prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
""" サンプルコード 参考: https://programming-info.dream-target.jp/streamlit-start """ import streamlit as st import pandas as pd import numpy as np st.title("streamlitのサンプルだお") DATE_COLUMN = "date/time" DATA_URL = ( "https://s3-us-west-2.amazonaws.com/" "streamlit-demo-data/uber-raw-data-sep14.csv.gz" ) @st.cache def load_data(nrows): data =
pd.read_csv(DATA_URL, nrows=nrows)
pandas.read_csv
"""Core utilities""" import sys import logging import inspect from functools import singledispatch from copy import deepcopy from typing import ( Any, Callable, Iterable, List, Mapping, Sequence, Union, Tuple, ) import numpy from numpy import array as Array import pandas from pandas import Categorical, DataFrame, Series from pipda import register_func from pipda.symbolic import Reference from pipda.utils import CallingEnvs from .exceptions import ( ColumnNotExistingError, DataUnrecyclable, NameNonUniqueError, ) from .contexts import Context from .types import ( StringOrIter, Dtype, is_iterable, is_scalar, is_categorical, is_null, ) from .defaults import DEFAULT_COLUMN_PREFIX, NA_REPR # logger logger = logging.getLogger("datar") logger.setLevel(logging.INFO) stream_handler = logging.StreamHandler(sys.stderr) stream_handler.setFormatter( logging.Formatter( "[%(asctime)s][%(name)s][%(levelname)7s] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", ) ) logger.addHandler(stream_handler) def vars_select( all_columns: Iterable[str], *columns: Any, raise_nonexists: bool = True, base0: bool = None, ) -> List[int]: # TODO: support selecting data-frame columns """Select columns Args: all_columns: The column pool to select *columns: arguments to select from the pool raise_nonexist: Whether raise exception when column not exists in the pool base0: Whether indexes are 0-based if columns are selected by indexes. If not given, will use `datar.base.get_option('index.base.0')` Returns: The selected indexes for columns Raises: ColumnNotExistingError: When the column does not exist in the pool and raise_nonexists is True. """ from .collections import Collection from ..base import unique columns = [ column.name if isinstance(column, Series) else column for column in columns ] selected = Collection(*columns, pool=list(all_columns), base0=base0) if raise_nonexists and selected.unmatched and selected.unmatched != {None}: raise ColumnNotExistingError( f"Columns `{selected.unmatched}` do not exist." ) return unique(selected).astype(int) def recycle_value( value: Any, size: int, name: str = None ) -> Union[DataFrame, numpy.ndarray]: """Recycle a value based on a dataframe Args: value: The value to be recycled size: The size to recycle to name: The name to show in the error if failed to recycle Returns: The recycled value """ # TODO: follow base R's recycling rule? i.e. size 2 -> 4 from ..base import NA if is_scalar(value): value = [value] length = len(value) if length not in (0, 1, size): name = "value" if not name else f"`{name}`" expect = "1" if size == 1 else f"(1, {size})" raise DataUnrecyclable( f"Cannot recycle {name} to size {size}, " f"expect {expect}, got {length}." ) if isinstance(value, DataFrame): if length == size == 0: return DataFrame(columns=value.columns) if length == 0: value = DataFrame([[NA] * value.shape[1]], columns=value.columns) if length == 1 and size > length: return value.iloc[[0] * size, :].reset_index(drop=True) return value cats = categorized(value).categories if is_categorical(value) else None if length == size == 0: return [] if cats is None else Categorical([], categories=cats) if length == 0: value = [NA] if isinstance(value, Series): # try to keep Series class # some operators can only do with it or with it correctly # For example: # Series([True, True]) & Series([False, NA]) -> [False, Fa.se] # But with numpy.array, it raises error, since NA is a float if length == 1 and size > length: value = value.iloc[[0] * size].reset_index(drop=True) return value if isinstance(value, tuple): value = list(value) # dtype = getattr(value, 'dtype', None) if length == 1 and size > length: value = list(value) * size if cats is not None: return Categorical(value, categories=cats) is_elem_iter = any(is_iterable(val) for val in value) if is_elem_iter: # without dtype: VisibleDeprecationWarning # return Array(value, dtype=object) # The above does not keep [DataFrame()] structure return value # Avoid numpy.nan to be converted into 'nan' when other elements are string out = Array(value) if numpy.issubdtype(out.dtype, numpy.str_) and is_null(value).any(): return Array(value, dtype=object) return out def recycle_df( df: DataFrame, value: Any, df_name: str = None, value_name: str = None, ) -> Tuple[DataFrame, Any]: """Recycle the dataframe based on value""" if length_of(df) == 1: df = recycle_value(df, length_of(value), df_name) value = recycle_value(value, length_of(df), value_name) return df, value def categorized(data: Any) -> Any: """Get the Categorical object""" if not is_categorical(data): return data if isinstance(data, Series): return data.values return data @singledispatch def to_df(data: Any, name: str = None) -> DataFrame: """Convert an object to a data frame""" if is_scalar(data): data = [data] if name is None: return DataFrame(data) return DataFrame({name: data}) @to_df.register(numpy.ndarray) def _(data: numpy.ndarray, name: StringOrIter = None) -> DataFrame: if name is not None and is_scalar(name): name = [name] if len(data.shape) == 1: return (
DataFrame(data, columns=name)
pandas.DataFrame
from datetime import datetime from decimal import Decimal from io import StringIO import numpy as np import pytest from pandas.errors import PerformanceWarning import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range, read_csv import pandas._testing as tm from pandas.core.base import SpecificationError import pandas.core.common as com def test_repr(): # GH18203 result = repr(pd.Grouper(key="A", level="B")) expected = "Grouper(key='A', level='B', axis=0, sort=False)" assert result == expected @pytest.mark.parametrize("dtype", ["int64", "int32", "float64", "float32"]) def test_basic(dtype): data = Series(np.arange(9) // 3, index=np.arange(9), dtype=dtype) index = np.arange(9) np.random.shuffle(index) data = data.reindex(index) grouped = data.groupby(lambda x: x // 3) for k, v in grouped: assert len(v) == 3 agged = grouped.aggregate(np.mean) assert agged[1] == 1 tm.assert_series_equal(agged, grouped.agg(np.mean)) # shorthand tm.assert_series_equal(agged, grouped.mean()) tm.assert_series_equal(grouped.agg(np.sum), grouped.sum()) expected = grouped.apply(lambda x: x * x.sum()) transformed = grouped.transform(lambda x: x * x.sum()) assert transformed[7] == 12 tm.assert_series_equal(transformed, expected) value_grouped = data.groupby(data) tm.assert_series_equal( value_grouped.aggregate(np.mean), agged, check_index_type=False ) # complex agg agged = grouped.aggregate([np.mean, np.std]) msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped.aggregate({"one": np.mean, "two": np.std}) group_constants = {0: 10, 1: 20, 2: 30} agged = grouped.agg(lambda x: group_constants[x.name] + x.mean()) assert agged[1] == 21 # corner cases msg = "Must produce aggregated value" # exception raised is type Exception with pytest.raises(Exception, match=msg): grouped.aggregate(lambda x: x * 2) def test_groupby_nonobject_dtype(mframe, df_mixed_floats): key = mframe.index.codes[0] grouped = mframe.groupby(key) result = grouped.sum() expected = mframe.groupby(key.astype("O")).sum() tm.assert_frame_equal(result, expected) # GH 3911, mixed frame non-conversion df = df_mixed_floats.copy() df["value"] = range(len(df)) def max_value(group): return group.loc[group["value"].idxmax()] applied = df.groupby("A").apply(max_value) result = applied.dtypes expected = Series( [np.dtype("object")] * 2 + [np.dtype("float64")] * 2 + [np.dtype("int64")], index=["A", "B", "C", "D", "value"], ) tm.assert_series_equal(result, expected) def test_groupby_return_type(): # GH2893, return a reduced type df1 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 2, "val2": 27}, {"val1": 2, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df1.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) df2 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 1, "val2": 27}, {"val1": 1, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df2.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) # GH3596, return a consistent type (regression in 0.11 from 0.10.1) df = DataFrame([[1, 1], [1, 1]], columns=["X", "Y"]) with tm.assert_produces_warning(FutureWarning): result = df.groupby("X", squeeze=False).count() assert isinstance(result, DataFrame) def test_inconsistent_return_type(): # GH5592 # inconsistent return type df = DataFrame( dict( A=["Tiger", "Tiger", "Tiger", "Lamb", "Lamb", "Pony", "Pony"], B=Series(np.arange(7), dtype="int64"), C=date_range("20130101", periods=7), ) ) def f(grp): return grp.iloc[0] expected = df.groupby("A").first()[["B"]] result = df.groupby("A").apply(f)[["B"]] tm.assert_frame_equal(result, expected) def f(grp): if grp.name == "Tiger": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Tiger"] = np.nan tm.assert_frame_equal(result, e) def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Pony"] = np.nan tm.assert_frame_equal(result, e) # 5592 revisited, with datetimes def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["C"]] e = df.groupby("A").first()[["C"]] e.loc["Pony"] = pd.NaT tm.assert_frame_equal(result, e) # scalar outputs def f(grp): if grp.name == "Pony": return None return grp.iloc[0].loc["C"] result = df.groupby("A").apply(f) e = df.groupby("A").first()["C"].copy() e.loc["Pony"] = np.nan e.name = None tm.assert_series_equal(result, e) def test_pass_args_kwargs(ts, tsframe): def f(x, q=None, axis=0): return np.percentile(x, q, axis=axis) g = lambda x: np.percentile(x, 80, axis=0) # Series ts_grouped = ts.groupby(lambda x: x.month) agg_result = ts_grouped.agg(np.percentile, 80, axis=0) apply_result = ts_grouped.apply(np.percentile, 80, axis=0) trans_result = ts_grouped.transform(np.percentile, 80, axis=0) agg_expected = ts_grouped.quantile(0.8) trans_expected = ts_grouped.transform(g) tm.assert_series_equal(apply_result, agg_expected) tm.assert_series_equal(agg_result, agg_expected) tm.assert_series_equal(trans_result, trans_expected) agg_result = ts_grouped.agg(f, q=80) apply_result = ts_grouped.apply(f, q=80) trans_result = ts_grouped.transform(f, q=80) tm.assert_series_equal(agg_result, agg_expected) tm.assert_series_equal(apply_result, agg_expected) tm.assert_series_equal(trans_result, trans_expected) # DataFrame df_grouped = tsframe.groupby(lambda x: x.month) agg_result = df_grouped.agg(np.percentile, 80, axis=0) apply_result = df_grouped.apply(DataFrame.quantile, 0.8) expected = df_grouped.quantile(0.8) tm.assert_frame_equal(apply_result, expected, check_names=False) tm.assert_frame_equal(agg_result, expected) agg_result = df_grouped.agg(f, q=80) apply_result = df_grouped.apply(DataFrame.quantile, q=0.8) tm.assert_frame_equal(agg_result, expected) tm.assert_frame_equal(apply_result, expected, check_names=False) def test_len(): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) assert len(grouped) == len(df) grouped = df.groupby([lambda x: x.year, lambda x: x.month]) expected = len({(x.year, x.month) for x in df.index}) assert len(grouped) == expected # issue 11016 df = pd.DataFrame(dict(a=[np.nan] * 3, b=[1, 2, 3])) assert len(df.groupby(("a"))) == 0 assert len(df.groupby(("b"))) == 3 assert len(df.groupby(["a", "b"])) == 3 def test_basic_regression(): # regression result = Series([1.0 * x for x in list(range(1, 10)) * 10]) data = np.random.random(1100) * 10.0 groupings = Series(data) grouped = result.groupby(groupings) grouped.mean() @pytest.mark.parametrize( "dtype", ["float64", "float32", "int64", "int32", "int16", "int8"] ) def test_with_na_groups(dtype): index = Index(np.arange(10)) values = Series(np.ones(10), index, dtype=dtype) labels = Series( [np.nan, "foo", "bar", "bar", np.nan, np.nan, "bar", "bar", np.nan, "foo"], index=index, ) # this SHOULD be an int grouped = values.groupby(labels) agged = grouped.agg(len) expected = Series([4, 2], index=["bar", "foo"]) tm.assert_series_equal(agged, expected, check_dtype=False) # assert issubclass(agged.dtype.type, np.integer) # explicitly return a float from my function def f(x): return float(len(x)) agged = grouped.agg(f) expected = Series([4, 2], index=["bar", "foo"]) tm.assert_series_equal(agged, expected, check_dtype=False) assert issubclass(agged.dtype.type, np.dtype(dtype).type) def test_indices_concatenation_order(): # GH 2808 def f1(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex(levels=[[]] * 2, codes=[[]] * 2, names=["b", "c"]) res = DataFrame(columns=["a"], index=multiindex) return res else: y = y.set_index(["b", "c"]) return y def f2(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: return DataFrame() else: y = y.set_index(["b", "c"]) return y def f3(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex( levels=[[]] * 2, codes=[[]] * 2, names=["foo", "bar"] ) res = DataFrame(columns=["a", "b"], index=multiindex) return res else: return y df = DataFrame({"a": [1, 2, 2, 2], "b": range(4), "c": range(5, 9)}) df2 = DataFrame({"a": [3, 2, 2, 2], "b": range(4), "c": range(5, 9)}) # correct result result1 = df.groupby("a").apply(f1) result2 = df2.groupby("a").apply(f1) tm.assert_frame_equal(result1, result2) # should fail (not the same number of levels) msg = "Cannot concat indices that do not have the same number of levels" with pytest.raises(AssertionError, match=msg): df.groupby("a").apply(f2) with pytest.raises(AssertionError, match=msg): df2.groupby("a").apply(f2) # should fail (incorrect shape) with pytest.raises(AssertionError, match=msg): df.groupby("a").apply(f3) with pytest.raises(AssertionError, match=msg): df2.groupby("a").apply(f3) def test_attr_wrapper(ts): grouped = ts.groupby(lambda x: x.weekday()) result = grouped.std() expected = grouped.agg(lambda x: np.std(x, ddof=1)) tm.assert_series_equal(result, expected) # this is pretty cool result = grouped.describe() expected = {name: gp.describe() for name, gp in grouped} expected = DataFrame(expected).T tm.assert_frame_equal(result, expected) # get attribute result = grouped.dtype expected = grouped.agg(lambda x: x.dtype) # make sure raises error msg = "'SeriesGroupBy' object has no attribute 'foo'" with pytest.raises(AttributeError, match=msg): getattr(grouped, "foo") def test_frame_groupby(tsframe): grouped = tsframe.groupby(lambda x: x.weekday()) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == 5 assert len(aggregated.columns) == 4 # by string tscopy = tsframe.copy() tscopy["weekday"] = [x.weekday() for x in tscopy.index] stragged = tscopy.groupby("weekday").aggregate(np.mean) tm.assert_frame_equal(stragged, aggregated, check_names=False) # transform grouped = tsframe.head(30).groupby(lambda x: x.weekday()) transformed = grouped.transform(lambda x: x - x.mean()) assert len(transformed) == 30 assert len(transformed.columns) == 4 # transform propagate transformed = grouped.transform(lambda x: x.mean()) for name, group in grouped: mean = group.mean() for idx in group.index: tm.assert_series_equal(transformed.xs(idx), mean, check_names=False) # iterate for weekday, group in grouped: assert group.index[0].weekday() == weekday # groups / group_indices groups = grouped.groups indices = grouped.indices for k, v in groups.items(): samething = tsframe.index.take(indices[k]) assert (samething == v).all() def test_frame_groupby_columns(tsframe): mapping = {"A": 0, "B": 0, "C": 1, "D": 1} grouped = tsframe.groupby(mapping, axis=1) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == len(tsframe) assert len(aggregated.columns) == 2 # transform tf = lambda x: x - x.mean() groupedT = tsframe.T.groupby(mapping, axis=0) tm.assert_frame_equal(groupedT.transform(tf).T, grouped.transform(tf)) # iterate for k, v in grouped: assert len(v.columns) == 2 def test_frame_set_name_single(df): grouped = df.groupby("A") result = grouped.mean() assert result.index.name == "A" result = df.groupby("A", as_index=False).mean() assert result.index.name != "A" result = grouped.agg(np.mean) assert result.index.name == "A" result = grouped.agg({"C": np.mean, "D": np.std}) assert result.index.name == "A" result = grouped["C"].mean() assert result.index.name == "A" result = grouped["C"].agg(np.mean) assert result.index.name == "A" result = grouped["C"].agg([np.mean, np.std]) assert result.index.name == "A" msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped["C"].agg({"foo": np.mean, "bar": np.std}) def test_multi_func(df): col1 = df["A"] col2 = df["B"] grouped = df.groupby([col1.get, col2.get]) agged = grouped.mean() expected = df.groupby(["A", "B"]).mean() # TODO groupby get drops names tm.assert_frame_equal( agged.loc[:, ["C", "D"]], expected.loc[:, ["C", "D"]], check_names=False ) # some "groups" with no data df = DataFrame( { "v1": np.random.randn(6), "v2": np.random.randn(6), "k1": np.array(["b", "b", "b", "a", "a", "a"]), "k2": np.array(["1", "1", "1", "2", "2", "2"]), }, index=["one", "two", "three", "four", "five", "six"], ) # only verify that it works for now grouped = df.groupby(["k1", "k2"]) grouped.agg(np.sum) def test_multi_key_multiple_functions(df): grouped = df.groupby(["A", "B"])["C"] agged = grouped.agg([np.mean, np.std]) expected = DataFrame({"mean": grouped.agg(np.mean), "std": grouped.agg(np.std)}) tm.assert_frame_equal(agged, expected) def test_frame_multi_key_function_list(): data = DataFrame( { "A": [ "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar", "foo", "foo", "foo", ], "B": [ "one", "one", "one", "two", "one", "one", "one", "two", "two", "two", "one", ], "C": [ "dull", "dull", "shiny", "dull", "dull", "shiny", "shiny", "dull", "shiny", "shiny", "shiny", ], "D": np.random.randn(11), "E": np.random.randn(11), "F": np.random.randn(11), } ) grouped = data.groupby(["A", "B"]) funcs = [np.mean, np.std] agged = grouped.agg(funcs) expected = pd.concat( [grouped["D"].agg(funcs), grouped["E"].agg(funcs), grouped["F"].agg(funcs)], keys=["D", "E", "F"], axis=1, ) assert isinstance(agged.index, MultiIndex) assert isinstance(expected.index, MultiIndex) tm.assert_frame_equal(agged, expected) @pytest.mark.parametrize("op", [lambda x: x.sum(), lambda x: x.mean()]) def test_groupby_multiple_columns(df, op): data = df grouped = data.groupby(["A", "B"]) result1 = op(grouped) keys = [] values = [] for n1, gp1 in data.groupby("A"): for n2, gp2 in gp1.groupby("B"): keys.append((n1, n2)) values.append(op(gp2.loc[:, ["C", "D"]])) mi = MultiIndex.from_tuples(keys, names=["A", "B"]) expected = pd.concat(values, axis=1).T expected.index = mi # a little bit crude for col in ["C", "D"]: result_col = op(grouped[col]) pivoted = result1[col] exp = expected[col] tm.assert_series_equal(result_col, exp) tm.assert_series_equal(pivoted, exp) # test single series works the same result = data["C"].groupby([data["A"], data["B"]]).mean() expected = data.groupby(["A", "B"]).mean()["C"] tm.assert_series_equal(result, expected) def test_as_index_select_column(): # GH 5764 df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"]) result = df.groupby("A", as_index=False)["B"].get_group(1) expected = pd.Series([2, 4], name="B") tm.assert_series_equal(result, expected) result = df.groupby("A", as_index=False)["B"].apply(lambda x: x.cumsum()) expected = pd.Series( [2, 6, 6], name="B", index=pd.MultiIndex.from_tuples([(0, 0), (0, 1), (1, 2)]) ) tm.assert_series_equal(result, expected) def test_groupby_as_index_select_column_sum_empty_df(): # GH 35246 df = DataFrame(columns=["A", "B", "C"]) left = df.groupby(by="A", as_index=False)["B"].sum() assert type(left) is DataFrame assert left.to_dict() == {"A": {}, "B": {}} def test_groupby_as_index_agg(df): grouped = df.groupby("A", as_index=False) # single-key result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) result2 = grouped.agg({"C": np.mean, "D": np.sum}) expected2 = grouped.mean() expected2["D"] = grouped.sum()["D"] tm.assert_frame_equal(result2, expected2) grouped = df.groupby("A", as_index=True) msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped["C"].agg({"Q": np.sum}) # multi-key grouped = df.groupby(["A", "B"], as_index=False) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) result2 = grouped.agg({"C": np.mean, "D": np.sum}) expected2 = grouped.mean() expected2["D"] = grouped.sum()["D"] tm.assert_frame_equal(result2, expected2) expected3 = grouped["C"].sum() expected3 = DataFrame(expected3).rename(columns={"C": "Q"}) result3 = grouped["C"].agg({"Q": np.sum}) tm.assert_frame_equal(result3, expected3) # GH7115 & GH8112 & GH8582 df = DataFrame(np.random.randint(0, 100, (50, 3)), columns=["jim", "joe", "jolie"]) ts = Series(np.random.randint(5, 10, 50), name="jim") gr = df.groupby(ts) gr.nth(0) # invokes set_selection_from_grouper internally tm.assert_frame_equal(gr.apply(sum), df.groupby(ts).apply(sum)) for attr in ["mean", "max", "count", "idxmax", "cumsum", "all"]: gr = df.groupby(ts, as_index=False) left = getattr(gr, attr)() gr = df.groupby(ts.values, as_index=True) right = getattr(gr, attr)().reset_index(drop=True) tm.assert_frame_equal(left, right) def test_ops_not_as_index(reduction_func): # GH 10355, 21090 # Using as_index=False should not modify grouped column if reduction_func in ("corrwith",): pytest.skip("Test not applicable") if reduction_func in ("nth", "ngroup",): pytest.skip("Skip until behavior is determined (GH #5755)") df = DataFrame(np.random.randint(0, 5, size=(100, 2)), columns=["a", "b"]) expected = getattr(df.groupby("a"), reduction_func)() if reduction_func == "size": expected = expected.rename("size") expected = expected.reset_index() g = df.groupby("a", as_index=False) result = getattr(g, reduction_func)() tm.assert_frame_equal(result, expected) result = g.agg(reduction_func) tm.assert_frame_equal(result, expected) result = getattr(g["b"], reduction_func)() tm.assert_frame_equal(result, expected) result = g["b"].agg(reduction_func) tm.assert_frame_equal(result, expected) def test_as_index_series_return_frame(df): grouped = df.groupby("A", as_index=False) grouped2 = df.groupby(["A", "B"], as_index=False) result = grouped["C"].agg(np.sum) expected = grouped.agg(np.sum).loc[:, ["A", "C"]] assert isinstance(result, DataFrame) tm.assert_frame_equal(result, expected) result2 = grouped2["C"].agg(np.sum) expected2 = grouped2.agg(np.sum).loc[:, ["A", "B", "C"]] assert isinstance(result2, DataFrame) tm.assert_frame_equal(result2, expected2) result = grouped["C"].sum() expected = grouped.sum().loc[:, ["A", "C"]] assert isinstance(result, DataFrame) tm.assert_frame_equal(result, expected) result2 = grouped2["C"].sum() expected2 = grouped2.sum().loc[:, ["A", "B", "C"]] assert isinstance(result2, DataFrame) tm.assert_frame_equal(result2, expected2) def test_as_index_series_column_slice_raises(df): # GH15072 grouped = df.groupby("A", as_index=False) msg = r"Column\(s\) C already selected" with pytest.raises(IndexError, match=msg): grouped["C"].__getitem__("D") def test_groupby_as_index_cython(df): data = df # single-key grouped = data.groupby("A", as_index=False) result = grouped.mean() expected = data.groupby(["A"]).mean() expected.insert(0, "A", expected.index) expected.index = np.arange(len(expected)) tm.assert_frame_equal(result, expected) # multi-key grouped = data.groupby(["A", "B"], as_index=False) result = grouped.mean() expected = data.groupby(["A", "B"]).mean() arrays = list(zip(*expected.index.values)) expected.insert(0, "A", arrays[0]) expected.insert(1, "B", arrays[1]) expected.index = np.arange(len(expected))
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
# Web Scraping Demo import time import os import string from datetime import datetime import requests from diskcache import Cache from bs4 import BeautifulSoup import pandas as pd from docx import Document from docx.shared import Pt, RGBColor class Fox(): """ A wrapper for requests that automates interaction with diskcache """ def __init__(self): self.base = None self.params = None self.headers = [] self.private_keys = [] self.cache_path = None self.accept_codes = [200] def update(self, base = None, params = None, headers = None, private_keys = None, cache_path = None, cache_ref = None, accept_codes = None, ): """ Used to set up conditions for a request, including base, parameters, cache reference, and which codes to accept """ if base != None: self.base = base self.params = None if params != None: self.params = params if headers != None: self.headers = headers if private_keys != None: self.private_keys = private_keys if cache_path != None: self.cache_path = cache_path if not os.path.exists(self.cache_path): os.makedirs(self.cache_path) if cache_ref != None: self.cache_ref = cache_ref if accept_codes != None: self.accept_codes = accept_codes self.cache_key = self.make_cache_key(self.base,self.params,self.private_keys) def make_cache_key(self, base=None, params=None, private_keys=None): """ Makes a unique string for cache access """ kvs = [] if (base == None) or (params in [None,{}]): return base else: alpha_keys = sorted(params.keys()) for k in alpha_keys: if k not in private_keys: kvs.append('{}-{}'.format(k, params[k])) return base + '_'.join(kvs) def make_request(self, sleep = None): """ Handles whether to actually send the request or just skip it because it's already cached """ if self.base == None: return None returnable = None if self.cache_ref == None: if self.cache_path == None: response = send_request() else: with Cache(self.cache_path) as cache: if self.cache_key not in cache: returnable = self.send_request(cache) else: if self.cache_key not in self.cache_ref: if sleep != None: time.sleep(sleep) returnable = self.send_request(self.cache_ref) if returnable != None: return returnable def send_request(self, cache=None): """ Actually sends the request and checks the response code """ response = requests.get( self.base, params=self.params, headers=self.headers, ) if response.status_code not in self.accept_codes: print("Response:",response.status_code,':\n',self.base,self.params,self.headers) print(response.text) else: if cache != None: cache[self.cache_key] = response return response def manage_scraping(row,cache,fox): """ Takes a row (pandas Series) and iterates over the data needed to form URLs. If conditions are met, makes the scraping request and adds the resulting data to the row """ description_found = False for isbn_format in ["ebook","hardcover","paper"]: if "University of California Press" == row["publisher"]: if description_found == False: isbn = row[isbn_format] url = "https://www.ucpress.edu/book/" + str(isbn) fox.update(base=url) fox.make_request(sleep=3) resp = cache[fox.cache_key] if resp.status_code != 200: print("Nothing found at", url) print(resp.status_code) else: print("Webpage found at", url) soup = BeautifulSoup(resp.text,"html.parser") description_section = soup.find("section",id="link-about-book") if description_section != None: description_found = True just_the_description = description_section.find("article") simplified_text = text_with_newlines(just_the_description) row["description"] = simplified_text return row def manage_apply(): """ Handles opening the input file, opening the cache file, iterating over the input rows, and forming the output file(s) """ spreadsheet = pd.read_excel("metadata.xlsx",dtype=str) new_headers = [ "handle", "title", "subtitle", "publisher", "ebook", "hardcover", "paper", "description" ] spreadsheet = spreadsheet.reindex(columns = new_headers) with Cache("demo_cache") as cache: user_agent = "" fox = Fox() fox.update( headers = {'User-Agent':user_agent}, cache_ref = cache, accept_codes=[200] ) spreadsheet = spreadsheet.apply( lambda row : manage_scraping(row,cache,fox), axis=1 ) timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") outdir = "outputs" if not os.path.exists(outdir): os.makedirs(outdir) spreadsheet.to_excel(f"{outdir}/{timestamp}_output.xlsx",index=False) new_document = Document() new_document.add_heading("Scraped Book Descriptions",0) new_document.styles["Normal"].font.name = "Times New Roman" new_document.styles["Heading 1"].font.size = Pt(10) for each_style in ["Title","Heading 1","Heading 2"]: new_document.styles[each_style].font.name = None new_document.styles[each_style].font.color.rgb = RGBColor(0,0,0) for i in spreadsheet.index.values: if not
pd.isnull(spreadsheet.loc[i,"description"])
pandas.isnull
import math import queue from datetime import datetime, timedelta, timezone import pandas as pd from storey import build_flow, SyncEmitSource, Reduce, Table, AggregateByKey, FieldAggregator, NoopDriver, \ DataframeSource from storey.dtypes import SlidingWindows, FixedWindows, EmitAfterMaxEvent, EmitEveryEvent test_base_time = datetime.fromisoformat("2020-07-21T21:40:00+00:00") def append_return(lst, x): lst.append(x) return lst def test_sliding_window_simple_aggregation_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [ {'col1': 0, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 0, 'number_of_stuff_max_2h': 0, 'number_of_stuff_max_24h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 1, 'number_of_stuff_sum_1h': 1, 'number_of_stuff_sum_2h': 1, 'number_of_stuff_sum_24h': 1, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 1, 'number_of_stuff_max_2h': 1, 'number_of_stuff_max_24h': 1, 'number_of_stuff_avg_1h': 0.5, 'number_of_stuff_avg_2h': 0.5, 'number_of_stuff_avg_24h': 0.5}, {'col1': 2, 'number_of_stuff_sum_1h': 3, 'number_of_stuff_sum_2h': 3, 'number_of_stuff_sum_24h': 3, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 2, 'number_of_stuff_max_2h': 2, 'number_of_stuff_max_24h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 3, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_stuff_min_1h': 1, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 3, 'number_of_stuff_max_2h': 3, 'number_of_stuff_max_24h': 3, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 1.5, 'number_of_stuff_avg_24h': 1.5}, {'col1': 4, 'number_of_stuff_sum_1h': 9, 'number_of_stuff_sum_2h': 10, 'number_of_stuff_sum_24h': 10, 'number_of_stuff_min_1h': 2, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 4, 'number_of_stuff_max_2h': 4, 'number_of_stuff_max_24h': 4, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 5, 'number_of_stuff_sum_1h': 12, 'number_of_stuff_sum_2h': 15, 'number_of_stuff_sum_24h': 15, 'number_of_stuff_min_1h': 3, 'number_of_stuff_min_2h': 1, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 5, 'number_of_stuff_max_2h': 5, 'number_of_stuff_max_24h': 5, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 2.5}, {'col1': 6, 'number_of_stuff_sum_1h': 15, 'number_of_stuff_sum_2h': 20, 'number_of_stuff_sum_24h': 21, 'number_of_stuff_min_1h': 4, 'number_of_stuff_min_2h': 2, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 6, 'number_of_stuff_max_2h': 6, 'number_of_stuff_max_24h': 6, 'number_of_stuff_avg_1h': 5.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 7, 'number_of_stuff_sum_1h': 18, 'number_of_stuff_sum_2h': 25, 'number_of_stuff_sum_24h': 28, 'number_of_stuff_min_1h': 5, 'number_of_stuff_min_2h': 3, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 7, 'number_of_stuff_max_2h': 7, 'number_of_stuff_max_24h': 7, 'number_of_stuff_avg_1h': 6.0, 'number_of_stuff_avg_2h': 5.0, 'number_of_stuff_avg_24h': 3.5}, {'col1': 8, 'number_of_stuff_sum_1h': 21, 'number_of_stuff_sum_2h': 30, 'number_of_stuff_sum_24h': 36, 'number_of_stuff_min_1h': 6, 'number_of_stuff_min_2h': 4, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 8, 'number_of_stuff_max_2h': 8, 'number_of_stuff_max_24h': 8, 'number_of_stuff_avg_1h': 7.0, 'number_of_stuff_avg_2h': 6.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 9, 'number_of_stuff_sum_1h': 24, 'number_of_stuff_sum_2h': 35, 'number_of_stuff_sum_24h': 45, 'number_of_stuff_min_1h': 7, 'number_of_stuff_min_2h': 5, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 9, 'number_of_stuff_max_2h': 9, 'number_of_stuff_max_24h': 9, 'number_of_stuff_avg_1h': 8.0, 'number_of_stuff_avg_2h': 7.0, 'number_of_stuff_avg_24h': 4.5} ] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_sparse_data(): controller = build_flow([ SyncEmitSource(), AggregateByKey( [FieldAggregator("number_of_stuff1", "col1", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m')), FieldAggregator("number_of_stuff2", "col2", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): controller.emit({'col1': i}, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.emit({'col2': i}, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': math.nan, 'number_of_stuff2_avg_24h': math.nan, 'number_of_stuff2_avg_2h': math.nan, 'number_of_stuff2_max_1h': math.nan, 'number_of_stuff2_max_24h': math.nan, 'number_of_stuff2_max_2h': math.nan, 'number_of_stuff2_min_1h': math.nan, 'number_of_stuff2_min_24h': math.nan, 'number_of_stuff2_min_2h': math.nan, 'number_of_stuff2_sum_1h': 0, 'number_of_stuff2_sum_24h': 0, 'number_of_stuff2_sum_2h': 0}, {'col2': 0, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 0.0, 'number_of_stuff2_avg_24h': 0.0, 'number_of_stuff2_avg_2h': 0.0, 'number_of_stuff2_max_1h': 0, 'number_of_stuff2_max_24h': 0, 'number_of_stuff2_max_2h': 0, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 0, 'number_of_stuff2_sum_24h': 0, 'number_of_stuff2_sum_2h': 0}, {'col1': 1, 'number_of_stuff1_avg_1h': 0.5, 'number_of_stuff1_avg_24h': 0.5, 'number_of_stuff1_avg_2h': 0.5, 'number_of_stuff1_max_1h': 1, 'number_of_stuff1_max_24h': 1, 'number_of_stuff1_max_2h': 1, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 1, 'number_of_stuff1_sum_24h': 1, 'number_of_stuff1_sum_2h': 1, 'number_of_stuff2_avg_1h': 0.0, 'number_of_stuff2_avg_24h': 0.0, 'number_of_stuff2_avg_2h': 0.0, 'number_of_stuff2_max_1h': 0, 'number_of_stuff2_max_24h': 0, 'number_of_stuff2_max_2h': 0, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 0, 'number_of_stuff2_sum_24h': 0, 'number_of_stuff2_sum_2h': 0}, {'col2': 1, 'number_of_stuff1_avg_1h': 0.5, 'number_of_stuff1_avg_24h': 0.5, 'number_of_stuff1_avg_2h': 0.5, 'number_of_stuff1_max_1h': 1, 'number_of_stuff1_max_24h': 1, 'number_of_stuff1_max_2h': 1, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 1, 'number_of_stuff1_sum_24h': 1, 'number_of_stuff1_sum_2h': 1, 'number_of_stuff2_avg_1h': 0.5, 'number_of_stuff2_avg_24h': 0.5, 'number_of_stuff2_avg_2h': 0.5, 'number_of_stuff2_max_1h': 1, 'number_of_stuff2_max_24h': 1, 'number_of_stuff2_max_2h': 1, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 1, 'number_of_stuff2_sum_24h': 1, 'number_of_stuff2_sum_2h': 1}, {'col1': 2, 'number_of_stuff1_avg_1h': 1.0, 'number_of_stuff1_avg_24h': 1.0, 'number_of_stuff1_avg_2h': 1.0, 'number_of_stuff1_max_1h': 2, 'number_of_stuff1_max_24h': 2, 'number_of_stuff1_max_2h': 2, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 3, 'number_of_stuff1_sum_24h': 3, 'number_of_stuff1_sum_2h': 3, 'number_of_stuff2_avg_1h': 0.5, 'number_of_stuff2_avg_24h': 0.5, 'number_of_stuff2_avg_2h': 0.5, 'number_of_stuff2_max_1h': 1, 'number_of_stuff2_max_24h': 1, 'number_of_stuff2_max_2h': 1, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 1, 'number_of_stuff2_sum_24h': 1, 'number_of_stuff2_sum_2h': 1}, {'col2': 2, 'number_of_stuff1_avg_1h': 1.0, 'number_of_stuff1_avg_24h': 1.0, 'number_of_stuff1_avg_2h': 1.0, 'number_of_stuff1_max_1h': 2, 'number_of_stuff1_max_24h': 2, 'number_of_stuff1_max_2h': 2, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 3, 'number_of_stuff1_sum_24h': 3, 'number_of_stuff1_sum_2h': 3, 'number_of_stuff2_avg_1h': 1.0, 'number_of_stuff2_avg_24h': 1.0, 'number_of_stuff2_avg_2h': 1.0, 'number_of_stuff2_max_1h': 2, 'number_of_stuff2_max_24h': 2, 'number_of_stuff2_max_2h': 2, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 3, 'number_of_stuff2_sum_24h': 3, 'number_of_stuff2_sum_2h': 3}, {'col1': 3, 'number_of_stuff1_avg_1h': 2.0, 'number_of_stuff1_avg_24h': 1.5, 'number_of_stuff1_avg_2h': 1.5, 'number_of_stuff1_max_1h': 3, 'number_of_stuff1_max_24h': 3, 'number_of_stuff1_max_2h': 3, 'number_of_stuff1_min_1h': 1, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 6, 'number_of_stuff1_sum_24h': 6, 'number_of_stuff1_sum_2h': 6, 'number_of_stuff2_avg_1h': 1.0, 'number_of_stuff2_avg_24h': 1.0, 'number_of_stuff2_avg_2h': 1.0, 'number_of_stuff2_max_1h': 2, 'number_of_stuff2_max_24h': 2, 'number_of_stuff2_max_2h': 2, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 3, 'number_of_stuff2_sum_24h': 3, 'number_of_stuff2_sum_2h': 3}, {'col2': 3, 'number_of_stuff1_avg_1h': 2.0, 'number_of_stuff1_avg_24h': 1.5, 'number_of_stuff1_avg_2h': 1.5, 'number_of_stuff1_max_1h': 3, 'number_of_stuff1_max_24h': 3, 'number_of_stuff1_max_2h': 3, 'number_of_stuff1_min_1h': 1, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 6, 'number_of_stuff1_sum_24h': 6, 'number_of_stuff1_sum_2h': 6, 'number_of_stuff2_avg_1h': 2.0, 'number_of_stuff2_avg_24h': 1.5, 'number_of_stuff2_avg_2h': 1.5, 'number_of_stuff2_max_1h': 3, 'number_of_stuff2_max_24h': 3, 'number_of_stuff2_max_2h': 3, 'number_of_stuff2_min_1h': 1, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 6, 'number_of_stuff2_sum_24h': 6, 'number_of_stuff2_sum_2h': 6}, {'col1': 4, 'number_of_stuff1_avg_1h': 3.0, 'number_of_stuff1_avg_24h': 2.0, 'number_of_stuff1_avg_2h': 2.0, 'number_of_stuff1_max_1h': 4, 'number_of_stuff1_max_24h': 4, 'number_of_stuff1_max_2h': 4, 'number_of_stuff1_min_1h': 2, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 9, 'number_of_stuff1_sum_24h': 10, 'number_of_stuff1_sum_2h': 10, 'number_of_stuff2_avg_1h': 2.0, 'number_of_stuff2_avg_24h': 1.5, 'number_of_stuff2_avg_2h': 1.5, 'number_of_stuff2_max_1h': 3, 'number_of_stuff2_max_24h': 3, 'number_of_stuff2_max_2h': 3, 'number_of_stuff2_min_1h': 1, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 6, 'number_of_stuff2_sum_24h': 6, 'number_of_stuff2_sum_2h': 6}, {'col2': 4, 'number_of_stuff1_avg_1h': 3.0, 'number_of_stuff1_avg_24h': 2.0, 'number_of_stuff1_avg_2h': 2.0, 'number_of_stuff1_max_1h': 4, 'number_of_stuff1_max_24h': 4, 'number_of_stuff1_max_2h': 4, 'number_of_stuff1_min_1h': 2, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 9, 'number_of_stuff1_sum_24h': 10, 'number_of_stuff1_sum_2h': 10, 'number_of_stuff2_avg_1h': 3.0, 'number_of_stuff2_avg_24h': 2.0, 'number_of_stuff2_avg_2h': 2.0, 'number_of_stuff2_max_1h': 4, 'number_of_stuff2_max_24h': 4, 'number_of_stuff2_max_2h': 4, 'number_of_stuff2_min_1h': 2, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 9, 'number_of_stuff2_sum_24h': 10, 'number_of_stuff2_sum_2h': 10}, {'col1': 5, 'number_of_stuff1_avg_1h': 4.0, 'number_of_stuff1_avg_24h': 2.5, 'number_of_stuff1_avg_2h': 3.0, 'number_of_stuff1_max_1h': 5, 'number_of_stuff1_max_24h': 5, 'number_of_stuff1_max_2h': 5, 'number_of_stuff1_min_1h': 3, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 1, 'number_of_stuff1_sum_1h': 12, 'number_of_stuff1_sum_24h': 15, 'number_of_stuff1_sum_2h': 15, 'number_of_stuff2_avg_1h': 3.0, 'number_of_stuff2_avg_24h': 2.0, 'number_of_stuff2_avg_2h': 2.0, 'number_of_stuff2_max_1h': 4, 'number_of_stuff2_max_24h': 4, 'number_of_stuff2_max_2h': 4, 'number_of_stuff2_min_1h': 2, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 9, 'number_of_stuff2_sum_24h': 10, 'number_of_stuff2_sum_2h': 10}, {'col2': 5, 'number_of_stuff1_avg_1h': 4.0, 'number_of_stuff1_avg_24h': 2.5, 'number_of_stuff1_avg_2h': 3.0, 'number_of_stuff1_max_1h': 5, 'number_of_stuff1_max_24h': 5, 'number_of_stuff1_max_2h': 5, 'number_of_stuff1_min_1h': 3, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 1, 'number_of_stuff1_sum_1h': 12, 'number_of_stuff1_sum_24h': 15, 'number_of_stuff1_sum_2h': 15, 'number_of_stuff2_avg_1h': 4.0, 'number_of_stuff2_avg_24h': 2.5, 'number_of_stuff2_avg_2h': 3.0, 'number_of_stuff2_max_1h': 5, 'number_of_stuff2_max_24h': 5, 'number_of_stuff2_max_2h': 5, 'number_of_stuff2_min_1h': 3, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 1, 'number_of_stuff2_sum_1h': 12, 'number_of_stuff2_sum_24h': 15, 'number_of_stuff2_sum_2h': 15}, {'col1': 6, 'number_of_stuff1_avg_1h': 5.0, 'number_of_stuff1_avg_24h': 3.0, 'number_of_stuff1_avg_2h': 4.0, 'number_of_stuff1_max_1h': 6, 'number_of_stuff1_max_24h': 6, 'number_of_stuff1_max_2h': 6, 'number_of_stuff1_min_1h': 4, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 2, 'number_of_stuff1_sum_1h': 15, 'number_of_stuff1_sum_24h': 21, 'number_of_stuff1_sum_2h': 20, 'number_of_stuff2_avg_1h': 4.0, 'number_of_stuff2_avg_24h': 2.5, 'number_of_stuff2_avg_2h': 3.0, 'number_of_stuff2_max_1h': 5, 'number_of_stuff2_max_24h': 5, 'number_of_stuff2_max_2h': 5, 'number_of_stuff2_min_1h': 3, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 1, 'number_of_stuff2_sum_1h': 12, 'number_of_stuff2_sum_24h': 15, 'number_of_stuff2_sum_2h': 15}, {'col2': 6, 'number_of_stuff1_avg_1h': 5.0, 'number_of_stuff1_avg_24h': 3.0, 'number_of_stuff1_avg_2h': 4.0, 'number_of_stuff1_max_1h': 6, 'number_of_stuff1_max_24h': 6, 'number_of_stuff1_max_2h': 6, 'number_of_stuff1_min_1h': 4, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 2, 'number_of_stuff1_sum_1h': 15, 'number_of_stuff1_sum_24h': 21, 'number_of_stuff1_sum_2h': 20, 'number_of_stuff2_avg_1h': 5.0, 'number_of_stuff2_avg_24h': 3.0, 'number_of_stuff2_avg_2h': 4.0, 'number_of_stuff2_max_1h': 6, 'number_of_stuff2_max_24h': 6, 'number_of_stuff2_max_2h': 6, 'number_of_stuff2_min_1h': 4, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 2, 'number_of_stuff2_sum_1h': 15, 'number_of_stuff2_sum_24h': 21, 'number_of_stuff2_sum_2h': 20}, {'col1': 7, 'number_of_stuff1_avg_1h': 6.0, 'number_of_stuff1_avg_24h': 3.5, 'number_of_stuff1_avg_2h': 5.0, 'number_of_stuff1_max_1h': 7, 'number_of_stuff1_max_24h': 7, 'number_of_stuff1_max_2h': 7, 'number_of_stuff1_min_1h': 5, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 3, 'number_of_stuff1_sum_1h': 18, 'number_of_stuff1_sum_24h': 28, 'number_of_stuff1_sum_2h': 25, 'number_of_stuff2_avg_1h': 5.0, 'number_of_stuff2_avg_24h': 3.0, 'number_of_stuff2_avg_2h': 4.0, 'number_of_stuff2_max_1h': 6, 'number_of_stuff2_max_24h': 6, 'number_of_stuff2_max_2h': 6, 'number_of_stuff2_min_1h': 4, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 2, 'number_of_stuff2_sum_1h': 15, 'number_of_stuff2_sum_24h': 21, 'number_of_stuff2_sum_2h': 20}, {'col2': 7, 'number_of_stuff1_avg_1h': 6.0, 'number_of_stuff1_avg_24h': 3.5, 'number_of_stuff1_avg_2h': 5.0, 'number_of_stuff1_max_1h': 7, 'number_of_stuff1_max_24h': 7, 'number_of_stuff1_max_2h': 7, 'number_of_stuff1_min_1h': 5, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 3, 'number_of_stuff1_sum_1h': 18, 'number_of_stuff1_sum_24h': 28, 'number_of_stuff1_sum_2h': 25, 'number_of_stuff2_avg_1h': 6.0, 'number_of_stuff2_avg_24h': 3.5, 'number_of_stuff2_avg_2h': 5.0, 'number_of_stuff2_max_1h': 7, 'number_of_stuff2_max_24h': 7, 'number_of_stuff2_max_2h': 7, 'number_of_stuff2_min_1h': 5, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 3, 'number_of_stuff2_sum_1h': 18, 'number_of_stuff2_sum_24h': 28, 'number_of_stuff2_sum_2h': 25}, {'col1': 8, 'number_of_stuff1_avg_1h': 7.0, 'number_of_stuff1_avg_24h': 4.0, 'number_of_stuff1_avg_2h': 6.0, 'number_of_stuff1_max_1h': 8, 'number_of_stuff1_max_24h': 8, 'number_of_stuff1_max_2h': 8, 'number_of_stuff1_min_1h': 6, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 4, 'number_of_stuff1_sum_1h': 21, 'number_of_stuff1_sum_24h': 36, 'number_of_stuff1_sum_2h': 30, 'number_of_stuff2_avg_1h': 6.0, 'number_of_stuff2_avg_24h': 3.5, 'number_of_stuff2_avg_2h': 5.0, 'number_of_stuff2_max_1h': 7, 'number_of_stuff2_max_24h': 7, 'number_of_stuff2_max_2h': 7, 'number_of_stuff2_min_1h': 5, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 3, 'number_of_stuff2_sum_1h': 18, 'number_of_stuff2_sum_24h': 28, 'number_of_stuff2_sum_2h': 25}, {'col2': 8, 'number_of_stuff1_avg_1h': 7.0, 'number_of_stuff1_avg_24h': 4.0, 'number_of_stuff1_avg_2h': 6.0, 'number_of_stuff1_max_1h': 8, 'number_of_stuff1_max_24h': 8, 'number_of_stuff1_max_2h': 8, 'number_of_stuff1_min_1h': 6, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 4, 'number_of_stuff1_sum_1h': 21, 'number_of_stuff1_sum_24h': 36, 'number_of_stuff1_sum_2h': 30, 'number_of_stuff2_avg_1h': 7.0, 'number_of_stuff2_avg_24h': 4.0, 'number_of_stuff2_avg_2h': 6.0, 'number_of_stuff2_max_1h': 8, 'number_of_stuff2_max_24h': 8, 'number_of_stuff2_max_2h': 8, 'number_of_stuff2_min_1h': 6, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 4, 'number_of_stuff2_sum_1h': 21, 'number_of_stuff2_sum_24h': 36, 'number_of_stuff2_sum_2h': 30}, {'col1': 9, 'number_of_stuff1_avg_1h': 8.0, 'number_of_stuff1_avg_24h': 4.5, 'number_of_stuff1_avg_2h': 7.0, 'number_of_stuff1_max_1h': 9, 'number_of_stuff1_max_24h': 9, 'number_of_stuff1_max_2h': 9, 'number_of_stuff1_min_1h': 7, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 5, 'number_of_stuff1_sum_1h': 24, 'number_of_stuff1_sum_24h': 45, 'number_of_stuff1_sum_2h': 35, 'number_of_stuff2_avg_1h': 7.0, 'number_of_stuff2_avg_24h': 4.0, 'number_of_stuff2_avg_2h': 6.0, 'number_of_stuff2_max_1h': 8, 'number_of_stuff2_max_24h': 8, 'number_of_stuff2_max_2h': 8, 'number_of_stuff2_min_1h': 6, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 4, 'number_of_stuff2_sum_1h': 21, 'number_of_stuff2_sum_24h': 36, 'number_of_stuff2_sum_2h': 30}, {'col2': 9, 'number_of_stuff1_avg_1h': 8.0, 'number_of_stuff1_avg_24h': 4.5, 'number_of_stuff1_avg_2h': 7.0, 'number_of_stuff1_max_1h': 9, 'number_of_stuff1_max_24h': 9, 'number_of_stuff1_max_2h': 9, 'number_of_stuff1_min_1h': 7, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 5, 'number_of_stuff1_sum_1h': 24, 'number_of_stuff1_sum_24h': 45, 'number_of_stuff1_sum_2h': 35, 'number_of_stuff2_avg_1h': 8.0, 'number_of_stuff2_avg_24h': 4.5, 'number_of_stuff2_avg_2h': 7.0, 'number_of_stuff2_max_1h': 9, 'number_of_stuff2_max_24h': 9, 'number_of_stuff2_max_2h': 9, 'number_of_stuff2_min_1h': 7, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 5, 'number_of_stuff2_sum_1h': 24, 'number_of_stuff2_sum_24h': 45, 'number_of_stuff2_sum_2h': 35}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_sparse_data_uneven_feature_occurrence(): controller = build_flow([ SyncEmitSource(), AggregateByKey( [FieldAggregator("number_of_stuff1", "col1", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m')), FieldAggregator("number_of_stuff2", "col2", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() controller.emit({'col1': 0}, 'tal', test_base_time) for i in range(10): controller.emit({'col2': i}, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': math.nan, 'number_of_stuff2_avg_24h': math.nan, 'number_of_stuff2_avg_2h': math.nan, 'number_of_stuff2_max_1h': math.nan, 'number_of_stuff2_max_24h': math.nan, 'number_of_stuff2_max_2h': math.nan, 'number_of_stuff2_min_1h': math.nan, 'number_of_stuff2_min_24h': math.nan, 'number_of_stuff2_min_2h': math.nan, 'number_of_stuff2_sum_1h': 0, 'number_of_stuff2_sum_24h': 0, 'number_of_stuff2_sum_2h': 0}, {'col2': 0, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 0.0, 'number_of_stuff2_avg_24h': 0.0, 'number_of_stuff2_avg_2h': 0.0, 'number_of_stuff2_max_1h': 0, 'number_of_stuff2_max_24h': 0, 'number_of_stuff2_max_2h': 0, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 0, 'number_of_stuff2_sum_24h': 0, 'number_of_stuff2_sum_2h': 0}, {'col2': 1, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 0.5, 'number_of_stuff2_avg_24h': 0.5, 'number_of_stuff2_avg_2h': 0.5, 'number_of_stuff2_max_1h': 1, 'number_of_stuff2_max_24h': 1, 'number_of_stuff2_max_2h': 1, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 1, 'number_of_stuff2_sum_24h': 1, 'number_of_stuff2_sum_2h': 1}, {'col2': 2, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 1.0, 'number_of_stuff2_avg_24h': 1.0, 'number_of_stuff2_avg_2h': 1.0, 'number_of_stuff2_max_1h': 2, 'number_of_stuff2_max_24h': 2, 'number_of_stuff2_max_2h': 2, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 3, 'number_of_stuff2_sum_24h': 3, 'number_of_stuff2_sum_2h': 3}, {'col2': 3, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 2.0, 'number_of_stuff2_avg_24h': 1.5, 'number_of_stuff2_avg_2h': 1.5, 'number_of_stuff2_max_1h': 3, 'number_of_stuff2_max_24h': 3, 'number_of_stuff2_max_2h': 3, 'number_of_stuff2_min_1h': 1, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 6, 'number_of_stuff2_sum_24h': 6, 'number_of_stuff2_sum_2h': 6}, {'col2': 4, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 3.0, 'number_of_stuff2_avg_24h': 2.0, 'number_of_stuff2_avg_2h': 2.0, 'number_of_stuff2_max_1h': 4, 'number_of_stuff2_max_24h': 4, 'number_of_stuff2_max_2h': 4, 'number_of_stuff2_min_1h': 2, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 9, 'number_of_stuff2_sum_24h': 10, 'number_of_stuff2_sum_2h': 10}, {'col2': 5, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 4.0, 'number_of_stuff2_avg_24h': 2.5, 'number_of_stuff2_avg_2h': 3.0, 'number_of_stuff2_max_1h': 5, 'number_of_stuff2_max_24h': 5, 'number_of_stuff2_max_2h': 5, 'number_of_stuff2_min_1h': 3, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 1, 'number_of_stuff2_sum_1h': 12, 'number_of_stuff2_sum_24h': 15, 'number_of_stuff2_sum_2h': 15}, {'col2': 6, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 5.0, 'number_of_stuff2_avg_24h': 3.0, 'number_of_stuff2_avg_2h': 4.0, 'number_of_stuff2_max_1h': 6, 'number_of_stuff2_max_24h': 6, 'number_of_stuff2_max_2h': 6, 'number_of_stuff2_min_1h': 4, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 2, 'number_of_stuff2_sum_1h': 15, 'number_of_stuff2_sum_24h': 21, 'number_of_stuff2_sum_2h': 20}, {'col2': 7, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 6.0, 'number_of_stuff2_avg_24h': 3.5, 'number_of_stuff2_avg_2h': 5.0, 'number_of_stuff2_max_1h': 7, 'number_of_stuff2_max_24h': 7, 'number_of_stuff2_max_2h': 7, 'number_of_stuff2_min_1h': 5, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 3, 'number_of_stuff2_sum_1h': 18, 'number_of_stuff2_sum_24h': 28, 'number_of_stuff2_sum_2h': 25}, {'col2': 8, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 7.0, 'number_of_stuff2_avg_24h': 4.0, 'number_of_stuff2_avg_2h': 6.0, 'number_of_stuff2_max_1h': 8, 'number_of_stuff2_max_24h': 8, 'number_of_stuff2_max_2h': 8, 'number_of_stuff2_min_1h': 6, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 4, 'number_of_stuff2_sum_1h': 21, 'number_of_stuff2_sum_24h': 36, 'number_of_stuff2_sum_2h': 30}, {'col2': 9, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 8.0, 'number_of_stuff2_avg_24h': 4.5, 'number_of_stuff2_avg_2h': 7.0, 'number_of_stuff2_max_1h': 9, 'number_of_stuff2_max_24h': 9, 'number_of_stuff2_max_2h': 9, 'number_of_stuff2_min_1h': 7, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 5, 'number_of_stuff2_sum_1h': 24, 'number_of_stuff2_sum_24h': 45, 'number_of_stuff2_sum_2h': 35}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_multiple_keys_aggregation_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg"], SlidingWindows(['1h', '2h', '24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, f'{i % 2}', test_base_time + timedelta(minutes=i)) controller.terminate() actual = controller.await_termination() expected_results = [ {'col1': 0, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 1, 'number_of_stuff_sum_1h': 1, 'number_of_stuff_sum_2h': 1, 'number_of_stuff_sum_24h': 1, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 2, 'number_of_stuff_sum_1h': 2, 'number_of_stuff_sum_2h': 2, 'number_of_stuff_sum_24h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 3, 'number_of_stuff_sum_1h': 4, 'number_of_stuff_sum_2h': 4, 'number_of_stuff_sum_24h': 4, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 4, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 5, 'number_of_stuff_sum_1h': 9, 'number_of_stuff_sum_2h': 9, 'number_of_stuff_sum_24h': 9, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 6, 'number_of_stuff_sum_1h': 12, 'number_of_stuff_sum_2h': 12, 'number_of_stuff_sum_24h': 12, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 7, 'number_of_stuff_sum_1h': 16, 'number_of_stuff_sum_2h': 16, 'number_of_stuff_sum_24h': 16, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 8, 'number_of_stuff_sum_1h': 20, 'number_of_stuff_sum_2h': 20, 'number_of_stuff_sum_24h': 20, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 9, 'number_of_stuff_sum_1h': 25, 'number_of_stuff_sum_2h': 25, 'number_of_stuff_sum_24h': 25, 'number_of_stuff_avg_1h': 5.0, 'number_of_stuff_avg_2h': 5.0, 'number_of_stuff_avg_24h': 5.0}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_aggregations_with_filters_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg"], SlidingWindows(['1h', '2h', '24h'], '10m'), aggr_filter=lambda element: element['is_valid'] == 0)], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i, 'is_valid': i % 2} controller.emit(data, 'tal', test_base_time + timedelta(minutes=i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'is_valid': 0, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 1, 'is_valid': 1, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 2, 'is_valid': 0, 'number_of_stuff_sum_1h': 2, 'number_of_stuff_sum_2h': 2, 'number_of_stuff_sum_24h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 3, 'is_valid': 1, 'number_of_stuff_sum_1h': 2, 'number_of_stuff_sum_2h': 2, 'number_of_stuff_sum_24h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 4, 'is_valid': 0, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 5, 'is_valid': 1, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 6, 'is_valid': 0, 'number_of_stuff_sum_1h': 12, 'number_of_stuff_sum_2h': 12, 'number_of_stuff_sum_24h': 12, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 7, 'is_valid': 1, 'number_of_stuff_sum_1h': 12, 'number_of_stuff_sum_2h': 12, 'number_of_stuff_sum_24h': 12, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 8, 'is_valid': 0, 'number_of_stuff_sum_1h': 20, 'number_of_stuff_sum_2h': 20, 'number_of_stuff_sum_24h': 20, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 9, 'is_valid': 1, 'number_of_stuff_sum_1h': 20, 'number_of_stuff_sum_2h': 20, 'number_of_stuff_sum_24h': 20, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 4.0}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_aggregations_with_max_values_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("num_hours_with_stuff_in_the_last_24h", "col1", ["count"], SlidingWindows(['24h'], '1h'), max_value=5)], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=10 * i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'num_hours_with_stuff_in_the_last_24h_count_24h': 1}, {'col1': 1, 'num_hours_with_stuff_in_the_last_24h_count_24h': 2}, {'col1': 2, 'num_hours_with_stuff_in_the_last_24h_count_24h': 3}, {'col1': 3, 'num_hours_with_stuff_in_the_last_24h_count_24h': 4}, {'col1': 4, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}, {'col1': 5, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}, {'col1': 6, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}, {'col1': 7, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}, {'col1': 8, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}, {'col1': 9, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_simple_aggregation_flow_multiple_fields(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg"], SlidingWindows(['1h', '2h', '24h'], '10m')), FieldAggregator("number_of_things", "col2", ["count"], SlidingWindows(['1h', '2h'], '15m')), FieldAggregator("abc", "col3", ["sum"], SlidingWindows(['24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i, 'col2': i * 1.2, 'col3': i * 2 + 4} controller.emit(data, 'tal', test_base_time + timedelta(minutes=i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'col2': 0.0, 'col3': 4, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_things_count_1h': 1, 'number_of_things_count_2h': 1, 'abc_sum_24h': 4, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 1, 'col2': 1.2, 'col3': 6, 'number_of_stuff_sum_1h': 1, 'number_of_stuff_sum_2h': 1, 'number_of_stuff_sum_24h': 1, 'number_of_things_count_1h': 2, 'number_of_things_count_2h': 2, 'abc_sum_24h': 10, 'number_of_stuff_avg_1h': 0.5, 'number_of_stuff_avg_2h': 0.5, 'number_of_stuff_avg_24h': 0.5}, {'col1': 2, 'col2': 2.4, 'col3': 8, 'number_of_stuff_sum_1h': 3, 'number_of_stuff_sum_2h': 3, 'number_of_stuff_sum_24h': 3, 'number_of_things_count_1h': 3, 'number_of_things_count_2h': 3, 'abc_sum_24h': 18, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 3, 'col2': 3.5999999999999996, 'col3': 10, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_things_count_1h': 4, 'number_of_things_count_2h': 4, 'abc_sum_24h': 28, 'number_of_stuff_avg_1h': 1.5, 'number_of_stuff_avg_2h': 1.5, 'number_of_stuff_avg_24h': 1.5}, {'col1': 4, 'col2': 4.8, 'col3': 12, 'number_of_stuff_sum_1h': 10, 'number_of_stuff_sum_2h': 10, 'number_of_stuff_sum_24h': 10, 'number_of_things_count_1h': 5, 'number_of_things_count_2h': 5, 'abc_sum_24h': 40, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 5, 'col2': 6.0, 'col3': 14, 'number_of_stuff_sum_1h': 15, 'number_of_stuff_sum_2h': 15, 'number_of_stuff_sum_24h': 15, 'number_of_things_count_1h': 6, 'number_of_things_count_2h': 6, 'abc_sum_24h': 54, 'number_of_stuff_avg_1h': 2.5, 'number_of_stuff_avg_2h': 2.5, 'number_of_stuff_avg_24h': 2.5}, {'col1': 6, 'col2': 7.199999999999999, 'col3': 16, 'number_of_stuff_sum_1h': 21, 'number_of_stuff_sum_2h': 21, 'number_of_stuff_sum_24h': 21, 'number_of_things_count_1h': 7, 'number_of_things_count_2h': 7, 'abc_sum_24h': 70, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 7, 'col2': 8.4, 'col3': 18, 'number_of_stuff_sum_1h': 28, 'number_of_stuff_sum_2h': 28, 'number_of_stuff_sum_24h': 28, 'number_of_things_count_1h': 8, 'number_of_things_count_2h': 8, 'abc_sum_24h': 88, 'number_of_stuff_avg_1h': 3.5, 'number_of_stuff_avg_2h': 3.5, 'number_of_stuff_avg_24h': 3.5}, {'col1': 8, 'col2': 9.6, 'col3': 20, 'number_of_stuff_sum_1h': 36, 'number_of_stuff_sum_2h': 36, 'number_of_stuff_sum_24h': 36, 'number_of_things_count_1h': 9, 'number_of_things_count_2h': 9, 'abc_sum_24h': 108, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 9, 'col2': 10.799999999999999, 'col3': 22, 'number_of_stuff_sum_1h': 45, 'number_of_stuff_sum_2h': 45, 'number_of_stuff_sum_24h': 45, 'number_of_things_count_1h': 10, 'number_of_things_count_2h': 10, 'abc_sum_24h': 130, 'number_of_stuff_avg_1h': 4.5, 'number_of_stuff_avg_2h': 4.5, 'number_of_stuff_avg_24h': 4.5}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_fixed_window_simple_aggregation_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["count"], FixedWindows(['1h', '2h', '3h', '24h']))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 1, 'number_of_stuff_count_24h': 1}, {'col1': 1, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 2, 'number_of_stuff_count_24h': 2}, {'col1': 2, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2, 'number_of_stuff_count_3h': 3, 'number_of_stuff_count_24h': 3}, {'col1': 3, 'number_of_stuff_count_1h': 3, 'number_of_stuff_count_2h': 3, 'number_of_stuff_count_3h': 4, 'number_of_stuff_count_24h': 4}, {'col1': 4, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 4, 'number_of_stuff_count_3h': 5, 'number_of_stuff_count_24h': 5}, {'col1': 5, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 5, 'number_of_stuff_count_3h': 6, 'number_of_stuff_count_24h': 6}, {'col1': 6, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 1, 'number_of_stuff_count_24h': 1}, {'col1': 7, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2, 'number_of_stuff_count_3h': 2, 'number_of_stuff_count_24h': 2}, {'col1': 8, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 3, 'number_of_stuff_count_3h': 3, 'number_of_stuff_count_24h': 3}, {'col1': 9, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 4, 'number_of_stuff_count_3h': 4, 'number_of_stuff_count_24h': 4}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_fixed_window_aggregation_with_uncommon_windows_flow(): time_format = '%Y-%m-%d %H:%M:%S.%f' columns = ['sample_time', 'signal', 'isotope'] data = [[datetime.strptime('2021-05-30 16:42:15.797000', time_format).replace(tzinfo=timezone.utc), 790.235, 'U235'], [datetime.strptime('2021-05-30 16:45:15.798000', time_format).replace(tzinfo=timezone.utc), 498.491, 'U235'], [datetime.strptime('2021-05-30 16:48:15.799000', time_format).replace(tzinfo=timezone.utc), 34650.00343, 'U235'], [datetime.strptime('2021-05-30 16:51:15.800000', time_format).replace(tzinfo=timezone.utc), 189.823, 'U235'], [datetime.strptime('2021-05-30 16:54:15.801000', time_format).replace(tzinfo=timezone.utc), 379.524, 'U235'], [datetime.strptime('2021-05-30 16:57:15.802000', time_format).replace(tzinfo=timezone.utc), 2225.4952, 'U235'], [datetime.strptime('2021-05-30 17:00:15.803000', time_format).replace(tzinfo=timezone.utc), 1049.0903, 'U235'], [datetime.strptime('2021-05-30 17:03:15.804000', time_format).replace(tzinfo=timezone.utc), 41905.63447, 'U235'], [datetime.strptime('2021-05-30 17:06:15.805000', time_format).replace(tzinfo=timezone.utc), 4987.6764, 'U235'], [datetime.strptime('2021-05-30 17:09:15.806000', time_format).replace(tzinfo=timezone.utc), 67657.11975, 'U235'], [datetime.strptime('2021-05-30 17:12:15.807000', time_format).replace(tzinfo=timezone.utc), 56173.06327, 'U235'], [datetime.strptime('2021-05-30 17:15:15.808000', time_format).replace(tzinfo=timezone.utc), 14249.67394, 'U235'], [datetime.strptime('2021-05-30 17:18:15.809000', time_format).replace(tzinfo=timezone.utc), 656.831, 'U235'], [datetime.strptime('2021-05-30 17:21:15.810000', time_format).replace(tzinfo=timezone.utc), 5768.4822, 'U235'], [datetime.strptime('2021-05-30 17:24:15.811000', time_format).replace(tzinfo=timezone.utc), 929.028, 'U235'], [datetime.strptime('2021-05-30 17:27:15.812000', time_format).replace(tzinfo=timezone.utc), 2585.9646, 'U235'], [datetime.strptime('2021-05-30 17:30:15.813000', time_format).replace(tzinfo=timezone.utc), 358.918, 'U235']] df = pd.DataFrame(data, columns=columns) controller = build_flow([ DataframeSource(df, time_field="sample_time", key_field="isotope"), AggregateByKey([FieldAggregator("samples", "signal", ["count"], FixedWindows(['15m', '25m', '45m', '1h']))], Table("U235_test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() termination_result = controller.await_termination() expected = [{'samples_count_15m': 1.0, 'samples_count_25m': 1.0, 'samples_count_45m': 1.0, 'samples_count_1h': 1.0, 'sample_time': pd.Timestamp('2021-05-30 16:42:15.797000+0000', tz='UTC'), 'signal': 790.235, 'isotope': 'U235'}, {'samples_count_15m': 1.0, 'samples_count_25m': 2.0, 'samples_count_45m': 2.0, 'samples_count_1h': 2.0, 'sample_time': pd.Timestamp('2021-05-30 16:45:15.798000+0000', tz='UTC'), 'signal': 498.491, 'isotope': 'U235'}, {'samples_count_15m': 2.0, 'samples_count_25m': 3.0, 'samples_count_45m': 3.0, 'samples_count_1h': 3.0, 'sample_time': pd.Timestamp('2021-05-30 16:48:15.799000+0000', tz='UTC'), 'signal': 34650.00343, 'isotope': 'U235'}, {'samples_count_15m': 3.0, 'samples_count_25m': 4.0, 'samples_count_45m': 4.0, 'samples_count_1h': 4.0, 'sample_time': pd.Timestamp('2021-05-30 16:51:15.800000+0000', tz='UTC'), 'signal': 189.823, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 5.0, 'samples_count_45m': 5.0, 'samples_count_1h': 5.0, 'sample_time': pd.Timestamp('2021-05-30 16:54:15.801000+0000', tz='UTC'), 'signal': 379.524, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 6.0, 'samples_count_45m': 6.0, 'samples_count_1h': 6.0, 'sample_time': pd.Timestamp('2021-05-30 16:57:15.802000+0000', tz='UTC'), 'signal': 2225.4952, 'isotope': 'U235'}, {'samples_count_15m': 1.0, 'samples_count_25m': 1.0, 'samples_count_45m': 7.0, 'samples_count_1h': 1.0, 'sample_time': pd.Timestamp('2021-05-30 17:00:15.803000+0000', tz='UTC'), 'signal': 1049.0903, 'isotope': 'U235'}, {'samples_count_15m': 2.0, 'samples_count_25m': 2.0, 'samples_count_45m': 8.0, 'samples_count_1h': 2.0, 'sample_time': pd.Timestamp('2021-05-30 17:03:15.804000+0000', tz='UTC'), 'signal': 41905.63447, 'isotope': 'U235'}, {'samples_count_15m': 3.0, 'samples_count_25m': 3.0, 'samples_count_45m': 9.0, 'samples_count_1h': 3.0, 'sample_time': pd.Timestamp('2021-05-30 17:06:15.805000+0000', tz='UTC'), 'signal': 4987.6764, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 4.0, 'samples_count_45m': 10.0, 'samples_count_1h': 4.0, 'sample_time': pd.Timestamp('2021-05-30 17:09:15.806000+0000', tz='UTC'), 'signal': 67657.11975, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 5.0, 'samples_count_45m': 11.0, 'samples_count_1h': 5.0, 'sample_time': pd.Timestamp('2021-05-30 17:12:15.807000+0000', tz='UTC'), 'signal': 56173.06327, 'isotope': 'U235'}, {'samples_count_15m': 1.0, 'samples_count_25m': 6.0, 'samples_count_45m': 1.0, 'samples_count_1h': 6.0, 'sample_time': pd.Timestamp('2021-05-30 17:15:15.808000+0000', tz='UTC'), 'signal': 14249.67394, 'isotope': 'U235'}, {'samples_count_15m': 2.0, 'samples_count_25m': 7.0, 'samples_count_45m': 2.0, 'samples_count_1h': 7.0, 'sample_time': pd.Timestamp('2021-05-30 17:18:15.809000+0000', tz='UTC'), 'signal': 656.831, 'isotope': 'U235'}, {'samples_count_15m': 3.0, 'samples_count_25m': 8.0, 'samples_count_45m': 3.0, 'samples_count_1h': 8.0, 'sample_time': pd.Timestamp('2021-05-30 17:21:15.810000+0000', tz='UTC'), 'signal': 5768.4822, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 9.0, 'samples_count_45m': 4.0, 'samples_count_1h': 9.0, 'sample_time':
pd.Timestamp('2021-05-30 17:24:15.811000+0000', tz='UTC')
pandas.Timestamp
# -*- coding: utf-8 -*- """ These test the private routines in types/cast.py """ import pytest from datetime import datetime, timedelta, date import numpy as np import pandas as pd from pandas import (Timedelta, Timestamp, DatetimeIndex, DataFrame, NaT, Period, Series) from pandas.core.dtypes.cast import ( maybe_downcast_to_dtype, maybe_convert_objects, cast_scalar_to_array, infer_dtype_from_scalar, infer_dtype_from_array, maybe_convert_string_to_object, maybe_convert_scalar, find_common_type) from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, PeriodDtype) from pandas.core.dtypes.common import ( is_dtype_equal) from pandas.util import testing as tm class TestMaybeDowncast(object): def test_downcast_conv(self): # test downcasting arr = np.array([8.5, 8.6, 8.7, 8.8, 8.9999999999995]) result = maybe_downcast_to_dtype(arr, 'infer') assert (np.array_equal(result, arr)) arr = np.array([8., 8., 8., 8., 8.9999999999995]) result = maybe_downcast_to_dtype(arr, 'infer') expected = np.array([8, 8, 8, 8, 9]) assert (np.array_equal(result, expected)) arr = np.array([8., 8., 8., 8., 9.0000000000005]) result = maybe_downcast_to_dtype(arr, 'infer') expected = np.array([8, 8, 8, 8, 9]) assert (np.array_equal(result, expected)) # GH16875 coercing of bools ser = Series([True, True, False]) result = maybe_downcast_to_dtype(ser, np.dtype(np.float64)) expected = ser tm.assert_series_equal(result, expected) # conversions expected = np.array([1, 2]) for dtype in [np.float64, object, np.int64]: arr = np.array([1.0, 2.0], dtype=dtype) result = maybe_downcast_to_dtype(arr, 'infer') tm.assert_almost_equal(result, expected, check_dtype=False) for dtype in [np.float64, object]: expected = np.array([1.0, 2.0, np.nan], dtype=dtype) arr = np.array([1.0, 2.0, np.nan], dtype=dtype) result = maybe_downcast_to_dtype(arr, 'infer') tm.assert_almost_equal(result, expected) # empties for dtype in [np.int32, np.float64, np.float32, np.bool_, np.int64, object]: arr = np.array([], dtype=dtype) result =
maybe_downcast_to_dtype(arr, 'int64')
pandas.core.dtypes.cast.maybe_downcast_to_dtype
# -*- coding: utf-8 -*- import numpy as np import pandas as pd from scipy import stats as scipy_stats def estimated_sharpe_ratio(returns): """ Calculate the estimated sharpe ratio (risk_free=0). Parameters ---------- returns: np.array, pd.Series, pd.DataFrame Returns ------- float, pd.Series """ return returns.mean() / returns.std(ddof=1) def ann_estimated_sharpe_ratio(returns=None, periods=261, *, sr=None): """ Calculate the annualized estimated sharpe ratio (risk_free=0). Parameters ---------- returns: np.array, pd.Series, pd.DataFrame periods: int How many items in `returns` complete a Year. If returns are daily: 261, weekly: 52, monthly: 12, ... sr: float, np.array, pd.Series, pd.DataFrame Sharpe ratio to be annualized, it's frequency must be coherent with `periods` Returns ------- float, pd.Series """ if sr is None: sr = estimated_sharpe_ratio(returns) sr = sr * np.sqrt(periods) return sr def estimated_sharpe_ratio_stdev(returns=None, *, n=None, skew=None, kurtosis=None, sr=None): """ Calculate the standard deviation of the sharpe ratio estimation. Parameters ---------- returns: np.array, pd.Series, pd.DataFrame If no `returns` are passed it is mandatory to pass the other 4 parameters. n: int Number of returns samples used for calculating `skew`, `kurtosis` and `sr`. skew: float, np.array, pd.Series, pd.DataFrame The third moment expressed in the same frequency as the other parameters. `skew`=0 for normal returns. kurtosis: float, np.array, pd.Series, pd.DataFrame The fourth moment expressed in the same frequency as the other parameters. `kurtosis`=3 for normal returns. sr: float, np.array, pd.Series, pd.DataFrame Sharpe ratio expressed in the same frequency as the other parameters. Returns ------- float, pd.Series Notes ----- This formula generalizes for both normal and non-normal returns. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1821643 """ if type(returns) != pd.DataFrame: _returns = pd.DataFrame(returns) else: _returns = returns.copy() if n is None: n = len(_returns) if skew is None: skew = pd.Series(scipy_stats.skew(_returns, nan_policy='omit'), index=_returns.columns) if kurtosis is None: kurtosis = pd.Series(scipy_stats.kurtosis(_returns, fisher=False, nan_policy='omit'), index=_returns.columns) if sr is None: sr = estimated_sharpe_ratio(_returns) sr_std = np.sqrt((1 + (0.5 * sr ** 2) - (skew * sr) + (((kurtosis - 3) / 4) * sr ** 2)) / (n - 1)) if type(returns) == pd.DataFrame: sr_std = pd.Series(sr_std, index=returns.columns) elif type(sr_std) not in (float, np.float64, pd.DataFrame): sr_std = sr_std.values[0] return sr_std def probabilistic_sharpe_ratio(returns=None, sr_benchmark=0.0, *, sr=None, sr_std=None): """ Calculate the Probabilistic Sharpe Ratio (PSR). Parameters ---------- returns: np.array, pd.Series, pd.DataFrame If no `returns` are passed it is mandatory to pass a `sr` and `sr_std`. sr_benchmark: float Benchmark sharpe ratio expressed in the same frequency as the other parameters. By default set to zero (comparing against no investment skill). sr: float, np.array, pd.Series, pd.DataFrame Sharpe ratio expressed in the same frequency as the other parameters. sr_std: float, np.array, pd.Series, pd.DataFrame Standard deviation fo the Estimated sharpe ratio, expressed in the same frequency as the other parameters. Returns ------- float, pd.Series Notes ----- PSR(SR*) = probability that SR^ > SR* SR^ = sharpe ratio estimated with `returns`, or `sr` SR* = `sr_benchmark` https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1821643 """ if sr is None: sr = estimated_sharpe_ratio(returns) if sr_std is None: sr_std = estimated_sharpe_ratio_stdev(returns, sr=sr) psr = scipy_stats.norm.cdf((sr - sr_benchmark) / sr_std) if type(returns) == pd.DataFrame: psr = pd.Series(psr, index=returns.columns) elif type(psr) not in (float, np.float64): psr = psr[0] return psr def min_track_record_length(returns=None, sr_benchmark=0.0, prob=0.95, *, n=None, sr=None, sr_std=None): """ Calculate the MIn Track Record Length (minTRL). Parameters ---------- returns: np.array, pd.Series, pd.DataFrame If no `returns` are passed it is mandatory to pass a `sr` and `sr_std`. sr_benchmark: float Benchmark sharpe ratio expressed in the same frequency as the other parameters. By default set to zero (comparing against no investment skill). prob: float Confidence level used for calculating the minTRL. Between 0 and 1, by default=0.95 n: int Number of returns samples used for calculating `sr` and `sr_std`. sr: float, np.array, pd.Series, pd.DataFrame Sharpe ratio expressed in the same frequency as the other parameters. sr_std: float, np.array, pd.Series, pd.DataFrame Standard deviation fo the Estimated sharpe ratio, expressed in the same frequency as the other parameters. Returns ------- float, pd.Series Notes ----- minTRL = minimum of returns/samples needed (with same SR and SR_STD) to accomplish a PSR(SR*) > `prob` PSR(SR*) = probability that SR^ > SR* SR^ = sharpe ratio estimated with `returns`, or `sr` SR* = `sr_benchmark` https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1821643 """ if n is None: n = len(returns) if sr is None: sr = estimated_sharpe_ratio(returns) if sr_std is None: sr_std = estimated_sharpe_ratio_stdev(returns, sr=sr) min_trl = 1 + (sr_std ** 2 * (n - 1)) * (scipy_stats.norm.ppf(prob) / (sr - sr_benchmark)) ** 2 if type(returns) == pd.DataFrame: min_trl =
pd.Series(min_trl, index=returns.columns)
pandas.Series
from __future__ import division #brings in Python 3.0 mixed type calculation rules import datetime import inspect import numpy as np import numpy.testing as npt import os.path import pandas as pd import sys from tabulate import tabulate import unittest print("Python version: " + sys.version) print("Numpy version: " + np.__version__) # #find parent directory and import model # parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) # sys.path.append(parent_dir) from ..kabam_exe import Kabam test = {} class TestKabam(unittest.TestCase): """ Unit tests for Kabam model. : unittest will : 1) call the setup method, : 2) then call every method starting with "test", : 3) then the teardown method """ print("kabam unittests conducted at " + str(datetime.datetime.today())) def setUp(self): """ Setup routine for Kabam unit tests. :return: """ pass # setup the test as needed # e.g. pandas to open Kabam qaqc csv # Read qaqc csv and create pandas DataFrames for inputs and expected outputs def tearDown(self): """ Teardown routine for Kabam unit tests. :return: """ pass # teardown called after each test # e.g. maybe write test results to some text file def create_kabam_object(self): # create empty pandas dataframes to create empty object for testing df_empty = pd.DataFrame() # create an empty kabam object kabam_empty = Kabam(df_empty, df_empty) return kabam_empty def test_ventilation_rate(self): """ :description Ventilation rate of aquatic animal :unit L/d :expression Kabam Eq. A5.2b (Gv) :param zoo_wb: wet weight of animal (kg) :param conc_do: concentration of dissolved oxygen (mg O2/L) :return: """ # create empty pandas dataframes to create empty object for this unittest kabam_empty = self.create_kabam_object() result = pd.Series([], dtype='float') expected_results = pd.Series(['nan', 0.00394574, 0.468885], dtype = 'float') try: #use the zooplankton variables/values for the test kabam_empty.zoo_wb = pd.Series(['nan', 1.e-07, 1.e-4], dtype = 'float') kabam_empty.conc_do = pd.Series([5.0, 10.0, 7.5], dtype='float') result = kabam_empty.ventilation_rate(kabam_empty.zoo_wb) npt.assert_allclose(result, expected_results, rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_pest_uptake_eff_gills(self): """ :description Pesticide uptake efficiency by gills :unit fraction "expresssion Kabam Eq. A5.2a (Ew) :param log kow: octanol-water partition coefficient () :return: """ # create empty pandas dataframes to create empty object for this unittest kabam_empty = self.create_kabam_object() result = pd.Series([], dtype='float') expected_results = pd.Series(['nan', 0.540088, 0.540495], dtype = 'float') try: kabam_empty.log_kow = pd.Series(['nan', 5., 6.], dtype = 'float') kabam_empty.kow = 10.**(kabam_empty.log_kow) result = kabam_empty.pest_uptake_eff_bygills() npt.assert_allclose(result, expected_results, rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_phytoplankton_k1_calc(self): """ :description Uptake rate constant through respiratory area for phytoplankton :unit: L/kg*d :expression Kabam Eq. A5.1 (K1:unique to phytoplankton) :param log kow: octanol-water partition coefficient () :return: """ # create empty pandas dataframes to create empty object for this unittest kabam_empty = self.create_kabam_object() result = pd.Series([], dtype='float') expected_results = pd.Series([1639.34426, 8695.6521, 15267.1755], dtype = 'float') try: kabam_empty.log_kow = pd.Series([4., 5., 6.], dtype = 'float') kabam_empty.kow = 10.**(kabam_empty.log_kow) result = kabam_empty.phytoplankton_k1_calc(kabam_empty.kow) npt.assert_allclose(result, expected_results, rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_aq_animal_k1_calc(self): """ U:description ptake rate constant through respiratory area for aquatic animals :unit: L/kg*d :expression Kabam Eq. A5.2 (K1) :param pest_uptake_eff_bygills: Pesticide uptake efficiency by gills of aquatic animals (fraction) :param vent_rate: Ventilation rate of aquatic animal (L/d) :param wet_wgt: wet weight of animal (kg) :return: """ # create empty pandas dataframes to create empty object for this unittest kabam_empty = self.create_kabam_object() result = pd.Series([], dtype='float') expected_results = pd.Series(['nan', 1201.13849, 169.37439], dtype = 'float') try: pest_uptake_eff_bygills = pd.Series(['nan', 0.0304414, 0.0361228], dtype = 'float') vent_rate = pd.Series(['nan', 0.00394574, 0.468885], dtype = 'float') wet_wgt = pd.Series(['nan', 1.e-07, 1.e-4], dtype = 'float') result = kabam_empty.aq_animal_k1_calc(pest_uptake_eff_bygills, vent_rate, wet_wgt) npt.assert_allclose(result, expected_results, rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_animal_water_part_coef(self): """ :description Organism-Water partition coefficient (based on organism wet weight) :unit () :expression Kabam Eq. A6a (Kbw) :param zoo_lipid: lipid fraction of organism (kg lipid/kg organism wet weight) :param zoo_nlom: non-lipid organic matter (NLOM) fraction of organism (kg NLOM/kg organism wet weight) :param zoo_water: water content of organism (kg water/kg organism wet weight) :param kow: octanol-water partition coefficient () :param beta: proportionality constant expressing the sorption capacity of NLOM or NLOC to that of octanol :return: """ # create empty pandas dataframes to create empty object for this unittest kabam_empty = self.create_kabam_object() result = pd.Series([], dtype='float') expected_results = pd.Series([650.87, 11000.76, 165000.64], dtype = 'float') try: #For test purpose we'll use the zooplankton variable names kabam_empty.zoo_lipid_frac = pd.Series([0.03, 0.04, 0.06], dtype = 'float') kabam_empty.zoo_nlom_frac = pd.Series([0.10, 0.20, 0.30,], dtype = 'float') kabam_empty.zoo_water_frac = pd.Series([0.87, 0.76, 0.64], dtype = 'float') kabam_empty.kow =
pd.Series([1.e4, 1.e5, 1.e6], dtype = 'float')
pandas.Series
import collections import os import matplotlib import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from tqdm import tqdm # competitors = ['Eigen', 'PrimateAI', 'FATHMM-XF', 'ClinPred', 'REVEL', 'M-CAP', 'MISTIC'] competitors = ['InMeRF', 'ClinPred', 'REVEL', 'MISTIC'] def violin_plot_scores(dir, logger): logger.info('Plotting violin plots distribution') dict_names = { 'ID': 'ID', 'True_Label': 'True_Label', 'M-CAP_flag': 'M-CAP', 'ClinPred_flag': 'ClinPred', 'REVEL_flag': 'REVEL', 'PrimateAI_flag': 'PrimateAI', 'Eigen-raw_coding_flag': 'Eigen', 'fathmm-XF_coding_flag': 'FATHMM-XF', 'VotingClassifier_proba': 'MISTIC', } y_dict = { 'M-CAP': 0.025, 'ClinPred': 0.5, 'REVEL': 0.5, 'PrimateAI': 0.803, 'Eigen': 0, 'FATHMM-XF': 0.5, 'MISTIC': 0.5, 'MISTIC_LR': 0.5, 'GradientBoostingClassifier': 0.5, 'LogisticRegression': 0.5, 'RandomForestClassifier': 0.5, 'MLPClassifier': 0.5, 'GaussianNB': 0.5, } thresholds_sup = { "ClinPred": 0.298126307851977, "Eigen": -0.353569576359789, "M-CAP": 0.026337, "REVEL": 0.235, "FATHMM-XF": 0.22374, "PrimateAI": 0.358395427465, "MISTIC": 0.277, # "MISTIC" : 0.198003954007379, } classifiers = ['Eigen', 'PrimateAI', 'FATHMM-XF', 'ClinPred', 'REVEL', 'M-CAP', 'MISTIC'] pool_df_0 =
pd.DataFrame()
pandas.DataFrame
from __future__ import division from datetime import datetime import sys if sys.version_info < (3, 3): import mock else: from unittest import mock import pandas as pd import numpy as np from nose.tools import assert_almost_equal as aae import bt import bt.algos as algos def test_algo_name(): class TestAlgo(algos.Algo): pass actual = TestAlgo() assert actual.name == 'TestAlgo' class DummyAlgo(algos.Algo): def __init__(self, return_value=True): self.return_value = return_value self.called = False def __call__(self, target): self.called = True return self.return_value def test_algo_stack(): algo1 = DummyAlgo(return_value=True) algo2 = DummyAlgo(return_value=False) algo3 = DummyAlgo(return_value=True) target = mock.MagicMock() stack = bt.AlgoStack(algo1, algo2, algo3) actual = stack(target) assert not actual assert algo1.called assert algo2.called assert not algo3.called def test_run_once(): algo = algos.RunOnce() assert algo(None) assert not algo(None) assert not algo(None) def test_run_period(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunPeriod() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index target.now = None assert not algo(target) # run on first date target.now = dts[0] assert not algo(target) # run on first supplied date target.now = dts[1] assert algo(target) # run on last date target.now = dts[len(dts) - 1] assert not algo(target) algo = algos.RunPeriod( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index # run on first date target.now = dts[0] assert not algo(target) # first supplied date target.now = dts[1] assert not algo(target) # run on last date target.now = dts[len(dts) - 1] assert algo(target) # date not in index target.now = datetime(2009, 2, 15) assert not algo(target) def test_run_daily(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunDaily() # adds the initial day backtest = bt.Backtest( bt.Strategy('',[algo]), data ) target.data = backtest.data target.now = dts[1] assert algo(target) def test_run_weekly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunWeekly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert not algo(target) # new week target.now = dts[3] assert algo(target) algo = algos.RunWeekly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert algo(target) # new week target.now = dts[3] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8),datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_monthly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunMonthly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert not algo(target) # new month target.now = dts[31] assert algo(target) algo = algos.RunMonthly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert algo(target) # new month target.now = dts[31] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_quarterly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunQuarterly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert not algo(target) # new quarter target.now = dts[90] assert algo(target) algo = algos.RunQuarterly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert algo(target) # new quarter target.now = dts[90] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_yearly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunYearly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert not algo(target) # new year target.now = dts[365] assert algo(target) algo = algos.RunYearly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert algo(target) # new year target.now = dts[365] assert not algo(target) def test_run_on_date(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunOnDate('2010-01-01', '2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-03') assert not algo(target) def test_rebalance(): algo = algos.Rebalance() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c1 = s['c1'] assert c1.value == 1000 assert c1.position == 10 assert c1.weight == 1. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 1000 assert c2.position == 10 assert c2.weight == 1. def test_rebalance_with_commissions(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 999 assert s.capital == 99 c1 = s['c1'] assert c1.value == 900 assert c1.position == 9 assert c1.weight == 900 / 999. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 997 assert s.capital == 97 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 900 assert c2.position == 9 assert c2.weight == 900. / 997 def test_rebalance_with_cash(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} # set cash amount s.temp['cash'] = 0.5 assert algo(s) assert s.value == 999 assert s.capital == 599 c1 = s['c1'] assert c1.value == 400 assert c1.position == 4 assert c1.weight == 400.0 / 999 s.temp['weights'] = {'c2': 1} # change cash amount s.temp['cash'] = 0.25 assert algo(s) assert s.value == 997 assert s.capital == 297 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 700 assert c2.position == 7 assert c2.weight == 700.0 / 997 def test_select_all(): algo = algos.SelectAll() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo = algos.SelectAll(include_no_data=True) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_weight_equally(): algo = algos.WeighEqually() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.update(dts[0]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert 'c1' in weights assert weights['c1'] == 0.5 assert 'c2' in weights assert weights['c2'] == 0.5 def test_weight_specified(): algo = algos.WeighSpecified(c1=0.6, c2=0.4) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.update(dts[0]) assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert 'c1' in weights assert weights['c1'] == 0.6 assert 'c2' in weights assert weights['c2'] == 0.4 def test_select_has_data(): algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=10) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].ix[dts[0]] = np.nan data['c1'].ix[dts[1]] = np.nan s.setup(data) s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected def test_select_has_data_preselected(): algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].ix[dts[0]] = np.nan data['c1'].ix[dts[1]] = np.nan s.setup(data) s.update(dts[2]) s.temp['selected'] = ['c1'] assert algo(s) selected = s.temp['selected'] assert len(selected) == 0 @mock.patch('bt.ffn.calc_erc_weights') def test_weigh_erc(mock_erc): algo = algos.WeighERC(lookback=pd.DateOffset(days=5)) mock_erc.return_value = pd.Series({'c1': 0.3, 'c2': 0.7}) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.update(dts[4]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) assert mock_erc.called rets = mock_erc.call_args[0][0] assert len(rets) == 4 assert 'c1' in rets assert 'c2' in rets weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 0.3 assert weights['c2'] == 0.7 def test_weigh_inv_vol(): algo = algos.WeighInvVol(lookback=pd.DateOffset(days=5)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=5) data =
pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.)
