YOUR_SPOTIFY_API_CLIENT_ID' secret = 'YOUR_SPOTIFY_API_CLIENT_SECRET' ''' from credentials import cid from credentials import secret # Spotify API autentication client_credentials_manager = SpotifyClientCredentials(client_id=cid, client_secret=secret) sp = spotipy.Spotify(client_credentials_manager = client_credentials_manager) #-- create new dataframe --# new_df = pd.DataFrame() # artist_genre_df = pd.DataFrame() #-- read dataset --# song_emotion_df =
pd.read_csv("datasets/tcc_ceds_music.csv", delimiter=',', encoding=None)
pandas.read_csv
#%% # from libs.Grafana.config import Config # from libs.Grafana.dbase import Database import datetime import pandas as pd import numpy as np import datetime import time import logging import pprint from time import time import requests from influxdb import InfluxDBClient from influxdb.client import InfluxDBClientError import datetime import random import time import joblib import numpy as np import pandas as pd from sklearn import ensemble, preprocessing MODEL = joblib.load("../models/tuned-random-forest-regression-model.pkl") def preprocess_features(df): _numeric_features = ["GHI(W/m2)", "mslp(hPa)", "rain(mm)", "rh(%)", "t2(C)", "td2(C)", "wind_dir(Deg)", "wind_speed(m/s)"] _ordinal_features = ["AOD", "day", "month", "year"] standard_scalar = preprocessing.StandardScaler() Z0 = standard_scalar.fit_transform(df.loc[:, _numeric_features]) ordinal_encoder = preprocessing.OrdinalEncoder() Z1 = ordinal_encoder.fit_transform(df.loc[:, _ordinal_features]) transformed_features = np.hstack((Z0, Z1)) return transformed_features def feature_engineering(df): _dropped_cols = ["SWDIR(W/m2)", "SWDNI(W/m2)", "SWDIF(W/m2)"] _year = (df.index .year) _month = (df.index .month) _day = (df.index .dayofyear) _hour = (df.index .hour) features = (df.drop(_dropped_cols, axis=1, inplace=False) .assign(year=_year, month=_month, day=_day, hour=_hour) .groupby(["year", "month", "day", "hour"]) .mean() .unstack(level=["hour"]) .reset_index(inplace=False) .sort_index(axis=1) .drop("year", axis=1, inplace=False)) # create the proxy for our solar power target efficiency_factor = 0.5 target = (features.loc[:, ["GHI(W/m2)"]] .mul(efficiency_factor) .shift(-1) .rename(columns={"GHI(W/m2)": "target(W/m2)"})) # combine to create the input data input_data = (features.join(target) .dropna(how="any", inplace=False) .sort_index(axis=1)) return input_data class Database(object): def __init__(self): super(Database, self).__init__() self.logger = logging.getLogger(__name__) self.INFLUX_DBASE_HOST='172.16.17.32' self.INFLUX_DBASE_PORT=8086 self.INFLUX_DBASE_NAME='NEOM' print(f"INFLUX_DBASE_HOST: {str(self.INFLUX_DBASE_HOST)}, INFLUX_DBASE_PORT: {str(self.INFLUX_DBASE_PORT)}, INFLUX_DBASE_NAME: {str(self.INFLUX_DBASE_NAME)}") self.client = InfluxDBClient(self.INFLUX_DBASE_HOST,self.INFLUX_DBASE_PORT, self.INFLUX_DBASE_NAME) self.client.switch_database(self.INFLUX_DBASE_NAME) self.create() #--------------------------------------------------------------------------------- self.yesterday = yesterday = datetime.date.today() - datetime.timedelta(days=1) #Yesterday at midnight self.yesterday0 = datetime.datetime.combine(self.yesterday, datetime.time.min) def create(self): try : self.client.create_database(self.INFLUX_DBASE_NAME) except requests.exceptions.ConnectionError as e: self.logger.warning("CONNECTION ERROR %s" %e) self.logger.warning("try again") def log(self,interval, obj,seriesName,value): records = [] print(interval) now = self.yesterday0 + datetime.timedelta(minutes=15*interval) print(now) if value != None: try: floatValue = float(value) except: floatValue = None if floatValue != None: #--------------------------------------------------------------------------------- record = { "time": now, "measurement":seriesName, "tags" : { "object" : obj }, "fields" : { "value" : floatValue }, } records.append(record) self.logger.info("writing: %s" % str(records)) try: res= self.client.write_points(records) # , retention_policy=self.retention_policy) except requests.exceptions.ConnectionError as e: self.logger.warning("CONNECTION ERROR %s" %e) self.logger.warning("try again") self.create() #--------------------------------------------------------------------------------- # print (res) # assert res def post(self, now, tag_dict, seriesName, value): records = [] if value != None: try: floatValue = float(value) except: floatValue = None if floatValue != None: #--------------------------------------------------------------------------------- - datetime.timedelta(days=1) record = { "time": now , "measurement":seriesName, "tags" : tag_dict, "fields" : { "value" : floatValue }, } records.append(record) self.logger.info("writing: %s" % str(records)) try: res= self.client.write_points(records) # , retention_policy=self.retention_policy) except requests.exceptions.ConnectionError as e: self.logger.warning("CONNECTION ERROR %s" %e) self.logger.warning("try again") self.create() def postArray(self, tag_dict, seriesName, values): records = [] if values != None: for row in values: d = list(row.values())[0] f = list(row.values())[1] record = { "time": d , "measurement":seriesName, "tags" : tag_dict, "fields" : { "value" : f }, } records.append(record) self.logger.info("writing: %s" % str(records)) self.logger.info(f"len ======================> {str(len(records))}" ) try: res= self.client.write_points(records) # , retention_policy=self.retention_policy) except requests.exceptions.ConnectionError as e: self.logger.warning("CONNECTION ERROR %s" %e) self.logger.warning("try again") self.create() def __destroy__(self): self.client.drop_database(self.INFLUX_DBASE_NAME) #%% dbase = Database() #%% import pyowm #https://github.com/csparpa/pyowm #https://pyowm.readthedocs.io/en/latest/usage-examples-v2/weather-api-usage-examples.html#owm-weather-api-version-2-5-usage-examples owm = pyowm.OWM('68f8c0b152aa2c29c1f6123f3cdb4760') # You MUST provide a valid API key # Have a pro subscription? Then use: # owm = pyowm.OWM(API_key='your-API-key', subscription_type='pro') # Search for current weather in London (Great Britain) observation = owm.weather_at_place('London,GB') w = observation.get_weather() from datetime import datetime now = datetime.now() #%% #%% # load data #this is an example to load today's forecast. we use historic value as we don't have them # we assume it will come from weather api , like above neom_data = (pd.read_csv("../data/raw/neom-data.csv", parse_dates=[0]) .rename(columns={"Unnamed: 0": "Timestamp"}) .set_index("Timestamp", drop=True, inplace=False)) # perform feature engineering input_data = feature_engineering(neom_data) # simulate online learning by sampling features from the input data _prng = np.random.RandomState(42) new_features = input_data.sample(n=1, random_state=_prng) # perform inference processed_features = preprocess_features(new_features) predictions = MODEL.predict(processed_features) # print the total solar power produced print(predictions) #%% dates = pd.date_range(start="2019-09-14", end="2019-09-14 23:00:00", freq='H') print(dates) #%% values = [] for i, d in enumerate(dates): date =
pd.to_datetime(d)
pandas.to_datetime
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, timedelta import functools import itertools import numpy as np import numpy.ma as ma import numpy.ma.mrecords as mrecords from numpy.random import randn import pytest from pandas.compat import ( PY3, PY36, OrderedDict, is_platform_little_endian, lmap, long, lrange, lzip, range, zip) from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas.core.dtypes.common import is_integer_dtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, MultiIndex, Series, Timedelta, Timestamp, compat, date_range, isna) from pandas.tests.frame.common import TestData import pandas.util.testing as tm MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64'] MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64'] class TestDataFrameConstructors(TestData): def test_constructor(self): df = DataFrame() assert len(df.index) == 0 df = DataFrame(data={}) assert len(df.index) == 0 def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_ def test_constructor_cast_failure(self): foo = DataFrame({'a': ['a', 'b', 'c']}, dtype=np.float64) assert foo['a'].dtype == object # GH 3010, constructing with odd arrays df = DataFrame(np.ones((4, 2))) # this is ok df['foo'] = np.ones((4, 2)).tolist() # this is not ok pytest.raises(ValueError, df.__setitem__, tuple(['test']), np.ones((4, 2))) # this is ok df['foo2'] = np.ones((4, 2)).tolist() def test_constructor_dtype_copy(self): orig_df = DataFrame({ 'col1': [1.], 'col2': [2.], 'col3': [3.]}) new_df = pd.DataFrame(orig_df, dtype=float, copy=True) new_df['col1'] = 200. assert orig_df['col1'][0] == 1. def test_constructor_dtype_nocast_view(self): df = DataFrame([[1, 2]]) should_be_view = DataFrame(df, dtype=df[0].dtype) should_be_view[0][0] = 99 assert df.values[0, 0] == 99 should_be_view = DataFrame(df.values, dtype=df[0].dtype) should_be_view[0][0] = 97 assert df.values[0, 0] == 97 def test_constructor_dtype_list_data(self): df = DataFrame([[1, '2'], [None, 'a']], dtype=object) assert df.loc[1, 0] is None assert df.loc[0, 1] == '2' def test_constructor_list_frames(self): # see gh-3243 result = DataFrame([DataFrame([])]) assert result.shape == (1, 0) result = DataFrame([DataFrame(dict(A=lrange(5)))]) assert isinstance(result.iloc[0, 0], DataFrame) def test_constructor_mixed_dtypes(self): def _make_mixed_dtypes_df(typ, ad=None): if typ == 'int': dtypes = MIXED_INT_DTYPES arrays = [np.array(np.random.rand(10), dtype=d) for d in dtypes] elif typ == 'float': dtypes = MIXED_FLOAT_DTYPES arrays = [np.array(np.random.randint( 10, size=10), dtype=d) for d in dtypes] zipper = lzip(dtypes, arrays) for d, a in zipper: assert(a.dtype == d) if ad is None: ad = dict() ad.update({d: a for d, a in zipper}) return DataFrame(ad) def _check_mixed_dtypes(df, dtypes=None): if dtypes is None: dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES for d in dtypes: if d in df: assert(df.dtypes[d] == d) # mixed floating and integer coexinst in the same frame df = _make_mixed_dtypes_df('float') _check_mixed_dtypes(df) # add lots of types df = _make_mixed_dtypes_df('float', dict(A=1, B='foo', C='bar')) _check_mixed_dtypes(df) # GH 622 df = _make_mixed_dtypes_df('int') _check_mixed_dtypes(df) def test_constructor_complex_dtypes(self): # GH10952 a = np.random.rand(10).astype(np.complex64) b = np.random.rand(10).astype(np.complex128) df = DataFrame({'a': a, 'b': b}) assert a.dtype == df.a.dtype assert b.dtype == df.b.dtype def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 df = DataFrame({'A': ['x', None]}, dtype=string_dtype) result = df.isna() expected = DataFrame({"A": [False, True]}) tm.assert_frame_equal(result, expected) assert df.iloc[1, 0] is None df = DataFrame({'A': ['x', np.nan]}, dtype=string_dtype) assert np.isnan(df.iloc[1, 0]) def test_constructor_rec(self): rec = self.frame.to_records(index=False) if PY3: # unicode error under PY2 rec.dtype.names = list(rec.dtype.names)[::-1] index = self.frame.index df = DataFrame(rec) tm.assert_index_equal(df.columns, pd.Index(rec.dtype.names)) df2 = DataFrame(rec, index=index) tm.assert_index_equal(df2.columns, pd.Index(rec.dtype.names)) tm.assert_index_equal(df2.index, index) rng = np.arange(len(rec))[::-1] df3 = DataFrame(rec, index=rng, columns=['C', 'B']) expected = DataFrame(rec, index=rng).reindex(columns=['C', 'B']) tm.assert_frame_equal(df3, expected) def test_constructor_bool(self): df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)}) assert df.values.dtype == np.bool_ def test_constructor_overflow_int64(self): # see gh-14881 values = np.array([2 ** 64 - i for i in range(1, 10)], dtype=np.uint64) result = DataFrame({'a': values}) assert result['a'].dtype == np.uint64 # see gh-2355 data_scores = [(6311132704823138710, 273), (2685045978526272070, 23), (8921811264899370420, 45), (long(17019687244989530680), 270), (long(9930107427299601010), 273)] dtype = [('uid', 'u8'), ('score', 'u8')] data = np.zeros((len(data_scores),), dtype=dtype) data[:] = data_scores df_crawls = DataFrame(data) assert df_crawls['uid'].dtype == np.uint64 @pytest.mark.parametrize("values", [np.array([2**64], dtype=object), np.array([2**65]), [2**64 + 1], np.array([-2**63 - 4], dtype=object), np.array([-2**64 - 1]), [-2**65 - 2]]) def test_constructor_int_overflow(self, values): # see gh-18584 value = values[0] result = DataFrame(values) assert result[0].dtype == object assert result[0][0] == value def test_constructor_ordereddict(self): import random nitems = 100 nums = lrange(nitems) random.shuffle(nums) expected = ['A%d' % i for i in nums] df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems))) assert expected == list(df.columns) def test_constructor_dict(self): frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}) # col2 is padded with NaN assert len(self.ts1) == 30 assert len(self.ts2) == 25 tm.assert_series_equal(self.ts1, frame['col1'], check_names=False) exp = pd.Series(np.concatenate([[np.nan] * 5, self.ts2.values]), index=self.ts1.index, name='col2') tm.assert_series_equal(exp, frame['col2']) frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}, columns=['col2', 'col3', 'col4']) assert len(frame) == len(self.ts2) assert 'col1' not in frame assert isna(frame['col3']).all() # Corner cases assert len(DataFrame({})) == 0 # mix dict and array, wrong size - no spec for which error should raise # first with pytest.raises(ValueError): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # Length-one dict micro-optimization frame = DataFrame({'A': {'1': 1, '2': 2}}) tm.assert_index_equal(frame.index, pd.Index(['1', '2'])) # empty dict plus index idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx) assert frame.index is idx # empty with index and columns idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx, columns=idx) assert frame.index is idx assert frame.columns is idx assert len(frame._series) == 3 # with dict of empty list and Series frame = DataFrame({'A': [], 'B': []}, columns=['A', 'B']) tm.assert_index_equal(frame.index, Index([], dtype=np.int64)) # GH 14381 # Dict with None value frame_none = DataFrame(dict(a=None), index=[0]) frame_none_list = DataFrame(dict(a=[None]), index=[0]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none.get_value(0, 'a') is None with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none_list.get_value(0, 'a') is None tm.assert_frame_equal(frame_none, frame_none_list) # GH10856 # dict with scalar values should raise error, even if columns passed msg = 'If using all scalar values, you must pass an index' with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}) with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}, columns=['a']) @pytest.mark.parametrize("scalar", [2, np.nan, None, 'D']) def test_constructor_invalid_items_unused(self, scalar): # No error if invalid (scalar) value is in fact not used: result = DataFrame({'a': scalar}, columns=['b']) expected = DataFrame(columns=['b']) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float('nan')]) def test_constructor_dict_nan_key(self, value): # GH 18455 cols = [1, value, 3] idx = ['a', value] values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = DataFrame(data).sort_values(1).sort_values('a', axis=1) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values('a', axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [np.nan, None, float('nan')]) def