pandas.DataFrame
import pandas as pd from modules.locale_generator.data import LocaleOutData from helper.utils.utils import read_sheet_map_file class LocaleProcessor: def __init__(self, language_name, english_column_name): self.language_name = language_name self.english_column_name = english_column_name self.additional_replacer_list = read_sheet_map_file() def add_translation_if_present(self, df_row): if self.language_name in list(df_row.index): if
pd.notnull(df_row[self.language_name])
pandas.notnull
# -*- coding: utf-8 -*- """ Created on Tue Oct 29 09:35:14 2019 @author: ACN980 """ import os, glob, sys import calendar import pandas as pd import numpy as np import math import warnings import scipy import scipy.stats as sp import scipy.signal as ss from sklearn.linear_model import LinearRegression from datetime import date import matplotlib.pyplot as plt import itertools from scipy.interpolate import Rbf import matplotlib as mpl warnings.filterwarnings("ignore") def make_pseudo_obs(var1, var2): pseudo1 = var1.rank(method='first', ascending = True)/(len(var1)+1) pseudo2 = var2.rank(method='first', ascending = True)/(len(var2)+1) return pseudo1, pseudo2 def day_to_month_rad_year(data): """ Converts the Julian day of a date to radian (to perform directional statistics). input: data is a univariate series with Timestamp index output: return a DataFrame with the angle in rad and corresponding x and y coordinate""" day_of_year = data.apply(lambda x: x.timetuple().tm_yday) day_of_year.name = 'day_of_yr' month_of_year = data.apply(lambda x: x.timetuple().tm_mon) month_of_year.name = 'month_of_yr' leap_year = data.apply(lambda x: x.is_leap_year) length_year = data.apply(lambda x: 365) length_year[leap_year] = 366 length_year.name = 'length_of_yr' output = pd.concat([data,day_of_year,length_year, month_of_year], axis = 1) output['angle_rad'] = output['day_of_yr']*2*math.pi/output['length_of_yr'] output = output.assign(**{'x': output.angle_rad.apply(lambda x: math.cos(x))}) output = output.assign(**{'y': output.angle_rad.apply(lambda x: math.sin(x))}) return output def select_epoch_pairs(cont_data, epoch = 'AS', nbofdays = 5, nbofrepet = 500, test_ind = False): #epoch = 'AS' #weekly = 'W', daily = 'D', monthly = 'MS' result_max = pd.DataFrame(data = None) for window_time in cont_data.groupby(pd.Grouper(freq=epoch)): if window_time[1].empty: continue ts_data = pd.DataFrame(window_time[1]) #Just selecting the data max_pairs = ts_data.max(axis=0).to_frame().transpose() max_time = ts_data.idxmax(axis = 0).to_frame().transpose() max_time.rename(columns={max_time.columns[0]: max_time.columns[0]+'_date', max_time.columns[1]: max_time.columns[1]+'_date'}, inplace = True) result = pd.concat([max_pairs, max_time], axis = 1) result_max = pd.concat([result_max, result], axis = 0, sort = False) if test_ind == True: result_ind_final = pd.DataFrame(data = None, index = np.arange(result_max.shape[0])) #Random interactions for j in np.arange(nbofrepet): date1_2 = np.random.randint(1, nbofdays+1, size = (result_max.shape[0],2)) result_ind = pd.DataFrame(data = abs(date1_2[:,0]-date1_2[:,1])) result_ind_final = pd.concat([result_ind_final, result_ind], axis = 1) else: result_ind_final = [] return (result_max, result_ind_final) def import_skew(fn2): dateparse = lambda x: pd.datetime.strptime(x, '%d-%m-%Y %H:%M:%S') skew = pd.read_csv(fn2, parse_dates = True, date_parser=dateparse, index_col = 'Date', usecols = ['Date','skew ']) skew.rename(columns = {skew.columns[0]:'skew'}, inplace = True) skew2 = skew.reset_index() ind_null = skew2[skew2['skew'].isnull()].index.tolist() for i in ind_null: skew2.loc[i-1,'skew'] = np.nan skew2.loc[i+1,'skew'] = np.nan skew2.set_index('Date', inplace = True) return skew2 def get_skew_surge(pandas_twl,pandas_tide,distance=6): ''' Function from <NAME> The goal of this function is to compute annual maximum skew surge levels Input variables: pandas_twl: total water levels time series provided as a pandas dataframe pandas_tide: tidal levels time series provided as a pandas dataframe distance: minimum number of timesteps between two tidal minima's. If not defined, set to 36. Return: skew_surge_yearmax: pandas dataframe with annual maximum skew surge levels, sorted by height ''' #1. reverse tidal levels and find indexes of tide minima's tide_array_inverse = pandas_tide.waterlevel.values*-1 tide_minima_index, tide_minima_values = ss.find_peaks(tide_array_inverse, distance=distance, height = -10) tide_time_array = pandas_tide.index.values peaks_tide_time = tide_time_array[tide_minima_index.tolist()] #2. find maximum total water level and maximum tidal level between each two tidal minima's skew_surges=[] skew_surge_dates=[] max_tides=[] high_tide_dates=[] print('number of timesteps to be processed: ',len(peaks_tide_time)-1) print('number of timesteps processed: ') for ii in range(len(peaks_tide_time)-1): if ii%1000==0: print(ii) t1 = peaks_tide_time[ii] t2 = peaks_tide_time[ii+1] max_twl = pandas_twl[t1:t2].waterlevel.max() max_tide = pandas_tide[t1:t2].waterlevel.max() skew_surges.append(max_twl-max_tide) max_tides.append(max_tide) skew_surge_dates.append(pandas_twl[t1:t2].waterlevel.idxmax()) high_tide_dates.append(pandas_tide[t1:t2].waterlevel.idxmax()) #3. create a dataframe of the annual maximum skew surge levels together with the timestamp of the maximum total water level df = pd.DataFrame(data={'skew_surge':skew_surges},index=skew_surge_dates) df2 = pd.DataFrame(data={'high_tide':max_tides},index=high_tide_dates) return df, df2 def collect_rainfall(fn, figure_plotting = False): ##### all_files = glob.glob(os.path.join(fn,'daily_*_rainfall_cleaned.csv')) result = pd.DataFrame(data = None, index = pd.date_range(start = pd.datetime(1978,1,1), end = pd.datetime(2018,12,31), freq = 'D')) for file in all_files: print(file) rain = pd.read_csv(file, index_col = 'date', dtype={'value':np.float32}, parse_dates = True) name = file.split('_')[1] rain.rename(columns={'value':name}, inplace = True) if figure_plotting == True: plt.figure() plt.plot(rain.index, rain[name]) plt.show() plt.title(name) plt.ylim(0, 250) result = pd.merge(result, rain, how = 'outer', left_index = True, right_index = True, sort = True) result = result.loc[result.index.isin(pd.date_range(start = pd.datetime(1978,1,1), end = pd.datetime(2018,12,31), freq = 'H')),:].copy() if figure_plotting == True: result.plot() plt.show() cmap = plt.cm.seismic bounds = np.linspace(-1,1,21) norm = mpl.colors.BoundaryNorm(bounds, cmap.N) names = result.columns correlations = result.corr() # plot correlation matrix fig = plt.figure() ax = fig.add_subplot(111) cax = ax.matshow(correlations, vmin=-1, vmax=1, cmap=cmap, norm=norm) fig.colorbar(cax) ticks = np.arange(0,len(names),1) ax.set_xticks(ticks) ax.set_yticks(ticks) ax.set_xticklabels(names) ax.set_yticklabels(names) plt.show() return result def thiessen_rain(fn_thiessen, rainfall): weights = pd.read_csv(fn_thiessen, usecols = ['Station','Weight']) for i in weights.index: weights.loc[i,'Station'] = weights.loc[i,'Station'].replace(" ", "") weights = weights.set_index('Station').transpose() sel_rainfall = rainfall.loc[:,weights.columns] for col in sel_rainfall.columns: # print(col) sel_rainfall[col] = sel_rainfall[col].apply(lambda x: x*weights.loc[weights.index[0],col]) thiessen_rainfall = pd.DataFrame(sel_rainfall.sum(axis = 1)) thiessen_rainfall.rename(columns={thiessen_rainfall.columns[0]:'Thiessen_sum'}, inplace = True) return thiessen_rainfall def calc_avg_max_min_rainfall(result, threshold=40): #### rainfall_years = pd.DataFrame(data = None, index = pd.date_range(start = pd.datetime(1978,1,1), end = pd.datetime(2018,12,31), freq = 'D')) for col in result.columns: print(col) ts_rain, years_removed = keep_full_years(sel = result[col].copy(), threshold = threshold) ts_rain = ts_rain.fillna(0) rainfall_years = pd.merge(rainfall_years,ts_rain,how = 'outer', left_index = True, right_index = True, sort = True) res_isna = rainfall_years.isna().sum(axis=1) average = rainfall_years.where(res_isna<=3).mean(axis=1) max_values = rainfall_years.where(res_isna<=3).max(axis=1) min_values = rainfall_years.where(res_isna<=3).min(axis=1) rainfall_years['average'] = average rainfall_years['maximum'] = max_values rainfall_years['minimum'] = min_values return rainfall_years def import_monthly_rain(fn2): allfiles = glob.glob(os.path.join(fn2, 'NewRain\TRENDS\MONTH_CORRECTED', 'Thiessen_*.csv')) all_rain = pd.DataFrame(data=None) for file in allfiles: month = pd.read_csv(file, index_col = 'Year', parse_dates=True) month.rename(columns={month.columns[0]:'Thiessen'}, inplace = True) all_rain = pd.concat([all_rain, month], axis = 0) return all_rain def collect_swl(fn, figure_plotting = False): all_files = glob.glob(os.path.join(fn,'hourly_*_swl_cleaned.csv')) result = pd.DataFrame(data = None, index = pd.date_range(start = pd.datetime(1980,1,1), end = pd.datetime(2018,12,31), freq = 'H')) for file in all_files: print(file) rain = pd.read_csv(file, index_col = 'date', dtype={'value':np.float32}, parse_dates = True) name = file.split('_')[1] rain.rename(columns={rain.columns[0]:name}, inplace = True) if figure_plotting == True: plt.figure() plt.plot(rain.index, rain[name]) plt.show() plt.title(name) # plt.ylim(0, 250) result = pd.merge(result, rain, how = 'outer', left_index = True, right_index = True, sort = True) result = result.loc[result.index.isin(pd.date_range(start = pd.datetime(1978,1,1), end = pd.datetime(2018,12,31), freq = 'H')),:].copy() if figure_plotting == True: result.plot() return result def keep_full_years(sel, threshold): #### """ > sel: is a time-series of the rainfall with a datetime as index > threshold: is the minimum number of days to consider a year valid. Here this is somewhat ambiguous what a good threshold is as there might be a lot of 0 if it doesn't rain in a year """ check = sel.groupby(sel.index.map(lambda x: x.year)).count() years_to_remove = check.where(check<threshold).dropna().index.values ts = pd.DataFrame(data = sel.copy()) ts.index.rename('date', inplace = True) ts.reset_index(drop = False, inplace = True) ts['year'] = ts.date.dt.year ts = ts.set_index('year').drop(labels = years_to_remove).set_index('date') return ts, years_to_remove #%% def median_detrend_wNa(data, tot_periods, min_periods, figure_plotting = False): """Removes trends and SL variation by substracting the moving median tot_periods is the number of steps considered to calculate the median min_periods is the minimum number of periods considered to calculate the median""" inland_day_median = data.rolling(tot_periods, min_periods=min_periods, center=False).median() inland_day_median = inland_day_median.fillna(method='ffill').copy() inland_day_median = inland_day_median.fillna(method='bfill').copy() inland_day_detrend = data - inland_day_median inland = inland_day_detrend.copy() if figure_plotting == True: plt.figure() inland_day_median.plot() plt.show() f, ax = plt.subplots(nrows=len(data.columns), ncols=2, sharex=True) ax = ax.reshape(-1) for i in np.arange(len(data.columns)): print(i) ax[int(i*2)].plot(data.index, data.iloc[:,i], '-k', inland_day_median.index, inland_day_median.iloc[:,i], '-r') ax[int((i*2)+1)].plot(inland.index, inland.iloc[:,i], '-b') plt.show() plt.figure() inland.plot() plt.show() return inland def lin_detrend_wNa(data, ref_date, remove_means = True, figure_plotting = False): """arguments: data is a pd.Series with date as index ref_date: if a date is mentioned, remove trend taking the swl on this date as ref remove_means: if True, centers the detrended ts around 0 figure_plotting: if True returns a figure of both ts returns: the linearly detrended data with time as index""" y = np.array(data) x = np.arange(0,len(y),1) not_nan_ind = ~np.isnan(y) m, b, r_val, p_val, std_err = sp.linregress(x[not_nan_ind],y[not_nan_ind]) if remove_means == True: detrend_y = y - (m*x + b) elif ref_date is not None: x_0 = np.flatnonzero(data.index == ref_date) detrend_y = y - (m*x + b) + (m * x_0 + b) else: detrend_y = y - (m*x) print('Linear trend is: ', m) print('p-value is: ', p_val) if figure_plotting == True: plt.figure() plt.plot(x, y, label = 'original') plt.plot(x, detrend_y, label = 'detrended') plt.legend() result = pd.DataFrame(data = detrend_y, index = data.index, columns = [data.name]) return result #%% TOP EVENTS def top_n_events_per_year_tide(x, n_top, label_value = 'tide', time_frequency = 'AS'): x=pd.DataFrame(x, columns=[label_value]) x.rename(columns={x.columns.values[0]:label_value}, inplace = True) x.index.rename('index', inplace = True) y= x.groupby(pd.Grouper(freq=time_frequency)).apply(lambda g: g.nlargest(n = n_top, columns = label_value)) res = pd.DataFrame(y) res['year'] = [i[0].year for i in res.index] res['date'] = [i[1] for i in res.index] # res.reset_index(inplace=True, drop = True) return res def top_n_events_per_year_rainfall(x, n_top, label_value = 'tide', time_frequency = 'AS'): x.rename(columns={x.columns.values[0]:label_value}, inplace = True) x.index.rename('index', inplace = True) y= x.groupby(pd.Grouper(freq=time_frequency)).apply(lambda g: g.nlargest(n = n_top, columns = label_value)) res = pd.DataFrame(y) res['year'] = [i[0].year for i in res.index] res['date'] = [i[1] for i in res.index] res.reset_index(inplace=True, drop = True) return res #%% FFT SKEW def detrend_fft(daily_skew, fillnavalue=0, frequency = 1. / 365, figure_plotting = 0): """Takes a ts with no Nan and continuous time series frequency is the corresponding frequency of the index in year (daily --> 1/365)""" import scipy.fftpack skew_day = daily_skew.fillna(fillnavalue) skew_values = skew_day.iloc[:,0].copy() skew_fft = scipy.fftpack.fft(np.array(skew_values)) skew_psd = np.abs(skew_fft) ** 2 #Taking the power spectral density fftfreq = scipy.fftpack.fftfreq(len(skew_psd), frequency) i = fftfreq > 0 #only taking positive frequencies temp_fft_bis = skew_fft.copy() temp_fft_bis[np.abs(fftfreq) > 1.0] = 0 # temp_fft_bis[np.abs(fftfreq) > 1.1] = 0 skew_slow = np.real(scipy.fftpack.ifft(temp_fft_bis)) daily_skew = pd.DataFrame(daily_skew.iloc[:,0] - skew_slow) #skew_slow = pd.DataFrame(index=daily_skew.index, data=skew_slow) #daily_skew_runmean = skew_day - skew_day.rolling(365, min_periods=150, center=True).mean() if figure_plotting == 1: fig, ax = plt.subplots(1, 1, figsize=(8, 4)) ax.plot(fftfreq[i], 10 * np.log10(skew_psd[i])) ax.set_xlim(0, 5) ax.set_xlabel('Frequency (1/year)') ax.set_ylabel('PSD (dB)') fig, ax = plt.subplots(1, 1, figsize=(6, 3)) ax.plot(skew_day.index, skew_day, '-b', lw = 0.5)#skew_day.plot(ax=ax, lw=.5) ax.plot(skew_day.index, skew_slow, '-r', lw = 2) ax.plot(skew_day.index, skew_day.rolling(365, min_periods=150, center=True).mean(), '-g', lw = 1.5) ax.set_xlabel('Date') ax.set_ylabel('Skew surge') plt.show() fig, ax = plt.subplots(1, 1, figsize=(6, 3)) ax.plot(daily_skew.index, daily_skew.iloc[:,0],'-b', lw = 0.5) ax.set_xlabel('Date') ax.set_ylabel('Skew surge') plt.show() return daily_skew def remove_NaN_skew(skew): isna_skew = skew[skew[skew.columns[0]].isnull()].index for na_date in isna_skew: # print(na_date) i_ind = np.flatnonzero(skew.index == na_date) bef = i_ind - 1 aft = i_ind + 1 if bef>0: skew.iloc[bef,0] = np.nan if aft < len(skew): skew.iloc[aft,0] = np.nan return skew.copy() def import_monthly_skew(fn): date_parser = lambda x: pd.datetime.strptime(x, "%d-%m-%Y %H:%M:%S") fn_skew = os.path.join(fn,'skew_WACC_VungTau_Cleaned_Detrended_Strict_sel_const.csv') skew = pd.read_csv(fn_skew, parse_dates = True, date_parser= date_parser, index_col = 'Date') skew.rename(columns = {skew.columns[0]:'skew'}, inplace = True) skew = remove_NaN_skew(skew) skew_day = skew.resample('D').max() skew_detrend = detrend_fft(skew_day, fillnavalue=0, frequency = 1./(2*365), figure_plotting =0) skew_detrend_day = skew_detrend.resample('D').max() skew_month = skew_detrend_day.resample('M').max() return skew_month #%% def extract_MM(tide, freq='MS', label='sealevel'): sel_sel = pd.concat([tide,tide], axis = 1).dropna() dates_tide = select_epoch_pairs(sel_sel, epoch = freq, nbofdays = 5, nbofrepet = 500, test_ind = False) dates_MM_tide = dates_tide[0].reset_index(drop=True).iloc[:,[0,-1]] dates_MM_tide['index'] = [pd.to_datetime(date(d.year, d.month, calendar.monthrange(d.year, d.month)[-1])) for d in dates_MM_tide[f'{label}_date']] dates_MM_tide[f'{label}_date'] = [pd.to_datetime(date(d.year, d.month, d.day)) for d in dates_MM_tide[f'{label}_date']] dates_MM_tide.set_index('index',inplace = True) return dates_MM_tide def make_cmap_month(): # COLORSCALE # get discrete colormap n_clusters = 15 cmap = plt.get_cmap('hsv', n_clusters) colors = cmap(np.linspace(0.05, 0.90, 13)) cmap2 = mpl.colors.ListedColormap(colors) bounds = np.arange(1,14,1) norm = mpl.colors.BoundaryNorm(bounds, cmap2.N) bounds_day = np.arange(1,366,1) norm_day = mpl.colors.BoundaryNorm(bounds_day, cmap2.N) return cmap2, norm def ax_joint_mm(var1, var2, ax, label='_date', lag_joint=0, ls=7, formatting = True, plotting=True): var1_name = var1.columns[~var1.columns.str.endswith(label)][0] var2_name = var2.columns[~var2.columns.str.endswith(label)][0] var1_date = var1_name+label var2_date = var2_name+label both = pd.concat([var1, var2], axis = 1).dropna() both.reset_index(inplace = True, drop = True) Joint_MM = both[[var1_date,var2_date]].copy() Joint_MM['diff_days'] = Joint_MM.loc[:,var1_date]-Joint_MM.loc[:,var2_date] Joint_MM['abs_days'] = np.abs(Joint_MM['diff_days'].dt.days) # Joint_MM.reset_index(drop=True, inplace = True) Joint_MM = pd.concat([both, Joint_MM[['diff_days','abs_days']]], axis = 1) joint_points_MM = Joint_MM.where(Joint_MM.abs_days < lag_joint+1).dropna() if len(joint_points_MM)>0: time_of_year = day_to_month_rad_year(data = joint_points_MM.loc[:,var1_date]) time_of_year.rename(columns={time_of_year.columns[0]:'date'}, inplace = True) time_of_year = time_of_year.set_index('date').reset_index() cmap2, norm = make_cmap_month() if plotting == True: ax.scatter(both.loc[:,var1_name], both.loc[:,var2_name], marker = 'o', c = 'white', edgecolors='k', linewidths=0.3, alpha = 0.5, s=6) if len(joint_points_MM)>0: ax.scatter(joint_points_MM.loc[:,var1_name], joint_points_MM.loc[:,var2_name], marker = 'o', edgecolors ='k', linewidths=0.3, c = time_of_year['month_of_yr'], cmap=cmap2, alpha = 1, s=15, norm=norm) if formatting == True: ax.set_xlabel(var1_name,fontsize=ls) ax.set_ylabel(var2_name,fontsize=ls) ax.tick_params(axis='both', labelsize=ls) return Joint_MM def joint_mm_all_cooc(Joint_MM, max_lag = 7, label = '_date'): var1_name = Joint_MM.columns[~Joint_MM.columns.str.endswith(label)][0] var2_name = Joint_MM.columns[~Joint_MM.columns.str.endswith(label)][1] var1_date = var1_name+label var2_date = var2_name+label var1_result ={} month = np.arange(1,13,1) dates_month = day_to_month_rad_year(data = Joint_MM.loc[:,var1_date]) for m in month: print(m) var1_result[m] ={} sel = Joint_MM.where(dates_month.month_of_yr == m).dropna().copy() var1_result[m]['data'] = sel corr_sel_MM = sp.kendalltau(sel.loc[:,var2_name].values, sel.loc[:,var1_name].values, nan_policy='omit') var1_result[m]['data_corr'] = corr_sel_MM co_occur_n_samples = pd.DataFrame(data = None, index = ['N'], columns = np.arange(0,max_lag+1)) for lag_joint in np.arange(0,max_lag+1): joint_points_sel = sel.where(sel.abs_days < lag_joint+1).dropna() co_occur_n_samples.loc['N',lag_joint] = len(joint_points_sel) var1_result[m]['co_occur_n_samples'] = co_occur_n_samples return var1_result def joint_mm_permonth(Joint_MM, lag_joint=0, label = '_date'): var1_name = Joint_MM.columns[~Joint_MM.columns.str.endswith(label)][0] var2_name = Joint_MM.columns[~Joint_MM.columns.str.endswith(label)][1] var1_date = var1_name+label var2_date = var2_name+label var1_result ={} month = np.arange(1,13,1) dates_month = day_to_month_rad_year(data = Joint_MM.loc[:,var1_date]) for m in month: print(m) var1_result[m] ={} sel = Joint_MM.where(dates_month.month_of_yr == m).dropna().copy() var1_result[m]['data'] = sel corr_sel_MM = sp.kendalltau(sel.loc[:,var2_name].values, sel.loc[:,var1_name].values, nan_policy='omit') var1_result[m]['data_corr'] = corr_sel_MM joint_points_sel = sel.where(sel.abs_days < lag_joint+1).dropna() if len(joint_points_sel)>0: time_of_year = day_to_month_rad_year(data = joint_points_sel.loc[:,var1_date]) joint_points_sel = pd.concat([joint_points_sel, time_of_year['month_of_yr']], axis = 1) try: corr_joint_points_sel = sp.kendalltau(joint_points_sel.loc[:,var2_name].values, joint_points_sel.loc[:,var1_name].values, nan_policy='omit') except: corr_joint_points_sel = np.nan var1_result[m]['co_occur_data'] = joint_points_sel var1_result[m]['co_occur_corr'] = corr_joint_points_sel var1_result[m]['co_occur_n_samples'] = len(joint_points_sel.dropna()) return var1_result def plot_cooc_CI(result_pair, ax, lag_joint =0, c = 'r', size = 5, label = None, background = True): fm = os.path.join(r'E:\surfdrive\Documents\Master2019\Thomas\data\Binomial') #month_label = ['Jan', 'Feb', 'Mar', 'Apr', 'May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'] month_label = ['J', 'F', 'M', 'A', 'M','J','J','A','S','O','N','D'] len_month = [31,28,31,30,31,30,31,31,30,31,30,31] all_exp = pd.DataFrame() q50=pd.DataFrame() q2=pd.DataFrame() q97=pd.DataFrame() nb_years = pd.DataFrame(index = np.arange(1,13,1), columns=['nb']) obs_cooc = pd.DataFrame(index = np.arange(1,13,1), columns = np.arange(0,8,1)) for i in np.arange(1,13,1): obs_cooc.loc[i,:] = result_pair[i]['co_occur_n_samples'].loc['N',:] nb_years.loc[i,'nb'] = 37#len(result_pair[i]['data']) #We read the table for i in nb_years.index: print(i) case = os.path.join(str(len_month[i-1])+'days',str(nb_years.loc[i, 'nb'])+'years') data = pd.read_csv(os.path.join(fm,case,'Independent_Binomial_Expectation.csv'), index_col = 'index') data.rename(index={'expectation':i}, inplace = True) all_exp = pd.concat([all_exp, data], axis = 0) ci_data = pd.read_csv(os.path.join(fm,case,'Independent_Binomial_Expectation_CI.csv'), index_col = 'quantile') ci_data.rename(index={'quantile':i}, inplace = True) q2 = pd.concat([q2,pd.DataFrame(ci_data.loc['q2.5',:]).transpose().rename(index={'q2.5':i})], axis = 0) q50 = pd.concat([q50,pd.DataFrame(ci_data.loc['q50',:]).transpose().rename(index={'q50':i})], axis = 0) q97 = pd.concat([q97,pd.DataFrame(ci_data.loc['q97.5',:]).transpose().rename(index={'q97.5':i})], axis = 0) # f,ax = plt.subplots(nrows=1, ncols = 1, figsize=(8,3)) #ax = ax.reshape(-1) if background: lw=1.3 # ax.fill_between(np.arange(1,13,1),q2.loc[:,str(lag_joint)].values, q97.loc[:,str(lag_joint)].values, color = 'k', alpha = 0.3) ax.plot(all_exp.index, all_exp.loc[:,str(lag_joint)], '--', color = 'k', linewidth = lw) #'*', mec = 'k', mfc = 'k', markersize = size/1.5) length = size space = size # if c == 'y': # c='orange' # lw = 1 # length = 5 # space = 10 ax.plot(q2.index, q2.loc[:,str(lag_joint)], ':', color = 'k', linewidth = lw)#, dashes=(size/2, size/2)) #length of 5, space of 1 ax.plot(q97.index, q97.loc[:,str(lag_joint)], ':', color = 'k', linewidth = lw)#, dashes=(length/2, space/2)) #length of 5, space of 1) ax.grid(lw=0.5) ax.plot(obs_cooc.index, obs_cooc.loc[:,lag_joint], 'o', markersize = size, mfc = c, mec='k', mew=0.5) ax.annotate(label, (0.05,0.90), xycoords='axes fraction', fontsize=8, weight="bold") ax.set_xlim(0.7,12.3) ax.set_ylim(-0.2,6) ax.set_yticks(np.arange(0,7,1)) ax.set_xticks(np.arange(1,13,1)) ax.set_xticklabels(month_label, fontsize = 7) def kendall_CI(bs_data, var1_name = 'Thiessen', var2_name='skew', label='_date', iterations = 500): #Calculate kendall CI kend_bs = pd.Series(index = np.arange(iterations)) for x in np.arange(iterations): rand1 = bs_data[var1_name].sample(n=bs_data.shape[0], replace=True, axis=0) kend_bs[x] = sp.kendalltau(rand1.values, bs_data.loc[:,var2_name].values, nan_policy='omit')[0] kend_025 = kend_bs.quantile(q=0.025, interpolation='linear') kend_975 = kend_bs.quantile(q=0.975, interpolation='linear') return kend_025, kend_975 def kendall_CI_allmonth(result_pair, var1_name = 'Thiessen', var2_name='skew', label='_date', iterations = 500): kend_025 = pd.DataFrame(index=np.arange(1,13,1), columns=['q2.5']) kend_975 = pd.DataFrame(index=np.arange(1,13,1), columns=['q97.5']) for i in np.arange(1,13,1): bs_data = result_pair[i]['data'] kend_025.loc[i,'q2.5'], kend_975.loc[i,'q97.5']= kendall_CI(bs_data, var1_name = var1_name, var2_name=var2_name, label=label, iterations = iterations) return kend_025, kend_975 def ax_kendall_mm(result_pair, ax, var1_name = 'Thiessen', var2_name='skew', label='_date', iterations = 500, c = 'k', size = 7, background=True): month_label = ['Jan', 'Feb', 'Mar', 'Apr', 'May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'] #SKEW-RAIN kendall = pd.DataFrame(index = np.arange(1,13,1), columns=['kendall', 'p_value']) for i in np.arange(1,13,1): kendall.loc[i,'kendall'] = sp.kendalltau(result_pair[i]['data'].loc[:,var1_name].values, result_pair[i]['data'].loc[:,var2_name].values, nan_policy='omit')[0] kendall.loc[i,'p_value'] = sp.kendalltau(result_pair[i]['data'].loc[:,var1_name].values, result_pair[i]['data'].loc[:,var2_name].values, nan_policy='omit')[1] if background == True: lw=1.3 length = size space = size if c == 'y': c='orange' lw = 1 length = 5 space = 10 k25, k975 = kendall_CI_allmonth(result_pair, var1_name = var1_name, var2_name = var2_name, label = label, iterations = iterations) ax.plot(k25.index, k25.loc[:,'q2.5'], '--', color = c, linewidth = lw, dashes=(size, size)) ax.plot(k975.index, k975.loc[:,'q97.5'], '--', color = c, linewidth = lw, dashes=(length, space)) ax.axhline(0, color = 'black', lw=1)# , xmin=1, xmax=12, color = 'k', lw=0.5, ls='-') ax.plot(kendall.index, kendall.loc[:,'kendall'], 'o', markersize = size, color = c, mfc = c, mec='k', mew=0.5) ax.set_xlim(0.9,12.1) ax.set_xticks(np.arange(1,13,1)) ax.set_xticklabels(month_label, fontsize = 7) #%% def get_samples_from_dist(n, params, dist_type): dist = getattr(sp, dist_type) if len(params) == 3: #shape, loc and scale data = dist.rvs(params[0], params[1], params[2], n) elif len(params) == 2:#loc and scale data = dist.rvs(params[0], params[1], n) elif len(params) == 1: data = dist.rvs(params[0], n) else: print('Something is wrong!') return data def get_ICDF_from_dist(q, params, dist_type): dist = getattr(sp, dist_type) if len(params) == 3: #shape, loc and scale data = dist.ppf(q, params[0], params[1], params[2]) elif len(params) == 2:#loc and scale data = dist.ppf(q, params[0], params[1]) elif len(params) == 1: data = dist.ppf(q, params[0]) else: print('Something is wrong!') return data def get_line_pt_RP_fit(exc_prob_x, params, dist_type): dist = getattr(sp, dist_type) if len(params) == 3: #shape, loc and scale rp_y = dist.isf(exc_prob_x, params[0], params[1], params[2]) elif len(params) == 2:#loc and scale rp_y = dist.isf(exc_prob_x, params[0], params[1]) elif len(params) == 1: rp_y = dist.isf(exc_prob_x, params[0]) else: print('Something is wrong!') return rp_y def get_RPs(return_periods, params, dist_type): return_periods_col = [str(i) for i in return_periods] dist = getattr(sp, dist_type) if len(params) == 3: a = dist.isf(1./return_periods, params[0], params[1], params[2]) elif len(params) == 2: a = dist.isf(1./return_periods, params[0], params[1]) elif len(params) == 1: a = dist.isf(1./return_periods, params[0]) else: print('Something is wrong!') RP_EVAs = pd.Series(a, index = return_periods_col) return RP_EVAs def empirical_RP(data): #Calculating empirical emp_p = pd.DataFrame(data=data) emp_p['rank'] = emp_p.iloc[:,0].rank(axis=0, ascending=False) emp_p['exc_prob'] = emp_p['rank']/(emp_p['rank'].size+1) #change this line with what Anaïs sends to me, but is already correct emp_p['cum_prob'] = 1 - emp_p['exc_prob'] emp_p['emp_rp'] = 1/emp_p['exc_prob'] return emp_p # def get_line_pt_RP_fit(exc_prob_x, data, params, dist_type): # dist = getattr(sp, dist_type) # if len(params) == 3: #shape, loc and scale # #print('Skew param ', f.fitted_param[dist_type][0]) # print('Check param ', params) # inv_cdf_dist = dist.sf(data, params[0], params[1], params[2]) # rp_y = dist.isf(exc_prob_x, params[0], params[1], params[2]) # elif len(params) == 2:#loc and scale # inv_cdf_dist = dist.sf(data, params[0], params[1]) # rp_y = dist.isf(exc_prob_x, params[0], params[1]) # elif len(params) == 1: # inv_cdf_dist = dist.sf(data, params[0]) # rp_y = dist.isf(exc_prob_x, params[0]) # else: # print('Something is wrong!') # return inv_cdf_dist, rp_y #%% def plot_damage_grid(damage_grid, alphas, ax, rstride, ctride, cmap, norm): coords, dam = damage_surface_coord_z(damage_grid) RBFi = Rbf(coords[:,0], coords[:,1], dam, function='linear', smooth=0) rain_int = list(np.arange(0,int(damage_grid.index.max())+10, 10)) sl_int = list(np.arange(0,int(damage_grid.columns.max())+100,100)) all_S = np.array([ x for x in itertools.product(rain_int,sl_int)]) all_dam = RBFi(all_S[:,0], all_S[:,1]) X, Y = np.meshgrid(rain_int, sl_int, indexing='ij') damage_grid_plot = damage_surface_df_z(all_S, all_dam) Z = damage_grid_plot.to_numpy() damage_grid_scenario = damage_grid.drop(0,axis=1) coords_sce, dam_sce = damage_surface_coord_z(damage_grid_scenario) # fig = plt.figure(figsize=[8.5, 4]) # gs = GridSpec(2, 2, left=0.05, bottom=0.1, right=0.95, top=0.90, width_ratios=[1,1], height_ratios=[1,1], wspace=0.40, hspace=0.50)#, width_ratios=None, height_ratios=[0.9,0.9,0.9,0.9,0.9,0.9]) # ax = fig.add_subplot(gs[:, 0], projection='3d', azim=-60, elev=25) ax.plot_wireframe(X, Y/1000, Z/1e6, color='grey',linewidth=1, antialiased=True, rstride=rstride, cstride=ctride, zorder=1, alpha=0.5) #plot_surface # alphas = np.linspace(0.2,1,len(damage_grid_scenario.columns)) for i in np.arange(0,len(damage_grid_scenario.columns)): print(i) ax.scatter(damage_grid_scenario.iloc[:,i].index, np.repeat(damage_grid_scenario.columns[i]/1000, len(damage_grid_scenario.iloc[:,i])),damage_grid_scenario.iloc[:,i].values/1e6, c=damage_grid_scenario.iloc[:,i].index, s = 35, edgecolors='k', linewidths=0, alpha=alphas[i], cmap=cmap, norm=norm, zorder=10, depthshade=False) #alpha=alphas[i], ax.scatter(damage_grid_scenario.iloc[:,i].index.values, np.repeat(damage_grid_scenario.columns[i]/1000, len(damage_grid_scenario.iloc[:,i])),damage_grid_scenario.iloc[:,i].values/1e6, facecolor=(0,0,0,0), s = 35, edgecolor='k', linewidths=1, depthshade=False, zorder=11) #ax.plot_wireframe(xv, yv/1000, Z/1e6, color='black',linewidth=0.2) ax.set_xlabel('Rainfall (mm/day)', size = 8) ax.set_ylabel('Sea Level (m)', size = 8) ax.set_zlabel('Damage (M$)', size = 8) def damage_surface_coord_z(damage_grid): coords = np.zeros((damage_grid.shape[0]*damage_grid.shape[1],2)) dam = np.zeros((damage_grid.shape[0]*damage_grid.shape[1],1)) z = 0 for i in damage_grid.index: #rain # print(i) for j in damage_grid.columns: #sea # print(j) coords[z,:] = [i, j] dam[z] = damage_grid.loc[i,j] z += 1 return coords, dam def damage_surface_df_z(coords, dam): rain = np.unique(coords[:,0]) sl = np.unique(coords[:,1]) Z = pd.DataFrame(index = rain, columns=sl, data=dam.reshape(len(rain), len(sl))) return Z def add_extra_sealevel(i_extra_sealevel, damage_grid, drop_i=[]): new_damage_sl = pd.DataFrame(data=None, index=[i_extra_sealevel], columns = damage_grid.index) for i_rain in damage_grid.index: print(i_rain) if len(drop_i)>0: sel = damage_grid.drop(drop_i, axis = 1).loc[i_rain,:] else: sel = damage_grid.loc[i_rain,:] X=sel.index.values.reshape(-1, 1) Y =sel.values.reshape(-1,1) linear_regressor = LinearRegression() # create object for the class linear_regressor.fit(X, Y) # perform linear regression Y_pred = linear_regressor.predict(np.array(i_extra_sealevel).reshape(1,-1)) # make predictions new_damage_sl.loc[i_extra_sealevel, i_rain] = Y_pred new_damage_sl = new_damage_sl.astype(float) return new_damage_sl def add_extra_rain(i_extra_rain, damage_grid, drop_i=[]): new_damage_rain = pd.DataFrame(data=None, index=[i_extra_rain], columns = damage_grid.columns) for i_sl in damage_grid.columns: print(i_sl) if len(drop_i)>0: sel = damage_grid.drop(drop_i, axis = 0).loc[:,i_sl] else: sel = damage_grid.loc[:,i_sl] X=sel.index.values.reshape(-1, 1) Y =sel.values.reshape(-1,1) linear_regressor = LinearRegression() # create object for the class linear_regressor.fit(X, Y) # perform linear regression Y_pred = linear_regressor.predict(np.array(i_extra_rain).reshape(1,-1)) # make predictions new_damage_rain.loc[i_extra_rain, i_sl] = float(Y_pred) #f(i_extra_rain) #sel = new_damage_rain.drop([0,60,120,max_rain], axis=1).loc[i_sl, :] new_damage_rain = new_damage_rain.astype(float) return new_damage_rain def load_damage(fn_trunk, fn_files, max_rain, max_sl, thr_rain, thr_sl): damage = pd.read_csv(os.path.join(fn_trunk, fn_files,'summary_damage_cases.csv'), index_col = 'landuse') damage_tot = damage.sum(axis = 0) rain = [np.int(col.split('_')[1].strip('R')) for col in damage.columns] sea = [np.int(col.split('_')[2].strip('H')) for col in damage.columns] damage_grid = pd.DataFrame(index=np.unique(rain), columns = np.unique(sea), data=None) for value in damage.columns: # print(value) i_rain = np.int(value.split('_')[1].strip('R')) i_sea = np.int(value.split('_')[2].strip('H')) damage_grid.loc[i_rain,i_sea] = damage_tot[value] damage_grid = damage_grid.astype(float) #Extrapolation new_damage_sl_high = add_extra_sealevel(max_sl, damage_grid, drop_i=[610,860,1110]) new_damage_sl_low = add_extra_sealevel(0, damage_grid, drop_i=[1110, 1360,1610,1860]) damage_grid = pd.concat([damage_grid, new_damage_sl_high.transpose(), new_damage_sl_low.transpose()], axis = 1) damage_grid.sort_index(axis = 1, inplace = True) new_damage_rain = add_extra_rain(max_rain, damage_grid, drop_i=[0,60,120]) damage_grid = pd.concat([damage_grid, new_damage_rain], axis = 0) new_damage_rain_0 = add_extra_rain(180, damage_grid, drop_i=[0,60,180,300]) damage_grid.loc[180,0] = new_damage_rain_0.loc[180,0] damage_grid.sort_index(inplace = True) del new_damage_rain, new_damage_sl_high, new_damage_sl_low, new_damage_rain_0 damage_grid = damage_grid.astype(float) #Setting threshold coords, dam = damage_surface_coord_z(damage_grid) new_damage_rain = [float(scipy.interpolate.griddata(coords, dam, (thr_rain,sl), method = 'linear')) for sl in damage_grid.columns] new_line = pd.DataFrame(data=np.array(new_damage_rain), index = damage_grid.columns, columns=[thr_rain]) damage_grid = pd.concat([damage_grid, new_line.transpose()], axis = 0) coords, dam = damage_surface_coord_z(damage_grid) new_damage_sl = [float(scipy.interpolate.griddata(coords, dam, (i_rain,thr_sl), method = 'linear')) for i_rain in damage_grid.index] new_line = pd.DataFrame(data=np.array(new_damage_sl), index = damage_grid.index, columns=[thr_sl]) damage_grid = pd.concat([damage_grid, new_line], axis = 1) # damage_grid[0] = damage_grid.loc[:,610] damage_grid.sort_index(inplace = True) damage_grid.sort_index(axis = 1, inplace = True) damage_grid = damage_grid.astype(float) return damage_grid def simulate_rain(rain_simcdf, params, dist_type): rain_rvs = get_ICDF_from_dist(rain_simcdf, params, dist_type) rain_rvs = np.reshape(rain_rvs, rain_rvs.shape[0]) rain_rvs[rain_rvs<0]=0 return rain_rvs def simulate_skew(cdf_swl_rvs, params_skew, dist_type_skew): skew_rvs = get_ICDF_from_dist(cdf_swl_rvs, params_skew, dist_type_skew) skew_rvs = np.reshape(skew_rvs, skew_rvs.shape[0]) * 1000 return skew_rvs def sample_tide(month, fn_tide, n): tide_sim = pd.read_csv(os.path.join(fn_tide, 'samples_tide_month_{}.csv'.format(str(month))), usecols=['tide']) #tide_sim.hist(bins=100) # # ################################################################################################################################# # #Selected mean = 0.86 # mean = 0.86 # std = 0.02 # tide_sim = np.random.normal(loc=mean, scale=std, size = 50000) # tide_sim = pd.DataFrame(tide_sim) # #tide_sim.hist(bins=100) # ## #tide_sim.hist(bins=100) # ## ref = tide_sim/tide_sim.max() # ## tide_sim = tide_sim*np.exp(-ref) # ## #tide_sim.hist(bins=100) # ## ################################################################################################################################### tide_rvs = tide_sim.sample(n, replace = True).values tide_rvs = np.reshape(tide_rvs, tide_rvs.shape[0]) * 1000 return tide_rvs def get_swl(skew_rvs, tide_rvs): swl_rvs = skew_rvs + tide_rvs swl_rvs = np.reshape(swl_rvs, swl_rvs.shape[0]) return swl_rvs def pairs_cooc(rain_rvs, skew_rvs, tide_rvs): cooc_events = pd.concat([pd.DataFrame(rain_rvs, columns = ['rain']), pd.DataFrame(skew_rvs + tide_rvs, columns = ['sealevel'])], axis = 1) return cooc_events def pairs_rain(rain_rvs, tide_rvs, skew_month_avg, month): rain_events = pd.concat([pd.DataFrame(rain_rvs, columns = ['rain']), pd.DataFrame(tide_rvs, columns = ['sealevel']) + (skew_month_avg.loc[month,'skew']*1000)], axis = 1) return rain_events def pairs_sl(skew_rvs, tide_rvs, rainfall_month_avg, month): sealevel_events = pd.concat([ pd.DataFrame(np.zeros(tide_rvs.shape) + rainfall_month_avg.loc[month,'Thiessen_sum'], columns = ['rain']), pd.DataFrame(skew_rvs + tide_rvs, columns = ['sealevel'])], axis = 1) return sealevel_events #%% def calculate_monthly_damage(best_fit_rain, param_rain, best_fit_skew, param_skew, n, monthly_data, coords, dam, skew_month_avg, rainfall_month_avg, p_month, month_duration, cooc, lag_joint, selected_copulas, fn_tide, fn_copula, fn_trunk, varname1='Thiessen', varname2='skew', dep_type='copula', figure_joint=True): #Storing results damage_mod = pd.DataFrame(data = None, index = np.arange(1,13,1), columns = ['simulated_highest', 'full_dep', 'ind_highest', 'exclusive_highest']) all_events_sampled = pd.DataFrame(data=None, columns=['rain','sealevel','month']) all_events_sampled_dep = pd.DataFrame(data=None, columns=['rain','sealevel', 'month']) all_events_sampled_ind = pd.DataFrame(data=None, columns=['rain','sealevel', 'month']) all_events_sampled_excl = pd.DataFrame(data=None, columns=['rain','sealevel', 'month']) if figure_joint==True: #Preparing figure f, axs = plt.subplots(nrows=2, ncols=6, linewidth = 0, facecolor='w', edgecolor='w', sharex=True, sharey=True, figsize=(8, 4)) # , sharex=True, sharey=True gridspec_kw={'height_ratios': [1,1]}, #sharex=True, sharey=True, axs = axs.reshape(-1) month_label = ['Jan', 'Feb', 'Mar', 'Apr', 'May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'] for month in np.arange(1,13,1): # print(month) #Select marginal distribution for rain dist_type = best_fit_rain.loc[month, 'distribution'] # dist_type = 'gumbel_r' # print('Rainfall distype: ', dist_type) list_params = param_rain.loc[dist_type,str(month)].replace('(', '').replace(')','').split(',') params = [float(e) for e in list_params] #Select marginal distribution for skew dist_type_skew = best_fit_skew.loc[month, 'distribution'] # dist_type_skew = 'gumbel_r' # print('Skew distype: ', dist_type_skew) list_params_skew = param_skew.loc[dist_type_skew,str(month)].replace('(', '').replace(')','').split(',') params_skew = [float(e) for e in list_params_skew] if dep_type == 'copula': rain_simcdf = pd.read_csv(os.path.join(fn_copula, 'New{}_New{}_data_month_{}.csv'.format(str(varname1),str(varname2),str(month))), usecols=['V1']) rain_rvs = simulate_rain(rain_simcdf, params, dist_type) cdf_swl_rvs = pd.read_csv(os.path.join(fn_copula, 'New{}_New{}_data_month_{}.csv'.format(str(varname1),str(varname2),str(month))), usecols=['V2']).values if varname2 == 'skew': skew_rvs = simulate_skew(cdf_swl_rvs, params_skew, dist_type_skew) tide_rvs = sample_tide(month, fn_tide, n) if figure_joint==True: kend = pd.read_csv(os.path.join(fn_trunk, 'Master2019/Thomas/data/NewBivariate/Simulated', 'New{}_New{}_copulatype_month_{}.csv'.format(varname1, varname2, str(month))), index_col = 0) pseudo_rain, pseudo_skew = make_pseudo_obs(monthly_data['Thiessen'].where(monthly_data['month']==month).dropna(), monthly_data['skew'].where(monthly_data['month']==month).dropna()) axs[month-1].annotate("{}".format(month_label[month-1]), xy = (0.05, 0.95), xycoords = 'axes fraction', size=7) axs[month-1].annotate(r"$\tau$ ={0:5.3f}".format(float(kend.iloc[-1,0])), xy = (0.50, 0.95), xycoords = 'axes fraction', size=7) # axs[month-1].scatter(cdf_swl_rvs, rain_simcdf, linestyle = 'None', marker = 'o', c = 'grey', edgecolors='none', alpha = 0.8, s=0.2, zorder=1) #markeredgewidth=0.5, # axs[month-1].scatter(pseudo_skew, pseudo_rain, marker = 'o', edgecolors ='k', linewidths=0.3, c = 'k', alpha = 1, s=10) if selected_copulas[month]=='Independence': skew_rvs_shuffled = skew_rvs.copy() rain_rvs_shuffled = rain_rvs.copy() np.random.shuffle(skew_rvs_shuffled) np.random.shuffle(rain_rvs_shuffled) axs[month-1].scatter(skew_rvs_shuffled, rain_rvs_shuffled, linestyle = 'None', marker = 'o', c = 'blue', edgecolors='none', alpha = 0.8, s=0.2, zorder=1) #markeredgewidth=0.5, else: axs[month-1].scatter(skew_rvs, rain_rvs, linestyle = 'None', marker = 'o', c = 'blue', edgecolors='none', alpha = 0.8, s=0.2, zorder=1) #markeredgewidth=0.5, # axs[month-1].scatter(monthly_data['skew'].where(monthly_data['month']==month).dropna()*1000, monthly_data['Thiessen'].where(monthly_data['month']==month).dropna(), marker = 'o', edgecolors ='k', linewidths=0.3, c = 'k', alpha = 1, s=10) #markeredgewidth=0.5, # axs[month-1].xaxis.set_major_locator(MultipleLocator(0.5)) # axs[month-1].yaxis.set_major_locator(MultipleLocator(0.5)) # axs[month-1].xaxis.set_minor_locator(MultipleLocator(0.1)) # axs[month-1].yaxis.set_minor_locator(MultipleLocator(0.1)) axs[month-1].tick_params(axis='both', labelsize=7, direction='out') # axs[month-1].scatter(skew_rvs, rain_rvs, linestyle = 'None', marker = 'o', c = 'grey', edgecolors='none', alpha = 0.8, s=0.1, zorder=1) #markeredgewidth=0.5, # axs[month-1].scatter(swl_rvs[:n_cooc_month], rain_rvs[:n_cooc_month], marker = 'o', edgecolors ='k', linewidths=0.3, c = np.repeat(month, len(swl_rvs[:n_cooc_month])), cmap=cmap2, alpha = 1, s=18, norm=norm) del cdf_swl_rvs, rain_simcdf if dep_type == 'full corr': quantiles = np.random.random(n) # print('Quantiles shape:', quantiles.shape) rain_rvs = simulate_rain(quantiles, params, dist_type) if varname2 == 'skew': skew_rvs = simulate_skew(quantiles, params_skew, dist_type_skew) del quantiles if figure_joint==True: axs[month-1].scatter(monthly_data['skew'].where(monthly_data['month']==month).dropna()*1000, monthly_data['Thiessen'].where(monthly_data['month']==month).dropna(), marker = 'o', edgecolors ='k', linewidths=0.3, c = 'k', alpha = 1, s=10) axs[month-1].scatter(skew_rvs, rain_rvs, linestyle = 'None', marker = 'o', c = 'blue', edgecolors='none', alpha = 0.8, s=0.2, zorder=1) #markeredgewidth=0.5, axs[month-1].tick_params(axis='both', labelsize=7, direction='out') if len(rain_rvs) != n: # print('Performing analysis on less samples') i_random = np.random.choice(np.arange(0, len(rain_rvs)), n, replace = False) rain_rvs = rain_rvs[i_random] skew_rvs = skew_rvs[i_random] ##### FULL DEPENDENCE ###### tide_rvs = sample_tide(month, fn_tide, n) cooc_events = pairs_cooc(rain_rvs, skew_rvs, tide_rvs) if figure_joint==True: axs[month-1].scatter(cooc_events.loc[:,'sealevel'], cooc_events.loc[:,'rain'], linestyle = 'None', marker = 'o', c = 'grey', edgecolors='none', alpha = 0.8, s=0.2, zorder=1) #markeredgewidth=0.5, axs[month-1].scatter(monthly_data['skew'].where(monthly_data['month']==month).dropna()*1000, monthly_data['Thiessen'].where(monthly_data['month']==month).dropna(), marker = 'o', edgecolors ='k', linewidths=0.3, c = 'k', alpha = 1, s=10) #markeredgewidth=0.5, sampled_month_dep = pd.DataFrame(data=cooc_events, columns=['rain', 'sealevel']) sampled_month_dep['month'] = month dam_full_dep = scipy.interpolate.griddata(coords, dam, cooc_events.values, method = 'linear') dam_full = np.sum(dam_full_dep) damage_mod.loc[month, 'full_dep'] = dam_full/n sampled_month_dep['cooc_damage'] = dam_full_dep all_events_sampled_dep = pd.concat([all_events_sampled_dep, sampled_month_dep], axis = 0, ignore_index=True) del dam_full_dep, dam_full, sampled_month_dep, tide_rvs, cooc_events ##### EXCLUSIVE ###### tide_rvs = sample_tide(month, fn_tide, n) rain_events = pairs_rain(rain_rvs, tide_rvs, skew_month_avg, month) del tide_rvs tide_rvs = sample_tide(month, fn_tide, n) sealevel_events = pairs_sl(skew_rvs, tide_rvs, rainfall_month_avg, month) dam_excl_rain = scipy.interpolate.griddata(coords, dam, (rain_events.values), method = 'linear') # dam_excl_sl = scipy.interpolate.griddata(coords, dam, (sealevel_events.values), method = 'linear') #np.zeros(events_month[:,1].shape) dam_excl_highest = pd.DataFrame(data=np.concatenate((dam_excl_rain, dam_excl_sl), axis=1), columns = ['rain_damage', 'sealevel_damage']) dam_highest = dam_excl_highest.max(axis=1) damage_mod.loc[month, 'exclusive_highest'] = (np.sum(dam_highest))/n dam_highest_type = dam_excl_highest.idxmax(axis=1) sampled_month_excl = pd.concat([pd.concat([rain_events[dam_highest_type=='rain_damage'], dam_excl_highest[dam_highest_type=='rain_damage']['rain_damage']], axis = 1), pd.concat([sealevel_events[dam_highest_type=='sealevel_damage'], dam_excl_highest[dam_highest_type=='sealevel_damage']['sealevel_damage']], axis = 1) ], axis = 0, ignore_index=True) sampled_month_excl['month'] = month all_events_sampled_excl = pd.concat([all_events_sampled_excl, sampled_month_excl], axis = 0, ignore_index=True) del rain_events, sealevel_events, tide_rvs, dam_highest, dam_highest_type, dam_excl_rain, dam_excl_sl, sampled_month_excl, dam_excl_highest #### INDEPENDENCE #### n_cooc_ind = int(p_month.loc[month_duration.loc[month,'length'],str(lag_joint)] * n) i_cooc_ind = np.random.choice(np.arange(0, n), n_cooc_ind, replace = False) i_ind = np.delete(np.arange(0, n), i_cooc_ind) tide_rvs = sample_tide(month, fn_tide, len(i_cooc_ind)) cooc_events = pairs_cooc(rain_rvs[i_cooc_ind], skew_rvs[i_cooc_ind], tide_rvs) tide_rvs = sample_tide(month, fn_tide, len(i_ind)) rain_events = pairs_rain(rain_rvs[i_ind], tide_rvs, skew_month_avg, month) tide_rvs = sample_tide(month, fn_tide, len(i_ind)) sealevel_events = pairs_sl(skew_rvs[i_ind], tide_rvs, rainfall_month_avg, month) dam_excl_rain = scipy.interpolate.griddata(coords, dam, (rain_events.values), method = 'linear') # dam_excl_sl = scipy.interpolate.griddata(coords, dam, (sealevel_events.values), method = 'linear') #np.zeros(events_month[:,1].shape) dam_cooc = scipy.interpolate.griddata(coords, dam, (cooc_events.values), method = 'linear') #np.zeros(events_month[:,1].shape) dam_excl_highest = pd.DataFrame(data=np.concatenate((dam_excl_rain, dam_excl_sl), axis=1), columns = ['rain_damage', 'sealevel_damage']) dam_highest = dam_excl_highest.max(axis=1) dam_highest_type = dam_excl_highest.idxmax(axis=1) damage_mod.loc[month, 'ind_highest'] = (np.sum(dam_highest) + np.sum(dam_cooc))/n sampled_month_ind = pd.concat([pd.concat([rain_events[dam_highest_type=='rain_damage'], dam_excl_highest[dam_highest_type=='rain_damage']['rain_damage']], axis = 1), pd.concat([sealevel_events[dam_highest_type=='sealevel_damage'], dam_excl_highest[dam_highest_type=='sealevel_damage']['sealevel_damage']], axis = 1), pd.concat([cooc_events, pd.DataFrame(dam_cooc, columns = ['cooc_damage'])], axis = 1) ], axis = 0, ignore_index=True) sampled_month_ind['month'] = month all_events_sampled_ind =
pd.concat([all_events_sampled_ind, sampled_month_ind], axis = 0, ignore_index=True)
pandas.concat
import unittest import pandas as pd from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline import numpy as np from ITMO_FS.embedded import * np.random.seed(42) class TestCases(unittest.TestCase): data, target = np.random.randint(10, size=(100, 20)), np.random.randint(10, size=(100,)) feature_names = [''.join(['f', str(i)]) for i in range(data.shape[1])] feature_names_override = [''.join(['g', str(i)]) for i in range(data.shape[1])] def test_MOSS(self): # MOSS res = MOS().fit_transform(self.data, self.target, sampling=True) assert self.data.shape[0] == res.shape[0] print("MOSS:", self.data.shape, '--->', res.shape) def test_MOSNS(self): # MOSNS res = MOS().fit_transform(self.data, self.target, sampling=False) assert self.data.shape[0] == res.shape[0] print("MOSNS:", self.data.shape, '--->', res.shape) def test_losses(self): for loss in ['log', 'hinge']: res = MOS(loss=loss).fit_transform(self.data, self.target) assert self.data.shape[0] == res.shape[0] def test_df(self): f = MOS() df = f.fit_transform(pd.DataFrame(self.data), pd.DataFrame(self.target), sampling=True) arr = f.fit_transform(self.data, self.target, sampling=True) np.testing.assert_array_equal(df, arr) df = f.fit_transform(pd.DataFrame(self.data), pd.DataFrame(self.target), sampling=False) arr = f.fit_transform(self.data, self.target, sampling=False) np.testing.assert_array_equal(df, arr) def test_pipeline(self): # FS p = Pipeline([('FS1', MOS())]) p.fit(self.data, self.target) res = p.transform(self.data) assert self.data.shape[0] == res.shape[0] # FS - estim p = Pipeline([('FS1', MOS()), ('E1', LogisticRegression())]) p.fit(self.data, self.target) assert 0 <= p.score(self.data, self.target) <= 1 # FS - FS p = Pipeline([('FS1', MOS(loss='log')), ('FS2', MOS(loss='hinge'))]) p.fit(self.data, self.target) res = p.transform(self.data) assert self.data.shape[0] == res.shape[0] # FS - FS - estim p = Pipeline([('FS1', MOS(loss='log')), ('FS2', MOS(loss='hinge')), ('E1', LogisticRegression())]) p.fit(self.data, self.target) assert 0 <= p.score(self.data, self.target) <= 1 def test_feature_names_np(self): f = MOS() arr = f.fit_transform(self.data, self.target, feature_names=self.feature_names, sampling=True) assert np.all([feature in self.feature_names for feature in f.get_feature_names()]) arr = f.fit_transform(self.data, self.target, feature_names=self.feature_names, sampling=False) assert np.all([feature in self.feature_names for feature in f.get_feature_names()]) def test_feature_names_df(self): f = MOS() arr = f.fit_transform(pd.DataFrame(self.data),
pd.DataFrame(self.target)
pandas.DataFrame
import pandas as pd data = pd.read_csv('data/citibike_tripdata.csv', sep=',') print(data.info) print(data['starttime'].dtype) print(round(data['start station id'].mode()[0])) print(data['bikeid'].mode()[0]) mode_usertype = data['usertype'].mode()[0] count_mode_user = data[data['usertype'] == mode_usertype].shape[0] print(round(count_mode_user / data.shape[0], 2)) male_count = data[data['gender'] == 1].shape[0] female_count = data[data['gender'] == 0].shape[0] print(max([male_count])) print(max([female_count])) print(data.describe()) data.drop(['start station id', 'end station id'], axis=1, inplace=True) print(data.shape[1]) data['age'] = 2018 - data['birth year'] data.drop(['birth year'], axis=1, inplace=True) print(data[data['age'] > 60].shape[0]) data['starttime'] =
pd.to_datetime(data['starttime'])
pandas.to_datetime
""" Author: <NAME> Date: December 2020 """ import configparser import os.path as osp import tempfile from tqdm import tqdm from pandas_plink import read_plink1_bin import dask.array as da import pandas as pd import numpy as np from scipy import stats import zarr from magenpy.AnnotationMatrix import AnnotationMatrix from magenpy.LDMatrix import LDMatrix from magenpy.parsers.plink_parsers import parse_fam_file, parse_bim_file from magenpy.parsers.misc_parsers import read_snp_filter_file, read_individual_filter_file, parse_ld_block_data from magenpy.utils.c_utils import (find_windowed_ld_boundaries, find_shrinkage_ld_boundaries, find_ld_block_boundaries) from magenpy.utils.ld_utils import (_validate_ld_matrix, from_plink_ld_bin_to_zarr, from_plink_ld_table_to_zarr_chunked, shrink_ld_matrix, zarr_array_to_ragged, rechunk_zarr, move_ld_store) from magenpy.utils.model_utils import standardize_genotype_matrix, merge_snp_tables from magenpy.utils.compute_utils import intersect_arrays, iterable from magenpy.utils.system_utils import makedir, get_filenames, run_shell_script, is_cmd_tool class GWASDataLoader(object): def __init__(self, bed_files=None, standardize_genotype=True, phenotype_likelihood='gaussian', phenotype_file=None, phenotype_header=None, phenotype_col=2, phenotype_id=None, standardize_phenotype=True, sumstats_files=None, sumstats_format='magenpy', keep_individuals=None, keep_snps=None, min_maf=None, min_mac=1, remove_duplicated=True, annotation_files=None, genmap_Ne=None, genmap_sample_size=None, shrinkage_cutoff=1e-5, compute_ld=False, ld_store_files=None, ld_block_files=None, ld_estimator='windowed', window_unit='cM', cm_window_cutoff=3., window_size_cutoff=2000, use_plink=False, batch_size=200, temp_dir='temp', output_dir='output', verbose=True, n_threads=1): # ------- General options ------- self.verbose = verbose self.n_threads = n_threads makedir([temp_dir, output_dir]) self.use_plink = use_plink self.bed_files = None self.temp_dir = temp_dir self.output_dir = output_dir self.cleanup_dir_list = [] # Directories to clean up after execution. self.batch_size = batch_size # Access the configuration file: config = configparser.ConfigParser() config.read(osp.join(osp.dirname(__file__), 'config/paths.ini')) try: self.config = config['USER'] except KeyError: self.config = config['DEFAULT'] if self.use_plink: if not is_cmd_tool(self.config.get('plink2_path')): raise Exception("To use `plink` as a backend, make sure that the path for the " "plink2 executable is configured properly.") # ------- General parameters ------- self.standardize_phenotype = standardize_phenotype self.phenotype_likelihood = phenotype_likelihood self.phenotype_id = None # Name or ID of the phenotype # ------- LD computation options ------- self.ld_estimator = ld_estimator assert self.ld_estimator in ('block', 'windowed', 'sample', 'shrinkage') # For the block estimator of the LD matrix: self.ld_blocks = None if self.ld_estimator == 'block': assert ld_block_files is not None self.ld_blocks = parse_ld_block_data(ld_block_files) # For the shrinkage estimator of the LD matrix: self.genmap_Ne = genmap_Ne self.genmap_sample_size = genmap_sample_size self.shrinkage_cutoff = shrinkage_cutoff if self.ld_estimator == 'shrinkage': assert self.genmap_Ne is not None assert self.genmap_sample_size is not None # For the windowed estimator of the LD matrix: self.window_unit = window_unit self.cm_window_cutoff = cm_window_cutoff self.window_size_cutoff = window_size_cutoff # ------- Filter data ------- try: self.keep_individuals = read_individual_filter_file(keep_individuals) except ValueError: self.keep_individuals = None try: self.keep_snps = read_snp_filter_file(keep_snps) except ValueError: self.keep_snps = None # ------- Genotype data ------- self.standardize_genotype = standardize_genotype self.genotypes = None self._snps = None self._bp_pos = None # SNP position in BP self._cm_pos = None # SNP position in cM self.n_per_snp = None # Sample size per SNP self._a1 = None # Minor allele self._a2 = None # Major allele self.maf = None # Minor allele frequency self._fid = None # Family IDs self._iid = None # Individual IDs self.annotations = None # ------- LD-related data ------- self.ld_boundaries = None self.ld = None # ------- Phenotype data ------- self.phenotypes = None # ------- Summary statistics data ------- self.beta_hats = None self.z_scores = None self.se = None self.p_values = None # ------- Read data files ------- self.read_genotypes(bed_files) self.read_annotations(annotation_files) # TODO: Figure out optimal checks and placement of SNP filters if bed_files is not None: self.filter_by_allele_frequency(min_maf=min_maf, min_mac=min_mac) # ------- Compute LD matrices ------- if ld_store_files is not None: self.read_ld(ld_store_files) elif compute_ld: self.compute_ld() # ------- Read phenotype/sumstats files ------- self.read_phenotypes(phenotype_file, phenotype_id=phenotype_id, header=phenotype_header, phenotype_col=phenotype_col, standardize=self.standardize_phenotype) self.read_summary_stats(sumstats_files, sumstats_format) # ------- Harmonize data sources ------- if bed_files is None: self.filter_by_allele_frequency(min_maf=min_maf, min_mac=min_mac) if self.genotypes is None and remove_duplicated: self.filter_duplicated_snps() if ld_store_files is not None or sumstats_files is not None: self.harmonize_data() @classmethod def from_table(cls, table): """ Initialize a GDL object from table. :param table: A pandas dataframe with at leat 4 column defined: `CHR`, `SNP`, `A1`, `POS` Other column names that will be parsed from this table are: A2, MAF, N """ assert all([col in table.columns for col in ('CHR', 'SNP', 'A1', 'POS')]) gdl = cls() gdl._snps = {} gdl._bp_pos = {} gdl._a1 = {} for c in table['CHR'].unique(): chrom_table = table.loc[table['CHR'] == c].sort_values('POS') gdl._snps[c] = chrom_table['SNP'].values gdl._a1[c] = chrom_table['A1'].values gdl._bp_pos[c] = chrom_table['POS'].values if 'A2' in chrom_table.columns: if gdl._a2 is None: gdl._a2 = {} gdl._a2[c] = chrom_table['A2'].values if 'MAF' in chrom_table.columns: if gdl.maf is None: gdl.maf = {} gdl.maf[c] = chrom_table['MAF'].values if 'N' in chrom_table.columns: if gdl.n_per_snp is None: gdl.n_per_snp = {} gdl.n_per_snp[c] = chrom_table['N'].values return gdl @property def n_annotations(self): assert self.annotations is not None return self.annotations[self.chromosomes[0]].n_annotations @property def sample_size(self): return self.N @property def N(self, agg='max'): """ The number of samples :param agg: Aggregation (max, mean, or None) """ if agg == 'max': if self._iid is not None: return len(self._iid) else: if self.n_per_snp is None: return None return max([nps.max() for nps in self.n_per_snp.values()]) else: if self.n_per_snp is None: self.compute_n_per_snp() if agg is None: return self.n_per_snp elif agg == 'mean': return np.mean([nps.mean() for nps in self.n_per_snp.values()]) @property def M(self): return sum(self.shapes.values()) @property def snps(self): return self._snps @property def bp_pos(self): return self._bp_pos @property def cm_pos(self): return self._cm_pos @property def ref_alleles(self): return self._a2 @property def alt_alleles(self): return self._a1 @property def shapes(self): return {c: len(snps) for c, snps in self.snps.items()} @property def chromosomes(self): return list(self.shapes.keys()) def sample_ids_to_index(self, ids): return np.where(np.isin(self._iid, ids))[0] def sample_index_to_ids(self, idx): return self._iid[idx] def filter_snps(self, keep_snps, chrom=None): """ :param keep_snps: :param chrom: """ if chrom is None: snp_dict = self._snps else: snp_dict = {chrom: self._snps[chrom]} for c, snps in snp_dict.items(): if np.array_equal(snps, keep_snps): continue common_idx = intersect_arrays(snps, keep_snps, return_index=True) # SNP vectors that must exist in all GDL objects: self._snps[c] = self._snps[c][common_idx] self._a1[c] = self._a1[c][common_idx] # Optional SNP vectors/matrices: if self._bp_pos is not None and c in self._bp_pos: self._bp_pos[c] = self._bp_pos[c][common_idx] if self._cm_pos is not None and c in self._cm_pos: self._cm_pos[c] = self._cm_pos[c][common_idx] if self._a2 is not None and c in self._a2: self._a2[c] = self._a2[c][common_idx] if self.genotypes is not None and c in self.genotypes: self.genotypes[c] = self.genotypes[c].isel(variant=common_idx) if self.n_per_snp is not None and c in self.n_per_snp: self.n_per_snp[c] = self.n_per_snp[c][common_idx] if self.maf is not None and c in self.maf: self.maf[c] = self.maf[c][common_idx] if self.beta_hats is not None and c in self.beta_hats: self.beta_hats[c] = self.beta_hats[c][common_idx] if self.se is not None and c in self.se: self.se[c] = self.se[c][common_idx] if self.z_scores is not None and c in self.z_scores: self.z_scores[c] = self.z_scores[c][common_idx] if self.p_values is not None and c in self.p_values: self.p_values[c] = self.p_values[c][common_idx] # Filter the annotation table as well: if self.annotations is not None and c in self.annotations: self.annotations[c].filter_snps(self._snps[c]) def filter_by_allele_frequency(self, min_maf=None, min_mac=1): """ Filter SNPs by minimum allele frequency or allele count :param min_maf: Minimum allele frequency :param min_mac: Minimum allele count (1 by default) """ cond_dict = {} if min_mac is not None or min_maf is not None: if self.maf is None: self.compute_allele_frequency() if self.n_per_snp is None: self.compute_n_per_snp() if min_mac is not None: for c, maf in self.maf.items(): mac = (2*maf*self.n_per_snp[c]).astype(np.int64) cond_dict[c] = (mac >= min_mac) & ((2*self.n_per_snp[c] - mac) >= min_mac) if min_maf is not None: for c, maf in self.maf.items(): maf_cond = (maf >= min_maf) & (1. - maf >= min_maf) if c in cond_dict: cond_dict[c] = cond_dict[c] & maf_cond else: cond_dict[c] = maf_cond if len(cond_dict) > 0: filt_count = 0 for c, snps in tqdm(self.snps.items(), total=len(self.chromosomes), desc="Filtering SNPs by allele frequency/count", disable=not self.verbose): keep_snps = snps[cond_dict[c]] if len(keep_snps) != len(snps): filt_count += len(snps) - len(keep_snps) self.filter_snps(keep_snps, chrom=c) if filt_count > 0: if self.verbose: print(f"> Filtered {filt_count} SNPs due to MAC/MAF thresholds.") def filter_duplicated_snps(self): """ This method filters all duplicated SNPs. TODO: Add options to keep at least one of the duplicated snps. :return: """ for c, snps in self.snps.items(): u_snps, counts = np.unique(snps, return_counts=True) if len(u_snps) < len(snps): # Keep only SNPs which occur once in the sequence: self.filter_snps(u_snps[counts == 1], chrom=c) def filter_samples(self, keep_samples): common_samples = intersect_arrays(self._iid, keep_samples, return_index=True) for c in self.chromosomes: if self.genotypes is not None and c in self.genotypes: self.genotypes[c] = self.genotypes[c].isel(sample=common_samples) self._fid = self._fid[common_samples] self._iid = self._iid[common_samples] def read_annotations(self, annot_files): """ Read the annotation files """ if annot_files is None: return if not iterable(annot_files): annot_files = [annot_files] self.annotations = {} for annot_file in tqdm(annot_files, total=len(annot_files), desc="Reading annotation files", disable=not self.verbose): annot_mat = AnnotationMatrix.from_file(annot_file) annot_mat.filter_snps(self.snps[annot_mat.chromosome]) self.annotations[annot_mat.chromosome] = annot_mat def read_genotypes_plink(self, bed_files): """ This is an alternative to `.read_genotypes` that doesn't attempt to parse to process the genotype matrix and instead focuses on loading the individual and SNP data and preparing it for downstream tasks. """ if bed_files is None: return if not iterable(bed_files): bed_files = get_filenames(bed_files, extension='.bed') self._snps = {} self._a1 = {} self._a2 = {} self._cm_pos = {} self._bp_pos = {} self.bed_files = {} for i, bfile in tqdm(enumerate(bed_files), total=len(bed_files), desc="Reading genotype files", disable=not self.verbose): # Read plink file: try: bim_df = parse_bim_file(bfile) if i == 0: fam_df = parse_fam_file(bfile) except Exception as e: self.genotypes = None self._fid = None self._iid = None raise e # Filter individuals: if self.keep_individuals is not None and i == 0: common_samples = intersect_arrays(fam_df.IID.values, self.keep_individuals, return_index=True) fam_df = fam_df.iloc[common_samples, ] # Filter SNPs: if self.keep_snps is not None: common_snps = intersect_arrays(bim_df.SNP.values, self.keep_snps, return_index=True) bim_df = bim_df.iloc[common_snps, ] # Obtain information about current chromosome: chr_id = int(bim_df.CHR.values[0]) # Add filename to the bedfiles dictionary: self.bed_files[chr_id] = bfile # Keep track of the SNPs: self._snps[chr_id] = bim_df.SNP.values self._a1[chr_id] = bim_df.A1.values self._a2[chr_id] = bim_df.A2.values self._bp_pos[chr_id] = bim_df.POS.values self._cm_pos[chr_id] = bim_df.cM.values if i == 0: self._fid = fam_df.FID.values self._iid = fam_df.IID.values def read_genotypes(self, bed_files): """ Read the genotype files """ if self.use_plink: return self.read_genotypes_plink(bed_files) if bed_files is None: return if not iterable(bed_files): bed_files = get_filenames(bed_files, extension='.bed') self._snps = {} self._a1 = {} self._a2 = {} self._cm_pos = {} self._bp_pos = {} self.genotypes = {} self.bed_files = {} for i, bfile in tqdm(enumerate(bed_files), total=len(bed_files), desc="Reading genotype files", disable=not self.verbose): # Read plink file: try: gt_ac = read_plink1_bin(bfile + ".bed", ref="a0", verbose=False) except ValueError: gt_ac = read_plink1_bin(bfile, ref="a0", verbose=False) except Exception as e: self.genotypes = None self._fid = None self._iid = None raise e gt_ac = gt_ac.set_index(variant='snp') # Filter individuals: if self.keep_individuals is not None: common_samples = intersect_arrays(gt_ac.sample.values, self.keep_individuals) gt_ac = gt_ac.sel(sample=common_samples) # Filter SNPs: if self.keep_snps is not None: common_snps = intersect_arrays(gt_ac.variant.values, self.keep_snps) gt_ac = gt_ac.sel(variant=common_snps) # Obtain information about current chromosome: chr_id = int(gt_ac.chrom.values[0]) # Add filename to the bedfiles dictionary: self.bed_files[chr_id] = bfile # Keep track of the SNPs: self._snps[chr_id] = gt_ac.variant.values self._a1[chr_id] = gt_ac.variant.a0.values self._a2[chr_id] = gt_ac.variant.a1.values self._bp_pos[chr_id] = gt_ac.variant.pos.values self._cm_pos[chr_id] = gt_ac.variant.cm.values if i == 0: self._fid = gt_ac.fid.values self._iid = gt_ac.iid.values self.genotypes[chr_id] = gt_ac def read_phenotypes(self, phenotype_file, header=None, phenotype_col=2, standardize=True, phenotype_id=None, filter_na=True): if phenotype_file is None: return if self.verbose: print("> Reading phenotype files...") try: phe = pd.read_csv(phenotype_file, sep="\s+", header=header) phe = phe.iloc[:, [0, 1, phenotype_col]] phe.columns = ['FID', 'IID', 'phenotype'] phe['IID'] = phe['IID'].astype(type(self._iid[0])) except Exception as e: raise e phe = pd.DataFrame({'IID': self._iid}).merge(phe) # Filter individuals with missing phenotypes: # TODO: Add functionality to filter on other values (e.g. -9) if filter_na: phe = phe.dropna(subset=['phenotype']) self.filter_samples(phe['IID'].values) if self.phenotype_likelihood == 'binomial': unique_vals = sorted(phe['phenotype'].unique()) if unique_vals == [1, 2]: # Plink coding for case/control phe['phenotype'] -= 1 elif unique_vals != [0, 1]: raise ValueError(f"Unknown values for binary traits: {unique_vals}") self.phenotypes = phe['phenotype'].values if standardize and self.phenotype_likelihood == 'gaussian': self.phenotypes -= self.phenotypes.mean() self.phenotypes /= self.phenotypes.std() if phenotype_id is None: self.phenotype_id = str(np.random.randint(1, 1000)) else: self.phenotype_id = phenotype_id def read_summary_stats(self, sumstats_files, sumstats_format='magenpy'): """ TODO: implement parsers for summary statistics TODO: Move these parsers to `parsers.py` """ if sumstats_files is None: return if not iterable(sumstats_files): sumstats_files = get_filenames(sumstats_files) ss = [] print("> Reading GWAS summary statistics...") for ssf in sumstats_files: ss_df = pd.read_csv(ssf, delim_whitespace=True) # Drop missing values: ss_df = ss_df.dropna() ss.append(ss_df) ss = pd.concat(ss) # ------------- Standardize inputs ------------- # TODO: Move this part to parsers.py if sumstats_format == 'LDSC': # Useful here: https://www.biostars.org/p/319584/ pass elif sumstats_format == 'SBayesR': pass elif sumstats_format == 'plink': ss.rename(columns={ '#CHROM': 'CHR', 'ID': 'SNP', 'P': 'PVAL', 'OBS_CT': 'N', 'A1_FREQ': 'MAF' }, inplace=True) ss['A2'] = ss.apply(lambda x: [x['ALT1'], x['REF']][x['A1'] == x['ALT1']], axis=1) ss['Z'] = ss['BETA'] / ss['SE'] # ------------------------------------------------- # If SNP list is not set, initialize it using the sumstats table: if self.snps is None: # Check that the sumstats table has the following columns: assert all([col in ss.columns for col in ('CHR', 'POS', 'SNP', 'A1')]) self._snps = {} self._a1 = {} self._bp_pos = {} for c in ss['CHR'].unique(): m_ss = ss.loc[ss['CHR'] == c].sort_values('POS') self._snps[c] = m_ss['SNP'].values self._a1[c] = m_ss['A1'].values self._bp_pos[c] = m_ss['POS'].values # ------------------------------------------------- # Prepare the fields for the sumstats provided in the table: if 'A1' in ss.columns: update_a1 = True else: update_a1 = False if 'POS' in ss.columns: update_pos = True else: update_pos = False if 'A2' in ss.columns: update_a2 = True self._a2 = {} else: update_a2 = False if 'MAF' in ss.columns: self.maf = {} update_maf = True else: update_maf = False if 'N' in ss.columns: self.n_per_snp = {} update_n = True else: update_n = False if 'BETA' in ss.columns: self.beta_hats = {} update_beta = True else: update_beta = False if 'Z' in ss.columns: self.z_scores = {} update_z = True else: update_z = False if 'SE' in ss.columns: self.se = {} update_se = True else: update_se = False if 'PVAL' in ss.columns: self.p_values = {} update_pval = True else: update_pval = False for c, snps in self.snps.items(): m_ss = merge_snp_tables(pd.DataFrame({'SNP': snps, 'A1': self._a1[c]}), ss) if len(m_ss) > 1: # Filter the SNP list first! if len(snps) != len(m_ss): self.filter_snps(m_ss['SNP'], chrom=c) # Populate the sumstats fields: if update_a1: self._a1[c] = m_ss['A1'].values if update_pos: self._bp_pos[c] = m_ss['POS'].values if update_a2: self._a2[c] = m_ss['A2'].values if update_maf: self.maf[c] = m_ss['MAF'].values if update_n: self.n_per_snp[c] = m_ss['N'].values if update_beta: self.beta_hats[c] = m_ss['BETA'].values if update_z: self.z_scores[c] = m_ss['Z'].values if update_se: self.se[c] = m_ss['SE'].values if update_pval: self.p_values[c] = m_ss['PVAL'].values print(f"> Read summary statistics data for {self.M} SNPs.") def read_ld(self, ld_store_files): """ :param ld_store_files: """ if self.verbose: print("> Reading LD matrices...") if not iterable(ld_store_files): ld_store_files = get_filenames(ld_store_files, extension='.zarr') self.ld = {} if self._snps is None: init_snps = True self._snps = {} self._a1 = {} self._bp_pos = {} self.maf = {} else: init_snps = False for f in ld_store_files: z = LDMatrix.from_path(f) self.ld[z.chromosome] = z # If the SNP list is not set, # initialize it with the SNP list from the LD store: if init_snps: self._snps[z.chromosome] = z.snps self._a1[z.chromosome] = z.a1 self._bp_pos[z.chromosome] = z.bp_position self.maf[z.chromosome] = z.maf def load_ld(self): if self.ld is not None: for ld in self.ld.values(): ld.load() def release_ld(self): if self.ld is not None: for ld in self.ld.values(): ld.release() def compute_ld_boundaries(self, recompute=False): self.ld_boundaries = {} if recompute: # If recomputing from existing LD matrices: shapes = self.shapes for c, ld in tqdm(self.ld.items(), total=len(self.chromosomes), desc='Recomputing LD boundaries', disable=not self.verbose): common_idx = intersect_arrays(ld.snps, self.snps[c], return_index=True) M = shapes[c] estimator = ld.ld_estimator est_properties = ld.estimator_properties if estimator == 'sample': self.ld_boundaries[c] = np.array((np.zeros(M), np.ones(M)*M)).astype(np.int64) elif estimator == 'block': self.ld_boundaries[c] = find_ld_block_boundaries(ld.bp_position[common_idx], np.array(est_properties['LD blocks'], dtype=int)) elif estimator == 'windowed': if est_properties['Window units'] == 'cM': self.ld_boundaries[c] = find_windowed_ld_boundaries(ld.cm_position[common_idx], est_properties['Window cutoff']) else: idx = np.arange(M) self.ld_boundaries[c] = np.array((idx - est_properties['Window cutoff'], idx + est_properties['Window cutoff'])).astype(np.int64) self.ld_boundaries[c] = np.clip(self.ld_boundaries[c], 0, M) else: self.ld_boundaries[c] = find_shrinkage_ld_boundaries(ld.cm_position[common_idx], est_properties['Genetic map Ne'], est_properties['Genetic map sample size'], est_properties['Cutoff']) else: for c, M in tqdm(self.shapes.items(), total=len(self.chromosomes), desc="Computing LD boundaries", disable=not self.verbose): if self.ld_estimator == 'sample': self.ld_boundaries[c] = np.array((np.zeros(M), np.ones(M)*M)).astype(np.int64) elif self.ld_estimator == 'block': if self._bp_pos and c in self._bp_pos: self.ld_boundaries[c] = find_ld_block_boundaries(self._bp_pos[c].astype(int), self.ld_blocks[c]) else: raise Exception("SNP position in BP is missing!") elif self.ld_estimator == 'windowed': if self.window_unit == 'cM': if self._cm_pos and c in self._cm_pos: self.ld_boundaries[c] = find_windowed_ld_boundaries(self._cm_pos[c], self.cm_window_cutoff) else: raise Exception("cM information for SNPs is missing. " "Make sure to populate it with a reference genetic map " "or use a pre-specified window size around each SNP.") else: idx = np.arange(M) self.ld_boundaries[c] = np.array((idx - self.window_size_cutoff, idx + self.window_size_cutoff)).astype(np.int64) self.ld_boundaries[c] = np.clip(self.ld_boundaries[c], 0, M) elif self.ld_estimator == 'shrinkage': if self._cm_pos and c in self._cm_pos: self.ld_boundaries[c] = find_shrinkage_ld_boundaries(self._cm_pos[c], self.genmap_Ne, self.genmap_sample_size, self.shrinkage_cutoff) else: raise Exception("cM information for SNPs is missing. " "Make sure to populate it with a reference genetic map " "or use a different LD estimator.") return self.ld_boundaries def compute_ld_plink(self): """ Compute the Linkage-Disequilibrium (LD) matrix between SNPs using plink1.9 """ if not is_cmd_tool(self.config.get('plink1.9_path')): raise Exception("To use `plink` as a backend for LD calculation, " "make sure that the path for the plink1.9 executable is configured properly.") if self.maf is None: self.compute_allele_frequency() if self.ld_boundaries is None: self.compute_ld_boundaries() tmp_ld_dir = tempfile.TemporaryDirectory(dir=self.temp_dir, prefix='ld_') self.cleanup_dir_list.append(tmp_ld_dir) # Create the samples file: keep_file = osp.join(tmp_ld_dir.name, 'samples.keep') keep_table = self.to_individual_table() keep_table.to_csv(keep_file, index=False, header=False, sep="\t") self.ld = {} for c, b_file in tqdm(self.bed_files.items(), total=len(self.chromosomes), desc="Computing LD matrices using PLINK", disable=not self.verbose): snp_keepfile = osp.join(tmp_ld_dir.name, f"chr_{c}.keep") pd.DataFrame({'SNP': self.snps[c]}).to_csv(snp_keepfile, index=False, header=False) plink_output = osp.join(tmp_ld_dir.name, f"chr_{c}") cmd = [ self.config.get('plink1.9_path'), f"--bfile {b_file.replace('.bed', '')}", f"--keep {keep_file}", f"--extract {snp_keepfile}", "--keep-allele-order", f"--out {plink_output}", f"--threads {self.n_threads}" ] # For the block and shrinkage estimators, ask plink to compute # LD between focal SNP and max(window_size) around it. # Then, once we have a square matrix out of that, we can apply # a per-SNP filter: max_window_size = (self.ld_boundaries[c][1, :] - self.ld_boundaries[c][0, :]).max() + 1 max_kb = round(.001*(self.bp_pos[c].max() - self.bp_pos[c].min())) if self.ld_estimator in ('shrinkage', 'block'): cmd.append("--r gz") cmd.append(f"--ld-window {max_window_size} " f"--ld-window-kb {max_kb}") elif self.ld_estimator == 'windowed': cmd.append("--r gz") cmd.append(f"--ld-window {len(self.snps[c]) + 1} " f"--ld-window-kb {max_kb} " f"--ld-window-cm {self.cm_window_cutoff}") else: cmd.append("--r bin") cmd.append(f"--ld-window {len(self.snps[c]) + 1} " f"--ld-window-kb {max_kb} ") run_shell_script(" ".join(cmd)) # Convert from PLINK LD files to Zarr: fin_ld_store = osp.join(self.output_dir, 'ld', 'chr_' + str(c)) if self.ld_estimator == 'sample': z_ld_mat = from_plink_ld_bin_to_zarr(f"{plink_output}.ld.bin", fin_ld_store, self.ld_boundaries[c]) else: z_ld_mat = from_plink_ld_table_to_zarr_chunked(f"{plink_output}.ld.gz", fin_ld_store, self.ld_boundaries[c], self.snps[c]) # Add LD matrix properties: z_ld_mat.attrs['Chromosome'] = c z_ld_mat.attrs['Sample size'] = self.sample_size z_ld_mat.attrs['SNP'] = list(self.snps[c]) z_ld_mat.attrs['LD estimator'] = self.ld_estimator z_ld_mat.attrs['LD boundaries'] = self.ld_boundaries[c].tolist() ld_estimator_properties = None if self.ld_estimator == 'shrinkage': z_ld_mat = shrink_ld_matrix(z_ld_mat, self.cm_pos[c], self.genmap_Ne, self.genmap_sample_size, self.shrinkage_cutoff, ld_boundaries=self.ld_boundaries[c]) ld_estimator_properties = { 'Genetic map Ne': self.genmap_Ne, 'Genetic map sample size': self.genmap_sample_size, 'Cutoff': self.shrinkage_cutoff } elif self.ld_estimator == 'windowed': ld_estimator_properties = { 'Window units': self.window_unit, 'Window cutoff': [self.window_size_cutoff, self.cm_window_cutoff][self.window_unit == 'cM'] } elif self.ld_estimator == 'block': ld_estimator_properties = { 'LD blocks': self.ld_blocks[c].tolist() } # Add detailed LD matrix properties: z_ld_mat.attrs['BP'] = list(map(int, self.bp_pos[c])) z_ld_mat.attrs['cM'] = list(map(float, self.cm_pos[c])) z_ld_mat.attrs['MAF'] = list(map(float, self.maf[c])) z_ld_mat.attrs['A1'] = list(self._a1[c]) if ld_estimator_properties is not None: z_ld_mat.attrs['Estimator properties'] = ld_estimator_properties self.ld[c] = LDMatrix(z_ld_mat) self.ld[c].set_store_attr('LDScore', self.ld[c].compute_ld_scores().tolist()) _validate_ld_matrix(self.ld[c]) def compute_ld(self): """ Compute the Linkage-Disequilibrium (LD) matrix between SNPs. This function only considers correlations between SNPs on the same chromosome. The function involves computing X'X and then applying transformations to it, according to the estimator that the user specifies. """ if self.use_plink: self.compute_ld_plink() return if self.maf is None: self.compute_allele_frequency() if self.ld_boundaries is None: self.compute_ld_boundaries() tmp_ld_dir = tempfile.TemporaryDirectory(dir=self.temp_dir, prefix='ld_') self.cleanup_dir_list.append(tmp_ld_dir) self.ld = {} for c, g_data in tqdm(self.genotypes.items(), total=len(self.chromosomes), desc="Computing LD matrices", disable=not self.verbose): tmp_ld_store = osp.join(tmp_ld_dir.name, 'chr_' + str(c)) fin_ld_store = osp.join(self.output_dir, 'ld', 'chr_' + str(c)) # Re-chunk the array g_data = g_data.chunk((min(1024, g_data.shape[0]), min(1024, g_data.shape[1]))) # Standardize the genotype matrix and fill missing data with zeros: g_mat = standardize_genotype_matrix(g_data).fillna(0.) # Compute the LD matrix: ld_mat = (da.dot(g_mat.T, g_mat) / self.N).astype(np.float64) ld_mat.to_zarr(tmp_ld_store, overwrite=True) z_ld_mat = zarr.open(tmp_ld_store) z_ld_mat = rechunk_zarr(z_ld_mat, ld_mat.rechunk({0: 'auto', 1: None}).chunksize, tmp_ld_store + '_rechunked', tmp_ld_store + '_intermediate') # Add LD matrix properties: z_ld_mat.attrs['Chromosome'] = c z_ld_mat.attrs['Sample size'] = self.sample_size z_ld_mat.attrs['SNP'] = list(self.snps[c]) z_ld_mat.attrs['LD estimator'] = self.ld_estimator z_ld_mat.attrs['LD boundaries'] = self.ld_boundaries[c].tolist() ld_estimator_properties = None if self.ld_estimator == 'sample': z_ld_mat = move_ld_store(z_ld_mat, fin_ld_store) if self.ld_estimator == 'shrinkage': z_ld_mat = shrink_ld_matrix(z_ld_mat, self.cm_pos[c], self.genmap_Ne, self.genmap_sample_size, self.shrinkage_cutoff) ld_estimator_properties = { 'Genetic map Ne': self.genmap_Ne, 'Genetic map sample size': self.genmap_sample_size, 'Cutoff': self.shrinkage_cutoff } elif self.ld_estimator == 'windowed': ld_estimator_properties = { 'Window units': self.window_unit, 'Window cutoff': [self.window_size_cutoff, self.cm_window_cutoff][self.window_unit == 'cM'] } elif self.ld_estimator == 'block': ld_estimator_properties = { 'LD blocks': self.ld_blocks[c].tolist() } if self.ld_estimator in ('block', 'shrinkage', 'windowed'): z_ld_mat = zarr_array_to_ragged(z_ld_mat, fin_ld_store, bounds=self.ld_boundaries[c], delete_original=True) # Add detailed LD matrix properties: z_ld_mat.attrs['BP'] = list(map(int, self.bp_pos[c])) z_ld_mat.attrs['cM'] = list(map(float, self.cm_pos[c])) z_ld_mat.attrs['MAF'] = list(map(float, self.maf[c])) z_ld_mat.attrs['A1'] = list(self._a1[c]) if ld_estimator_properties is not None: z_ld_mat.attrs['Estimator properties'] = ld_estimator_properties self.ld[c] = LDMatrix(z_ld_mat) self.ld[c].set_store_attr('LDScore', self.ld[c].compute_ld_scores().tolist()) _validate_ld_matrix(self.ld[c]) def get_ld_matrices(self): return self.ld def get_ld_boundaries(self): if self.ld is None: return None return {c: ld.get_masked_boundaries() for c, ld in self.ld.items()} def realign_ld(self): """ This method realigns a pre-computed LD matrix with the current genotype matrix and/or summary statistics. """ if self.ld is None: raise Exception("No pre-computed LD matrices are provided.") self.compute_ld_boundaries(recompute=True) ld_tmpdir = tempfile.TemporaryDirectory(dir=self.temp_dir, prefix='ld_') self.cleanup_dir_list.append(ld_tmpdir) for c, snps in tqdm(self.snps.items(), total=len(self.chromosomes), desc="Matching LD matrices with sumstats/genotypes", disable=not self.verbose): ld_snps = self.ld[c].snps if not np.array_equal(snps, ld_snps): self.ld[c] = LDMatrix( zarr_array_to_ragged(self.ld[c].z_array, dir_store=osp.join(ld_tmpdir.name, f'chr_{c}'), keep_snps=snps, bounds=self.ld_boundaries[c]) ) def harmonize_data(self): """ This method ensures that all the data sources (reference genotype, LD matrices, summary statistics) are aligned. """ if self.verbose: print("> Harmonizing data...") update_ld = False sumstats_tables = self.to_snp_table(per_chromosome=True, col_subset=['SNP', 'A1', 'MAF', 'BETA', 'Z']) for c, snps in self.snps.items(): # Harmonize SNPs in LD store and summary statistics/genotype matrix: if self.ld is not None: self.ld[c].set_mask(None) ld_snps = self.ld[c].to_snp_table(col_subset=['SNP', 'A1']) matched_snps = merge_snp_tables(ld_snps, sumstats_tables[c]) # If the SNP list doesn't align with the matched SNPs, # then filter the SNP list if len(snps) != len(matched_snps): self.filter_snps(matched_snps['SNP'].values, chrom=c) if len(matched_snps) != len(ld_snps): # If the percentage of SNPs that will need to be excluded from the # LD matrix exceeds 30% (and greater than 5000), then copy and update the matrix. # Otherwise, introduce a mask that ensures those SNPs are excluded from # downstream tasks. # # NOTE: This behavior is deprecated for now... # We simply apply a mask to the LD matrix, and depending on the size # unmasked elements, downstream tasks can decide whether or not to load # the matrix to memory. # # To be revisited... #n_miss = len(ld_snps) - len(matched_snps) #if float(n_miss) / len(ld_snps) > .3 and n_miss > 5000: # update_ld = True #else: remain_index = intersect_arrays(ld_snps['SNP'].values, matched_snps['SNP'].values, return_index=True) mask = np.zeros(len(ld_snps)) mask[remain_index] = 1 self.ld[c].set_mask(mask.astype(bool)) flip_01 = matched_snps['flip'].values num_flips = flip_01.sum() if num_flips > 0: print(f"> Detected {num_flips} SNPs with strand flipping. Correcting summary statistics...") # Correct strand information: self._a1[c] = matched_snps['A1'].values # Correct MAF: if self.maf is not None: self.maf[c] = matched_snps['MAF'].values # Correct BETA: if self.beta_hats is not None: self.beta_hats[c] = matched_snps['BETA'].values # Correct Z-score: if self.z_scores is not None: self.z_scores[c] = matched_snps['Z'].values if update_ld: self.realign_ld() def score_plink(self, betas=None): """ Perform linear scoring using PLINK2 :param betas: """ if betas is None: if self.beta_hats is None: raise Exception("Neither betas nor beta hats are provided or set." " Please provide betas to perform prediction.") else: betas = {c: b for c, b in self.beta_hats.items()} # Initialize the PGS object with zeros # The construction here accounts for multiple betas per SNP try: betas_shape = betas[next(iter(betas))].shape[1] if betas_shape == 1: raise IndexError score_col_nums = f"--score-col-nums 3-{3 + betas_shape - 1}" except IndexError: betas_shape = 1 for c, b in betas.items(): betas[c] = b.reshape(-1, 1) score_col_nums = f"--score-col-nums 3" pgs = np.zeros(shape=(self.N, betas_shape)) # Create a temporary directory for the score files: score_tmpdir = tempfile.TemporaryDirectory(dir=self.temp_dir, prefix='score_') self.cleanup_dir_list.append(score_tmpdir) # Create the samples file: keep_file = osp.join(score_tmpdir.name, 'samples.keep') keep_table = self.to_individual_table() keep_table.to_csv(keep_file, index=False, header=False, sep="\t") for c, beta in tqdm(betas.items(), total=len(betas), desc="Generating polygenic scores using PLINK", disable=not self.verbose): eff_file = osp.join(score_tmpdir.name, f'chr_{c}.txt') df = pd.DataFrame({'SNP': self.snps[c], 'A1': self.alt_alleles[c]}) for i in range(betas_shape): df['BETA' + str(i)] = betas[c][:, i] df = df.loc[df[['BETA' + str(i) for i in range(betas_shape)]].sum(axis=1) != 0] try: df.to_csv(eff_file, index=False, sep="\t") cmd = [ self.config.get('plink2_path'), f"--bfile {self.bed_files[c].replace('.bed', '')}", f"--keep {keep_file}", f"--score {eff_file} 1 2 header-read cols=+scoresums variance-standardize", score_col_nums, f"--out {eff_file.replace('.txt', '')}", f"--threads {self.n_threads}" ] try: run_shell_script(" ".join(cmd)) if not osp.isfile(eff_file.replace('.txt', '.sscore')): raise FileNotFoundError except Exception as e: raise Exception("plink polygenic scoring failed to run!\nDeployed command:" + " ".join(cmd)) dtypes = {'FID': str, 'IID': str} for i in range(betas_shape): dtypes.update({'PRS' + str(i): np.float64}) chr_pgs = pd.read_csv(eff_file.replace('.txt', '.sscore'), delim_whitespace=True, names=['FID', 'IID'] + ['PRS' + str(i) for i in range(betas_shape)], skiprows=1, usecols=[0, 1] + [4 + betas_shape + i for i in range(betas_shape)], dtype=dtypes) chr_pgs = keep_table.astype({'FID': str, 'IID': str}).merge(chr_pgs) pgs += chr_pgs[['PRS' + str(i) for i in range(betas_shape)]].values except Exception as e: raise e if betas_shape == 1: pgs = pgs.flatten() return pgs def score(self, betas=None): if self.use_plink: return self.score_plink(betas) if betas is None: if self.beta_hats is None: raise Exception("Neither betas nor beta hats are provided or set." " Please provide betas to perform prediction.") else: betas = {c: b for c, b in self.beta_hats.items()} if not self.standardize_genotype and self.maf is None: self.compute_allele_frequency() try: betas_shape = betas[next(iter(betas))].shape[1] except IndexError: betas_shape = 1 for c, b in betas.items(): betas[c] = b.reshape(-1, 1) pgs = np.zeros(shape=(self.N, betas_shape)) for c, gt in tqdm(self.genotypes.items(), total=len(self.chromosomes), desc="Generating polygenic scores", disable=not self.verbose): if self.standardize_genotype: pgs += np.dot(standardize_genotype_matrix(gt).fillna(0.), betas[c]) else: pgs += np.dot(gt.fillna(self.maf[c]), betas[c]) if betas_shape == 1: pgs = pgs.flatten() return pgs def predict(self, betas=None): pgs = self.score(betas) if self.phenotype_likelihood == 'binomial': # apply sigmoid function: # TODO: Check this (maybe convert to probit?) pgs = 1./(1. + np.exp(-pgs)) return pgs def perform_gwas_plink(self): """ Perform GWAS using PLINK """ # Create a temporary directory for the gwas files: gwas_tmpdir = tempfile.TemporaryDirectory(dir=self.temp_dir, prefix='gwas_') self.cleanup_dir_list.append(gwas_tmpdir) # Output the phenotype file: phe_fname = osp.join(gwas_tmpdir.name, "pheno.txt") phe_table = self.to_phenotype_table() if self.phenotype_likelihood == 'binomial': phe_table['phenotype'] += 1 phe_table.to_csv(phe_fname, sep="\t", index=False, header=False) plink_reg_type = ['linear', 'logistic'][self.phenotype_likelihood == 'binomial'] self.n_per_snp = {} self.maf = {} self.beta_hats = {} self.se = {} self.z_scores = {} self.p_values = {} for c, bf in tqdm(self.bed_files.items(), total=len(self.chromosomes), desc="Performing GWAS using PLINK", disable=not self.verbose): # Output a keep file for SNPs: snp_keepfile = osp.join(gwas_tmpdir.name, f"chr_{c}.keep") pd.DataFrame({'SNP': self.snps[c]}).to_csv(snp_keepfile, index=False, header=False) plink_output = osp.join(gwas_tmpdir.name, f"chr_{c}") cmd = [ self.config.get('plink2_path'), f"--bfile {bf.replace('.bed', '')}", f"--extract {snp_keepfile}", f"--{plink_reg_type} hide-covar cols=chrom,pos,alt1,ref,a1freq,nobs,beta,se,tz,p", f"--pheno {phe_fname}", f"--out {plink_output}", f"--threads {self.n_threads}" ] if self.standardize_phenotype: cmd.append('--variance-standardize') run_shell_script(" ".join(cmd)) output_fname = plink_output + f".PHENO1.glm.{plink_reg_type}" if not osp.isfile(output_fname): if plink_reg_type == 'logistic' and osp.isfile(output_fname + ".hybrid"): output_fname += ".hybrid" else: raise FileNotFoundError res = pd.read_csv(output_fname, delim_whitespace=True) res.rename(columns={ '#CHROM': 'CHR', 'ID': 'SNP', 'P': 'PVAL', 'OBS_CT': 'N', 'A1_FREQ': 'MAF' }, inplace=True) # TODO: Filter NaN values that may arise from PLINK. # Merge to make sure that summary statistics are in order: res = merge_snp_tables(pd.DataFrame({'SNP': self.snps[c], 'A1': self._a1[c]}), res) if len(res) != len(self.snps[c]): raise ValueError("Length of GWAS table does not match number of SNPs.") self.n_per_snp[c] = res['N'].values self.maf[c] = res['MAF'].values self.beta_hats[c] = res['BETA'].values self.se[c] = res['SE'].values self.z_scores[c] = self.beta_hats[c] / self.se[c] self.p_values[c] = res['PVAL'].values def perform_gwas(self): """ Peform GWAS using closed form solutions. (Only applicable to quantitative traits) """ if self.use_plink: self.perform_gwas_plink() else: if self.phenotype_likelihood == 'binomial': raise Exception("Software does not support GWAS with case/control phenotypes. Use plink instead.") if self.n_per_snp is None: self.compute_allele_frequency() for c in tqdm(self.chromosomes, desc="Performing GWAS", disable=not self.verbose): self.verbose = False self.compute_beta_hats(chrom=c) self.compute_standard_errors(chrom=c) self.compute_z_scores(chrom=c) self.compute_p_values(chrom=c) self.verbose = True def estimate_snp_heritability(self, per_chromosome=False): """ Provides an estimate of SNP heritability from summary statistics using a simplified version of the LD Score Regression framework. E[X_j^2] = h_g^2*l_j + int Where the response is the Chi-Squared statistic for SNP j and the variable is its LD score. NOTE: For now, we constrain the slope to 1. TODO: Maybe move into its own module? :param per_chromosome: Estimate heritability per chromosome """ if self.ld is None or self.z_scores is None: raise Exception("Estimating SNP heritability requires z-scores and LD matrices!") chr_ldsc = {} chr_xi_sq = {} for c, ldm in tqdm(self.ld.items(), total=len(self.chromosomes), desc="Estimating SNP-heritability", disable=not self.verbose): chr_ldsc[c] = ldm.ld_score chr_xi_sq[c] = self.z_scores[c]**2 if per_chromosome: chr_h2g = {} for c in chr_ldsc: # h2g, int, _, _, _ = stats.linregress(chr_ldsc[c], chr_xi_sq[c]) # chr_h2g[c] = h2g chr_h2g[c] = (chr_xi_sq[c].mean() - 1.)*len(chr_ldsc[c]) / (chr_ldsc[c].mean()*self.N) return chr_h2g else: concat_ldsc = np.concatenate(list(chr_ldsc.values())) concat_xi_sq = np.concatenate(list(chr_xi_sq.values())) # h2g, int, _, _, _ = stats.linregress(concat_ldsc, concat_xi_sq) return (concat_xi_sq.mean() - 1.)*len(concat_ldsc) / (concat_ldsc.mean()*self.N) def compute_allele_frequency_plink(self): # Create a temporary directory for the allele frequency files: freq_tmpdir = tempfile.TemporaryDirectory(dir=self.temp_dir, prefix='freq_') self.cleanup_dir_list.append(freq_tmpdir) # Create the samples file: keep_file = osp.join(freq_tmpdir.name, 'samples.keep') keep_table = self.to_individual_table() keep_table.to_csv(keep_file, index=False, header=False, sep="\t") self.maf = {} for c, bf in tqdm(self.bed_files.items(), total=len(self.chromosomes), desc="Computing allele frequencies using PLINK", disable=not self.verbose): snp_keepfile = osp.join(freq_tmpdir.name, f"chr_{c}.keep") pd.DataFrame({'SNP': self.snps[c]}).to_csv(snp_keepfile, index=False, header=False) plink_output = osp.join(freq_tmpdir.name, f"chr_{c}") cmd = [ self.config.get('plink2_path'), f"--bfile {bf.replace('.bed', '')}", f"--keep {keep_file}", f"--extract {snp_keepfile}", f"--freq", f"--out {plink_output}", f"--threads {self.n_threads}" ] run_shell_script(" ".join(cmd)) freq_df = pd.read_csv(plink_output + ".afreq", delim_whitespace=True) freq_df.rename(columns={'ID': 'SNP', 'ALT': 'A1', 'ALT_FREQS': 'MAF'}, inplace=True) merged_df = merge_snp_tables(pd.DataFrame({'SNP': self.snps[c], 'A1': self._a1[c]}), freq_df) if len(merged_df) != len(self.snps[c]): raise ValueError("Length of allele frequency table does not match number of SNPs.") self.maf[c] = merged_df['MAF'].values return self.maf def compute_allele_frequency(self): if self.use_plink: return self.compute_allele_frequency_plink() if self.n_per_snp is None: self.compute_n_per_snp() self.maf = {} for c, gt in tqdm(self.genotypes.items(), total=len(self.chromosomes), desc="Computing allele frequencies", disable=not self.verbose): self.maf[c] = (gt.sum(axis=0) / (2. * self.n_per_snp[c])).compute().values return self.maf def compute_allele_frequency_variance(self): if self.maf is None: self.compute_allele_frequency() maf_var = {} for c, maf in tqdm(self.maf.items(), total=len(self.chromosomes), desc="Computing allele frequency variance", disable=not self.verbose): maf_var[c] = 2.*maf*(1. - maf) return maf_var def compute_n_per_snp_plink(self): # Create a temporary directory for missingness count: miss_tmpdir = tempfile.TemporaryDirectory(dir=self.temp_dir, prefix='miss_') self.cleanup_dir_list.append(miss_tmpdir) # Create the samples file: keep_file = osp.join(miss_tmpdir.name, 'samples.keep') keep_table = self.to_individual_table() keep_table.to_csv(keep_file, index=False, header=False, sep="\t") self.n_per_snp = {} for c, bf in tqdm(self.bed_files.items(), total=len(self.chromosomes), desc="Computing effective sample size per SNP using PLINK", disable=not self.verbose): snp_keepfile = osp.join(miss_tmpdir.name, f"chr_{c}.keep") pd.DataFrame({'SNP': self.snps[c]}).to_csv(snp_keepfile, index=False, header=False) plink_output = osp.join(miss_tmpdir.name, f"chr_{c}") cmd = [ self.config.get('plink2_path'), f"--bfile {bf.replace('.bed', '')}", f"--keep {keep_file}", f"--extract {snp_keepfile}", f"--missing variant-only", f"--out {plink_output}", f"--threads {self.n_threads}" ] run_shell_script(" ".join(cmd)) miss_df = pd.read_csv(plink_output + ".vmiss", delim_whitespace=True) miss_df = pd.DataFrame({'ID': self.snps[c]}).merge(miss_df) if len(miss_df) != len(self.snps[c]): raise ValueError("Length of missingness table does not match number of SNPs.") self.n_per_snp[c] = (miss_df['OBS_CT'] - miss_df['MISSING_CT']).values return self.n_per_snp def compute_n_per_snp(self): if self.use_plink: return self.compute_n_per_snp_plink() self.n_per_snp = {} for c, gt in tqdm(self.genotypes.items(), total=len(self.chromosomes), desc="Computing effective sample size per SNP", disable=not self.verbose): self.n_per_snp[c] = gt.shape[0] - gt.isnull().sum(axis=0).compute().values return self.n_per_snp def compute_snp_pseudo_corr(self): """ Computes the pseudo-correlation coefficient (standardized beta) between the SNP and the phenotype (X_jTy / N) from GWAS summary statistics. Uses Equation 15 in Mak et al. 2017 beta = z_j / sqrt(n - 1 + z_j^2) Where z_j is the marginal GWAS Z-score """ if self.z_scores is None: raise Exception("Z-scores are not set!") if self.n_per_snp is None: raise Exception("Sample size is not set!") snp_corr = {} for c, zsc in tqdm(self.z_scores.items(), total=len(self.chromosomes), desc="Computing SNP-wise correlations", disable=not self.verbose): # z_j / sqrt(n - 1 + z_j^2) snp_corr[c] = zsc / (np.sqrt(self.n_per_snp[c] - 1 + zsc**2)) return snp_corr def compute_yy_per_snp(self): """ Computes the quantity (y'y)_j/n_j following SBayesR (Lloyd-Jones 2019) and Yang et al. (2012). (y'y)_j/n_j is the empirical variance for continuous phenotypes and may be estimated from GWAS summary statistics by re-arranging the equation for the squared standard error: SE(b_j)^2 = (Var(y) - Var(x_j)*b_j^2) / (Var(x)*n) Which gives the following estimate: (y'y)_j / n_j = (n_j - 2)*SE(b_j)^2 + b_j^2 TODO: Verify the derivation and logic here, ensure it's consistent. """ if self.beta_hats is None: raise Exception("Betas are not set!") if self.n_per_snp is None: raise Exception("Sample size is not set!") if self.se is None: raise Exception("Standard errors are not set!") yy = {} for c, b_hat in tqdm(self.beta_hats.items(), total=len(self.chromosomes), desc="Computing SNP-wise yTy", disable=not self.verbose): yy[c] = (self.n_per_snp[c] - 2)*self.se[c]**2 + b_hat**2 return yy def compute_beta_hats(self, chrom=None): if self.phenotypes is None or self.genotypes is None: raise Exception("Genotype and phenotype data are needed to compute betas!") if self.maf is None: self.compute_allele_frequency() if chrom is None: self.beta_hats = {} chroms = self.chromosomes else: if chrom not in self.chromosomes: raise KeyError("Chromosome is not valid!") if self.beta_hats is None: self.beta_hats = {} chroms = [chrom] for c in tqdm(chroms, desc="Computing beta hats", disable=not self.verbose): if self.standardize_genotype: numer = np.dot(standardize_genotype_matrix(self.genotypes[c]).T, self.phenotypes) denom = self.n_per_snp[c] else: numer = np.dot(self.genotypes[c].fillna(self.maf[c]).T, self.phenotypes) denom = self.n_per_snp[c] * self.genotypes[c].var(axis=0).compute() self.beta_hats[c] = numer / denom return self.beta_hats def compute_standard_errors(self, chrom=None): if self.phenotypes is None or self.genotypes is None: raise Exception("Genotype and phenotype data are needed to compute standard errors!") if self.n_per_snp is None: self.compute_n_per_snp() if chrom is None: self.se = {} chroms = self.chromosomes else: if chrom not in self.chromosomes: raise KeyError("Chromosome is not valid!") if self.se is None: self.se = {} chroms = [chrom] sigma_y = np.var(self.phenotypes) # phenotypic variance for c in tqdm(chroms, desc="Computing standard errors", disable=not self.verbose): if self.standardize_genotype: xtx = self.n_per_snp[c] else: xtx = self.n_per_snp[c]*self.genotypes[c].var(axis=0).compute() self.se[c] = np.sqrt(sigma_y/xtx) return self.se def compute_z_scores(self, chrom=None): if self.beta_hats is None or self.se is None: raise Exception("beta hats and standard errors are needed to compute z-scores!") if chrom is None: self.z_scores = {} chroms = self.chromosomes else: if chrom not in self.chromosomes: raise KeyError("Chromosome is not valid!") if self.z_scores is None: self.z_scores = {} chroms = [chrom] for c in tqdm(chroms, desc="Computing z-scores", disable=not self.verbose): self.z_scores[c] = self.beta_hats[c] / self.se[c] return self.z_scores def compute_p_values(self, chrom=None, log10=False): if self.z_scores is None: raise Exception("Z-scores are needed to compute p-values!") if chrom is None: self.p_values = {} chroms = self.chromosomes else: if chrom not in self.chromosomes: raise KeyError("Chromosome is not valid!") if self.p_values is None: self.p_values = {} chroms = [chrom] for c in tqdm(chroms, desc="Computing p-values", disable=not self.verbose): self.p_values[c] = 2.*stats.norm.sf(abs(self.z_scores[c])) if log10: self.p_values[c] = np.log10(self.p_values[c]) return self.p_values def to_individual_table(self): if self._iid is None: raise Exception("Individual data is not provided!") return pd.DataFrame({ 'FID': self._fid, 'IID': self._iid }) def to_phenotype_table(self): if self.phenotypes is None: print("Warning: Phenotypes are not set! Exporting NaNs") pheno_df = self.to_individual_table() pheno_df['phenotype'] = self.phenotypes return pheno_df def to_snp_table(self, per_chromosome=False, col_subset=None): if col_subset is None: col_subset = ['CHR', 'SNP', 'POS', 'A1', 'A2', 'MAF', 'N', 'BETA', 'Z', 'SE', 'PVAL'] snp_tables = {} for c in self.chromosomes: ss_df =
pd.DataFrame({'SNP': self.snps[c], 'A1': self.alt_alleles[c]})
pandas.DataFrame
import datetime as dt import pandas as pd # TODO: Unit tests def compute_work_item_times(df: pd.DataFrame) -> pd.DataFrame: """ Takes a DataFrame with the ticket data and computes the start time, end time, duration and the duration_in_hours. :param df: As described above :return: As described above """ # We can't be sure that NAs were already renamed. Do it again just to be sure. df.from_phase.fillna('Start', inplace=True) df.to_phase.fillna('End', inplace=True) relevant_columns = ['work_item', 'timestamp'] start_times = df[df.from_phase == 'Start'][relevant_columns] end_times = df[df.to_phase == 'End'][relevant_columns] times = pd.merge(start_times, end_times, on='work_item', how='left') times.rename(columns={'timestamp_x': 'start', 'timestamp_y': 'end'}, inplace=True) times['duration'] = times['end'] - times['start'] times['duration_in_days'] = times['duration'].apply(lambda x: round(x.total_seconds() / (24*3600), 2)) return times def split_times(times: pd.DataFrame, sep_date_str: str) -> (pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame): """ Splits the times DataFrame into three different DataFrames - train: closed before the sep_date - test: closed after the sep_date and started before the sep_date - closed: tickets that are closed - open: tickets that arent't closed yet :param times: DataFrames containing the start and end times for each work items. :param sep_date_str: Separation date as string in the format DD.MM.YYYY :return: A tuple of (train, test, open) as defined above """ open_times = times[pd.isnull(times.duration)] closed_times = times[~
pd.isnull(times.duration)
pandas.isnull
from typing import List, Tuple import numpy as np from nptyping import NDArray from pandas import DataFrame from scipy.stats import expon from dlsys.model import DualSysyem def expon_equally_spaced(mean_interval: float, _min: float, n: int) -> NDArray[1, float]: intervals = expon.ppf( np.linspace(0.01, 0.99, n), scale=mean_interval, loc=_min) - _min return np.random.choice(intervals, size=len(intervals), replace=False) RowOfResult = Tuple[float, float] # gk, hk def variable_interval_schedule( agent: DualSysyem, intervals: NDArray[1, float]) -> Tuple[List[int], DataFrame]: # for yoked control response_since_reward = 0 required_responses: List[int] = [] row_of_result: List[RowOfResult] = [] for interval in intervals: response = False while interval > 0 or not response: p = agent.compute_response_probability() * STEP_SIZE response = agent.emit_response(p) interval -= STEP_SIZE response_since_reward += response if interval <= 0. and response: rpe = agent.compute_prediction_error(1.) required_responses.append(response_since_reward) response_since_reward = 0 elif response: rpe = agent.compute_prediction_error(0.) else: rpe = 0. agent.update_hkt(rpe) gk_hk = agent.step(STEP_SIZE) if gk_hk is not None: row_of_result.append(gk_hk) result = DataFrame(row_of_result, columns=["gk", "hk"]) return required_responses, result def variable_ratio_schedule(agent: DualSysyem, required_responses: List[int]) -> DataFrame: row_of_result: List[RowOfResult] = [] for required_response in required_responses: while required_response > 0: p = agent.compute_response_probability() * STEP_SIZE response = agent.emit_response(p) required_response -= response if required_response <= 0 and response: rpe = agent.compute_prediction_error(1.) elif response: rpe = agent.compute_prediction_error(0.) else: rpe = 0. agent.update_hkt(rpe) gk_hk = agent.step(STEP_SIZE) if gk_hk is not None: row_of_result.append(gk_hk) result =
DataFrame(row_of_result, columns=["gk", "hk"])
pandas.DataFrame
# SPDX-License-Identifier: Apache-2.0 import unittest import numbers from distutils.version import StrictVersion import numpy as np from numpy.testing import assert_almost_equal import pandas from onnxruntime import InferenceSession from sklearn.datasets import load_iris from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.preprocessing import Normalizer try: from sklearn.ensemble import StackingClassifier except ImportError: # New in 0.22 StackingClassifier = None from skl2onnx import update_registered_converter, convert_sklearn from skl2onnx.common.data_types import FloatTensorType from skl2onnx.common.shape_calculator import ( calculate_linear_classifier_output_shapes, # noqa calculate_linear_regressor_output_shapes) from skl2onnx._parse import _parse_sklearn_classifier from xgboost import XGBRegressor, XGBClassifier import onnxmltools from onnxmltools.convert.xgboost.operator_converters.XGBoost import ( convert_xgboost # noqa ) try: from test_utils import dump_single_regression except ImportError: import os import sys sys.path.append( os.path.join( os.path.dirname(__file__), "..", "tests")) from test_utils import dump_single_regression from test_utils import ( dump_multiple_classification, TARGET_OPSET, TARGET_OPSET_ML) class TestXGBoostModels(unittest.TestCase): @classmethod def setUpClass(self): def custom_parser(scope, model, inputs, custom_parsers=None): if custom_parsers is not None and model in custom_parsers: return custom_parsers[model]( scope, model, inputs, custom_parsers=custom_parsers) if not all(isinstance(i, (numbers.Real, bool, np.bool_)) for i in model.classes_): raise NotImplementedError( "Current converter does not support string labels.") return _parse_sklearn_classifier(scope, model, inputs) update_registered_converter( XGBClassifier, 'XGBClassifier', calculate_linear_classifier_output_shapes, convert_xgboost, parser=custom_parser, options={'zipmap': [True, False, 'columns'], 'nocl': [True, False]}) update_registered_converter( XGBRegressor, 'XGBRegressor', calculate_linear_regressor_output_shapes, convert_xgboost) @unittest.skipIf( StrictVersion(onnxmltools.__version__) < StrictVersion('1.11'), reason="converter for xgboost is too old") def test_xgb_regressor(self): iris = load_iris() X = iris.data[:, :2] y = iris.target xgb = XGBRegressor() xgb.fit(X, y) conv_model = convert_sklearn( xgb, initial_types=[ ('input', FloatTensorType(shape=[None, X.shape[1]]))], target_opset={'': TARGET_OPSET, 'ai.onnx.ml': TARGET_OPSET_ML}) self.assertTrue(conv_model is not None) dump_single_regression(xgb, suffix="-Dec4") def test_xgb_classifier(self): xgb = XGBClassifier(n_estimators=2, max_depth=2) iris = load_iris() X = iris.data[:, :2] y = iris.target y[y == 2] = 0 xgb.fit(X, y) conv_model = convert_sklearn( xgb, initial_types=[ ('input', FloatTensorType(shape=[None, X.shape[1]]))], options={id(xgb): {'zipmap': False}}, target_opset={'': TARGET_OPSET, 'ai.onnx.ml': TARGET_OPSET_ML}) sess = InferenceSession(conv_model.SerializeToString()) res = sess.run(None, {'input': X.astype(np.float32)}) assert_almost_equal(xgb.predict_proba(X), res[1]) assert_almost_equal(xgb.predict(X), res[0]) @unittest.skipIf( StrictVersion(onnxmltools.__version__) < StrictVersion('1.11'), reason="converter for xgboost is too old") def test_xgb_classifier_multi(self): iris = load_iris() X = iris.data[:, :2] y = iris.target xgb = XGBClassifier() xgb.fit(X, y) conv_model = convert_sklearn( xgb, initial_types=[ ('input', FloatTensorType(shape=[None, X.shape[1]]))], target_opset={'': TARGET_OPSET, 'ai.onnx.ml': TARGET_OPSET_ML}) self.assertTrue(conv_model is not None) dump_multiple_classification(xgb) @unittest.skipIf( StrictVersion(onnxmltools.__version__) < StrictVersion('1.11'), reason="converter for xgboost is too old") def test_xgb_classifier_multi_reglog(self): iris = load_iris() X = iris.data[:, :2] y = iris.target xgb = XGBClassifier(objective='reg:logistic') xgb.fit(X, y) conv_model = convert_sklearn( xgb, initial_types=[ ('input', FloatTensorType(shape=[None, X.shape[1]]))], target_opset={'': TARGET_OPSET, 'ai.onnx.ml': TARGET_OPSET_ML}) self.assertTrue(conv_model is not None) dump_multiple_classification(xgb, suffix="RegLog") def test_xgb_classifier_reglog(self): iris = load_iris() X = iris.data[:, :2] y = iris.target y[y == 2] = 0 xgb = XGBClassifier(objective='binary:logistic') xgb.fit(X, y) conv_model = convert_sklearn( xgb, initial_types=[ ('input', FloatTensorType(shape=[None, X.shape[1]]))], options={id(xgb): {'zipmap': False}}, target_opset={'': TARGET_OPSET, 'ai.onnx.ml': TARGET_OPSET_ML}) self.assertTrue(conv_model is not None) sess = InferenceSession(conv_model.SerializeToString()) res = sess.run(None, {'input': X.astype(np.float32)}) assert_almost_equal(xgb.predict_proba(X), res[1]) assert_almost_equal(xgb.predict(X), res[0]) @unittest.skipIf(StackingClassifier is None, reason="new in 0.22") def test_model_stacking_classifier_column_transformer(self): classifiers = { 'A': XGBClassifier(n_estimators=5, random_state=42), 'B': XGBClassifier(n_estimators=5, random_state=42) } model_to_test = Pipeline(steps=[ ('cbe', ColumnTransformer([ ("norm1", Normalizer(norm='l1'), [0, 1]), ("norm2", Normalizer(norm='l2'), [2, 3])])), ('sc', StackingClassifier( estimators=list(map(tuple, classifiers.items())), stack_method='predict_proba', passthrough=False )) ]) iris = load_iris() X = iris.data.astype(np.float32) y = (iris.target == 0).astype(np.int32) model_to_test.fit(X, y) model_onnx = convert_sklearn( model_to_test, "stacking classifier", [("input", FloatTensorType([None, X.shape[1]]))], target_opset={'': TARGET_OPSET, 'ai.onnx.ml': TARGET_OPSET_ML}, options={'zipmap': False}) sess = InferenceSession(model_onnx.SerializeToString()) res = sess.run(None, {'input': X.astype(np.float32)}) assert_almost_equal(model_to_test.predict_proba(X), res[1]) assert_almost_equal(model_to_test.predict(X), res[0]) @unittest.skipIf(StackingClassifier is None, reason="new in 0.22") def test_model_stacking_classifier_column_transformer_custom(self): classifiers = { 'A': XGBClassifier(n_estimators=5, random_state=42), 'B': XGBClassifier(n_estimators=5, random_state=42) } model_to_test = Pipeline(steps=[ ('cbe', ColumnTransformer([ ("norm1", Normalizer(norm='l1'), [0, 1]), ("norm2", Normalizer(norm='l2'), [2, 3])])), ('sc', StackingClassifier( estimators=list(map(tuple, classifiers.items())), stack_method='predict_proba', passthrough=False )) ]) iris = load_iris() X = iris.data.astype(np.float32) df =
pandas.DataFrame(X)
pandas.DataFrame
import streamlit as st import plotly.figure_factory as ff import numpy as np import pandas as pd import plotly.express as px #in this one I'm letting people see all of the items for a portal. So they pic that, the data is filtered #and then you get a chart with all of the items def comparebar(): # Add histogram data df =
pd.read_csv("https://raw.githubusercontent.com/tyrin/info-topo-dash/master/data/freshdata.csv")
pandas.read_csv
import os from typing import List, Dict, Callable, Tuple import pandas as pd from flowpipe import Graph, INode, Node, InputPlug, OutputPlug from insurance_claims.record_types import * # let's invent some kind of overhead that goes into processing the claim CLAIM_VALUE_PROCESSING_OVERHEAD_RATE = 0.05 # threshold to decide if claim is high or low value HIGH_VALUE_CLAIM_THRESHOLD = 60000 # claims below this value are considered simple SIMPLE_CLAIM_VALUE_THRESHOLD = 5000 # in reality sometimes the claims will be paid in full, and sometimes partially or not at all # to average this out let's just always pay out a certain partial amount # we assume simple claims will be paid out more often SIMPLE_CLAIMS_PAYOUT_RATE = 0.8 COMPLEX_CLAIMS_PAYOUT_RATE = 0.6 class Stream(INode): def __init__(self, **kwargs): super(Stream, self).__init__(**kwargs) self.data = [] def add_data(self, new_data: List, key: Callable=None) -> None: if key is None: self.data.extend(new_data) return data_as_dict = {key(x):x for x in self.data} for record in new_data: # this may sometimes override existing records # but that's intentional as we only want one record per key data_as_dict[key(record)] = record self.data = list(data_as_dict.values()) def get_data(self, drop=False): data_to_return = self.data[:] if drop: self.data = [] return data_to_return ############ input streams ############## class NewClaimsStream(Stream): def __init__(self, **kwargs): super(NewClaimsStream, self).__init__(**kwargs) OutputPlug('new_claims', self) def compute(self) -> Dict: return {'new_claims': self.data} ############ inner streams ############## class ClaimValueStream(Stream): def __init__(self, **kwargs): super(ClaimValueStream, self).__init__(**kwargs) InputPlug('claim_values', self) OutputPlug('claim_values', self) def compute(self, claim_values: List[ClaimValue]) -> Dict: self.add_data(claim_values, lambda x: x.claim_id) return {'claim_values': self.data} class HighValueClaimsStream(Stream): def __init__(self, **kwargs): super(HighValueClaimsStream, self).__init__(**kwargs) InputPlug('high_value_claims', self) OutputPlug('high_value_claims', self) def compute(self, high_value_claims: List[Dict]) -> Dict: self.add_data(high_value_claims, lambda x: x["claim_id"]) return {'high_value_claims': self.data} class LowValueClaimsStream(Stream): def __init__(self, **kwargs): super(LowValueClaimsStream, self).__init__(**kwargs) InputPlug('low_value_claims', self) OutputPlug('low_value_claims', self) def compute(self, low_value_claims: List[Dict]) -> Dict: self.add_data(low_value_claims, lambda x: x["claim_id"]) return {'low_value_claims': self.data} class SimpleClaimsStream(Stream): def __init__(self, **kwargs): super(SimpleClaimsStream, self).__init__(**kwargs) InputPlug('simple_claims', self) OutputPlug('simple_claims', self) def compute(self, simple_claims: List[Dict]) -> Dict: self.add_data(simple_claims, lambda x: x["claim_id"]) return {'simple_claims': self.data} class ComplexClaimsStream(Stream): def __init__(self, **kwargs): super(ComplexClaimsStream, self).__init__(**kwargs) InputPlug('high_value_claims', self) InputPlug('complex_claims', self) OutputPlug('complex_claims', self) def compute(self, high_value_claims: List[Dict], complex_claims: List[Dict]) -> Dict: self.add_data(high_value_claims, lambda x: x["claim_id"]) self.add_data(complex_claims, lambda x: x["claim_id"]) return {'complex_claims': self.data} ############ output streams ############## class ClaimPayoutStream(Stream): def __init__(self, **kwargs): super(ClaimPayoutStream, self).__init__(**kwargs) InputPlug('simple_claim_payouts', self) InputPlug('complex_claim_payouts', self) OutputPlug('claim_payouts', self) def compute(self, simple_claim_payouts: List[ClaimPayout], complex_claim_payouts: List[ClaimPayout]) -> Dict: self.add_data(simple_claim_payouts, lambda x: x.claim_id) self.add_data(complex_claim_payouts, lambda x: x.claim_id) return {'claim_payouts': self.data} ############ processing nodes ############## class CalculateClaimValue(INode): def __init__(self, **kwargs): super(CalculateClaimValue, self).__init__(**kwargs) InputPlug('claims', self) OutputPlug('claim_values', self) def compute(self, claims: List[Dict]) -> Dict: # claim value itself plus processing overhead calc_total_claim_value = lambda v: (1.0 + CLAIM_VALUE_PROCESSING_OVERHEAD_RATE) * v claim_values = [ClaimValue(claim_id=c["claim_id"], value=calc_total_claim_value(c["total_claim_amount"])) for c in claims] return {'claim_values': claim_values} class ClassifyClaimValue(INode): def __init__(self, **kwargs): super(ClassifyClaimValue, self).__init__(**kwargs) InputPlug('claims', self) InputPlug('claim_values', self) OutputPlug('high_value_claims', self) OutputPlug('low_value_claims', self) def compute(self, claims: List[Dict], claim_values: List[ClaimValue]) -> Dict: # these loops are twice as slow as they should be # because this filtering can be done in one iteration # but we won't be running crazy lots of data, so clarity first is ok # also this can be done with filter(), but i like generator syntax more high_value_claim_ids = [cv.claim_id for cv in claim_values if cv.value >= HIGH_VALUE_CLAIM_THRESHOLD] low_value_claim_ids = [cv.claim_id for cv in claim_values if cv.value < HIGH_VALUE_CLAIM_THRESHOLD] high_value_claims = [c for c in claims if c["claim_id"] in high_value_claim_ids] low_value_claims = [c for c in claims if c["claim_id"] in low_value_claim_ids] return {'high_value_claims': high_value_claims, 'low_value_claims': low_value_claims} class ClassifyClaimComplexity(INode): def __init__(self, **kwargs): super(ClassifyClaimComplexity, self).__init__(**kwargs) InputPlug('claims', self) OutputPlug('simple_claims', self) OutputPlug('complex_claims', self) def compute(self, claims: List[Dict]) -> Dict: # just some almost random logic here def is_claim_complex(claim): if claim["total_claim_amount"] <= SIMPLE_CLAIM_VALUE_THRESHOLD: # small claims are never complex return False if claim["auto_year"] < 2000: # old cars yield complex cases return True if claim["witnesses"] == 0 and claim["police_report_available"] != "YES": # no objective evidence of incident cause return True return False simple_claims = [c for c in claims if not is_claim_complex(c)] complex_claims = [c for c in claims if is_claim_complex(c)] return {'simple_claims': simple_claims, 'complex_claims': complex_claims} class CalculateSimpleClaimsPayout(INode): def __init__(self, **kwargs): super(CalculateSimpleClaimsPayout, self).__init__(**kwargs) InputPlug('simple_claims', self) OutputPlug('simple_claim_payouts', self) def compute(self, simple_claims: List[Dict]) -> Dict: simple_claim_payouts = [ClaimPayout(claim_id=c["claim_id"], payout=SIMPLE_CLAIMS_PAYOUT_RATE * c["total_claim_amount"]) for c in simple_claims] return {'simple_claim_payouts': simple_claim_payouts} class CalculateComplexClaimsPayout(INode): def __init__(self, **kwargs): super(CalculateComplexClaimsPayout, self).__init__(**kwargs) InputPlug('complex_claims', self) OutputPlug('complex_claim_payouts', self) def compute(self, complex_claims: List[Dict]) -> Dict: complex_claim_payouts = [ClaimPayout(claim_id=c["claim_id"], payout=COMPLEX_CLAIMS_PAYOUT_RATE * c["total_claim_amount"]) for c in complex_claims] return {'complex_claim_payouts': complex_claim_payouts} class App(): def __init__(self): self._build() def evaluate(self, save_dataset=False): self.graph.evaluate() if save_dataset: self._save_dataset() return self.get_outputs() def add_data(self, new_claims): self.new_claims_stream.add_data(new_claims, key=lambda x: x["claim_id"]) def get_outputs(self): return self.claim_payouts_stream.get_data() def _build(self) -> Graph: graph = Graph(name='InsuraceClaims') # input streams self.new_claims_stream = NewClaimsStream(graph=graph) # inner streams claim_values_stream = ClaimValueStream(graph=graph) high_value_claims_stream = HighValueClaimsStream(graph=graph) low_value_claims_stream = LowValueClaimsStream(graph=graph) simple_claims_stream = SimpleClaimsStream(graph=graph) complex_claims_stream = ComplexClaimsStream(graph=graph) # output streams self.claim_payouts_stream = ClaimPayoutStream(graph=graph) # processing nodes calculate_claim_value = CalculateClaimValue(graph=graph) classify_claim_value = ClassifyClaimValue(graph=graph) classify_claim_complexity = ClassifyClaimComplexity(graph=graph) calculate_simple_claim_payout = CalculateSimpleClaimsPayout(graph=graph) calculate_complex_claim_payout = CalculateComplexClaimsPayout(graph=graph) # wiring graph components self.new_claims_stream.outputs["new_claims"] >> calculate_claim_value.inputs["claims"] calculate_claim_value.outputs["claim_values"] >> claim_values_stream.inputs["claim_values"] self.new_claims_stream.outputs["new_claims"] >> classify_claim_value.inputs["claims"] claim_values_stream.outputs["claim_values"] >> classify_claim_value.inputs["claim_values"] classify_claim_value.outputs["low_value_claims"] >> low_value_claims_stream.inputs["low_value_claims"] classify_claim_value.outputs["high_value_claims"] >> high_value_claims_stream.inputs["high_value_claims"] high_value_claims_stream.outputs["high_value_claims"] >> complex_claims_stream.inputs["high_value_claims"] low_value_claims_stream.outputs["low_value_claims"] >> classify_claim_complexity.inputs["claims"] classify_claim_complexity.outputs["simple_claims"] >> simple_claims_stream.inputs["simple_claims"] classify_claim_complexity.outputs["complex_claims"] >> complex_claims_stream.inputs["complex_claims"] simple_claims_stream.outputs["simple_claims"] >> calculate_simple_claim_payout.inputs["simple_claims"] complex_claims_stream.outputs["complex_claims"] >> calculate_complex_claim_payout.inputs["complex_claims"] calculate_simple_claim_payout.outputs["simple_claim_payouts"] >> self.claim_payouts_stream.inputs["simple_claim_payouts"] calculate_complex_claim_payout.outputs["complex_claim_payouts"] >> self.claim_payouts_stream.inputs["complex_claim_payouts"] self.graph = graph def _save_dataset(self): nodes_to_collect = ["", "ComplexClaimsStream", "SimpleClaimsStream"] get_stream_node_data = \ lambda node_name: (next(node for node in self.graph.all_nodes if node.name == node_name)).get_data() new_claims = get_stream_node_data("NewClaimsStream") complex_claims = get_stream_node_data("ComplexClaimsStream") complex_claim_ids = [c["claim_id"] for c in complex_claims] simple_claims = get_stream_node_data("SimpleClaimsStream") simple_claim_ids = [c["claim_id"] for c in simple_claims] df =
pd.DataFrame.from_records(new_claims)
pandas.DataFrame.from_records
import plotly.express as px import plotly.graph_objects as go import pandas as pd import numpy as np from scipy import stats as sps from scipy.interpolate import interp1d from matplotlib import pyplot as plt from matplotlib.dates import date2num, num2date from matplotlib import dates as mdates from matplotlib import ticker from matplotlib.colors import ListedColormap from matplotlib.patches import Patch from PIL import Image def other_charts(st, casos_panama): st.title('Numero de Casos vs Pruebas Realizadas') casos_pty = casos_panama.copy() casos_pty['pctg'] = round(casos_pty.positivity_pctg*100, 1) casos_pty['month'] =
pd.to_datetime(casos_pty['date'], format='%Y-%m-%d')
pandas.to_datetime
from csv2clean import * from fuzzywuzzy import fuzz from tqdm import tqdm import pandas as pd import pickle import spacy nlp = spacy.load("fr_core_news_lg") #file_dir='../../data/Catalogue.csv' stop_loc=['Région', 'Métropole', 'Region', 'Metropole','Mer', 'mer', 'Département', 'DEPARTEMENT', 'Agglomération', 'agglomération','Communauté', 'communauté'] from joblib import Parallel, delayed id_table=list(np.load('../../data/id_table.npy', allow_pickle=True)) ########### departements=pd.read_csv('../../data/departement2019.csv') communes=
pd.read_csv('../../data/communes-01012019.csv')
pandas.read_csv
import abc import math import numpy as np import pandas as pd import tensorflow as tf from dataclasses import dataclass from pathlib import Path try: from emnist import extract_samples except ModuleNotFoundError: pass from sklearn.model_selection import train_test_split from sklearn.base import TransformerMixin from sklearn.preprocessing import MinMaxScaler from scipy.io import arff from typing import List, Callable, Union, Tuple from libs.DataTypes import AutoencoderLayers from utils import BASE_PATH @dataclass class DataLabels: """ Class storing test/train data """ # We'll put everything in the train data if no test data was given and split later x_train: np.ndarray # Train data y_train: np.ndarray x_test: np.ndarray = None # Test data y_test: np.ndarray = None x_val: np.ndarray = None # Validation data y_val: np.ndarray = None # If needed: a scaler scaler: TransformerMixin = None # Configuration test_split: float = .2 # Test data percentage val_split: float = .05 # Validation data percentage random_state: int = None # Random seed # Metadata shape: tuple = None # Shape of the data available_classes: Union[List[int], List[str]] = None # all available classes ## Class methods def __repr__(self): return self.__class__.__name__ ## Retrievers def get_target_autoencoder_data( self, data_split: str, drop_classes: Union[List[int], List[str]] = None, include_classes: Union[List[int], List[str]] = None ) -> Tuple[np.ndarray, np.ndarray]: """ Get data for useful for autoencoders :param data_split: get data of either "train", "val" or "test" :param drop_classes: which classes to drop, drop none if None :param include_classes: which classes to include (has priority over drop_classes) :return: features and labels """ # Get data this_data = self._get_data_set(data_split=data_split) # Drop the classes if include_classes: drop_classes = self.include_to_drop(include_classes) this_x = np.delete(this_data[0], np.where(np.isin(this_data[1], drop_classes)), axis=0) # For the autoencoder, we don't need much else than x return this_x, this_x def get_target_classifier_data( self, data_split: str, drop_classes: Union[List[int], List[str]] = None, include_classes: Union[List[int], List[str]] = None ) -> Tuple[np.ndarray, np.ndarray]: """ Get data for useful for classifiers :param data_split: get data of either "train", "val" or "test" :param drop_classes: which classes to drop, drop none if None :param include_classes: which classes to include (has priority over drop_classes) :return: features and labels """ # Get data this_data = self._get_data_set(data_split=data_split) # Drop the classes if include_classes: drop_classes = self.include_to_drop(include_classes) this_x = np.delete(this_data[0], np.where(np.isin(this_data[1], drop_classes)), axis=0) this_y = np.delete(this_data[1], np.where(np.isin(this_data[1], drop_classes)), axis=0) # Return the data return this_x, this_y def get_alarm_data( self, data_split: str, anomaly_classes: Union[List[int], List[str]], drop_classes: List[int] = None, include_classes: List[int] = None, n_anomaly_samples: int = None ) -> Tuple[np.ndarray, np.ndarray]: """ Get the labels for the alarm network, i.e. with binary anomaly labels :param data_split: get data of either "train", "val" or "test" :param anomaly_classes: classes marked as anomaly :param drop_classes: which classes to drop (none if None) :param include_classes: which classes to include (has priority over drop_classes) :param n_anomaly_samples: reduce the number of anomaly samples :return: features and labels """ # Get data this_data = self._get_data_set(data_split=data_split) # Drop the classes if include_classes: drop_classes = self.include_to_drop(include_classes) this_x = np.delete(this_data[0], np.where(np.isin(this_data[1], drop_classes)), axis=0) this_y = np.delete(this_data[1], np.where(np.isin(this_data[1], drop_classes)), axis=0) # Make labels binary this_y[np.where(~np.isin(this_y, anomaly_classes))] = -1 this_y[np.where(np.isin(this_y, anomaly_classes))] = 0 this_y += 1 this_y = this_y.astype("uint8") # If desired, reduce the number anomalous samples if n_anomaly_samples is not None: # IDs of all anomaly samples idx_anom = np.where(this_y == 1)[0] # Select the indices to delete n_delete = len(idx_anom) - n_anomaly_samples idx_delete = np.random.choice(idx_anom, size=n_delete, replace=False) # Delete indices this_x = np.delete(this_x, idx_delete, axis=0) this_y = np.delete(this_y, idx_delete, axis=0) # Check if we really have the right amount of anomaly samples assert np.sum(this_y) == n_anomaly_samples return this_x, this_y ## Preprocessors @abc.abstractmethod def _preprocess(self): # Preprocessing steps, e.g. data normalisation raise NotImplementedError("Implement in subclass") def __post_init__(self): """ Process the data :return: """ # Fix randomness np.random.seed(seed=self.random_state) # Get all available classes # TODO: we're only looking at the training data so far self.available_classes = np.unique(self.y_train).tolist() # Split in test and train if self.x_test is None: self.x_train, self.x_test, self.y_train, self.y_test = train_test_split( self.x_train, self.y_train, test_size=self.test_split, random_state=self.random_state ) # Split in train and validation if self.x_val is None: self.x_train, self.x_val, self.y_train, self.y_val = train_test_split( self.x_train, self.y_train, test_size=self.val_split, random_state=self.random_state ) # Preprocess self._preprocess() # Note down the shape self.shape = self.x_train.shape[1:] ## Helpers def include_to_drop(self, include_data: Union[List[int], List[str]]) -> Union[List[int], List[str]]: """ Convert a list of classes to include to a list of classes to drop :param include_data: classes to include :param all_classes: available classes :return: classes to drop """ drop_classes = set(self.available_classes) - set(include_data) return list(drop_classes) def _get_data_set(self, data_split: str) -> Tuple[np.ndarray, np.ndarray]: """ Get the right data split :param data_split: train, val or test data? :return: the right data set """ if data_split == "train": return self.x_train.copy(), self.y_train.copy() elif data_split == "test": return self.x_test.copy(), self.y_test.copy() elif data_split == "val": return self.x_val.copy(), self.y_val.copy() else: raise ValueError("The requested data must be of either train, val or test set.") @staticmethod def _ae_feature_selector(selected_layers: List[AutoencoderLayers], n_hidden: int) -> List[int]: """ Index of features based on their name representation for symmetric autoencoders :param selected_layers: list of names for the desired layers :param n_hidden: number of hidden states :return: list of indices where to find the desired layers """ # If nothing was specified, we'll assume that all features are meant if not selected_layers: return list(range(n_hidden)) # If already numbers were given, use them if isinstance(selected_layers[0], int): return selected_layers # 0-indexed list are used n_hidden -= 1 # We assume symmetric autoencoders, such that the code is in the middle i_code = math.floor(n_hidden / 2) # Life is easier with a translation dictionary trans_dict = { AutoencoderLayers.OUTPUT: [n_hidden], AutoencoderLayers.CODE: [i_code], AutoencoderLayers.ENCODER: list(range(i_code)), AutoencoderLayers.DECODER: list(range(i_code + 1, n_hidden)), } # We'll replace the selected lists by their index values a concatenate them index_list = [trans_dict[cur_el] for cur_el in selected_layers] index_list = [cur_el for cur_list in index_list for cur_el in cur_list] return sorted(index_list) def scikit_scale(self, scikit_scaler: Callable[[], TransformerMixin] = MinMaxScaler): """ Apply a scikit scaler to the data, e.g. MinMaxScaler transform data to [0,1] :return: """ # Fit scaler to train set self.scaler = scikit_scaler() self.x_train = self.scaler.fit_transform(self.x_train) # Scale the rest self.x_val = self.scaler.transform(self.x_val) self.x_test = self.scaler.transform(self.x_test) pass class MNIST(DataLabels): def __init__(self, enrich_mnist_by=None, enrich_test_by=None, *args, **kwargs): """ Load the MNIST data set """ # Simply load the data with the kind help of Keras (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() # Add channel dimension to the data x_train = np.expand_dims(x_train, -1) x_test = np.expand_dims(x_test, -1) # If desired, add new samples from EMNIST to MNIST if enrich_mnist_by: # load both, train and test data set from EMNIST emnist_x_train, emnist_y_train = extract_samples('letters', 'train') emnist_x_test, emnist_y_test = extract_samples('letters', 'test') # Add channel dimension to emnist data emnist_x_train = np.expand_dims(emnist_x_train, -1) emnist_x_test = np.expand_dims(emnist_x_test, -1) # choose the desired letters from emnist and translate numerical lables to letters idx_train = [] idx_test = [] enrich_mnist_by = [i-9 for i in enrich_mnist_by] for i in range(len(enrich_mnist_by)): # get locations/indices of desired letters idx_train.append(np.where(emnist_y_train == list(enrich_mnist_by)[i])) idx_test.append(np.where(emnist_y_test == list(enrich_mnist_by)[i])) idx_train = np.asarray(idx_train).flatten() emnist_x_train = emnist_x_train[idx_train] emnist_y_train = emnist_y_train[idx_train]+9 idx_test = np.asarray(idx_test).flatten() emnist_x_test = emnist_x_test[idx_test] emnist_y_test = emnist_y_test[idx_test]+9 # concatenate mnist train set and emnist train dataset y_train = np.append(y_train, emnist_y_train) x_train = np.concatenate((x_train, emnist_x_train), axis=0) # concatenate mnist test set and emnist test dataset y_test = np.append(y_test, emnist_y_test) x_test = np.concatenate((x_test, emnist_x_test), axis=0) super(MNIST, self).__init__( x_train=x_train, y_train=y_train, x_test=x_test, y_test=y_test, *args, **kwargs ) def _preprocess(self): """ For MNIST, we can scale everything by just dividing by 255 :return: """ self.x_train = self.x_train / 255. self.x_test = self.x_test / 255. self.x_val = self.x_val / 255. class EMNIST(DataLabels): def __init__(self, anom_list, *args, **kwargs): """ Load the MNIST data set """ # load MNIST letters using emnist package data, labels = extract_samples('letters', 'train') # Add channel dimension to the data data = np.expand_dims(data, -1) # take anom_list as anomalies and delete other values and map to one value idx = np.where((labels >= anom_list[0]) & (labels <= anom_list[len(anom_list) - 1])) data = data[idx] labels = labels[idx] labels.fill(10) # load mnist digit dataset (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() # Add channel dimension to the data x_train = np.expand_dims(x_train, -1) x_test = np.expand_dims(x_test, -1) # concatenate mnist and emnist dataset dat = np.concatenate((data, x_train, x_test), axis=0) label = np.concatenate((labels, y_train, y_test), axis=0) super(EMNIST, self).__init__(x_train=dat, y_train=label, *args, **kwargs) def _preprocess(self): """ For MNIST, we can scale everything by just dividing by 255 :return: """ self.x_train = self.x_train / 255. self.x_test = self.x_test / 255. self.x_val = self.x_val / 255. class CreditCard(DataLabels): def __init__( self, data_path: Path = (BASE_PATH / "data" / "creditcard" / "creditcard").with_suffix(".csv"), *args, **kwargs ): """ Load the CreditCard data set (https://www.kaggle.com/mlg-ulb/creditcardfraud) :param data_path: absolute path to the CreditCard csv """ data = pd.read_csv(data_path) # Time axis does not directly add information (although frequency might be a feature) data = data.drop(['Time'], axis=1) # Column class has the anomaly values, the rest is data x_train = data.drop(['Class'], axis=1) y_train = data.loc[:, ['Class']] # We don't need the overhead of pandas here x_train = x_train.to_numpy() y_train = y_train.to_numpy() # TODO: why is this even in here? # for i in range(len(y_train)): # y_train[i, 0] = y_train[i, 0].replace("\'", "") super(CreditCard, self).__init__( x_train=x_train, y_train=y_train, *args, **kwargs ) def _preprocess(self): """ Standardscale the data :return: """ self.y_test = self.y_test.astype(np.int) self.y_train = self.y_train.astype(np.int) self.y_val = self.y_val.astype(np.int) self.scikit_scale() def _drop_class(self): """ Drop frauds (Class==1) """ # Delete from training data if we train the autoencoder if not self.is_alarm: self.x_train = np.delete(self.x_train, np.where(self.y_train == self.drop_num), axis=0) self.y_train = np.delete(self.y_train, np.where(self.y_train == self.drop_num), axis=0) # We should also drop it from the validation data, such that we only optimise on reconstruction valid data self.x_val = np.delete(self.x_val, np.where(self.y_val == self.drop_num), axis=0) self.y_val = np.delete(self.y_val, np.where(self.y_val == self.drop_num), axis=0) # Rewrite train labels -> not necessary for this data set if not self.is_binary: raise NotImplementedError("This data set only has binary labels") class NSL_KDD(DataLabels): def __init__(self, data_folder: str = "NSL-KDD", *args, **kwargs): """ NSL KDD data set: https://www.unb.ca/cic/datasets/nsl.html :param data_folder: subfolder of "data" where raw data resides """ # Open raw data common_path = BASE_PATH / "data" / data_folder train_data = arff.loadarff((common_path / "KDDTrain+").with_suffix(".arff")) test_data = arff.loadarff((common_path / "KDDTest+").with_suffix(".arff")) # Extract column names all_cols = [cur_key for cur_key in test_data[1]._attributes.keys()] all_cat = { cur_key: cur_val.range for cur_key, cur_val in test_data[1]._attributes.items() if cur_val.range is not None } # Create pandas dataframe train_data = pd.DataFrame(data=train_data[0], columns=all_cols) test_data = pd.DataFrame(data=test_data[0], columns=all_cols) # Mark respective columns as categorical for cur_key, cur_val in all_cat.items(): # We need to decode the byte strings first test_data[cur_key] = pd.Categorical( test_data[cur_key].str.decode('UTF-8'), categories=cur_val, ordered=False ) train_data[cur_key] = pd.Categorical( train_data[cur_key].str.decode('UTF-8'), categories=cur_val, ordered=False ) # For whatever reason, the anomaly labels are only in the .txt files... load them separately train_labels = pd.read_csv((common_path / "KDDTrain+").with_suffix(".txt"), header=None) train_labels = train_labels.iloc[:, -2].astype("category") train_labels = train_labels.map(self._attack_map()) # NOTE: train_labels categories might not be mapped to the same number as in test_labels -> index by name test_labels = pd.read_csv((common_path / "KDDTest+").with_suffix(".txt"), header=None) test_labels = test_labels.iloc[:, -2].astype("category") test_labels = test_labels.map(self._attack_map()) # Drop the class labels from the original data train_data = train_data.drop(columns="class") test_data = test_data.drop(columns="class") # Finally, 1-Hot encode the categorical data train_data = pd.get_dummies(train_data) test_data =
pd.get_dummies(test_data)
pandas.get_dummies
import numpy as np import pandas as pd from collections import defaultdict import datetime import math import os.path from sklearn.preprocessing import StandardScaler def feature_engineering(feature): # confirmed, death, confirmed_diff, death_diff, confirmed_square, death_square diff = [0 for _ in range(12)] squared = [0 for _ in range(14)] for idx in range(2): for i in range(1, 7): diff[idx * 6 + i - 1] = feature[idx * 7 + i] - feature[idx * 7 + i - 1] feature.extend(diff) for i in range(14): squared[i] = feature[i] * feature[i] feature.extend(squared) return feature class PreprocessForNN(object): def __init__(self): self.deathData = None self.confirmedData = None self.features = [] self.icu_beds = defaultdict(int) self.staffed_beds = defaultdict(int) self.licensed_beds = defaultdict(int) self.total_population = defaultdict(int) self.population_over_sixty = defaultdict(int) self.policies = defaultdict(lambda: [0 for _ in range(8)]) self.scaler_feature = StandardScaler() self.scaler_label = StandardScaler() self.valid_FIPS = set() self.upper = 50.0 self.mid = 10.0 self.lower = 1.0 def load_policies(self): ''' dict[key][0] = stay at home dict[key][1] = >50 gathering dict[key][2] = >500 gathering dict[key][3] = public schools dict[key][4] = restaurant dine-in dict[key][5] = entertainment/gym dict[key][6] = federal guidelines dict[key][7] = foreign travel ban ''' policy = pd.read_csv(filepath_or_buffer='data/us/other/policies.csv') label_names = ['stay at home', '>50 gatherings', '>500 gatherings', 'public schools', 'restaurant dine-in', 'entertainment/gym'] mean_times = [0 for _ in range(len(label_names))] ranges = [0 for _ in range(len(label_names))] min_times = [0 for _ in range(len(label_names))] for idx, label in enumerate(label_names): times = policy[label].values[~np.isnan(policy[label])] mean_times[idx] = np.mean(times) ranges[idx] = max(1, np.max(times) - np.min(times)) min_times[idx] = np.min(times) for item in policy.iterrows(): fips = item[1]['FIPS'] for idx, label in enumerate(label_names): if not math.isnan(item[1][label]): scaled = 1 - (item[1][label] - min_times[idx]) / ranges[idx] self.policies[fips][idx] = scaled def load_data(self): self.load_beds_dict() self.load_population_dict() self.load_policies() def fetch_none_zero_data(self): last_date = self.deathData.columns[-1] countyNoneZero = self.deathData.loc[self.deathData[last_date] != 0] countyNoneZero.reset_index(drop=True) self.valid_FIPS = set(self.deathData['countyFIPS']) self.deathData = countyNoneZero keep_flag = [] for FIPS in self.confirmedData['countyFIPS']: keep_flag.append(int(FIPS) in self.valid_FIPS) self.confimedData = self.confirmedData.loc[keep_flag, :] @staticmethod def add_window(FIPS, death_list, confirmed_list, mode): window_size_7 = 7 window_size_14 = 14 count = len(death_list) - window_size_7 - window_size_14 + 1 output = [] FIPS_list = [] label_list = [] feature_list = [] if mode == 'train': for i in range(count): feature = confirmed_list[i:i+window_size_7] + death_list[i:i+window_size_7] feature = feature_engineering(feature) label = death_list[i+window_size_7:i+window_size_7+window_size_14] if sum(label) == 0: continue FIPS_list.append(FIPS) label_list.append(label) feature_list.append(feature) dict = {'FIPS': FIPS_list, 'label': label_list, 'feature': feature_list} else: feature = confirmed_list[-window_size_7:] + death_list[-window_size_7:] feature = feature_engineering(feature) FIPS_list.append(FIPS) feature_list.append(feature) dict = {'FIPS': FIPS_list, 'feature': feature_list} output =
pd.DataFrame(dict)
pandas.DataFrame
import os import sys import time import sqlite3 import pyupbit import pandas as pd from PyQt5.QtCore import QThread from pyupbit import WebSocketManager sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from utility.setting import * from utility.static import now, timedelta_sec, strf_time, timedelta_hour, strp_time class TraderUpbit(QThread): def __init__(self, windowQ, coinQ, queryQ, soundQ, cstgQ, teleQ): super().__init__() self.windowQ = windowQ self.coinQ = coinQ self.queryQ = queryQ self.soundQ = soundQ self.cstgQ = cstgQ self.teleQ = teleQ self.upbit = None # 매도수 주문 및 체결 확인용 객체 self.buy_uuid = None # 매수 주문 저장용 list: [티커명, uuid] self.sell_uuid = None # 매도 주문 저장용 list: [티커명, uuid] self.websocketQ = None # 실시간데이터 수신용 웹소켓큐 self.df_cj =
pd.DataFrame(columns=columns_cj)
pandas.DataFrame
import os import re import shlex import numpy as np import pandas as pd from scipy.io import mmread, mmwrite from scipy.sparse import csr_matrix import tempfile import subprocess from typing import List, Dict, Tuple, Union import logging logger = logging.getLogger(__name__) from pegasusio import UnimodalData, CITESeqData, MultimodalData def _enumerate_files(path: str, parts: List[str], repl_list1: List[str], repl_list2: List[str] = None) -> str: """ Enumerate all possible file names """ if len(parts) <= 2: for token in repl_list1: parts[-1] = token candidate = os.path.join(path, ''.join(parts)) if os.path.isfile(candidate): return candidate else: assert len(parts) == 4 for p2 in repl_list1: parts[1] = p2 for p4 in repl_list2: parts[3] = p4 candidate = os.path.join(path, ''.join(parts)) if os.path.isfile(candidate): return candidate return None def _locate_barcode_and_feature_files(path: str, fname: str) -> Tuple[str, str]: """ Locate barcode and feature files (with path) based on mtx file name (no suffix) """ barcode_file = feature_file = None if fname == "matrix": barcode_file = _enumerate_files(path, [''], ["cells.tsv.gz", "cells.tsv", "barcodes.tsv.gz", "barcodes.tsv"]) feature_file = _enumerate_files(path, [''], ["genes.tsv.gz", "genes.tsv", "features.tsv.gz", "features.tsv"]) else: p1, p2, p3 = fname.partition("matrix") if p2 == '' and p3 == '': barcode_file = _enumerate_files(path, [p1, ''], [".barcodes.tsv.gz", ".barcodes.tsv", ".cells.tsv.gz", ".cells.tsv", "_barcode.tsv", ".barcodes.txt"]) feature_file = _enumerate_files(path, [p1, ''], [".genes.tsv.gz", ".genes.tsv", ".features.tsv.gz", ".features.tsv", "_gene.tsv", ".genes.txt"]) else: barcode_file = _enumerate_files(path, [p1, '', p3, ''], ["barcodes", "cells"], [".tsv.gz", ".tsv"]) feature_file = _enumerate_files(path, [p1, '', p3, ''], ["genes", "features"], [".tsv.gz", ".tsv"]) if barcode_file is None: raise ValueError("Cannot find barcode file!") if feature_file is None: raise ValueError("Cannot find feature file!") return barcode_file, feature_file def _load_barcode_metadata(barcode_file: str, sep: str = "\t") -> Tuple[pd.DataFrame, str]: """ Load cell barcode information """ format_type = None barcode_metadata =
pd.read_csv(barcode_file, sep=sep, header=None)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # In[1]: import requests import json import pandas as pd url = "https://glyconnect.expasy.org/api/glycosylations" # In[2]: ## send the correct params to query the api params = {'taxonomy':'Severe acute respiratory syndrome coronavirus 2 (2019-nCoV)', 'protein': 'Recombinant Spike glycoprotein (HEK293) - DRAFT DATA'} # Severe acute respiratory syndrome coronavirus2 (2019-nCoV)&protein=Recombinant Spike glycoprotein (HEK293) response = requests.get(url ,params=params) # In[3]: my_response = response.json() df_dump = pd.DataFrame() for r in range(len(my_response['results'])): df_results_uniprots = pd.DataFrame(my_response['results'][r]['protein']['uniprots'],index=[r]) df_results_site = pd.DataFrame(my_response['results'][r]['site'],index=[r]) df_results_composition = pd.DataFrame(my_response['results'][r]["composition"],index=[r]) df_temp = pd.concat([df_results_composition,df_results_site, df_results_uniprots], sort=False, axis=1) df_dump = pd.concat([df_dump,df_temp],sort=True,axis=0) df_dump.drop_duplicates(inplace=True) # In[4]: df_dump.to_csv("../data/HEK293_glycosilations_COVID19.csv",index=False) # In[5]: ## params for the second protein params = {'taxonomy':'Severe acute respiratory syndrome coronavirus 2 (2019-nCoV)', 'protein': "Recombinant Spike glycoprotein (BTI-Tn-5B1-4) - DRAFT DATA"} response = requests.get(url ,params=params) my_response = response.json() # In[6]: df_dump = pd.DataFrame() for r in range(len(my_response['results'])): df_results_uniprots = pd.DataFrame(my_response['results'][r]['protein']['uniprots'],index=[r]) df_results_site = pd.DataFrame(my_response['results'][r]['site'],index=[r]) df_results_composition = pd.DataFrame(my_response['results'][r]["composition"],index=[r]) df_temp = pd.concat([df_results_composition,df_results_site, df_results_uniprots], sort=False, axis=1) df_dump =
pd.concat([df_dump,df_temp],sort=True,axis=0)
pandas.concat
from unittest import TestCase import numpy as np import pandas as pd import pyarrow as pa import pytest from datasets.formatting import NumpyFormatter, PandasFormatter, PythonFormatter, query_table from datasets.formatting.formatting import NumpyArrowExtractor, PandasArrowExtractor, PythonArrowExtractor from datasets.table import InMemoryTable from .utils import require_tf, require_torch _COL_A = [0, 1, 2] _COL_B = ["foo", "bar", "foobar"] _COL_C = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]] _INDICES = [1, 0] class ArrowExtractorTest(TestCase): def _create_dummy_table(self): return pa.Table.from_pydict({"a": _COL_A, "b": _COL_B, "c": _COL_C}) def test_python_extractor(self): pa_table = self._create_dummy_table() extractor = PythonArrowExtractor() row = extractor.extract_row(pa_table) self.assertEqual(row, {"a": _COL_A[0], "b": _COL_B[0], "c": _COL_C[0]}) col = extractor.extract_column(pa_table) self.assertEqual(col, _COL_A) batch = extractor.extract_batch(pa_table) self.assertEqual(batch, {"a": _COL_A, "b": _COL_B, "c": _COL_C}) def test_numpy_extractor(self): pa_table = self._create_dummy_table() extractor = NumpyArrowExtractor() row = extractor.extract_row(pa_table) np.testing.assert_equal(row, {"a": _COL_A[0], "b": _COL_B[0], "c": np.array(_COL_C[0])}) col = extractor.extract_column(pa_table) np.testing.assert_equal(col, np.array(_COL_A)) batch = extractor.extract_batch(pa_table) np.testing.assert_equal(batch, {"a": np.array(_COL_A), "b": np.array(_COL_B), "c": np.array(_COL_C)}) def test_numpy_extractor_np_array_kwargs(self): pa_table = self._create_dummy_table().drop(["b"]) extractor = NumpyArrowExtractor(dtype=np.float16) row = extractor.extract_row(pa_table) self.assertEqual(row["c"].dtype, np.dtype(np.float16)) col = extractor.extract_column(pa_table) self.assertEqual(col.dtype, np.float16) batch = extractor.extract_batch(pa_table) self.assertEqual(batch["a"].dtype, np.dtype(np.float16)) self.assertEqual(batch["c"].dtype, np.dtype(np.float16)) def test_pandas_extractor(self): pa_table = self._create_dummy_table() extractor = PandasArrowExtractor() row = extractor.extract_row(pa_table) self.assertIsInstance(row, pd.DataFrame) pd.testing.assert_series_equal(row["a"], pd.Series(_COL_A, name="a")[:1]) pd.testing.assert_series_equal(row["b"], pd.Series(_COL_B, name="b")[:1]) pd.testing.assert_series_equal(row["c"], pd.Series(_COL_C, name="c")[:1]) col = extractor.extract_column(pa_table) pd.testing.assert_series_equal(col, pd.Series(_COL_A, name="a")) batch = extractor.extract_batch(pa_table) self.assertIsInstance(batch, pd.DataFrame) pd.testing.assert_series_equal(batch["a"], pd.Series(_COL_A, name="a")) pd.testing.assert_series_equal(batch["b"], pd.Series(_COL_B, name="b")) pd.testing.assert_series_equal(batch["c"], pd.Series(_COL_C, name="c")) class FormatterTest(TestCase): def _create_dummy_table(self): return pa.Table.from_pydict({"a": _COL_A, "b": _COL_B, "c": _COL_C}) def test_python_formatter(self): pa_table = self._create_dummy_table() formatter = PythonFormatter() row = formatter.format_row(pa_table) self.assertEqual(row, {"a": _COL_A[0], "b": _COL_B[0], "c": _COL_C[0]}) col = formatter.format_column(pa_table) self.assertEqual(col, _COL_A) batch = formatter.format_batch(pa_table) self.assertEqual(batch, {"a": _COL_A, "b": _COL_B, "c": _COL_C}) def test_numpy_formatter(self): pa_table = self._create_dummy_table() formatter = NumpyFormatter() row = formatter.format_row(pa_table) np.testing.assert_equal(row, {"a": _COL_A[0], "b": _COL_B[0], "c": np.array(_COL_C[0])}) col = formatter.format_column(pa_table) np.testing.assert_equal(col, np.array(_COL_A)) batch = formatter.format_batch(pa_table) np.testing.assert_equal(batch, {"a": np.array(_COL_A), "b": np.array(_COL_B), "c": np.array(_COL_C)}) def test_numpy_formatter_np_array_kwargs(self): pa_table = self._create_dummy_table().drop(["b"]) formatter = NumpyFormatter(dtype=np.float16) row = formatter.format_row(pa_table) self.assertEqual(row["c"].dtype, np.dtype(np.float16)) col = formatter.format_column(pa_table) self.assertEqual(col.dtype, np.float16) batch = formatter.format_batch(pa_table) self.assertEqual(batch["a"].dtype, np.dtype(np.float16)) self.assertEqual(batch["c"].dtype, np.dtype(np.float16)) def test_pandas_formatter(self): pa_table = self._create_dummy_table() formatter = PandasFormatter() row = formatter.format_row(pa_table) self.assertIsInstance(row, pd.DataFrame) pd.testing.assert_series_equal(row["a"], pd.Series(_COL_A, name="a")[:1]) pd.testing.assert_series_equal(row["b"],
pd.Series(_COL_B, name="b")
pandas.Series
import datetime from datetime import timedelta from distutils.version import LooseVersion from io import BytesIO import os import re from warnings import catch_warnings, simplefilter import numpy as np import pytest from pandas.compat import is_platform_little_endian, is_platform_windows import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_categorical_dtype import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, Int64Index, MultiIndex, RangeIndex, Series, Timestamp, bdate_range, concat, date_range, isna, timedelta_range, ) from pandas.tests.io.pytables.common import ( _maybe_remove, create_tempfile, ensure_clean_path, ensure_clean_store, safe_close, safe_remove, tables, ) import pandas.util.testing as tm from pandas.io.pytables import ( ClosedFileError, HDFStore, PossibleDataLossError, Term, read_hdf, ) from pandas.io import pytables as pytables # noqa: E402 isort:skip from pandas.io.pytables import TableIterator # noqa: E402 isort:skip _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) @pytest.mark.single class TestHDFStore: def test_format_kwarg_in_constructor(self, setup_path): # GH 13291 with ensure_clean_path(setup_path) as path: with pytest.raises(ValueError): HDFStore(path, format="table") def test_context(self, setup_path): path = create_tempfile(setup_path) try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass finally: safe_remove(path) try: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() with HDFStore(path) as tbl: assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame finally: safe_remove(path) def test_conv_read_write(self, setup_path): path = create_tempfile(setup_path) try: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() tm.assert_series_equal(o, roundtrip("series", o)) o = tm.makeStringSeries() tm.assert_series_equal(o, roundtrip("string_series", o)) o = tm.makeDataFrame() tm.assert_frame_equal(o, roundtrip("frame", o)) # table df = DataFrame(dict(A=range(5), B=range(5))) df.to_hdf(path, "table", append=True) result = read_hdf(path, "table", where=["index>2"]) tm.assert_frame_equal(df[df.index > 2], result) finally: safe_remove(path) def test_long_strings(self, setup_path): # GH6166 df = DataFrame( {"a": tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10) ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["a"]) result = store.select("df") tm.assert_frame_equal(df, result) def test_api(self, setup_path): # GH4584 # API issue when to_hdf doesn't accept append AND format args with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True) df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True) tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", append=False, format="fixed") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False, format="f") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False) tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_store(setup_path) as store: path = store._path df = tm.makeDataFrame() _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=True, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # append to False _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # formats _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format=None) tm.assert_frame_equal(store.select("df"), df) with ensure_clean_path(setup_path) as path: # Invalid. df = tm.makeDataFrame() with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="f") with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="fixed") with pytest.raises(TypeError): df.to_hdf(path, "df", append=True, format="foo") with pytest.raises(TypeError): df.to_hdf(path, "df", append=False, format="bar") # File path doesn't exist path = "" with pytest.raises(FileNotFoundError): read_hdf(path, "df") def test_api_default_format(self, setup_path): # default_format option with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") _maybe_remove(store, "df") store.put("df", df) assert not store.get_storer("df").is_table with pytest.raises(ValueError): store.append("df2", df) pd.set_option("io.hdf.default_format", "table") _maybe_remove(store, "df") store.put("df", df) assert store.get_storer("df").is_table _maybe_remove(store, "df2") store.append("df2", df) assert store.get_storer("df").is_table pd.set_option("io.hdf.default_format", None) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") df.to_hdf(path, "df") with HDFStore(path) as store: assert not store.get_storer("df").is_table with pytest.raises(ValueError): df.to_hdf(path, "df2", append=True) pd.set_option("io.hdf.default_format", "table") df.to_hdf(path, "df3") with HDFStore(path) as store: assert store.get_storer("df3").is_table df.to_hdf(path, "df4", append=True) with HDFStore(path) as store: assert store.get_storer("df4").is_table pd.set_option("io.hdf.default_format", None) def test_keys(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() assert len(store) == 3 expected = {"/a", "/b", "/c"} assert set(store.keys()) == expected assert set(store) == expected def test_keys_ignore_hdf_softlink(self, setup_path): # GH 20523 # Puts a softlink into HDF file and rereads with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A=range(5), B=range(5))) store.put("df", df) assert store.keys() == ["/df"] store._handle.create_soft_link(store._handle.root, "symlink", "df") # Should ignore the softlink assert store.keys() == ["/df"] def test_iter_empty(self, setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(self, setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @ignore_natural_naming_warning def test_contains(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] = tm.makeDataFrame() assert "node())" in store def test_versioning(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) assert store.root.a._v_attrs.pandas_version == "0.15.2" assert store.root.b._v_attrs.pandas_version == "0.15.2" assert store.root.df1._v_attrs.pandas_version == "0.15.2" # write a file and wipe its versioning _maybe_remove(store, "df2") store.append("df2", df) # this is an error because its table_type is appendable, but no # version info store.get_node("df2")._v_attrs.pandas_version = None with pytest.raises(Exception): store.select("df2") def test_mode(self, setup_path): df = tm.makeTimeDataFrame() def check(mode): with ensure_clean_path(setup_path) as path: # constructor if mode in ["r", "r+"]: with pytest.raises(IOError): HDFStore(path, mode=mode) else: store = HDFStore(path, mode=mode) assert store._handle.mode == mode store.close() with ensure_clean_path(setup_path) as path: # context if mode in ["r", "r+"]: with pytest.raises(IOError): with HDFStore(path, mode=mode) as store: # noqa pass else: with HDFStore(path, mode=mode) as store: assert store._handle.mode == mode with ensure_clean_path(setup_path) as path: # conv write if mode in ["r", "r+"]: with pytest.raises(IOError): df.to_hdf(path, "df", mode=mode) df.to_hdf(path, "df", mode="w") else: df.to_hdf(path, "df", mode=mode) # conv read if mode in ["w"]: with pytest.raises(ValueError): read_hdf(path, "df", mode=mode) else: result = read_hdf(path, "df", mode=mode) tm.assert_frame_equal(result, df) def check_default_mode(): # read_hdf uses default mode with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", mode="w") result = read_hdf(path, "df") tm.assert_frame_equal(result, df) check("r") check("r+") check("a") check("w") check_default_mode() def test_reopen_handle(self, setup_path): with ensure_clean_path(setup_path) as path: store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # invalid mode change with pytest.raises(PossibleDataLossError): store.open("w") store.close() assert not store.is_open # truncation ok here store.open("w") assert store.is_open assert len(store) == 0 store.close() assert not store.is_open store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # reopen as read store.open("r") assert store.is_open assert len(store) == 1 assert store._mode == "r" store.close() assert not store.is_open # reopen as append store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open # reopen as append (again) store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open def test_open_args(self, setup_path): with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() # create an in memory store store = HDFStore( path, mode="a", driver="H5FD_CORE", driver_core_backing_store=0 ) store["df"] = df store.append("df2", df) tm.assert_frame_equal(store["df"], df) tm.assert_frame_equal(store["df2"], df) store.close() # the file should not have actually been written assert not os.path.exists(path) def test_flush(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store.flush() store.flush(fsync=True) def test_get(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() left = store.get("a") right = store["a"] tm.assert_series_equal(left, right) left = store.get("/a") right = store["/a"] tm.assert_series_equal(left, right) with pytest.raises(KeyError, match="'No object named b in the file'"): store.get("b") @pytest.mark.parametrize( "where, expected", [ ( "/", { "": ({"first_group", "second_group"}, set()), "/first_group": (set(), {"df1", "df2"}), "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ( "/second_group", { "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ], ) def test_walk(self, where, expected, setup_path): # GH10143 objs = { "df1": pd.DataFrame([1, 2, 3]), "df2": pd.DataFrame([4, 5, 6]), "df3": pd.DataFrame([6, 7, 8]), "df4": pd.DataFrame([9, 10, 11]), "s1": pd.Series([10, 9, 8]), # Next 3 items aren't pandas objects and should be ignored "a1": np.array([[1, 2, 3], [4, 5, 6]]), "tb1": np.array([(1, 2, 3), (4, 5, 6)], dtype="i,i,i"), "tb2": np.array([(7, 8, 9), (10, 11, 12)], dtype="i,i,i"), } with ensure_clean_store("walk_groups.hdf", mode="w") as store: store.put("/first_group/df1", objs["df1"]) store.put("/first_group/df2", objs["df2"]) store.put("/second_group/df3", objs["df3"]) store.put("/second_group/s1", objs["s1"]) store.put("/second_group/third_group/df4", objs["df4"]) # Create non-pandas objects store._handle.create_array("/first_group", "a1", objs["a1"]) store._handle.create_table("/first_group", "tb1", obj=objs["tb1"]) store._handle.create_table("/second_group", "tb2", obj=objs["tb2"]) assert len(list(store.walk(where=where))) == len(expected) for path, groups, leaves in store.walk(where=where): assert path in expected expected_groups, expected_frames = expected[path] assert expected_groups == set(groups) assert expected_frames == set(leaves) for leaf in leaves: frame_path = "/".join([path, leaf]) obj = store.get(frame_path) if "df" in leaf: tm.assert_frame_equal(obj, objs[leaf]) else: tm.assert_series_equal(obj, objs[leaf]) def test_getattr(self, setup_path): with ensure_clean_store(setup_path) as store: s = tm.makeTimeSeries() store["a"] = s # test attribute access result = store.a tm.assert_series_equal(result, s) result = getattr(store, "a") tm.assert_series_equal(result, s) df = tm.makeTimeDataFrame() store["df"] = df result = store.df tm.assert_frame_equal(result, df) # errors for x in ["d", "mode", "path", "handle", "complib"]: with pytest.raises(AttributeError): getattr(store, x) # not stores for x in ["mode", "path", "handle", "complib"]: getattr(store, "_{x}".format(x=x)) def test_put(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() store["a"] = ts store["b"] = df[:10] store["foo/bar/bah"] = df[:10] store["foo"] = df[:10] store["/foo"] = df[:10] store.put("c", df[:10], format="table") # not OK, not a table with pytest.raises(ValueError): store.put("b", df[10:], append=True) # node does not currently exist, test _is_table_type returns False # in this case _maybe_remove(store, "f") with pytest.raises(ValueError): store.put("f", df[10:], append=True) # can't put to a table (use append instead) with pytest.raises(ValueError): store.put("c", df[10:], append=True) # overwrite table store.put("c", df[:10], format="table", append=False) tm.assert_frame_equal(df[:10], store["c"]) def test_put_string_index(self, setup_path): with ensure_clean_store(setup_path) as store: index = Index( ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(20), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) # mixed length index = Index( ["abcdefghijklmnopqrstuvwxyz1234567890"] + ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(21), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) def test_put_compression(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() store.put("c", df, format="table", complib="zlib") tm.assert_frame_equal(store["c"], df) # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="zlib") @td.skip_if_windows_python_3 def test_put_compression_blosc(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="blosc") store.put("c", df, format="table", complib="blosc") tm.assert_frame_equal(store["c"], df) def test_complibs_default_settings(self, setup_path): # GH15943 df = tm.makeDataFrame() # Set complevel and check if complib is automatically set to # default value with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complevel=9) result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "zlib" # Set complib and check to see if compression is disabled with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complib="zlib") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if not setting complib or complevel results in no compression with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if file-defaults can be overridden on a per table basis with ensure_clean_path(setup_path) as tmpfile: store = pd.HDFStore(tmpfile) store.append("dfc", df, complevel=9, complib="blosc") store.append("df", df) store.close() with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None for node in h5file.walk_nodes(where="/dfc", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "blosc" def test_complibs(self, setup_path): # GH14478 df = tm.makeDataFrame() # Building list of all complibs and complevels tuples all_complibs = tables.filters.all_complibs # Remove lzo if its not available on this platform if not tables.which_lib_version("lzo"): all_complibs.remove("lzo") # Remove bzip2 if its not available on this platform if not tables.which_lib_version("bzip2"): all_complibs.remove("bzip2") all_levels = range(0, 10) all_tests = [(lib, lvl) for lib in all_complibs for lvl in all_levels] for (lib, lvl) in all_tests: with ensure_clean_path(setup_path) as tmpfile: gname = "foo" # Write and read file to see if data is consistent df.to_hdf(tmpfile, gname, complib=lib, complevel=lvl) result = pd.read_hdf(tmpfile, gname) tm.assert_frame_equal(result, df) # Open file and check metadata # for correct amount of compression h5table = tables.open_file(tmpfile, mode="r") for node in h5table.walk_nodes(where="/" + gname, classname="Leaf"): assert node.filters.complevel == lvl if lvl == 0: assert node.filters.complib is None else: assert node.filters.complib == lib h5table.close() def test_put_integer(self, setup_path): # non-date, non-string index df = DataFrame(np.random.randn(50, 100)) self._check_roundtrip(df, tm.assert_frame_equal, setup_path) @td.xfail_non_writeable def test_put_mixed_type(self, setup_path): df = tm.makeTimeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") # PerformanceWarning with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store.put("df", df) expected = store.get("df") tm.assert_frame_equal(expected, df) @pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) def test_append(self, setup_path): with ensure_clean_store(setup_path) as store: # this is allowed by almost always don't want to do it # tables.NaturalNameWarning): with catch_warnings(record=True): df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) _maybe_remove(store, "df2") store.put("df2", df[:10], format="table") store.append("df2", df[10:]) tm.assert_frame_equal(store["df2"], df) _maybe_remove(store, "df3") store.append("/df3", df[:10]) store.append("/df3", df[10:]) tm.assert_frame_equal(store["df3"], df) # this is allowed by almost always don't want to do it # tables.NaturalNameWarning _maybe_remove(store, "/df3 foo") store.append("/df3 foo", df[:10]) store.append("/df3 foo", df[10:]) tm.assert_frame_equal(store["df3 foo"], df) # dtype issues - mizxed type in a single object column df = DataFrame(data=[[1, 2], [0, 1], [1, 2], [0, 0]]) df["mixed_column"] = "testing" df.loc[2, "mixed_column"] = np.nan _maybe_remove(store, "df") store.append("df", df) tm.assert_frame_equal(store["df"], df) # uints - test storage of uints uint_data = DataFrame( { "u08": Series( np.random.randint(0, high=255, size=5), dtype=np.uint8 ), "u16": Series( np.random.randint(0, high=65535, size=5), dtype=np.uint16 ), "u32": Series( np.random.randint(0, high=2 ** 30, size=5), dtype=np.uint32 ), "u64": Series( [2 ** 58, 2 ** 59, 2 ** 60, 2 ** 61, 2 ** 62], dtype=np.uint64, ), }, index=np.arange(5), ) _maybe_remove(store, "uints") store.append("uints", uint_data) tm.assert_frame_equal(store["uints"], uint_data) # uints - test storage of uints in indexable columns _maybe_remove(store, "uints") # 64-bit indices not yet supported store.append("uints", uint_data, data_columns=["u08", "u16", "u32"]) tm.assert_frame_equal(store["uints"], uint_data) def test_append_series(self, setup_path): with ensure_clean_store(setup_path) as store: # basic ss = tm.makeStringSeries() ts = tm.makeTimeSeries() ns = Series(np.arange(100)) store.append("ss", ss) result = store["ss"] tm.assert_series_equal(result, ss) assert result.name is None store.append("ts", ts) result = store["ts"] tm.assert_series_equal(result, ts) assert result.name is None ns.name = "foo" store.append("ns", ns) result = store["ns"] tm.assert_series_equal(result, ns) assert result.name == ns.name # select on the values expected = ns[ns > 60] result = store.select("ns", "foo>60") tm.assert_series_equal(result, expected) # select on the index and values expected = ns[(ns > 70) & (ns.index < 90)] result = store.select("ns", "foo>70 and index<90") tm.assert_series_equal(result, expected) # multi-index mi = DataFrame(np.random.randn(5, 1), columns=["A"]) mi["B"] = np.arange(len(mi)) mi["C"] = "foo" mi.loc[3:5, "C"] = "bar" mi.set_index(["C", "B"], inplace=True) s = mi.stack() s.index = s.index.droplevel(2) store.append("mi", s) tm.assert_series_equal(store["mi"], s) def test_store_index_types(self, setup_path): # GH5386 # test storing various index types with ensure_clean_store(setup_path) as store: def check(format, index): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df.index = index(len(df)) _maybe_remove(store, "df") store.put("df", df, format=format) tm.assert_frame_equal(df, store["df"]) for index in [ tm.makeFloatIndex, tm.makeStringIndex, tm.makeIntIndex, tm.makeDateIndex, ]: check("table", index) check("fixed", index) # period index currently broken for table # seee GH7796 FIXME check("fixed", tm.makePeriodIndex) # check('table',tm.makePeriodIndex) # unicode index = tm.makeUnicodeIndex check("table", index) check("fixed", index) @pytest.mark.skipif( not is_platform_little_endian(), reason="reason platform is not little endian" ) def test_encoding(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A="foo", B="bar"), index=range(5)) df.loc[2, "A"] = np.nan df.loc[3, "B"] = np.nan _maybe_remove(store, "df") store.append("df", df, encoding="ascii") tm.assert_frame_equal(store["df"], df) expected = df.reindex(columns=["A"]) result = store.select("df", Term("columns=A", encoding="ascii")) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "val", [ [b"E\xc9, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"a", b"b", b"c"], [b"EE, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"\xf8\xfc", b"a", b"b", b"c"], [b"", b"a", b"b", b"c"], [b"\xf8\xfc", b"a", b"b", b"c"], [b"A\xf8\xfc", b"", b"a", b"b", b"c"], [np.nan, b"", b"b", b"c"], [b"A\xf8\xfc", np.nan, b"", b"b", b"c"], ], ) @pytest.mark.parametrize("dtype", ["category", object]) def test_latin_encoding(self, setup_path, dtype, val): enc = "latin-1" nan_rep = "" key = "data" val = [x.decode(enc) if isinstance(x, bytes) else x for x in val] ser = pd.Series(val, dtype=dtype) with ensure_clean_path(setup_path) as store: ser.to_hdf(store, key, format="table", encoding=enc, nan_rep=nan_rep) retr = read_hdf(store, key) s_nan = ser.replace(nan_rep, np.nan) if is_categorical_dtype(s_nan): assert is_categorical_dtype(retr) tm.assert_series_equal( s_nan, retr, check_dtype=False, check_categorical=False ) else: tm.assert_series_equal(s_nan, retr) # FIXME: don't leave commented-out # fails: # for x in examples: # roundtrip(s, nan_rep=b'\xf8\xfc') def test_append_some_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( { "A": Series(np.random.randn(20)).astype("int32"), "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) # some nans _maybe_remove(store, "df1") df.loc[0:15, ["A1", "B", "D", "E"]] = np.nan store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) # first column df1 = df.copy() df1.loc[:, "A1"] = np.nan _maybe_remove(store, "df1") store.append("df1", df1[:10]) store.append("df1", df1[10:]) tm.assert_frame_equal(store["df1"], df1) # 2nd column df2 = df.copy() df2.loc[:, "A2"] = np.nan _maybe_remove(store, "df2") store.append("df2", df2[:10]) store.append("df2", df2[10:]) tm.assert_frame_equal(store["df2"], df2) # datetimes df3 = df.copy() df3.loc[:, "E"] = np.nan _maybe_remove(store, "df3") store.append("df3", df3[:10]) store.append("df3", df3[10:]) tm.assert_frame_equal(store["df3"], df3) def test_append_all_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( {"A1": np.random.randn(20), "A2": np.random.randn(20)}, index=np.arange(20), ) df.loc[0:15, :] = np.nan # nan some entire rows (dropna=True) _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df[-4:]) # nan some entire rows (dropna=False) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # tests the option io.hdf.dropna_table pd.set_option("io.hdf.dropna_table", False) _maybe_remove(store, "df3") store.append("df3", df[:10]) store.append("df3", df[10:]) tm.assert_frame_equal(store["df3"], df) pd.set_option("io.hdf.dropna_table", True) _maybe_remove(store, "df4") store.append("df4", df[:10]) store.append("df4", df[10:]) tm.assert_frame_equal(store["df4"], df[-4:]) # nan some entire rows (string are still written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # nan some entire rows (but since we have dates they are still # written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # Test to make sure defaults are to not drop. # Corresponding to Issue 9382 df_with_missing = DataFrame( {"col1": [0, np.nan, 2], "col2": [1, np.nan, np.nan]} ) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df_with_missing", format="table") reloaded = read_hdf(path, "df_with_missing") tm.assert_frame_equal(df_with_missing, reloaded) def test_read_missing_key_close_store(self, setup_path): # GH 25766 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(path, "k2") # smoke test to test that file is properly closed after # read with KeyError before another write df.to_hdf(path, "k2") def test_read_missing_key_opened_store(self, setup_path): # GH 28699 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") store = pd.HDFStore(path, "r") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(store, "k2") # Test that the file is still open after a KeyError and that we can # still read from it. pd.read_hdf(store, "k1") def test_append_frame_column_oriented(self, setup_path): with ensure_clean_store(setup_path) as store: # column oriented df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df.iloc[:, :2], axes=["columns"]) store.append("df1", df.iloc[:, 2:]) tm.assert_frame_equal(store["df1"], df) result = store.select("df1", "columns=A") expected = df.reindex(columns=["A"]) tm.assert_frame_equal(expected, result) # selection on the non-indexable result = store.select("df1", ("columns=A", "index=df.index[0:4]")) expected = df.reindex(columns=["A"], index=df.index[0:4]) tm.assert_frame_equal(expected, result) # this isn't supported with pytest.raises(TypeError): store.select("df1", "columns=A and index>df.index[4]") def test_append_with_different_block_ordering(self, setup_path): # GH 4096; using same frames, but different block orderings with ensure_clean_store(setup_path) as store: for i in range(10): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df["index"] = range(10) df["index"] += i * 10 df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") if i % 2 == 0: del df["int64"] df["int64"] = Series([1] * len(df), dtype="int64") if i % 3 == 0: a = df.pop("A") df["A"] = a df.set_index("index", inplace=True) store.append("df", df) # test a different ordering but with more fields (like invalid # combinate) with ensure_clean_store(setup_path) as store: df = DataFrame(np.random.randn(10, 2), columns=list("AB"), dtype="float64") df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") store.append("df", df) # store additional fields in different blocks df["int16_2"] = Series([1] * len(df), dtype="int16") with pytest.raises(ValueError): store.append("df", df) # store multile additional fields in different blocks df["float_3"] = Series([1.0] * len(df), dtype="float64") with pytest.raises(ValueError): store.append("df", df) def test_append_with_strings(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big", df) tm.assert_frame_equal(store.select("df_big"), df) check_col("df_big", "values_block_1", 15) # appending smaller string ok df2 = DataFrame([[124, "asdqy"], [346, "dggnhefbdfb"]]) store.append("df_big", df2) expected = concat([df, df2]) tm.assert_frame_equal(store.select("df_big"), expected) check_col("df_big", "values_block_1", 15) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big2", df, min_itemsize={"values": 50}) tm.assert_frame_equal(store.select("df_big2"), df) check_col("df_big2", "values_block_1", 50) # bigger string on next append store.append("df_new", df) df_new = DataFrame( [[124, "abcdefqhij"], [346, "abcdefghijklmnopqrtsuvwxyz"]] ) with pytest.raises(ValueError): store.append("df_new", df_new) # min_itemsize on Series index (GH 11412) df = tm.makeMixedDataFrame().set_index("C") store.append("ss", df["B"], min_itemsize={"index": 4}) tm.assert_series_equal(store.select("ss"), df["B"]) # same as above, with data_columns=True store.append( "ss2", df["B"], data_columns=True, min_itemsize={"index": 4} ) tm.assert_series_equal(store.select("ss2"), df["B"]) # min_itemsize in index without appending (GH 10381) store.put("ss3", df, format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") store.append("ss3", df2) tm.assert_frame_equal(store.select("ss3"), pd.concat([df, df2])) # same as above, with a Series store.put("ss4", df["B"], format="table", min_itemsize={"index": 6}) store.append("ss4", df2["B"]) tm.assert_series_equal( store.select("ss4"), pd.concat([df["B"], df2["B"]]) ) # with nans _maybe_remove(store, "df") df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[1:4, "string"] = np.nan df["string2"] = "bar" df.loc[4:8, "string2"] = np.nan df["string3"] = "bah" df.loc[1:, "string3"] = np.nan store.append("df", df) result = store.select("df") tm.assert_frame_equal(result, df) with ensure_clean_store(setup_path) as store: def check_col(key, name, size): assert getattr( store.get_storer(key).table.description, name ).itemsize, size df = DataFrame(dict(A="foo", B="bar"), index=range(10)) # a min_itemsize that creates a data_column _maybe_remove(store, "df") store.append("df", df, min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["B", "A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"values": 200}) check_col("df", "B", 200) check_col("df", "values_block_0", 200) assert store.get_storer("df").data_columns == ["B"] # infer the .typ on subsequent appends _maybe_remove(store, "df") store.append("df", df[:5], min_itemsize=200) store.append("df", df[5:], min_itemsize=200) tm.assert_frame_equal(store["df"], df) # invalid min_itemsize keys df = DataFrame(["foo", "foo", "foo", "barh", "barh", "barh"], columns=["A"]) _maybe_remove(store, "df") with pytest.raises(ValueError): store.append("df", df, min_itemsize={"foo": 20, "foobar": 20}) def test_append_with_empty_string(self, setup_path): with ensure_clean_store(setup_path) as store: # with all empty strings (GH 12242) df = DataFrame({"x": ["a", "b", "c", "d", "e", "f", ""]}) store.append("df", df[:-1], min_itemsize={"x": 1}) store.append("df", df[-1:], min_itemsize={"x": 1}) tm.assert_frame_equal(store.select("df"), df) def test_to_hdf_with_min_itemsize(self, setup_path): with ensure_clean_path(setup_path) as path: # min_itemsize in index with to_hdf (GH 10381) df = tm.makeMixedDataFrame().set_index("C") df.to_hdf(path, "ss3", format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") df2.to_hdf(path, "ss3", append=True, format="table") tm.assert_frame_equal(pd.read_hdf(path, "ss3"), pd.concat([df, df2])) # same as above, with a Series df["B"].to_hdf(path, "ss4", format="table", min_itemsize={"index": 6}) df2["B"].to_hdf(path, "ss4", append=True, format="table") tm.assert_series_equal( pd.read_hdf(path, "ss4"), pd.concat([df["B"], df2["B"]]) ) @pytest.mark.parametrize( "format", [pytest.param("fixed", marks=td.xfail_non_writeable), "table"] ) def test_to_hdf_errors(self, format, setup_path): data = ["\ud800foo"] ser = pd.Series(data, index=pd.Index(data)) with ensure_clean_path(setup_path) as path: # GH 20835 ser.to_hdf(path, "table", format=format, errors="surrogatepass") result = pd.read_hdf(path, "table", errors="surrogatepass") tm.assert_series_equal(result, ser) def test_append_with_data_columns(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() df.iloc[0, df.columns.get_loc("B")] = 1.0 _maybe_remove(store, "df") store.append("df", df[:2], data_columns=["B"]) store.append("df", df[2:]) tm.assert_frame_equal(store["df"], df) # check that we have indices created assert store._handle.root.df.table.cols.index.is_indexed is True assert store._handle.root.df.table.cols.B.is_indexed is True # data column searching result = store.select("df", "B>0") expected = df[df.B > 0] tm.assert_frame_equal(result, expected) # data column searching (with an indexable and a data_columns) result = store.select("df", "B>0 and index>df.index[3]") df_new = df.reindex(index=df.index[4:]) expected = df_new[df_new.B > 0] tm.assert_frame_equal(result, expected) # data column selection with a string data_column df_new = df.copy() df_new["string"] = "foo" df_new.loc[1:4, "string"] = np.nan df_new.loc[5:6, "string"] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"]) result = store.select("df", "string='foo'") expected = df_new[df_new.string == "foo"] tm.assert_frame_equal(result, expected) # using min_itemsize and a data column def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"string": 30} ) check_col("df", "string", 30) _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"], min_itemsize=30) check_col("df", "string", 30) _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"values": 30} ) check_col("df", "string", 30) with ensure_clean_store(setup_path) as store: df_new["string2"] = "foobarbah" df_new["string_block1"] = "foobarbah1" df_new["string_block2"] = "foobarbah2" _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string", "string2"], min_itemsize={"string": 30, "string2": 40, "values": 50}, ) check_col("df", "string", 30) check_col("df", "string2", 40) check_col("df", "values_block_1", 50) with ensure_clean_store(setup_path) as store: # multiple data columns df_new = df.copy() df_new.iloc[0, df_new.columns.get_loc("A")] = 1.0 df_new.iloc[0, df_new.columns.get_loc("B")] = -1.0 df_new["string"] = "foo" sl = df_new.columns.get_loc("string") df_new.iloc[1:4, sl] = np.nan df_new.iloc[5:6, sl] = "bar" df_new["string2"] = "foo" sl = df_new.columns.get_loc("string2") df_new.iloc[2:5, sl] = np.nan df_new.iloc[7:8, sl] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["A", "B", "string", "string2"]) result = store.select( "df", "string='foo' and string2='foo' and A>0 and B<0" ) expected = df_new[ (df_new.string == "foo") & (df_new.string2 == "foo") & (df_new.A > 0) & (df_new.B < 0) ] tm.assert_frame_equal(result, expected, check_index_type=False) # yield an empty frame result = store.select("df", "string='foo' and string2='cool'") expected = df_new[(df_new.string == "foo") & (df_new.string2 == "cool")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example df_dc = df.copy() df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc["string2"] = "cool" df_dc["datetime"] = Timestamp("20010102") df_dc = df_dc._convert(datetime=True) df_dc.loc[3:5, ["A", "B", "datetime"]] = np.nan _maybe_remove(store, "df_dc") store.append( "df_dc", df_dc, data_columns=["B", "C", "string", "string2", "datetime"] ) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected, check_index_type=False) result = store.select("df_dc", ["B > 0", "C > 0", "string == foo"]) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example part 2 np.random.seed(1234) index = date_range("1/1/2000", periods=8) df_dc = DataFrame( np.random.randn(8, 3), index=index, columns=["A", "B", "C"] ) df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc.loc[:, ["B", "C"]] = df_dc.loc[:, ["B", "C"]].abs() df_dc["string2"] = "cool" # on-disk operations store.append("df_dc", df_dc, data_columns=["B", "C", "string", "string2"]) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected) result = store.select("df_dc", ["B > 0", "C > 0", 'string == "foo"']) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected) def test_create_table_index(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # data columns df = tm.makeTimeDataFrame() df["string"] = "foo" df["string2"] = "bar" store.append("f", df, data_columns=["string", "string2"]) assert col("f", "index").is_indexed is True assert col("f", "string").is_indexed is True assert col("f", "string2").is_indexed is True # specify index=columns store.append( "f2", df, index=["string"], data_columns=["string", "string2"] ) assert col("f2", "index").is_indexed is False assert col("f2", "string").is_indexed is True assert col("f2", "string2").is_indexed is False # try to index a non-table _maybe_remove(store, "f2") store.put("f2", df) with pytest.raises(TypeError): store.create_table_index("f2") def test_append_hierarchical(self, setup_path): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo", "bar"], ) df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.append("mi", df) result = store.select("mi") tm.assert_frame_equal(result, df) # GH 3748 result = store.select("mi", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) with ensure_clean_path("test.hdf") as path: df.to_hdf(path, "df", format="table") result = read_hdf(path, "df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) def test_column_multiindex(self, setup_path): # GH 4710 # recreate multi-indexes properly index = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")], names=["first", "second"] ) df = DataFrame(np.arange(12).reshape(3, 4), columns=index) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df", df) tm.assert_frame_equal( store["df"], expected, check_index_type=True, check_column_type=True ) store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) with pytest.raises(ValueError): store.put("df2", df, format="table", data_columns=["A"]) with pytest.raises(ValueError): store.put("df3", df, format="table", data_columns=True) # appending multi-column on existing table (see GH 6167) with ensure_clean_store(setup_path) as store: store.append("df2", df) store.append("df2", df) tm.assert_frame_equal(store["df2"], concat((df, df))) # non_index_axes name df = DataFrame( np.arange(12).reshape(3, 4), columns=Index(list("ABCD"), name="foo") ) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) def test_store_multiindex(self, setup_path): # validate multi-index names # GH 5527 with ensure_clean_store(setup_path) as store: def make_index(names=None): return MultiIndex.from_tuples( [ (datetime.datetime(2013, 12, d), s, t) for d in range(1, 3) for s in range(2) for t in range(3) ], names=names, ) # no names _maybe_remove(store, "df") df = DataFrame(np.zeros((12, 2)), columns=["a", "b"], index=make_index()) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # partial names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", None, None]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # series _maybe_remove(store, "s") s = Series(np.zeros(12), index=make_index(["date", None, None])) store.append("s", s) xp = Series(np.zeros(12), index=make_index(["date", "level_1", "level_2"])) tm.assert_series_equal(store.select("s"), xp) # dup with column _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "a", "t"]), ) with pytest.raises(ValueError): store.append("df", df) # dup within level _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "date", "date"]), ) with pytest.raises(ValueError): store.append("df", df) # fully names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "s", "t"]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) def test_select_columns_in_where(self, setup_path): # GH 6169 # recreate multi-indexes when columns is passed # in the `where` argument index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo_name", "bar_name"], ) # With a DataFrame df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") expected = df[["A"]] tm.assert_frame_equal(store.select("df", columns=["A"]), expected) tm.assert_frame_equal(store.select("df", where="columns=['A']"), expected) # With a Series s = Series(np.random.randn(10), index=index, name="A") with ensure_clean_store(setup_path) as store: store.put("s", s, format="table") tm.assert_series_equal(store.select("s", where="columns=['A']"), s) def test_mi_data_columns(self, setup_path): # GH 14435 idx = pd.MultiIndex.from_arrays( [date_range("2000-01-01", periods=5), range(5)], names=["date", "id"] ) df = pd.DataFrame({"a": [1.1, 1.2, 1.3, 1.4, 1.5]}, index=idx) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=True) actual = store.select("df", where="id == 1") expected = df.iloc[[1], :] tm.assert_frame_equal(actual, expected) def test_pass_spec_to_storer(self, setup_path): df = tm.makeDataFrame() with ensure_clean_store(setup_path) as store: store.put("df", df) with pytest.raises(TypeError): store.select("df", columns=["A"]) with pytest.raises(TypeError): store.select("df", where=[("columns=A")]) @td.xfail_non_writeable def test_append_misc(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df, chunksize=1) result = store.select("df") tm.assert_frame_equal(result, df) store.append("df1", df, expectedrows=10) result = store.select("df1") tm.assert_frame_equal(result, df) # more chunksize in append tests def check(obj, comparator): for c in [10, 200, 1000]: with ensure_clean_store(setup_path, mode="w") as store: store.append("obj", obj, chunksize=c) result = store.select("obj") comparator(result, obj) df = tm.makeDataFrame() df["string"] = "foo" df["float322"] = 1.0 df["float322"] = df["float322"].astype("float32") df["bool"] = df["float322"] > 0 df["time1"] = Timestamp("20130101") df["time2"] = Timestamp("20130102") check(df, tm.assert_frame_equal) # empty frame, GH4273 with ensure_clean_store(setup_path) as store: # 0 len df_empty = DataFrame(columns=list("ABC")) store.append("df", df_empty) with pytest.raises(KeyError, match="'No object named df in the file'"): store.select("df") # repeated append of 0/non-zero frames df = DataFrame(np.random.rand(10, 3), columns=list("ABC")) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) store.append("df", df_empty) tm.assert_frame_equal(store.select("df"), df) # store df = DataFrame(columns=list("ABC")) store.put("df2", df) tm.assert_frame_equal(store.select("df2"), df) def test_append_raise(self, setup_path): with ensure_clean_store(setup_path) as store: # test append with invalid input to get good error messages # list in column df = tm.makeDataFrame() df["invalid"] = [["a"]] * len(df) assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # multiple invalid columns df["invalid2"] = [["a"]] * len(df) df["invalid3"] = [["a"]] * len(df) with pytest.raises(TypeError): store.append("df", df) # datetime with embedded nans as object df = tm.makeDataFrame() s = Series(datetime.datetime(2001, 1, 2), index=df.index) s = s.astype(object) s[0:5] = np.nan df["invalid"] = s assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # directly ndarray with pytest.raises(TypeError): store.append("df", np.arange(10)) # series directly with pytest.raises(TypeError): store.append("df", Series(np.arange(10))) # appending an incompatible table df = tm.makeDataFrame() store.append("df", df) df["foo"] = "foo" with pytest.raises(ValueError): store.append("df", df) def test_table_index_incompatible_dtypes(self, setup_path): df1 = DataFrame({"a": [1, 2, 3]}) df2 = DataFrame({"a": [4, 5, 6]}, index=date_range("1/1/2000", periods=3)) with ensure_clean_store(setup_path) as store: store.put("frame", df1, format="table") with pytest.raises(TypeError): store.put("frame", df2, format="table", append=True) def test_table_values_dtypes_roundtrip(self, setup_path): with ensure_clean_store(setup_path) as store: df1 = DataFrame({"a": [1, 2, 3]}, dtype="f8") store.append("df_f8", df1) tm.assert_series_equal(df1.dtypes, store["df_f8"].dtypes) df2 = DataFrame({"a": [1, 2, 3]}, dtype="i8") store.append("df_i8", df2) tm.assert_series_equal(df2.dtypes, store["df_i8"].dtypes) # incompatible dtype with pytest.raises(ValueError): store.append("df_i8", df1) # check creation/storage/retrieval of float32 (a bit hacky to # actually create them thought) df1 = DataFrame(np.array([[1], [2], [3]], dtype="f4"), columns=["A"]) store.append("df_f4", df1) tm.assert_series_equal(df1.dtypes, store["df_f4"].dtypes) assert df1.dtypes[0] == "float32" # check with mixed dtypes df1 = DataFrame( { c: Series(np.random.randint(5), dtype=c) for c in ["float32", "float64", "int32", "int64", "int16", "int8"] } ) df1["string"] = "foo" df1["float322"] = 1.0 df1["float322"] = df1["float322"].astype("float32") df1["bool"] = df1["float32"] > 0 df1["time1"] = Timestamp("20130101") df1["time2"] = Timestamp("20130102") store.append("df_mixed_dtypes1", df1) result = store.select("df_mixed_dtypes1").dtypes.value_counts() result.index = [str(i) for i in result.index] expected = Series( { "float32": 2, "float64": 1, "int32": 1, "bool": 1, "int16": 1, "int8": 1, "int64": 1, "object": 1, "datetime64[ns]": 2, } ) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) def test_table_mixed_dtypes(self, setup_path): # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: store.append("df1_mixed", df) tm.assert_frame_equal(store.select("df1_mixed"), df) def test_unimplemented_dtypes_table_columns(self, setup_path): with ensure_clean_store(setup_path) as store: dtypes = [("date", datetime.date(2001, 1, 2))] # currently not supported dtypes #### for n, f in dtypes: df = tm.makeDataFrame() df[n] = f with pytest.raises(TypeError): store.append("df1_{n}".format(n=n), df) # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["datetime1"] = datetime.date(2001, 1, 2) df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: # this fails because we have a date in the object block...... with pytest.raises(TypeError): store.append("df_unimplemented", df) @td.xfail_non_writeable @pytest.mark.skipif( LooseVersion(np.__version__) == LooseVersion("1.15.0"), reason=( "Skipping pytables test when numpy version is " "exactly equal to 1.15.0: gh-22098" ), ) def test_calendar_roundtrip_issue(self, setup_path): # 8591 # doc example from tseries holiday section weekmask_egypt = "Sun Mon Tue Wed Thu" holidays = [ "2012-05-01", datetime.datetime(2013, 5, 1), np.datetime64("2014-05-01"), ] bday_egypt = pd.offsets.CustomBusinessDay( holidays=holidays, weekmask=weekmask_egypt ) dt = datetime.datetime(2013, 4, 30) dts = date_range(dt, periods=5, freq=bday_egypt) s = Series(dts.weekday, dts).map(Series("Mon Tue Wed Thu Fri Sat Sun".split())) with ensure_clean_store(setup_path) as store: store.put("fixed", s) result = store.select("fixed") tm.assert_series_equal(result, s) store.append("table", s) result = store.select("table") tm.assert_series_equal(result, s) def test_roundtrip_tz_aware_index(self, setup_path): # GH 17618 time = pd.Timestamp("2000-01-01 01:00:00", tz="US/Eastern") df = pd.DataFrame(data=[0], index=[time]) with ensure_clean_store(setup_path) as store: store.put("frame", df, format="fixed") recons = store["frame"] tm.assert_frame_equal(recons, df) assert recons.index[0].value == 946706400000000000 def test_append_with_timedelta(self, setup_path): # GH 3577 # append timedelta df = DataFrame( dict( A=Timestamp("20130101"), B=[ Timestamp("20130101") + timedelta(days=i, seconds=10) for i in range(10) ], ) ) df["C"] = df["A"] - df["B"] df.loc[3:5, "C"] = np.nan with ensure_clean_store(setup_path) as store: # table _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df") tm.assert_frame_equal(result, df) result = store.select("df", where="C<100000") tm.assert_frame_equal(result, df) result = store.select("df", where="C<pd.Timedelta('-3D')") tm.assert_frame_equal(result, df.iloc[3:]) result = store.select("df", "C<'-3D'") tm.assert_frame_equal(result, df.iloc[3:]) # a bit hacky here as we don't really deal with the NaT properly result = store.select("df", "C<'-500000s'") result = result.dropna(subset=["C"]) tm.assert_frame_equal(result, df.iloc[6:]) result = store.select("df", "C<'-3.5D'") result = result.iloc[1:] tm.assert_frame_equal(result, df.iloc[4:]) # fixed _maybe_remove(store, "df2") store.put("df2", df) result = store.select("df2") tm.assert_frame_equal(result, df) def test_remove(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeDataFrame() store["a"] = ts store["b"] = df _maybe_remove(store, "a") assert len(store) == 1 tm.assert_frame_equal(df, store["b"]) _maybe_remove(store, "b") assert len(store) == 0 # nonexistence with pytest.raises( KeyError, match="'No object named a_nonexistent_store in the file'" ): store.remove("a_nonexistent_store") # pathing store["a"] = ts store["b/foo"] = df _maybe_remove(store, "foo") _maybe_remove(store, "b/foo") assert len(store) == 1 store["a"] = ts store["b/foo"] = df _maybe_remove(store, "b") assert len(store) == 1 # __delitem__ store["a"] = ts store["b"] = df del store["a"] del store["b"] assert len(store) == 0 def test_invalid_terms(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[0:4, "string"] = "bar" store.put("df", df, format="table") # some invalid terms with pytest.raises(TypeError): Term() # more invalid with pytest.raises(ValueError): store.select("df", "df.index[3]") with pytest.raises(SyntaxError): store.select("df", "index>") # from the docs with ensure_clean_path(setup_path) as path: dfq = DataFrame( np.random.randn(10, 4), columns=list("ABCD"), index=date_range("20130101", periods=10), ) dfq.to_hdf(path, "dfq", format="table", data_columns=True) # check ok read_hdf( path, "dfq", where="index>Timestamp('20130104') & columns=['A', 'B']" ) read_hdf(path, "dfq", where="A>0 or C>0") # catch the invalid reference with ensure_clean_path(setup_path) as path: dfq = DataFrame( np.random.randn(10, 4), columns=list("ABCD"), index=date_range("20130101", periods=10), ) dfq.to_hdf(path, "dfq", format="table") with pytest.raises(ValueError): read_hdf(path, "dfq", where="A>0 or C>0") def test_same_name_scoping(self, setup_path): with ensure_clean_store(setup_path) as store: import pandas as pd df = DataFrame( np.random.randn(20, 2), index=pd.date_range("20130101", periods=20) ) store.put("df", df, format="table") expected = df[df.index > pd.Timestamp("20130105")] import datetime # noqa result = store.select("df", "index>datetime.datetime(2013,1,5)") tm.assert_frame_equal(result, expected) from datetime import datetime # noqa # technically an error, but allow it result = store.select("df", "index>datetime.datetime(2013,1,5)") tm.assert_frame_equal(result, expected) result = store.select("df", "index>datetime(2013,1,5)") tm.assert_frame_equal(result, expected) def test_series(self, setup_path): s = tm.makeStringSeries() self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) ts = tm.makeTimeSeries() self._check_roundtrip(ts, tm.assert_series_equal, path=setup_path) ts2 = Series(ts.index, Index(ts.index, dtype=object)) self._check_roundtrip(ts2, tm.assert_series_equal, path=setup_path) ts3 = Series(ts.values, Index(np.asarray(ts.index, dtype=object), dtype=object)) self._check_roundtrip( ts3, tm.assert_series_equal, path=setup_path, check_index_type=False ) def test_float_index(self, setup_path): # GH #454 index = np.random.randn(10) s = Series(np.random.randn(10), index=index) self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) @td.xfail_non_writeable def test_tuple_index(self, setup_path): # GH #492 col = np.arange(10) idx = [(0.0, 1.0), (2.0, 3.0), (4.0, 5.0)] data = np.random.randn(30).reshape((3, 10)) DF = DataFrame(data, index=idx, columns=col) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) self._check_roundtrip(DF, tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable @pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning") def test_index_types(self, setup_path): with catch_warnings(record=True): values = np.random.randn(2) func = lambda l, r: tm.assert_series_equal( l, r, check_dtype=True, check_index_type=True, check_series_type=True ) with catch_warnings(record=True): ser = Series(values, [0, "y"]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [datetime.datetime.today(), 0]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, ["y", 0]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [datetime.date.today(), "a"]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [0, "y"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [datetime.datetime.today(), 0]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, ["y", 0]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [datetime.date.today(), "a"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1.23, "b"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1, 1.53]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1, 5]) self._check_roundtrip(ser, func, path=setup_path) ser = Series( values, [datetime.datetime(2012, 1, 1), datetime.datetime(2012, 1, 2)] ) self._check_roundtrip(ser, func, path=setup_path) def test_timeseries_preepoch(self, setup_path): dr = bdate_range("1/1/1940", "1/1/1960") ts = Series(np.random.randn(len(dr)), index=dr) try: self._check_roundtrip(ts, tm.assert_series_equal, path=setup_path) except OverflowError: pytest.skip("known failer on some windows platforms") @td.xfail_non_writeable @pytest.mark.parametrize( "compression", [False, pytest.param(True, marks=td.skip_if_windows_python_3)] ) def test_frame(self, compression, setup_path): df = tm.makeDataFrame() # put in some random NAs df.values[0, 0] = np.nan df.values[5, 3] = np.nan self._check_roundtrip_table( df, tm.assert_frame_equal, path=setup_path, compression=compression ) self._check_roundtrip( df, tm.assert_frame_equal, path=setup_path, compression=compression ) tdf = tm.makeTimeDataFrame() self._check_roundtrip( tdf, tm.assert_frame_equal, path=setup_path, compression=compression ) with ensure_clean_store(setup_path) as store: # not consolidated df["foo"] = np.random.randn(len(df)) store["df"] = df recons = store["df"] assert recons._data.is_consolidated() # empty self._check_roundtrip(df[:0], tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable def test_empty_series_frame(self, setup_path): s0 = Series(dtype=object) s1 = Series(name="myseries", dtype=object) df0 = DataFrame() df1 = DataFrame(index=["a", "b", "c"]) df2 = DataFrame(columns=["d", "e", "f"]) self._check_roundtrip(s0, tm.assert_series_equal, path=setup_path) self._check_roundtrip(s1, tm.assert_series_equal, path=setup_path) self._check_roundtrip(df0, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df1, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df2, tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable @pytest.mark.parametrize( "dtype", [np.int64, np.float64, np.object, "m8[ns]", "M8[ns]"] ) def test_empty_series(self, dtype, setup_path): s = Series(dtype=dtype) self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) def test_can_serialize_dates(self, setup_path): rng = [x.date() for x in bdate_range("1/1/2000", "1/30/2000")] frame = DataFrame(np.random.randn(len(rng), 4), index=rng) self._check_roundtrip(frame, tm.assert_frame_equal, path=setup_path) def test_store_hierarchical(self, setup_path): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo", "bar"], ) frame = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) self._check_roundtrip(frame, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(frame.T, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(frame["A"], tm.assert_series_equal, path=setup_path) # check that the names are stored with ensure_clean_store(setup_path) as store: store["frame"] = frame recons = store["frame"] tm.assert_frame_equal(recons, frame) def test_store_index_name(self, setup_path): df = tm.makeDataFrame() df.index.name = "foo" with ensure_clean_store(setup_path) as store: store["frame"] = df recons = store["frame"] tm.assert_frame_equal(recons, df) def test_store_index_name_with_tz(self, setup_path): # GH 13884 df = pd.DataFrame({"A": [1, 2]}) df.index = pd.DatetimeIndex([1234567890123456787, 1234567890123456788]) df.index = df.index.tz_localize("UTC") df.index.name = "foo" with ensure_clean_store(setup_path) as store: store.put("frame", df, format="table") recons = store["frame"] tm.assert_frame_equal(recons, df) @pytest.mark.parametrize("table_format", ["table", "fixed"]) def test_store_index_name_numpy_str(self, table_format, setup_path): # GH #13492 idx = pd.Index( pd.to_datetime([datetime.date(2000, 1, 1), datetime.date(2000, 1, 2)]), name="cols\u05d2", ) idx1 = pd.Index( pd.to_datetime([datetime.date(2010, 1, 1), datetime.date(2010, 1, 2)]), name="rows\u05d0", ) df = pd.DataFrame(np.arange(4).reshape(2, 2), columns=idx, index=idx1) # This used to fail, returning numpy strings instead of python strings. with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", format=table_format) df2 = read_hdf(path, "df") tm.assert_frame_equal(df, df2, check_names=True) assert type(df2.index.name) == str assert type(df2.columns.name) == str def test_store_series_name(self, setup_path): df = tm.makeDataFrame() series = df["A"] with ensure_clean_store(setup_path) as store: store["series"] = series recons = store["series"] tm.assert_series_equal(recons, series) @td.xfail_non_writeable @pytest.mark.parametrize( "compression", [False, pytest.param(True, marks=td.skip_if_windows_python_3)] ) def test_store_mixed(self, compression, setup_path): def _make_one(): df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["int1"] = 1 df["int2"] = 2 return df._consolidate() df1 = _make_one() df2 = _make_one() self._check_roundtrip(df1, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df2, tm.assert_frame_equal, path=setup_path) with ensure_clean_store(setup_path) as store: store["obj"] = df1 tm.assert_frame_equal(store["obj"], df1) store["obj"] = df2 tm.assert_frame_equal(store["obj"], df2) # check that can store Series of all of these types self._check_roundtrip( df1["obj1"], tm.assert_series_equal, path=setup_path, compression=compression, ) self._check_roundtrip( df1["bool1"], tm.assert_series_equal, path=setup_path, compression=compression, ) self._check_roundtrip( df1["int1"], tm.assert_series_equal, path=setup_path, compression=compression, ) @pytest.mark.filterwarnings( "ignore:\\nduplicate:pandas.io.pytables.DuplicateWarning" ) def test_select_with_dups(self, setup_path): # single dtypes df = DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=["A"]) expected = df.loc[:, ["A"]] tm.assert_frame_equal(result, expected) # dups across dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["A"]] result = store.select("df", columns=["A"]) tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["B", "A"]] result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) # duplicates on both index and columns with ensure_clean_store(setup_path) as store: store.append("df", df) store.append("df", df) expected = df.loc[:, ["B", "A"]] expected = concat([expected, expected]) result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) def test_overwrite_node(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeDataFrame() ts = tm.makeTimeSeries() store["a"] = ts tm.assert_series_equal(store["a"], ts) def test_select(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): # select with columns= df = tm.makeTimeDataFrame() _maybe_remove(store, "df") store.append("df", df) result = store.select("df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # equivalently result = store.select("df", [("columns=['A', 'B']")]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # all a data columns _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column, but different columns _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["C", "D"]) expected = df[df.A > 0].reindex(columns=["C", "D"]) tm.assert_frame_equal(expected, result) def test_select_dtypes(self, setup_path): with ensure_clean_store(setup_path) as store: # with a Timestamp data column (GH #2637) df = DataFrame( dict(ts=bdate_range("2012-01-01", periods=300), A=np.random.randn(300)) ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A"]) result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # bool columns (GH #2849) df = DataFrame(np.random.randn(5, 2), columns=["A", "B"]) df["object"] = "foo" df.loc[4:5, "object"] = "bar" df["boolv"] = df["A"] > 0 _maybe_remove(store, "df") store.append("df", df, data_columns=True) expected = df[df.boolv == True].reindex(columns=["A", "boolv"]) # noqa for v in [True, "true", 1]: result = store.select( "df", "boolv == {v!s}".format(v=v), columns=["A", "boolv"] ) tm.assert_frame_equal(expected, result) expected = df[df.boolv == False].reindex(columns=["A", "boolv"]) # noqa for v in [False, "false", 0]: result = store.select( "df", "boolv == {v!s}".format(v=v), columns=["A", "boolv"] ) tm.assert_frame_equal(expected, result) # integer index df = DataFrame(dict(A=np.random.rand(20), B=np.random.rand(20))) _maybe_remove(store, "df_int") store.append("df_int", df) result = store.select("df_int", "index<10 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) # float index df = DataFrame( dict( A=np.random.rand(20), B=np.random.rand(20), index=np.arange(20, dtype="f8"), ) ) _maybe_remove(store, "df_float") store.append("df_float", df) result = store.select("df_float", "index<10.0 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) with ensure_clean_store(setup_path) as store: # floats w/o NaN df = DataFrame(dict(cols=range(11), values=range(11)), dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) store.append("df1", df, data_columns=True) result = store.select("df1", where="values>2.0") expected = df[df["values"] > 2.0] tm.assert_frame_equal(expected, result) # floats with NaN df.iloc[0] = np.nan expected = df[df["values"] > 2.0] store.append("df2", df, data_columns=True, index=False) result = store.select("df2", where="values>2.0") tm.assert_frame_equal(expected, result) # https://github.com/PyTables/PyTables/issues/282 # bug in selection when 0th row has a np.nan and an index # store.append('df3',df,data_columns=True) # result = store.select( # 'df3', where='values>2.0') # tm.assert_frame_equal(expected, result) # not in first position float with NaN ok too df = DataFrame(dict(cols=range(11), values=range(11)), dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) df.iloc[1] = np.nan expected = df[df["values"] > 2.0] store.append("df4", df, data_columns=True) result = store.select("df4", where="values>2.0") tm.assert_frame_equal(expected, result) # test selection with comparison against numpy scalar # GH 11283 with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() expected = df[df["A"] > 0] store.append("df", df, data_columns=True) np_zero = np.float64(0) # noqa result = store.select("df", where=["A>np_zero"]) tm.assert_frame_equal(expected, result) def test_select_with_many_inputs(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( dict( ts=bdate_range("2012-01-01", periods=300), A=np.random.randn(300), B=range(300), users=["a"] * 50 + ["b"] * 50 + ["c"] * 100 + ["a{i:03d}".format(i=i) for i in range(100)], ) ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A", "B", "users"]) # regular select result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # small selector result = store.select( "df", "ts>=Timestamp('2012-02-01') & users=['a','b','c']" ) expected = df[ (df.ts >= Timestamp("2012-02-01")) & df.users.isin(["a", "b", "c"]) ] tm.assert_frame_equal(expected, result) # big selector along the columns selector = ["a", "b", "c"] + ["a{i:03d}".format(i=i) for i in range(60)] result = store.select( "df", "ts>=Timestamp('2012-02-01') and users=selector" ) expected = df[(df.ts >= Timestamp("2012-02-01")) & df.users.isin(selector)] tm.assert_frame_equal(expected, result) selector = range(100, 200) result = store.select("df", "B=selector") expected = df[df.B.isin(selector)] tm.assert_frame_equal(expected, result) assert len(result) == 100 # big selector along the index selector = Index(df.ts[0:100].values) result = store.select("df", "ts=selector") expected = df[df.ts.isin(selector.values)] tm.assert_frame_equal(expected, result) assert len(result) == 100 def test_select_iterator(self, setup_path): # single table with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame(500) _maybe_remove(store, "df") store.append("df", df) expected = store.select("df") results = list(store.select("df", iterator=True)) result = concat(results) tm.assert_frame_equal(expected, result) results = list(store.select("df", chunksize=100)) assert len(results) == 5 result = concat(results) tm.assert_frame_equal(expected, result) results = list(store.select("df", chunksize=150)) result = concat(results) tm.assert_frame_equal(result, expected) with ensure_clean_path(setup_path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, "df_non_table") with pytest.raises(TypeError): read_hdf(path, "df_non_table", chunksize=100) with pytest.raises(TypeError): read_hdf(path, "df_non_table", iterator=True) with ensure_clean_path(setup_path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, "df", format="table") results = list(read_hdf(path, "df", chunksize=100)) result = concat(results) assert len(results) == 5 tm.assert_frame_equal(result, df) tm.assert_frame_equal(result, read_hdf(path, "df")) # multiple with ensure_clean_store(setup_path) as store: df1 = tm.makeTimeDataFrame(500) store.append("df1", df1, data_columns=True) df2 = tm.makeTimeDataFrame(500).rename(columns="{}_2".format) df2["foo"] = "bar" store.append("df2", df2) df =