test_constructor_dict_nan_tuple_key(self, value): # GH 18455 cols = Index([(11, 21), (value, 22), (13, value)]) idx = Index([('a', value), (value, 2)]) values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = (DataFrame(data) .sort_values((11, 21)) .sort_values(('a', value), axis=1)) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values(('a', value), axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.skipif(not PY36, reason='Insertion order for Python>=3.6') def test_constructor_dict_order_insertion(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ba')) tm.assert_frame_equal(frame, expected) @pytest.mark.skipif(PY36, reason='order by value for Python<3.6') def test_constructor_dict_order_by_values(self): # GH19018 # initialization ordering: by value if python<3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ab')) tm.assert_frame_equal(frame, expected) def test_constructor_multi_index(self): # GH 4078 # construction error with mi and all-nan frame tuples = [(2, 3), (3, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() tuples = [(3, 3), (2, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() def test_constructor_error_msgs(self): msg = "Empty data passed with indices specified." # passing an empty array with columns specified. with pytest.raises(ValueError, match=msg): DataFrame(np.empty(0), columns=list('abc')) msg = "Mixing dicts with non-Series may lead to ambiguous ordering." # mix dict and array, wrong size with pytest.raises(ValueError, match=msg): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # wrong size ndarray, GH 3105 msg = r"Shape of passed values is \(3, 4\), indices imply \(3, 3\)" with pytest.raises(ValueError, match=msg): DataFrame(np.arange(12).reshape((4, 3)), columns=['foo', 'bar', 'baz'], index=pd.date_range('2000-01-01', periods=3)) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(np.zeros((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # wrong size axis labels msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(3, 1\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B', 'C'], index=[1]) msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(2, 2\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B'], index=[1, 2]) msg = ("If using all scalar " "values, you must pass " "an index") with pytest.raises(ValueError, match=msg): DataFrame({'a': False, 'b': True}) def test_constructor_with_embedded_frames(self): # embedded data frames df1 = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) df2 = DataFrame([df1, df1 + 10]) df2.dtypes str(df2) result = df2.loc[0, 0] tm.assert_frame_equal(result, df1) result = df2.loc[1, 0] tm.assert_frame_equal(result, df1 + 10) def test_constructor_subclass_dict(self): # Test for passing dict subclass to constructor data = {'col1': tm.TestSubDict((x, 10.0 * x) for x in range(10)), 'col2': tm.TestSubDict((x, 20.0 * x) for x in range(10))} df = DataFrame(data) refdf = DataFrame({col: dict(compat.iteritems(val)) for col, val in compat.iteritems(data)}) tm.assert_frame_equal(refdf, df) data = tm.TestSubDict(compat.iteritems(data)) df = DataFrame(data) tm.assert_frame_equal(refdf, df) # try with defaultdict from collections import defaultdict data = {} self.frame['B'][:10] = np.nan for k, v in compat.iteritems(self.frame): dct = defaultdict(dict) dct.update(v.to_dict()) data[k] = dct frame = DataFrame(data) tm.assert_frame_equal(self.frame.sort_index(), frame) def test_constructor_dict_block(self): expected = np.array([[4., 3., 2., 1.]]) df = DataFrame({'d': [4.], 'c': [3.], 'b': [2.], 'a': [1.]}, columns=['d', 'c', 'b', 'a']) tm.assert_numpy_array_equal(df.values, expected) def test_constructor_dict_cast(self): # cast float tests test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } frame = DataFrame(test_data, dtype=float) assert len(frame) == 3 assert frame['B'].dtype == np.float64 assert frame['A'].dtype == np.float64 frame = DataFrame(test_data) assert len(frame) == 3 assert frame['B'].dtype == np.object_ assert frame['A'].dtype == np.float64 # can't cast to float test_data = { 'A': dict(zip(range(20), tm.makeStringIndex(20))), 'B': dict(zip(range(15), randn(15))) } frame = DataFrame(test_data, dtype=float) assert len(frame) == 20 assert frame['A'].dtype == np.object_ assert frame['B'].dtype == np.float64 def test_constructor_dict_dont_upcast(self): d = {'Col1': {'Row1': 'A String', 'Row2': np.nan}} df = DataFrame(d) assert isinstance(df['Col1']['Row2'], float) dm = DataFrame([[1, 2], ['a', 'b']], index=[1, 2], columns=[1, 2]) assert isinstance(dm[1][1], int) def test_constructor_dict_of_tuples(self): # GH #1491 data = {'a': (1, 2, 3), 'b': (4, 5, 6)} result = DataFrame(data) expected = DataFrame({k: list(v) for k, v in compat.iteritems(data)}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_dict_multiindex(self): def check(result, expected): return tm.assert_frame_equal(result, expected, check_dtype=True, check_index_type=True, check_column_type=True, check_names=True) d = {('a', 'a'): {('i', 'i'): 0, ('i', 'j'): 1, ('j', 'i'): 2}, ('b', 'a'): {('i', 'i'): 6, ('i', 'j'): 5, ('j', 'i'): 4}, ('b', 'c'): {('i', 'i'): 7, ('i', 'j'): 8, ('j', 'i'): 9}} _d = sorted(d.items()) df = DataFrame(d) expected = DataFrame( [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])).T expected.index = MultiIndex.from_tuples(expected.index) check(df, expected) d['z'] = {'y': 123., ('i', 'i'): 111, ('i', 'j'): 111, ('j', 'i'): 111} _d.insert(0, ('z', d['z'])) expected = DataFrame( [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)).T expected.index = Index(expected.index, tupleize_cols=False) df = DataFrame(d) df = df.reindex(columns=expected.columns, index=expected.index) check(df, expected) def test_constructor_dict_datetime64_index(self): # GH 10160 dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15'] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(dates_as_str)} data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d')) data_Timestamp = create_data(Timestamp) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timestamp(dt) for dt in dates_as_str]) result_datetime64 = DataFrame(data_datetime64) result_datetime = DataFrame(data_datetime) result_Timestamp = DataFrame(data_Timestamp) tm.assert_frame_equal(result_datetime64, expected) tm.assert_frame_equal(result_datetime, expected) tm.assert_frame_equal(result_Timestamp, expected) def test_constructor_dict_timedelta64_index(self): # GH 10160 td_as_int = [1, 2, 3, 4] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(td_as_int)} data_timedelta64 = create_data(lambda x: np.timedelta64(x, 'D')) data_timedelta = create_data(lambda x: timedelta(days=x)) data_Timedelta = create_data(lambda x: Timedelta(x, 'D')) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timedelta(td, 'D') for td in td_as_int]) result_timedelta64 = DataFrame(data_timedelta64) result_timedelta = DataFrame(data_timedelta) result_Timedelta = DataFrame(data_Timedelta) tm.assert_frame_equal(result_timedelta64, expected) tm.assert_frame_equal(result_timedelta, expected) tm.assert_frame_equal(result_Timedelta, expected) def test_constructor_period(self): # PeriodIndex a = pd.PeriodIndex(['2012-01', 'NaT', '2012-04'], freq='M') b = pd.PeriodIndex(['2012-02-01', '2012-03-01', 'NaT'], freq='D') df = pd.DataFrame({'a': a, 'b': b}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype # list of periods df = pd.DataFrame({'a': a.astype(object).tolist(), 'b': b.astype(object).tolist()}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype def test_nested_dict_frame_constructor(self): rng = pd.period_range('1/1/2000', periods=5) df = DataFrame(randn(10, 5), columns=rng) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(col, {})[row] = df.get_value(row, col) result = DataFrame(data, columns=rng) tm.assert_frame_equal(result, df) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(row, {})[col] = df.get_value(row, col) result = DataFrame(data, index=rng).T tm.assert_frame_equal(result, df) def _check_basic_constructor(self, empty): # mat: 2d matrix with shape (3, 2) to input. empty - makes sized # objects mat = empty((2, 3), dtype=float) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 # 1-D input frame = DataFrame(empty((3,)), columns=['A'], index=[1, 2, 3]) assert len(frame.index) == 3 assert len(frame.columns) == 1 # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # wrong size axis labels msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B', 'C'], index=[1]) msg = r'Shape of passed values is \(3, 2\), indices imply \(2, 2\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B'], index=[1, 2]) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(empty((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # automatic labeling frame = DataFrame(mat) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, index=[1, 2]) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, columns=['A', 'B', 'C']) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) # 0-length axis frame = DataFrame(empty((0, 3))) assert len(frame.index) == 0 frame = DataFrame(empty((3, 0))) assert len(frame.columns) == 0 def test_constructor_ndarray(self): self._check_basic_constructor(np.ones) frame = DataFrame(['foo', 'bar'], index=[0, 1], columns=['A']) assert len(frame) == 2 def test_constructor_maskedarray(self): self._check_basic_constructor(ma.masked_all) # Check non-masked values mat = ma.masked_all((2, 3), dtype=float) mat[0, 0] = 1.0 mat[1, 2] = 2.0 frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert 1.0 == frame['A'][1] assert 2.0 == frame['C'][2] # what is this even checking?? mat = ma.masked_all((2, 3), dtype=float) frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert np.all(~np.asarray(frame == frame)) def test_constructor_maskedarray_nonfloat(self): # masked int promoted to float mat = ma.masked_all((2, 3), dtype=int) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.float64) assert frame.values.dtype == np.float64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'][1] assert 2 == frame['C'][2] # masked np.datetime64 stays (use NaT as null) mat = ma.masked_all((2, 3), dtype='M8[ns]') # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert isna(frame).values.all() # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'].view('i8')[1] assert 2 == frame['C'].view('i8')[2] # masked bool promoted to object mat = ma.masked_all((2, 3), dtype=bool) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=object) assert frame.values.dtype == object # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = True mat2[1, 2] = False frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert frame['A'][1] is True assert frame['C'][2] is False def test_constructor_mrecarray(self): # Ensure mrecarray produces frame identical to dict of masked arrays # from GH3479 assert_fr_equal = functools.partial(tm.assert_frame_equal, check_index_type=True, check_column_type=True, check_frame_type=True) arrays = [ ('float', np.array([1.5, 2.0])), ('int', np.array([1, 2])), ('str', np.array(['abc', 'def'])), ] for name, arr in arrays[:]: arrays.append(('masked1_' + name, np.ma.masked_array(arr, mask=[False, True]))) arrays.append(('masked_all', np.ma.masked_all((2,)))) arrays.append(('masked_none', np.ma.masked_array([1.0, 2.5], mask=False))) # call assert_frame_equal for all selections of 3 arrays for comb in itertools.combinations(arrays, 3): names, data = zip(*comb) mrecs = mrecords.fromarrays(data, names=names) # fill the comb comb = {k: (v.filled() if hasattr(v, 'filled') else v) for k, v in comb} expected = DataFrame(comb, columns=names) result = DataFrame(mrecs) assert_fr_equal(result, expected) # specify columns expected = DataFrame(comb, columns=names[::-1]) result = DataFrame(mrecs, columns=names[::-1]) assert_fr_equal(result, expected) # specify index expected = DataFrame(comb, columns=names, index=[1, 2]) result = DataFrame(mrecs, index=[1, 2]) assert_fr_equal(result, expected) def test_constructor_corner_shape(self): df = DataFrame(index=[]) assert df.values.shape == (0, 0) @pytest.mark.parametrize("data, index, columns, dtype, expected", [ (None, lrange(10), ['a', 'b'], object, np.object_), (None, None, ['a', 'b'], 'int64', np.dtype('int64')), (None, lrange(10), ['a', 'b'], int, np.dtype('float64')), ({}, None, ['foo', 'bar'], None, np.object_), ({'b': 1}, lrange(10), list('abc'), int, np.dtype('float64')) ]) def test_constructor_dtype(self, data, index, columns, dtype, expected): df = DataFrame(data, index, columns, dtype) assert df.values.dtype == expected def test_constructor_scalar_inference(self): data = {'int': 1, 'bool': True, 'float': 3., 'complex': 4j, 'object': 'foo'} df = DataFrame(data, index=np.arange(10)) assert df['int'].dtype == np.int64 assert df['bool'].dtype == np.bool_ assert df['float'].dtype == np.float64 assert df['complex'].dtype == np.complex128 assert df['object'].dtype == np.object_ def test_constructor_arrays_and_scalars(self): df = DataFrame({'a': randn(10), 'b': True}) exp = DataFrame({'a': df['a'].values, 'b': [True] * 10}) tm.assert_frame_equal(df, exp) with pytest.raises(ValueError, match='must pass an index'): DataFrame({'a': False, 'b': True}) def test_constructor_DataFrame(self): df = DataFrame(self.frame) tm.assert_frame_equal(df, self.frame) df_casted = DataFrame(self.frame, dtype=np.int64) assert df_casted.values.dtype == np.int64 def test_constructor_more(self): # used to be in test_matrix.py arr = randn(10) dm = DataFrame(arr, columns=['A'], index=np.arange(10)) assert dm.values.ndim == 2 arr = randn(0) dm = DataFrame(arr) assert dm.values.ndim == 2 assert dm.values.ndim == 2 # no data specified dm = DataFrame(columns=['A', 'B'], index=np.arange(10)) assert dm.values.shape == (10, 2) dm = DataFrame(columns=['A', 'B']) assert dm.values.shape == (0, 2) dm = DataFrame(index=np.arange(10)) assert dm.values.shape == (10, 0) # can't cast mat = np.array(['foo', 'bar'], dtype=object).reshape(2, 1) with pytest.raises(ValueError, match='cast'): DataFrame(mat, index=[0, 1], columns=[0], dtype=float) dm = DataFrame(DataFrame(self.frame._series)) tm.assert_frame_equal(dm, self.frame) # int cast dm = DataFrame({'A': np.ones(10, dtype=int), 'B': np.ones(10, dtype=np.float64)}, index=np.arange(10)) assert len(dm.columns) == 2 assert dm.values.dtype == np.float64 def test_constructor_empty_list(self): df = DataFrame([], index=[]) expected = DataFrame(index=[]) tm.assert_frame_equal(df, expected) # GH 9939 df = DataFrame([], columns=['A', 'B']) expected = DataFrame({}, columns=['A', 'B']) tm.assert_frame_equal(df, expected) # Empty generator: list(empty_gen()) == [] def empty_gen(): return yield df = DataFrame(empty_gen(), columns=['A', 'B']) tm.assert_frame_equal(df, expected) def test_constructor_list_of_lists(self): # GH #484 df = DataFrame(data=[[1, 'a'], [2, 'b']], columns=["num", "str"]) assert is_integer_dtype(df['num']) assert df['str'].dtype == np.object_ # GH 4851 # list of 0-dim ndarrays expected = DataFrame({0: np.arange(10)}) data = [np.array(x) for x in range(10)] result = DataFrame(data) tm.assert_frame_equal(result, expected) def test_constructor_sequence_like(self): # GH 3783 # collections.Squence like class DummyContainer(compat.Sequence): def __init__(self, lst): self._lst = lst def __getitem__(self, n): return self._lst.