concat([df1, df2], axis=1)
pandas.concat
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from pathlib import Path from collections import defaultdict import mudcod.utils.visualization as VIS # noqa: E402 from mudcod.utils import sutils # noqa: E402 MAIN_DIR = Path(__file__).absolute().parent.parent SIMULATION_DIR = MAIN_DIR / "simulations" RESULT_DIR = MAIN_DIR / "results" RESULTS_PATH = RESULT_DIR / "simulation_results" FIGURE_DIR = RESULT_DIR / "simulation_figures" sns.set_theme(style="whitegrid") sutils.safe_create_dir(RESULTS_PATH) sutils.safe_create_dir(FIGURE_DIR) objkey = "loglikelihood" def get_dataframe(result_dict, index_row, columns, multi_index): resultsDf = pd.DataFrame(result_dict["val"], index=index_row, columns=columns) if not multi_index: resultsDf.reset_index(inplace=True) return resultsDf def get_info_from_name(simul_name): mkint = lambda x: int(x[2:]) # noqa: E731 mkfloat = lambda x: float("0." + x[2:]) # noqa: E731 simul_info = simul_name.split("_") if simul_name.startswith(".") or len(simul_info) != 6: raise ValueError(f"Unkown simulation name format: {simul_name}.") class_dcbm, scenario_msd, th, rt, ns, rs = ( simul_info[0], simul_info[1], simul_info[2], simul_info[3], simul_info[4], simul_info[5], ) ns, th = mkint(ns), mkint(th) rs, rt = mkfloat(rs), mkfloat(rt) return class_dcbm, scenario_msd, th, rt, ns, rs def read_cv_results(results_path, multi_index=False): # {{{ results_path = Path(results_path) result_dirs = [f for f in results_path.iterdir() if f.is_dir()] result_dict = defaultdict(list) num_result = len(result_dirs) for i, path in enumerate(sorted(result_dirs)): simul_name = str(path.stem) class_dcbm, scenario_msd, th, rt, ns, rs = get_info_from_name(simul_name) percent = round(100 * i / num_result, 2) print( f"Procesing:%{percent}", class_dcbm, scenario_msd, th, rt, ns, rs, end="\r" ) cv_path = path / "cross_validation" muspces_cv_path = cv_path.glob("muspces*.csv") for i, mpath in enumerate(sorted(muspces_cv_path)): tempDf =
pd.read_csv(mpath)
pandas.read_csv
""" This module contains a class GwGxg that calculates some descriptive statistics from a series of groundwater head measurements used by groundwater practitioners in the Netherlands History: Created 16-08-2015, last updated 12-02-1016 Migrated to acequia on 15-06-2019 @author: <NAME> """ import math from datetime import datetime import datetime as dt import warnings import numpy as np from pandas import Series, DataFrame import pandas as pd import acequia as aq def stats_gxg(ts,reflev='datum'): """Return table with GxG statistics Parameters ---------- ts : aq.GwSeries, pd.Series Groundwater head time series reflev : {'datum','surface'}, optional Reference level for groundwater heads Returns ------- pd.DataFrame """ gxg = aq.GxgStats(ts) return gxg.gxg(reflev=reflev) class GxgStats: """Calculate descriptive statistics for time series of measured heads Parameters ---------- gw : aq.GwSeries, pd.Series timeseries of groundwater head measurements relative to datum level srname : str, optional name of groundwater head series surface : float, optional surface level height (if ref='datum' this option is ignored) Notes ----- In the Netherlands, traditionally groundwater head series are summarized using decriptive statistics that characterise the mean highest level (GHG), the mean lowest level (GLG) and the mean spring level (GVG). These three measures together are reffered to as the GxG. The definitions of GHG, GLG and GVG are based on time series with measured heads on the 14th and 28th of each month. Therefore the time series of measrued heads is internally resampled to values on the 14th and 28yh before calculating the GxG statistics. For further reference: <NAME> and <NAME> (1985). 'Water table classes: a method to decribe seasonal fluctuation and duration of water table classes on Dutch soil maps.' Agricultural Water Management 10 (1985) 109 - 125. Elsevier Science Publishers, Amsterdam. """ N14 = 18 ## REFERENCE = ['datum','surface'] APPROXIMATIONS = ['SLUIJS82','HEESEN74','SLUIJS76a','SLUIJS76b', 'SLUIJS89pol','SLUIJS89sto','RUNHAAR89','GAAST06',] VGDATES = ['apr1','apr15','mar15'] VGREFDATE = 'apr1' def __init__(self, gw, srname=None, surface=None): """Return GxG object""" if isinstance(gw,aq.GwSeries): self._ts = gw.heads(ref='datum') self.srname = gw.name() if surface is None: self._surface = gw.surface() else: self._surface = surflevel self._gw = gw elif isinstance(gw,pd.Series): self._ts = gw self.srname = self._ts.name self._surface = surface self._gw = None else: raise(f'{gw} is not of type aq.GwSeries or pd.Series') self._ts1428 = aq.ts1428(self._ts,maxlag=3,remove_nans=False) self._xgnap = self._calculate_xg_nap() def _yearseries(self,ts,dtype='float64'): """Return empty time series with years as index with all years between min(year) and max(year) in index (no missing years)""" if isinstance(ts,pd.Series): years = set(ts.index.year) elif isinstance(ts,(list,set,np.ndarray)): years = set(ts) else: raise(f'{ts} must be list-like') minyear = min(years) maxyear= max(years) sr = Series(index=range(minyear,maxyear+1),dtype=dtype,name='year') return sr def vg3(self): """Return VG3 (Spring Level) for each year VG3 is calculated as the mean of groundwater head levels on 14 march, 28 march and 14 april Return ------ pd.Series Notes ----- Calculation of GVG based on the average of three dates was introduced by Finke et al. (1999) References ---------- <NAME>., <NAME>, <NAME>, <NAME>, <NAME> & <NAME> (1999). Actuele grondwaterinformatie 1:10.000 in de waterschappen Wold en Wieden en Meppelerdiep. Gebruik van digitale maaiveldshoogtes bij de kartering van GHG, GVG en GLG. SC-rapport 633. (in Dutch). """ self._vg3 = self._yearseries(self._ts1428) for i,year in enumerate(self._vg3.index): v1 = self._ts1428[dt.datetime(year,3,14)] v2 = self._ts1428[dt.datetime(year,3,28)] v3 = self._ts1428[dt.datetime(year,4,14)] with warnings.catch_warnings(): # numpy raises a silly warning with nanmean on NaNs warnings.filterwarnings(action='ignore', message='Mean of empty slice') self._vg3[year] = np.round(np.nanmean([v1,v2,v3]),2) self._vg3.name = 'VG3' return self._vg3 def vg1(self,refdate=VGREFDATE,maxlag=7): """Return VG (Spring Level) for each year as the measurement closest to refdate Parameters ---------- refdate : {'apr1','apr15','mar15'}, default 'apr1' reference date for estimating VG maxlag : number maximum allowed difference between measurement date en refdate Return ------ pd.Series Notes ----- The VG (Voorjaars Grondwaterstand, Spring Level) is estimated as the single measurement closest to the reference date given by refdate. The reference date for calculation of the GVG was changed from april 15 to april 1st in de early eighties. In 2000 the Cultuurtechnisch Vademecum proposed march 15 as the new reference date for the GVG but this proposal was not generally adopted. In practice april 1st is allways used as reference date and this is used as default for calculations. References ---------- <NAME>, J.W.J., <NAME> & <NAME> (2009). Actuele grondwaterstandsituatie in natuurgebieden. Rapport 94 WOT. Alterra, Wageningen. (in Dutch). """ if refdate not in self.VGDATES: warnings.warn((f'Reference date {refdate} for GVG is not ' f'recognised. Reference date \'{self.VGREFDATE}\' is ' f'assumed.')) refdate = self.VGREFDATE vg1 = self._yearseries(self._ts1428) for i,year in enumerate(vg1.index): if refdate=='apr1': date = dt.datetime(year,4,1) if refdate=='apr15': date = dt.datetime(year,4,15) if refdate=='mar15': date = dt.datetime(year,3,15) daydeltas = self._ts.index - date mindelta = np.amin(np.abs(daydeltas)) sr_nearest = self._ts[np.abs(daydeltas) == mindelta] maxdelta = pd.to_timedelta(f'{maxlag} days') if (mindelta <= maxdelta): vg1[year] = np.round(sr_nearest.iloc[0],2) vg1.name = f'VG{refdate}' return vg1 def _calculate_xg_nap(self): """Calculate xg statistics for eacht year and return table""" hydroyears = aq.hydroyear(self._ts1428) sr = self._yearseries(hydroyears) xg = pd.DataFrame(index=sr.index) xg.index.name = 'year' for year in xg.index: ts = self._ts1428[hydroyears==year] ts = ts[ts.notnull()] n1428 = len(ts) if not np.isnan(n1428): n1428 = math.floor(n1428) hg3 = np.nan lg3 = np.nan if n1428 >= self.N14: hg3 = ts.nlargest(n=3).mean() lg3 = ts.nsmallest(n=3).mean() hg3w = np.nan lg3s = np.nan if n1428 >= self.N14: ts_win = ts[aq.season(ts)=='winter'] ts_sum = ts[aq.season(ts)=='summer'] hg3w = ts_win.nlargest(n=3).mean() lg3s = ts_sum.nsmallest(n=3).mean() xg.loc[year,'hg3'] = np.round(hg3,2) xg.loc[year,'lg3'] = np.round(lg3,2) xg.loc[year,'hg3w'] = np.round(hg3w,2) xg.loc[year,'lg3s'] = np.round(lg3s,2) xg['vg3'] = self.vg3() for date in self.VGDATES: xg[f'vg_{date}'] = self.vg1(refdate=date) xg.loc[year,'n1428'] = n1428 return xg def xg(self,reference='datum',name=True): """Return table of GxG groundwater statistics for each hydrological year Parameters ---------- reference : {'datum','surface'}, default 'datum' reference level for gxg statistics name : bool, default True include series name in index Return ------ pd.DataFrame""" if reference not in ['datum','surface']: warnings.warn((f'Reference level \'{reference}\' is not allowed. ' f'Reference level \'datum\' is assumed.')) reference = 'datum' xg = self._xgnap.copy() if name==True: xg = pd.concat({self.srname: xg}, names=['series']) if reference=='datum': return xg for col in xg.columns: if col in ['n1428']: continue xg[col] = (self._surface - xg[col])*100 xg[col] = xg[col].apply(lambda x:math.floor(x) if not np.isnan(x) else x) ##if not np.isnan(xg[col]): ## xg[col] = math.floor(xg[col]) return xg def gxg(self,reference='datum',minimal=False): """Return table with GxG for one head series Parameters ---------- minimal : bool, default True return minimal selection of stats reference : {'datum','surface'}, default 'datum' reference level for gxg statistics Returns ------- pd.DataFrame""" """ if hasattr(self,'_minimal'): if self._minimal!=minimal: self._reset() self._minimal = minimal if self._reflev==reflev: if hasattr(self,'_gxg'): return self._gxg else: self._reset() self._validate_reflev (reflev) """ xg = self.xg(reference=reference,name=False) gxg =
pd.Series(name=self.srname,dtype='object')
pandas.Series
""" Procedures needed for Common support estimation. Created on Thu Dec 8 15:48:57 2020. @author: MLechner # -*- coding: utf-8 -*- """ import copy import numpy as np import pandas as pd from mcf import mcf_data_functions as mcf_data from mcf import general_purpose as gp from mcf import general_purpose_estimation as gp_est def common_support(predict_file, tree_file, fill_y_file, fs_file, var_x_type, v_dict, c_dict, cs_list=None, prime_values_dict=None, pred_tr_np=None, d_tr_np=None): """ Remove observations from data files that are off-support. Parameters ---------- predict_file : String of csv-file. Data to predict the RF. train_file : String of csv-file. Data to train the RF. fill_y_file : String of csv-file. Data with y to be used by RF. fs_file : String of csv-file. Data with y to be used by RF. var_x_type : Dict. Features. v_dict : Dict. Variables. c_dict : Dict. Parameters. cs_list: Tuple. Contains the information from estimated propensity score needed to predict for other data. Default is None. prime_values_dict: Dict. List of unique values for variables to dummy. Default is None. pred_t: Numpy array. Predicted treatment probabilities in training data. Needed to define cut-offs. d_train: Numpy series. Observed treatment in training data (tree_file). Returns ------- predict_file_new : String of csv-file. Adjusted data. cs_list: Tuple. Contains the information from estimated propensity score needed to predict for other data. pred_t: Numpy array. Predicted treatment probabilities in training data. d_train_tree: estimated tree by sklearn. """ def r2_obb(c_dict, idx, oob_best): if c_dict['with_output']: print('\n') print('-' * 80) print('Treatment: {:2}'.format(c_dict['d_values'][idx]), 'OOB Score (R2 in %): {:6.3f}'.format(oob_best * 100)) print('-' * 80) def get_data(file_name, x_name): data = pd.read_csv(file_name) x_all = data[x_name] # deep copies obs = len(x_all.index) return data, x_all, obs def check_cols(x_1, x_2, name1, name2): var1 = set(x_1.columns) var2 = set(x_2.columns) if var1 != var2: if len(var1-var2) > 0: print('Variables in ', name1, 'not contained in ', name2, *(var1-var2)) if len(var2-var1) > 0: print('Variables in ', name2, 'not contained in ', name1, *(var2-var1)) raise Exception(name1 + ' data and ' + name2 + ' data contain' + ' differnt variables. Programm stopped.') def mean_by_treatment(treat_pd, data_pd): treat_pd = treat_pd.squeeze() treat_vals = pd.unique(treat_pd) print('--------------- Mean by treatment status ------------------') if len(treat_vals) > 0: mean = data_pd.groupby(treat_pd).mean() print(mean.transpose()) else: print('All obs have same treatment:', treat_vals) def on_support_data_and_stats(obs_to_del_np, data_pd, x_data_pd, out_file, upper_l, lower_l, c_dict, header=False, d_name=None): obs_to_keep = np.invert(obs_to_del_np) data_keep = data_pd[obs_to_keep] gp.delete_file_if_exists(out_file) data_keep.to_csv(out_file, index=False) if c_dict['with_output']: x_keep = x_data_pd[obs_to_keep] x_delete = x_data_pd[obs_to_del_np] if header: print('\n') print('=' * 80) print('Common support check') print('-' * 80) print('Upper limits on treatment probabilities: ', upper_l) print('Lower limits on treatment probabilities: ', lower_l) print('-' * 80) print('Data investigated and saved:', out_file) print('-' * 80) print('Observations deleted: {:4}'.format(np.sum(obs_to_del_np)), ' ({:6.3f}%)'.format(np.mean(obs_to_del_np)*100)) with pd.option_context( 'display.max_rows', 500, 'display.max_columns', 500, 'display.expand_frame_repr', True, 'display.width', 150, 'chop_threshold', 1e-13): all_var_names = [name.upper() for name in data_pd.columns] if d_name[0].upper() in all_var_names: d_keep = data_keep[d_name] d_delete = data_pd[d_name] d_delete = d_delete[obs_to_del_np] d_keep_count = d_keep.value_counts(sort=False) d_delete_count = d_delete.value_counts(sort=False) d_keep_count = pd.concat( [d_keep_count, d_keep_count / np.sum(obs_to_keep) * 100], axis=1) d_delete_count = pd.concat( [d_delete_count, d_delete_count / np.sum(obs_to_del_np) * 100], axis=1) d_keep_count.columns = ['Obs.', 'Share in %'] d_delete_count.columns = ['Obs.', 'Share in %'] if c_dict['panel_data']: cluster_id = data_pd[v_dict['cluster_name']].squeeze() cluster_keep = cluster_id[obs_to_keep].squeeze() cluster_delete = cluster_id[obs_to_del_np].squeeze() print('-' * 80) print('Observations kept by treatment') print(d_keep_count) print('- ' * 20) print('Observations deleted by treatment') print(d_delete_count) if c_dict['panel_data']: print('- ' * 20) print('Total number of panel unit:', len(cluster_id.unique())) print('Observations belonging to ', len(cluster_keep.unique()), 'panel units are ON support') print('Observations belonging to ', len(cluster_delete.unique()), 'panel units are OFF support') if d_name[0].upper() in all_var_names: print() print('Full sample (ON and OFF support observations)') mean_by_treatment(data_pd[d_name], x_data_pd) print('-' * 80) print('Data ON support') print('-' * 80) print(x_keep.describe().transpose()) if d_name[0].upper() in all_var_names: print() mean_by_treatment(d_keep, x_keep) print('-' * 80) print('Data OFF support') print('-' * 80) print(x_delete.describe().transpose()) if d_name[0].upper() in all_var_names: print() if np.sum(obs_to_del_np) > 1: mean_by_treatment(d_delete, x_delete) else: print('Only single observation deleted.') if np.mean(obs_to_del_np) > c_dict['support_max_del_train']: raise Exception( 'Less than {:3}%'.format( 100-c_dict['support_max_del_train']*100) + ' observations left after common support check of' + ' training data. Programme terminated. Improve' + ' balance of input data for forest building.') x_name, x_type = gp.get_key_values_in_list(var_x_type) names_unordered = [] # Split ordered variables into dummies for j, val in enumerate(x_type): if val > 0: names_unordered.append(x_name[j]) fs_adjust = False obs_fs = 0 if c_dict['train_mcf']: data_tr, x_tr, obs_tr = get_data(tree_file, x_name) # train,adj. data_fy, x_fy, obs_fy = get_data(fill_y_file, x_name) # adj. if c_dict['fs_yes']: # if not ((fs_file == tree_file) or (fs_file == fill_y_file)): if fs_file not in (tree_file, fill_y_file): data_fs, x_fs, obs_fs = get_data(fs_file, x_name) # adj. fs_adjust = True if c_dict['pred_mcf']: data_pr, x_pr, obs_pr = get_data(predict_file, x_name) else: obs_pr = 0 if names_unordered: # List is not empty if c_dict['train_mcf'] and c_dict['pred_mcf']: x_total = pd.concat([x_tr, x_fy, x_pr], axis=0) if fs_adjust: x_total = pd.concat([x_total, x_fs], axis=0) x_dummies = pd.get_dummies(x_total[names_unordered], columns=names_unordered) x_total = pd.concat([x_total, x_dummies], axis=1) x_tr = x_total[:obs_tr] x_fy = x_total[obs_tr:obs_tr+obs_fy] x_pr = x_total[obs_tr+obs_fy:obs_tr+obs_fy+obs_pr] if fs_adjust: x_fs = x_total[obs_tr+obs_fy+obs_pr:] elif c_dict['train_mcf'] and not c_dict['pred_mcf']: x_total = pd.concat([x_tr, x_fy], axis=0) if fs_adjust: x_total = pd.concat([x_total, x_fs], axis=0) x_dummies = pd.get_dummies(x_total[names_unordered], columns=names_unordered) x_total = pd.concat([x_total, x_dummies], axis=1) x_tr = x_total[:obs_tr] x_fy = x_total[obs_tr:obs_tr+obs_fy] if fs_adjust: x_fs = x_total[obs_tr+obs_fy:] else: x_add_tmp = check_if_obs_needed(names_unordered, x_pr, prime_values_dict) if x_add_tmp is not None: x_total =
pd.concat([x_pr, x_add_tmp], axis=0)
pandas.concat
from __future__ import division, print_function import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder from sklearn import tree from Basic import adult, dutch, testdata from Utility import Utility from Detection import Judge from Basic import get_group def Ranker(X, Y, Epos): # One-hot-encoding features for f in X.columns: X_dummy =
pd.get_dummies(X[f], prefix=f)
pandas.get_dummies
#!/usr/bin/env python # coding: utf-8 # <img style="float: left;" src="earth-lab-logo-rgb.png" width="150" height="150" /> # # # Earth Analytics Education - EA Python Course Spring 2021 # ## Important - Assignment Guidelines # # 1. Before you submit your assignment to GitHub, make sure to run the entire notebook with a fresh kernel. To do this first, **restart the kernel** (in the menubar, select Kernel$\rightarrow$Restart & Run All) # 2. Always replace the `raise NotImplementedError()` code with your code that addresses the activity challenge. If you don't replace that code, your notebook will not run. # # ``` # # YOUR CODE HERE # raise NotImplementedError() # ``` # # 3. Any open ended questions will have a "YOUR ANSWER HERE" within a markdown cell. Replace that text with your answer also formatted using Markdown. # 4. **DO NOT RENAME THIS NOTEBOOK File!** If the file name changes, the autograder will not grade your assignment properly. # 6. When you create a figure, comment out `plt.show()` to ensure the autograder can grade your plots. For figure cells, DO NOT DELETE the code that says `DO NOT REMOVE LINE BELOW`. # # ``` # ### DO NOT REMOVE LINE BELOW ### # student_plot1_ax = nb.convert_axes(plt) # ``` # # * Only include the package imports, code, and outputs that are required to run your homework assignment. # * Be sure that your code can be run on any operating system. This means that: # 1. the data should be downloaded in the notebook to ensure it's reproducible # 2. all paths should be created dynamically using the `os.path.join` # # ## Follow to PEP 8 Syntax Guidelines & Documentation # # * Run the `autopep8` tool on all cells prior to submitting (HINT: hit shift + the tool to run it on all cells at once! # * Use clear and expressive names for variables. # * Organize your code to support readability. # * Check for code line length # * Use comments and white space sparingly where it is needed # * Make sure all python imports are at the top of your notebook and follow PEP 8 order conventions # * Spell check your Notebook before submitting it. # # For all of the plots below, be sure to do the following: # # * Make sure each plot has a clear TITLE and, where appropriate, label the x and y axes. Be sure to include UNITS in your labels. # # ### Add Your Name Below # **Your Name:** <NAME> # <img style="float: left;" src="colored-bar.png"/> # --- # # Week 04 and 05 Homework - Automate NDVI Workflow # # For this assignment, you will write code to generate a plot of the mean normalized difference vegetation index (NDVI) for two different sites in the United States across one year of data: # # * San Joaquin Experimental Range (SJER) in Southern California, United States # * Harvard Forest (HARV) in the Northeastern United States # # The data that you will use for this week is available from **earthpy** using the following download: # # `et.data.get_data('ndvi-automation')` # # ## Assignment Goals # # Your goal in this assignment is to create the most efficient and concise workflow that you can that allows for: # # 1. The code to scale if you added new sites or more time periods to the analysis. # 2. Someone else to understand your workflow. # 3. The LEAST and most efficient (i.e. runs fast, minimize repetition) amount of code that completes the task. # # ### HINTS # # * Remove values outside of the landsat valid range of values as specified in the metadata, as needed. # * Keep any output files SEPARATE FROM input files. Outputs should be created in an outputs directory that is created in the code (if needed) and/or tested for. # * Use the functions that we demonstrated during class to make your workflow more efficient. # * BONUS - if you chose - you can export your data as a csv file. You will get bonus points for doing this. # # # ## Assignment Requirements # # Your submission to the GitHub repository should include: # * This Jupyter Notebook file (.ipynb) with: # * The code to create a plot of mean NDVI across a year for 2 NEON Field Sites: # * NDVI on the x axis and formatted dates on the y for both NEON sites on one figure/axis object # * The **data should be cleaned to remove the influence of clouds**. See the [earthdatascience website for an example of what your plot might look like with and without removal of clouds](https://www.earthdatascience.org/courses/earth-analytics-python/create-efficient-data-workflows/). # * BONUS: Create one output `.csv` file that has 3 columns - NDVI, Date and Site Name - with values for SJER and HARV. # # Your notebook should: # * Have *at least* 2 well documented and well named functions with docstrings. # * Include a Markdown cell at the top of the notebook that outlines the overall workflow using pseudocode (i.e. plain language, not code) # * Include additional Markdown cells throughout the notebook to describe: # * the data that you used - and where it is from # * how data are being processing # * how the code is optimized to run fast and be more concise # # Replace this cell with your pseudocode for this workflow # # If you happen to be a diagram person a diagram is ok too # # # # Psuedocode for just HARV site # 1. Go within 'ndvi-automation' folder four levels down to access tif files for HARV # 2. Extract and sort bands 4-5 # 3. Open up the bands with function open_clean_bands # - this will use rxr to open the raster, and crop_boundary as a crop extent # 4. Calculate NDVI # 5. Obtain QA data from landsat files for cloud mask # -extract all files from a tif folder that end in "pixel.tif" # -open up that qa data with rxr # 6. Create cloud mask from ep cloud pixels # -refer to textbook for this # 7. Get the mean of the new masked xarray # 8. Create df with 3 columns: mean, the site name, and the date in datetime # # # Psuedocode for both sites # Mostly the same as above, except we can't just name the tif file for a specific site. So... # 1. One for loop for each site directory # 2. A nested loop for each landsat file directory # 4. Extract just files for bands 4-5 # 3. Another nested for loop for each band in band folder # 3. Open up the bands with function open_clean_bands # 4. Calculate NDVI # 5. Obtain QA data from landsat files for cloud mask # - using cloud mask function # 6. I'll have already created cloud mask from ep cloud pixels - don't need to repeat because it doesn't change # 7. Get the mean of the new masked xarray # 8. Create df with 3 columns: mean, the site name, and the date in datetime # - create list to do so # # # In[1]: # Autograding imports - do not modify this cell import matplotcheck.autograde as ag import matplotcheck.notebook as nb import matplotcheck.timeseries as ts from datetime import datetime # In[2]: # Import needed packages in PEP 8 order # and no unused imports listed (10 points total) # YOUR CODE HERE import os from glob import glob import matplotlib.pyplot as plt import numpy as np import pandas as pd import geopandas as gpd import rioxarray as rxr import xarray as xr from rasterio.plot import plotting_extent import earthpy as et import earthpy.mask as em import earthpy.spatial as es import earthpy.plot as ep #set working directory data = et.data.get_data('ndvi-automation') os.chdir(os.path.join(et.io.HOME, "earth-analytics", "data")) # In[3]: # DO NOT MODIFY THIS CELL # Tests that the working directory is set to earth-analytics/data path = os.path.normpath(os.getcwd()) student_wd_parts = path.split(os.sep) if student_wd_parts[-2:] == ['earth-analytics', 'data']: print("\u2705 Great - it looks like your working directory is set correctly to ~/earth-analytics/data") else: print("\u274C Oops, the autograder will not run unless your working directory is set to earth-analytics/data") # # Figure 1: Plot 1 - Mean NDVI For Each Site Across the Year (50 points) # # Create a plot of the mean normalized difference vegetation index (NDVI) for the two different sites in the United States across the year: # # * NDVI on the x axis and formatted dates on the y for both NEON sites on one figure/axis object. # * Each site should be identified with a different color in the plot and legend. # * The final plot **data should be cleaned to remove the influence of clouds**. # * Be sure to include appropriate title and axes labels. # # Add additional cells as needed for processing data (e.g. defining functions, etc), but be sure to: # * follow the instructions in the code cells that have been provided to ensure that you are able to use the sanity check tests that are provided. # * include only the plot code in the cell identified for the final plot code below # ## Task 1: # # In the cell below, create a single dataframe containing MEAN NDVI, the site name, # and the date of the data for the HARV site # scene `HARV/landsat-crop/LC080130302017031701T1-SC20181023151837`. The column names for the final # DataFrame should be`mean_ndvi`, and `site`, and the data should be **indexed on the date**. # # Use the functions that we reviewed in class (or create your own versions of them) to implement your code # # ### In the Cell below Place All Functions Needed to Run this Notebook (20 points) # In[4]: ### DO NOT REMOVE THIS LINE OR EDIT / MOVE THIS CELL ### start_time = datetime.now() # _This first code block does quite a lot of the exploration of ndvi-automation folder structure. It sets path variables for the HARV site, creates the crop extent for that specific site, and opens the specific tif folder for LC080130302017031701T1-SC20181023151837. Finally, it extracts just the bands 4-5 to calculate the NDVI._ # # _Because this is just one site, there isn't really a better way to build a function or a for loop that will optimize this workflow._ # In[5]: #---------------------------------------------- #exploration of folder structure #---------------------------------------------- # list both site directories site_path = os.path.join("ndvi-automation", "sites") # Get a list of both site directories sites = glob(site_path + "/*/") #sites #specifically create df for HARV site site_name = 'HARV' #---------------------------------------------- #open shp boundary file from vector directory #---------------------------------------------- # go into vector directory to get shp file vector_dir = os.path.join(site_path, site_name, "vector") site_boundary_path = os.path.join(vector_dir, site_name + "-crop.shp") bound = gpd.read_file(site_boundary_path) bound #---------------------------------------------- #open tif files from landsat directory #---------------------------------------------- # In the landsat directory, get files landsat_dir = os.path.join(site_path, site_name, "landsat-crop") landsat_folder = os.path.join(landsat_dir, "LC080130302017031701T1-SC20181023151837") # Open bands in a sorted format band_files = sorted(glob(os.path.join(landsat_folder, "*band*[4-5].tif"))) band_files # _The following code block is where my two functions reside - the code was first tested outside of the function and then added after it was confirmed it worked on one site._ # # _open_clean_bands takes one of the band files I just extracted above, opens it up, clips it to HARV's crop extent, cleans it up, and returns that same band for future use._ # # _cloud_mask takes the qa file from a tif folder, opens it up using rxr, clips it to HARV's crop extent as well, and then, using an input of mask values, crops whatever NDVI array is given to a specific cloud mask._ # # _It was important to me not to over complicate these functions. They should be useful and simple to help automate my workflow, and not try to do a billion things at once._ # In[6]: # In this cell place all of the functions needed to run your notebook # You will be graded here on function application, docstrings, efficiency so ensure # All functions are placed here! # YOUR CODE HERE def open_clean_bands(band_path, crop_bound, valid_range=None): """Open and mask a single landsat band using a pixel_qa layer. Parameters ----------- band_path : string A path to the array to be opened crop_bound : GeoPandas DataFrame A data from that tells us the extent of the site of interest valid_range : tuple (optional) A tuple of min and max range of values for the data. Default = None Returns ----------- arr : xarray DataArray An xarray DataArray with values that should be masked set to 1 for True (Boolean) """ band = (rxr.open_rasterio(band_path, masked=True) .rio.clip(crop_bound.geometry, from_disk=True) .squeeze()) # Specify valid range of values if valid_range: mask = ((band <= 0) | (band > 10000)) band = band.where(~mask, np.nan) return band def cloud_mask(ndvi_array, site_folder, crop_bound, masked_values): """ This function masks clouds from a landsat band using a pixel_qa layer. Parameters ----------- ndvi_array: xarray DataArray An xarray DataArray with ndvi values site_folder : string A path to the site folder where QA array is crop_bound : GeoPandas DataFrame The crop extent of the area of interest masked_values : list A list of all values to be masked Returns ----------- arr : xarray DataArray An xarray DataArray with ndvi values, masked to the specific values """ #path to specific QA files - they end in pixel.tif qa_path = glob(os.path.normpath(os.path.join(site_folder, "*pixel*.tif"))) #open path with rxr using crop extent of specific site qa_file = rxr.open_rasterio( qa_path[0], masked=True).rio.clip(crop_bound.geometry, from_disk=True).squeeze() #crop the NDVI where NOT masked values are (i.e., where there isn't cloud cover) ndvi_clean_crop = ndvi_array.where(~qa_file.isin(masked_values)) return ndvi_clean_crop # _This is the bulk of the processing for the HARV site. This code block loops through the bands, opens and cleans them, calculates the NDVI, and then finds the associative qa_path from the tif folder. It uses this to create a cloud mask, and then after the raster has been masked, it calculates the mean NDVI, and builds a dataframe from the site name, the date, and the mean NDVI. Because it doesn't have to do this with more than one site, it's pretty streamlined as is._ # In[7]: # Create dataframe of mean NDVI in this cell using the functions created above # Important: to use the ungraded tests below as a sanity check, # name your columns: mean_ndvi and site # Call the dataframe at the end of the cell so the tests run on it! # Be sure that the date column is an index of type date # HINT: the time series lessons may help you remember how to do this! # YOUR CODE HERE #---------------------------------------------------- #loop through each band file to open and clean bands #---------------------------------------------------- bands = [] for aband in band_files: #run open_clean_bands function cleaned_band = open_clean_bands(band_path=aband, crop_bound=bound, valid_range=(0, 10000)) bands.append(cleaned_band) #---------------------------------------------- #calculate NDVI #---------------------------------------------- # NDVI = (NIR-RED)/(NIR+RED) ndvi_xr = (bands[1] - bands[0]) / (bands[1] + bands[0]) #ndvi_xr.plot() #------------------------------------------------ #obtain QA data from landsat files for cloud mask #------------------------------------------------ qa_path = glob(os.path.normpath(os.path.join(landsat_folder, "*pixel*.tif"))) qa_file = rxr.open_rasterio(qa_path[0], masked=True).rio.clip(bound.geometry, from_disk=True).squeeze() #------------------------------------------------ #create cloud mask from ep cloud pixels #------------------------------------------------ high_cloud_confidence = em.pixel_flags["pixel_qa"]["L8"]["High Cloud Confidence"] cloud = em.pixel_flags["pixel_qa"]["L8"]["Cloud"] cloud_shadow = em.pixel_flags["pixel_qa"]["L8"]["Cloud Shadow"] all_masked_values = cloud_shadow + cloud + high_cloud_confidence #mask ndvi with cloud mask ndvi_clean_crop = ndvi_xr.where(~qa_file.isin(all_masked_values)) #ndvi_clean_crop.plot() #---------------------------------------------- #get mean of xarray #---------------------------------------------- ndvi_mean = ndvi_clean_crop.mean() #type(ndvi_mean) #convert mean to a float instead of xarray ndvi_mean_value = ndvi_mean.item() #---------------------------------------------- #create df with site, date, and mean NDVI #---------------------------------------------- #slice up the path into its components to utilize different names in the path slice_path = landsat_folder.split(os.sep) #site is the third slice site = slice_path[2] #the file name (with date) is the fifth slice file_string = slice_path[4] #the date is the the file name - before 01T1. Year, Month, Day date = file_string[10:18] #convert that date from string to datetime date_time = datetime.strptime(date, '%Y%m%d').strftime('%m/%d/%Y') #create dataframe ndvi_df =
pd.DataFrame([[site, date_time, ndvi_mean_value]], columns=['site', 'date', 'mean_ndvi'])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # Python script for automatic quality-control procedures (CEMADEN data) # # Created on Aug.12.2020 # ### By: # <NAME> # <NAME> # <NAME> # Importing libraries used in this code # In[ ]: import numpy as np import pandas as pd from datetime import datetime import glob import warnings from datetime import datetime import sys import esda import libpysal as lps # Assigning values to main variables and other parameters # In[ ]: #Data storage path path = 'D:/CEMADEN/' years = [2014 , 2015, 2016, 2017, 2018, 2019,2020] #years used in the analysis states = ['PE','PB','RN','BA','SE','PI','CE','MA','AL','AC','AM','RO','RR','AP','TO','PA','MT', 'MS','DF','GO','RS','SC','PR','ES','MG','RJ','SP'] #states used in the analysis #Filters variables threshold_missing_data_days=60 #days in a year without data threshold_days_without_rain=200 #days in a row without rain threshold_constant_days=35 #days in a row with rain = 0,2mm threshold_max_peak=40 #record of xmm in 10min #Moran's I variables properties=['rainfall_events','mean_rainfall_depth','yearly_rainfall'] #properties calculated based on the events durations defined mits_integer = [60, 360,1439] #mit lenghts used n_neighbors = 5 p_value = 0.05 # Functions # ------ # In[ ]: #This function inserts a beginning and ending date for each code, each year (1st january till 31st december) to compute 365 days def insert_begin_end(df, year, code): datatemp=str(year)+'-01-01 00:00:10' #temporary date - beginning data_b = {'gauge_code': [code], 'city': ['x'], 'state': ['x'], 'datetime': [datatemp], #assigning beginning date to code 'rain_mm': [-1], } datatemp=str(year)+'-12-31 23:59:10' #temporary date - end data_e = {'gauge_code': [code], 'city': ['x'], 'state': ['x'], 'datetime': [datatemp], 'rain_mm': [0], } df_b = pd.DataFrame(data_b) df_e = pd.DataFrame(data_e) df_b['datetime']=pd.to_datetime(df_b['datetime']) df_e['datetime']=pd.to_datetime(df_e['datetime']) df=pd.concat([df, df_e], ignore_index=True) df=pd.concat([df_b, df], ignore_index=True) return df # In[ ]: #This function goes through all the CEMADEN files from all states, each year, to assemble a dataframe with their gauge codes def get_df_codes (year, state): filename = str(state) +'_'+ str(year) + '.h5' df_cemaden_info = pd.read_hdf(path+'/data/raw data/'+ filename,'table_info') df_codes = df_cemaden_info['gauge_code'] return df_codes # In[ ]: #This function writes the status (HQ or PQ) on each gauge according to it's classification #from the filters and moran def write_status (code, year, state, status,filter_flag, df_filtered_gauges): df_filtered_gauges.at[(code, year),'state']=state df_filtered_gauges.at[(code, year),'status']=status df_filtered_gauges.at[(code, year),'filter']=filter_flag return df_filtered_gauges # Single gauge tests - Filters # # In[ ]: # 0. Filter All: This function go through all filters in a specific order, and writes the gauge's final status of this step # the function raises a "flag" if the gauge doesn't fulfill the condition pre stablished, otherwise, it goes through the next filter def all_filters (code,df_cemaden_data,year,state,df_filtered_gauges): write=True flag=False flag = filter_missing_data_days (code,df_cemaden_data,year,flag,state) #Filter 1 - missing days if not flag: flag = filter_consecutive_constant_values (code,df_cemaden_data,year,flag,state) #Filter 2 - consecutive 0.2mm rain days elif flag and write: status, filter_flag ='POOR QUALITY','missing_data_days' df_filtered_gauges= write_status (code,year,state,status,filter_flag,df_filtered_gauges) write=False if not flag: flag = filter_max_peak (code,df_cemaden_data,year,flag,state) #Filter 3 - max peak in 10min elif flag and write: status, filter_flag ='POOR QUALITY','consecutive_constant_values' df_filtered_gauges= write_status (code,year,state,status,filter_flag,df_filtered_gauges) write=False if not flag: flag= filter_consecutive_period_without_rain (code,df_cemaden_data,year,flag,state) #Filter 4- consecutive w/o rain days elif flag and write: status, filter_flag ='POOR QUALITY','max_peak' df_filtered_gauges= write_status (code, year,state,status,filter_flag,df_filtered_gauges) write=False if not flag: status, filter_flag ='HIGH QUALITY','unflagged' df_filtered_gauges= write_status (code, year,state,status,filter_flag,df_filtered_gauges) write=False elif flag and write: status, filter_flag ='POOR QUALITY','consecutive_period_without_rain' df_filtered_gauges= write_status (code, year,state,status,filter_flag,df_filtered_gauges) write=False return df_filtered_gauges # In[ ]: # 1. Filter: Flags all gauges missing xx or more days of data def filter_missing_data_days (code,df_cemaden_data,year,flag,state): df_gauge=df_cemaden_data[(df_cemaden_data['gauge_code'] == code )] df_gauge['rain_mm']=-1 #overwriting all rain values since missing values are substituted by "0" df_gauge=df_gauge.set_index('datetime') df_gauge_resample=df_gauge['rain_mm'].resample('D').sum() #resampling to obtain the information in "days" number_days_year=get_days (year) days_without_data= number_days_year - df_gauge_resample[(df_gauge_resample <0)].count() if days_without_data >= threshold_missing_data_days: flag=True #raising the flag if the gauge has more missing days in the records than the highest threshold defined return flag #This function is to identify whether the analyzed year is a leap year def get_days (year): if (year%4==0 and year%100!=0) or (year%400==0): nday_year=366 else: nday_year=365 return nday_year # In[ ]: # 2. Filter: Exclusion of gauges with consecutive constant values (0.2 mm) per some xx days def filter_consecutive_constant_values (code,df_cemaden_data, year,flag, state): df_gauge=df_cemaden_data[(df_cemaden_data['gauge_code'] == code ) & (df_cemaden_data['rain_mm']>0)] df_gauge=df_gauge.set_index('datetime') t=str(threshold_constant_days)+'D' df_rolling_mean=df_gauge['rain_mm'].rolling(t).mean() df_rolling_count=df_gauge['rain_mm'].rolling(t).count() df_rolling_std=df_gauge['rain_mm'].rolling(t).std() df_rolling_mean=pd.DataFrame(df_rolling_mean) df_rolling_mean=df_rolling_mean.rename(columns={'rain_mm':'mean'}) df_rolling_std=pd.DataFrame(df_rolling_std) df_rolling_std=df_rolling_std.rename(columns={'rain_mm':'std'}) df_rolling_count=pd.DataFrame(df_rolling_count) df_rolling_count=df_rolling_count.rename(columns={'rain_mm':'count'}) df_rolling_all=pd.concat([df_rolling_mean, df_rolling_std], axis=1) df_rolling_all=pd.concat([df_rolling_all, df_rolling_count], axis=1) df_temp=df_rolling_all[(df_rolling_all['mean']< 0.201) & (df_rolling_all['mean']> 0.199) & (df_rolling_all['std']< 0.0001) & (df_rolling_all['count']> 50)] #df['count'] conta quantos pulsos de 0,2 há dentro do período de 10 dias constant_period=df_temp['count'].count() if constant_period > 0: flag=True return flag # In[ ]: # 3. Filter: Flags all gauges with maximum peaks of xx mm or more in 10 minutes def filter_max_peak (code,df_cemaden_data,year,flag,state): df_temp=df_cemaden_data[(df_cemaden_data['gauge_code'] == code ) & (df_cemaden_data['rain_mm'] > threshold_max_peak)] if df_temp['rain_mm'].count()>0: flag=True #raising the flag if the gauge has a higher max peak in the records than the highest threshold defined return flag # In[ ]: #4. Filter: Flags all gauges with more than xxx consecutive days of null rain records def filter_consecutive_period_without_rain (code,df_cemaden_data, year,flag, state): df_gauge=df_cemaden_data[(df_cemaden_data['gauge_code'] == code ) & (df_cemaden_data['rain_mm']>0)] df_gauge['rain_mm']=-1 #overwriting all rain values since missing values are substituted by "0" df_gauge=insert_begin_end(df_gauge, year, code) df_gauge=df_gauge.set_index('datetime') df_gauge_resample=df_gauge['rain_mm'].resample('10Min').sum() df_gauge_resample=
pd.DataFrame(df_gauge_resample)
pandas.DataFrame
# Import packages import matplotlib.pyplot as plt import numpy as np import pandas as pd import umap.umap_ as umap from PIL import Image from matplotlib import offsetbox from matplotlib.offsetbox import OffsetImage, AnnotationBbox import datetime # Import packages for Bokeh visualization demo from bokeh.models import ColumnDataSource, CustomJS, HoverTool, LassoSelectTool, BoxSelectTool, CrosshairTool from bokeh.models import HoverTool, CustomJS, Div, Button, TextInput from bokeh.plotting import curdoc, figure, output_file, show from bokeh.layouts import column, row from bokeh import events import sys, getopt verbose = False try: opts, args = getopt.getopt(sys.argv[1:],"p:v",["path="]) except getopt.GetoptError: print('bokeh_serve.py -p <file_path>') sys.exit(2) for opt, arg in opts: if opt == ("-v"): verbose = True elif opt in ("-p", "--path"): path = arg if verbose: print(path) print(f'The path is {path}') if path[-1] == '/': pass else: path += '/' # Load the weights, activations, and images name_all = np.load(f'{path}Data_name_all.npy') images = np.load(f'{path}Data_images.npy') images = images * 255 im = Image.open(f'{path}test1.png') im = im.convert("RGBA") imarray = np.array(im) imarray = np.flipud(imarray) X = np.load(f'{path}Data_activations.npy') X_umap = np.load(f'{path}Data_umap.npy') x_min1, x_max1 = np.min(X_umap, 0), np.max(X_umap, 0) X_umap = ((X_umap - x_min1) / (x_max1 - x_min1)) * 15 # Load tooltips for hovering TOOLTIPS = [ ("index", "$index"), ("(x,y)", "($x, $y)"), ("filename", "@filename"), ("umapid", "@umapid"), ] # Call out data points for the original and recrusvie projection s1 = ColumnDataSource(data=dict(x=[], y=[], filename=[], umapid=[])) s2 = ColumnDataSource(data=dict(x=[], y=[], filename=[], umapid=[])) div = Div(width=400) # Original projection set up p1 = figure(plot_width=600, plot_height=600, title="Select Here") p1.min_border = 0 p1.x_range.range_padding = p1.y_range.range_padding = 0 p1.image_rgba(image=[imarray], x=0, y=0, dw=15, dh=15) p1.add_tools(LassoSelectTool()) p1.add_tools(BoxSelectTool()) p1.add_tools(CrosshairTool()) cr1 = p1.square('x', 'y', source=s1, fill_color="white", hover_fill_color="firebrick", fill_alpha=0.05, hover_alpha=0.3, line_color=None, size=10) # settings for hovering p1.add_tools(HoverTool(tooltips=TOOLTIPS, renderers=[cr1])) # Recursive projection set up p2 = figure(plot_width=600, plot_height=600, title="Watch Here") p2.min_border = 0 p2.x_range.range_padding = p2.y_range.range_padding = 0 p2.add_tools(LassoSelectTool()) p2.add_tools(BoxSelectTool()) p2.add_tools(CrosshairTool()) ds = ColumnDataSource(data=dict(image=[])) p2.image_rgba(image='image', source=ds, x=0, y=0, dw=15, dh=15) cr2 = p2.square('x', 'y', source=s2, fill_color="white", hover_fill_color="firebrick", fill_alpha=0.1, hover_alpha=0.3, line_color=None, size=10) # settings for hovering p2.add_tools(HoverTool(tooltips=TOOLTIPS, renderers=[cr2])) # Load UMAP actiations into the original projection data1 = dict( x=[i * 1 for i in X_umap[:, 0]], y=[i * 1 for i in X_umap[:, 1]], filename=name_all[:], umapid=list(range(0, len(X_umap)))) data1 = pd.DataFrame(data1) data2 = dict(x=[], y=[], filename=[], umapid=[]) data2 =
pd.DataFrame(data2)
pandas.DataFrame
# Import required modules import requests import pandas as pd import json import subprocess from tqdm import tqdm import re # Set pandas to show full rows and columns pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) pd.set_option('display.width', None) pd.set_option('display.max_colwidth', None) ''' This is API Query Function ''' # Main function starts here def query(cname="cname", apikey="apikey", apiquery="apiquery"): ''' -- cname --> Cloud Instance Name <cname.infocyte.com> ('cname' is without .infocyte.com) -- apikey --> APIKEY or the API Token -- apiquery --> API GET Method ** Set above args as pre-defined variables (Can be used multiple times) or call them on the fly (Single use). icdata = ic.query(cname, apikey, apiquery) variable 'icdata' --> PandasDataframe. Can now be used with all options available from pandas. Refer README and Wiki for more details. https://pandas.pydata.org/docs/ Note: 'query' function loops until it reaches the last page on API explorer. Larger the data, more time it takes. However each loop will pull 1K entries (rows) and progress details are displayed while quering the data. ''' tqdm.pandas() global icpd, icd icd = requests.get("https://"+cname+".infocyte.com/api/" + apiquery+"?access_token="+apikey + "&count=True") if "There is no method to handle GET" in icd.content.decode("utf-8"): print("API Endpoint not found, suffix \"/explorer/#/\" at the end of URL to find the correct end point") elif icd.reason == "Not Found": print("Please check the CNAME used is correct") elif icd.reason == "Unauthorized": print("Please check the APIKey / Token has the permission to access the instance") elif icd.reason != "OK": print("Something went wrong and unable to find the reason") else: iccount = (str(icd.headers.get("X-Total-Count"))[:-3]) if (len(iccount) == 0): loopic = icd for x in tqdm(range(1), desc="Loading " + apiquery, ncols=100, unit='Loop(s)', bar_format='{l_bar}{bar} | {n_fmt}/{total_fmt} {unit}', colour='GREEN'): icdata = json.loads(loopic.text) icdb = pd.DataFrame(icdata) icpd = icdb else: icdata = json.loads(icd.text) icdb = pd.DataFrame(icdata) icpd = icdb for x in (num+1 for num in tqdm(range(int(iccount)), desc="Loading " + apiquery, ncols=100, unit='Loop(s)', bar_format='{l_bar}{bar} | {n_fmt}/{total_fmt} {unit}', colour='GREEN')): if x > 9: loopic = requests.get("https://"+cname+".infocyte.com/api/"+apiquery + "?access_token=" + apikey+"&filter={\"skip\": "+str(x).ljust(5, '0')+"}") icdata = json.loads(loopic.text) icdb = pd.DataFrame(icdata) icpd = icpd.append(icdb, ignore_index=True) else: loopic = requests.get("https://"+cname+".infocyte.com/api/"+apiquery + "?access_token=" + apikey+"&filter={\"skip\": "+str(x).ljust(4, '0')+"}") icdata = json.loads(loopic.text) icdb =
pd.DataFrame(icdata)
pandas.DataFrame
"""Created on Fri Apr 3 11:05:15 2020. Contains the functions needed for data manipulation @author: MLechner -*- coding: utf-8 -*- """ import copy import math from concurrent import futures import numpy as np import pandas as pd import ray from mcf import general_purpose as gp from mcf import general_purpose_estimation as gp_est from mcf import general_purpose_mcf as gp_mcf def variable_features(var_x_type, var_x_values): """ Show variables and their key features. Parameters ---------- var_x_type : Dict. Name and type of variable. var_x_values : Dict. Name and values of variables. Returns ------- None. """ print('\n') print(80 * '=') print('Features used to build causal forests') print(80 * '-') for name in var_x_type.keys(): print('{:20} '.format(name), end=' ') if var_x_type[name] == 0: print('Ordered ', end='') if var_x_values[name]: if isinstance(var_x_values[name][0], float): for val in var_x_values[name]: print('{:>6.2f}'.format(val), end=' ') print(' ') else: print(var_x_values[name]) else: print('Continuous') else: print('Unordered ', len(var_x_values[name]), ' different values') print(80 * '-') def prepare_data_for_forest(indatei, v_dict, v_x_type, v_x_values, c_dict, no_y_nn=False, regrf=False): """Prepare data for Forest and variable importance estimation. Parameters ---------- indatei : String. CSV file. v_dict : DICT. Variables. v_x_type : List. Type of variables. v_x_values : List. Values of variables (if not continuous). c_dict : DICT. Parameters. Returns ------- x_name : Dict. x_type :Dict. x_values : Dict. c : Dict. Parameters (updated) pen_mult : INT. Multiplier for penalty. data_np : Numpy array. Data for estimation. y_i : INT. Index of position of y in data_np. y_nn_i : Numpy array of INT. x_i : Numpy array of INT. x_ind : Numpy array of INT. x_ai_ind : Numpy array of INT. d_i : INT. w_i : INT. cl_i : INT. """ x_name, x_type = gp.get_key_values_in_list(v_x_type) x_type = np.array(x_type) x_name2, x_values = gp.get_key_values_in_list(v_x_values) pen_mult = 0 if x_name != x_name2: raise Exception('Wrong order of names', x_name, x_name2) p_x = len(x_name) # Number of variables c_dict = m_n_grid(c_dict, p_x) # Grid for # of var's used for split x_ind = np.array(range(p_x)) # Indices instead of names of variable x_ai_ind = [] # Indices of variables used for all splits if not v_dict['x_name_always_in'] == []: always_in_set = set(v_dict['x_name_always_in']) x_ai_ind = np.empty(len(always_in_set), dtype=np.uint32) j = 0 for i in range(p_x): if x_name[i] in always_in_set: x_ai_ind[j] = i j = j + 1 data = pd.read_csv(indatei) y_dat = data[v_dict['y_tree_name']].to_numpy() if not regrf: if (c_dict['mtot'] == 1) or (c_dict['mtot'] == 4): pen_mult = c_dict['mtot_p_diff_penalty'] * np.var(y_dat) y_i = [0] if regrf: d_dat = None d_i = None else: d_dat = data[v_dict['d_name']].to_numpy() d_i = [1] if regrf: y_nn = None y_nn_i = None else: if no_y_nn: # y_nn = np.zeros((np.size(d), len(v['y_match_name']))) y_nn = np.zeros((len(d_dat), len(v_dict['y_match_name']))) else: y_nn = data[v_dict['y_match_name']].to_numpy() y_nn_i = range(2, 2 + len(v_dict['y_match_name'])) y_nn_i = np.array(y_nn_i) x_dat = data[x_name].to_numpy() for col_indx in range(np.shape(x_dat)[1]): if x_type[col_indx] > 0: x_dat[:, col_indx] = np.around(x_dat[:, col_indx]) if regrf: x_i = np.array(range(1, 1+len(v_dict['x_name']))) data_np = np.concatenate((y_dat, x_dat), axis=1) # easier handling else: x_i = np.array( range(2 + len(v_dict['y_match_name']), 2 + len(v_dict['y_match_name']) + len(v_dict['x_name']))) data_np = np.concatenate((y_dat, d_dat, y_nn, x_dat), axis=1) if c_dict['w_yes']: w_dat = data[v_dict['w_name']].to_numpy() data_np = np.concatenate((data_np, w_dat), axis=1) w_i = data_np.shape[1]-1 else: w_i = 0 if c_dict['panel_in_rf']: cl_dat = data[v_dict['cluster_name']].to_numpy() data_np = np.concatenate((data_np, cl_dat), axis=1) cl_i = data_np.shape[1]-1 else: cl_i = 0 return (x_name, x_type, x_values, c_dict, pen_mult, data_np, y_i, y_nn_i, x_i, x_ind, x_ai_ind, d_i, w_i, cl_i) def m_n_grid(c_dict, no_vars): """Generate the grid for the # of coefficients (log-scale).Sort n_min grid. Parameters ---------- c_dict : Dict. Parameters of MCF estimation no_vars : INT. Number of x-variables used for tree building Returns ------- c : Dict. Updated (globally) dictionary with parameters. """ m_min = round(c_dict['m_min_share'] * no_vars) m_min = max(m_min, 1) m_max = round(c_dict['m_max_share'] * no_vars) if m_min == m_max: c_dict['m_grid'] = 1 grid_m = m_min else: if c_dict['m_grid'] == 1: grid_m = round((m_min + m_max)/2) else: grid_m = gp.grid_log_scale(m_max, m_min, c_dict['m_grid']) grid_m = [int(idx) for idx in grid_m] if np.size(c_dict['grid_n_min']) > 1: c_dict['grid_n_min'] = sorted(c_dict['grid_n_min'], reverse=True) c_dict.update({'grid_m': grid_m}) # changes this dictionary globally return c_dict def nn_neighbour_mcf(y_dat, x_dat, d_dat, obs, cov_x_inv, treat_values, i_treat): """Find nearest neighbour-y in subsamples by value of d. Parameters ---------- y_dat : Numpy array: Outcome variable x_dat : Numpy array: Covariates d_dat : Numpy array: Treatment obs : INT64: Sample size cov_x_inv : Numpy array: inverse of covariance matrix treat_values : Numpy array: possible values of D i_treat : Position treat_values investigated Returns ------- y_all : Numpy series with matched values. i_treat: see above (included to ease mulithreading which may confuse positions). """ treat_value = treat_values[i_treat] cond = d_dat[:, 0] == treat_value x_t = x_dat[cond, :] y_t = y_dat[cond, :] y_all = np.empty([obs, 1]) for i in range(obs): if treat_value == d_dat[i, 0]: y_all[i, 0] = y_dat[i, 0] else: diff = x_t - x_dat[i, :] dist = np.sum(np.dot(diff, cov_x_inv) * diff, axis=1) min_ind = np.argmin(dist) y_all[i, 0] = np.copy(y_t[min_ind, 0]) return y_all, i_treat # i_treat is returned for multithreading @ray.remote def ray_nn_neighbour_mcf2(y_dat, x_dat, d_dat, obs, cov_x_inv, treat_value, i_treat=None): """Make procedure compatible for Ray.""" return nn_neighbour_mcf2(y_dat, x_dat, d_dat, obs, cov_x_inv, treat_value, i_treat) def nn_neighbour_mcf2(y_dat, x_dat, d_dat, obs, cov_x_inv, treat_value, i_treat=None): """Find nearest neighbour-y in subsamples by value of d. Parameters ---------- y_dat : Numpy array: Outcome variable x_dat : Numpy array: Covariates d_dat : Numpy array: Treatment obs : INT64: Sample size cov_x_inv : Numpy array: inverse of covariance matrix treat_values : Numpy array: possible values of D i_treat : Position treat_values investigated Returns ------- y_all : Numpy series with matched values. i_treat: see above (included to ease mulithreading which may confuse positions). """ cond = (d_dat == treat_value).reshape(-1) x_t = x_dat[cond, :] y_t = y_dat[cond] y_all = np.empty(obs) for i in range(obs): if treat_value == d_dat[i]: y_all[i] = y_dat[i] else: diff = x_t - x_dat[i, :] dist = np.sum(np.dot(diff, cov_x_inv) * diff, axis=1) min_ind = np.nonzero(dist <= (dist.min() + 1e-15)) y_all[i] = np.mean(y_t[min_ind]) if i_treat is None: return y_all # i_treat is returned for multithreading return y_all, i_treat # i_treat is returned for multithreading def nn_matched_outcomes(indatei, v_dict, v_type, c_dict): """Nearest neighbor matching for outcome variables. Parameters ---------- indatei : string.Data input v_dict : Dict with variables v_type : Dict with variable types (for dummy creation) c_dict : Dict with control parameters Returns ------- string with name of new data file v_dict : Updated dictionary with names including """ # read as pandas data data =
pd.read_csv(filepath_or_buffer=indatei)
pandas.read_csv
import pandas as pd import json import os def run_microsoft_parser(path_save, path_source): print('Consolidating results of Microsoft classifier') files = [item for item in os.listdir(path_source) if '.pkl' in item] print(len(files), 'to consolidate') df = pd.DataFrame() for file in files: try: tmpdf = pd.read_pickle(path_source+'/'+file) df = df.append(tmpdf) except: print(file, 'error') def parse_tagging(tagging, unique_photo_id): results = pd.DataFrame() tagging = json.loads(tagging) if 'categories' in tagging.keys(): categories = tagging['categories'] cat_df = [] for category in categories: res = {} res['unique_photo_id'] = unique_photo_id res['microsoft_category_label'] = category['name'] res['microsoft_category_score'] = category['score'] res['classifier'] = 'microsoft_category' cat_df.append(res) results = results.append(pd.DataFrame(cat_df)) tags = tagging['tags'] tags_df = [] for tag in tags: res = {} res['unique_photo_id'] = unique_photo_id res['classifier'] = 'microsoft_tags' res['microsoft_tags_name'] = tag['name'] res['microsoft_tags_score'] = tag['confidence'] tags_df.append(res) results = results.append(pd.DataFrame(tags_df)) faces_df = [] for face in tagging['faces']: res = {} res['classifier'] = 'microsoft_faces' res['unique_photo_id'] = unique_photo_id res['microsoft_faces_age'] = face['age'] res['microsoft_faces_gender'] = face['gender'] faces_df.append(res) results = results.append(
pd.DataFrame(faces_df)
pandas.DataFrame
import numpy as np import pystan import pickle from pystan import StanModel import pandas as pd import os def stanTopkl(): """ The function complies 'stan' models first and avoids re-complie of the model. """ if os.path.isfile('log_normal.pkl'): os.remove('log_normal.pkl') sm = StanModel(file = 'log_normal.stan') with open('log_normal.pkl', 'wb') as f: pickle.dump(sm, f) if os.path.isfile('log_t.pkl'): os.remove('log_t.pkl') sm = StanModel(file = 'log_t.stan') with open('log_t.pkl', 'wb') as f: pickle.dump(sm, f) def MCMCFit(Y, b, tau, model='log_normal', df=2, beta=0.01, sigma=1, nu=1, iter=10000, chains=1): """ The function to compute the MCMC posterior of 'B' and 'G' given the counts. We use pystan to fit the posterior. Keyword arguments: Y -- logarithm of the counts Each row is observations from a same instrument; each column is observations of a same object. b -- prior mean for 'B' tau -- prior standard deviation for 'B' model -- model used to fit the data (default 'log_normal') If 'model' is 'log_normal', we fit the log-normal model with unknown variance. If 'model' is 'log_t', we fit the log-t model. df -- used when 'model' is 'log_normal', prior parameter for the variance (default 2.0) beta -- used when 'model' is 'log_normal', prior parameter for the variance (default 0.01) sigma -- used when 'model' is 'log_t', prior parameter for the variance (default 1.0) nu -- used when 'model' is 'log_t', prior parameter for the variance (default 1.0) iter -- number of iterations in MCMC (default 10000) chains -- number of chains in MCMC (default 1) """ N, M = Y.shape # Record the index for the observations. I = [] J = [] y = [] for i in np.arange(N): for j in np.arange(M): if not np.isinf(Y[i, j]): I.append(i+1) J.append(j+1) y.append(Y[i, j]) I = np.array(I, dtype=int) J = np.array(J, dtype=int) y = np.array(y, dtype=float) n = len(y) if model == 'log_normal': dat = {'n': n, 'N': N, 'M': M, 'I': I, 'J': J, 'y': y, 'df': df, 'beta': beta, 'tau': tau, 'b': b} sm = pickle.load(open('log_normal.pkl', 'rb')) fit = sm.sampling(data=dat, iter=iter, chains=chains) elif model == 'log_t': dat = {'n': n, 'N': N, 'M': M, 'I': I, 'J': J, 'y': y, 'sigma': sigma, 'nu': nu, 'tau': tau, 'b': b} sm = pickle.load(open('log_t.pkl', 'rb')) fit = sm.sampling(data=dat, iter=iter, chains=chains) else: return None return summary_result(fit, model, N, M, n, I, J) def summary_result(fit, model, N, M, n, I, J): """ The function summarizes the result from pystan. Keyword arguments: fit -- the MCMC result model -- the model used to fit the data If 'model' is 'log_normal', we fit the log-normal model with unknown variance. If 'model' is 'log_t', we fit the log-t model. N -- number of instruments M -- number of objects n -- total number of observations I -- instrument index for each observation J -- object index for each observation """ # Summary statistics for 'B', 'G' and 'sigma^2' (log-normal) or 'xi' (log-t). resMCMC = fit.summary() index = [] if model == 'log_normal': # The MCMC chains for 'B', 'G' and 'sigma^22'. chain = np.hstack((fit['B'], fit['G'], fit['sigma2'])) data = (resMCMC['summary'])[:N+M+N, :] for i in np.arange(N): index.append('B['+str(i+1)+']') for j in np.arange(M): index.append('G['+str(j+1)+']') for i in np.arange(N): index.append('sigma^2['+str(i+1)+']') else: # The MCMC chains for 'B', 'G' and 'xi'. chain = np.hstack((fit['B'], fit['G'], fit['xi'])) data = (resMCMC['summary'])[:N+M+n, :] for i in np.arange(N): index.append('B['+str(i+1)+']') for j in np.arange(M): index.append('G['+str(j+1)+']') for k in np.arange(n): index.append('xi['+str(I[k])+','+str(J[k])+']') chain =