__getitem__(n) def __len__(self, n): return self._lst.__len__() lst_containers = [DummyContainer([1, 'a']), DummyContainer([2, 'b'])] columns = ["num", "str"] result = DataFrame(lst_containers, columns=columns) expected = DataFrame([[1, 'a'], [2, 'b']], columns=columns) tm.assert_frame_equal(result, expected, check_dtype=False) # GH 4297 # support Array import array result = DataFrame({'A': array.array('i', range(10))}) expected = DataFrame({'A': list(range(10))}) tm.assert_frame_equal(result, expected, check_dtype=False) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([array.array('i', range(10)), array.array('i', range(10))]) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_iterable(self): # GH 21987 class Iter(): def __iter__(self): for i in range(10): yield [1, 2, 3] expected = DataFrame([[1, 2, 3]] * 10) result = DataFrame(Iter()) tm.assert_frame_equal(result, expected) def test_constructor_iterator(self): expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([range(10), range(10)]) tm.assert_frame_equal(result, expected) def test_constructor_generator(self): # related #2305 gen1 = (i for i in range(10)) gen2 = (i for i in range(10)) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([gen1, gen2]) tm.assert_frame_equal(result, expected) gen = ([i, 'a'] for i in range(10)) result = DataFrame(gen) expected = DataFrame({0: range(10), 1: 'a'}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_list_of_dicts(self): data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] result = DataFrame(data) expected = DataFrame.from_dict(dict(zip(range(len(data)), data)), orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result = DataFrame([{}]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_preserve_order(self): # see gh-13304 expected = DataFrame([[2, 1]], columns=['b', 'a']) data = OrderedDict() data['b'] = [2] data['a'] = [1] result = DataFrame(data) tm.assert_frame_equal(result, expected) data = OrderedDict() data['b'] = 2 data['a'] = 1 result = DataFrame([data]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_conflicting_orders(self): # the first dict element sets the ordering for the DataFrame, # even if there are conflicting orders from subsequent ones row_one = OrderedDict() row_one['b'] = 2 row_one['a'] = 1 row_two = OrderedDict() row_two['a'] = 1 row_two['b'] = 2 row_three = {'b': 2, 'a': 1} expected = DataFrame([[2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two]) tm.assert_frame_equal(result, expected) expected = DataFrame([[2, 1], [2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two, row_three]) tm.assert_frame_equal(result, expected) def test_constructor_list_of_series(self): data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]), OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])] sdict = OrderedDict(zip(['x', 'y'], data)) idx = Index(['a', 'b', 'c']) # all named data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx, name='y')] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected) # some unnamed data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx)] result = DataFrame(data2) sdict = OrderedDict(zip(['x', 'Unnamed 0'], data)) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result.sort_index(), expected) # none named data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] data = [Series(d) for d in data] result = DataFrame(data) sdict = OrderedDict(zip(range(len(data)), data)) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result2 = DataFrame(data, index=np.arange(6)) tm.assert_frame_equal(result, result2) result = DataFrame([Series({})]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]), OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])] sdict = OrderedDict(zip(range(len(data)), data)) idx = Index(['a', 'b', 'c']) data2 = [Series([1.5, 3, 4], idx, dtype='O'), Series([1.5, 3, 6], idx)] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected) def test_constructor_list_of_series_aligned_index(self): series = [pd.Series(i, index=['b', 'a', 'c'], name=str(i)) for i in range(3)] result = pd.DataFrame(series) expected = pd.DataFrame({'b': [0, 1, 2], 'a': [0, 1, 2], 'c': [0, 1, 2]}, columns=['b', 'a', 'c'], index=['0', '1', '2']) tm.assert_frame_equal(result, expected) def test_constructor_list_of_derived_dicts(self): class CustomDict(dict): pass d = {'a': 1.5, 'b': 3} data_custom = [CustomDict(d)] data = [d] result_custom = DataFrame(data_custom) result = DataFrame(data) tm.assert_frame_equal(result, result_custom) def test_constructor_ragged(self): data = {'A': randn(10), 'B': randn(8)} with pytest.raises(ValueError, match='arrays must all be same length'): DataFrame(data) def test_constructor_scalar(self): idx = Index(lrange(3)) df = DataFrame({"a": 0}, index=idx) expected = DataFrame({"a": [0, 0, 0]}, index=idx) tm.assert_frame_equal(df, expected, check_dtype=False) def test_constructor_Series_copy_bug(self): df = DataFrame(self.frame['A'], index=self.frame.index, columns=['A']) df.copy() def test_constructor_mixed_dict_and_Series(self): data = {} data['A'] = {'foo': 1, 'bar': 2, 'baz': 3} data['B'] = Series([4, 3, 2, 1], index=['bar', 'qux', 'baz', 'foo']) result = DataFrame(data) assert result.index.is_monotonic # ordering ambiguous, raise exception with pytest.raises(ValueError, match='ambiguous ordering'): DataFrame({'A': ['a', 'b'], 'B': {'a': 'a', 'b': 'b'}}) # this is OK though result = DataFrame({'A': ['a', 'b'], 'B': Series(['a', 'b'], index=['a', 'b'])}) expected = DataFrame({'A': ['a', 'b'], 'B': ['a', 'b']}, index=['a', 'b']) tm.assert_frame_equal(result, expected) def test_constructor_tuples(self): result = DataFrame({'A': [(1, 2), (3, 4)]}) expected = DataFrame({'A': Series([(1, 2), (3, 4)])}) tm.assert_frame_equal(result, expected) def test_constructor_namedtuples(self): # GH11181 from collections import namedtuple named_tuple = namedtuple("Pandas", list('ab')) tuples = [named_tuple(1, 3), named_tuple(2, 4)] expected = DataFrame({'a': [1, 2], 'b': [3, 4]}) result = DataFrame(tuples) tm.assert_frame_equal(result, expected) # with columns expected = DataFrame({'y': [1, 2], 'z': [3, 4]}) result = DataFrame(tuples, columns=['y', 'z']) tm.assert_frame_equal(result, expected) def test_constructor_orient(self): data_dict = self.mixed_frame.T._series recons = DataFrame.from_dict(data_dict, orient='index') expected = self.mixed_frame.sort_index() tm.assert_frame_equal(recons, expected) # dict of sequence a = {'hi': [32, 3, 3], 'there': [3, 5, 3]} rs = DataFrame.from_dict(a, orient='index') xp = DataFrame.from_dict(a).T.reindex(list(a.keys())) tm.assert_frame_equal(rs, xp) def test_from_dict_columns_parameter(self): # GH 18529 # Test new columns parameter for from_dict that was added to make # from_items(..., orient='index', columns=[...]) easier to replicate result = DataFrame.from_dict(OrderedDict([('A', [1, 2]), ('B', [4, 5])]), orient='index', columns=['one', 'two']) expected = DataFrame([[1, 2], [4, 5]], index=['A', 'B'], columns=['one', 'two']) tm.assert_frame_equal(result, expected) msg = "cannot use columns parameter with orient='columns'" with pytest.raises(ValueError, match=msg): DataFrame.from_dict(dict([('A', [1, 2]), ('B', [4, 5])]), orient='columns', columns=['one', 'two']) with pytest.raises(ValueError, match=msg): DataFrame.from_dict(dict([('A', [1, 2]), ('B', [4, 5])]), columns=['one', 'two']) def test_constructor_Series_named(self): a = Series([1, 2, 3], index=['a', 'b', 'c'], name='x') df = DataFrame(a) assert df.columns[0] == 'x' tm.assert_index_equal(df.index, a.index) # ndarray like arr = np.random.randn(10) s = Series(arr, name='x') df = DataFrame(s) expected = DataFrame(dict(x=s)) tm.assert_frame_equal(df, expected) s = Series(arr, index=range(3, 13)) df = DataFrame(s) expected = DataFrame({0: s}) tm.assert_frame_equal(df, expected) pytest.raises(ValueError, DataFrame, s, columns=[1, 2]) # #2234 a = Series([], name='x') df = DataFrame(a) assert df.columns[0] == 'x' # series with name and w/o s1 = Series(arr, name='x') df = DataFrame([s1, arr]).T expected = DataFrame({'x': s1, 'Unnamed 0': arr}, columns=['x', 'Unnamed 0']) tm.assert_frame_equal(df, expected) # this is a bit non-intuitive here; the series collapse down to arrays df = DataFrame([arr, s1]).T expected = DataFrame({1: s1, 0: arr}, columns=[0, 1]) tm.assert_frame_equal(df, expected) def test_constructor_Series_named_and_columns(self): # GH 9232 validation s0 = Series(range(5), name=0) s1 = Series(range(5), name=1) # matching name and column gives standard frame tm.assert_frame_equal(pd.DataFrame(s0, columns=[0]), s0.to_frame()) tm.assert_frame_equal(pd.DataFrame(s1, columns=[1]), s1.to_frame()) # non-matching produces empty frame assert pd.DataFrame(s0, columns=[1]).empty assert pd.DataFrame(s1, columns=[0]).empty def test_constructor_Series_differently_indexed(self): # name s1 = Series([1, 2, 3], index=['a', 'b', 'c'], name='x') # no name s2 = Series([1, 2, 3], index=['a', 'b', 'c']) other_index = Index(['a', 'b']) df1 = DataFrame(s1, index=other_index) exp1 = DataFrame(s1.reindex(other_index)) assert df1.columns[0] == 'x' tm.assert_frame_equal(df1, exp1) df2 = DataFrame(s2, index=other_index) exp2 = DataFrame(s2.reindex(other_index)) assert df2.columns[0] == 0 tm.assert_index_equal(df2.index, other_index) tm.assert_frame_equal(df2, exp2) def test_constructor_manager_resize(self): index = list(self.frame.index[:5]) columns = list(self.frame.columns[:3]) result = DataFrame(self.frame._data, index=index, columns=columns) tm.assert_index_equal(result.index, Index(index)) tm.assert_index_equal(result.columns, Index(columns)) def test_constructor_from_items(self): items = [(c, self.frame[c]) for c in self.frame.columns] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(items) tm.assert_frame_equal(recons, self.frame) # pass some columns with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(items, columns=['C', 'B', 'A']) tm.assert_frame_equal(recons, self.frame.loc[:, ['C', 'B', 'A']]) # orient='index' row_items = [(idx, self.mixed_frame.xs(idx)) for idx in self.mixed_frame.index] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(row_items, columns=self.mixed_frame.columns, orient='index') tm.assert_frame_equal(recons, self.mixed_frame) assert recons['A'].dtype == np.float64 msg = "Must pass columns with orient='index'" with pytest.raises(TypeError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items(row_items, orient='index') # orient='index', but thar be tuples arr = construct_1d_object_array_from_listlike( [('bar', 'baz')] * len(self.mixed_frame)) self.mixed_frame['foo'] = arr row_items = [(idx, list(self.mixed_frame.xs(idx))) for idx in self.mixed_frame.index] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(row_items, columns=self.mixed_frame.columns, orient='index') tm.assert_frame_equal(recons, self.mixed_frame) assert isinstance(recons['foo'][0], tuple) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): rs = DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])], orient='index', columns=['one', 'two', 'three']) xp = DataFrame([[1, 2, 3], [4, 5, 6]], index=['A', 'B'], columns=['one', 'two', 'three']) tm.assert_frame_equal(rs, xp) def test_constructor_from_items_scalars(self): # GH 17312 msg = (r'The value in each \(key, value\) ' 'pair must be an array, Series, or dict') with pytest.raises(ValueError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([('A', 1), ('B', 4)]) msg = (r'The value in each \(key, value\) ' 'pair must be an array, Series, or dict') with pytest.raises(ValueError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([('A', 1), ('B', 2)], columns=['col1'], orient='index') def test_from_items_deprecation(self): # GH 17320 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])], columns=['col1', 'col2', 'col3'], orient='index') def test_constructor_mix_series_nonseries(self): df = DataFrame({'A': self.frame['A'], 'B': list(self.frame['B'])}, columns=['A', 'B']) tm.assert_frame_equal(df, self.frame.loc[:, ['A', 'B']]) msg = 'does not match index length' with pytest.raises(ValueError, match=msg): DataFrame({'A': self.frame['A'], 'B': list(self.frame['B'])[:-2]}) def test_constructor_miscast_na_int_dtype(self): df = DataFrame([[np.nan, 1], [1, 0]], dtype=np.int64) expected = DataFrame([[np.nan, 1], [1, 0]]) tm.assert_frame_equal(df, expected) def test_constructor_column_duplicates(self): # it works! #2079 df = DataFrame([[8, 5]], columns=['a', 'a']) edf = DataFrame([[8, 5]]) edf.columns = ['a', 'a'] tm.assert_frame_equal(df, edf) idf = DataFrame.from_records([(8, 5)], columns=['a', 'a']) tm.assert_frame_equal(idf, edf) pytest.raises(ValueError, DataFrame.from_dict, OrderedDict([('b', 8), ('a', 5), ('a', 6)])) def test_constructor_empty_with_string_dtype(self): # GH 9428 expected = DataFrame(index=[0, 1], columns=[0, 1], dtype=object) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=str) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.str_) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.unicode_) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype='U5') tm.assert_frame_equal(df, expected) def test_constructor_single_value(self): # expecting single value upcasting here df = DataFrame(0., index=[1, 2, 3], columns=['a', 'b', 'c']) tm.assert_frame_equal(df, DataFrame(np.zeros(df.shape).astype('float64'), df.index, df.columns)) df = DataFrame(0, index=[1, 2, 3], columns=['a', 'b', 'c']) tm.assert_frame_equal(df, DataFrame(np.zeros(df.shape).astype('int64'), df.index, df.columns)) df = DataFrame('a', index=[1, 2], columns=['a', 'c']) tm.assert_frame_equal(df, DataFrame(np.array([['a', 'a'], ['a', 'a']], dtype=object), index=[1, 2], columns=['a', 'c'])) pytest.raises(ValueError, DataFrame, 'a', [1, 2]) pytest.raises(ValueError, DataFrame, 'a', columns=['a', 'c']) msg = 'incompatible data and dtype' with pytest.raises(TypeError, match=msg): DataFrame('a', [1, 2], ['a', 'c'], float) def test_constructor_with_datetimes(self): intname = np.dtype(np.int_).name floatname = np.dtype(np.float_).name datetime64name = np.dtype('M8[ns]').name objectname = np.dtype(np.object_).name # single item df = DataFrame({'A': 1, 'B': 'foo', 'C': 'bar', 'D': Timestamp("20010101"), 'E': datetime(2001, 1, 2, 0, 0)}, index=np.arange(10)) result = df.get_dtype_counts() expected = Series({'int64': 1, datetime64name: 2, objectname: 2}) result.sort_index() expected.sort_index() tm.assert_series_equal(result, expected) # check with ndarray construction ndim==0 (e.g. we are passing a ndim 0 # ndarray with a dtype specified) df = DataFrame({'a': 1., 'b': 2, 'c': 'foo', floatname: np.array(1., dtype=floatname), intname: np.array(1, dtype=intname)}, index=np.arange(10)) result = df.get_dtype_counts() expected = {objectname: 1} if intname == 'int64': expected['int64'] = 2 else: expected['int64'] = 1 expected[intname] = 1 if floatname == 'float64': expected['float64'] = 2 else: expected['float64'] = 1 expected[floatname] = 1 result = result.sort_index() expected = Series(expected).sort_index() tm.assert_series_equal(result, expected) # check with ndarray construction ndim>0 df = DataFrame({'a': 1., 'b': 2, 'c': 'foo', floatname: np.array([1.] * 10, dtype=floatname), intname: np.array([1] * 10, dtype=intname)}, index=np.arange(10)) result = df.get_dtype_counts() result = result.sort_index() tm.assert_series_equal(result, expected) # GH 2809 ind = date_range(start="2000-01-01", freq="D", periods=10) datetimes = [ts.to_pydatetime() for ts in ind] datetime_s = Series(datetimes) assert datetime_s.dtype == 'M8[ns]' df = DataFrame({'datetime_s': datetime_s}) result = df.get_dtype_counts() expected = Series({datetime64name: 1}) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) # GH 2810 ind = date_range(start="2000-01-01", freq="D", periods=10) datetimes = [ts.to_pydatetime() for ts in ind] dates = [ts.date() for ts in ind] df = DataFrame({'datetimes': datetimes, 'dates': dates}) result = df.get_dtype_counts() expected = Series({datetime64name: 1, objectname: 1}) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) # GH 7594 # don't coerce tz-aware import pytz tz = pytz.timezone('US/Eastern') dt = tz.localize(datetime(2012, 1, 1)) df = DataFrame({'End Date': dt}, index=[0]) assert df.iat[0, 0] == dt tm.assert_series_equal(df.dtypes, Series( {'End Date': 'datetime64[ns, US/Eastern]'})) df = DataFrame([{'End Date': dt}]) assert df.iat[0, 0] == dt tm.assert_series_equal(df.dtypes, Series( {'End Date': 'datetime64[ns, US/Eastern]'})) # tz-aware (UTC and other tz's) # GH 8411 dr = date_range('20130101', periods=3) df = DataFrame({'value': dr}) assert df.iat[0, 0].tz is None dr = date_range('20130101', periods=3, tz='UTC') df = DataFrame({'value': dr}) assert str(df.iat[0, 0].tz) == 'UTC' dr = date_range('20130101', periods=3, tz='US/Eastern') df = DataFrame({'value': dr}) assert str(df.iat[0, 0].tz) == 'US/Eastern' # GH 7822 # preserver an index with a tz on dict construction i = date_range('1/1/2011', periods=5, freq='10s', tz='US/Eastern') expected = DataFrame( {'a': i.to_series(keep_tz=True).reset_index(drop=True)}) df = DataFrame() df['a'] = i tm.assert_frame_equal(df, expected) df = DataFrame({'a': i}) tm.assert_frame_equal(df, expected) # multiples i_no_tz = date_range('1/1/2011', periods=5, freq='10s') df = DataFrame({'a': i, 'b': i_no_tz}) expected = DataFrame({'a': i.to_series(keep_tz=True) .reset_index(drop=True), 'b': i_no_tz}) tm.assert_frame_equal(df, expected) def test_constructor_datetimes_with_nulls(self): # gh-15869 for arr in [np.array([None, None, None, None, datetime.now(), None]), np.array([None, None, datetime.now(), None])]: result = DataFrame(arr).get_dtype_counts() expected = Series({'datetime64[ns]': 1}) tm.assert_series_equal(result, expected) def test_constructor_for_list_with_dtypes(self): # TODO(wesm): unused intname = np.dtype(np.int_).name # noqa floatname = np.dtype(np.float_).name # noqa datetime64name = np.dtype('M8[ns]').name objectname = np.dtype(np.object_).name # test list of lists/ndarrays df = DataFrame([np.arange(5) for x in range(5)]) result = df.get_dtype_counts() expected = Series({'int64': 5}) df = DataFrame([np.array(np.arange(5), dtype='int32') for x in range(5)]) result = df.get_dtype_counts() expected = Series({'int32': 5}) # overflow issue? (we always expecte int64 upcasting here) df = DataFrame({'a': [2 ** 31, 2 ** 31 + 1]}) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) # GH #2751 (construction with no index specified), make sure we cast to # platform values df = DataFrame([1, 2]) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) df = DataFrame([1., 2.]) result = df.get_dtype_counts() expected = Series({'float64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': [1, 2]}) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': [1., 2.]}) result = df.get_dtype_counts() expected = Series({'float64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': 1}, index=lrange(3)) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': 1.}, index=lrange(3)) result = df.get_dtype_counts() expected = Series({'float64': 1}) tm.assert_series_equal(result, expected) # with object list df = DataFrame({'a': [1, 2, 4, 7], 'b': [1.2, 2.3, 5.1, 6.3], 'c': list('abcd'), 'd': [datetime(2000, 1, 1) for i in range(4)], 'e': [1., 2, 4., 7]}) result = df.get_dtype_counts() expected = Series( {'int64': 1, 'float64': 2, datetime64name: 1, objectname: 1}) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) def test_constructor_frame_copy(self): cop = DataFrame(self.frame, copy=True) cop['A'] = 5 assert (cop['A'] == 5).all() assert not (self.frame['A'] == 5).all() def test_constructor_ndarray_copy(self): df = DataFrame(self.frame.values) self.frame.values[5] = 5 assert (df.values[5] == 5).all() df = DataFrame(self.frame.values, copy=True) self.frame.values[6] = 6 assert not (df.values[6] == 6).all() def test_constructor_series_copy(self): series = self.frame._series df = DataFrame({'A': series['A']}) df['A'][:] = 5 assert not (series['A'] == 5).all() def test_constructor_with_nas(self): # GH 5016 # na's in indices def check(df): for i in range(len(df.columns)): df.iloc[:, i] indexer = np.arange(len(df.columns))[isna(df.columns)] # No NaN found -> error if len(indexer) == 0: def f(): df.loc[:, np.nan] pytest.raises(TypeError, f) # single nan should result in Series elif len(indexer) == 1: tm.assert_series_equal(df.iloc[:, indexer[0]], df.loc[:, np.nan]) # multiple nans should result in DataFrame else: tm.assert_frame_equal(df.iloc[:, indexer], df.loc[:, np.nan]) df = DataFrame([[1, 2, 3], [4, 5, 6]], index=[1, np.nan]) check(df) df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=[1.1, 2.2, np.nan]) check(df) df = DataFrame([[0, 1, 2, 3], [4, 5, 6, 7]], columns=[np.nan, 1.1, 2.2, np.nan]) check(df) df = DataFrame([[0.0, 1, 2, 3.0], [4, 5, 6, 7]], columns=[np.nan, 1.1, 2.2, np.nan]) check(df) # GH 21428 (non-unique columns) df = DataFrame([[0.0, 1, 2, 3.0], [4, 5, 6, 7]], columns=[np.nan, 1, 2, 2]) check(df) def test_constructor_lists_to_object_dtype(self): # from #1074 d = DataFrame({'a': [np.nan, False]}) assert d['a'].dtype == np.object_ assert not d['a'][1] def test_constructor_categorical(self): # GH8626 # dict creation df = DataFrame({'A': list('abc')}, dtype='category') expected = Series(list('abc'), dtype='category', name='A') tm.assert_series_equal(df['A'], expected) # to_frame s = Series(list('abc'), dtype='category') result = s.to_frame() expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(result[0], expected) result = s.to_frame(name='foo') expected = Series(list('abc'), dtype='category', name='foo') tm.assert_series_equal(result['foo'], expected) # list-like creation df = DataFrame(list('abc'), dtype='category') expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(df[0], expected) # ndim != 1 df = DataFrame([Categorical(list('abc'))]) expected = DataFrame({0: Series(list('abc'), dtype='category')}) tm.assert_frame_equal(df, expected) df = DataFrame([Categorical(list('abc')), Categorical(list('abd'))]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: Series(list('abd'), dtype='category')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # mixed df = DataFrame([Categorical(list('abc')), list('def')]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: list('def')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # invalid (shape) pytest.raises(ValueError, lambda: DataFrame([Categorical(list('abc')), Categorical(list('abdefg'))])) # ndim > 1 pytest.raises(NotImplementedError, lambda: Categorical(np.array([list('abcd')]))) def test_constructor_categorical_series(self): items = [1, 2, 3, 1] exp = Series(items).astype('category') res = Series(items, dtype='category') tm.assert_series_equal(res, exp) items = ["a", "b", "c", "a"] exp = Series(items).astype('category') res = Series(items, dtype='category') tm.assert_series_equal(res, exp) # insert into frame with different index # GH 8076 index = date_range('20000101', periods=3) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index expected = DataFrame({'x': expected}) df = DataFrame( {'x': Series(['a', 'b', 'c'], dtype='category')}, index=index) tm.assert_frame_equal(df, expected) def test_from_records_to_records(self): # from numpy documentation arr = np.zeros((2,), dtype=('i4,f4,a10')) arr[:] = [(1, 2., 'Hello'), (2, 3., "World")] # TODO(wesm): unused frame = DataFrame.from_records(arr) # noqa index = pd.Index(np.arange(len(arr))[::-1]) indexed_frame = DataFrame.from_records(arr, index=index) tm.assert_index_equal(indexed_frame.index, index) # without names, it should go to last ditch arr2 = np.zeros((2, 3)) tm.assert_frame_equal(DataFrame.from_records(arr2), DataFrame(arr2)) # wrong length msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' with pytest.raises(ValueError, match=msg): DataFrame.from_records(arr, index=index[:-1]) indexed_frame = DataFrame.from_records(arr, index='f1') # what to do? records = indexed_frame.to_records() assert len(records.dtype.names) == 3 records = indexed_frame.to_records(index=False) assert len(records.dtype.names) == 2 assert 'index' not in records.dtype.names def test_from_records_nones(self): tuples = [(1, 2, None, 3), (1, 2, None, 3), (None, 2, 5, 3)] df = DataFrame.from_records(tuples, columns=['a', 'b', 'c', 'd']) assert np.isnan(df['c'][0]) def test_from_records_iterator(self): arr = np.array([(1.0, 1.0, 2, 2), (3.0, 3.0, 4, 4), (5., 5., 6, 6), (7., 7., 8, 8)], dtype=[('x', np.float64), ('u', np.float32), ('y', np.int64), ('z', np.int32)]) df = DataFrame.from_records(iter(arr), nrows=2) xp = DataFrame({'x': np.array([1.0, 3.0], dtype=np.float64), 'u': np.array([1.0, 3.0], dtype=np.float32), 'y': np.array([2, 4], dtype=np.int64), 'z': np.array([2, 4], dtype=np.int32)}) tm.assert_frame_equal(df.reindex_like(xp), xp) # no dtypes specified here, so just compare with the default arr = [(1.0, 2), (3.0, 4), (5., 6), (7., 8)] df = DataFrame.from_records(iter(arr), columns=['x', 'y'], nrows=2) tm.assert_frame_equal(df, xp.reindex(columns=['x', 'y']), check_dtype=False) def test_from_records_tuples_generator(self): def tuple_generator(length): for i in range(length): letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' yield (i, letters[i % len(letters)], i / length) columns_names = ['Integer', 'String', 'Float'] columns = [[i[j] for i in tuple_generator( 10)] for j in range(len(columns_names))] data = {'Integer': columns[0], 'String': columns[1], 'Float': columns[2]} expected = DataFrame(data, columns=columns_names) generator = tuple_generator(10) result = DataFrame.from_records(generator, columns=columns_names) tm.assert_frame_equal(result, expected) def test_from_records_lists_generator(self): def list_generator(length): for i in range(length): letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' yield [i, letters[i % len(letters)], i / length] columns_names = ['Integer', 'String', 'Float'] columns = [[i[j] for i in list_generator( 10)] for j in range(len(columns_names))] data = {'Integer': columns[0], 'String': columns[1], 'Float': columns[2]} expected = DataFrame(data, columns=columns_names) generator = list_generator(10) result = DataFrame.from_records(generator, columns=columns_names) tm.assert_frame_equal(result, expected) def test_from_records_columns_not_modified(self): tuples = [(1, 2, 3), (1, 2, 3), (2, 5, 3)] columns = ['a', 'b', 'c'] original_columns = list(columns) df = DataFrame.from_records(tuples, columns=columns, index='a') # noqa assert columns == original_columns def test_from_records_decimal(self): from decimal import Decimal tuples = [(Decimal('1.5'),), (Decimal('2.5'),), (None,)] df = DataFrame.from_records(tuples, columns=['a']) assert df['a'].dtype == object df = DataFrame.from_records(tuples, columns=['a'], coerce_float=True) assert df['a'].dtype == np.float64 assert np.isnan(df['a'].values[-1]) def test_from_records_duplicates(self): result = DataFrame.from_records([(1, 2, 3), (4, 5, 6)], columns=['a', 'b', 'a']) expected = DataFrame([(1, 2, 3), (4, 5, 6)], columns=['a', 'b', 'a']) tm.assert_frame_equal(result, expected) def test_from_records_set_index_name(self): def create_dict(order_id): return {'order_id': order_id, 'quantity': np.random.randint(1, 10), 'price': np.random.randint(1, 10)} documents = [create_dict(i) for i in range(10)] # demo missing data documents.append({'order_id': 10, 'quantity': 5}) result = DataFrame.from_records(documents, index='order_id') assert result.index.name == 'order_id' # MultiIndex result = DataFrame.from_records(documents, index=['order_id', 'quantity']) assert result.index.names == ('order_id', 'quantity') def test_from_records_misc_brokenness(self): # #2179 data = {1: ['foo'], 2: ['bar']} result = DataFrame.from_records(data, columns=['a', 'b']) exp = DataFrame(data, columns=['a', 'b']) tm.assert_frame_equal(result, exp) # overlap in index/index_names data = {'a': [1, 2, 3], 'b': [4, 5, 6]} result = DataFrame.from_records(data, index=['a', 'b', 'c']) exp = DataFrame(data, index=['a', 'b', 'c']) tm.assert_frame_equal(result, exp) # GH 2623 rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 'hi']) # test col upconverts to obj df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) results = df2_obj.get_dtype_counts() expected = Series({'datetime64[ns]': 1, 'object': 1}) rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 1]) df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) results = df2_obj.get_dtype_counts().sort_index() expected = Series({'datetime64[ns]': 1, 'int64': 1}) tm.assert_series_equal(results, expected) def test_from_records_empty(self): # 3562 result = DataFrame.from_records([], columns=['a', 'b', 'c']) expected = DataFrame(columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) result = DataFrame.from_records([], columns=['a', 'b', 'b']) expected = DataFrame(columns=['a', 'b', 'b']) tm.assert_frame_equal(result, expected) def test_from_records_empty_with_nonempty_fields_gh3682(self): a = np.array([(1, 2)], dtype=[('id', np.int64), ('value', np.int64)]) df = DataFrame.from_records(a, index='id') tm.assert_index_equal(df.index, Index([1], name='id')) assert df.index.name == 'id' tm.assert_index_equal(df.columns, Index(['value'])) b = np.array([], dtype=[('id', np.int64), ('value', np.int64)]) df = DataFrame.from_records(b, index='id') tm.assert_index_equal(df.index,
Index([], name='id')
pandas.Index
import sys,os import pathlib import joblib import pandas as pd import numpy as np import spacy from sklearn.pipeline import Pipeline from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import TfidfVectorizer from pickle import dump, load import string def punct_space(token): """ helper function to eliminate tokens that are pure punctuation or whitespace """ return token.is_punct or token.is_space def lemmatize(doc): """ function that tokenize the text, lemmatizes it and removes stop words. """ nlp = spacy.load('en_core_web_sm') parsed_doc = nlp(doc) lemm_doc = [token.lemma_ for token in parsed_doc if not punct_space(token) and (token.lemma_!= '-PRON-') and not(nlp.vocab[token.text].is_stop)] # write the transformed text clean_text = u' '.join(lemm_doc) return clean_text def countVec(self, article): cvec = CountVectorizer(stop_words='english', min_df = 3) cvec.fit(article) cvec_counts = cvec.transform(article) return cvec_counts nlp = spacy.load('en_core_web_sm') def spacy_tokenizer(doc): """Function that serves as tokenizer in our pipeline Loads the 'en_core_web_sm' model, tokenize the string and perform pre processing. Preprocessing includes lemmatizing tokens as well as removing stop words and punctuations. Args: doc(str): sentence to tokenize. Returns: list: preprocessed tokens. """ punctuations = string.punctuation stop_words = spacy.lang.en.stop_words.STOP_WORDS tokens = nlp(doc) # Lemmatizing each token and converting each token into lowercase tokens = [word.lemma_.lower() for word in tokens if not word.is_space] # Removing stop words and punctuations tokens = [ word for word in tokens if word not in stop_words and word not in punctuations ] # return preprocessed list of tokens return tokens class TopicTrain(object): def __init__(self): #self.data_path=os.path.join(pathlib.Path().absolute(), data_path) pass def _loadArticles(self,path): """Loads the articles from each folder inside the path provided. Each folder will represent the category(label) of the articles. Args: path(str): path where the function will find the article subfolders. Returns: DataFrame: containing the articles and their category """ cat_article = [] for subdir, dirs, files in os.walk(path): for file in files: if '.txt' in file: category = subdir.split('/')[-1] f = open(os.path.join(subdir, file),'r', encoding='utf-8', errors='ignore') lines = f.readlines() lines = ' '.join(lines).replace('\n','') #list of lists: [category,article] cat_article.append([category,lines]) f.close() data = pd.DataFrame(cat_article) data.columns = ['category','article'] return data def train(self): """ Creates a pipeline and trains it. The pipeline contains one preprocessing step and the trainin of a random forest model. """ articles_df = self._loadArticles('data') #articles_df['article_lemmatized']=articles_df.article.map(lemmatize) nlp = spacy.load('en_core_web_sm') text_clf = Pipeline([('tfidf', TfidfVectorizer(tokenizer=spacy_tokenizer,min_df=3)),\ ('clf', RandomForestClassifier())]) text_clf.fit(articles_df['article'], articles_df['category']) model_path = os.path.join(str(pathlib.Path().absolute()), "model") model_file = model_path + "/rm_tfidf.pkl" if not os.path.isdir(model_path): os.makedirs(model_path) dump(text_clf, open(model_file, 'wb')) class TopicPredict(object): def __init__(self): try: sys.path.index(os.path.join(str(pathlib.Path().absolute()), "articles")) except ValueError: sys.path.append(os.path.join(str(pathlib.Path().absolute()), "articles")) model_path = os.path.join(str(pathlib.Path().absolute()), "articles/model") model_file = model_path + "/rm_tfidf.pkl" self.model = joblib.load(model_file) def _important_tokens(self,inp): """ Creates a dataframe with the top 10 most important tokens of the input article. The most important features are taken from the random forest model. Args: inp(str): article to process. Returns: DataFrame: Top 10 tokens sorted by descending order of improtance. """ tokens = spacy_tokenizer(inp) arr = [] for token in tokens: #get the index of the token in the model's vocabulary idx = self.model.steps[0][1].vocabulary_.get(token) if idx is not None:#Some tokens doesnt appear in the corpus. importance = self.model.steps[1][1].feature_importances_[idx] arr.append({'TOKEN':token, 'Importance':importance}) imp_df =
pd.DataFrame(arr)
pandas.DataFrame
# coding: utf-8 # In[ ]: from __future__ import division import numpy as np import pandas as pd from sklearn.model_selection import StratifiedKFold from sklearn.feature_extraction.text import CountVectorizer from sklearn.preprocessing import OneHotEncoder,LabelEncoder from sklearn.model_selection import train_test_split from sklearn.utils import resample from scipy import sparse import xgboost as xgb import lightgbm as lgb import cPickle import time import datetime import math import os from multiprocessing import cpu_count import gc import warnings warnings.filterwarnings('ignore') # In[ ]: # Constants define ROOT_PATH = '/home/kaholiu/xiaoxy/2018-Tencent-Lookalike/' ONLINE = 0 # In[ ]: target = 'label' train_len = 45539700 # 8798814 test1_len = 11729073 # 2265989 test2_len = 11727304 # 2265879 positive_num = 2182403 # 421961 # In[ ]: ########################################### Helper function ########################################### # In[ ]: def log(info): print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' ' + str(info)) # In[ ]: def merge_count(df, columns_groupby, new_column_name, type='uint64'): add = pd.DataFrame(df.groupby(columns_groupby).size()).reset_index() add.columns = columns_groupby + [new_column_name] df = df.merge(add, on=columns_groupby, how="left"); del add; gc.collect() df[new_column_name] = df[new_column_name].astype(type) return df # In[ ]: def preprocess_word(texts): pre_texts = [] for text in texts: words = text.split() pre_words = [] for word in words: pre_words.append('W' + word) pre_text = ' '.join(pre_words) pre_texts.append(pre_text) return pre_texts # In[ ]: def down_sample(df, df_feat): df_majority = df_feat[df[target]==0] df_minority = df_feat[df[target]==1] df_majority_downsampled = resample(df_majority, replace=False, # sample without replacement n_samples=positive_num*3, # to match minority class random_state=7) # reproducible results df_downsampled = pd.concat([df_majority_downsampled, df_minority]) del df_majority, df_minority, df_majority_downsampled return df_downsampled # In[ ]: ########################################### Read data ########################################### # In[ ]: ad_feature = pd.read_csv(ROOT_PATH + 'data/input/final/adFeature.csv', header=0, sep=',') user_feature = pd.read_csv(ROOT_PATH + 'data/input/final/userFeature.csv', header=0, sep=',') train = pd.read_csv(ROOT_PATH + 'data/input/final/train.csv', header=0, sep=',') test1 = pd.read_csv(ROOT_PATH + 'data/input/final/test1.csv', header=0, sep=',') test2 = pd.read_csv(ROOT_PATH + 'data/input/final/test2.csv', header=0, sep=',') test = test1.append(test2).reset_index(drop=True); del test1, test2; gc.collect() df = train.append(test).reset_index(drop=True) df = df.merge(ad_feature, on='aid', how='left') df = df.merge(user_feature, on='uid', how='left') del train, test, ad_feature, user_feature; gc.collect() df.loc[df[target] == -1, target] = 0 df.loc[train_len:, target] = -1 df[target] = df[target].astype(int) df = df.fillna('-1') # In[ ]: ########################################### Preprocess ########################################### # In[ ]: onehot_feature = ['LBS', 'age', 'carrier', 'consumptionAbility', 'education', 'gender', 'house', 'os', 'ct', 'advertiserId', 'campaignId', 'creativeId', 'adCategoryId', 'productId', 'productType'] for feature in onehot_feature: log(feature) try: df[feature] = LabelEncoder().fit_transform(df[feature].apply(int)) except: df[feature] = LabelEncoder().fit_transform(df[feature]) # In[ ]: vector_feature = ['appIdAction', 'appIdInstall', 'interest1', 'interest2', 'interest3', 'interest4', 'interest5', 'kw1', 'kw2', 'kw3', 'marriageStatus', 'topic1', 'topic2', 'topic3'] for feature in vector_feature: log(feature) df[feature] = preprocess_word(df[feature].values) # In[ ]: # Save aid+uid+label+creativeSize columns df_downsampled = down_sample(df, df[['aid', 'uid', 'label', 'creativeSize']]) cPickle.dump(df_downsampled, open(ROOT_PATH + 'data/output/lgb/final/feat/train+test1+test2/all(basic).p', 'wb')); del df_downsampled; gc.collect() # In[ ]: ########################################### Feature engineer ########################################### # In[ ]: log('Before feature engineer') log('Num of columns: ' + str(len(df.columns))) log('columns: ' + str(df.columns)) # In[ ]: # Stat features predictors_stat1 = [] gb_list = ['uid', 'aid', 'LBS', 'age', 'carrier', 'consumptionAbility', 'education', 'gender', 'house', 'os', 'ct', 'advertiserId', 'campaignId', 'creativeId', 'adCategoryId', 'productId', 'productType', 'marriageStatus'] for i in gb_list: log(i) df = merge_count(df, [i], 'count_gb_' + i, 'uint32') predictors_stat1.append('count_gb_' + i) gb_list = ['LBS', 'age', 'carrier', 'consumptionAbility', 'education', 'gender', 'house', 'os', 'ct'] for i in gb_list: log('aid_' + i) df = merge_count(df, ['aid', i], 'count_gb_aid_' + i, 'uint32') predictors_stat1.append('count_gb_aid_' + i) # Save features df_downsampled = down_sample(df, df[predictors_stat1]) df.drop(predictors_stat1, axis=1, inplace=True); gc.collect() cPickle.dump(df_downsampled, open(ROOT_PATH + 'data/output/lgb/final/feat/train+test1+test2/all(stat1).p', "wb")); del df_downsampled; gc.collect() # In[ ]: # Stat features predictors_stat2 = [] gb_user = ['uid', 'age', 'LBS'] gb_list = ['advertiserId', 'campaignId', 'creativeId', 'adCategoryId', 'productId', 'productType'] for u in gb_user: for i in gb_list: log(u + '_' + i) df = merge_count(df, [u, i], 'count_gb_%s_%s' % (u, i), 'uint32') predictors_stat2.append('count_gb_%s_%s' % (u, i)) # Save features df_downsampled = down_sample(df, df[predictors_stat2]) df.drop(predictors_stat2, axis=1, inplace=True); gc.collect() cPickle.dump(df_downsampled, open(ROOT_PATH + 'data/output/lgb/final/feat/train+test1+test2/all(stat2).p', "wb")); del df_downsampled; gc.collect() # In[ ]: # Stat features predictors_stat3 = [] vector_feature = ['appIdAction', 'appIdInstall', 'interest1', 'interest2', 'interest3', 'interest4', 'interest5', 'kw1', 'kw2', 'kw3', 'marriageStatus', 'topic1', 'topic2', 'topic3'] for feature in vector_feature: log(feature) df['len_' + feature] = [0 if var == 'W-1' else len(var.split()) for var in df[feature].values] predictors_stat3.append('len_' + feature) # Save features df_downsampled = down_sample(df, df[predictors_stat3]) df.drop(predictors_stat3, axis=1, inplace=True); gc.collect() cPickle.dump(df_downsampled, open(ROOT_PATH + 'data/output/lgb/final/feat/train+test1+test2/all(stat3).p', "wb")); del df_downsampled; gc.collect() # In[ ]: # Stat features df_stat1 = cPickle.load(open(ROOT_PATH + 'data/output/lgb/final/feat/train+test1+test2/all(stat1).p', 'rb')) df_stat2 = cPickle.load(open(ROOT_PATH + 'data/output/lgb/final/feat/train+test1+test2/all(stat2).p', 'rb')) df_stat = pd.concat([df_stat1, df_stat2], axis=1); del df_stat1, df_stat2; gc.collect() predictors_stat4 = [] gb_list = ['LBS', 'age', 'carrier', 'consumptionAbility', 'education', 'gender', 'house', 'os', 'ct'] for i in gb_list: log('aid_' + i) df_stat['ratio_aid_%s_to_aid' % i] = df_stat['count_gb_aid_' + i].astype(float) / df_stat['count_gb_aid'] df_stat['ratio_aid_%s_to_%s' % (i, i)] = df_stat['count_gb_aid_' + i].astype(float) / df_stat['count_gb_' + i] predictors_stat4.append('ratio_aid_%s_to_aid' % i) predictors_stat4.append('ratio_aid_%s_to_%s' % (i, i)) gb_user = ['uid', 'age', 'LBS'] gb_list = ['advertiserId', 'campaignId', 'creativeId', 'adCategoryId', 'productId', 'productType'] for u in gb_user: for i in gb_list: log(u + '_' + i) df_stat['ratio_%s_%s_to_%s' % (u, i, u)] = df_stat['count_gb_%s_%s' % (u, i)] / df_stat['count_gb_' + u] df_stat['ratio_%s_%s_to_%s' % (u, i, i)] = df_stat['count_gb_%s_%s' % (u, i)] / df_stat['count_gb_' + i] predictors_stat4.append('ratio_%s_%s_to_%s' % (u, i, u)) predictors_stat4.append('ratio_%s_%s_to_%s' % (u, i, i)) # Save features cPickle.dump(df_stat[predictors_stat4], open(ROOT_PATH + 'data/output/lgb/final/feat/train+test1+test2/all(stat4).p', "wb")); del df_stat; gc.collect() # In[ ]: gb_list = ['age', 'carrier', 'consumptionAbility', 'education'] predictors_aduser = [] df_aduser = df[[]] for i in gb_list: log(i) column_name = i df_onehot = pd.get_dummies(df[column_name], prefix=column_name) df_tmp = df_onehot.groupby(df.aid).transform(np.mean) df_tmp.columns = [i + '_gb_aid' for i in df_tmp.columns] df_aduser = pd.concat([df_aduser, df_tmp], axis=1) predictors_aduser += list(df_tmp.columns.values) df_tmp = df_tmp.groupby(df.uid).transform(np.mean) df_tmp.columns = [i + '_gb_uid' for i in df_tmp.columns] df_aduser = pd.concat([df_aduser, df_tmp], axis=1) predictors_aduser += list(df_tmp.columns.values) log(predictors_aduser) # Save features df_downsampled = down_sample(df, df_aduser) cPickle.dump(df_downsampled, open(ROOT_PATH + 'data/output/lgb/final/feat/train+test1+test2/all(aduser1).p', "wb")); del df_downsampled, df_aduser; gc.collect() # In[ ]: gb_list = ['gender', 'house', 'os', 'productType'] # 'adCategoryId', 'productId' predictors_aduser = [] df_aduser = df[[]] for i in gb_list: log(i) column_name = i df_onehot = pd.get_dummies(df[column_name], prefix=column_name) df_tmp = df_onehot.groupby(df.aid).transform(np.mean) df_tmp.columns = [i + '_gb_aid' for i in df_tmp.columns] df_aduser = pd.concat([df_aduser, df_tmp], axis=1) predictors_aduser += list(df_tmp.columns.values) df_tmp = df_tmp.groupby(df.uid).transform(np.mean) df_tmp.columns = [i + '_gb_uid' for i in df_tmp.columns] df_aduser = pd.concat([df_aduser, df_tmp], axis=1) predictors_aduser += list(df_tmp.columns.values) log(predictors_aduser) # Save features df_downsampled = down_sample(df, df_aduser) cPickle.dump(df_downsampled, open(ROOT_PATH + 'data/output/lgb/final/feat/train+test1+test2/all(aduser2).p', "wb")); del df_downsampled, df_aduser; gc.collect() # In[ ]: gb_list = ['age', 'carrier', 'consumptionAbility', 'education'] predictors_userad = [] df_userad = df[[]] for i in gb_list: log(i) column_name = i df_onehot =
pd.get_dummies(df[column_name], prefix=column_name)
pandas.get_dummies
# -*- coding: utf-8 -*- import base64 import logging from pathlib import Path from zipfile import ZipFile import numpy as np import pandas as pd import streamlit as st from PIL import Image def create_dataframe(tissue_final: float, fibrosis_final: float, csv_filename: str) -> None: data = [[tissue_final, fibrosis_final]] df =
pd.DataFrame(data, columns=["tissue_percentage", "fibrosis_percentage"])
pandas.DataFrame