pd.DataFrame(chain, columns=index)
pandas.DataFrame
import unittest import pandas as pd import numpy as np from pandas.testing import assert_frame_equal from msticpy.analysis.anomalous_sequence import sessionize class TestSessionize(unittest.TestCase): def setUp(self): self.df1 = pd.DataFrame({"UserId": [], "time": [], "operation": []}) self.df1_with_ses_col = pd.DataFrame( {"UserId": [], "time": [], "operation": [], "session_ind": []} ) self.df1_sessionized = pd.DataFrame( { "UserId": [], "time_min": [], "time_max": [], "operation_list": [], "duration": [], "number_events": [], } ) self.df2 = pd.DataFrame( { "UserId": [1, 1, 2, 3, 1, 2, 2], "time": [ pd.to_datetime("2020-01-03 00:00:00"), pd.to_datetime("2020-01-03 00:01:00"), pd.to_datetime("2020-01-05 00:00:00"), pd.to_datetime("2020-01-06 11:06:00"), pd.to_datetime("2020-01-03 01:00:00"), pd.to_datetime("2020-01-05 00:21:00"), pd.to_datetime("2020-01-05 00:25:00"), ], "operation": ["A", "B", "C", "A", "A", "B", "C"], } ) self.df2_with_ses_col_1 = pd.DataFrame( { "UserId": [1, 1, 1, 2, 2, 2, 3], "time": [ pd.to_datetime("2020-01-03 00:00:00"), pd.to_datetime("2020-01-03 00:01:00"), pd.to_datetime("2020-01-03 01:00:00"), pd.to_datetime("2020-01-05 00:00:00"), pd.to_datetime("2020-01-05 00:21:00"), pd.to_datetime("2020-01-05 00:25:00"), pd.to_datetime("2020-01-06 11:06:00"), ], "operation": ["A", "B", "A", "C", "B", "C", "A"], "session_ind": [0, 0, 1, 2, 3, 4, 5], } ) self.df2_sessionized_1 = pd.DataFrame( { "UserId": [1, 1, 2, 2, 2, 3], "time_min": [ pd.to_datetime("2020-01-03 00:00:00"), pd.to_datetime("2020-01-03 01:00:00"), pd.to_datetime("2020-01-05 00:00:00"), pd.to_datetime("2020-01-05 00:21:00"), pd.to_datetime("2020-01-05 00:25:00"), pd.to_datetime("2020-01-06 11:06:00"), ], "time_max": [ pd.to_datetime("2020-01-03 00:01:00"), pd.to_datetime("2020-01-03 01:00:00"), pd.to_datetime("2020-01-05 00:00:00"), pd.to_datetime("2020-01-05 00:21:00"), pd.to_datetime("2020-01-05 00:25:00"), pd.to_datetime("2020-01-06 11:06:00"), ], "operation_list": [["A", "B"], ["A"], ["C"], ["B"], ["C"], ["A"]], "duration": [ pd.to_timedelta(1, "min"), pd.to_timedelta(0, "min"), pd.to_timedelta(0, "min"), pd.to_timedelta(0, "min"), pd.to_timedelta(0, "min"), pd.to_timedelta(0, "min"), ], "number_events": [2, 1, 1, 1, 1, 1], } ) self.df2_with_ses_col_2 = pd.DataFrame( { "UserId": [1, 1, 1, 2, 2, 2, 3], "time": [ pd.to_datetime("2020-01-03 00:00:00"), pd.to_datetime("2020-01-03 00:01:00"), pd.to_datetime("2020-01-03 01:00:00"), pd.to_datetime("2020-01-05 00:00:00"), pd.to_datetime("2020-01-05 00:21:00"), pd.to_datetime("2020-01-05 00:25:00"), pd.to_datetime("2020-01-06 11:06:00"), ], "operation": ["A", "B", "A", "C", "B", "C", "A"], "session_ind": [0, 0, 1, 2, 3, 3, 4], } ) self.df2_sessionized_2 = pd.DataFrame( { "UserId": [1, 1, 2, 2, 3], "time_min": [ pd.to_datetime("2020-01-03 00:00:00"), pd.to_datetime("2020-01-03 01:00:00"), pd.to_datetime("2020-01-05 00:00:00"), pd.to_datetime("2020-01-05 00:21:00"), pd.to_datetime("2020-01-06 11:06:00"), ], "time_max": [ pd.to_datetime("2020-01-03 00:01:00"), pd.to_datetime("2020-01-03 01:00:00"), pd.to_datetime("2020-01-05 00:00:00"),
pd.to_datetime("2020-01-05 00:25:00")
pandas.to_datetime
#%% [markdown] # ## ECA information theory comparison figures and stuff #%% [markdown] # ## Load packages and data #%% import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns cana_df = pd.read_csv("../data/eca/canalization_df.csv") imin_df = pd.read_csv("../data/eca/imin_df.csv", index_col = 0) ipm_df = pd.read_csv("../data/eca/pm_df.csv", index_col = 0) unq_rules =
pd.read_csv("../data/eca/eca_equiv_classes.csv")
pandas.read_csv
import pandas as pd import numpy as np from pathlib import Path from datetime import datetime as dt def mergeManagers(managers, gameLogs): #Sum up doubled data managers = managers.groupby(['yearID','playerID'], as_index=False)['Games','Wins','Losses'].sum() #Get visiting managers visitingManagers = gameLogs[['row','Date','Visiting team manager ID']] visitingManagers['yearID'] = pd.DatetimeIndex(pd.to_datetime(visitingManagers['Date'])).year-1 visitingManagers = pd.merge(visitingManagers, managers, left_on=['yearID','Visiting team manager ID'], right_on=['yearID','playerID'], how="left") #Get home managers homeManagers = gameLogs[['row','Date','Home team manager ID']] homeManagers['yearID'] = pd.DatetimeIndex(pd.to_datetime(homeManagers['Date'])).year-1 homeManagers = pd.merge(homeManagers, managers, left_on=['yearID','Home team manager ID'], right_on=['yearID','playerID'], how="left") #Merge managers homes = homeManagers[['row','Games','Wins','Losses']] visitings = visitingManagers[['row','Games','Wins','Losses']] return pd.merge(homes, visitings, on='row', suffixes=(' home manager',' visiting manager')) def mergePitchings(pitchers, gameLogs): #Get aggregators for doubled data aggregators = {} for column in pitchers.drop(columns=['yearID','playerID']).columns: if column.find("average")>-1: aggregators[column] = 'mean' else: aggregators[column] = 'sum' #Aggregate doubled data pitchers = pitchers.groupby(['yearID','playerID'], as_index=False).agg(aggregators) #Get visiting pitchers visitingPitchers = gameLogs[['row','Date','Visiting starting pitcher ID']] visitingPitchers['yearID'] = pd.DatetimeIndex(pd.to_datetime(visitingPitchers['Date'])).year-1 visitingPitchers = pd.merge(visitingPitchers, pitchers, left_on=['yearID','Visiting starting pitcher ID'], right_on=['yearID','playerID'], how="left") #Get home pitchers homePitchers = gameLogs[['row','Date','Home starting pitcher ID']] homePitchers['yearID'] = pd.DatetimeIndex(pd.to_datetime(homePitchers['Date'])).year-1 homePitchers = pd.merge(homePitchers, pitchers, left_on=['yearID','Home starting pitcher ID'], right_on=['yearID','playerID'], how="left") #Merge pitchers homes = homePitchers.drop(columns=['yearID','Home starting pitcher ID','playerID','Date']) visitings = visitingPitchers.drop(columns=['yearID','Visiting starting pitcher ID','playerID','Date']) return pd.merge(homes, visitings, on='row', suffixes=(' home pitcher',' visiting pitcher')) def mergePeople(people, gameLogs): #Encode people people['bats right'] = (people['bats']=="R") | (people['bats']=="B") people['bats left'] = (people['bats']=="L") | (people['bats']=="B") people['throws right'] = people['throws']=="R" people = people.drop(columns=['bats','throws']) #Merge people allPeople = [] for IDColumn in gameLogs.columns: if IDColumn.find("starting")>-1: merged = pd.merge(gameLogs[['row','Date',IDColumn]], people, how="left", left_on=[IDColumn], right_on=['playerID']) merged['age'] = (pd.to_datetime(merged['Date']) - pd.to_datetime(merged['birthdate'])) / np.timedelta64(1, 'Y') newColumns = {"age":IDColumn.replace(" ID"," "+" age")} for column in people.drop(columns=['playerID','birthdate']).columns: newColumns[column] = IDColumn.replace(" ID"," "+str(column)) merged = merged.rename(columns=newColumns) allPeople.append(merged[['row']+list(newColumns.values())]) mergedPeople = gameLogs['row'] for merSal in allPeople: mergedPeople = pd.merge(mergedPeople, merSal, how="left", on='row') return mergedPeople def mergeTeams(teams, gameLogs): #Encode team data teams.loc[(teams['Division winner'] == 'N'), 'Division winner'] = 0 teams.loc[(teams['Division winner'] == 'Y'), 'Division winner'] = 1 teams.loc[(teams['League winner'] == 'N'), 'League winner'] = 0 teams.loc[(teams['League winner'] == 'Y'), 'League winner'] = 1 teams.loc[(teams['World series winner'] == 'N'), 'World series winner'] = 0 teams.loc[(teams['World series winner'] == 'Y'), 'World series winner'] = 1 teams.loc[(teams['Division'] == 'W'), 'Division'] = 0 teams.loc[(teams['Division'] == 'E'), 'Division'] = 1 teams.loc[(teams['Division'] == 'C'), 'Division'] = 2 teams['Pythagorean_expectation'] = (teams['Runs scored'] ** 1.83) / (teams['Runs scored'] ** 1.83 + teams['Opponents runs scored'] ** 1.83) #Merge teams mergedTeams = gameLogs[['row','Date','Visiting team','Home team']] mergedTeams['Date'] = pd.to_datetime(mergedTeams['Date']).dt.year-1 mergedTeams = pd.merge(mergedTeams, teams, left_on=['Date', 'Visiting team'], right_on=['yearID', 'teamID'], how='left') mergedTeams = pd.merge(mergedTeams, teams, left_on=['Date', 'Home team'], right_on=['yearID', 'teamID'], how='left', suffixes=[' visiting', ' home']) return mergedTeams[['row', 'Division visiting', 'Rank visiting', 'Games visiting', 'Wins visiting', 'Losses visiting', 'Division winner visiting', 'League winner visiting', 'World series winner visiting', 'Runs scored visiting', 'At bats visiting', 'Hits by batters visiting', 'Doubles visiting', 'Triples visiting', 'Homeruns visiting', 'Walks visiting', 'Strikeouts visiting', 'Stolen bases visiting', 'Cought stealing visiting', 'Batters hit by pitch visiting', 'Sacrifice flies visiting', 'Opponents runs scored visiting', 'Earned runs allowed visiting', 'Earned runs average visiting', 'Shutouts visiting', 'Saves visiting', 'Hits allowed visiting', 'Homeruns allowed visiting', 'Walks allowed visiting', 'Strikeouts allowed visiting', 'Errors visiting', 'Double plays visiting', 'Fielding percentage visiting', 'Pythagorean_expectation visiting', 'Division home', 'Rank home', 'Games home', 'Wins home', 'Losses home', 'Division winner home', 'League winner home', 'World series winner home', 'Runs scored home', 'At bats home', 'Hits by batters home', 'Doubles home', 'Triples home', 'Homeruns home', 'Walks home', 'Strikeouts home', 'Stolen bases home', 'Cought stealing home', 'Batters hit by pitch home', 'Sacrifice flies home', 'Opponents runs scored home', 'Earned runs allowed home', 'Earned runs average home', 'Shutouts home', 'Saves home', 'Hits allowed home', 'Homeruns allowed home', 'Walks allowed home', 'Strikeouts allowed home', 'Errors home', 'Double plays home', 'Fielding percentage home', 'Pythagorean_expectation home']] def createScorings(gameLogs): scoreLogs = gameLogs[['row','Visiting team','Home team','Visiting score','Home score']] scoreLogs['Home team win'] = scoreLogs['Home score']>scoreLogs['Visiting score'] scoreLogs['Home team odd'] = (scoreLogs['Home score'].replace(0,1))/(scoreLogs['Visiting score'].replace(0,1)) homeTeams = {} for team in scoreLogs['Home team'].unique(): homeTeams[team] = scoreLogs[scoreLogs['Home team']==team] vistTeams = {} for team in scoreLogs['Visiting team'].unique(): vistTeams[team] = scoreLogs[scoreLogs['Visiting team']==team] homeTVers = {} for hTeam in homeTeams: homeTeams[hTeam]['Home win ratio'] = homeTeams[hTeam].loc[:,'Home team win'].rolling(10).mean().shift(1) homeTeams[hTeam]['Home score ratio'] = homeTeams[hTeam].loc[:,'Home score'].rolling(10).mean().shift(1) homeTeams[hTeam]['Home odd ratio'] = homeTeams[hTeam].loc[:,'Home team odd'].rolling(10).mean().shift(1) temp = homeTeams[hTeam] versus = {} for team in temp['Visiting team'].unique(): versus[team] = temp[temp['Visiting team']==team] for vTeam in versus: versus[vTeam]['Home versus win ratio'] = versus[vTeam].loc[:,'Home team win'].rolling(5).mean().shift(1) versus[vTeam]['Home versus score ratio'] = versus[vTeam].loc[:,'Home score'].rolling(5).mean().shift(1) versus[vTeam]['Home versus odd ratio'] = versus[vTeam].loc[:,'Home team odd'].rolling(5).mean().shift(1) homeTVers[hTeam] = pd.concat(versus) vistTVers = {} for vTeam in vistTeams: vistTeams[vTeam]['Visiting win ratio'] = (1-vistTeams[vTeam].loc[:,'Home team win']).rolling(10).mean().shift(1) vistTeams[vTeam]['Visiting score ratio'] = vistTeams[vTeam].loc[:,'Visiting score'].rolling(10).mean().shift(1) vistTeams[vTeam]['Visiting odd ratio'] = (1/vistTeams[vTeam].loc[:,'Home team odd']).rolling(10).mean().shift(1) temp = vistTeams[vTeam] versus = {} for team in temp['Home team'].unique(): versus[team] = temp[temp['Home team']==team] for hTeam in versus: versus[hTeam]['Visiting versus win ratio'] = (1-versus[hTeam].loc[:,'Home team win']).rolling(5).mean().shift(1) versus[hTeam]['Visiting versus score ratio'] = versus[hTeam].loc[:,'Visiting score'].rolling(5).mean().shift(1) versus[hTeam]['Visiting versus odd ratio'] = (1/versus[hTeam].loc[:,'Home team odd']).rolling(5).mean().shift(1) vistTVers[vTeam] = pd.concat(versus) merged = pd.merge(pd.concat(vistTeams)[['row' ,'Visiting win ratio' ,'Visiting score ratio' ,'Visiting odd ratio']] ,pd.concat(homeTVers)[['row' ,'Home versus win ratio' ,'Home versus score ratio' ,'Home versus odd ratio']] , on='row') merged = pd.merge(pd.concat(vistTVers)[['row' ,'Visiting versus win ratio' ,'Visiting versus score ratio' ,'Visiting versus odd ratio']] ,merged, on='row') merged = pd.merge(pd.concat(homeTeams)[['row' ,'Home win ratio' ,'Home score ratio' ,'Home odd ratio']] ,merged, on='row') return pd.merge(scoreLogs[['row','Visiting score','Home score','Home team win','Home team odd']],merged, on='row').fillna(0) def mergeFieldings(fieldings, gameLogs): fieldings = fieldings.groupby(['yearID','playerID'], as_index=False).sum() gameLogs['yearID'] = pd.DatetimeIndex(pd.to_datetime(gameLogs['Date'])).year-1 allPlayers = [] for playerColumn in gameLogs.columns: if playerColumn.find("starting")>-1: merged = pd.merge(gameLogs[['row','yearID',playerColumn]], fieldings, how="left", left_on=[playerColumn,'yearID'], right_on=['playerID','yearID']) newColumns = {} for column in fieldings.drop(columns=['playerID','yearID']).columns: newColumns[column] = playerColumn.replace(" ID"," "+str(column)) merged = merged.rename(columns=newColumns) allPlayers.append(merged[['row']+list(newColumns.values())]) mergedFieldings = gameLogs['row'] for playerData in allPlayers: mergedFieldings = pd.merge(mergedFieldings, playerData, how="left", on='row') return mergedFieldings def mergeBattings(battings, gameLogs): battings = battings.groupby(['yearID','playerID'], as_index=False).sum() gameLogs['yearID'] = pd.DatetimeIndex(pd.to_datetime(gameLogs['Date'])).year-1 allPlayers = [] for playerColumn in gameLogs.columns: if playerColumn.find("starting")>-1: merged = pd.merge(gameLogs[['row','yearID',playerColumn]], battings, how="left", left_on=[playerColumn,'yearID'], right_on=['playerID','yearID']) newColumns = {} for column in battings.drop(columns=['playerID','yearID']).columns: newColumns[column] = playerColumn.replace(" ID"," "+str(column)) merged = merged.rename(columns=newColumns) allPlayers.append(merged[['row']+list(newColumns.values())]) mergedBattings = gameLogs['row'] for playerData in allPlayers: mergedBattings = pd.merge(mergedBattings, playerData, how="left", on='row') return mergedBattings path = Path gameLogs = pd.read_csv(path+r'\Filtered\_mlb_filtered_GameLogs.csv', index_col=False) people = pd.read_csv(path+r'\Filtered\_mlb_filtered_People.csv', index_col=False) teams = pd.read_csv(path+r'\Filtered\_mlb_filtered_Teams.csv', index_col=False) managers = pd.read_csv(path+r'\Filtered\_mlb_filtered_Managers.csv', index_col=False) pitchings =
pd.read_csv(path+r'\Filtered\_mlb_filtered_Pitching.csv', index_col=False)
pandas.read_csv
from collections.abc import MutableMapping from datetime import datetime from numpy import exp import pandas as pd CHANNEL_ERROR = 'Channel not supported.' DIRECTION_ERROR = 'Direction not supported.' class SPMImage(): data_headers = [ 'sample_id', 'rec_index', 'probe', 'channel', 'direction', 'trace', 'setpoint (A)', 'voltage (V)', 'width (m)', 'height (m)', 'scan_time (s)', 'datetime', 'path', 'image' ] def __init__(self, dataframe, metadata) -> None: self.metadata = metadata self.dataframe = dataframe def summary(self): sample_id = self.dataframe.at[0, 'sample_id'] rec_index = self.dataframe.at[0, 'rec_index'] channel = self.dataframe.at[0, 'channel'] datetime_obj = datetime.fromisoformat(self.dataframe.at[0, 'datetime']) date = datetime_obj.strftime('%y%m%d') # date = self.dataframe.at[0, 'datetime'] bias = self.dataframe.at[0, 'voltage (V)'] size = round(self.dataframe.at[0, 'width (m)'] * pow(10,9)) # return f"{sample_id}_{date}_{bias}V_{size}x{size}_{channel}" return f"{sample_id}_{date}_{bias}V_{size}x{size}_{rec_index}_{channel}" class SPMImage_dict(MutableMapping): def __init__(self, path='', *args, **kwargs): self.path = path self.params = dict() self.headers = dict() self.data = {'Z':[], 'Current':[]} self.traces = {'Z':[], 'Current':[]} self.update(*args, **kwargs) def reformate(self, channel): cols = [ 'sample_id', 'probe', 'channel', 'path', 'setpoint', 'voltage', 'width', 'height', 'datetime', 'direction', 'trace', 'image' ] data = {col:[] for col in cols} n = len(self.data[channel]) for i in range(n): data['channels'].append(channel) data['directions'].append(self.traces[channel][i]['direction']) data['traces'].append(self.traces[channel][i]['trace']) data['setpoints'].append(self.params['setpoint_value']) data['voltages'].append(self.params['setpoint_value']) data['widths'].append(self.params['setpoint_value']) data['heights'].append(self.params['setpoint_value']) data['datetimes'].append(self.params['date_time'].isoformat()) data['paths'].append(self.path) img = self.data[channel][i] data['images'].append(img) return data def as_dataframe(self): Z_data = self.reformate('Z') Z_dataframe = pd.DataFrame(Z_data) I_data = self.reformate('Current') I_dataframe = pd.DataFrame(I_data) return
pd.concat([Z_dataframe,I_dataframe])
pandas.concat
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import datetime import pandas as pd from dateutil.relativedelta import relativedelta from collections import Iterable ALLOWED_TIME_COLUMN_TYPES = [ pd.Timestamp, pd.DatetimeIndex, datetime.datetime, datetime.date, ] def is_datetime_like(x): """Function that checks if a data frame column x is of a datetime type.""" return any(isinstance(x, col_type) for col_type in ALLOWED_TIME_COLUMN_TYPES) def get_datetime_col(df, datetime_colname): """ Helper function for extracting the datetime column as datetime type from a data frame. Args: df: pandas DataFrame containing the column to convert datetime_colname: name of the column to be converted Returns: pandas.Series: converted column Raises: Exception: if datetime_colname does not exist in the dateframe df. Exception: if datetime_colname cannot be converted to datetime type. """ if datetime_colname in df.index.names: datetime_col = df.index.get_level_values(datetime_colname) elif datetime_colname in df.columns: datetime_col = df[datetime_colname] else: raise Exception("Column or index {0} does not exist in the data " "frame".format(datetime_colname)) if not is_datetime_like(datetime_col): datetime_col = pd.to_datetime(df[datetime_colname]) return datetime_col def get_month_day_range(date): """ Returns the first date and last date of the month of the given date. """ # Replace the date in the original timestamp with day 1 first_day = date + relativedelta(day=1) # Replace the date in the original timestamp with day 1 # Add a month to get to the first day of the next month # Subtract one day to get the last day of the current month last_day = date + relativedelta(day=1, months=1, days=-1, hours=23) return first_day, last_day def split_train_validation(df, fct_horizon, datetime_colname): """ Splits the input dataframe into train and validate folds based on the forecast creation time (fct) and forecast horizon specified by fct_horizon. Args: df: The input data frame to split. fct_horizon: list of tuples in the format of (fct, (forecast_horizon_start, forecast_horizon_end)) datetime_colname: name of the datetime column Note: df[datetime_colname] needs to be a datetime type. """ i_round = 0 for fct, horizon in fct_horizon: i_round += 1 train = df.loc[df[datetime_colname] < fct].copy() validation = df.loc[(df[datetime_colname] >= horizon[0]) & (df[datetime_colname] <= horizon[1]),].copy() yield i_round, train, validation def add_datetime(input_datetime, unit, add_count): """ Function to add a specified units of time (years, months, weeks, days, hours, or minutes) to the input datetime. Args: input_datetime: datatime to be added to unit: unit of time, valid values: 'year', 'month', 'week', 'day', 'hour', 'minute'. add_count: number of units to add Returns: New datetime after adding the time difference to input datetime. Raises: Exception: if invalid unit is provided. Valid units are: 'year', 'month', 'week', 'day', 'hour', 'minute'. """ if unit == "Y": new_datetime = input_datetime + relativedelta(years=add_count) elif unit == "M": new_datetime = input_datetime + relativedelta(months=add_count) elif unit == "W": new_datetime = input_datetime + relativedelta(weeks=add_count) elif unit == "D": new_datetime = input_datetime + relativedelta(days=add_count) elif unit == "h": new_datetime = input_datetime + relativedelta(hours=add_count) elif unit == "m": new_datetime = input_datetime + relativedelta(minutes=add_count) else: raise Exception( "Invalid backtest step unit, {}, provided. Valid " "step units are Y, M, W, D, h, " "and m".format(unit) ) return new_datetime def convert_to_tsdf(input_df, time_col_name, time_format): """ Convert a time column in a data frame to monotonically increasing time index. Args: input_df(pandas.DataFrame): Input data frame to convert. time_col_name(str): Name of the time column to use as index. time_format(str): Format of the time column. Returns: pandas.DataFrame: A new data frame with the time column of the input data frame set as monotonically increasing index. """ output_df = input_df.copy() if not is_datetime_like(output_df[time_col_name]): output_df[time_col_name] = pd.to_datetime(output_df[time_col_name], format=time_format) output_df.set_index(time_col_name, inplace=True) if not output_df.index.is_monotonic: output_df.sort_index(inplace=True) return output_df def is_iterable_but_not_string(obj): """ Determine if an object has iterable, list-like properties. Importantly, this functions *does not* consider a string to be list-like, even though Python strings are iterable. """ return isinstance(obj, Iterable) and not isinstance(obj, str) def get_offset_by_frequency(frequency): frequency_to_offset_map = { "B": pd.offsets.BDay(), "C": pd.offsets.CDay(), "W": pd.offsets.Week(), "WOM": pd.offsets.WeekOfMonth(), "LWOM": pd.offsets.LastWeekOfMonth(), "M": pd.offsets.MonthEnd(), "MS": pd.offsets.MonthBegin(), "BM": pd.offsets.BMonthEnd(), "BMS": pd.offsets.BMonthBegin(), "CBM": pd.offsets.CBMonthEnd(), "CBMS": pd.offsets.CBMonthBegin(), "SM": pd.offsets.SemiMonthEnd(), "SMS": pd.offsets.SemiMonthBegin(), "Q": pd.offsets.QuarterEnd(), "QS": pd.offsets.QuarterBegin(), "BQ": pd.offsets.BQuarterEnd(), "BQS": pd.offsets.BQuarterBegin(), "REQ": pd.offsets.FY5253Quarter(), "A": pd.offsets.YearEnd(), "AS": pd.offsets.YearBegin(), "BYS": pd.offsets.YearBegin(), "BA": pd.offsets.BYearEnd(), "BAS": pd.offsets.BYearBegin(), "RE": pd.offsets.FY5253(), "BH": pd.offsets.BusinessHour(), "CBH": pd.offsets.CustomBusinessHour(), "D": pd.offsets.Day(), "H": pd.offsets.Hour(), "T": pd.offsets.Minute(), "min": pd.offsets.Minute(), "S": pd.offsets.Second(), "L": pd.offsets.Milli(), "ms": pd.offsets.Milli(), "U":
pd.offsets.Micro()
pandas.offsets.Micro
import re import numpy as np import numpy.testing as npt import pandas as pd import pandas.testing as pdt import pytest from aneris.convenience import harmonise_all from aneris.errors import ( AmbiguousHarmonisationMethod, MissingHarmonisationYear, MissingHistoricalError, ) pytest.importorskip("pint") import pint.errors @pytest.mark.parametrize( "method,exp_res", ( ( "constant_ratio", { 2010: 10 * 1.1, 2030: 5 * 1.1, 2050: 3 * 1.1, 2100: 1 * 1.1, }, ), ( "reduce_ratio_2050", { 2010: 11, 2030: 5 * 1.05, 2050: 3, 2100: 1, }, ), ( "reduce_ratio_2030", { 2010: 11, 2030: 5, 2050: 3, 2100: 1, }, ), ( "reduce_ratio_2150", { 2010: 11, 2030: 5 * (1 + 0.1 * (140 - 20) / 140), 2050: 3 * (1 + 0.1 * (140 - 40) / 140), 2100: 1 * (1 + 0.1 * (140 - 90) / 140), }, ), ( "constant_offset", { 2010: 10 + 1, 2030: 5 + 1, 2050: 3 + 1, 2100: 1 + 1, }, ), ( "reduce_offset_2050", { 2010: 11, 2030: 5 + 0.5, 2050: 3, 2100: 1, }, ), ( "reduce_offset_2030", { 2010: 11, 2030: 5, 2050: 3, 2100: 1, }, ), ( "reduce_offset_2150", { 2010: 11, 2030: 5 + 1 * (140 - 20) / 140, 2050: 3 + 1 * (140 - 40) / 140, 2100: 1 + 1 * (140 - 90) / 140, }, ), ( "model_zero", { 2010: 10 + 1, 2030: 5 + 1, 2050: 3 + 1, 2100: 1 + 1, }, ), ( "hist_zero", { 2010: 10, 2030: 5, 2050: 3, 2100: 1, }, ), ), ) def test_different_unit_handling(method, exp_res): idx = ["variable", "unit", "region", "model", "scenario"] hist = pd.DataFrame( { "variable": ["Emissions|CO2"], "unit": ["MtC / yr"], "region": ["World"], "model": ["CEDS"], "scenario": ["historical"], 2010: [11000], } ).set_index(idx) scenario = pd.DataFrame( { "variable": ["Emissions|CO2"], "unit": ["GtC / yr"], "region": ["World"], "model": ["IAM"], "scenario": ["abc"], 2010: [10], 2030: [5], 2050: [3], 2100: [1], } ).set_index(idx) overrides = [{"variable": "Emissions|CO2", "method": method}] overrides = pd.DataFrame(overrides) res = harmonise_all( scenarios=scenario, history=hist, harmonisation_year=2010, overrides=overrides, ) for year, val in exp_res.items(): npt.assert_allclose(res[year], val) @pytest.fixture() def hist_df(): idx = ["variable", "unit", "region", "model", "scenario"] hist = pd.DataFrame( { "variable": ["Emissions|CO2", "Emissions|CH4"], "unit": ["MtCO2 / yr", "MtCH4 / yr"], "region": ["World"] * 2, "model": ["CEDS"] * 2, "scenario": ["historical"] * 2, 2010: [11000 * 44 / 12, 200], 2015: [12000 * 44 / 12, 250], 2020: [13000 * 44 / 12, 300], } ).set_index(idx) return hist @pytest.fixture() def scenarios_df(): idx = ["variable", "unit", "region", "model", "scenario"] scenario = pd.DataFrame( { "variable": ["Emissions|CO2", "Emissions|CH4"], "unit": ["GtC / yr", "GtCH4 / yr"], "region": ["World"] * 2, "model": ["IAM"] * 2, "scenario": ["abc"] * 2, 2010: [10, 0.1], 2015: [11, 0.15], 2020: [5, 0.25], 2030: [5, 0.1], 2050: [3, 0.05], 2100: [1, 0.03], } ).set_index(idx) return scenario @pytest.mark.parametrize("extra_col", (False, "mip_era")) @pytest.mark.parametrize( "harmonisation_year,scales", ( (2010, [1.1, 2]), (2015, [12 / 11, 25 / 15]), ), ) def test_different_unit_handling_multiple_timeseries_constant_ratio( hist_df, scenarios_df, extra_col, harmonisation_year, scales, ): if extra_col: scenarios_df[extra_col] = "test" scenarios_df = scenarios_df.set_index(extra_col, append=True) exp = scenarios_df.multiply(scales, axis=0) overrides = [{"method": "constant_ratio"}] overrides = pd.DataFrame(overrides) res = harmonise_all( scenarios=scenarios_df, history=hist_df, harmonisation_year=harmonisation_year, overrides=overrides, ) pdt.assert_frame_equal(res, exp) @pytest.mark.parametrize( "harmonisation_year,offset", ( (2010, [1, 0.1]), (2015, [1, 0.1]), (2020, [8, 0.05]), ), ) def test_different_unit_handling_multiple_timeseries_constant_offset( hist_df, scenarios_df, harmonisation_year, offset, ): exp = scenarios_df.add(offset, axis=0) overrides = [{"method": "constant_offset"}] overrides = pd.DataFrame(overrides) res = harmonise_all( scenarios=scenarios_df, history=hist_df, harmonisation_year=harmonisation_year, overrides=overrides, ) pdt.assert_frame_equal(res, exp) def test_different_unit_handling_multiple_timeseries_overrides( hist_df, scenarios_df, ): harmonisation_year = 2015 exp = scenarios_df.sort_index() for r in exp.index: for c in exp: if "CO2" in r[0]: harm_year_ratio = 12 / 11 if c >= 2050: sf = 1 elif c <= 2015: # this custom pre-harmonisation year logic doesn't apply to # offsets which seems surprising sf = harm_year_ratio else: sf = 1 + ( (harm_year_ratio - 1) * (2050 - c) / (2050 - harmonisation_year) ) exp.loc[r, c] *= sf else: harm_year_offset = 0.1 if c >= 2030: of = 0 else: of = harm_year_offset * (2030 - c) / (2030 - harmonisation_year) exp.loc[r, c] += of overrides = [ {"variable": "Emissions|CO2", "method": "reduce_ratio_2050"}, {"variable": "Emissions|CH4", "method": "reduce_offset_2030"}, ] overrides = pd.DataFrame(overrides) res = harmonise_all( scenarios=scenarios_df, history=hist_df, harmonisation_year=harmonisation_year, overrides=overrides, ) pdt.assert_frame_equal(res, exp, check_like=True) def test_raise_if_variable_not_in_hist(hist_df, scenarios_df): hist_df = hist_df[~hist_df.index.get_level_values("variable").str.endswith("CO2")] error_msg = re.escape("No historical data for `World` `Emissions|CO2`") with pytest.raises(MissingHistoricalError, match=error_msg): harmonise_all( scenarios=scenarios_df, history=hist_df, harmonisation_year=2010, overrides=pd.DataFrame([{"method": "constant_ratio"}]), ) def test_raise_if_region_not_in_hist(hist_df, scenarios_df): hist_df = hist_df[~hist_df.index.get_level_values("region").str.startswith("World")] error_msg = re.escape("No historical data for `World` `Emissions|CH4`") with pytest.raises(MissingHistoricalError, match=error_msg): harmonise_all( scenarios=scenarios_df, history=hist_df, harmonisation_year=2010, overrides=pd.DataFrame([{"method": "constant_ratio"}]), ) def test_raise_if_incompatible_unit(hist_df, scenarios_df): scenarios_df = scenarios_df.reset_index("unit") scenarios_df["unit"] = "Mt CO2 / yr" scenarios_df = scenarios_df.set_index("unit", append=True) error_msg = re.escape( "Cannot convert from 'megatCH4 / a' ([mass] * [methane] / [time]) to " "'CO2 * megametric_ton / a' ([carbon] * [mass] / [time])" ) with pytest.raises(pint.errors.DimensionalityError, match=error_msg): harmonise_all( scenarios=scenarios_df, history=hist_df, harmonisation_year=2010, overrides=pd.DataFrame([{"method": "constant_ratio"}]), ) def test_raise_if_undefined_unit(hist_df, scenarios_df): scenarios_df = scenarios_df.reset_index("unit") scenarios_df["unit"] = "Mt CO2eq / yr" scenarios_df = scenarios_df.set_index("unit", append=True) with pytest.raises(pint.errors.UndefinedUnitError): harmonise_all( scenarios=scenarios_df, history=hist_df, harmonisation_year=2010, overrides=pd.DataFrame([{"method": "constant_ratio"}]), ) def test_raise_if_harmonisation_year_missing(hist_df, scenarios_df): hist_df = hist_df.drop(2015, axis="columns") error_msg = re.escape( "No historical data for year 2015 for `World` `Emissions|CH4`" ) with pytest.raises(MissingHarmonisationYear, match=error_msg): harmonise_all( scenarios=scenarios_df, history=hist_df, harmonisation_year=2015, overrides=pd.DataFrame([{"method": "constant_ratio"}]), ) def test_raise_if_harmonisation_year_nan(hist_df, scenarios_df): hist_df.loc[ hist_df.index.get_level_values("variable").str.endswith("CO2"), 2015 ] = np.nan error_msg = re.escape( "Historical data is null for year 2015 for `World` `Emissions|CO2`" ) with pytest.raises(MissingHarmonisationYear, match=error_msg): harmonise_all( scenarios=scenarios_df, history=hist_df, harmonisation_year=2015, overrides=
pd.DataFrame([{"method": "constant_ratio"}])
pandas.DataFrame
from abc import ABC, abstractmethod from math import floor import datetime as dt from typing import Dict, List import pandas as pd from .events import FillEvent, OrderEvent from .enums import EventTypes, SignalTypes from .data import DataHandler from .enums import OrderTypes from .events import SignalEvent class Portfolio(ABC): """ The Portfolio class handles the positions and market value of all instruments at a resolution of a "bar", i.e. secondly, minutely, 5-min, 30-min, 60 min or EOD. """ @abstractmethod def update_signal(self, event: EventTypes): """ Acts on a SignalEvent to generate new orders based on the portfolio logic. """ raise NotImplementedError("Should implement update_signal()") @abstractmethod def update_fill(self, event: EventTypes): """ Updates the portfolio current positions and holdings from a FillEvent. """ raise NotImplementedError("Should implement update_fill()") class NaivePortfolio(Portfolio): """ The NaivePortfolio object is designed to send orders to a brokerage object with a constant quantity size blindly, i.e. without any risk management or position sizing. It is used to test simpler strategies such as BuyAndHoldStrategy. """ def __init__(self, bars: DataHandler, events: EventTypes, start_date: dt.datetime, initial_capital=100_000): self.bars = bars self.events = events self.symbol_list = bars.symbol_list self.start_date = start_date self.initial_capital = initial_capital self.all_positions = self.construct_all_positions() self.current_positions = {symbol: 0 for symbol in self.symbol_list} self.all_holdings = self.construct_all_holdings() self.current_holdings = self.construct_current_holdings() def construct_all_positions(self) -> List[Dict[str, str]]: """ Constructs the positions list using the start_date to determine when the time index will begin. """ d = {symbol: 0 for symbol in self.symbol_list} d['datetime'] = self.start_date return [d] def construct_all_holdings(self) -> List[Dict[str, str]]: """ Constructs the holdings list using the start_date to determine when the time index will begin. """ d = {symbol: 0 for symbol in self.symbol_list} d['datetime'] = self.start_date d['cash'] = self.initial_capital d['commission'] = 0.0 d['total'] = self.initial_capital return [d] def construct_current_holdings(self) -> Dict[str, str]: """ This constructs the dictionary which will hold the instantaneous value of the portfolio across all symbols. """ d = {symbol: 0 for symbol in self.symbol_list} d['cash'] = self.initial_capital d['commission'] = 0.0 d['total'] = self.initial_capital return d def update_timeindex(self, event: EventTypes) -> None: """ Adds a new record to the positions matrix for the current market data bar. This reflects the PREVIOUS bar, i.e. all current market data at this stage is known (OLHCVI). Makes use of a MarketEvent from the events queue. """ bars = {} for symbol in self.symbol_list: bars[symbol] = self.bars.get_latest_bars(symbol, n=1) # Update positions positions = {symbol: 0 for symbol in self.symbol_list} positions['datetime'] = bars[self.symbol_list[0]][0].dt for symbol in self.symbol_list: positions[symbol] = self.current_positions[symbol] # Append the current positions self.all_positions.append(positions) # Update holdings holdings = {symbol: 0 for symbol in self.symbol_list} holdings['datetime'] = bars[self.symbol_list[0]][0].dt holdings['cash'] = self.current_holdings['cash'] holdings['commission'] = self.current_holdings['commission'] holdings['total'] = self.current_holdings['cash'] for symbol in self.symbol_list: # Approximation to the real value market_value = self.current_positions[symbol] * bars[symbol][0].close holdings[symbol] = market_value holdings['total'] += market_value # Append the current holdings self.all_holdings.append(holdings) def update_positions_from_fill(self, fill: FillEvent) -> None: """ Takes a FillEvent object and updates the position matrix to reflect the new position. Parameters: fill - The FillEvent object to update the positions with. """ # Check whether the fill is a buy or sell fill_direction = fill.direction.value # Update positions list with new quantities self.current_positions[fill.symbol] += fill_direction * fill.quantity def update_holdings_from_fill(self, fill: FillEvent) -> None: """ Takes a FillEvent object and updates the holdings matrix to reflect the holdings value. Parameters: fill - The FillEvent object to update the holdings with. """ # Check whether the fill is a buy or sell fill_dir = fill.direction.value # Update holdings list with new quantities fill_cost = self.bars.get_latest_bars(fill.symbol)[0].close cost = fill_dir * fill_cost * fill.quantity self.current_holdings[fill.symbol] += cost self.current_holdings['commission'] += fill.commission self.current_holdings['cash'] -= (cost + fill.commission) self.current_holdings['total'] -= (cost + fill.commission) def generate_naive_order(self, signal: SignalEvent) -> OrderEvent: """ Simply transacts an OrderEvent object as a constant quantity sizing of the signal object, without risk management or position sizing considerations. Parameters: signal - The SignalEvent signal information. """ order = None symbol = signal.symbol direction = signal.signal_type strength = signal.strength mkt_quantity = floor(100 * strength) cur_quantity = self.current_positions[symbol] order_type = OrderTypes.MARKET if direction == SignalTypes.BUY and cur_quantity == 0: order = OrderEvent( symbol, order_type, mkt_quantity, SignalTypes.BUY) elif direction == SignalTypes.SELL and cur_quantity == 0: order = OrderEvent( symbol, order_type, mkt_quantity, SignalTypes.SELL) elif direction == SignalTypes.EXIT and cur_quantity > 0: order = OrderEvent( symbol, order_type, abs(cur_quantity), SignalTypes.SELL) elif direction == SignalTypes and cur_quantity < 0: order = OrderEvent( symbol, order_type, abs(cur_quantity), SignalTypes.BUY) return order def create_equity_curve_dataframe(self) -> None: """ Creates a pandas DataFrame from the all_holdings list of dictionaries. """ curve =
pd.DataFrame(self.all_holdings)
pandas.DataFrame
from __future__ import division from builtins import str from builtins import object __copyright__ = "Copyright 2015 Contributing Entities" __license__ = """ Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import numpy as np import pandas as pd from .Error import NetworkInputError, NotImplementedError, UnexpectedError from .Logger import FastTripsLogger from .Util import Util class Route(object): """ Route class. One instance represents all of the Routes. Stores route information in :py:attr:`Route.routes_df` and agency information in :py:attr:`Route.agencies_df`. Each are instances of :py:class:`pandas.DataFrame`. Fare information is in :py:attr:`Route.fare_attrs_df`, :py:attr:`Route.fare_rules_df` and :py:attr:`Route.fare_transfer_rules_df`. """ #: File with fasttrips routes information (this extends the #: `gtfs routes <https://github.com/osplanning-data-standards/GTFS-PLUS/blob/master/files/routes.md>`_ file). #: See `routes_ft specification <https://github.com/osplanning-data-standards/GTFS-PLUS/blob/master/files/routes_ft.md>`_. INPUT_ROUTES_FILE = "routes_ft.txt" #: gtfs Routes column name: Unique identifier ROUTES_COLUMN_ROUTE_ID = "route_id" #: gtfs Routes column name: Short name ROUTES_COLUMN_ROUTE_SHORT_NAME = "route_short_name" #: gtfs Routes column name: Long name ROUTES_COLUMN_ROUTE_LONG_NAME = "route_long_name" #: gtfs Routes column name: Route type ROUTES_COLUMN_ROUTE_TYPE = "route_type" #: gtfs Routes column name: Agency ID ROUTES_COLUMN_AGENCY_ID = "agency_id" #: fasttrips Routes column name: Mode ROUTES_COLUMN_MODE = "mode" #: fasttrips Routes column name: Proof of Payment ROUTES_COLUMN_PROOF_OF_PAYMENT = "proof_of_payment" # ========== Added by fasttrips ======================================================= #: fasttrips Routes column name: Mode number ROUTES_COLUMN_ROUTE_ID_NUM = "route_id_num" #: fasttrips Routes column name: Mode number ROUTES_COLUMN_MODE_NUM = "mode_num" #: fasttrips Routes column name: Mode type ROUTES_COLUMN_MODE_TYPE = "mode_type" #: Value for :py:attr:`Route.ROUTES_COLUMN_MODE_TYPE` column: access MODE_TYPE_ACCESS = "access" #: Value for :py:attr:`Route.ROUTES_COLUMN_MODE_TYPE` column: egress MODE_TYPE_EGRESS = "egress" #: Value for :py:attr:`Route.ROUTES_COLUMN_MODE_TYPE` column: transit MODE_TYPE_TRANSIT = "transit" #: Value for :py:attr:`Route.ROUTES_COLUMN_MODE_TYPE` column: transfer MODE_TYPE_TRANSFER = "transfer" #: Access mode numbers start from here MODE_NUM_START_ACCESS = 101 #: Egress mode numbers start from here MODE_NUM_START_EGRESS = 201 #: Route mode numbers start from here MODE_NUM_START_ROUTE = 301 #: File with fasttrips fare attributes information (this *subsitutes rather than extends* the #: `gtfs fare_attributes <https://github.com/osplanning-data-standards/GTFS-PLUS/blob/master/files/fare_attributes_ft.md>`_ file). #: See `fare_attributes_ft specification <https://github.com/osplanning-data-standards/GTFS-PLUS/blob/master/files/fare_attributes_ft.md>`_. INPUT_FARE_ATTRIBUTES_FILE = "fare_attributes_ft.txt" # fasttrips Fare attributes column name: Fare Period FARE_ATTR_COLUMN_FARE_PERIOD = "fare_period" # fasttrips Fare attributes column name: Price FARE_ATTR_COLUMN_PRICE = "price" # fasttrips Fare attributes column name: Currency Type FARE_ATTR_COLUMN_CURRENCY_TYPE = "currency_type" # fasttrips Fare attributes column name: Payment Method FARE_ATTR_COLUMN_PAYMENT_METHOD = "payment_method" # fasttrips Fare attributes column name: Transfers (number permitted on this fare) FARE_ATTR_COLUMN_TRANSFERS = "transfers" # fasttrips Fare attributes column name: Transfer duration (Integer length of time in seconds before transfer expires. Omit or leave empty if they do not.) FARE_ATTR_COLUMN_TRANSFER_DURATION = "transfer_duration" #: File with fasttrips fare periods information #: See `fare_rules_ft specification <https://github.com/osplanning-data-standards/GTFS-PLUS/blob/master/files/fare_rules_ft.md>`_. INPUT_FARE_PERIODS_FILE = "fare_periods_ft.txt" #: fasttrips Fare rules column name: Fare ID FARE_RULES_COLUMN_FARE_ID = "fare_id" #: GTFS fare rules column name: Route ID FARE_RULES_COLUMN_ROUTE_ID = ROUTES_COLUMN_ROUTE_ID #: GTFS fare rules column name: Origin Zone ID FARE_RULES_COLUMN_ORIGIN_ID = "origin_id" #: GTFS fare rules column name: Destination Zone ID FARE_RULES_COLUMN_DESTINATION_ID = "destination_id" #: GTFS fare rules column name: Contains ID FARE_RULES_COLUMN_CONTAINS_ID = "contains_id" #: fasttrips Fare rules column name: Fare class FARE_RULES_COLUMN_FARE_PERIOD = FARE_ATTR_COLUMN_FARE_PERIOD #: fasttrips Fare rules column name: Start time for the fare. A DateTime FARE_RULES_COLUMN_START_TIME = "start_time" #: fasttrips Fare rules column name: End time for the fare rule. A DateTime. FARE_RULES_COLUMN_END_TIME = "end_time" # ========== Added by fasttrips ======================================================= #: fasttrips Fare rules column name: Fare ID num FARE_RULES_COLUMN_FARE_ID_NUM = "fare_id_num" #: fasttrips Fare rules column name: Route ID num FARE_RULES_COLUMN_ROUTE_ID_NUM = ROUTES_COLUMN_ROUTE_ID_NUM #: fasttrips fare rules column name: Origin Zone ID number FARE_RULES_COLUMN_ORIGIN_ID_NUM = "origin_id_num" #: fasttrips fare rules column name: Destination ID number FARE_RULES_COLUMN_DESTINATION_ID_NUM = "destination_id_num" #: File with fasttrips fare transfer rules information. #: See `fare_transfer_rules specification <https://github.com/osplanning-data-standards/GTFS-PLUS/blob/master/files/fare_transfer_rules_ft.md>`_. INPUT_FARE_TRANSFER_RULES_FILE = "fare_transfer_rules_ft.txt" #: fasttrips Fare transfer rules column name: From Fare Class FARE_TRANSFER_RULES_COLUMN_FROM_FARE_PERIOD = "from_fare_period" #: fasttrips Fare transfer rules column name: To Fare Class FARE_TRANSFER_RULES_COLUMN_TO_FARE_PERIOD = "to_fare_period" #: fasttrips Fare transfer rules column name: Transfer type? FARE_TRANSFER_RULES_COLUMN_TYPE = "transfer_fare_type" #: fasttrips Fare transfer rules column name: Transfer amount (discount or fare) FARE_TRANSFER_RULES_COLUMN_AMOUNT = "transfer_fare" #: Value for :py:attr:`Route.FARE_TRANSFER_RULES_COLUMN_TYPE`: transfer discount TRANSFER_TYPE_TRANSFER_DISCOUNT = "transfer_discount" #: Value for :py:attr:`Route.FARE_TRANSFER_RULES_COLUMN_TYPE`: free transfer TRANSFER_TYPE_TRANSFER_FREE = "transfer_free" #: Value for :py:attr:`Route.FARE_TRANSFER_RULES_COLUMN_TYPE`: transfer fare cost TRANSFER_TYPE_TRANSFER_COST = "transfer_cost" #: Valid options for :py:attr:`Route.FARE_TRANSFER_RULES_COLUMN_TYPE` TRANSFER_TYPE_OPTIONS = [TRANSFER_TYPE_TRANSFER_DISCOUNT, TRANSFER_TYPE_TRANSFER_FREE, TRANSFER_TYPE_TRANSFER_COST] #: File with route ID, route ID number correspondence (and fare id num) OUTPUT_ROUTE_ID_NUM_FILE = "ft_intermediate_route_id.txt" #: File with fare id num, fare id, fare class, price, xfers OUTPUT_FARE_ID_FILE = "ft_intermediate_fare.txt" #: File with fare transfer rules OUTPUT_FARE_TRANSFER_FILE = "ft_intermediate_fare_transfers.txt" #: File with mode, mode number correspondence OUTPUT_MODE_NUM_FILE = "ft_intermediate_supply_mode_id.txt" def __init__(self, input_archive, output_dir, gtfs, today, stops): """ Constructor. Reads the gtfs data from the transitfeed schedule, and the additional fast-trips routes data from the input file in *input_archive*. """ self.output_dir = output_dir self.routes_df = gtfs.routes FastTripsLogger.info("Read %7d %15s from %25d %25s" % (len(self.routes_df), 'date valid route', len(gtfs.routes), 'total routes')) # Read the fast-trips supplemental routes data file routes_ft_df = gtfs.get(Route.INPUT_ROUTES_FILE) # verify required columns are present routes_ft_cols = list(routes_ft_df.columns.values) assert(Route.ROUTES_COLUMN_ROUTE_ID in routes_ft_cols) assert(Route.ROUTES_COLUMN_MODE in routes_ft_cols) # verify no routes_ids are duplicated if routes_ft_df.duplicated(subset=[Route.ROUTES_COLUMN_ROUTE_ID]).sum()>0: error_msg = "Found %d duplicate %s in %s" % (routes_ft_df.duplicated(subset=[Route.ROUTES_COLUMN_ROUTE_ID]).sum(), Route.ROUTES_COLUMN_ROUTE_ID, Route.INPUT_ROUTES_FILE) FastTripsLogger.fatal(error_msg) FastTripsLogger.fatal("\nDuplicates:\n%s" % \ str(routes_ft_df.loc[routes_ft_df.duplicated(subset=[Route.ROUTES_COLUMN_ROUTE_ID])])) raise NetworkInputError(Route.INPUT_ROUTES_FILE, error_msg) # Join to the routes dataframe self.routes_df = pd.merge(left=self.routes_df, right=routes_ft_df, how='left', on=Route.ROUTES_COLUMN_ROUTE_ID) # Get the mode list self.modes_df = self.routes_df[[Route.ROUTES_COLUMN_MODE]].drop_duplicates().reset_index(drop=True) self.modes_df[Route.ROUTES_COLUMN_MODE_NUM] = self.modes_df.index + Route.MODE_NUM_START_ROUTE self.modes_df[Route.ROUTES_COLUMN_MODE_TYPE] = Route.MODE_TYPE_TRANSIT # Join to mode numbering self.routes_df = Util.add_new_id(self.routes_df, Route.ROUTES_COLUMN_MODE, Route.ROUTES_COLUMN_MODE_NUM, self.modes_df, Route.ROUTES_COLUMN_MODE, Route.ROUTES_COLUMN_MODE_NUM) # Route IDs are strings. Create a unique numeric route ID. self.route_id_df = Util.add_numeric_column(self.routes_df[[Route.ROUTES_COLUMN_ROUTE_ID]], id_colname=Route.ROUTES_COLUMN_ROUTE_ID, numeric_newcolname=Route.ROUTES_COLUMN_ROUTE_ID_NUM) FastTripsLogger.debug("Route ID to number correspondence\n" + str(self.route_id_df.head())) FastTripsLogger.debug(str(self.route_id_df.dtypes)) self.routes_df = self.add_numeric_route_id(self.routes_df, id_colname=Route.ROUTES_COLUMN_ROUTE_ID, numeric_newcolname=Route.ROUTES_COLUMN_ROUTE_ID_NUM) FastTripsLogger.debug("=========== ROUTES ===========\n" + str(self.routes_df.head())) FastTripsLogger.debug("\n"+str(self.routes_df.dtypes)) FastTripsLogger.info("Read %7d %15s from %25s, %25s" % (len(self.routes_df), "routes", "routes.txt", Route.INPUT_ROUTES_FILE)) self.agencies_df = gtfs.agency FastTripsLogger.debug("=========== AGENCIES ===========\n" + str(self.agencies_df.head())) FastTripsLogger.debug("\n"+str(self.agencies_df.dtypes)) FastTripsLogger.info("Read %7d %15s from %25s" % (len(self.agencies_df), "agencies", "agency.txt")) self.fare_attrs_df = gtfs.fare_attributes FastTripsLogger.debug("=========== FARE ATTRIBUTES ===========\n" + str(self.fare_attrs_df.head())) FastTripsLogger.debug("\n"+str(self.fare_attrs_df.dtypes)) FastTripsLogger.info("Read %7d %15s from %25s" % (len(self.fare_attrs_df), "fare attributes", "fare_attributes.txt")) # subsitute fasttrips fare attributes self.fare_attrs_df = gtfs.get(Route.INPUT_FARE_ATTRIBUTES_FILE) if not self.fare_attrs_df.empty: # verify required columns are present fare_attrs_cols = list(self.fare_attrs_df.columns.values) assert(Route.FARE_ATTR_COLUMN_FARE_PERIOD in fare_attrs_cols) assert(Route.FARE_ATTR_COLUMN_PRICE in fare_attrs_cols) assert(Route.FARE_ATTR_COLUMN_CURRENCY_TYPE in fare_attrs_cols) assert(Route.FARE_ATTR_COLUMN_PAYMENT_METHOD in fare_attrs_cols) assert(Route.FARE_ATTR_COLUMN_TRANSFERS in fare_attrs_cols) if Route.FARE_ATTR_COLUMN_TRANSFER_DURATION not in fare_attrs_cols: self.fare_attrs_df[Route.FARE_ATTR_COLUMN_TRANSFER_DURATION] = np.nan FastTripsLogger.debug("===> REPLACED BY FARE ATTRIBUTES FT\n" + str(self.fare_attrs_df.head())) FastTripsLogger.debug("\n"+str(self.fare_attrs_df.dtypes)) FastTripsLogger.info("Read %7d %15s from %25s" % (len(self.fare_attrs_df), "fare attributes", Route.INPUT_FARE_ATTRIBUTES_FILE)) #: fares are by fare_period rather than by fare_id self.fare_by_class = True else: self.fare_by_class = False # Fare rules (map routes to fare_id) self.fare_rules_df = gtfs.fare_rules if len(self.fare_rules_df) > 0: self.fare_ids_df = Util.add_numeric_column(self.fare_rules_df[[Route.FARE_RULES_COLUMN_FARE_ID]], id_colname=Route.FARE_RULES_COLUMN_FARE_ID, numeric_newcolname=Route.FARE_RULES_COLUMN_FARE_ID_NUM) self.fare_rules_df = pd.merge(left =self.fare_rules_df, right =self.fare_ids_df, how ="left") else: self.fare_ids_df = pd.DataFrame() # optionally reverse those with origin/destinations if configured from .Assignment import Assignment if Assignment.FARE_ZONE_SYMMETRY: FastTripsLogger.debug("applying FARE_ZONE_SYMMETRY to %d fare rules" % len(self.fare_rules_df)) # select only those with an origin and destination reverse_fare_rules = self.fare_rules_df.loc[ pd.notnull(self.fare_rules_df[Route.FARE_RULES_COLUMN_ORIGIN_ID])& pd.notnull(self.fare_rules_df[Route.FARE_RULES_COLUMN_DESTINATION_ID]) ].copy() # FastTripsLogger.debug("reverse_fare_rules 1 head()=\n%s" % str(reverse_fare_rules.head())) # reverse them reverse_fare_rules.rename(columns={Route.FARE_RULES_COLUMN_ORIGIN_ID : Route.FARE_RULES_COLUMN_DESTINATION_ID, Route.FARE_RULES_COLUMN_DESTINATION_ID : Route.FARE_RULES_COLUMN_ORIGIN_ID}, inplace=True) # FastTripsLogger.debug("reverse_fare_rules 2 head()=\n%s" % str(reverse_fare_rules.head())) # join them to eliminate dupes reverse_fare_rules = pd.merge(left =reverse_fare_rules, right =self.fare_rules_df, how ="left", on =[Route.FARE_RULES_COLUMN_FARE_ID, Route.FARE_RULES_COLUMN_FARE_ID_NUM, Route.FARE_RULES_COLUMN_ROUTE_ID, Route.FARE_RULES_COLUMN_ORIGIN_ID, Route.FARE_RULES_COLUMN_DESTINATION_ID, Route.FARE_RULES_COLUMN_CONTAINS_ID], indicator=True) # dupes exist in both -- drop those reverse_fare_rules = reverse_fare_rules.loc[ reverse_fare_rules["_merge"]=="left_only"] reverse_fare_rules.drop(["_merge"], axis=1, inplace=True) # add them to fare rules self.fare_rules_df = pd.concat([self.fare_rules_df, reverse_fare_rules]) FastTripsLogger.debug("fare rules with symmetry %d head()=\n%s" % (len(self.fare_rules_df), str(self.fare_rules_df.head()))) # sort by fare ID num so zone-to-zone and their reverse are together if len(self.fare_rules_df) > 0: self.fare_rules_df.sort_values(by=[Route.FARE_RULES_COLUMN_FARE_ID_NUM], inplace=True) fare_rules_ft_df = gtfs.get(Route.INPUT_FARE_PERIODS_FILE) if not fare_rules_ft_df.empty: # verify required columns are present fare_rules_ft_cols = list(fare_rules_ft_df.columns.values) assert(Route.FARE_RULES_COLUMN_FARE_ID in fare_rules_ft_cols) assert(Route.FARE_RULES_COLUMN_FARE_PERIOD in fare_rules_ft_cols) assert(Route.FARE_RULES_COLUMN_START_TIME in fare_rules_ft_cols) assert(Route.FARE_RULES_COLUMN_END_TIME in fare_rules_ft_cols) # Split fare classes so they don't overlap fare_rules_ft_df = self.remove_fare_period_overlap(fare_rules_ft_df) # join to fare rules dataframe self.fare_rules_df = pd.merge(left=self.fare_rules_df, right=fare_rules_ft_df, how='left', on=Route.FARE_RULES_COLUMN_FARE_ID) # add route id numbering if applicable if Route.FARE_RULES_COLUMN_ROUTE_ID in list(self.fare_rules_df.columns.values): self.fare_rules_df = self.add_numeric_route_id(self.fare_rules_df, Route.FARE_RULES_COLUMN_ROUTE_ID, Route.FARE_RULES_COLUMN_ROUTE_ID_NUM) # add origin zone numbering if applicable if (Route.FARE_RULES_COLUMN_ORIGIN_ID in list(self.fare_rules_df.columns.values)) and \ (pd.notnull(self.fare_rules_df[Route.FARE_RULES_COLUMN_ORIGIN_ID]).sum() > 0): self.fare_rules_df = stops.add_numeric_stop_zone_id(self.fare_rules_df, Route.FARE_RULES_COLUMN_ORIGIN_ID, Route.FARE_RULES_COLUMN_ORIGIN_ID_NUM) # add destination zone numbering if applicable if (Route.FARE_RULES_COLUMN_DESTINATION_ID in list(self.fare_rules_df.columns.values)) and \ (
pd.notnull(self.fare_rules_df[Route.FARE_RULES_COLUMN_DESTINATION_ID])
pandas.notnull
import numpy as np from scipy.stats import ttest_ind, pearsonr from sklearn.model_selection import StratifiedKFold # General packages import numpy as np import seaborn as sns import pandas as pd # Bunch of scikit-learn stuff from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, cross_val_score from sklearn.feature_selection import f_classif from sklearn.externals import joblib as jl from sklearn.metrics import f1_score from sklearn.preprocessing import OneHotEncoder # Specific statistics-functions from scipy.stats import pearsonr # Misc. from tqdm import tqdm from copy import deepcopy # Plotting import matplotlib.pyplot as plt sns.set_style("ticks") # Custom code! (install skbold by `pip install skbold`; counterbalance.py is in cwd) from confounds import ConfoundRegressor from counterbalance import CounterbalancedStratifiedSplit from utils import get_r2 import time class DataGenerator: def __init__(self, N, K, corr_cy, signal_r2, confound_r2=None, c_type='continuous', y_type='binary', tolerance=0.01, verbose=False): """ Parameters ---------- N : int Number of samples (N) in the data (X, y, and c) K : int Number of features (K) in the data (X) c_type : str Type of confound; either "continuous" or "binary". If binary, the data a balanced vector with ones and zeros y_type : str Type of target; either "continuous" or "binary". corr_cy : float Number between -1 and 1, specifying the correlation between the confound (c) and the target (y) signal_r2 : float Number between 0 and 1, specifying the explained variance of y using X, independent of the confound contained in X; (technically, the semipartial correlation rho(xy.c) confound_r2 : float or None Number between 0 and 1 (or None), specifying the shared variance explained of y of x and c (i.e. the explained variance of the confound-related information in x). If None, no confound R2 will be left unspecified (which can be used to specify a baseline). tolerance : float How much an observed statistic (corr_cy, signal_r2, confound_r2) may deviate from the desired value. verbose : bool Whether to print (extra) relevant information """ self.N = N self.K = K self.corr_cy = corr_cy self.signal_r2 = signal_r2 self.confound_r2 = confound_r2 self.c_type = c_type self.y_type = y_type self.tolerance = tolerance self.verbose = verbose def generate(self): """ Generates X, y, and (optionally) c. """ self._check_settings() self._init_y_and_c() # Define X as a matrix of N-samples by K-features X = np.zeros((self.N, self.K)) # Pre-allocate arrays for average signal_r2 values and confound_r2 values signal_r2_values = np.zeros(self.K) confound_r2_values = np.zeros(self.K) icept = np.ones((self.N, 1)) iterator = tqdm_notebook(np.arange(self.K)) if self.verbose else np.arange(self.K) for i in iterator: should_continue = False # Define generative parameters (gen_beta_y = beta-parameter for y in model of X) gen_beta_y, gen_beta_c = 1, 1 noise_factor = 1 this_c = 0 if self.confound_r2 is None else self.c tmp_confound_r2 = 0 if self.confound_r2 is None else self.confound_r2 c_iter = 0 start_time = time.time() while True: this_time = time.time() if c_iter > 100000: gen_beta_y, gen_beta_c, noise_factor = 1, 1, 1 c_iter = 0 if (start_time * 1000 - this_time * 1000) > 10: print("Something's wrong") print("C: %.3f, y: %.3f, noise: %.3f" % (gen_beta_y, gen_beta_c, noise_factor)) # Generate X as a linear combination of y, c, and random noise this_X = (gen_beta_y * self.y + gen_beta_c * this_c + np.random.randn(self.N) * noise_factor) r2_X = pearsonr(this_X, self.y)[0] ** 2 difference_obs_vs_desired = r2_X - (self.signal_r2 + tmp_confound_r2) if np.abs(difference_obs_vs_desired) > self.tolerance: # should be even more strict # If correlation too small/big, adjust noise factor and CONTINUE if difference_obs_vs_desired < 0: noise_factor -= 0.01 else: noise_factor += 0.01 c_iter += 1 continue if self.confound_r2 is None and not should_continue: signal_r2_values[i] = r2_X X[:, i] = this_X break c_tmp = np.hstack((icept, this_c[:, np.newaxis])) X_not_c = this_X - c_tmp.dot(np.linalg.lstsq(c_tmp, this_X, rcond=None)[0]) this_signal_r2 = pearsonr(X_not_c, self.y)[0] ** 2 this_confound_r2 = r2_X - this_signal_r2 difference_obs_vs_desired = this_confound_r2 - self.confound_r2 if np.abs(difference_obs_vs_desired) > self.tolerance: if difference_obs_vs_desired < 0: gen_beta_c += 0.01 else: gen_beta_c -= 0.01 should_continue = True else: should_continue = False difference_obs_vs_desired = this_signal_r2 - self.signal_r2 if np.abs(difference_obs_vs_desired) > self.tolerance: if difference_obs_vs_desired < 0: gen_beta_y += 0.01 else: gen_beta_y -= 0.01 should_continue = True else: should_continue = False if should_continue: c_iter += 1 continue else: # We found it! X[:, i] = this_X signal_r2_values[i] = this_signal_r2 confound_r2_values[i] = this_confound_r2 break self.X = X self.signal_r2_values = signal_r2_values self.confound_r2_values = confound_r2_values if self.verbose: self._generate_report() return self def return_vals(self): """ Returns X, y, and (optionally) c. """ if self.confound_r2 is not None: return self.X, self.y, self.c else: return self.X, self.y def _generate_report(self): """ If verbose, prints some stuff to check. """ print("Signal r2: %.3f" % self.signal_r2_values.mean()) if self.confound_r2 is not None: print("Confound r2: %.3f" % self.confound_r2_values.mean()) if self.confound_r2 is not None: plt.figure(figsize=(15, 5)) plt.subplot(1, 3, 1) plt.imshow(np.corrcoef(self.X.T), aspect='auto', cmap='RdBu') plt.title("Correlations between features") plt.colorbar() plt.grid('off') plt.subplot(1, 3, 2) plt.title("Signal R2 values") plt.hist(self.signal_r2_values, bins='auto') plt.subplot(1, 3, 3) plt.title("Confound R2 values") plt.hist(self.confound_r2_values, bins='auto') plt.tight_layout() plt.show() def _check_settings(self): """ Some checks of sensible parameters. """ if self.N % 2 != 0: raise ValueError("Please select an even number of samples " "(Makes things easier.)") if self.confound_r2 is not None: if np.abs(self.corr_cy) < np.sqrt(self.confound_r2): raise ValueError("The desired corr_cy value is less than the square " "root of the desired confound R-squared ... This is " "impossible to generate.") VAR_TYPES = ['binary', 'continuous'] if self.y_type not in VAR_TYPES: raise ValueError("y_type must be one of %r" % VAR_TYPES) if self.c_type not in VAR_TYPES: raise ValueError("c_type must be one of %r" % VAR_TYPES) def _init_y_and_c(self): """ Initializes y and c. """ if self.y_type == 'binary': y = np.repeat([0, 1], repeats=self.N / 2) else: # assume continuous y = np.random.normal(0, 1, self.N) if self.c_type == 'binary': if self.y_type == 'binary': # Simply shift ("roll") y to create correlation using the "formula": # to-shift = N / 4 * (1 - corr_cy) to_roll = int((self.N / 4) * (1 - self.corr_cy)) c = np.roll(y, to_roll) else: # y is continuous c = y.copy() this_corr_cy = pearsonr(c, y)[0] i = 0 while np.abs(this_corr_cy - self.corr_cy) > self.tolerance: np.shuffle(c) this_corr_cy = pearsonr(c, y) i += 1 if i > 10000: raise ValueError("Probably unable to find good corr_cy value") else: # If c is continuous, just sample y + random noise noise_factor = 10 c = y + np.random.randn(self.N) * noise_factor this_corr_cy = pearsonr(c, y)[0] i = 0 while np.abs(this_corr_cy - self.corr_cy) > self.tolerance: # Decrease noise if the difference is too big noise_factor -= 0.01 c = y + np.random.randn(self.N) * noise_factor this_corr_cy = pearsonr(c, y)[0] i += 1 if i > 10000: # Reset noise factor noise_factor = 10 i = 0 self.y = y self.c = c from utils import vectorized_semipartial_corr, vectorized_corr def run_without_confound_control(X, y, c, pipeline, cv, arg_dict, sim_nr=None): """ Run a classification analysis using without controlling for confounds. Parameters ---------- X : numpy array Array of shape N (samples) x K (features) with floating point numbers y : numpy array Array of shape N (samples) x 1 with binary numbers {0, 1} c : numpy array Array of shape N (samples) x 1 with either binary {0, 1} or continuous (from normal dist, 0 mean, 1 variance) values pipeline : Pipeline-object A scikit-learn Pipeline-object n_splits : int Number of splits to generate in the K-fold routine arg_dict : dict Dictionary with arguments used in data generation (i.e. args fed to generate_data function) Returns ------- results : pandas DataFrame DataFrame with data parameters (from arg-dict) and fold-wise scores. """ results = pd.concat([pd.DataFrame(arg_dict, index=[i]) for i in range(n_splits)]) results['method'] = ['None'] * n_splits results['sim_nr'] = [sim_nr] * n_splits results['score'] = cross_val_score(estimator=pipeline, X=X, y=y, cv=cv, scoring=scoring) return results def run_with_ipw(X, y, c, pipeline, cv, arg_dict, sim_nr=None): """ Run a classification analysis using without controlling for confounds. Parameters ---------- X : numpy array Array of shape N (samples) x K (features) with floating point numbers y : numpy array Array of shape N (samples) x 1 with binary numbers {0, 1} c : numpy array Array of shape N (samples) x 1 with either binary {0, 1} or continuous (from normal dist, 0 mean, 1 variance) values pipeline : Pipeline-object A scikit-learn Pipeline-object n_splits : int Number of splits to generate in the K-fold routine arg_dict : dict Dictionary with arguments used in data generation (i.e. args fed to generate_data function) Returns ------- results : pandas DataFrame DataFrame with data parameters (from arg-dict) and fold-wise scores. """ results = pd.concat([pd.DataFrame(arg_dict, index=[i]) for i in range(n_splits)]) results['method'] = ['IPW'] * n_splits results['sim_nr'] = [sim_nr] * n_splits y_ohe = OneHotEncoder(sparse=False).fit_transform(y[:, np.newaxis]) skf = StratifiedKFold(n_splits=n_splits) lr = LogisticRegression(class_weight='balanced') if c.ndim == 1: c = c[:, np.newaxis] tmp_scores = np.zeros(n_splits) for i, (train_idx, test_idx) in enumerate(skf.split(X, y)): lr.fit(c[train_idx], y[train_idx]) probas = lr.predict_proba(c[train_idx]) weights = 1 / (probas * y_ohe[train_idx]).sum(axis=1) pipeline.fit(X[train_idx], y[train_idx], clf__sample_weight=weights) preds = pipeline.predict(X[test_idx]) tmp_scores[i] = f1_score(y[test_idx], preds, average='macro') results['score'] = tmp_scores return results def run_with_counterbalancing_random(X, y, c, pipeline, cv, arg_dict, verbose=False, c_type='categorical', metric='corr', threshold=0.05, use_pval=True, sim_nr=None): """ Run a classification analysis using without controlling for confounds. Parameters ---------- X : numpy array Array of shape N (samples) x K (features) with floating point numbers y : numpy array Array of shape N (samples) x 1 with binary numbers {0, 1} c : numpy array Array of shape N (samples) x 1 with either binary {0, 1} or continuous (from normal dist, 0 mean, 1 variance) values pipeline : Pipeline-object A scikit-learn Pipeline-object n_splits : int Number of splits to generate in the K-fold routine arg_dict : dict Dictionary with arguments used in data generation (i.e. args fed to generate_data function) Returns ------- results : pandas DataFrame DataFrame with data parameters (from arg-dict) and fold-wise scores. """ results = pd.concat([
pd.DataFrame(arg_dict, index=[i])
pandas.DataFrame
# this file contains all components needed to collect, format and save the data from dwd import os import re import requests from zipfile import ZipFile from io import TextIOWrapper, BytesIO import csv import pandas as pd import numpy as np import datetime # constants DWD_URL_HISTORICAL = "https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/air_temperature/historical/" DWD_URL_RECENT = "https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/air_temperature/recent/" DWD_FOLDER = os.path.join(os.path.dirname(__file__), "data", "dwd") os.makedirs(DWD_FOLDER, exist_ok = True) def get_unpacked_zips(*urls): """ this function is a generator which downloads and unzips all .zip files from an url """ for url in urls: html = str(requests.get(url).content) for zip_link in [f"{url}{link}" for link in re.findall(r'href="(\w*\.zip)"', html)]: yield ZipFile(BytesIO(requests.get(zip_link).content)) def verify_dwd_urls(*urls): """ this function tests urls, to check if they are from dwd. (default urls are historical & recent) """ if len(urls) == 0: urls = [ DWD_URL_HISTORICAL, DWD_URL_RECENT ] for url in urls: if not "https://opendata.dwd.de/" in url: raise Exception(f"The url '{url}' is not supported, only urls from 'https://opendata.dwd.de/' are supported.") return urls def download_dwd(*urls): """ this function downloads data from dwd and saves it as an parquet. (default urls are historical & recent) """ urls = verify_dwd_urls(*urls) for unpacked in get_unpacked_zips(*urls): data_files = [f for f in unpacked.namelist() if ".txt" in f] meta_data_file = [f for f in data_files if "Metadaten_Geographie" in f][0] main_data_file = [f for f in data_files if "produkt_tu_stunde" in f][0] station_id = int(main_data_file.split("_")[-1].split(".")[0]) # reading main data with unpacked.open(main_data_file, "r") as main_data: station_df = pd.DataFrame( csv.DictReader(TextIOWrapper(main_data, 'utf-8'), delimiter=';') ).drop(["STATIONS_ID", "QN_9", "eor"], axis="columns") station_df.columns = ["TIME", "TEMPERATURE", "HUMIDITY"] station_df.TIME = pd.to_datetime(station_df.TIME, format="%Y%m%d%H", utc=True) # adding missing rows station_df = pd.merge( pd.DataFrame({ "TIME": pd.date_range( station_df.TIME.min(), station_df.TIME.max(), freq = "1H", tz = "utc" ) }), station_df, how = "outer" ).fillna(-999) # clean up station_df.TEMPERATURE = pd.to_numeric(station_df.TEMPERATURE, downcast="float") station_df.HUMIDITY = pd.to_numeric(station_df.HUMIDITY, downcast="integer") station_df.sort_values(by="TIME", inplace=True) # add coordinates from meta data with unpacked.open(meta_data_file, "r") as meta_data: meta_df = pd.DataFrame( csv.DictReader(TextIOWrapper(meta_data, 'latin-1'), delimiter=';') ).drop(["Stations_id", "Stationsname"], axis="columns") meta_df.columns = ["ASL", "LAT", "LON", "START", "END"] meta_df.iloc[-1].END = datetime.datetime.now().strftime("%Y%m%d") meta_df.START =
pd.to_datetime(meta_df.START, format="%Y%m%d", utc=True)
pandas.to_datetime
import pandas as pd import itertools def get_init_df(re_list, no_re_list, re_col, no_re_col): # 直接解包re_list,no_re_list就可以处理完有关系的列 # 对于no_re_col中的每一项 需要查出它的可能取值范围 product_list = list(itertools.product(*re_list, *no_re_list)) # print(product_list) processed_product_list = unzip_tool(product_list) # print(processed_product_list) dataframe =
pd.DataFrame(processed_product_list, columns=re_col + no_re_col)
pandas.DataFrame
import pandas as pd import numpy as np df1 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['a', 'b', 'c', 'd']) df2 = pd.DataFrame(np.ones((3, 4)) * 1, columns=['a', 'b', 'c', 'd']) df3 = pd.DataFrame(np.ones((3, 4)) * 2, columns=['a', 'b', 'c', 'd']) print(df1) print(df2) print(df3) # 纵向合并 print(pd.concat([df1, df2, df3], axis=0, ignore_index=True)) df4 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['a', 'b', 'c', 'd']) df5 = pd.DataFrame(np.ones((3, 4)) * 1, columns=['b', 'c', 'd', 'e']) print(pd.concat([df4, df5])) print(
pd.concat([df4, df5], ignore_index=True, join="inner")
pandas.concat
import pandas as pd from exams.models import TimeCode from exams.models import AcademicYear from exams.models import Period def dates(start_date, end=254): num_weeks = end // 100 num_days = (num_weeks - 1) * 5 + (end - 100 * num_weeks) // 10 print(num_days) lst = [] start_date = pd.to_datetime(start_date) for day in range(num_days): week = day//5 for session in range(4): exam_date = start_date + \ pd.to_timedelta('{} days {} hour'.format( day+2*week, session*2)) time_code = (week+1)*100 + (day-5*week+1)*10 + session + 1 lst.append((time_code, exam_date)) df =
pd.DataFrame(lst, columns=['time_code', 'exam_date'])