# RHR Online Anomaly Detection & Alert Monitoring ###################################################### # Author: <NAME> # # Email: <EMAIL> # # Location: Dept.of Genetics, Stanford University # # Date: Oct 29 2020 # ###################################################### # uses raw heart rate and steps data (this stpes data doesn't have zeroes and need to innfer from hr datetime stamp) ## simple command # python rhrad_online_alerts.py --heart_rate hr.csv --steps steps.csv ## full command # python rhrad_online_alerts.py --heart_rate pbb_fitbit_oldProtocol_hr.csv --steps pbb_fitbit_oldProtocol_steps.csv --myphd_id pbb_RHR_online --figure1 pbb_RHR_online_anomalies.pdf --anomalies pbb_RHR_online_anomalies.csv --symptom_date 2020-01-10 --diagnosis_date 2020-01-11 --outliers_fraction 0.1 --random_seed 10 --baseline_window 744 --sliding_window 1 --alerts pbb_RHR_online_alerts.csv --figure2 pbb_RHR_online_alerts.pdf # python rhrad_online_alerts.py --heart_rate pbb_fitbit_oldProtocol_hr.csv \ # --steps pbb_fitbit_oldProtocol_steps.csv \ # --myphd_id pbb_RHR_online \ # --figure1 pbb_RHR_online_anomalies.pdf \ # --anomalies pbb_RHR_online_anomalies.csv \ # --symptom_date 2020-01-10 --diagnosis_date 2020-01-11 \ # --outliers_fraction 0.1 \ # --random_seed 10 \ # --baseline_window 744 --sliding_window 1 # --alerts pbb_RHR_online_alerts.csv \ # --figure2 pbb_RHR_online_alerts.pdf import warnings warnings.filterwarnings('ignore') import sys import argparse import pandas as pd import numpy as np import matplotlib matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! import matplotlib.pyplot as plt import matplotlib.dates as mdates #%matplotlib inline import seaborn as sns from statsmodels.tsa.seasonal import seasonal_decompose from sklearn.preprocessing import StandardScaler from sklearn.covariance import EllipticEnvelope #################################### parser = argparse.ArgumentParser(description='Find anomalies in wearables time-series data.') parser.add_argument('--heart_rate', metavar='', help ='raw heart rate count with a header = heartrate') parser.add_argument('--steps',metavar='', help ='raw steps count with a header = steps') parser.add_argument('--myphd_id',metavar='', default = 'myphd_id', help ='user myphd_id') parser.add_argument('--anomalies', metavar='', default = 'myphd_id_anomalies.csv', help='save predicted anomalies as a CSV file') parser.add_argument('--figure1', metavar='', default = 'myphd_id_anomalies.pdf', help='save predicted anomalies as a PDF file') parser.add_argument('--symptom_date', metavar='', default = 'NaN', help = 'symptom date with y-m-d format') parser.add_argument('--diagnosis_date', metavar='', default = 'NaN', help='diagnosis date with y-m-d format') parser.add_argument('--outliers_fraction', metavar='', type=float, default=0.1, help='fraction of outliers or anomalies') parser.add_argument('--random_seed', metavar='', type=int, default=10, help='random seed') parser.add_argument('--baseline_window', metavar='',type=int, default=744, help='baseline window is used for training (in hours)') parser.add_argument('--sliding_window', metavar='',type=int, default=1, help='sliding window is used to slide the testing process each hour') parser.add_argument('--alerts', metavar='', default = 'myphd_id_alerts.csv', help='save predicted anomalies as a CSV file') parser.add_argument('--figure2', metavar='', default = 'myphd_id_alerts.pdf', help='save predicted anomalies as a PDF file') args = parser.parse_args() # as arguments fitbit_oldProtocol_hr = args.heart_rate fitbit_oldProtocol_steps = args.steps myphd_id = args.myphd_id myphd_id_anomalies = args.anomalies myphd_id_figure1 = args.figure1 symptom_date = args.symptom_date diagnosis_date = args.diagnosis_date RANDOM_SEED = args.random_seed outliers_fraction = args.outliers_fraction baseline_window = args.baseline_window sliding_window = args.sliding_window myphd_id_alerts = args.alerts myphd_id_figure2 = args.figure2 #################################### class RHRAD_online: # Infer resting heart rate ------------------------------------------------------ def resting_heart_rate(self, heartrate, steps): """ This function uses heart rate and steps data to infer resting heart rate. It filters the heart rate with steps that are zero and also 12 minutes ahead. """ # heart rate data df_hr = pd.read_csv(fitbit_oldProtocol_hr) df_hr = df_hr.set_index('datetime') df_hr.index.name = None df_hr.index = pd.to_datetime(df_hr.index) # steps data df_steps = pd.read_csv(fitbit_oldProtocol_steps) df_steps = df_steps.set_index('datetime') df_steps.index.name = None df_steps.index = pd.to_datetime(df_steps.index) # merge dataframes #df_hr = df_hr.resample('1min').mean() #df_steps = df_steps.resample('1min').mean() # added "outer" paramter for merge function to adjust the script to the new steps format #df1 = pd.merge(df_hr, df_steps, left_index=True, right_index=True) df1 = pd.merge(df_hr, df_steps, left_index=True, right_index=True, how="outer") df1 = df1[pd.isnull(df1).any(axis=1)].fillna(0) df1 = df1.rename(columns={"value_x": "heartrate", "value_y": "steps"}) df1 = df1.resample('1min').mean() print(myphd_id) print("Data size (in miutes) before removing missing data") print(df1.shape) ax = df1.plot(figsize=(20,4), title=myphd_id) ax.figure.savefig(myphd_id+'_data.png') #print(df1) df1 = df1.dropna(how='any') df1 = df1.loc[df1['heartrate']!=0] print("Data size (in miutes) after removing missing data") print(df1.shape) #print(df1) # define RHR as the HR measurements recorded when there were less than two steps taken during a rolling time window of the preceding 12 minutes (including the current minute) df1['steps'] = df1['steps'].apply(np.int64) df1['steps_window_12'] = df1['steps'].rolling(12).sum() df1 = df1.loc[(df1['steps_window_12'] == 0 )] print(df1['heartrate'].describe()) print(df1['steps_window_12'].describe()) # impute missing data #df1 = df1.resample('1min').mean() #df1 = df1.ffill() print("No.of timesteps for RHR (in minutes)") print(df1.shape) return df1 # Pre-processing ------------------------------------------------------ def pre_processing(self, resting_heart_rate): """ This function takes resting heart rate data and applies moving averages to smooth the data and downsamples to one hour by taking the avegare values """ # smooth data df_nonas = df1.dropna() df1_rom = df_nonas.rolling(400).mean() # resample df1_resmp = df1_rom.resample('1H').mean() df2 = df1_resmp.drop(['steps'], axis=1) df2 = df2.dropna() print("No.of timesteps for RHR (in hours)") print(df2.shape) return df2 # Seasonality correction ------------------------------------------------------ def seasonality_correction(self, resting_heart_rate, steps): """ This function takes output pre-processing and applies seasonality correction """ sdHR_decomposition = seasonal_decompose(sdHR, model='additive', freq=1) sdSteps_decomposition = seasonal_decompose(sdSteps, model='additive', freq=1) sdHR_decomp = pd.DataFrame(sdHR_decomposition.resid + sdHR_decomposition.trend) sdHR_decomp.rename(columns={sdHR_decomp.columns[0]:'heartrate'}, inplace=True) sdSteps_decomp = pd.DataFrame(sdSteps_decomposition.resid + sdSteps_decomposition.trend) sdSteps_decomp.rename(columns={sdSteps_decomp.columns[0]:'steps_window_12'}, inplace=True) frames = [sdHR_decomp, sdSteps_decomp] data = pd.concat(frames, axis=1) #print(data) #print(data.shape) return data # Train model and predict anomalies ------------------------------------------------------ def online_anomaly_detection(self, data_seasnCorec, baseline_window, sliding_window): """ # split the data, standardize the data inside a sliding window # parameters - 1 month baseline window and 1 hour sliding window # fit the model and predict the test set """ for i in range(baseline_window, len(data_seasnCorec)): data_train_w = data_seasnCorec[i-baseline_window:i] # train data normalization ------------------------------------------------------ data_train_w += 0.1 standardizer = StandardScaler().fit(data_train_w.values) data_train_scaled = standardizer.transform(data_train_w.values) data_train_scaled_features = pd.DataFrame(data_train_scaled, index=data_train_w.index, columns=data_train_w.columns) data = pd.DataFrame(data_train_scaled_features) data_1 = pd.DataFrame(data).fillna(0) data_1['steps'] = '0' data_1['steps_window_12'] = (data_1['steps']) data_train_w = data_1 data_train.append(data_train_w) data_test_w = data_seasnCorec[i:i+sliding_window] # test data normalization ------------------------------------------------------ data_test_w += 0.1 data_test_scaled = standardizer.transform(data_test_w.values) data_scaled_features = pd.DataFrame(data_test_scaled, index=data_test_w.index, columns=data_test_w.columns) data = pd.DataFrame(data_scaled_features) data_1 = pd.DataFrame(data).fillna(0) data_1['steps'] = '0' data_1['steps_window_12'] = (data_1['steps']) data_test_w = data_1 data_test.append(data_test_w) # fit the model ------------------------------------------------------ model = EllipticEnvelope(random_state=RANDOM_SEED, support_fraction=0.7, contamination=outliers_fraction).fit(data_train_w) # predict the test set preds = model.predict(data_test_w) #preds = preds.rename(lambda x: 'anomaly' if x == 0 else x, axis=1) dfs.append(preds) # Merge predictions ------------------------------------------------------ def merge_test_results(self, data_test): """ Merge predictions """ # concat all test data (from sliding window) with their datetime index and others data_test = pd.concat(data_test) # merge predicted anomalies from test data with their corresponding index and other features preds = pd.DataFrame(dfs) preds = preds.rename(lambda x: 'anomaly' if x == 0 else x, axis=1) data_test_df = pd.DataFrame(data_test) data_test_df = data_test_df.reset_index() data_test_preds = data_test_df.join(preds) return data_test_preds # Positive Anomalies ----------------------------------------------------------------- """ Selects anomalies in positive direction and saves in a CSV file """ def positive_anomalies(self, data): a = data.loc[data['anomaly'] == -1, ('index', 'heartrate')] positive_anomalies = a[(a['heartrate']> 0)] # Anomaly results positive_anomalies['Anomalies'] = myphd_id positive_anomalies.columns = ['datetime', 'std.rhr', 'name'] positive_anomalies.to_csv(myphd_id_anomalies, header=True) return positive_anomalies # Alerts ------------------------------------------------------ def create_alerts(self, anomalies, data, fitbit_oldProtocol_hr): """ # creates alerts at every 24 hours and send at 9PM. # visualise alerts """ # function to assign different alert names # summarize hourly alerts def alert_types(alert): if alert['alerts'] >=6: return 'RED' elif alert['alerts'] >=1: return 'YELLOW' else: return 'GREEN' # summarize hourly alerts #anomalies.columns = ['datetime', 'std.rhr', 'name'] anomalies = anomalies[['datetime']] anomalies['datetime'] = pd.to_datetime(anomalies['datetime'], errors='coerce') anomalies['alerts'] = 1 anomalies = anomalies.set_index('datetime') anomalies = anomalies[~anomalies.index.duplicated(keep='first')] anomalies = anomalies.sort_index() alerts = anomalies.groupby(pd.Grouper(freq = '24H', base=21)).cumsum() # apply alert_types function alerts['alert_type'] = alerts.apply(alert_types, axis=1) alerts_reset = alerts.reset_index() #print(alerts_reset) # save alerts #alerts.to_csv(myphd_id_alerts, mode='a', header=True) # summarize hourly alerts to daily alerts daily_alerts = alerts_reset.resample('24H', on='datetime', base=21, label='right').count() daily_alerts = daily_alerts.drop(['datetime'], axis=1) #print(daily_alerts) # function to assign different alert names def alert_types(alert): if alert['alert_type'] >=6: return 'RED' elif alert['alert_type'] >=1: return 'YELLOW' else: return 'GREEN' # apply alert_types function daily_alerts['alert_type'] = daily_alerts.apply(alert_types, axis=1) # merge missing 'datetime' with 'alerts' as zero aka GREEN data1 = data[['index']] data1['alert_type'] = 0 data1 = data1.rename(columns={"index": "datetime"}) data1['datetime'] = pd.to_datetime(data1['datetime'], errors='coerce') data1 = data1.resample('24H', on='datetime', base=21, label='right').count() data1 = data1.drop(data1.columns[[0,1]], axis=1) data1 = data1.reset_index() data1['alert_type'] = 0 data3 = pd.merge(data1, daily_alerts, on='datetime', how='outer') data4 = data3[['datetime', 'alert_type_y']] data4 = data4.rename(columns={ "alert_type_y": "alert_type"}) daily_alerts = data4.fillna("GREEN") daily_alerts = daily_alerts.set_index('datetime') daily_alerts = daily_alerts.sort_index() # merge alerts with main data and pass 'NA' when there is a missing day instead of 'GREEN' df_hr = pd.read_csv(fitbit_oldProtocol_hr) df_hr['datetime'] = pd.to_datetime(df_hr['datetime'], errors='coerce') df_hr = df_hr.resample('24H', on='datetime', base=21, label='right').mean() df_hr = df_hr.reset_index() df_hr = df_hr.set_index('datetime') df_hr.index.name = None df_hr.index =
pd.to_datetime(df_hr.index)
pandas.to_datetime
### HI_Waterbird_Repro_DataJoinMerge_v3.py ### Version: 5/7/2020 ### Author: <NAME>, <EMAIL>, (503) 231-6839 ### Abstract: This Python 3 script pulls data from the HI Waterbirds Reproductive Success ArcGIS Online feature service and performs joins and merges to result in a combined CSV dataset. import arcpy import pandas as pd from arcgis import GIS import time, os, fnmatch, shutil ### ArcGIS Online stores date-time information in UTC by default. This function converts time zones and can be used to convert from UTC ("UTC") to Hawaii standard time ("US/Hawaii"; UTC -10). from datetime import datetime from pytz import timezone def change_timezone_of_field(df, source_date_time_field, new_date_time_field, source_timezone, new_timezone): """Returns the values in *source_date_time_field* with its timezone converted to a new timezone within a new field *new_date_time_field* : param df: The name of the spatially enabled or pandas DataFrame containing datetime fields : param source_date_time_field: The name of the datetime field whose timezone is to be changed : param new_date_time_field: The name of the new datetime field : param source_timezone: The name of the source timezone : param new_timezone: The name of the converted timezone. For possible values, see https://gist.github.com/heyalexej/8bf688fd67d7199be4a1682b3eec7568 """ # Define the source timezone in the source_date_time_field df[source_date_time_field] = df[source_date_time_field].dt.tz_localize(source_timezone) # Convert the datetime in the source_date_time_field to the new timezone in a new field called new_date_time_field df[new_date_time_field] = df[source_date_time_field].dt.tz_convert(new_timezone) ### Allow authentication via login to U.S. Fish & Wildlife Service ArcGIS Online account via ArcGIS Pro gis = GIS("pro") ### Enter path for local file saving # uncomment next line to use ArcGIS interface, otherwise hard coding out_workspace out_workspace = arcpy.GetParameterAsText(0) # out_workspace = "C:/Users/kso/Desktop/" ### Paths to ArcGIS Online data # To populate Service ItemId, go to Feature Service webpage and in bottom right corner, click on the View link. # Current Feature Service webpage: https://fws.maps.arcgis.com/home/item.html?id=55275a4a0dc54c1c8dcab604b65a88f0 ServiceItemID = gis.content.get("55275a4a0dc54c1c8dcab604b65a88f0") ### There are separate methods for pulling spatial versus non-spatial data into Python. Spatial layers will become Spatially Enabled DataFrame objects. Non-spatial data will become regular pandas DataFrame objects. ## Define variables pointing to spatial layers NestLocationLyr = ServiceItemID.layers[0] BroodLocationLyr = ServiceItemID.layers[1] CountUnitsLyr = ServiceItemID.layers[2] ## Create Spatially Enabled DataFrame objects sedfNestLocation = pd.DataFrame.spatial.from_layer(NestLocationLyr) sedfBroodLocation = pd.DataFrame.spatial.from_layer(BroodLocationLyr) sedfCountUnits = pd.DataFrame.spatial.from_layer(CountUnitsLyr) ## Define variables point to non-spatial (tabular) data NestVisitData = r"https://services.arcgis.com/QVENGdaPbd4LUkLV/arcgis/rest/services/Reproductive_Success_Survey_BETA/FeatureServer/6" ## Convert AGOL table to NumPy Array and then to pandas DataFrames naNestVisitData = arcpy.da.TableToNumPyArray(NestVisitData,["OBJECTID","Date","ObserverName","NestCode","NumEggsObservedText","WaterLevel","Status","FailureCause","FailureComments","Bands","NestComments","GlobalID","NestLocationGlobalID","created_user","created_date","last_edited_user","last_edited_date"]) dfNestVisitData =
pd.DataFrame(naNestVisitData)
pandas.DataFrame
import enum import json from glob import glob from typing import Dict, List, Tuple import re import datetime as dt from collections import Counter import os from numpy.random.mtrand import sample from tqdm.auto import tqdm import numpy as np from numpy.random.mtrand import sample import pandas as pd import torch from sklearn.metrics import roc_auc_score from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import TfidfVectorizer #TODO cant import rn... from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoConfig RAW_BASE_PATH = "../data/raw/" ADMISSIONS_FNAME = "ADMISSIONS.csv.gz" DIAGNOSES_FNAME = "DIAGNOSES_ICD.csv.gz" LABEVENTS_FNAME = "LABEVENTS.csv.gz" PRESCRIPTIONS_FNAME = "PRESCRIPTIONS.csv.gz" PATIENTS_FNAME = "PATIENTS.csv.gz" PATIENTS_PATH = os.path.join(RAW_BASE_PATH, PATIENTS_FNAME) PATH_PROCESSED = "../data/processed/" NOTES_PATH = os.path.join(PATH_PROCESSED, 'SAMPLE_NOTES.csv') EMBEDDINGS_BASE_PATH = '../data/embeddings/' SENTENCE_TENSOR_PATH = "../data/embeddings/99283.pt" EMBEDDING_TEMPLATE = "../data/embeddings/{subj_id}.pt" PRETRAINED_MODEL_PATH = 'deepset/covid_bert_base' SAMPLE_SIZE = 10000 RANDOM_SEED = 1 TRAIN_SIZE = 0.8 # We need to take into account only the events that happened during the observation window. The end of observation window is N days before death for deceased patients and date of last event for alive patients. We can have several sets of events (e.g. labs, diags, meds), so we need to choose the latest date out of those. OBSERVATION_WINDOW = 2000 PREDICTION_WINDOW = 50 class ModelType(enum.Enum): Baseline = 'Baseline' TF_IDF = 'TF_IDF' Embeddings = 'Embeddings' ######################### ML STUFF # common ML def get_training_and_target(deceased_to_date: pd.Series, *feats_to_train_on: List[pd.DataFrame], is_baseline = False, improved_df = None) -> Tuple[pd.DataFrame, pd.Series]: feats_to_train_on = [*feats_to_train_on] if is_baseline: df_final = pd.concat(feats_to_train_on, axis=1).fillna(0) target = pd.Series(df_final.index.isin(deceased_to_date), index=df_final.index, name='target') return df_final, target if improved_df is None: raise ValueError('should specify @improved_df if this is not a baseline model') df_final = pd.concat(feats_to_train_on, axis=1).fillna(0) improved_df = improved_df[improved_df.index.isin(df_final.index)] feats_to_train_on = [*feats_to_train_on, improved_df] df_final = pd.concat(feats_to_train_on, axis=1).fillna(0) target = pd.Series(df_final.index.isin(deceased_to_date), index=df_final.index, name='target') return df_final, target def _train_and_predict(df: pd.DataFrame, target: pd.Series, train_loc: pd.Series, classifier) -> np.array: classifier.fit(df[train_loc], target[train_loc]) pred = classifier.predict_proba(df[~train_loc])[:, 1] return pred def train_cl_model(model_type: ModelType, df: pd.DataFrame, train_ids: list, target: pd.Series) -> None: train_loc = df.index.isin(train_ids) cl = RandomForestClassifier(random_state=RANDOM_SEED) pred = _train_and_predict(df, target, train_loc, cl) print(f'Roc score RandomForestClassifier {model_type.value}: {roc_auc_score(target[~train_loc], pred)}') feature_importances = pd.Series(cl.feature_importances_, index=df.columns).sort_values(ascending=False).iloc[:10] print(f'Feature importances {model_type.value}: {feature_importances}\n') # embedding ML # TODO TODO refactor this to work on batches of notess def get_vector_for_text(text: str, tokenizer: AutoTokenizer, model: AutoModelForMaskedLM) -> torch.Tensor: """This is ugly and slow.""" encoding = tokenizer(text, add_special_tokens=True, truncation=True, padding="max_length", return_attention_mask=True, return_tensors="pt") with torch.no_grad(): outputs = model(**encoding) hs = outputs.hidden_states token_embeddings = torch.stack(hs, dim=0) token_embeddings = torch.squeeze(token_embeddings, dim=1) token_embeddings = token_embeddings.permute(1,0,2) token_vecs = hs[-2][0] text_embedding = torch.mean(token_vecs, dim=0) return text_embedding def save_embedding(last_note, tokenizer: AutoTokenizer, model: AutoModelForMaskedLM) -> None: for row_num, row in tqdm(last_note.iloc[0:].iterrows()): text = row['TO_TOK'] subj_id = row['SUBJECT_ID'] embedding = get_vector_for_text(text, tokenizer, model) torch.save(embedding, EMBEDDING_TEMPLATE.format(subj_id=subj_id)) def get_saved_embeddings() -> Tuple[List[int], List[np.array]]: subj_ids = [] embeddings = [] for file in tqdm(glob(os.path.join(EMBEDDINGS_BASE_PATH, '*'))): name = file.split('/')[-1] subj_id = int(name.split('.')[0]) embedding = torch.load(file) subj_ids.append(subj_id) embeddings.append(np.array(embedding)) return subj_ids, embeddings ################# def get_patient_sample() -> Tuple[set, pd.Series, pd.Series]: patients = pd.read_csv(PATIENTS_PATH) #sampling random patients patients_sample = patients.sample(n=1000, random_state=RANDOM_SEED) sample_ids = set(patients_sample.SUBJECT_ID) # TODO why read-write? with open(os.path.join(PATH_PROCESSED, "SAMPLE_IDS.json"), 'w') as f: json.dump({'ids': list(sample_ids)}, f) with open(os.path.join(PATH_PROCESSED, "SAMPLE_IDS.json"), 'r') as f: sample_ids = set(json.load(f)['ids']) patients_sample = patients[patients.SUBJECT_ID.isin(sample_ids)] # Moratality set deceased_to_date = patients_sample[patients_sample.EXPIRE_FLAG == 1] \ .set_index('SUBJECT_ID').DOD.map(lambda x: pd.to_datetime(x).date()).to_dict() return sample_ids, patients_sample, deceased_to_date ## TODO Feature engr. helpers def get_data_for_sample(sample_ids: set, file_name: str, chunksize: int = 10_000) -> pd.DataFrame: """Get the data only relevant for the sample.""" full_path = os.path.join(RAW_BASE_PATH, file_name) iterator = pd.read_csv(full_path, iterator=True, chunksize=chunksize) return pd.concat([chunk[chunk.SUBJECT_ID.isin(sample_ids)] for chunk in tqdm(iterator)]) def find_mean_dose(dose: str) -> float: if
pd.isnull(dose)
pandas.isnull
import pandas as pd import datetime as dt from ._db_data import DBData class RDA(DBData): """A class that contains all the Rapid Diagnostic Analytics tests""" def __init__(self): super().__init__() db_obj = DBData() # assign class variables self.df_ta = db_obj.retrieve_data('cln_shift') self.df_pa = db_obj.retrieve_data('cln_payroll') self.df_master = db_obj.retrieve_data('cln_emp_master') def test_1(self): """Payslips: Annualised salaries - Detect indicators of employee on annualised salary & compare to \ “like for like” employees paid hourly rates.""" # Aggregate salaried employees net income and hours worked # Find like for like hourly worker and times that amount by the total salaried employees hour and see difference. # I've got employee master data in the folder. # Brining in payroll dataset & master dataset df_pa = self.df_pa.__deepcopy__() df_master = self.df_master.__deepcopy__() # Creating a list of just Salary employees salary_emp = list(df_pa['emp_id'].loc[df_pa['pay_type']=='SAL']) # Removing duplicates from these emp_ids' def Remove(duplicate): final_list = [] for num in duplicate: if num not in final_list: final_list.append(num) return final_list salary_emp = Remove(salary_emp) # filtering the payroll data to include just salaried employees df_sal_emp = df_pa.loc[df_pa['emp_id'].isin(salary_emp)] # Filtering to remove all pay_types said to be excluded from the dataset def sal_groupby(df_sal_emp): df_sal_emp_exc = df_sal_emp.loc[df_sal_emp['mapping_inclusion'] != 'Exclude'] # Aggregating by emp_id to give total pay and total hours agg_df_sal_emp = df_sal_emp_exc.groupby(['emp_id', 'position_name', 'level', 'employment_status', 'venue']).agg( total_pay=pd.NamedAgg(column='period_amount', aggfunc=sum), total_hours=pd.NamedAgg(column='hours_for_period', aggfunc=sum)).reset_index() # Adding in the amount per hour worked agg_df_sal_emp['amount_per_hour'] = agg_df_sal_emp['total_pay'] / agg_df_sal_emp['total_hours'] return agg_df_sal_emp # Group by for salaried employees agg_df_sal_emp = sal_groupby(df_pa.loc[df_pa['emp_id'].isin(salary_emp)]) # Adding a dummy key to show emp is salary agg_df_sal_emp['is_emp_sal'] = 1 # Group by for non salaried employees agg_df_non_sal_emp = sal_groupby(df_pa.loc[~df_pa['emp_id'].isin(salary_emp)]) # Adding a dummy key to show emp is NOT salary agg_df_non_sal_emp['is_emp_sal'] = 0 # Aggregating together agg_df_results = agg_df_sal_emp.append(agg_df_non_sal_emp) # Returning converted to dict return agg_df_results.to_dict(orient='list') def test_2(self): """Payslips: “Fully loaded” flat rates - Detect indicators of employee on loaded flat rates & compare to \ “like for like” employees paid hourly rates.""" # For rockpool we dont have this! pass def test_3(self): """Payslips: Allowance consumption - Look for “like for like” employment and assess consistency of pay element \ consumption across the population.""" # within the payroll data key we have a flag for allowances # Sum the allowances for each employee across the entire period # Give a total of the hours work for period number of units of allowance awarded to them # Brining in payroll dataset. df_pa = self.df_pa.__deepcopy__() # Filtering for just the allowances df_pa = df_pa.loc[df_pa['is_allowance'] == 'y'] # aggregating over emp_id allowance_agg_df = df_pa.groupby(['emp_id', 'position_name', 'mapping_codes', 'mapping_description']).agg( total_allowance_paid=pd.NamedAgg(column='period_amount', aggfunc=sum), total_allowance_hours=pd.NamedAgg(column='hours_for_period', aggfunc=sum)).reset_index() return allowance_agg_df.to_dict(orient='list') def test_4(self): """Payslips: Inaccurate classification or inconsistent rates - Look for “like for like” employment and \ determine deviation from mode rates paid at classification.""" # Group role, hr rate and count of all employees across data set. # e.g if we have a cook who is being paid differently than all the others! # Brining in payroll dataset. df_pa = self.df_pa.__deepcopy__() # Filtering for just the includes work codes as given by the rockpool logic df_pa_inc = df_pa.loc[df_pa['mapping_inclusion'] != 'Exclude'] # Aggregating results. df_pa_inc_agg = df_pa_inc.groupby(['emp_id', 'position_name']).agg( total_pay=pd.NamedAgg(column='period_amount', aggfunc=sum), total_hours=pd.NamedAgg(column='hours_for_period', aggfunc=sum)).reset_index() # Adding in the amount per hour worked df_pa_inc_agg['amount_per_hour'] = df_pa_inc_agg['total_pay'] / df_pa_inc_agg['total_hours'] return df_pa_inc_agg.to_dict(orient='list') def test_5(self): """Payslips: Superannuation configuration and interpretation - Independent projection of super contributions \ and compare to actual payments. Challenge interpretations.""" # Map which payments should have super # and then reconcile it to actual super payments # However Rockpool dont have super in their data so can't do. pass def test_6(self): """Time & attendance: Employee “casualness” - Determine the regularity of employee working patterns rate an \ employee’s likelihood to be casual/non-casual.""" # Layout: if employees are working the same rough hours on each day consistently. weekday = ['Mon', 'Tue', 'Wed', 'Thur', 'Fri', 'Sat', 'Sun'] df_ta = self.df_ta.__deepcopy__() df_ta['shift_date'] = df_ta['shift_start'].dt.date.apply(lambda x: x.strftime('%Y-%m-%d')) # Calculating the length of the shift in minutes df_ta['shift_len_mins'] = (df_ta['shift_end'] - df_ta['shift_start']).dt. \ total_seconds().div(60).astype(int) # The day of the week with Monday=0, Sunday=6. I have changed to str for analysis df_ta['day_of_week'] = df_ta['shift_start'].dt.dayofweek.astype(int).apply(lambda x: weekday[x]) # Dummy to show if shift starts in AM or PM df_ta['am'] = df_ta['shift_start'].apply(lambda x: 'am' if x.time() < dt.time(12) else 'pm') # creating a concat to show day and AM or PM of shift df_ta['shift_overview'] = df_ta['day_of_week'] + '_' + df_ta['am'] # Creating concat to feed into remove duplicates to get rid of split shifts per data and AM or PM e.g # Someone works two PM shifts df_ta['emp_shift_date_am_pm'] = df_ta['emp_id'] + '_' +\ df_ta['shift_date'] + \ '_' + df_ta['am'] # Taking a snap shot of df_ta to be returned before deduplication to give a calendar heat map. # df_ta['shift_start'] = df_ta['shift_start'].apply(lambda x: x.strftime('%d/%-m/%y' '%H:%M:%S')) # df_ta['shift_end'] = df_ta['shift_end'].apply(lambda x: x.strftime('%d/%-m/%y' '%H:%M:%S')) cal_heat_map = df_ta[:] return cal_heat_map.to_dict() def test_7(self, shift_duration_hrs, min_break_duration_mins): """Time & attendance: Rest and meal breaks - Analyse shift patterns and timing and length of breaks across \ employee cohorts to find potentially missing entitlements.""" # If employees are taking the required break each shift # with tsid_start_date being the same day the break is calculated by the time between the end of the last shift # and the start of the next shift. # two parameters.. length of shift worked, length of break # Output - Which employees arnt taking the breaks df_ta = self.df_ta.__deepcopy__() # Creating the shift_date column for anlysis df_ta['shift_date'] = df_ta['shift_start'].dt.date.apply(lambda x: x.strftime('%Y-%m-%d')) # Sort by emp_id, shift date, shift start time df_ta = df_ta.sort_values(by=['emp_id', 'shift_start'], ascending=True) # Get shift start and end time for each employee on each day shifts = df_ta.groupby(['emp_id', 'shift_date']).agg({'shift_start': 'min', 'shift_end': 'max'}) shifts.columns = ['min_shift_start', 'max_shift_end'] shifts = shifts.reset_index() shifts['max_shift_end'] = pd.to_datetime(shifts['max_shift_end']) shifts['min_shift_start'] = pd.to_datetime(shifts['min_shift_start']) # Get net shift duration shifts['shift_dur'] = shifts['max_shift_end'] - shifts['min_shift_start'] # 'timedelta' shift duration shifts['shift_dur'] = shifts['shift_dur'].dt.total_seconds().div(3600) # convert timedelta to hours float # Flag if employee was entitled to a break (shift length >= 6 hours) shifts['break_flag'] = 0 shifts.loc[shifts['shift_dur'] >= shift_duration_hrs, 'break_flag'] = 1 # Merge shift duration and break flag with df_ta merged_df = df_ta.merge(shifts, how='left', on=['emp_id', 'shift_date']) # print(results) # test for faulty date # Append row-shifted columns 'emp_id', 'shift_date' and 'shift_start_time' to calculate break duration merged_df['next_emp_id'] = merged_df['emp_id'].shift(periods=-1).fillna('') # collect next row's emp_id merged_df['next_shift_date'] = merged_df['shift_date'].shift(periods=-1).fillna( pd.to_datetime('1900-01-01 00:00:00')) # collect next rows' shift date merged_df['next_shift_start_time'] = merged_df['shift_start'].shift(periods=-1).fillna( pd.to_datetime('1900-01-01 00:00:00')) # collect next row's start time # Check using above if the next row is part of the same shift (same emp id and shift start date) merged_df['next_shift_flag'] = 0 merged_df.loc[(merged_df['emp_id'] == merged_df['next_emp_id']) & (merged_df['shift_date'] == merged_df['next_shift_date']), 'next_shift_flag'] = 1 # flag if same shift merged_df['next_shift_start_time'] = pd.to_datetime(merged_df['next_shift_start_time']) merged_df['shift_end'] = pd.to_datetime(merged_df['shift_end']) # If both id and shift match, then calculate timedelta merged_df.loc[merged_df['next_shift_flag'] == 1, 'break_dur'] = merged_df['next_shift_start_time'] - \ merged_df['shift_end'] merged_df.loc[merged_df['break_dur'].isnull(), 'break_dur'] = pd.to_timedelta( 0) # replace null with 0 timedelta # convert timedelta to integer minutes merged_df['break_dur'] = merged_df['break_dur'].dt.total_seconds().div(60).astype(int) # generate list of shifts where employee did not take entitled break, or break taken is less than 30 min merged_df['break_not_taken'] = 0 merged_df.loc[(merged_df['break_flag'] == 1) & (merged_df['next_shift_flag']) & (merged_df['break_dur'] < min_break_duration_mins), 'break_not_taken'] = 1 return merged_df.to_dict(orient='list') # Ollie def test_8(self): """Time & attendance: Minimum and maximum engagement periods - Analyse average hours worked on daily, weekly \ and fortnightly basis to identify potential non-compliance.""" df_ta = self.df_ta.