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Dec 20 09:38:41 2021 @author: daniele.proverbio Code to monitor the COVID-19 epidemic in Luxembourg and estimate useful indicators for the Ministry of Health and the Taskforce WP6. Path to input file at line 186 Path to output file at line 242; to output plot at line 260 """ # ----- # # Preliminary settings # # ----- # ----- import packages import pandas as pd import numpy as np import datetime as DT from scipy import stats as sps from matplotlib import pyplot as plt from matplotlib import dates as mdates from matplotlib.dates import date2num import plot_reff_estimate # ----- global variables for data analysis FILTERED_REGION_CODES = ['LU'] state_name = 'LU' today = DT.datetime.now().strftime("%Y-%m-%d") idx_start = 22 # Initial condition, over the first wave in March # ----- some preparation to make sure data are ok def prepare_cases(cases, cutoff=25): # prepare data, to get daily cases and smoothing new_cases = cases.diff() smoothed = new_cases.rolling(7, min_periods=1, center=False).mean().round() smoothed = smoothed.iloc[idx_start:] original = new_cases.loc[smoothed.index] return original, smoothed # ----- getting highest density intervals for the Bayesian inference def highest_density_interval(pmf, p=.9, debug=False): # If we pass a DataFrame, just call this recursively on the columns if(isinstance(pmf, pd.DataFrame)): return pd.DataFrame([highest_density_interval(pmf[col], p=p) for col in pmf], index=pmf.columns) cumsum = np.cumsum(pmf.values) total_p = cumsum - cumsum[:, None] # N x N matrix of total probability mass for each low, high lows, highs = (total_p > p).nonzero() # Return all indices with total_p > p best = (highs - lows).argmin() # Find the smallest range (highest density) low = pmf.index[lows[best]] high = pmf.index[highs[best]] return pd.Series([low, high],index=[f'Low_{p*100:.0f}',f'High_{p*100:.0f}']) # ----- getting posteriors for R_t evaluation def get_posteriors(sr, date, sigma=0.15): # (1) Calculate Lambda (average arrival rate from Poisson process) gamma=1/np.random.normal(4, 0.2, len(r_t_range)) # COVID-19 serial interval, with uncertainty lam = sr[:-1] * np.exp(gamma[:, None] * (r_t_range[:, None] - 1)) # (2) Calculate each day's likelihood likelihoods = pd.DataFrame( data = sps.poisson.pmf(sr[1:], lam), index = r_t_range, columns = date[1:]) # (3) Create the Gaussian Matrix process_matrix = sps.norm(loc=r_t_range,scale=sigma).pdf(r_t_range[:, None]) # (3a) Normalize all rows to sum to 1 process_matrix /= process_matrix.sum(axis=0) # (4) Calculate the initial prior prior0 = np.ones_like(r_t_range)/len(r_t_range) prior0 /= prior0.sum() # Create a DataFrame that will hold our posteriors for each day # Insert our prior as the first posterior. posteriors = pd.DataFrame(index=r_t_range,columns=date,data={date[0]: prior0}) # Keep track of the sum of the log of the probability of the data for maximum likelihood calculation. log_likelihood = 0.0 # (5) Iteratively apply Bayes' rule for previous_day, current_day in zip(date[:-1], date[1:]): #(5a) Calculate the new prior current_prior = process_matrix @ posteriors[previous_day] #(5b) Calculate the numerator of Bayes' Rule: P(k|R_t)P(R_t) numerator = likelihoods[current_day] * current_prior #(5c) Calcluate the denominator of Bayes' Rule P(k) denominator = np.sum(numerator) # Execute full Bayes' Rule posteriors[current_day] = numerator/denominator # Add to the running sum of log likelihoods log_likelihood += np.log(denominator) return posteriors, log_likelihood # ----- # # Input data # # ----- path = "input/input-data.xlsx" # specify path to file full_data = pd.read_excel(path, engine='openpyxl').iloc[::-1].reset_index() data_df = pd.DataFrame(full_data, columns =['report_date','new_cases','positive_patients_intensive_care','positive_patients_normal_care', 'covid_patients_dead', 'new_cases_resident','tests_done_resident']) population_LU = 600000 dates = data_df.iloc[idx_start:].index dates_detection = date2num(dates.tolist()) # ----- # # Analysis # # ----- #estimate R_eff for detection # ----- Prepare data for analysis cases = data_df.new_cases_resident.cumsum() original, smoothed = prepare_cases(cases) #convert into array for easier handling original_array = original.values smoothed_array = smoothed.values # ----- R_eff estimation R_T_MAX = 10 r_t_range = np.linspace(0, R_T_MAX, R_T_MAX*100+1) posteriors, log_likelihood = get_posteriors(smoothed_array, dates, sigma=.15) #optimal sigma already chosen in original Notebook # Note that this is not the most efficient algorithm, but works fine hdis = highest_density_interval(posteriors, p=.5) # confidence bounds, p=50% most_likely = posteriors.idxmax().rename('Reff-estimate') # mean R_eff value result =
pd.concat([most_likely, hdis], axis=1)
pandas.concat
#!/usr/bin/env python3 import warnings from typing import Generator, Optional, Tuple, Union import findiff.diff import matplotlib.pyplot as plt import numpy as np import numpy.testing as nptest import pandas as pd import pandas.testing as pdtest from scipy.stats import multivariate_normal from datafold.pcfold.timeseries.collection import TSCDataFrame, TSCException from datafold.utils.general import is_integer @pd.api.extensions.register_dataframe_accessor("tsc") class TSCAccessor(object): """Extension functions for TSCDataFrame. See `documentation <https://pandas.pydata.org/pandas-docs/stable/development/extending.html?highlight=accessor>`_ for regular pandas accessors. The functions are available through the accessor `tsc`, for example, .. code:: tsc_object.tsc.normalize_time() Parameters ---------- tsc_df time series collection data to carry out accessor functions on """ def __init__(self, tsc_df: TSCDataFrame): # NOTE: cannot call TSCDataFrame(tsc_df) here to transform in case it is a normal # DataFrame. This is because the accessor has to know when updating this object. if not isinstance(tsc_df, TSCDataFrame): raise TypeError( "The 'tsc' extension only works for type TSCDataFrame (convert before)." ) self._tsc_df = tsc_df def check_tsc( self, *, ensure_all_finite: bool = True, ensure_min_samples: Optional[int] = None, ensure_same_length: bool = False, ensure_const_delta_time: bool = True, ensure_delta_time: Optional[float] = None, ensure_same_time_values: bool = False, ensure_normalized_time: bool = False, ensure_n_timeseries: Optional[int] = None, ensure_min_timesteps: Optional[int] = None, ensure_n_timesteps: Optional[int] = None, ensure_no_degenerate_ts: bool = True, ) -> TSCDataFrame: """Validate time series properties. This summarises the single check functions also contained in `TSCAccessor`. Parameters ---------- ensure_all_finite If True, check if all values are finite (no 'nan' or 'inf' values). ensure_min_samples If provided, check that the frame has at least required samples. ensure_same_length If True, check if all time series have the same length. ensure_const_delta_time If True, check that all time series have the same time-delta. ensure_delta_time If provided, check that time series have required time-delta. ensure_same_time_values If True, check that all time series share the same time values. ensure_normalized_time If True, check if the time values are normalized. ensure_n_timeseries If provided, check if the required number time series are present. ensure_n_timesteps If provded, check that all time series have exactly the number the timesteps spectifed. ensure_min_timesteps If provided, check if every time series has the required minimum of time steps. ensure_no_degenerate_ts If True, make sure that no degenerate (single sampled) time series are present. Returns ------- TSCDataFrame validated time series collection (without changes) """ # TODO: allow handle_fail="raise | warn | return"? if ensure_all_finite: self.check_finite() if ensure_min_samples is not None: self.check_min_samples(min_samples=ensure_min_samples) if ensure_same_length: self.check_timeseries_same_length() if ensure_const_delta_time: self.check_const_time_delta() if ensure_delta_time is not None: self.check_required_time_delta(required_time_delta=ensure_delta_time) if ensure_same_time_values: self.check_equal_timevalues() if ensure_normalized_time: self.check_normalized_time() if ensure_n_timeseries is not None: self.check_required_n_timeseries(required_n_timeseries=ensure_n_timeseries) if ensure_n_timesteps is not None: self.check_required_n_timesteps(ensure_n_timesteps) if ensure_min_timesteps is not None: self.check_required_min_timesteps(ensure_min_timesteps) if ensure_no_degenerate_ts: self.check_no_degenerate_ts() return self._tsc_df def check_finite(self) -> None: """Check if all values are finite (i.e. does not contain `nan` or `inf`).""" if not self._tsc_df.is_finite(): raise TSCException.not_finite() def check_min_samples(self, min_samples) -> None: """Check if there is a minimum number of samples included.""" if self._tsc_df.shape[0] < min_samples: raise TSCException.not_min_samples(min_samples=min_samples) def check_timeseries_same_length(self) -> None: """Check if time series in the collection have the same length.""" if not self._tsc_df.is_equal_length(): raise TSCException.not_same_length( actual_lengths=self._tsc_df.is_equal_length() ) def check_const_time_delta(self) -> Union[pd.Series, float]: """Check if all time series have the same time-delta.""" delta_time = self._tsc_df.delta_time if not self._tsc_df.is_const_delta_time(): raise TSCException.not_const_delta_time(self._tsc_df.delta_time) return delta_time def check_equal_timevalues(self) -> None: """Check if all time series in the collection share the same time values.""" if not self._tsc_df.is_same_time_values(): raise TSCException.not_same_time_values() def check_normalized_time(self) -> None: """Check if time series collection has normalized time. See Also -------- :py:meth:`TSCAccessor.normalize_time` """ if not self._tsc_df.is_normalized_time(): raise TSCException.not_normalized_time() def check_required_time_delta( self, required_time_delta: Union[pd.Series, float, int] ) -> None: """Check if time series collection has required time-delta. Parameters ---------- required_time_delta single value or per time series """ try: delta_times = np.asarray(self._tsc_df.delta_time) if self._tsc_df.is_datetime_index(): if (delta_times != required_time_delta).any(): raise AttributeError else: # this is a better variant than # np.asarray(self._tsc_df.delta_time) == np.asarray(required_time_delta) # because the shapes can also mismatch nptest.assert_allclose( delta_times, np.asarray(required_time_delta), rtol=1e-12, atol=1e-15, ) except AssertionError: raise TSCException.not_required_delta_time( required_delta_time=required_time_delta, actual_delta_time=self._tsc_df.delta_time, ) def check_required_n_timeseries(self, required_n_timeseries: int) -> None: """Check if in the collection are exactly the required number of time series. Parameters ---------- required_n_timeseries value """ if self._tsc_df.n_timeseries != required_n_timeseries: raise TSCException.not_required_n_timeseries( required_n_timeseries=required_n_timeseries, actual_n_timeseries=self._tsc_df.n_timeseries, ) def check_required_n_timesteps(self, required_n_timesteps: int) -> None: n_timesteps = self._tsc_df.n_timesteps if isinstance(n_timesteps, pd.Series): raise TSCException.not_n_timesteps(required=required_n_timesteps) else: assert isinstance(n_timesteps, int) if n_timesteps != required_n_timesteps: raise TSCException.not_n_timesteps(required=required_n_timesteps) def check_required_min_timesteps(self, required_min_timesteps: int) -> None: """Check if all time series in the collection have a minimum number of time steps. Parameters ---------- required_min_timesteps value """ _n_timesteps = self._tsc_df.n_timesteps if (np.asarray(_n_timesteps) < required_min_timesteps).any(): raise TSCException.not_min_timesteps( required_n_timesteps=required_min_timesteps, actual_n_timesteps=_n_timesteps, ) def check_no_degenerate_ts(self): if self._tsc_df.has_degenerate(): raise TSCException.has_degenerate_ts() def check_non_overlapping_timeseries(self) -> None: """Check if all time series have disjoint time values (do not overlap). Returns ------- """ _, counts = np.unique( self._tsc_df.index.get_level_values(TSCDataFrame.tsc_time_idx_name), return_counts=True, ) if (counts > 1).any(): raise TSCException("time series are required to be non-overlapping") @classmethod def check_equal_delta_time( cls, X: TSCDataFrame, Y: TSCDataFrame, atol=1e-15, require_const=False ) -> Tuple[Union[float, pd.Series], Union[float, pd.Series]]: """Check if two time series collections have the same delta times. Parameters ---------- X First time series collection. Y Second time series collection. atol Tolerance passed to :py:meth:`.equal_const_delta_time` require_const If True, both `X` and `Y` must have constant delta times. Raises ------ :py:class:`TSCException` - if time_delta not equal or if either `X` or `Y` is not constant with ``require_const=True``. Returns ------- """ X_dt = X.delta_time Y_dt = Y.delta_time equal = True if isinstance(X_dt, pd.Series) and not require_const: if not isinstance(Y_dt, pd.Series): equal = False else: try:
pdtest.assert_series_equal(X_dt, Y_dt, atol=atol)
pandas.testing.assert_series_equal
# -*- coding: utf-8 -*- ''' Site A site import and analysis class built with the pandas library ''' import anemoi as an import pandas as pd import numpy as np import itertools class Site(object): '''Subclass of the pandas dataframe built to import and quickly analyze met mast data.''' def __init__(self, masts=None, meta_data=None, primary_mast=None): '''Data structure with an array of anemoi.MetMasts and a DataFrame of results: Parameters ---------- masts: array of anemoi.MetMasts meta_data: DataFrame of analysis results primary_mast: string or int, default None Longest-term mast installed on site ''' if masts is not None: mast_names = [] mast_lats = [] mast_lons = [] mast_heights = [] mast_primary_anos = [] mast_primary_vanes = [] for mast in masts: if isinstance(mast, an.MetMast): mast_names.append(mast.name) mast_lats.append(mast.lat) mast_lons.append(mast.lon) mast_heights.append(mast.height) mast_primary_anos.append(mast.primary_ano) mast_primary_vanes.append(mast.primary_vane) if meta_data is None: meta_data = pd.DataFrame(columns=mast_names, index=['Lat', 'Lon', 'Height', 'PrimaryAno', 'PrimaryVane']) meta_data.loc['Lat', :] = mast_lats meta_data.loc['Lon', :] = mast_lons meta_data.loc['Height', :] = mast_heights meta_data.loc['PrimaryAno', :] = mast_primary_anos meta_data.loc['PrimaryVane', :] = mast_primary_vanes meta_data.columns.name = 'Masts' self.masts = masts self.meta_data = meta_data def __repr__(self): mast_names = 'Site masts: ' for mast in self.masts: if mast_names == 'Site masts: ': mast_names = mast_names + ' ' + str(mast.name) else: mast_names = mast_names + ', ' + str(mast.name) return mast_names def check_has_masts(self): if len(self.masts) < 1: raise ValueError("This site doesn't seem to have any masts associated...") return True def get_mast_names(self): if not self.masts: raise ValueError("This site doesn't seem to have any masts associated...") else: return self.meta_data.columns def return_ws_corr_results_binned_by_direction(self): if self.check_has_masts(): site_correlation_results = [] for mast_pair in itertools.permutations(self.masts, 2): ref_mast = mast_pair[0] site_mast = mast_pair[1] results = an.correlate.correlate_masts_10_minute_by_direction(ref_mast=ref_mast, site_mast=site_mast) site_correlation_results.append(results) site_correlation_results = pd.concat(site_correlation_results, axis=0) return site_correlation_results def return_cross_corr_results_dataframe(self): if self.check_has_masts(): cross_corr_results_index = pd.MultiIndex.from_product([self.meta_data.columns.tolist()]*2, names=['Ref', 'Site']) results_cols = ['Slope', 'Offset', 'DirOffset', 'R2', 'Uncert'] cross_corr_results_dataframe = pd.DataFrame(index=cross_corr_results_index, columns=results_cols) refs = cross_corr_results_dataframe.index.get_level_values(level='Ref') sites = cross_corr_results_dataframe.index.get_level_values(level='Site') cross_corr_results_dataframe = cross_corr_results_dataframe.loc[refs != sites, :] return cross_corr_results_dataframe def calculate_measured_momm(self): '''Calculates measured mean of monthly mean wind speed for each mast in anemoi.Site''' if self.check_has_masts(): for mast in self.masts.Masts: self.meta_data.loc['Meas MoMM', mast.name] = mast.return_momm(sensors=mast.primary_ano).iloc[0,0] def calculate_self_corr_results(self): if self.check_has_masts(): cross_corr_results = self.return_cross_corr_results_dataframe() for mast_pair in cross_corr_results.index: ref = mast_pair[0] site = mast_pair[1] ref_mast = self.masts.loc[ref,'Masts'] site_mast = self.masts.loc[site,'Masts'] slope, offset, uncert, R2 = site_mast.correlate_to_reference(reference_mast=ref_mast, method='ODR') results_cols = ['Slope', 'Offset', 'R2', 'Uncert'] cross_corr_results.loc[pd.IndexSlice[ref, site], results_cols] = [slope, offset, R2, uncert] return cross_corr_results def calculate_annual_shear_results(self): if self.check_has_masts(): shear_results = an.shear.shear_analysis_site(self.masts) return shear_results def calculate_long_term_alpha(self): '''Calculates measured annual alpha for each mast in anemoi.Site''' if self.check_has_masts(): for mast in self.masts: self.meta_data.loc['Alpha', mast.name] = mast.calculate_long_term_alpha() def plot_monthly_valid_recovery(self): '''Plots monthly valid recovery for each mast in anemoi.Site''' if self.check_has_masts(): for mast in self.masts: mast.plot_monthly_valid_recovery() def plot_freq_dists(self): '''Plots wind speed frequency distributions for each mast in anemoi.Site''' if self.check_has_masts(): for mast in self.masts: mast.plot_freq_dist() def plot_wind_roses(self): '''Plots wind speed frequency distributions for each mast in anemoi.Site''' if self.check_has_masts(): for mast in self.masts: mast.plot_wind_rose() def plot_site_masts_summary(self): for mast in self.masts: print(mast.mast_data_summary(), mast, '\n') mast.plot_monthly_valid_recovery(); mast.plot_wind_energy_roses(dir_sectors=12); mast.plot_freq_dist(); # plt.show() def plot_ws_corr_results_binned_by_direction(self): site_correlation_results = self.return_ws_corr_results_binned_by_direction() dir_bins = site_correlation_results.index.get_level_values('DirBin').unique() for mast_pair in itertools.permutations(self.masts, 2): ref_mast = mast_pair[0] ref_mast_name = ref_mast.name site_mast = mast_pair[1] site_mast_name = site_mast.name ref_data = ref_mast.return_sensor_data([ref_mast.primary_ano, ref_mast.primary_vane]) site_data = site_mast.return_sensor_data(site_mast.primary_ano) df =
pd.concat([ref_data, site_data], axis=1, join='inner', keys=['Ref', 'Site'])
pandas.concat
# -*- coding: utf-8 -*- import unittest import pandas as pd import numpy as np # from ThymeBoost.trend_models import (linear_trend, mean_trend, median_trend, # loess_trend, ransac_trend, ewm_trend, # ets_trend, arima_trend, moving_average_trend, # zero_trend, svr_trend, naive_trend) from ThymeBoost.trend_models import * def testing_data(): seasonality = ((np.cos(np.arange(1, 101))*10 + 50)) np.random.seed(100) true = np.linspace(-1, 1, 100) noise = np.random.normal(0, 1, 100) y = true + seasonality# + noise return y class BaseModelTest(): """Allows self without overriding unitTest __init__""" def setUp(self): self.model_obj = None def set_model_obj(self, child_model_obj): self.model_obj = child_model_obj self._params = {'arima_order': 'auto', 'model': 'ses', 'bias': 0, 'arima_trend': None, 'alpha': None, 'poly': 1, 'fit_constant': True, 'l2': 0, 'trend_weights': None, 'ewm_alpha': .5, 'window_size': 13, 'ransac_trials': 20, 'ransac_min_samples': 5} def test_fitted_series(self): y = testing_data() fitted_values = self.model_obj.fit(y, **self._params) self.assertTrue(isinstance(fitted_values, np.ndarray)) def test_predicted_series(self): y = testing_data() self.model_obj.fit(y, **self._params) predictions = self.model_obj.predict(24, self.model_obj.model_params) self.assertTrue(isinstance(predictions, np.ndarray)) def test_fitted_null(self): y = testing_data() fitted_values = self.model_obj.fit(y, **self._params) self.assertFalse(pd.Series(fitted_values).isnull().values.any()) def test_prediction_null(self): y = testing_data() self.model_obj.fit(y, **self._params) predictions = self.model_obj.predict(24, self.model_obj.model_params) self.assertFalse(
pd.Series(predictions)
pandas.Series
# -*- coding: utf-8 -*- import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State import dash_table import plotly.graph_objs as go import pandas as pd import numpy as np import urllib import requests import zstandard as zstd import orjson import flask # from util import app_ts_summ, sel_ts_summ, ecan_ts_data pd.options.display.max_columns = 10 external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] server = flask.Flask(__name__) app = dash.Dash(__name__, external_stylesheets=external_stylesheets, server=server, url_base_pathname = '/') # app = dash.Dash(__name__, external_stylesheets=external_stylesheets, server=server) # server = app.server ########################################## ### Parameters base_url = 'http://tethys-ts.xyz/tethys/data/' def select_dataset(features, parameters, methods, processing_codes, owners, aggregation_statistics, frequency_intervals, utc_offsets, datasets): """ """ dataset = [d for d in datasets if (d['feature'] == features) and (d['parameter'] == parameters) and (d['method'] == methods) and (d['owner'] == owners) and (d['aggregation_statistic'] == aggregation_statistics) and (d['frequency_interval'] == frequency_intervals) and (d['utc_offset'] == utc_offsets) and (d['processing_code'] == processing_codes)][0] return dataset ts_plot_height = 600 map_height = 700 lat1 = -43.45 lon1 = 171.9 zoom1 = 7 mapbox_access_token = "<KEY>" ############################################### ### App layout map_layout = dict(mapbox = dict(layers = [], accesstoken = mapbox_access_token, style = 'outdoors', center=dict(lat=lat1, lon=lon1), zoom=zoom1), margin = dict(r=0, l=0, t=0, b=0), autosize=True, hovermode='closest', height=map_height) # @server.route('/wai-vis') # def main(): def serve_layout(): dc = zstd.ZstdDecompressor() datasets = requests.get(base_url + 'datasets').json() requested_datasets = datasets.copy() features = list(set([f['feature'] for f in requested_datasets])) features.sort() parameters = list(set([f['parameter'] for f in requested_datasets])) parameters.sort() methods = list(set([f['method'] for f in requested_datasets])) methods.sort() processing_codes = list(set([f['processing_code'] for f in requested_datasets])) processing_codes.sort() owners = list(set([f['owner'] for f in requested_datasets])) owners.sort() aggregation_statistics = list(set([f['aggregation_statistic'] for f in requested_datasets])) aggregation_statistics.sort() frequency_intervals = list(set([f['frequency_interval'] for f in requested_datasets])) frequency_intervals.sort() utc_offsets = list(set([f['utc_offset'] for f in requested_datasets])) utc_offsets.sort() init_dataset = [d for d in requested_datasets if (d['feature'] == 'waterway') and (d['parameter'] == 'streamflow') and (d['processing_code'] == 'quality_controlled_data')][0] init_dataset_id = init_dataset['dataset_id'] dataset_table_cols = {'license': 'Data License', 'precision': 'Data Precision', 'units': 'Units'} ### prepare summaries and initial states max_date = pd.Timestamp.now() start_date = max_date - pd.DateOffset(years=1) # init_summ = sel_ts_summ(ts_summ, 'River', 'Flow', 'Recorder', 'Primary', 'ECan', str(start_date.date()), str(max_date.date())) # # new_sites = init_summ.drop_duplicates('ExtSiteID') init_summ_r = requests.post(base_url + 'sampling_sites', params={'dataset_id': init_dataset_id, 'compression': 'zstd'}) init_summ = orjson.loads(dc.decompress(init_summ_r.content)) init_summ = [s for s in init_summ if (pd.Timestamp(s['stats']['to_date']) > start_date) and (pd.Timestamp(s['stats']['from_date']) < max_date)] init_sites = [{'label': s['ref'], 'value': s['site_id']} for s in init_summ] init_site_id = [s['value'] for s in init_sites if s['label'] == '70105'][0] init_lon = [l['geometry']['coordinates'][0] for l in init_summ] init_lat = [l['geometry']['coordinates'][1] for l in init_summ] init_names = [l['ref'] + '<br>' + l['name'] for l in init_summ] init_table = [{'Site ID': s['ref'], 'Site Name': s['name'], 'Min Value': s['stats']['min'], 'Mean Value': s['stats']['mean'], 'Max Value': s['stats']['max'], 'Start Date': s['stats']['from_date'], 'End Date': s['stats']['to_date'], 'Last Modified Date': s['modified_date']} for s in init_summ] # init_ts_r = requests.get(base_url + 'time_series_results', params={'dataset_id': init_dataset_id, 'site_id': init_site_id, 'compression': 'zstd', 'from_date': start_date.round('s').isoformat(), 'to_date': max_date.round('s').isoformat()}) # dc = zstd.ZstdDecompressor() # df1 = pd.DataFrame(orjson.loads(dc.decompress(init_ts_r.content))) layout = html.Div(children=[ html.Div([ html.P(children='Filter datasets (select from top to bottom):'), html.Label('Feature'), dcc.Dropdown(options=[{'label': d, 'value': d} for d in features], value='waterway', id='features'), html.Label('Parameter'), dcc.Dropdown(options=[{'label': d, 'value': d} for d in parameters], value='streamflow', id='parameters'), html.Label('Method'), dcc.Dropdown(options=[{'label': d, 'value': d} for d in methods], value='sensor_recording', id='methods'), html.Label('Processing Code'), dcc.Dropdown(options=[{'label': d, 'value': d} for d in processing_codes], value='quality_controlled_data', id='processing_codes'), html.Label('Data Owner'), dcc.Dropdown(options=[{'label': d, 'value': d} for d in owners], value='ECan', id='owners'), html.Label('Aggregation Statistic'), dcc.Dropdown(options=[{'label': d, 'value': d} for d in aggregation_statistics], value='mean', id='aggregation_statistics'), html.Label('Frequency Interval'), dcc.Dropdown(options=[{'label': d, 'value': d} for d in frequency_intervals], value='1H', id='frequency_intervals'), html.Label('UTC Offset'), dcc.Dropdown(options=[{'label': d, 'value': d} for d in utc_offsets], value='0H', id='utc_offsets'), html.Label('Date Range'), dcc.DatePickerRange( end_date=str(max_date.date()), display_format='DD/MM/YYYY', start_date=str(start_date.date()), id='date_sel' # start_date_placeholder_text='DD/MM/YYYY' ), html.Label('Site IDs'), dcc.Dropdown(options=init_sites, id='sites') # html.Label('Water quality below detection limit method'), # dcc.RadioItems( # options=[ # {'label': 'Half dtl', 'value': 'half'}, # {'label': 'Trend analysis method', 'value': 'trend'} # ], # value='half', # id='dtl') ], className='two columns', style={'margin': 20}), html.Div([ html.P('Click on a site or "box select" multiple sites:', style={'display': 'inline-block'}), dcc.Graph( id = 'site-map', style={'height': map_height}, figure=dict( data = [dict(lat = init_lat, lon = init_lon, text = init_names, type = 'scattermapbox', hoverinfo = 'text', marker = dict( size=8, color='black', opacity=1 ) ) ], layout=map_layout), config={"displaylogo": False}), # html.A( # 'Download Dataset Summary Data', # id='download-summ', # download="dataset_summary.csv", # href="", # target="_blank", # style={'margin': 50}), # dash_table.DataTable( id='dataset_table', columns=[{"name": v, "id": v, 'deletable': True} for k, v in dataset_table_cols.items()], data=[], sort_action="native", sort_mode="multi", style_cell={ 'minWidth': '80px', 'maxWidth': '200px', 'whiteSpace': 'normal'} ) ], className='four columns', style={'margin': 20}), # html.Div([ # html.P('Select Dataset for time series plot:', style={'display': 'inline-block'}), # dcc.Dropdown(options=[{'value:': 5, 'label': init_dataset}], value=5, id='sel_dataset'), dcc.Graph( id = 'selected-data', figure = dict( data = [dict(x=0, y=0)], layout = dict( paper_bgcolor = '#F4F4F8', plot_bgcolor = '#F4F4F8', height = ts_plot_height ) ), config={"displaylogo": False} ), html.A( 'Download Time Series Data', id='download-tsdata', download="tsdata.csv", href="", target="_blank", style={'margin': 50}), dash_table.DataTable( id='summ_table', columns=[{"name": i, "id": i, 'deletable': True} for i in init_table[0].keys()], data=init_table, sort_action="native", sort_mode="multi", style_cell={ 'minWidth': '80px', 'maxWidth': '200px', 'whiteSpace': 'normal' } ) ], className='six columns', style={'margin': 10, 'height': 900}), html.Div(id='ts_data', style={'display': 'none'}), html.Div(id='datasets', style={'display': 'none'}, children=orjson.dumps(datasets).decode()), html.Div(id='dataset_id', style={'display': 'none'}, children=init_dataset_id), html.Div(id='sites_summ', style={'display': 'none'}, children=orjson.dumps(init_summ).decode()) # dcc.Graph(id='map-layout', style={'display': 'none'}, figure=dict(data=[], layout=map_layout)) ], style={'margin':0}) return layout app.layout = serve_layout ######################################## ### Callbacks @app.callback( [Output('parameters', 'options'), Output('methods', 'options'), Output('processing_codes', 'options'), Output('owners', 'options'), Output('aggregation_statistics', 'options'), Output('frequency_intervals', 'options'), Output('utc_offsets', 'options')], [Input('features', 'value')], [State('datasets', 'children')]) def update_parameters(features, datasets): def make_options(val): l1 = [{'label': v, 'value': v} for v in val] return l1 datasets1 = orjson.loads(datasets) datasets2 = [d for d in datasets1 if d['feature'] == features] parameters = list(set([d['parameter'] for d in datasets2])) parameters.sort() methods = list(set([d['method'] for d in datasets2])) methods.sort() processing_codes = list(set([d['processing_code'] for d in datasets2])) processing_codes.sort() owners = list(set([d['owner'] for d in datasets2])) owners.sort() aggregation_statistics = list(set([d['aggregation_statistic'] for d in datasets2])) aggregation_statistics.sort() frequency_intervals = list(set([d['frequency_interval'] for d in datasets2])) frequency_intervals.sort() utc_offsets = list(set([d['utc_offset'] for d in datasets2])) utc_offsets.sort() return make_options(parameters), make_options(methods), make_options(processing_codes), make_options(owners), make_options(aggregation_statistics), make_options(frequency_intervals), make_options(utc_offsets) @app.callback( Output('dataset_id', 'children'), [Input('features', 'value'), Input('parameters', 'value'), Input('methods', 'value'), Input('processing_codes', 'value'), Input('owners', 'value'), Input('aggregation_statistics', 'value'), Input('frequency_intervals', 'value'), Input('utc_offsets', 'value')], [State('datasets', 'children')]) def update_dataset_id(features, parameters, methods, processing_codes, owners, aggregation_statistics, frequency_intervals, utc_offsets, datasets): try: dataset = select_dataset(features, parameters, methods, processing_codes, owners, aggregation_statistics, frequency_intervals, utc_offsets, orjson.loads(datasets)) dataset_id = dataset['dataset_id'] print(features, parameters, methods, processing_codes, owners, aggregation_statistics, frequency_intervals, utc_offsets) return dataset_id except: print('No available dataset_id') @app.callback( Output('sites_summ', 'children'), [Input('dataset_id', 'children'), Input('date_sel', 'start_date'), Input('date_sel', 'end_date')]) def update_summ_data(dataset_id, start_date, end_date): if dataset_id is None: print('No new sites_summ') else: summ_r = requests.post(base_url + 'sampling_sites', params={'dataset_id': dataset_id, 'compression': 'zstd'}) dc = zstd.ZstdDecompressor() summ_data1 = orjson.loads(dc.decompress(summ_r.content).decode()) summ_data2 = [s for s in summ_data1 if (pd.Timestamp(s['stats']['to_date']) >
pd.Timestamp(start_date)
pandas.Timestamp
import pandas as pd import geopandas as gpd import glob import os from shapely import wkt # from optimization_parameters import * from _variable_definitions import * import contextily as ctx import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from _utils import pd2gpd from matplotlib import rc import matplotlib.patches as mpatches from matplotlib.lines import Line2D from _file_import_optimization import * from matplotlib import rc from matplotlib.ticker import MaxNLocator from pandas.core.common import SettingWithCopyWarning import warnings warnings.simplefilter(action="ignore", category=SettingWithCopyWarning) # --------------------------------------------------------------------------------------------------------------------- # input data for visualizations # --------------------------------------------------------------------------------------------------------------------- val = pd.read_csv( "validation_results/20220208-202154_validation 1_optimization_result_charging_stations.csv" ) scenario = pd.read_csv( "scenarios/results/20220209-144610_Directed Transition_optimization_result_charging_stations.csv" ) path_SA_driving_range = "sensitivity_analyses/driving_range/" list_of_paths_SA_driving_range = [ "20220215-085558_TF200_22_optimization_result_charging_stations.csv", "20220215-090500_TF300_22_optimization_result_charging_stations.csv", "20220215-091550_TF400_22_optimization_result_charging_stations.csv", "20220215-093041_TF500_22_optimization_result_charging_stations.csv", "20220215-095047_TF600_22_optimization_result_charging_stations.csv", "20220215-101421_TF700_22_optimization_result_charging_stations.csv", "20220215-104036_TF800_22_optimization_result_charging_stations.csv", "20220215-111415_TF900_22_optimization_result_charging_stations.csv", "20220215-114133_TF1000_22_optimization_result_charging_stations.csv", "20220215-123025_TF1100_22_optimization_result_charging_stations.csv", "20220215-125510_TF1200_22_optimization_result_charging_stations.csv", "20220215-132158_TF1300_22_optimization_result_charging_stations.csv", "20220215-135720_TF1400_22_optimization_result_charging_stations.csv", ] path_SA_share_BEV = "sensitivity_analyses/epsilon_increase/" list_of_paths_SA_share_BEV = [ "20220215-094034_ev share - epsilon SC10_3_optimization_result_charging_stations.csv", "20220215-095419_ev share - epsilon SC20_3_optimization_result_charging_stations.csv", "20220215-100808_ev share - epsilon SC30_3_optimization_result_charging_stations.csv", "20220215-102142_ev share - epsilon SC40_3_optimization_result_charging_stations.csv", "20220215-103522_ev share - epsilon SC50_3_optimization_result_charging_stations.csv", "20220215-105154_ev share - epsilon SC60_3_optimization_result_charging_stations.csv", "20220215-111343_ev share - epsilon SC70_3_optimization_result_charging_stations.csv", "20220215-134430_ev share - epsilon SC80_3_optimization_result_charging_stations.csv", "20220215-195040_ev share - epsilon SC90_3_optimization_result_charging_stations.csv", "20220215-214848_ev share - epsilon SC100_3_optimization_result_charging_stations.csv" ] _filename = 'sensitivity_analyses\cost_reduction_potentials_1202.csv' scenario_file = pd.read_csv("scenarios/optimization_results_1002.csv") # --------------------------------------------------------------------------------------------------------------------- # VALIDATION visualization # --------------------------------------------------------------------------------------------------------------------- # colors colors = ["#5f0f40", "#9a031e", "#E9C46A", "#e36414", "#0f4c5c"] colors.reverse() # reference coordinate system for all visualisation reference_coord_sys = "EPSG:31287" # highway geometries highway_geometries = pd.read_csv(r"geometries/highway_geometries_v6.csv") highway_geometries["geometry"] = highway_geometries.geometry.apply(wkt.loads) highway_geometries = gpd.GeoDataFrame(highway_geometries) highway_geometries = highway_geometries.set_crs(reference_coord_sys) highway_geometries["length"] = highway_geometries.geometry.length segments_gdf = pd2gpd(pd.read_csv("data/highway_segments.csv")) copy_highway_geometries = highway_geometries.drop_duplicates(subset=["highway"]) # austrian borders austrian_border = gpd.read_file("geometries/austrian_border.shp") # get latest result file list_of_files = glob.glob("scenarios/*") # latest_file = max(list_of_files, key=os.path.getctime) charging_capacity = 150 # (kW) # energies = scenario_file.p_max_bev.to_list() def merge_with_geom(results, energy): filtered_results = results[results[col_type] == "ra"] # osm geometries rest_areas = pd2gpd( pd.read_csv("data/projected_ras.csv"), geom_col_name="centroid" ).sort_values(by=["on_segment", "dist_along_highway"]) rest_areas["segment_id"] = rest_areas["on_segment"] rest_areas[col_type_ID] = rest_areas["nb"] rest_areas[col_directions] = rest_areas["evaluated_dir"] # merge here results_and_geom_df = pd.merge( filtered_results, rest_areas, on=[col_segment_id, col_type_ID, col_directions] ) # turn into GeoDataframe results_and_geom_df["geometry"] = results_and_geom_df.centroid results_and_geom_df["total_charging_pole_number"] = np.where( np.array(results_and_geom_df.pYi_dir) == 0, np.nan, np.array(results_and_geom_df.pYi_dir), ) results_and_geom_df = gpd.GeoDataFrame( results_and_geom_df, crs=reference_coord_sys, geometry="geometry" ) results_and_geom_df["charging_capacity"] = ( results_and_geom_df["total_charging_pole_number"] * energy ) # plot plot_results_and_geom_df = results_and_geom_df.to_crs("EPSG:3857") # plot_results_and_geom_df = plot_results_and_geom_df[ # plot_results_and_geom_df.total_charging_pole_number > 0 # ] plot_results_and_geom_df["x"] = plot_results_and_geom_df.geometry.x plot_results_and_geom_df["y"] = plot_results_and_geom_df.geometry.y return plot_results_and_geom_df plot_sc_1 = merge_with_geom(val, charging_capacity) merged = pd.merge( plot_sc_1, existing_infr, how="left", on=["segment_id", "name", "dir"] ) sub_1 = merged[merged.has_charging_station == True] sub_2 = merged[merged.total_charging_pole_number > 0] sub_1["installed_cap"] = ( sub_1["44kW"] * 44 + sub_1["50kW"] * 50 + sub_1["75kW"] * 75 + sub_1["150kW"] * 150 + sub_1["350kW"] * 350 ) sub_2["installed_cap"] = sub_2["total_charging_pole_number"] * charging_capacity plot_highway_geometries = highway_geometries.to_crs("EPSG:3857") plot_austrian_border = austrian_border.to_crs("EPSG:3857") plot_highway_geometries["null"] = [0] * len(plot_highway_geometries) min_size = 30 max_size = 150 max_val = max([sub_1["installed_cap"].max(), sub_1["installed_cap"].max()]) fact = max_size / max_val sizes = list(np.linspace(55, 150, 5)) bounds = np.linspace(0, max_val, 6) cm = 1 / 2.54 bounds[0] = 44 fig = plt.figure(figsize=(15, 10)) plt.rcParams["font.family"] = "Franklin Gothic Book" plt.rcParams["font.size"] = 10 gs = fig.add_gridspec(2, hspace=0) axs = gs.subplots(sharex=True, sharey=True) plot_highway_geometries.plot( ax=axs[0], label="Austrian highway network", color="black", zorder=0, linewidth=1 ) plot_highway_geometries.plot( ax=axs[1], label="Austrian highway network", color="black", zorder=0, linewidth=1 ) plot_austrian_border.plot(ax=axs[0], color="grey", linewidth=1) plot_austrian_border.plot(ax=axs[1], color="grey", linewidth=1) for ij in range(0, len(bounds) - 1): cat = sub_1[sub_1["installed_cap"].isin(np.arange(bounds[ij], bounds[ij + 1]))] axs[0].scatter( cat["x"].to_list(), cat["y"].to_list(), s=sizes[ij], color=colors[ij], label=str(int(bounds[ij])) + " - " + str(int(bounds[ij + 1])) + " kW", # edgecolors='black', zorder=10, ) for ij in range(0, len(bounds) - 1): cat = sub_2[sub_2["installed_cap"].isin(np.arange(bounds[ij], bounds[ij + 1]))] axs[1].scatter( cat["x"].to_list(), cat["y"].to_list(), s=sizes[ij], color=colors[ij], label=str(int(bounds[ij])) + " - " + str(int(bounds[ij + 1])) + " kW", # edgecolors='black', zorder=10, ) axs[0].axis("off") axs[1].axis("off") axs[0].text( 1.07e6, 6.2e6, "Existing infrastructure", bbox=dict(facecolor="none", edgecolor="grey", boxstyle="round,pad=0.4"), fontsize=14, ) axs[1].text( 1.07e6, 6.2e6, "Model output", bbox=dict(facecolor="none", edgecolor="grey", boxstyle="round,pad=0.4"), fontsize=14, ) # plotting NUTS 2 p = gpd.read_file("geometries\output_BL.shp") bd = p.to_crs("EPSG:3857") geoms = bd.geometry.to_list() names = bd["NAME"].to_list() for ij in range(0, len(bd)): if geoms[ij].type == "MultiPolygon": for g in geoms[ij]: axs[0].plot(*g.exterior.xy, color="grey", linewidth=1) axs[1].plot(*g.exterior.xy, color="grey", linewidth=1) else: axs[0].plot(*geoms[ij].exterior.xy, color="grey", linewidth=1) axs[1].plot(*geoms[ij].exterior.xy, color="grey", linewidth=1) c = geoms[ij].centroid # axs[0].text(c.x, c.y + 0.03e6, names[ij], color="grey") # axs[1].text(c.x, c.y + 0.03e6, names[ij], color="grey") axs[0].legend(loc="lower left", bbox_to_anchor=(0.15, 1, 1, 0), ncol=3, fancybox=True) # plt.show() plt.savefig("figures/comparison_image.pdf", bbox_inches="tight") # --------------------------------------------------------------------------------------------------------------------- # EXPANSION visualization # --------------------------------------------------------------------------------------------------------------------- # colors colors = ["#6b705c", "#2a9d8f", "#264653", "#f4a261", "#e76f51"] # colors.reverse() # reference coordinate system for all visualisation reference_coord_sys = "EPSG:31287" # highway geometries highway_geometries = pd.read_csv(r"geometries/highway_geometries_v6.csv") highway_geometries["geometry"] = highway_geometries.geometry.apply(wkt.loads) highway_geometries = gpd.GeoDataFrame(highway_geometries) highway_geometries = highway_geometries.set_crs(reference_coord_sys) highway_geometries["length"] = highway_geometries.geometry.length segments_gdf = pd2gpd(pd.read_csv("data/highway_segments.csv")) copy_highway_geometries = highway_geometries.drop_duplicates(subset=["highway"]) # austrian borders austrian_border = gpd.read_file("geometries/austrian_border.shp") # get latest result file list_of_files = glob.glob("scenarios/*") # latest_file = max(list_of_files, key=os.path.getctime) charging_capacity = 350 # (kW) # energies = scenario_file.p_max_bev.to_list() def merge_with_geom(results, energy): filtered_results = results[results[col_type] == "ra"] # osm geometries rest_areas = pd2gpd( pd.read_csv("data/projected_ras.csv"), geom_col_name="centroid" ).sort_values(by=["on_segment", "dist_along_highway"]) rest_areas["segment_id"] = rest_areas["on_segment"] rest_areas[col_type_ID] = rest_areas["nb"] rest_areas[col_directions] = rest_areas["evaluated_dir"] # merge here results_and_geom_df = pd.merge( filtered_results, rest_areas, on=[col_segment_id, col_type_ID, col_directions] ) # turn into GeoDataframe results_and_geom_df["geometry"] = results_and_geom_df.centroid results_and_geom_df["total_charging_pole_number"] = np.where( np.array(results_and_geom_df.pYi_dir) == 0, np.nan, np.array(results_and_geom_df.pYi_dir), ) results_and_geom_df = gpd.GeoDataFrame( results_and_geom_df, crs=reference_coord_sys, geometry="geometry" ) results_and_geom_df["charging_capacity"] = ( results_and_geom_df["total_charging_pole_number"] * energy ) # plot plot_results_and_geom_df = results_and_geom_df.to_crs("EPSG:3857") # plot_results_and_geom_df = plot_results_and_geom_df[ # plot_results_and_geom_df.total_charging_pole_number > 0 # ] plot_results_and_geom_df["x"] = plot_results_and_geom_df.geometry.x plot_results_and_geom_df["y"] = plot_results_and_geom_df.geometry.y return plot_results_and_geom_df plot_sc_1 = merge_with_geom(scenario, charging_capacity) merged = pd.merge( plot_sc_1, existing_infr, how="left", on=["segment_id", "name", "dir"] ) # sub_1 = merged[merged.has_charging_station == True] # sub_2 = merged[merged.total_charging_pole_number > 0] merged["existing_cap"] = +merged["350kW"] * 350 merged["model_cap"] = merged["total_charging_pole_number"] * charging_capacity merged["existing_cap"] = merged["existing_cap"].replace(np.NaN, 0) merged["model_cap"] = merged["model_cap"].replace(np.NaN, 0) # make classification here merged["diff"] = merged["model_cap"] - merged["existing_cap"] merged["difference"] = np.where(merged["diff"] < 0, 0, merged["diff"]) comp_df = merged[merged.total_charging_pole_number > 0] max_val = comp_df["difference"].max() bounds = [charging_capacity] + [int(round(max_val / 2, -2)), int(max_val)] size_1 = 150 # small size_2 = 300 # big # plot grey , difference == 0 # plot the two classes, for where has_charging_infrastructure == True (blue) # plot the two classes, for where !(has_charging_infrastructure == True) (red) plot_highway_geometries = highway_geometries.to_crs("EPSG:3857") plot_austrian_border = austrian_border.to_crs("EPSG:3857") plot_highway_geometries["null"] = [0] * len(plot_highway_geometries) bd = p.to_crs("EPSG:3857") fig, ax = plt.subplots( figsize=(13, 8) ) plt.rcParams["font.family"] = "Franklin Gothic Book" plt.rcParams["font.size"] = 13 # plotting NUTS 2 geoms = bd.geometry.to_list() names = bd["NAME"].to_list() for ij in range(0, len(bd)): if geoms[ij].type == "MultiPolygon": for g in geoms[ij]: ax.plot(*g.exterior.xy, color="grey", linewidth=1) else: ax.plot(*geoms[ij].exterior.xy, color="grey", linewidth=1) c = geoms[ij].centroid # ax.text(c.x, c.y + 0.03e6, names[ij], color="grey") # plotting highway network and Austrian boarder plot_highway_geometries.plot( ax=ax, label="Austrian highway network", color="black", zorder=0, linewidth=1 ) # count together for the four categories all capacity expansion_values = [] # plot_austrian_border.plot(ax=ax, color="grey", linewidth=1) # plot the ones with no change # plot the two classes, for where has_charging_infrastructure == True (blue); cat = comp_df[comp_df.has_charging_station == True] cat0 = cat[cat["difference"].isin(list(range(bounds[0], bounds[1] + 1)))] cat1 = cat[cat["difference"].isin(list(range(bounds[1] + 1, bounds[2] + 1)))] expansion_values.append(cat0["difference"].sum()) expansion_values.append(cat1["difference"].sum()) ax.scatter( cat0["x"].to_list(), cat0["y"].to_list(), s=size_1, color=colors[1], label="Expansion of existing CS by " + str(bounds[0]) + " - " + str(bounds[1]) + " kW", zorder=10, ) ax.scatter( cat1["x"].to_list(), cat1["y"].to_list(), s=size_2, color=colors[2], label="Expansion of existing CS by " + str(bounds[1]) + " - " + str(bounds[2]) + " kW", zorder=10, ) # plot the two classes, for where !(has_charging_infrastructure == True) (red) cat = comp_df[~(comp_df.has_charging_station == True)] cat0 = cat[cat["difference"].isin(list(range(bounds[0], bounds[1] + 1)))] cat1 = cat[cat["difference"].isin(list(range(bounds[1] + 1, bounds[2] + 1)))] expansion_values.append(cat0["difference"].sum()) expansion_values.append(cat1["difference"].sum()) ax.scatter( cat0["x"].to_list(), cat0["y"].to_list(), s=size_1, color=colors[3], label="Newly installed CS with " + str(bounds[0]) + " - " + str(bounds[1]) + " kW", # edgecolors='black', zorder=10, ) ax.scatter( cat1["x"].to_list(), cat1["y"].to_list(), s=size_2, color=colors[4], label="Newly installed CS with " + str(bounds[1]) + " - " + str(bounds[2]) + " kW", # edgecolors='black', zorder=10, ) cat = comp_df[comp_df["difference"] == 0] if len(cat) > 0: ax.scatter( cat["x"].to_list(), cat["y"].to_list(), s=size_1, color=colors[0], label="No expansion of existing CS", # edgecolors='black', zorder=10, ) ax.axis("off") ax.set_title("Required charging infrastructure expansion until 2030 under the DT scenario") ax.legend(loc="lower left", bbox_to_anchor=(0, 0.6, 1, 0), ncol=1, fancybox=True) tot = sum(expansion_values) expansion_values = [e / tot * 100 for e in expansion_values] plt.savefig("figures/expansion_image.pdf", bbox_inches="tight") # --------------------------------------------------------------------------------------------------------------------- # Cost reduction potentials # --------------------------------------------------------------------------------------------------------------------- _cost_decrease_analysis = pd.read_csv(_filename) costs = [scenario_file.loc[1].costs] + _cost_decrease_analysis.costs.to_list()[0:4] # spec_BEV_costs = [scenario_file.loc[3]['€/BEV']] + _cost_decrease_analysis['€/BEV'].to_list()[0:4] # spec_kW_costs = [scenario_file.loc[3]['€/kW']] + _cost_decrease_analysis['€/kW'].to_list()[0:4] labels = ['GD scenario'] + _cost_decrease_analysis['scenario_name'].to_list()[0:4] labels = ['GD scenario\n2030', 'Medium decrease\nin road traffic', 'Major decrease\nin road traffic', 'Increase in\ndriving range', 'Increase in\ncharging power'] c = '#f4f1de' fig, ax = plt.subplots(figsize=(9, 4)) plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True plt.rcParams["font.family"] = "Franklin Gothic Book" plt.rcParams["font.size"] = 12 # gs = gridspec.GridSpec(2, 1, height_ratios=[1, 1]) # ax1 = plt.subplot(gs[0]) # ax2 = plt.subplot(gs[1], sharex=ax1) ax.tick_params(axis='both', which='major', labelsize=10) l2 = ax.bar(labels[0], costs[0], width=0.7, color=['#f6bd60'], zorder=10, label='infrastructure costs in GD scenario 2030') l3 = ax.bar(labels[1:], costs[1:], width=0.7, color=['#3d405b'] * 4, zorder=10, label='reduced infrastructure costs of GD scenario 2030') l4 = ax.bar(labels, costs[0], color=c, width=0.7, zorder=5, label='cost difference relative to GD scenario 2030') ax.axhline(y=costs[0], linewidth=3, color='#f6bd60', linestyle='--', zorder=30) ax.grid(axis="y") ax.set_ylabel('Total infrastructure expansion costs (€)', fontsize=14, fontname="Franklin Gothic Book") ax.text(labels[0], costs[0]/2, '€ ' + str(int(round((costs[0])/1e6, 0))) + ' Mio.', zorder=20, ha='center', va='center', fontsize=12, fontname="Franklin Gothic Book") ax.set_yticklabels([str(e) + ' Mio.' for e in range(0, 120, 20)], fontsize=12, fontname="Franklin Gothic Book") for ij in [1,2,4]: ax.text(labels[ij], costs[ij] + (costs[0] - costs[ij])/2, u"\u2212" + ' € ' + str(int(round((costs[0] - costs[ij])/1e6, 0))) + ' Mio.', zorder=20, ha='center', va='center', fontsize=11, fontname="Franklin Gothic Book") plt.subplots_adjust(hspace=.0) # ax.set_ylim([0, 70e6]) # ax2.grid() # l0 = ax2.plot(labels, spec_kW_costs, marker='o', linestyle='dotted', color='#004733', linewidth=2, label="€/kW") # ax3 = ax2.twinx() # l1 = ax3.plot(labels, spec_BEV_costs, marker='o', linestyle='dotted', color='#0096c7', linewidth=2, label="€/BEV") # ax2.set_ylim([120, 480]) # ax3.set_ylim([0, 100]) # insert text descriptions # for ij in range(0, 5): # ax2.text(labels[ij], spec_kW_costs[ij] + 40, "{:.2f}".format(spec_kW_costs[ij]), va='top', color='#004733', ha='left') # ax3.text(labels[ij], spec_BEV_costs[ij] - 10, "{:.2f}".format(spec_BEV_costs[ij]), va='bottom', color='#0096c7', # ha='right') # ax3.spines["left"].set_color("#004733") # setting up Y-axis tick color to red # ax3.spines["right"].set_color("#0096c7") # setting up Y-axis tick color to red # ax2.tick_params(axis="y", colors="#004733") # ax3.tick_params(axis="y", colors="#0096c7") # # ax2.set_ylabel("€/kW", color="#004733", fontsize=14) # ax3.set_ylabel("€/BEV", rotation=-90, color="#0096c7", fontsize=14) # adding labels to graph y_size = 490 b_box = dict(facecolor="white", edgecolor="white", boxstyle="round,pad=0.5") # # for ij in range(0, len(labels)): # ax2.text(labels[ij], y_size, labels[ij], ha='center', va='top', bbox=b_box, fontweight='extra bold') ax.xaxis.set_ticks_position('top') # lns = l0 + l1 lns2 = [l2] + [l3] + [l4] labs = [l.get_label() for l in lns2] ax.legend(lns2, labs, bbox_to_anchor=(1.01, -0.05), ncol=2) # ax2.get_xaxis().set_ticks([]) # ax2.set_xticklabels(['' for e in range(0, len(labels))]) # ax1.xaxis.set_ticks_position('top') # ax1.xaxis.set_label_position('top') # ax1.xaxis.tick_top() # ax1.xaxis.set_ticks_position('both') # plt.setp(ax3.get_xticklabels(), visible=False) # plt.setp(ax2.get_xticklabels(), visible=False) ax.set_title('Cost-reduction potentials in the GD scenario 2030\n', fontsize=15, fontname="Franklin Gothic Book") # plt.show() plt.savefig('figures/cost_red.pdf', bbox_inches="tight") # --------------------------------------------------------------------------------------------------------------------- # SENSITIVITY ANALYSIS I : DRIVING RANGE # --------------------------------------------------------------------------------------------------------------------- results = [] range_max = 1400 range_min = 200 step_size = 100 ranges = np.arange(range_min, range_max + step_size, step_size) # create a dataframe with all Y values with columns of "100", "200", ... base_df = pd.read_csv(path_SA_driving_range + list_of_paths_SA_driving_range[0]) df = pd.DataFrame() # df['locations'] = base_df.POI_ID nb_x = [] for ij in range(0, len(ranges)): temp_df = pd.read_csv(path_SA_driving_range + list_of_paths_SA_driving_range[ij]) df[ranges[ij]] = temp_df.pYi_dir nb_x.append(temp_df.pXi.sum()) # nb_x.append(nb_x[-1]) df_to_plot = df.replace(0, np.nan) # plot fig, ax = plt.subplots(figsize=(8, 3.5)) plt.rcParams["font.family"] = "Franklin Gothic Book" plt.rcParams["font.size"] = 12 font = {'family': "Franklin Gothic Book", 'fontsize': 12 } ax2 = ax.twinx() plt.xlim([range_min - step_size, range_max + step_size]) ax.tick_params( axis="x", # changes apply to the x-axis which="both", # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off ) # labels along the bottom edge are off c = "#6096ba" plt.rcParams["font.family"] = "Franklin Gothic Book" plt.rcParams["font.size"] = 12 df_to_plot.boxplot( ax=ax, widths=(50), # notch=True, patch_artist=True, boxprops=dict(facecolor=c, color=c), capprops={"color": c, "linewidth": 2}, whiskerprops={"color": c, "linewidth": 2}, flierprops={"color": c, "markeredgewidth": 2, "markeredgecolor": c}, medianprops=dict(color='red', linewidth=1.5 ), positions=ranges, labels=ranges, ) ax.set_xlabel("driving range (km)", fontname="Franklin Gothic Book") ax.set_yticklabels(labels= list(range(0, 55,5)),fontname="Franklin Gothic Book") ax2.set_xticklabels(labels= list(range(200, 1500, 100)), fontname="Franklin Gothic Book") ax.set_xticklabels(labels= list(range(200, 1500, 100)), fontname="Franklin Gothic Book") plt.grid("off") ax.set_ylabel("Nb. charging points per charging station", color="#1d3557", fontdict=font) ax2.set_ylabel( "Nb. charging stations", color="#723d46", rotation=-90, labelpad=12, fontsize=12 ) ax2.grid(False) l0 = ax2.plot( list(ranges), nb_x, marker="o", color="#723d46", linewidth=2, label="Nb. of CS", ) ax2.set_ylim([36, 66]) ax.set_ylim([0, 50]) l1 = ax.plot( [range_min - step_size, range_max + step_size], [int(12000 / 350)] * len([range_min - step_size, range_max + step_size]), linestyle="dotted", color="grey", linewidth=2, label="Max. nb. of CP at a CS", ) ax.tick_params(axis="y", colors="#1d3557", labelsize=10) ax2.tick_params(axis="y", colors="#723d46", labelsize=10) ax2.spines["left"].set_color("#1d3557") ax.spines["left"].set_color("#1d3557") # setting up Y-axis tick color to red ax2.spines["right"].set_color("#723d46") ax2.spines["top"].set_visible(False) ax.spines["top"].set_visible(False) ax2.yaxis.set_major_locator(MaxNLocator(integer=True)) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) blue_patch = mpatches.Patch(color=c, label='Distribution of nb. of CP at CS') median_patch = Line2D([0], [0], color='red', lw=1.5) lns = l0 + l1 labs = [l.get_label() for l in lns] ax.legend(lns + [blue_patch] + [median_patch], labs + [blue_patch._label, 'Median of CP at CS'], loc=2, fontsize=11, ncol=2) plt.savefig("figures/driving_range_SA.pdf", bbox_inches="tight") # --------------------------------------------------------------------------------------------------------------------- # highway geometries highway_geometries = pd.read_csv(r"geometries/highway_geometries_v6.csv") highway_geometries["geometry"] = highway_geometries.geometry.apply(wkt.loads) highway_geometries = gpd.GeoDataFrame(highway_geometries) highway_geometries = highway_geometries.set_crs(reference_coord_sys) highway_geometries["length"] = highway_geometries.geometry.length segments_gdf = pd2gpd(pd.read_csv("data/highway_segments.csv")) plot_highway_geometries = highway_geometries.to_crs("EPSG:3857") # plot_austrian_border = austrian_border.to_crs("EPSG:3857") plot_highway_geometries["null"] = [0] * len(plot_highway_geometries) def merge_with_geom(results, energy): filtered_results = results[results[col_type] == "ra"] # osm geometries rest_areas = pd2gpd( pd.read_csv("data/projected_ras.csv"), geom_col_name="centroid" ).sort_values(by=["on_segment", "dist_along_highway"]) rest_areas["segment_id"] = rest_areas["on_segment"] rest_areas[col_type_ID] = rest_areas["nb"] rest_areas[col_directions] = rest_areas["evaluated_dir"] # merge here results_and_geom_df = pd.merge( filtered_results, rest_areas, on=[col_segment_id, col_type_ID, col_directions] ) # turn into GeoDataframe results_and_geom_df["geometry"] = results_and_geom_df.centroid results_and_geom_df["total_charging_pole_number"] = np.where( np.array(results_and_geom_df.pYi_dir) == 0, np.nan, np.array(results_and_geom_df.pYi_dir), ) results_and_geom_df = gpd.GeoDataFrame( results_and_geom_df, crs=reference_coord_sys, geometry="geometry" ) results_and_geom_df["charging_capacity"] = ( results_and_geom_df["total_charging_pole_number"] * energy ) # plot plot_results_and_geom_df = results_and_geom_df.to_crs("EPSG:3857") # plot_results_and_geom_df = plot_results_and_geom_df[ # plot_results_and_geom_df.total_charging_pole_number > 0 # ] plot_results_and_geom_df["x"] = plot_results_and_geom_df.geometry.x plot_results_and_geom_df["y"] = plot_results_and_geom_df.geometry.y return plot_results_and_geom_df plot_sc_1 = merge_with_geom(val, charging_capacity) merged = pd.merge( plot_sc_1, existing_infr, how="left", on=["segment_id", "name", "dir"] ) results = [] # range_max = 1400 # range_min = 200 # step_size = 100 range_max = 1400 range_min = 200 step_size = 100 ranges = np.arange(range_min, range_max + step_size, step_size) # create a dataframe with all Y values with columns of "100", "200", ... base_df = pd.read_csv(path_SA_driving_range + list_of_paths_SA_driving_range[0]) df = pd.DataFrame() # df['locations'] = base_df.POI_ID nb_x = [] df["POI_ID"] = base_df["POI_ID"] for ij in range(0, len(ranges)): temp_df = pd.read_csv(path_SA_driving_range + list_of_paths_SA_driving_range[ij]) df[ranges[ij]] = temp_df.pXi nb_x.append(temp_df.pXi.sum()) # nb_x.append(nb_x[-1]) df_to_plot = df.replace(0, np.nan) merge_2 =
pd.merge(df_to_plot, merged, how="left", on=["POI_ID"])
pandas.merge
import sys, os import unittest import pandas as pd import numpy import sys from sklearn import datasets from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, Imputer, LabelEncoder, LabelBinarizer, MinMaxScaler, MaxAbsScaler, RobustScaler,\ Binarizer, PolynomialFeatures, OneHotEncoder, KBinsDiscretizer from sklearn_pandas import CategoricalImputer from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier from sklearn.svm import SVC, SVR, LinearSVC, LinearSVR, OneClassSVM from sklearn.neural_network import MLPClassifier, MLPRegressor from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.naive_bayes import GaussianNB from sklearn_pandas import DataFrameMapper from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor, RandomForestClassifier,\ RandomForestRegressor, IsolationForest from sklearn.linear_model import LinearRegression, LogisticRegression, RidgeClassifier, SGDClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.gaussian_process import GaussianProcessClassifier from nyoka.preprocessing import Lag from nyoka import skl_to_pmml from nyoka import PMML44 as pml class TestMethods(unittest.TestCase): def test_sklearn_01(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data,columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' f_name = "svc_pmml.pmml" model = SVC() pipeline_obj = Pipeline([ ('svm',model) ]) pipeline_obj.fit(irisd[features],irisd[target]) skl_to_pmml(pipeline_obj,features,target,f_name) pmml_obj = pml.parse(f_name,True) ## 1 svms = pmml_obj.SupportVectorMachineModel[0].SupportVectorMachine for mod_val, recon_val in zip(model.intercept_, svms): self.assertEqual("{:.16f}".format(mod_val), "{:.16f}".format(recon_val.Coefficients.absoluteValue)) ## 2 svm = pmml_obj.SupportVectorMachineModel[0] self.assertEqual(svm.RadialBasisKernelType.gamma,model._gamma) def test_sklearn_02(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data,columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' f_name = "knn_pmml.pmml" pipeline_obj = Pipeline([ ('scaling',StandardScaler()), ('knn',KNeighborsClassifier(n_neighbors = 5)) ]) pipeline_obj.fit(irisd[features],irisd[target]) skl_to_pmml(pipeline_obj,features,target,f_name) pmml_obj = pml.parse(f_name,True) ##1 self.assertIsNotNone(pmml_obj.NearestNeighborModel[0].ComparisonMeasure.euclidean) ##2 self.assertEqual(pmml_obj.NearestNeighborModel[0].ComparisonMeasure.kind, "distance") ##3 self.assertEqual(pipeline_obj.steps[-1][-1].n_neighbors, pmml_obj.NearestNeighborModel[0].numberOfNeighbors) def test_sklearn_03(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' f_name = "rf_pmml.pmml" model = RandomForestClassifier(n_estimators = 100) pipeline_obj = Pipeline([ ("mapping", DataFrameMapper([ (['sepal length (cm)', 'sepal width (cm)'], StandardScaler()) , (['petal length (cm)', 'petal width (cm)'], Imputer()) ])), ("rfc", model) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, f_name) pmml_obj = pml.parse(f_name,True) ## 1 self.assertEqual(model.n_estimators,pmml_obj.MiningModel[0].Segmentation.Segment.__len__()) ##2 self.assertEqual(pmml_obj.MiningModel[0].Segmentation.multipleModelMethod, "majorityVote") def test_sklearn_04(self): titanic = pd.read_csv("nyoka/tests/titanic_train.csv") features = titanic.columns target = 'Survived' f_name = "gb_pmml.pmml" pipeline_obj = Pipeline([ ("imp", Imputer(strategy="median")), ("gbc", GradientBoostingClassifier(n_estimators = 10)) ]) pipeline_obj.fit(titanic[features],titanic[target]) skl_to_pmml(pipeline_obj, features, target, f_name) pmml_obj = pml.parse(f_name,True) ##1 self.assertEqual(pmml_obj.MiningModel[0].Segmentation.multipleModelMethod, "modelChain") ##2 self.assertEqual(pmml_obj.MiningModel[0].Segmentation.Segment.__len__(), 2) ##3 self.assertEqual(pmml_obj.MiningModel[0].Segmentation.Segment[1].RegressionModel.normalizationMethod, "logit") def test_sklearn_05(self): df = pd.read_csv('nyoka/tests/auto-mpg.csv') X = df.drop(['mpg'],axis=1) y = df['mpg'] features = [name for name in df.columns if name not in ('mpg')] target = 'mpg' pipeline_obj = Pipeline([ ('mapper', DataFrameMapper([ ('car name', TfidfVectorizer()) ])), ('model',DecisionTreeRegressor()) ]) pipeline_obj.fit(X,y) skl_to_pmml(pipeline_obj,features,target,"dtr_pmml.pmml") self.assertEqual(os.path.isfile("dtr_pmml.pmml"),True) def test_sklearn_06(self): df = pd.read_csv('nyoka/tests/auto-mpg.csv') X = df.drop(['mpg','car name'],axis=1) y = df['mpg'] features = X.columns target = 'mpg' f_name = "linearregression_pmml.pmml" model = LinearRegression() pipeline_obj = Pipeline([ ('model',model) ]) pipeline_obj.fit(X,y) skl_to_pmml(pipeline_obj,features,target,f_name) pmml_obj = pml.parse(f_name, True) ## 1 reg_tab = pmml_obj.RegressionModel[0].RegressionTable[0] self.assertEqual(reg_tab.intercept,model.intercept_) ## 2 for model_val, pmml_val in zip(model.coef_, reg_tab.NumericPredictor): self.assertEqual("{:.16f}".format(model_val),"{:.16f}".format(pmml_val.coefficient)) def test_sklearn_07(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' f_name = "logisticregression_pmml.pmml" model = LogisticRegression() pipeline_obj = Pipeline([ ("mapping", DataFrameMapper([ (['sepal length (cm)', 'sepal width (cm)'], StandardScaler()) , (['petal length (cm)', 'petal width (cm)'], Imputer()) ])), ("lr", model) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, f_name) pmml_obj = pml.parse(f_name,True) ## 1 segmentation = pmml_obj.MiningModel[0].Segmentation self.assertEqual(segmentation.Segment.__len__(), model.classes_.__len__()+1) ## 2 self.assertEqual(segmentation.multipleModelMethod, "modelChain") ##3 self.assertEqual(segmentation.Segment[-1].RegressionModel.normalizationMethod, "simplemax") ##4 for i in range(model.classes_.__len__()): self.assertEqual(segmentation.Segment[i].RegressionModel.normalizationMethod, "logit") self.assertEqual("{:.16f}".format(model.intercept_[i]),\ "{:.16f}".format(segmentation.Segment[i].RegressionModel.RegressionTable[0].intercept)) def test_sklearn_08(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = [i%2 for i in range(iris.data.shape[0])] features = irisd.columns.drop('Species') target = 'Species' pipeline_obj = Pipeline([ ('pca',PCA(2)), ('mod',LogisticRegression()) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "logisticregression_pca_pmml.pmml") self.assertEqual(os.path.isfile("logisticregression_pca_pmml.pmml"),True) def test_sklearn_09(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' pipeline_obj = Pipeline([ ("SGD", SGDClassifier()) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "sgdclassifier_pmml.pmml") self.assertEqual(os.path.isfile("sgdclassifier_pmml.pmml"),True) def test_sklearn_10(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' pipeline_obj = Pipeline([ ("lsvc", LinearSVC()) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "linearsvc_pmml.pmml") self.assertEqual(os.path.isfile("linearsvc_pmml.pmml"),True) def test_sklearn_11(self): df = pd.read_csv('nyoka/tests/auto-mpg.csv') X = df.drop(['mpg','car name'],axis=1) y = df['mpg'] features = X.columns target = 'mpg' pipeline_obj = Pipeline([ ('model',LinearSVR()) ]) pipeline_obj.fit(X,y) skl_to_pmml(pipeline_obj,features,target,"linearsvr_pmml.pmml") self.assertEqual(os.path.isfile("linearsvr_pmml.pmml"),True) def test_sklearn_12(self): df = pd.read_csv('nyoka/tests/auto-mpg.csv') X = df.drop(['mpg','car name'],axis=1) y = df['mpg'] features = X.columns target = 'mpg' pipeline_obj = Pipeline([ ('model',GradientBoostingRegressor()) ]) pipeline_obj.fit(X,y) skl_to_pmml(pipeline_obj,features,target,"gbr.pmml") self.assertEqual(os.path.isfile("gbr.pmml"),True) def test_sklearn_13(self): iris = datasets.load_iris() irisd = pd.DataFrame(iris.data, columns=iris.feature_names) irisd['Species'] = iris.target features = irisd.columns.drop('Species') target = 'Species' pipeline_obj = Pipeline([ ("SGD", DecisionTreeClassifier()) ]) pipeline_obj.fit(irisd[features], irisd[target]) skl_to_pmml(pipeline_obj, features, target, "dtr_clf.pmml") self.assertEqual(os.path.isfile("dtr_clf.pmml"),True) def test_sklearn_14(self): df = pd.read_csv('nyoka/tests/auto-mpg.csv') X = df.drop(['mpg','car name'],axis=1) y = df['mpg'] features = X.columns target = 'mpg' pipeline_obj = Pipeline([ ('model',RandomForestRegressor()) ]) pipeline_obj.fit(X,y) skl_to_pmml(pipeline_obj,features,target,"rfr.pmml") self.assertEqual(os.path.isfile("rfr.pmml"),True) def test_sklearn_15(self): df = pd.read_csv('nyoka/tests/auto-mpg.csv') X = df.drop(['mpg','car name'],axis=1) y = df['mpg'] features = X.columns target = 'mpg' pipeline_obj = Pipeline([ ('model',KNeighborsRegressor()) ]) pipeline_obj.fit(X,y) skl_to_pmml(pipeline_obj,features,target,"knnr.pmml") self.assertEqual(os.path.isfile("knnr.pmml"),True) def test_sklearn_16(self): df =
pd.read_csv('nyoka/tests/auto-mpg.csv')
pandas.read_csv
import pandas as pd import seaborn as sns import statsmodels.api as sm import numpy as np import matplotlib.pyplot as plt import matplotlib from numpy.polynomial.polynomial import polyfit from scipy.stats import shapiro from scipy.stats import ttest_ind as tt from scipy.stats import spearmanr as corrp import numpy as np from statsmodels.graphics.gofplots import qqplot font = {'family' : 'sans-serif', 'weight' : 'light', 'size' : 16} matplotlib.rc('font', **font) bad_indices=[] sr_data=pd.read_csv('self_report_study2.csv') #load self-report data mb_agnostic=pd.read_csv('mb_scores_rares_empirical_best.csv') mb_scores=mb_agnostic['MB_behav'] state_t1=pd.read_csv('Gillan_TL_full_lrT.csv',header=None) #load state transition lrs state_t=pd.read_csv('Gillan_Or_full_lrT_decay.csv',header=None) #load state transition lrs print(len(state_t1)) r,p=corrp(state_t1[0],state_t[0]) print('CORREL ST TL both models : {}, p {}'.format(r,p)) it_mb=pd.read_csv('Gillan_Or_full_MB_decay.csv',header=None) #load MB beta # it_mb=np.log(it_mb) mf1=
pd.read_csv('Gillan_Or_full_MF1_decay.csv',header=None)
pandas.read_csv