__deepcopy__() # Calculating the length of the shift in minutes df_ta['shift_len_mins'] = (df_ta['shift_end'] - df_ta['shift_start']).dt. \ total_seconds().div(60).astype(int) # Creating a dataframe with just unique emp_id results = pd.DataFrame(df_ta['emp_id'].unique(), columns=['emp_id']) # 'D' Calculates the sum of the minutes worked for each employee for each day. # 'W' Calculates the sum of the minutes worked for each employee for each week. The week starts on Monday and\ # runs to Sunday. The given shift_date in the below table is the last dat of that week. # 'SM' Calculates the sum of the minutes worked for each employee for each fortnight. The fortnight starts on \ # the 1st of each month and runs to the 14th of the month. The shift_date given is the start of the fortnight. freq_list = ['D', 'W', 'SM'] # Looping over the frequencies in the freq_list for freq in freq_list: # Getting the mean hours worked for each employee for each frequency example = df_ta.groupby(['emp_id', pd.Grouper(key='shift_start', freq=freq)])['shift_len_mins'] \ .sum().reset_index().sort_values('shift_start').groupby(['emp_id']).mean() / 60 # Saving the results to the results table results = results.merge(example, left_on='emp_id', right_on='emp_id') # renaming the results table results.columns = ['emp_id', 'daily_ave_hr', 'weekly_ave_hr', 'fortnightly_ave_hr'] # R Rounding the results to 2DP results['daily_ave_hr'] = round(results['daily_ave_hr'], 2) results['weekly_ave_hr'] = round(results['weekly_ave_hr'], 2) results['fortnightly_ave_hr'] = round(results['fortnightly_ave_hr'], 2) return results.to_dict(orient='list') # Jack def test_9(self, min_gap): """Time & attendance: Gaps between shifts - Analyse gaps between shifts to identify potential non-compliance \ if not paid at the correct rate.""" # difference between tsid_act_end_time and tsid_act_start_time of the next shift # Looking for employee needing to have certain length of break between shifts # Parameter: Minimum amount of time off between shifts required (for example 10) # output - Employees who breach this / all occurrences TEST df_ta = self.df_ta.__deepcopy__() # Sort by emp_id, shift date, shift start time df_ta = df_ta.sort_values(by=['emp_id', 'shift_start'], ascending=True) # Creating the shift_date column for anlysis df_ta['shift_date'] = df_ta['shift_start'].dt.date.apply(lambda x: x.strftime('%Y-%m-%d')) # Get shift start and end time for each employee on each day --- CHECK IF THIS IS REDUNDANT? shifts = df_ta.groupby(['emp_id', 'shift_date']).agg({'shift_start': 'min', 'shift_end': 'max'}) shifts.columns = ['min_shift_start', 'max_shift_end'] shifts = shifts.reset_index() # Append row-shifted columns 'emp_id', 'shift_date' and 'min_shift_start_time' to calculate break between shifts shifts['next_emp_id'] = shifts['emp_id'].shift(periods=-1).fillna('') # collect next row's emp_id shifts['next_shift_date'] = shifts['shift_date'].shift(periods=-1).fillna( pd.to_datetime('1900-01-01 00:00:00')) # collect next rows' shift date shifts['next_shift_start'] = shifts['min_shift_start'].shift(periods=-1).fillna( pd.to_datetime('1900-01-01 00:00:00')) # collect next row's start time shifts['next_shift_start'] = pd.to_datetime(shifts['next_shift_start']) shifts['max_shift_end'] = pd.to_datetime(shifts['max_shift_end']) # Calculate timedelta shifts.loc[shifts['emp_id'] == shifts['next_emp_id'], 'shift_gap'] = shifts['next_shift_start'] - shifts[ 'max_shift_end'] shifts.loc[shifts['shift_gap'].isnull(), 'shift_gap'] = pd.to_timedelta(0) # replace null with 0 timedelta # Convert timedelta to float hours shifts['shift_gap'] = shifts['shift_gap'].dt.total_seconds().div(3600) # Flag if employee was entitled to a break (shift gap < 10 hours) shifts['min_gap_not_taken'] = 0 shifts.loc[(shifts['shift_gap'] > 0.0) & (shifts['shift_gap'] < min_gap), 'min_gap_not_taken'] = 1 return shifts.to_dict(orient='list') # Philip def test_10(self): """Time & attendance: Consecutive shifts - Analyse number of consecutive shifts worked to identify potential \ non-compliance if not paid at the correct rate.""" df_ta = self.df_ta.__deepcopy__() # Creating the shift_date column for anlysis df_ta['shift_date'] = df_ta['shift_start'].dt.date.apply(lambda x:
pd.to_datetime(x)
pandas.to_datetime
import pandas as pd from pandas_datareader.base import _BaseReader from pandas_datareader.exceptions import DEP_ERROR_MSG, ImmediateDeprecationError class RobinhoodQuoteReader(_BaseReader): """ Read quotes from Robinhood DEPRECATED 1/2019 - Robinhood ended support for the endpoints used by this reader Parameters ---------- symbols : {str, List[str]} String symbol of like of symbols start : None Quotes are near real-time and so this value is ignored end : None Quotes are near real-time and so this value is ignored retry_count : int, default 3 Number of times to retry query request. pause : float, default 0.1 Time, in seconds, of the pause between retries. session : Session, default None requests.sessions.Session instance to be used freq : None Quotes are near real-time and so this value is ignored """ _format = "json" def __init__( self, symbols, start=None, end=None, retry_count=3, pause=0.1, timeout=30, session=None, freq=None, ): raise ImmediateDeprecationError(DEP_ERROR_MSG.format("Robinhood")) super(RobinhoodQuoteReader, self).__init__( symbols, start, end, retry_count, pause, timeout, session, freq ) if isinstance(self.symbols, str): self.symbols = [self.symbols] self._max_symbols = 1630 self._validate_symbols() self._json_results = [] def _validate_symbols(self): if len(self.symbols) > self._max_symbols: raise ValueError( "A maximum of {0} symbols are supported " "in a single call.".format(self._max_symbols) ) def _get_crumb(self, *args): pass @property def url(self): """API URL""" return "https://api.robinhood.com/quotes/" @property def params(self): """Parameters to use in API calls""" symbols = ",".join(self.symbols) return {"symbols": symbols} def _process_json(self): res = pd.DataFrame(self._json_results) return res.set_index("symbol").T def _read_lines(self, out): if "next" in out: self._json_results.extend(out["results"]) return self._read_one_data(out["next"]) self._json_results.extend(out["results"]) return self._process_json() class RobinhoodHistoricalReader(RobinhoodQuoteReader): """ Read historical values from Robinhood DEPRECATED 1/2019 - Robinhood ended support for the endpoints used by this reader Parameters ---------- symbols : {str, List[str]} String symbol of like of symbols start : None Ignored. See span and interval. end : None Ignored. See span and interval. retry_count : int, default 3 Number of times to retry query request. pause : float, default 0.1 Time, in seconds, of the pause between retries. session : Session, default None requests.sessions.Session instance to be used freq : None Quotes are near real-time and so this value is ignored interval : {'day' ,'week', '5minute', '10minute'} Interval between historical prices span : {'day', 'week', 'year', '5year'} Time span relative to now to retrieve. The available spans are a function of interval. See notes Notes ----- Only provides up to 1 year of daily data. The available spans are a function of interval. * day: year * week: 5year * 5minute: day, week * 10minute: day, week """ _format = "json" def __init__( self, symbols, start=None, end=None, retry_count=3, pause=0.1, timeout=30, session=None, freq=None, interval="day", span="year", ): raise ImmediateDeprecationError(DEP_ERROR_MSG.format("Robinhood")) super(RobinhoodHistoricalReader, self).__init__( symbols, start, end, retry_count, pause, timeout, session, freq ) interval_span = { "day": ["year"], "week": ["5year"], "10minute": ["day", "week"], "5minute": ["day", "week"], } if interval not in interval_span: raise ValueError( "Interval must be one of " "{0}".format(", ".join(interval_span.keys())) ) valid_spans = interval_span[interval] if span not in valid_spans: raise ValueError( "For interval {0}, span must " "be in: {1}".format(interval, valid_spans) ) self.interval = interval self.span = span self._max_symbols = 75 self._validate_symbols() self._json_results = [] @property def url(self): """API URL""" return "https://api.robinhood.com/quotes/historicals/" @property def params(self): """Parameters to use in API calls""" symbols = ",".join(self.symbols) pars = {"symbols": symbols, "interval": self.interval, "span": self.span} return pars def _process_json(self): df = [] for sym in self._json_results: vals = pd.DataFrame(sym["historicals"]) vals["begins_at"] =
pd.to_datetime(vals["begins_at"])
pandas.to_datetime
""" Same basic parameters for the Baselining work. @author: <NAME>, <NAME> @date Aug 30, 2016 """ import numpy as np import pandas as pd import os from itertools import chain, combinations from scipy.signal import cont2discrete from datetime import datetime from pytz import timezone from pandas.tseries.holiday import USFederalHolidayCalendar E19 = ['E19TOU_secondary', 'E19TOU_primary', 'E19TOU_transmission'] # define social cost of carbon # if cost per metric ton is $40: carbon_costs = {2012: 16.60, 2013: 11.62, 2014: 11.62} # # if cost per metric ton is $38: # carbon_costs = {'2012': 15.77, '2013': 10.79, '2014': 10.79} def create_folder(filename): """ Helper function for safely creating all sub-directories for a specific file in python2 """ if not os.path.exists(os.path.dirname(filename)): try: os.makedirs(os.path.dirname(filename)) except OSError as exc: # Guard against race condition if exc.errno != errno.EEXIST: raise def matrices_frauke(ts=15): """ Return matrices A, B, and E of the discrete-time dynamical system model of Frauke's builing model with sampling time ts minutes. """ # define matrices for Frauke's Building model # note: both input variables are assumed to be non-negative! c1, c2, c3 = 9.356e5, 2.97e6, 6.695e5 k1, k2, k3, k4, k5 = 16.48, 108.5, 5.0, 30.5, 23.04 Act = np.array([[-(k1+k2+k3+k5)/c1, (k1+k2)/c1, k5/c1], [(k1+k2)/c2, -(k1+k2)/c2, 0], [k5/c3, 0, -(k4+k5)/c3]]) Bct = np.array([[1/c1, -1/c1], [0, -0], [0, -0]]) Ect = np.array([[k3/c1, 1/c1, 1/c1], [0, 1/c2, 0], [k4/c3, 0, 0]]) Cct = np.array([[0, 0, 0]]) Dct = np.array([[0, 0]]) # convert cont time matrices to discrete time using zoh (A, B, C, D, dt) = cont2discrete((Act, Bct, Cct, Dct), ts*60, method='zoh') (A, E, C, D, dt) = cont2discrete((Act, Ect, Cct, Dct), ts*60, method='zoh') return A, B, E def matrices_pavlak(ts=15): """ Return matrices A, B, and E of the discrete-time dynamical system model of Pavlak's builing model with sampling time ts minutes. """ # define matrices for Pavlak's Building model # note: both input variables are assumed to be non-negative! # R's in K/kW and C's in kJ/K R1, R2 = 0.519956063919649, 0.00195669419889427 R3, Rw = 0.00544245602566602, 0.156536600054259 Cz, Cm = 215552.466637916, 8533970.42635405 den = R2*R3 + Rw*R2 + Rw*R3 Act = np.array([[Rw*R2/(R3*Cz*den) - 1/(R3*Cz), Rw/(Cz*den)], [Rw/(Cm*den), -1/(R1*Cm)-1/(R2*Cm)+Rw*R3/(R2*Cm*den)]]) Bct = np.array([[1/Cz, -1/Cz], [0, -0]]) Ect = np.array([[R2/(Cz*den), Rw*R2/(Cz*den), 0.43*Rw*R2/(Cz*den)+0.57/Cz], [R3/(Cm*den)+1/(R1*Cm), Rw*R3/(Cm*den), 0.43*Rw*R3/(Cm*den)]]) Cct = np.array([[0, 0, 0]]) Dct = np.array([[0, 0]]) # convert cont time matrices to discrete time using zoh (A, B, C, D, dt) = cont2discrete((Act, Bct, Cct, Dct), ts*60, method='zoh') (A, E, C, D, dt) = cont2discrete((Act, Ect, Cct, Dct), ts*60, method='zoh') return A, B, E def powerset(iterable): """ Auxiliary function for computing the power set of an iterable: powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3) Does not create the set explicitly. """ s = list(iterable) return chain.from_iterable(combinations(s, r) for r in range(len(s)+1)) def extract_PGE_loadshape(filename, start_date=None, end_date=None, name=None): """ Reads in tab-separated files (falsely labeled .xls by PG&E) from the PG&E website: http://www.pge.com/tariffs/energy_use_prices.shtml Parses the dates and replaces all missing values (b/c of DST) by NaN """ loadshapes = pd.read_csv(filename, sep='\t', parse_dates=['Date'], na_values=['.'], index_col='Date') if start_date is not None: loadshapes = loadshapes[loadshapes.index >= start_date] if end_date is not None: loadshapes = loadshapes[loadshapes.index <= end_date] # get DST transisiton times in US/Pacfic timezone ttimes = pd.DatetimeIndex(timezone('US/Pacific')._utc_transition_times[1:], tz=timezone('UTC')).tz_convert('US/Pacific') ttimes = ttimes[(ttimes >= loadshapes.index[0]) & (ttimes <= loadshapes.index[-1])] # fix inconsistencies b/c of DST changes dst_switch_days = loadshapes.index.isin(ttimes.date) non_switch_data = loadshapes[np.logical_not(dst_switch_days)].drop( 'Profile', axis=1) switch_data = loadshapes[dst_switch_days].drop('Profile', axis=1) idx = pd.DatetimeIndex( start=loadshapes.index[0], end=loadshapes.index[-1] + pd.Timedelta(hours=23), freq='H', tz=timezone('US/Pacific')) isswitch = pd.DatetimeIndex(idx.date).isin(ttimes.date) nsidx = idx[np.logical_not(isswitch)] loadSeries = pd.Series( non_switch_data.values.astype(np.float64).flatten(), nsidx) dst_series = [] for day in switch_data.index: vals = switch_data.loc[day].values tsidx = pd.DatetimeIndex(start=day, end=day+pd.Timedelta(hours=23), freq='1H', tz=timezone('US/Pacific')) if (day.month > 0) & (day.month < 5): daydata = np.concatenate([vals[:2], vals[3:]]) else: daydata = np.insert(vals, 1, vals[1]) dst_series.append(pd.Series(daydata, tsidx)) loadSeries = pd.concat([loadSeries] + dst_series).sort_index() if name is not None: loadSeries.name = name return loadSeries def daily_occurrences(index, tz='US/Pacific'): """ Takes in a pandas DateTimeIndex and returns a pandas Series indexed by the days in index with the number of occurances of timestamps on that day as the values. """ locidx = index.tz_convert(tz) occ = pd.DataFrame({'occurences': 1}, index=locidx).groupby( locidx.date).count()['occurences'] occ.index = pd.DatetimeIndex(occ.index) return occ def _parse_nbt_data(): """ Prepares data for CAISO net benefits test. """ # define NERC holidays for use in CAISO net benefits test NERC_holidays = ([datetime(year, 1, 1) for year in [2012, 2013, 2014]] + [datetime(2012, 5, 28), datetime(2013, 5, 27), datetime(2014, 5, 26)] + [datetime(year, 7, 4) for year in [2012, 2013, 2014]] + [datetime(2012, 9, 3), datetime(2012, 9, 2), datetime(2014, 9, 1)] + [datetime(2014, 11, 22), datetime(2014, 11, 28), datetime(2014, 11, 27)] + [datetime(year, 12, 25) for year in [2012, 2013, 2014]]) holiday_idx = [ pd.date_range( start=day, end=day+pd.DateOffset(days=1) - pd.Timedelta(minutes=15), tz='US/Pacific', freq='15Min') for day in NERC_holidays ] NERC_hd_ts = pd.DatetimeIndex.union_many(holiday_idx[0], holiday_idx[1:]) NERC_hd_ts = NERC_hd_ts.sort_values().tz_convert('GMT') # load the values of the CAISO nbt from data file nbl_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data', 'CAISO_NBT.csv') nbt = pd.read_csv(nbl_file, parse_dates=['Month'], index_col='Month') # convert into a single dataframe with all tiestamps present dfs = [] for start, end in zip(nbt.index, nbt.index.shift(1, pd.DateOffset(months=1))): tsstart = start.tz_localize('US/Pacific').tz_convert('GMT') tsend = (end.tz_localize('US/Pacific').tz_convert('GMT') - pd.Timedelta(minutes=15)) dfs.append(pd.DataFrame( { 'OnPeak': nbt.loc[start]['OnPeak'], 'OffPeak': nbt.loc[start]['OffPeak'] }, index=
pd.date_range(start=tsstart, end=tsend, freq='15Min')
pandas.date_range