import argparse import utils import pandas as pd import time import os parser = argparse.ArgumentParser(prog='cleaner', description="Parser of cleaning script") parser.add_argument( '--data_path', help='Provide Full path of data.', type=str) parser.add_argument( '--filename', help="file name of cleaned data. Don't include .csv. default= extracted", type=str, default='extracted') parser.add_argument( '--handle_emojies', help='How to handle emojies. [remove] to remove emojies. [emoticon] to keep emoticon. [keep] to keep emojies، default=[emoticon]', type=str, default='emoticon') args = parser.parse_args() data_path = args.data_path handle_emojies = args.handle_emojies filename = args.filename if not os.path.isfile(data_path): raise ValueError(f'file {data_path} not found') def clean_data(): start_time = time.time() data =
pd.read_csv(data_path, header=0)
pandas.read_csv
# ------------------ # this module, grid.py, deals with calculations of all microbe-related activites on a spatial grid with a class, Grid(). # by <NAME> # ------------------ import numpy as np import pandas as pd from microbe import microbe_osmo_psi from microbe import microbe_mortality_prob as MMP from enzyme import Arrhenius, Allison from monomer import monomer_leaching from utility import expand class Grid(): """ This class holds all variables related to microbe, substrate, monomer, and enzyme over the spatial grid. Accepts returns from the module 'initialization.py' and includes methods as follows: 1) degrdation(): explicit substrate degradation 2) uptake(): explicit monomers uptake 3) metabolism(): cellular processes and emergent CUE and respiration 4) mortality(): determine mortality of microbial cells based on mass thresholds 5) reproduction(): compute cell division and dispersal 6) repopulation(): resample taxa from the microbial pool and place them on the grid Coding philosophy: Each method starts with passing some global variables to local ones and creating some indices facilitating dataframe index/column processing and ends up with updating state variables and passing them back to the global ones. All computation stays in between. Reminder: Keep a CLOSE EYE on the indexing throughout the matrix/dataframe operations """ def __init__(self,runtime,data_init): """ The constructor of Grid class. Parameters: runtime: user-specified parameters data_init: dictionary;initialized data from the module 'initialization.py' """ self.cycle = int(runtime.loc['end_time',1]) self.gridsize = int(runtime.loc['gridsize',1]) self.n_taxa = int(runtime.loc["n_taxa",1]) self.n_substrates = int(runtime.loc["n_substrates",1]) self.n_enzymes = int(runtime.loc["n_enzymes",1]) self.n_monomers = self.n_substrates + 2 #Degradation #self.Substrates_init = data_init['Substrates'] # Substrates initialized self.Substrates = data_init['Substrates'].copy(deep=True) # Substrates;df; w/ .copy() avoiding mutation self.SubInput = data_init['SubInput'] # Substrate inputs #self.Enzymes_init = data_init['Enzymes'] # Initial pool of Enzymes self.Enzymes = data_init['Enzymes'].copy(deep=True) # Enzymes self.ReqEnz = data_init['ReqEnz'] # Enzymes required by each substrate self.Ea = data_init['Ea'] # Enzyme activatin energy self.Vmax0 = data_init['Vmax0'] # Max. reaction speed self.Km0 = data_init['Km0'] # Half-saturation constant self.SubstrateRatios = np.float32('nan') # Substrate stoichiometry self.DecayRates = np.float32('nan') # Substrate decay rate #Uptake #self.Microbes_init = data_init['Microbes_pp'] # microbial community before placement self.Microbes = data_init['Microbes'].copy(deep=True) # microbial community after placement #self.Monomers_init = data_init['Monomers'] # Monomers initialized self.Monomers = data_init['Monomers'].copy(deep=True) # Monomers self.MonInput = data_init['MonInput'] # Inputs of monomers self.Uptake_Ea = data_init['Uptake_Ea'] # transporter enzyme Ea self.Uptake_Vmax0 = data_init['Uptake_Vmax0'] # transporter Vmax self.Uptake_Km0 = data_init['Uptake_Km0'] # transporter Km self.Monomer_ratios = data_init['Monomer_ratio'].copy(deep=True) # monomer stoichiometry self.Uptake_ReqEnz = data_init['Uptake_ReqEnz'] # Enzymes required by monomers self.Uptake_Enz_Cost = data_init['UptakeGenesCost'] # Cost of encoding each uptake gene self.Taxon_Uptake_C = np.float32('nan') # taxon uptake of C self.Taxon_Uptake_N = np.float32('nan') # taxon uptake of N self.Taxon_Uptake_P = np.float32('nan') # taxon uptake of P #Metabolism self.Consti_Enzyme_C = data_init["EnzProdConstit"] # C cost of encoding constitutive enzyme self.Induci_Enzyme_C = data_init["EnzProdInduce"] # C Cost of encoding inducible enzyme self.Consti_Osmo_C = data_init['OsmoProdConsti'] # C Cost of encoding constitutive osmolyte self.Induci_Osmo_C = data_init['OsmoProdInduci'] # C Cost of encoding inducible osmolyte self.Uptake_Maint_Cost = data_init['Uptake_Maint_cost'] # Respiration cost of uptake transporters: 0.01 mg C transporter-1 day-1 self.Enz_Attrib = data_init['EnzAttrib'] # Enzyme attributes; dataframe self.AE_ref = data_init['AE_ref'] # Reference AE:constant of 0.5;scalar self.AE_temp = data_init['AE_temp'] # AE sensitivity to temperature;scalar self.Respiration = np.float32('nan') # Respiration self.CUE_system = np.float32('nan') # emergent CUE #self.Transporters = float('nan') #self.Osmolyte_Con = float('nan') #self.Osmolyte_Ind = float('nan') #self.Enzyme_Con = float('nan') #self.Enzyme_Ind = float('nan') #self.CUE_Taxon = float('nan') #self.Growth_Yield = float('nan') #Mortality self.MinRatios = data_init['MinRatios'] # minimal cell quotas self.C_min = data_init['C_min'] # C threshold value of living cell self.N_min = data_init['N_min'] # N threshold value of living cell self.P_min = data_init['P_min'] # P threshold value of living cell self.basal_death_prob = data_init['basal_death_prob'] # basal death probability of microbes self.death_rate = data_init['death_rate'] # change rate of mortality with water potential self.tolerance = data_init['TaxDroughtTol'] # taxon drought tolerance self.wp_fc = data_init['wp_fc'] # scalar; max threshold value of water potential self.wp_th = data_init['wp_th'] # scalar; min threshold value of water potential self.alpha = data_init['alpha'] # scalar; moisture sensitivity; 1 self.Kill = np.float32('nan') # total number of cells stochastically killed # Reproduction self.fb = data_init['fb'] # index of fungal taxa (=1) self.max_size_b = data_init['max_size_b'] # threshold of cell division self.max_size_f = data_init['max_size_f'] # threshold of cell division self.x = int(runtime.loc['x',1]) # x dimension of grid self.y = int(runtime.loc['y',1]) # y dimension of grid self.dist = int(runtime.loc['dist',1]) # maximum dispersal distance: 1 cell self.direct = int(runtime.loc['direct',1]) # dispersal direction: 0.95 # Climate data self.temp = data_init['Temp'] # series; temperature self.psi = data_init['Psi'] # series; water potential # Global constants self.Km_Ea = np.float32(20) # kj mol-1;activation energy for both enzyme and transporter self.Tref = np.float32(293) # reference temperature of 20 celcius # tradeoff self.Taxon_Enzyme_Cost_C = np.float32('nan') self.Taxon_Osmo_Cost_C = np.float32('nan') self.Microbe_C_Gain = np.float32('nan') def degradation(self,day): """ Explicit degradation of different substrates. Calculation procedure: 1. Determine substates pool: incl. inputs 2. Compute Vmax & Km and make them follow the index of Substrates 3. Follow the Michaelis-Menten equation to compute full degradation rate 4. Impose the substrate-required enzymes upon the full degradation rate 5. Adjust cellulose rate with LCI(lignocellulose index) """ # constant of lignocellulose index--LCI LCI_slope = np.float32(-0.8) # Substrates index by subtrate names Sub_index = self.Substrates.index # Calculate total mass of each substrate (C+N+P) and derive substrate stoichiometry rss = self.Substrates.sum(axis=1) SubstrateRatios = self.Substrates.divide(rss,axis=0) SubstrateRatios = SubstrateRatios.fillna(0) # NOTE:ensure NA(b/c of 0/0 in df) = 0 # Arrhenius equation for Vmax and Km multiplied by exponential decay for Psi sensitivity Vmax = Arrhenius(self.Vmax0, self.Ea, self.temp[day]) * Allison(0.05, self.wp_fc, self.psi[day]) # Vmax: (enz*gridsize) * sub Km = Arrhenius(self.Km0, self.Km_Ea, self.temp[day]) # Km: (sub*gridsize) * enz # Multiply Vmax by enzyme concentration tev_transition = Vmax.mul(self.Enzymes,axis=0) # (enz*gridsize) * sub tev_transition.index = [np.arange(self.gridsize).repeat(self.n_enzymes),tev_transition.index] # create a MultiIndex tev = tev_transition.stack().unstack(1).reset_index(level=0,drop=True) # (sub*gridsize) * enz tev = tev[Km.columns] # ensure to re-order the columns b/c of python's default alphabetical ordering # Michaelis-Menten equation Decay = tev.mul(rss,axis=0)/Km.add(rss,axis=0) # Pull out each batch of required enzymes and sum across redundant enzymes batch1 = (self.ReqEnz.loc['set1'].values * Decay).sum(axis=1) #batch2 = (self.ReqEnz.loc['set2'].values * Decay).sum(axis=1) # Assess the rate-limiting enzyme and set decay to that rate #DecaySums = pd.concat([batch1, batch2],axis=1) #DecayRates0 = DecaySums.min(axis=1, skipna=True) # Compare to substrate available and take the min, allowing for a tolerance of 1e-9 DecayRates = pd.concat([batch1,rss],axis=1,sort=False).min(axis=1,skipna=True) # Adjust cellulose rate by linking cellulose degradation to lignin concentration (LCI) ss7 = self.Substrates.loc[Sub_index=='Lignin'].sum(axis=1).values DecayRates.loc[Sub_index=='Cellulose'] *= np.float32(1) + (ss7/(ss7 + self.Substrates.loc[Sub_index=='Cellulose','C'])) * LCI_slope # Update Substrates Pool by removing decayed C, N, & P. Depending on specific needs, adding inputs of substrates can be done here self.Substrates -= SubstrateRatios.mul(DecayRates,axis=0) #+ self.SubInput # Pass these two back to the global variables to be used in the next method self.SubstrateRatios = SubstrateRatios self.DecayRates = DecayRates def uptake(self,day): """ Explicit uptake of different monomers by transporters following the Michaelis-Menten equation. Calculaton procedure: 1. Average monomers across the grid: 2. Determine pool of monomers: add degradation and input, update stoichimoetry 3. Maximum uptake: 4. Uptake by Monomer: 5. Uptake by Taxon: """ # Every monomer averaged over the grid in each time step self.Monomers = expand(self.Monomers.groupby(level=0,sort=False).sum()/self.gridsize,self.gridsize) # Indices is_org = (self.Monomers.index != "NH4") & (self.Monomers.index != "PO4") # organic monomers #is_mineral = (Monomers.index == "NH4") | (Monomers.index == "PO4") # Update monomer ratios in each time step with organic monomers following the substrates self.Monomer_ratios[is_org] = self.SubstrateRatios.values # Determine monomer pool from decay and input # Organic monomers derived from substrate-decomposition Decay_Org = self.Monomer_ratios[is_org].mul(self.DecayRates.values,axis=0) # inputs of organic and mineral monomers #Input_Org = MR_transition[is_org].mul(self.MonInput[is_org].tolist(),axis=0) #Input_Mineral = MR_transition[is_mineral].mul((self.MonInput[is_mineral]).tolist(),axis=0) # Monomer pool determined self.Monomers.loc[is_org] += Decay_Org #+ Input_Org #self.Monomers.loc[is_mineral] += Input_Mineral # Get the total mass of each monomer: C+N+P rsm = self.Monomers.sum(axis=1) # Recalculate monomer ratios after updating monomer pool and before uptake calculation self.Monomer_ratios.loc[is_org] = self.Monomers.loc[is_org].divide(rsm[is_org],axis=0) self.Monomer_ratios = self.Monomer_ratios.fillna(0) # Start calculating monomer uptake # Caculate uptake enzyme kinetic parameters, multiplied by moisture multiplier accounting for the diffusivity implications Uptake_Vmax = Arrhenius(self.Uptake_Vmax0, self.Uptake_Ea, self.temp[day]) * Allison(0.1, self.wp_fc, self.psi[day]) Uptake_Km = Arrhenius(self.Uptake_Km0, self.Km_Ea, self.temp[day]) # Equation for hypothetical potential uptake (per unit of compatible uptake protein) Potential_Uptake = (self.Uptake_ReqEnz * Uptake_Vmax).mul(rsm.values,axis=0)/Uptake_Km.add(rsm.values,axis=0) # Derive the mass of each transporter of each taxon NOTE: transpose the df to Upt*(Taxa*grid) MicCXGenes = (self.Uptake_Enz_Cost.mul(self.Microbes.sum(axis=1),axis=0)).T # Define Max_Uptake: (Monomer*gridsize) * Taxon Max_Uptake_array = np.zeros((self.n_monomers*self.gridsize,self.n_taxa), dtype='float32') Max_Uptake = pd.DataFrame(data=Max_Uptake_array, index=self.Monomers.index, columns=self.Microbes.index[0:self.n_taxa]) # Matrix multiplication to get max possible uptake by monomer(extract each grid point separately for operation) for i in range(self.gridsize): i_monomer = np.arange(i * self.n_monomers, (i+1) * self.n_monomers) i_taxa = np.arange(i * self.n_taxa, (i+1) * self.n_taxa) Max_Uptake.iloc[i_monomer,:] = Potential_Uptake.iloc[i_monomer,:].values @ MicCXGenes.iloc[:,i_taxa].values # Take the min of the monomer available and the max potential uptake, and scale the uptake to what's available csmu = Max_Uptake.sum(axis=1) # total potential uptake of each monomer Uptake = Max_Uptake.mul(pd.concat([csmu,rsm],axis=1).min(axis=1,skipna=True)/csmu,axis=0) #(Monomer*gridsize) * Taxon Uptake.loc[csmu==0] = np.float32(0) # End computing monomer uptake # Update Monomers # By monomer: total uptake (monomer*gridsize) * 3(C-N-P) self.Monomers -= self.Monomer_ratios.mul(Uptake.sum(axis=1),axis=0) # Derive Taxon-specific total uptake of C, N, & P # By taxon: total uptake; (monomer*gridsize) * taxon C_uptake_df = Uptake.mul(self.Monomer_ratios["C"],axis=0) N_uptake_df = Uptake.mul(self.Monomer_ratios["N"],axis=0) P_uptake_df = Uptake.mul(self.Monomer_ratios["P"],axis=0) # generic multi-index C_uptake_df.index = N_uptake_df.index = P_uptake_df.index = [np.arange(self.gridsize).repeat(self.n_monomers),C_uptake_df.index] TUC_df = C_uptake_df.groupby(level=[0]).sum() TUN_df = N_uptake_df.groupby(level=[0]).sum() TUP_df = P_uptake_df.groupby(level=[0]).sum() # Update these 3 global variables self.Taxon_Uptake_C = TUC_df.stack().values # spatial C uptake: array self.Taxon_Uptake_N = TUN_df.stack().values # spatial N uptake: array self.Taxon_Uptake_P = TUP_df.stack().values # spatial P uptake: array def metabolism(self,day): """ Explicitly calculate intra-cellular production of metabolites. Handles both constitutive (standing biomass) and inducible (immediate monomers uptake) pathways following: 1. constitutive enzyme and osmolyte production 2. inducible enzyme and osmolyte production 3. emergent CUE & Respiration 4. update both Enzymes (with production & loss) and Substrates (with dead enzymes) """ # Constants Osmo_N_cost = np.float32(0.3) # N cost per unit of osmo-C production Osmo_Maint_cost = np.float32(5.0) # C loss per unit of osmo-C production Enzyme_Loss_Rate = np.float32(0.04) # enzyme turnover rate(=0.04; Allison 2006) # index of dead enzyme in Substrates is_deadEnz = self.Substrates.index == "DeadEnz" #---------------------------------------------------------------------# #......................constitutive processes.........................# #---------------------------------------------------------------------# # Variable Acronyms: # OECCN : Osmo_Enzyme_Consti_Cost_N # ARROEC: Avail_Req_ratio_osmo_enzyme_consti # MNAOEC: Min_N_Avail_Osmo_Enzyme_Consti #............................................... # Taxon-specific respiration cost of producing transporters: self.uptake_maint_cost = 0.01 # NOTE Microbes['C'],as opposed to Microbes.sum(axis=1) in DEMENT Taxon_Transporter_Maint = self.Uptake_Enz_Cost.mul(self.Microbes['C'],axis=0).sum(axis=1) * self.Uptake_Maint_Cost # Osmolyte before adjustment Taxon_Osmo_Consti = self.Consti_Osmo_C.mul(self.Microbes['C'],axis=0) Taxon_Osmo_Consti_Cost_N = (Taxon_Osmo_Consti * Osmo_N_cost).sum(axis=1) # Enzyme before adjustment Taxon_Enzyme_Consti = self.Consti_Enzyme_C.mul(self.Microbes['C'],axis=0) Taxon_Enzyme_Consti_Cost_N = (Taxon_Enzyme_Consti.mul(self.Enz_Attrib['N_cost'],axis=1)).sum(axis=1) # Adjust osmolyte & enzyme production based on available N in microbial biomass OECCN = Taxon_Osmo_Consti_Cost_N + Taxon_Enzyme_Consti_Cost_N # Total N cost MNAOEC = (pd.concat([OECCN[OECCN>0],self.Microbes['N'][OECCN>0]],axis=1)).min(axis=1,skipna=True) # get the minimum value ARROEC = (MNAOEC/OECCN[OECCN>0]).fillna(0) # Derive ratio of availabe N to required N # Osmolyte adjusted Taxon_Osmo_Consti[OECCN>0] = Taxon_Osmo_Consti[OECCN>0].mul(ARROEC,axis=0) # adjusted osmolyte Taxon_Osmo_Consti_Maint = (Taxon_Osmo_Consti * Osmo_Maint_cost).sum(axis=1) # maintenece Taxon_Osmo_Consti_Cost_N = (Taxon_Osmo_Consti * Osmo_N_cost).sum(axis=1) # N cost (no P) Taxon_Osmo_Consti_Cost_C = Taxon_Osmo_Consti.sum(axis=1) + Taxon_Osmo_Consti_Maint # total C consumption # Enzyme adjusted Taxon_Enzyme_Consti.loc[OECCN>0] = Taxon_Enzyme_Consti.loc[OECCN>0].mul(ARROEC,axis=0) # adjusted enzyme Taxon_Enzyme_Consti_Maint = (Taxon_Enzyme_Consti.mul(self.Enz_Attrib['Maint_cost'],axis=1)).sum(axis=1) # maintinence Taxon_Enzyme_Consti_Cost_N = (Taxon_Enzyme_Consti.mul(self.Enz_Attrib['N_cost'], axis=1)).sum(axis=1) # N cost Taxon_Enzyme_Consti_Cost_P = (Taxon_Enzyme_Consti.mul(self.Enz_Attrib['P_cost'], axis=1)).sum(axis=1) # P cost Taxon_Enzyme_Consti_Cost_C = Taxon_Enzyme_Consti.sum(axis=1) + Taxon_Enzyme_Consti_Maint # C cost (total) #---------------------------------------------------------------------# #.....Inducible processes.............................................# #---------------------------------------------------------------------# # Variable Acronyms: # OEICN : Osmo_Enzyme_Induci_Cost_N # OEIAN : Osmo_Enzyme_Induci_Avail_N # ARROEI: Avail_Req_ratio_osmo_enzyme_induci # MNAOEI: Min_N_Avail_Osmo_Enzyme_Induci #.................................................. # Assimilation efficiency constrained by temperature Taxon_AE = self.AE_ref + (self.temp[day] - (self.Tref - np.float32(273))) * self.AE_temp #scalar # Taxon growth respiration Taxon_Growth_Respiration = self.Taxon_Uptake_C * (np.float32(1) - Taxon_AE) # derive the water potential modifier by calling the function microbe_osmo_psi() f_psi = microbe_osmo_psi(self.alpha,self.wp_fc,self.psi[day]) # Inducible Osmolyte production only when psi reaches below wp_fc Taxon_Osmo_Induci = self.Induci_Osmo_C.mul(self.Taxon_Uptake_C*Taxon_AE, axis=0) * f_psi Taxon_Osmo_Induci_Cost_N = (Taxon_Osmo_Induci * Osmo_N_cost).sum(axis=1) # Total osmotic N cost of each taxon (.sum(axis=1)) # Inducible enzyme production Taxon_Enzyme_Induci = self.Induci_Enzyme_C.mul(self.Taxon_Uptake_C*Taxon_AE, axis=0) Taxon_Enzyme_Induci_Cost_N = (Taxon_Enzyme_Induci.mul(self.Enz_Attrib['N_cost'],axis=1)).sum(axis=1) # Total enzyme N cost of each taxon (.sum(axis=1)) # Adjust production based on N availabe OEICN = Taxon_Osmo_Induci_Cost_N + Taxon_Enzyme_Induci_Cost_N # Total N cost of osmolyte and enzymes OEIAN = pd.Series(data=self.Taxon_Uptake_N, index=self.Microbes.index) # N available MNAOEI = (pd.concat([OEICN[OEICN>0],OEIAN[OEICN>0]],axis=1)).min(axis=1,skipna=True) # Get the minimum value by comparing N cost to N available ARROEI = (MNAOEI/OEICN[OEICN>0]).fillna(0) # Ratio of Available to Required # Osmolyte adjusted: accompanying maintenence and N cost Taxon_Osmo_Induci[OEICN>0] = Taxon_Osmo_Induci.loc[OEICN>0].mul(ARROEI,axis=0) Taxon_Osmo_Induci_Maint = (Taxon_Osmo_Induci * Osmo_Maint_cost).sum(axis=1) Taxon_Osmo_Induci_Cost_N = (Taxon_Osmo_Induci * Osmo_N_cost).sum(axis=1) Taxon_Osmo_Induci_Cost_C = Taxon_Osmo_Induci.sum(axis=1) + Taxon_Osmo_Induci_Maint # Enzyme adjusted: Total enzyme carbon cost (+ CO2 loss), N cost, and P cost for each taxon Taxon_Enzyme_Induci[OEICN>0] = Taxon_Enzyme_Induci.loc[OEICN>0].mul(ARROEI,axis=0) Taxon_Enzyme_Induci_Maint = (Taxon_Enzyme_Induci.mul(self.Enz_Attrib["Maint_cost"],axis=1)).sum(axis=1) Taxon_Enzyme_Induci_Cost_N = (Taxon_Enzyme_Induci.mul(self.Enz_Attrib["N_cost"], axis=1)).sum(axis=1) Taxon_Enzyme_Induci_Cost_P = (Taxon_Enzyme_Induci.mul(self.Enz_Attrib["P_cost"], axis=1)).sum(axis=1) Taxon_Enzyme_Induci_Cost_C = Taxon_Enzyme_Induci.sum(axis=1) + Taxon_Enzyme_Induci_Maint # Derive C, N, & P deposited as biomass from Uptake; ensure no negative values Microbe_C_Gain = self.Taxon_Uptake_C - Taxon_Growth_Respiration - Taxon_Enzyme_Induci_Cost_C - Taxon_Osmo_Induci_Cost_C Microbe_N_Gain = self.Taxon_Uptake_N - Taxon_Enzyme_Induci_Cost_N - Taxon_Osmo_Induci_Cost_N Microbe_P_Gain = self.Taxon_Uptake_P - Taxon_Enzyme_Induci_Cost_P self.Taxon_Enzyme_Cost_C = Taxon_Enzyme_Induci_Cost_C + Taxon_Enzyme_Consti_Cost_C self.Taxon_Osmo_Cost_C = Taxon_Osmo_Induci_Cost_C + Taxon_Osmo_Consti_Cost_C self.Microbe_C_Gain = Microbe_C_Gain - Taxon_Enzyme_Consti_Cost_C - Taxon_Osmo_Consti_Cost_C - Taxon_Transporter_Maint #------------------------------------------------# #...............Integration......................# #------------------------------------------------# # Update Microbial pools with GAINS (from uptake) and LOSSES (from constitutive production) self.Microbes.loc[:,'C'] += Microbe_C_Gain - Taxon_Enzyme_Consti_Cost_C - Taxon_Osmo_Consti_Cost_C - Taxon_Transporter_Maint self.Microbes.loc[:,'N'] += Microbe_N_Gain - Taxon_Enzyme_Consti_Cost_N - Taxon_Osmo_Consti_Cost_N self.Microbes.loc[:,'P'] += Microbe_P_Gain - Taxon_Enzyme_Consti_Cost_P self.Microbes[self.Microbes<0] = np.float32(0) # avoid negative values # Taxon-specific emergent CUE #CUE_taxon = Microbes['C'].copy() # create a dataframe and set all vals to 0 #CUE_taxon[:] = 0 #pos_uptake_index = self.Taxon_Uptake_C > 0 #CUE_taxon[pos_uptake_index] = Microbe_C_Gain[pos_uptake_index]/self.Taxon_Uptake_C[pos_uptake_index] # System-level emergent CUE Taxon_Uptake_C_grid = self.Taxon_Uptake_C.sum(axis=0) # Total C Uptake if Taxon_Uptake_C_grid == 0: self.CUE_system = np.float32(0) else: self.CUE_system = Microbe_C_Gain.sum(axis=0)/Taxon_Uptake_C_grid # Respiration from Constitutive + Inducible(NOTE: missing sum(MicLoss[,"C"]) in the Mortality below) self.Respiration = ( Taxon_Transporter_Maint + Taxon_Growth_Respiration + Taxon_Osmo_Consti_Maint + Taxon_Osmo_Induci_Maint + Taxon_Enzyme_Consti_Maint + Taxon_Enzyme_Induci_Maint ).sum(axis=0) # Derive Enzyme production Taxon_Enzyme_Production = Taxon_Enzyme_Consti + Taxon_Enzyme_Induci # gene-specific prod of enzyme of each taxon: (taxon*gridsize) * enzyme Taxon_Enzyme_Production.index = [np.arange(self.gridsize).repeat(self.n_taxa),Taxon_Enzyme_Production.index] # create a multi-index EP_df = Taxon_Enzyme_Production.groupby(level=0).sum() # enzyme-specific production in each grid cell Enzyme_Production = EP_df.stack().values # 1-D array # Derive Enzyme turnover Enzyme_Loss = self.Enzymes * Enzyme_Loss_Rate # Update Enzyme pools by adding enzymes produced and substracting the 'dead' enzymes self.Enzymes += Enzyme_Production - Enzyme_Loss # Update Substrates pools with dead enzymes DeadEnz_df = pd.concat( [Enzyme_Loss, Enzyme_Loss.mul(self.Enz_Attrib['N_cost'].tolist()*self.gridsize,axis=0), Enzyme_Loss.mul(self.Enz_Attrib['P_cost'].tolist()*self.gridsize,axis=0)], axis=1 ) DeadEnz_df.index = [np.arange(self.gridsize).repeat(self.n_enzymes), DeadEnz_df.index] # create a multi-index DeadEnz_gridcell = DeadEnz_df.groupby(level=0).sum() # total dead mass across taxa in each grid cell self.Substrates.loc[is_deadEnz] += DeadEnz_gridcell.values def mortality(self,day): """ Calculate microbial mortality, and update stoichiometry of the alive and microbial pools. Kill microbes that are starving deterministically and microbes that are drought intolerant stochastically Also update Substrates with input from dead microbes, monomers(with leaching loss), and respiration """ # Indices Mic_index = self.Microbes.index is_DeadMic = self.Substrates.index == 'DeadMic' is_NH4 = self.Monomers.index == 'NH4' is_PO4 = self.Monomers.index == 'PO4' # Reset the index to arabic numerals from taxa series self.Microbes = self.Microbes.reset_index(drop=True) MinRatios = self.MinRatios.reset_index(drop=True) # Create a blank dataframe, Death, having the same structure as Microbes Death = self.Microbes.copy(deep=True) Death[:] = np.float32(0) # Create a series, kill, holding boolean value of False kill = pd.Series([False]*self.n_taxa*self.gridsize) # Start to calculate mortality # --Kill microbes deterministically based on threshold values: C_min: 0.086; N_min:0.012; P_min: 0.002 starve_index = (self.Microbes['C']>0) & ((self.Microbes['C']<self.C_min)|(self.Microbes['N']<self.N_min)|(self.Microbes['P']<self.P_min)) # Index the dead, put them in Death, and set them to 0 in Microbes Death.loc[starve_index] = self.Microbes[starve_index] self.Microbes.loc[starve_index] = np.float32(0) # Index the locations where microbial cells remain alive mic_index = self.Microbes['C'] > 0 # --Kill microbes stochastically based on mortality prob as a function of water potential and drought tolerance # call the function MMP:microbe_mortality_psi() r_death = MMP(self.basal_death_prob,self.death_rate,self.tolerance,self.wp_fc,self.psi[day]) kill.loc[mic_index] = r_death[mic_index] > np.random.uniform(0,1,sum(mic_index)).astype('float32') # Index the dead, put them in Death, and set them to 0 in Microbes Death.loc[kill] = self.Microbes[kill] self.Microbes.loc[kill] = np.float32(0) # Index locations where microbes remain alive mic_index = self.Microbes['C']>0 # Calculate the total dead mass (threshold & drought) across taxa in each grid cell Death_gridcell = Death.groupby(Death.index//self.n_taxa).sum() # Distinguish between conditions of complete death VS partial death # All cells die if sum(mic_index) == 0: #...Update Substrates pool by adding dead microbial biomass self.Substrates.loc[is_DeadMic] += Death_gridcell.values # Partly die and adjust stoichiometry of those remaining alive else: # Index only those taxa in Microbes that have below-minimum quotas: Mic_subset MicrobeRatios = self.Microbes[mic_index].divide(self.Microbes[mic_index].sum(axis=1),axis=0) mic_index_sub = (MicrobeRatios["C"]<MinRatios[mic_index]["C"])|(MicrobeRatios["N"]<MinRatios[mic_index]["N"])|(MicrobeRatios["P"]<MinRatios[mic_index]["P"]) rat_index = self.Microbes.index.map(mic_index_sub).fillna(False) # Derive the Microbes wanted Mic_subset = self.Microbes[rat_index] StartMicrobes = Mic_subset.copy(deep=True) # Derive new ratios and Calculate difference between actual and min ratios MicrobeRatios = Mic_subset.divide(Mic_subset.sum(axis=1),axis=0) MinRat = MinRatios[rat_index] Ratio_dif = MicrobeRatios - MinRat # Create a df recording the ratio differences < 0 Ratio_dif_0 = Ratio_dif.copy(deep=True) Ratio_dif_0[Ratio_dif>0] = np.float32(0) # Create a df recording the ratio differences > 0 Excess = Ratio_dif.copy(deep=True) Excess[Ratio_dif<0] = np.float32(0) # Determine the limiting nutrient that will be conserved Limiting = (-Ratio_dif/MinRat).idxmax(axis=1) # Series of index of the first occurrence of maximum in each row # Set all deficient ratios to their minima MicrobeRatios[Ratio_dif<0] = MinRat[Ratio_dif<0] # Reduce the mass fractions for non-deficient elements in proportion to the distance from the minimum # ....Partition the total deficit to the excess element(s) in proportion to their distances from their minima MicrobeRatios[Ratio_dif>0] += Excess.mul((Ratio_dif_0.sum(axis=1)/Excess.sum(axis=1)),axis=0)[Ratio_dif>0] # Construct hypothetical nutrient quotas for each possible minimum nutrient MC = Mic_subset["C"] MN = Mic_subset["N"] MP = Mic_subset["P"] MRC = MicrobeRatios["C"] MRN = MicrobeRatios["N"] MRP = MicrobeRatios["P"] new_C =
pd.concat([MC, MN*MRC/MRN, MP*MRC/MRP],axis=1)
pandas.concat
import numpy as np import pytest import pandas as pd from pandas import ( CategoricalDtype, CategoricalIndex, DataFrame, Index, IntervalIndex, MultiIndex, Series, Timestamp, ) import pandas._testing as tm class TestDataFrameSortIndex: def test_sort_index_and_reconstruction_doc_example(self): # doc example df = DataFrame( {"value": [1, 2, 3, 4]}, index=MultiIndex( levels=[["a", "b"], ["bb", "aa"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1]] ), ) assert df.index.is_lexsorted() assert not df.index.is_monotonic # sort it expected = DataFrame( {"value": [2, 1, 4, 3]}, index=MultiIndex( levels=[["a", "b"], ["aa", "bb"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1]] ), ) result = df.sort_index() assert result.index.is_lexsorted() assert result.index.is_monotonic tm.assert_frame_equal(result, expected) # reconstruct result = df.sort_index().copy() result.index = result.index._sort_levels_monotonic() assert result.index.is_lexsorted() assert result.index.is_monotonic tm.assert_frame_equal(result, expected) def test_sort_index_non_existent_label_multiindex(self): # GH#12261 df = DataFrame(0, columns=[], index=MultiIndex.from_product([[], []])) df.loc["b", "2"] = 1 df.loc["a", "3"] = 1 result = df.sort_index().index.is_monotonic assert result is True def test_sort_index_reorder_on_ops(self): # GH#15687 df = DataFrame( np.random.randn(8, 2), index=MultiIndex.from_product( [["a", "b"], ["big", "small"], ["red", "blu"]], names=["letter", "size", "color"], ), columns=["near", "far"], ) df = df.sort_index() def my_func(group): group.index = ["newz", "newa"] return group result = df.groupby(level=["letter", "size"]).apply(my_func).sort_index() expected = MultiIndex.from_product( [["a", "b"], ["big", "small"], ["newa", "newz"]], names=["letter", "size", None], ) tm.assert_index_equal(result.index, expected) def test_sort_index_nan_multiindex(self): # GH#14784 # incorrect sorting w.r.t. nans tuples = [[12, 13], [np.nan, np.nan], [np.nan, 3], [1, 2]] mi = MultiIndex.from_tuples(tuples) df = DataFrame(np.arange(16).reshape(4, 4), index=mi, columns=list("ABCD")) s = Series(np.arange(4), index=mi) df2 = DataFrame( { "date": pd.DatetimeIndex( [ "20121002", "20121007", "20130130", "20130202", "20130305", "20121002", "20121207", "20130130", "20130202", "20130305", "20130202", "20130305", ] ), "user_id": [1, 1, 1, 1, 1, 3, 3, 3, 5, 5, 5, 5], "whole_cost": [ 1790, np.nan, 280, 259, np.nan, 623, 90, 312, np.nan, 301, 359, 801, ], "cost": [12, 15, 10, 24, 39, 1, 0, np.nan, 45, 34, 1, 12], } ).set_index(["date", "user_id"]) # sorting frame, default nan position is last result = df.sort_index() expected = df.iloc[[3, 0, 2, 1], :] tm.assert_frame_equal(result, expected) # sorting frame, nan position last result = df.sort_index(na_position="last") expected = df.iloc[[3, 0, 2, 1], :] tm.assert_frame_equal(result, expected) # sorting frame, nan position first result = df.sort_index(na_position="first") expected = df.iloc[[1, 2, 3, 0], :]
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
import os import pandas as pd import datetime import dateutil.parser class Utils: def __init__(self): pass # given date in synthea format return the year def getYearFromSyntheaDate(self, date): return datetime.datetime.strptime(date, "%Y-%m-%d").year # given date in synthea format return the month def getMonthFromSyntheaDate(self, date): return datetime.datetime.strptime(date, "%Y-%m-%d").month # given date in synthea format return the day def getDayFromSyntheaDate(self, date): return datetime.datetime.strptime(date, "%Y-%m-%d").day # given gender as M or F return the OMOP concept code def getGenderConceptCode(self, gender): gendre = gender.upper() if gender=='M': return '8507' elif gender=='F': return '8532' else: return 0 # given synthea race code return omop code def getRaceConceptCode(self, race): race = race.upper() if race=='WHITE': return '8527' elif race=='BLACK': return '8516' elif race=='ASIAN': return 8515 else: return '0' def getEthnicityConceptCode(self, eth): eth = eth.upper() #if race=='HISPANIC' or eth=='CENTRAL_AMERICAN' or eth=='DOMINICAN' or eth=='MEXICAN' or eth=='PUERTO_RICAN' or eth=='SOUTH_AMERICAN': if eth=='CENTRAL_AMERICAN' or eth=='DOMINICAN' or eth=='MEXICAN' or eth=='PUERTO_RICAN' or eth=='SOUTH_AMERICAN': return '38003563' else: return '0' # convert a synthea timestamp like 2020-02-16T05:05:49Z to omop datestamp like 2020-02-16 def isoTimestampToDate(self, timestamp): date = dateutil.parser.parse(timestamp) return datetime.date.strftime(date, '%Y-%m-%d') # given a datestamp, return on timestamp with default 0 hour def getDefaultTimestamp(self, datestamp): return str(datestamp) + " 00:00:00" # def getVisitConcept(self, encounterclass): if encounterclass == 'emergency' or encounterclass == 'urgentcare': return '9203' elif encounterclass == 'ambulatory' or encounterclass == 'wellness' or encounterclass == 'outpatient': return '9202' else: return '0' # # check memory usage of a pandas dataframe # def mem_usage(self, pandas_obj): if isinstance(pandas_obj,pd.DataFrame): usage_b = pandas_obj.memory_usage(deep=True).sum() else: # we assume if not a df it's a series usage_b = pandas_obj.memory_usage(deep=True) usage_mb = usage_b / 1024 ** 2 # convert bytes to megabytes return "{:03.2f} MB".format(usage_mb) # # load the concept vocabulary into dataframes # can be gz compressed or plain text # def loadConceptVocabulary(self, BASE_OMOP_INPUT_DIRECTORY, model_omop): vocab = {} vocabfiledict = {} vocablist = ['CONCEPT', 'CONCEPT_RELATIONSHIP'] # determine if vocabulary files exists and whether they are compressed for vocabfile in vocablist: if (os.path.exists(os.path.join(BASE_OMOP_INPUT_DIRECTORY,vocabfile + '.csv'))): vocabfiledict[vocabfile] = os.path.join(BASE_OMOP_INPUT_DIRECTORY,vocabfile + '.csv') compression=None elif (os.path.exists(os.path.join(BASE_OMOP_INPUT_DIRECTORY,vocabfile + '.csv.gz'))): vocabfiledict[vocabfile] = os.path.join(BASE_OMOP_INPUT_DIRECTORY,vocabfile + '.csv.gz') compression='gzip' else: print("Error: Could not find " + vocabfile + " vocabulary file") exit(1) vocab[vocabfile.lower()] = pd.read_csv(vocabfiledict[vocabfile], sep='\t', dtype=model_omop.model_schema[vocabfile.lower()], compression=compression) return vocab # # load the full vocabulary into dataframes # can be gz compressed or plain text # def loadVocabulary(self, BASE_OMOP_INPUT_DIRECTORY, model_omop): vocab = {} vocabfiledict = {} vocablist = ['CONCEPT', 'CONCEPT_RELATIONSHIP', 'CONCEPT_SYNONYM', 'CONCEPT_ANCESTOR', 'CONCEPT_CLASS', 'DRUG_STRENGTH'] # determine if vocabulary files exists and whether they are compressed for vocabfile in vocablist: if (os.path.exists(os.path.join(BASE_OMOP_INPUT_DIRECTORY,vocabfile + '.csv'))): vocabfiledict[vocabfile] = os.path.join(BASE_OMOP_INPUT_DIRECTORY,vocabfile + '.csv') compression=None elif (os.path.exists(os.path.join(BASE_OMOP_INPUT_DIRECTORY,vocabfile + '.csv.gz'))): vocabfiledict[vocabfile] = os.path.join(BASE_OMOP_INPUT_DIRECTORY,vocabfile + '.csv.gz') compression='gzip' else: print("Error: Could not find " + vocabfile + " vocabulary file") exit(1) vocab[vocabfile.lower()] = pd.read_csv(vocabfiledict[vocabfile], sep='\t', dtype=model_omop.model_schema[vocabfile.lower()], compression=compression) return vocab # # following standard omop query for source to standard mapping is implemented in python pandas # passing in a vocabulary dictionary, return the source to standard dataframe # # SELECT c.concept_code AS SOURCE_CODE, c.concept_id AS SOURCE_CONCEPT_ID, # c.concept_name AS SOURCE_CODE_DESCRIPTION, # c.vocabulary_id AS SOURCE_VOCABULARY_ID, c.domain_id AS SOURCE_DOMAIN_ID, # c.CONCEPT_CLASS_ID AS SOURCE_CONCEPT_CLASS_ID, c.VALID_START_DATE AS SOURCE_VALID_START_DATE, # c.VALID_END_DATE AS SOURCE_VALID_END_DATE, c.INVALID_REASON AS SOURCE_INVALID_REASON, # c1.concept_id AS TARGET_CONCEPT_ID, c1.concept_name AS TARGET_CONCEPT_NAME, # c1.VOCABULARY_ID AS TARGET_VOCABULARY_ID, c1.domain_id AS TARGET_DOMAIN_ID, # c1.concept_class_id AS TARGET_CONCEPT_CLASS_ID, # c1.INVALID_REASON AS TARGET_INVALID_REASON, # c1.standard_concept AS TARGET_STANDARD_CONCEPT # FROM CONCEPT C # JOIN CONCEPT_RELATIONSHIP CR # ON C.CONCEPT_ID = CR.CONCEPT_ID_1 # AND CR.invalid_reason IS NULL # AND lower(cr.relationship_id) = 'maps to' # JOIN CONCEPT C1 # ON CR.CONCEPT_ID_2 = C1.CONCEPT_ID # AND C1.INVALID_REASON IN (NULL,'') def sourceToStandardVocabMap(self, vocab, model_omop): concept = vocab['concept'] concept_relationship = vocab['concept_relationship'] source = concept[model_omop.model_schema['source_to_standard_source'].keys()] # get rid of columns we don't need source = source.rename(columns=model_omop.model_schema['source_to_standard_source']) target = concept[model_omop.model_schema['source_to_standard_target'].keys()] # get rid of columns we don't need target = target.rename(columns=model_omop.model_schema['source_to_standard_target']) source_result = pd.merge(source,concept_relationship[(concept_relationship["invalid_reason"].isnull()) & (concept_relationship["relationship_id"].str.contains('Maps to'))], \ how='inner', left_on='source_concept_id', right_on='concept_id_1') source_result = source_result[model_omop.model_schema['source_to_standard_source'].values()].drop_duplicates() target_result = pd.merge(target,concept_relationship[concept_relationship["invalid_reason"].isnull()], \ how='inner', left_on='target_concept_id', right_on='concept_id_2') target_result = target_result[ model_omop.model_schema['source_to_standard_target'].values()].drop_duplicates() result = pd.merge(source_result, target_result, how='inner', left_on='source_concept_id', right_on='target_concept_id') return result # # following standard omop query for source to source mapping is implemented in python pandas # passing in a vocabulary dictionary, return the source to standard dataframe # # SELECT c.concept_code AS SOURCE_CODE, c.concept_id AS SOURCE_CONCEPT_ID, # c.CONCEPT_NAME AS SOURCE_CODE_DESCRIPTION, c.vocabulary_id AS SOURCE_VOCABULARY_ID, # c.domain_id AS SOURCE_DOMAIN_ID, c.concept_class_id AS SOURCE_CONCEPT_CLASS_ID, # c.VALID_START_DATE AS SOURCE_VALID_START_DATE, c.VALID_END_DATE AS SOURCE_VALID_END_DATE, # c.invalid_reason AS SOURCE_INVALID_REASON, c.concept_ID as TARGET_CONCEPT_ID, # c.concept_name AS TARGET_CONCEPT_NAME, c.vocabulary_id AS TARGET_VOCABULARY_ID, c.domain_id AS TARGET_DOMAIN_ID, # c.concept_class_id AS TARGET_CONCEPT_CLASS_ID, c.INVALID_REASON AS TARGET_INVALID_REASON, # c.STANDARD_CONCEPT AS TARGET_STANDARD_CONCEPT # FROM CONCEPT c def sourceToSourceVocabMap(self, vocab, model_omop): concept = vocab['concept'] source = concept[model_omop.model_schema['source_to_standard_source'].keys()] # get rid of columns we don't need source = source.rename(columns=model_omop.model_schema['source_to_standard_source']) target = concept[model_omop.model_schema['source_to_standard_target'].keys()] # get rid of columns we don't need target = target.rename(columns=model_omop.model_schema['source_to_standard_target']) result =
pd.merge(source, target, how='inner', left_on='source_concept_id', right_on='target_concept_id')
pandas.merge
import datetime import pandas as pd import matplotlib.pyplot as plt from sklearn import linear_model import numpy as np name_list = [] ticker_any = input('ticker: ') print("Warning: the more days you predict into the future, the less accurate the model is") print("") day_num = int(input("Amount of days you want to predict into the future(0 means 1): ")) ticker_any = ticker_any.upper() og_link = "https://finance.yahoo.com/quote/AAPL?p=AAPL&.tsrc=fin-srch" stock_link = "https://finance.yahoo.com/quote/" + ticker_any + "?p=" + ticker_any + "&.tsrc=fin-srch" csv_link = "https://query1.finance.yahoo.com/v7/finance/download/" + ticker_any + "?period1=-252374400&period2=11635348709&interval=1d&events=history&includeAdjustedClose=true" import urllib.request user_agent = 'Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.0.7) Gecko/2009021910 Firefox/3.0.7' url = "http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers" headers={'User-Agent':user_agent,} request=urllib.request.Request(csv_link,None,headers) #The assembled request response = urllib.request.urlopen(request) data = response.read() csv_file = open('values.csv', 'wb') csv_file.write(data) def lin_reg(): df = pd.read_csv(csv_link) data = df.dropna() bruh = pd.DataFrame(data) print(bruh) print(bruh.iloc[[-1]]) new_high = bruh["High"].iloc[-1] new_low = bruh["Low"].iloc[-1] High=pd.DataFrame(data['High']) Low=pd.DataFrame(data['Low']) lm = linear_model.LinearRegression() model = lm.fit(High, Low) import numpy as np High_new=np.array([float(new_high)]) Low_new=np.array([float(new_low)]) High_new = High_new.reshape(-1,1) Low_new = Low_new.reshape(-1,1) High_predict=model.predict(High_new) Low_predict=model.predict(Low_new) print("Predicted High: ") print(High_predict) print("Predicted Low: ") print(Low_predict) print("Model Score: ") print(model.score(High, Low)) print("Dollar Change($)") print((High_predict - Low_predict).astype(float)) df = pd.read_csv(csv_link) data = df.dropna() bruh = pd.DataFrame(data) new_high = bruh["High"].iloc[-1] new_low = bruh["Low"].iloc[-1] High=pd.DataFrame(data['High']) Low=pd.DataFrame(data['Low']) lm = linear_model.LinearRegression() model = lm.fit(High, Low) import numpy as np High_new=np.array([float(new_high)]) Low_new=np.array([float(new_low)]) High_new = High_new.reshape(-1,1) Low_new = Low_new.reshape(-1,1) High_predict=model.predict(High_new) Low_predict=model.predict(Low_new) try: lin_reg() except: pass import csv from datetime import date, datetime, timedelta today = datetime.today() tommorow = date.today() + timedelta(days=day_num) print(today) print(tommorow) header = ['date' ,'high','low','close','adj_close','volume',] High_predict = bruh["High"].iloc[-1] Low_predict = bruh["Low"].iloc[-1] with open('values.csv', 'a', encoding='UTF8', newline='') as not_f: writer = csv.writer(not_f) writer.writerow('') for i in range(0,day_num): print(High_predict) tommorow = date.today() + timedelta(days=day_num) bruh.iloc[-1, df.columns.get_loc('Date')] = tommorow bruh.iloc[-1, df.columns.get_loc('High')] = float(High_predict) bruh.iloc[-1, df.columns.get_loc('Low')] = float(Low_predict) writer.writerow(bruh.iloc[-1]) import pandas as pd df = pd.read_csv('values.csv') data = df.dropna() bruh = pd.DataFrame(data) new_high = High_predict new_low = Low_predict High=pd.DataFrame(data['High']) Low=
pd.DataFrame(data['Low'])
pandas.DataFrame
from datetime import datetime import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.base import _registry as ea_registry from pandas.core.dtypes.common import ( is_categorical_dtype, is_interval_dtype, is_object_dtype, ) from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, ) from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, Interval, IntervalIndex, MultiIndex, NaT, Period, PeriodIndex, Series, Timestamp, cut, date_range, notna, period_range, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.tseries.offsets import BDay class TestDataFrameSetItem: @pytest.mark.parametrize("dtype", ["int32", "int64", "float32", "float64"]) def test_setitem_dtype(self, dtype, float_frame): arr = np.random.randn(len(float_frame)) float_frame[dtype] = np.array(arr, dtype=dtype) assert float_frame[dtype].dtype.name == dtype def test_setitem_list_not_dataframe(self, float_frame): data = np.random.randn(len(float_frame), 2) float_frame[["A", "B"]] = data tm.assert_almost_equal(float_frame[["A", "B"]].values, data) def test_setitem_error_msmgs(self): # GH 7432 df = DataFrame( {"bar": [1, 2, 3], "baz": ["d", "e", "f"]}, index=Index(["a", "b", "c"], name="foo"), ) ser = Series( ["g", "h", "i", "j"], index=Index(["a", "b", "c", "a"], name="foo"), name="fiz", ) msg = "cannot reindex from a duplicate axis" with pytest.raises(ValueError, match=msg): df["newcol"] = ser # GH 4107, more descriptive error message df = DataFrame(np.random.randint(0, 2, (4, 4)), columns=["a", "b", "c", "d"]) msg = "incompatible index of inserted column with frame index" with pytest.raises(TypeError, match=msg): df["gr"] = df.groupby(["b", "c"]).count() def test_setitem_benchmark(self): # from the vb_suite/frame_methods/frame_insert_columns N = 10 K = 5 df = DataFrame(index=range(N)) new_col = np.random.randn(N) for i in range(K): df[i] = new_col expected = DataFrame(np.repeat(new_col, K).reshape(N, K), index=range(N)) tm.assert_frame_equal(df, expected) def test_setitem_different_dtype(self): df = DataFrame( np.random.randn(5, 3), index=np.arange(5), columns=["c", "b", "a"] ) df.insert(0, "foo", df["a"]) df.insert(2, "bar", df["c"]) # diff dtype # new item df["x"] = df["a"].astype("float32") result = df.dtypes expected = Series( [np.dtype("float64")] * 5 + [np.dtype("float32")], index=["foo", "c", "bar", "b", "a", "x"], ) tm.assert_series_equal(result, expected) # replacing current (in different block) df["a"] = df["a"].astype("float32") result = df.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("float32")] * 2, index=["foo", "c", "bar", "b", "a", "x"], ) tm.assert_series_equal(result, expected) df["y"] = df["a"].astype("int32") result = df.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("float32")] * 2 + [np.dtype("int32")], index=["foo", "c", "bar", "b", "a", "x", "y"], ) tm.assert_series_equal(result, expected) def test_setitem_empty_columns(self): # GH 13522 df = DataFrame(index=["A", "B", "C"]) df["X"] = df.index df["X"] = ["x", "y", "z"] exp = DataFrame(data={"X": ["x", "y", "z"]}, index=["A", "B", "C"]) tm.assert_frame_equal(df, exp) def test_setitem_dt64_index_empty_columns(self): rng = date_range("1/1/2000 00:00:00", "1/1/2000 1:59:50", freq="10s") df = DataFrame(index=np.arange(len(rng))) df["A"] = rng assert df["A"].dtype == np.dtype("M8[ns]") def test_setitem_timestamp_empty_columns(self): # GH#19843 df = DataFrame(index=range(3)) df["now"] = Timestamp("20130101", tz="UTC") expected = DataFrame( [[Timestamp("20130101", tz="UTC")]] * 3, index=[0, 1, 2], columns=["now"] ) tm.assert_frame_equal(df, expected) def test_setitem_wrong_length_categorical_dtype_raises(self): # GH#29523 cat = Categorical.from_codes([0, 1, 1, 0, 1, 2], ["a", "b", "c"]) df = DataFrame(range(10), columns=["bar"]) msg = ( rf"Length of values \({len(cat)}\) " rf"does not match length of index \({len(df)}\)" ) with pytest.raises(ValueError, match=msg): df["foo"] = cat def test_setitem_with_sparse_value(self): # GH#8131 df = DataFrame({"c_1": ["a", "b", "c"], "n_1": [1.0, 2.0, 3.0]}) sp_array = SparseArray([0, 0, 1]) df["new_column"] = sp_array expected = Series(sp_array, name="new_column") tm.assert_series_equal(df["new_column"], expected) def test_setitem_with_unaligned_sparse_value(self): df = DataFrame({"c_1": ["a", "b", "c"], "n_1": [1.0, 2.0, 3.0]}) sp_series = Series(SparseArray([0, 0, 1]), index=[2, 1, 0]) df["new_column"] = sp_series expected = Series(SparseArray([1, 0, 0]), name="new_column") tm.assert_series_equal(df["new_column"], expected) def test_setitem_dict_preserves_dtypes(self): # https://github.com/pandas-dev/pandas/issues/34573 expected = DataFrame( { "a": Series([0, 1, 2], dtype="int64"), "b": Series([1, 2, 3], dtype=float), "c":
Series([1, 2, 3], dtype=float)
pandas.Series
__author__ = "<NAME>" import json import pandas as pd import sqlite3 import argparse import os def BrowserHistoryParse(f): conn = sqlite3.connect(f) cursor = conn.cursor() BrowserHistoryTable = pd.read_sql_query("SELECT events_persisted.sid, events_persisted.payload from events_persisted inner join event_tags on events_persisted.full_event_name_hash = event_tags.full_event_name_hash inner join tag_descriptions on event_tags.tag_id = tag_descriptions.tag_id where tag_descriptions.tag_id = 1", conn) payload = BrowserHistoryTable['payload'].values.tolist() sid = BrowserHistoryTable['sid'].values.tolist() payload_navigation_URL = [] payload_navigation_URL_time = [] payload_navigation_URL_date = [] true_sid = [] for i in range(len(payload)): temp = json.loads(payload[i]) if (temp['data'].__contains__("navigationUrl") == True) and len(temp['data']['navigationUrl']) > 0: payload_navigation_URL.append(temp['data']['navigationUrl']) true_sid.append(sid[i]) timestamp = (temp['data']['Timestamp']).replace("T", " ").replace("Z", "") timestamp = timestamp.split(" ") payload_navigation_URL_date.append(timestamp[0]) payload_navigation_URL_time.append(timestamp[1] + " UTC") temp_dict = {'SID': true_sid,'Date': payload_navigation_URL_date, 'Time': payload_navigation_URL_time, 'VisitedURL': payload_navigation_URL} return temp_dict def SoftwareInventory(f): conn = sqlite3.connect(f) SoftwareInventoryTable = pd.read_sql_query("""SELECT events_persisted.sid, events_persisted.payload from events_persisted inner join event_tags on events_persisted.full_event_name_hash = event_tags.full_event_name_hash inner join tag_descriptions on event_tags.tag_id = tag_descriptions.tag_id where (tag_descriptions.tag_id = 31 and events_persisted.full_event_name="Microsoft.Windows.Inventory.Core.InventoryApplicationAdd")""", conn) payload = SoftwareInventoryTable['payload'].values.tolist() sid = SoftwareInventoryTable['sid'].values.tolist() Program_Name = [] Path = [] OSVersionAtInstallTime = [] InstallDate = [] AppVersion = [] true_sid = [] for i in range(len(payload)): temp = json.loads(payload[i]) Program_Name.append(temp['data']['Name']) Path.append(temp['data']['RootDirPath']) OSVersionAtInstallTime.append(temp['data']['OSVersionAtInstallTime']) if len(temp['data']['InstallDate']) > 0: InstallDate.append(temp['data']['InstallDate'] + " UTC") else: InstallDate.append("NULL") AppVersion.append(temp['data']['Version']) true_sid.append(sid[i]) SoftwareInventorydict = {'SID': true_sid, 'Program Name': Program_Name, 'Install Path': Path, 'Install Date': InstallDate, 'Program Version': AppVersion, 'OS Version at Install Time': OSVersionAtInstallTime} return SoftwareInventorydict def WlanScanResults(f): conn = sqlite3.connect(f) cursor = conn.cursor() wlan_scan_results_table = pd.read_sql_query("""SELECT events_persisted.sid, events_persisted.payload from events_persisted inner join event_tags on events_persisted.full_event_name_hash = event_tags.full_event_name_hash inner join tag_descriptions on event_tags.tag_id = tag_descriptions.tag_id where (tag_descriptions.tag_id = 11 and events_persisted.full_event_name = "WlanMSM.WirelessScanResults")""", conn) payload = wlan_scan_results_table['payload'].values.tolist() sid = wlan_scan_results_table['sid'].values.tolist() ssid = [] mac_addr = [] time = [] true_sid = [] for i in range(len(payload)): temp = json.loads(payload[i]) scan_results_list = temp['data']['ScanResults'].split('\n') for j in range(len(scan_results_list) - 1): temp_list = scan_results_list[j].split('\t') ssid.append(temp_list[0]) mac_addr.append(temp_list[2]) time.append(temp['time']) true_sid.append(sid[i]) WlanScanDict = {'SID': true_sid, 'Time': time, 'SSID': ssid, 'MAC Address': mac_addr} return WlanScanDict def UserDefault(f, file): conn = sqlite3.connect(f) user_default_table = pd.read_sql_query("""SELECT events_persisted.sid, events_persisted.payload from events_persisted inner join event_tags on events_persisted.full_event_name_hash = event_tags.full_event_name_hash inner join tag_descriptions on event_tags.tag_id = tag_descriptions.tag_id where (tag_descriptions.tag_id = 11 and events_persisted.full_event_name = "Census.Userdefault")""", conn) payload = user_default_table['payload'].values.tolist() sid = user_default_table['sid'].values.tolist() true_sid = [] temp_file = open(file, "w") for i in range(len(payload)): temp = json.loads(payload[i]) temp_file.write("Device Make: " + temp['ext']['protocol']['devMake'] + "\n") temp_file.write("Device Model: "+ temp['ext']['protocol']['devModel']+ "\n") temp_file.write("Timezone: "+ temp['ext']['loc']['tz'] + "\n") true_sid.append(sid[i]) temp_file.write("Default Browser: "+ temp['data']['DefaultBrowserProgId'] + "\n") temp_list = temp['data']['DefaultApp'].split('|') for j in range(len(temp_list)): temp_file.write(temp_list[j]+ "\n") temp_file.write("----------------------------------\n\n") return temp_file def PhysicalDiskInfo(f, file): conn = sqlite3.connect(f) physicaldisk_info_table = pd.read_sql_query("""SELECT events_persisted.payload from events_persisted inner join event_tags on events_persisted.full_event_name_hash = event_tags.full_event_name_hash inner join tag_descriptions on event_tags.tag_id = tag_descriptions.tag_id where (tag_descriptions.tag_id = 11 and events_persisted.full_event_name = "Microsoft.Windows.Inventory.General.InventoryMiscellaneousPhysicalDiskInfoAdd")""", conn) payload = physicaldisk_info_table['payload'].values.tolist() temp_file = open(file, "w") for i in range(len(payload)): temp = json.loads(payload[i]) temp_file.write("Device Id: "+ temp['data']['DeviceId'] + "\n") temp_file.write("Serial Number: "+ temp['data']['SerialNumber'] + "\n") temp_file.write("Size (in bytes): "+ temp['data']['Size'] + "\n") temp_file.write("Number of partitions: "+ str(temp['data']['NumPartitions']) + "\n") temp_file.write("Bytes per sector: "+ str(temp['data']['BytesPerSector']) + "\n") temp_file.write("Media type: "+ temp['data']['MediaType'] + "\n") temp_file.write("----------------------------------\n\n") return temp_file def WiFiConnectedEvents(f): conn = sqlite3.connect(f) wifi_connected_events_table = pd.read_sql_query("""SELECT events_persisted.sid, events_persisted.payload from events_persisted inner join event_tags on events_persisted.full_event_name_hash = event_tags.full_event_name_hash inner join tag_descriptions on event_tags.tag_id = tag_descriptions.tag_id where (tag_descriptions.tag_id = 11 and events_persisted.full_event_name = "Microsoft.OneCore.NetworkingTriage.GetConnected.WiFiConnectedEvent")""", conn) payload = wifi_connected_events_table['payload'].values.tolist() sid = wifi_connected_events_table['sid'].values.tolist() interfaceGuid = [] interfaceType = [] interfaceDescription = [] ssid = [] authAlgo = [] bssid = [] apManufacturer = [] apModelName = [] apModelNum = [] true_sid = [] for i in range(len(payload)): temp = json.loads(payload[i]) interfaceGuid.append(temp['data']['interfaceGuid']) interfaceType.append(temp['data']['interfaceType']) interfaceDescription.append(temp['data']['interfaceDescription']) ssid.append(temp['data']['ssid']) authAlgo.append(temp['data']['authAlgo']) bssid.append(temp['data']['bssid']) apManufacturer.append(temp['data']['apManufacturer']) apModelName.append(temp['data']['apModelName']) apModelNum.append(temp['data']['apModelNum']) true_sid.append(sid[i]) wifi_connected_results_dict = {'SID': true_sid, 'SSID': ssid, 'BSSID': bssid, 'AP Manufacturer': apManufacturer, 'AP Model Name': apModelName, 'AP Model No.': apModelNum, 'Interface Type': interfaceType, 'Interface GUID': interfaceGuid, 'Interface Description': interfaceDescription} return wifi_connected_results_dict def PnPDeviceParse(f): conn = sqlite3.connect(f) pnp_device_table = pd.read_sql_query("""SELECT events_persisted.sid, events_persisted.payload from events_persisted inner join event_tags on events_persisted.full_event_name_hash = event_tags.full_event_name_hash inner join tag_descriptions on event_tags.tag_id = tag_descriptions.tag_id where (tag_descriptions.tag_id = 11 and events_persisted.full_event_name = "Microsoft.Windows.Inventory.Core.InventoryDevicePnpAdd")""", conn) payload = pnp_device_table['payload'].values.tolist() sid = pnp_device_table['sid'].values.tolist() true_sid = [] installdate = [] firstinstalldate = [] model = [] manufacturer = [] service = [] parent_id = [] object_id = [] for i in range(len(payload)): temp = json.loads(payload[i].encode('unicode_escape')) true_sid.append(sid[i]) parent_id.append(temp['data']['ParentId']) object_id.append(temp['data']['baseData']['objectInstanceId']) installdate.append(temp['data']['InstallDate']) firstinstalldate.append(temp['data']['FirstInstallDate']) model.append(temp['data']['Model']) manufacturer.append(temp['data']['Manufacturer']) service.append(temp['data']['Service']) pnp_device_dict = {'SID': true_sid, 'Object ID': object_id, 'Install Date': installdate, 'First Install Date': firstinstalldate, 'Model': model, 'Manufacturer': manufacturer, 'Service': service, 'Parent ID': parent_id} return pnp_device_dict if __name__=="__main__": event_transcript_parser=argparse.ArgumentParser( description='''EventTranscript.db parser by <NAME>.''', epilog= '''For any queries, please reach out to me via Twitter - @_abhiramkumar''') event_transcript_parser.add_argument('-f','--file', required=True, help="Please specify the path to EventTranscript.db") parser, empty_list = event_transcript_parser.parse_known_args() if os.path.exists(parser.file): BrowsingHistory = BrowserHistoryParse(parser.file) df = pd.DataFrame(BrowsingHistory) outfile = "BrowserHistory.csv" df.to_csv(outfile, index=False) print ("Output written to " + outfile) software_inventory = SoftwareInventory(parser.file) df = pd.DataFrame(software_inventory) outfile = "SoftwareInventory.csv" df.to_csv(outfile, index=False) print ("Output written to " + outfile) WlanScan = WlanScanResults(parser.file) df =
pd.DataFrame(WlanScan)
pandas.DataFrame
import pkg_resources import pandas as pd from unittest.mock import sentinel import osmo_jupyter.dataset.parse as module def test_parses_ysi_csv_correctly(tmpdir): test_ysi_classic_file_path = pkg_resources.resource_filename( "osmo_jupyter", "test_fixtures/test_ysi_classic.csv" ) formatted_ysi_data = module.parse_ysi_proodo_file(test_ysi_classic_file_path) expected_ysi_data = pd.DataFrame( [ { "timestamp": pd.to_datetime("2019-01-01 00:00:00"), "YSI barometric pressure (mmHg)": 750, "YSI DO (% sat)": 19, "YSI temperature (C)": 24.7, "YSI unit ID": "unit ID", } ] ).set_index("timestamp") pd.testing.assert_frame_equal(formatted_ysi_data, expected_ysi_data) def test_parses_ysi_kordss_correctly(tmpdir): test_ysi_kordss_file_path = pkg_resources.resource_filename( "osmo_jupyter", "test_fixtures/test_ysi_kordss.csv" ) formatted_ysi_data = module.parse_ysi_prosolo_file(test_ysi_kordss_file_path) expected_ysi_data = pd.DataFrame( [ { "timestamp": pd.to_datetime("2019-01-01 00:00:00"), "YSI barometric pressure (mmHg)": 750, "YSI DO (% sat)": 60, "YSI DO (mg/L)": 6, "YSI temperature (C)": 24.7, } ] ).set_index("timestamp") pd.testing.assert_frame_equal(formatted_ysi_data, expected_ysi_data) def test_parses_picolog_csv_correctly(): test_picolog_file_path = pkg_resources.resource_filename( "osmo_jupyter", "test_fixtures/test_picolog.csv" ) formatted_picolog_data = module.parse_picolog_file(test_picolog_file_path) expected_picolog_data = pd.DataFrame( [ { "timestamp": pd.to_datetime("2019-01-01 00:00:00"), "PicoLog temperature (C)": 39, "PicoLog barometric pressure (mmHg)": 750, }, { "timestamp": pd.to_datetime("2019-01-01 00:00:02"), "PicoLog temperature (C)": 40, "PicoLog barometric pressure (mmHg)": 750, }, { "timestamp": pd.to_datetime("2019-01-01 00:00:04"), "PicoLog temperature (C)": 40, "PicoLog barometric pressure (mmHg)": 750, }, ] ).set_index("timestamp") pd.testing.assert_frame_equal(formatted_picolog_data, expected_picolog_data) def test_parses_calibration_log_correctly(): test_calibration_log_file_path = pkg_resources.resource_filename( "osmo_jupyter", "test_fixtures/test_calibration_log.csv" ) formatted_calibration_log_data = module.parse_calibration_log_file( test_calibration_log_file_path ) # Nothing is supposed to be renamed or dropped, just datetime formatting expected_calibration_log_index = pd.DatetimeIndex( [ pd.to_datetime("2019-01-01 00:00:00"), pd.to_datetime("2019-01-01 00:00:01"), pd.to_datetime("2019-01-01 00:00:03"), pd.to_datetime("2019-01-01 00:00:04"), ], name="timestamp", ) pd.testing.assert_index_equal( formatted_calibration_log_data.index, expected_calibration_log_index ) class TestParseDataCollectionLog: def test_parses_data_collection_log_correctly(self): test_log_file_path = pkg_resources.resource_filename( "osmo_jupyter", "test_fixtures/test_data_collection_log.xlsx" ) actual_data_collection_log = module.parse_data_collection_log( test_log_file_path ) expected_data_collection_log = pd.DataFrame( [ { "experiment_names": [ "2019-07-26--19-34-38-Pi2E32-3000_images_attempt_1" ], "drive_directory": "2019-07-26 Collect 3000 images (attempt 1)", "pond": "calibration", "cosmobot_id": "A", "cartridge_id": "C00003", "start_date": pd.to_datetime("2019-07-26 19:12"), "end_date": pd.to_datetime("2019-07-28 13:55"), }, { "experiment_names": [ "2019-08-26--23-34-10-PiE5FB-scum_tank_shakedown" ], "drive_directory": "2019-08-26 Scum Tank Shakedown", "pond": "scum tank 1", "cosmobot_id": "B", "cartridge_id": "C00005", "start_date": pd.to_datetime("2019-08-26 23:35"), "end_date": pd.to_datetime("2019-08-27 08:15"), }, ] ) pd.testing.assert_frame_equal( actual_data_collection_log, expected_data_collection_log ) def test_get_attempt_summary_gets_multiple_buckets(self): test_attempt_data = pd.Series( { "S3 Bucket(s)": "1\n2\n3", "Drive Directory": "Experiment", "Cosmobot ID": "Z", "Cartridge": "C1", "Start Date/Time": pd.to_datetime("2019"), "End Date/Time": pd.to_datetime("2020"), } ) actual_attempt_summary = module._get_attempt_summary(test_attempt_data) expected_attempt_summary = pd.Series( { "experiment_names": ["1", "2", "3"], "drive_directory": "Experiment", "pond": "calibration", "cosmobot_id": "Z", "cartridge_id": "C1", "start_date":
pd.to_datetime("2019")
pandas.to_datetime
""" A toy ML workflow intended to demonstrate basic Bionic features. Trains a logistic regression model on the UCI ML Breast Cancer Wisconsin (Diagnostic) dataset. """ import re import pandas as pd from sklearn import datasets, linear_model, metrics, model_selection import bionic as bn # Initialize our builder. builder = bn.FlowBuilder("ml_workflow") # Define some basic parameters. builder.assign( "random_seed", 0, doc="Arbitrary seed for all random decisions in the flow." ) builder.assign( "test_split_fraction", 0.3, doc="Fraction of data to include in test set." ) builder.assign( "hyperparams_dict", {"C": 1}, doc="Hyperparameters to use when training the model." ) builder.assign( "feature_inclusion_regex", ".*", doc="Regular expression specifying which feature names to include.", ) # Load the raw data. @builder def raw_frame(): """ The raw data, including all features and a `target` column of labels. """ dataset = datasets.load_breast_cancer() df =
pd.DataFrame(data=dataset.data, columns=dataset.feature_names)
pandas.DataFrame
#!/usr/bin/env python from pathlib import Path import pandas as pd import typer from rich.console import Console from rich.logging import RichHandler import logging def check_sample_names(df: pd.DataFrame) -> None: have_whitespace = df['sample'].str.contains(r'\s', regex=True) n_samples_with_whitespace = have_whitespace.sum() if have_whitespace.sum() > 0: raise ValueError( f'Found {n_samples_with_whitespace} sample names with whitespace: ' f'{"; ".join(df.loc[have_whitespace,"sample"])}\n' f'{df.loc[have_whitespace, :]}\n' f'Please check your sample sheet. Sample names should not have spaces.' ) def adjust_reads_path(p: str) -> str: assert ( p.endswith(".fastq") or p.endswith(".fastq.gz") or p.endswith(".fq") or p.endswith(".fq.gz") ), 'FASTQ file "{p}" does not have expected extension: ".fastq", ".fastq.gz", ".fq", ".fq.gz"' if p.startswith("http") or p.startswith("ftp"): return p else: path = Path(p) return str(path.resolve().absolute()) def main(input_path: Path, output_sample_sheet: Path): """Check and reformat sample sheet into CSV Outputs CSV with headers: sample, fastq1, fastq2, single_end""" from rich.traceback import install install(show_locals=True, width=120, word_wrap=True) logging.basicConfig( format="%(message)s", datefmt="[%Y-%m-%d %X]", level=logging.DEBUG, handlers=[RichHandler(rich_tracebacks=True, tracebacks_show_locals=True)], ) logging.info( f'input_path="{input_path}" output_sample_sheet="{output_sample_sheet}"' ) ext = input_path.suffix.lower() logging.info(f"Input sample sheet extension: {ext}") try: if ext in [".tsv", ".txt", ".tab"]: df = pd.read_table(input_path, dtype="str") elif ext == ".csv": df =
pd.read_csv(input_path, dtype="str")
pandas.read_csv
"""Extract minimal growth media and growth rates.""" import pandas as pd from micom import load_pickle from micom.media import minimal_medium from micom.workflows import workflow max_procs = 6 processes = [] def media_and_gcs(sam): com = load_pickle("models/" + sam + ".pickle") # Get growth rates sol = com.cooperative_tradeoff(fraction=0.9) rates = sol.members["growth_rate"].copy() rates["community"] = sol.growth_rate rates.name = s # Get the minimal medium med = minimal_medium(com, 0.95*sol.growth_rate) med.name = s return {"medium": med, "gcs": rates} samples =
pd.read_csv("recent.csv")
pandas.read_csv
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for the zipline.assets package """ import sys from unittest import TestCase from datetime import ( datetime, timedelta, ) import pickle import pprint import pytz import uuid import pandas as pd from nose_parameterized import parameterized from zipline.finance.trading import with_environment from zipline.assets import Asset, Equity, Future, AssetFinder from zipline.errors import ( SymbolNotFound, MultipleSymbolsFound, SidAssignmentError, ) class FakeTable(object): def __init__(self, name, count, dt, fuzzy_str): self.name = name self.count = count self.dt = dt self.fuzzy_str = fuzzy_str self.df = pd.DataFrame.from_records( [ { 'sid': i, 'file_name': 'TEST%s%s' % (self.fuzzy_str, i), 'company_name': self.name + str(i), 'start_date_nano': pd.Timestamp(dt, tz='UTC').value, 'end_date_nano': pd.Timestamp(dt, tz='UTC').value, 'exchange': self.name, } for i in range(1, self.count + 1) ] ) def read(self, *args, **kwargs): return self.df.to_records() class FakeTableIdenticalSymbols(object): def __init__(self, name, as_of_dates): self.name = name self.as_of_dates = as_of_dates self.df = pd.DataFrame.from_records( [ { 'sid': i, 'file_name': self.name, 'company_name': self.name, 'start_date_nano': date.value, 'end_date_nano': (date + timedelta(days=1)).value, 'exchange': self.name, } for i, date in enumerate(self.as_of_dates) ] ) def read(self, *args, **kwargs): return self.df.to_records() class FakeTableFromRecords(object): def __init__(self, records): self.records = records self.df = pd.DataFrame.from_records(self.records) def read(self, *args, **kwargs): return self.df.to_records() @with_environment() def build_lookup_generic_cases(env=None): """ Generate test cases for AssetFinder test_lookup_generic. """ unique_start = pd.Timestamp('2013-01-01', tz='UTC') unique_end = pd.Timestamp('2014-01-01', tz='UTC') dupe_0_start = pd.Timestamp('2013-01-01', tz='UTC') dupe_0_end = dupe_0_start + timedelta(days=1) dupe_1_start = pd.Timestamp('2013-01-03', tz='UTC') dupe_1_end = dupe_1_start + timedelta(days=1) table = FakeTableFromRecords( [ { 'sid': 0, 'file_name': 'duplicated', 'company_name': 'duplicated_0', 'start_date_nano': dupe_0_start.value, 'end_date_nano': dupe_0_end.value, 'exchange': '', }, { 'sid': 1, 'file_name': 'duplicated', 'company_name': 'duplicated_1', 'start_date_nano': dupe_1_start.value, 'end_date_nano': dupe_1_end.value, 'exchange': '', }, { 'sid': 2, 'file_name': 'unique', 'company_name': 'unique', 'start_date_nano': unique_start.value, 'end_date_nano': unique_end.value, 'exchange': '', }, ], ) env.update_asset_finder(asset_metadata=table.df) dupe_0, dupe_1, unique = assets = [ env.asset_finder.retrieve_asset(i) for i in range(3) ] # This expansion code is run at module import time, which means we have to # clear the AssetFinder here or else it will interfere with the cache # for other tests. env.update_asset_finder(clear_metadata=True) dupe_0_start = dupe_0.start_date dupe_1_start = dupe_1.start_date cases = [ ## # Scalars # Asset object (table, assets[0], None, assets[0]), (table, assets[1], None, assets[1]), (table, assets[2], None, assets[2]), # int (table, 0, None, assets[0]), (table, 1, None, assets[1]), (table, 2, None, assets[2]), # Duplicated symbol with resolution date (table, 'duplicated', dupe_0_start, dupe_0), (table, 'duplicated', dupe_1_start, dupe_1), # Unique symbol, with or without resolution date. (table, 'unique', unique_start, unique), (table, 'unique', None, unique), ## # Iterables # Iterables of Asset objects. (table, assets, None, assets), (table, iter(assets), None, assets), # Iterables of ints (table, (0, 1), None, assets[:-1]), (table, iter((0, 1)), None, assets[:-1]), # Iterables of symbols. (table, ('duplicated', 'unique'), dupe_0_start, [dupe_0, unique]), (table, ('duplicated', 'unique'), dupe_1_start, [dupe_1, unique]), # Mixed types (table, ('duplicated', 2, 'unique', 1, dupe_1), dupe_0_start, [dupe_0, assets[2], unique, assets[1], dupe_1]), ] return cases class AssetTestCase(TestCase): def test_asset_object(self): self.assertEquals({5061: 'foo'}[Asset(5061)], 'foo') self.assertEquals(Asset(5061), 5061) self.assertEquals(5061, Asset(5061)) self.assertEquals(Asset(5061), Asset(5061)) self.assertEquals(int(Asset(5061)), 5061) self.assertEquals(str(Asset(5061)), 'Asset(5061)') def test_asset_is_pickleable(self): # Very wow s = Asset( 1337, symbol="DOGE", asset_name="DOGECOIN", start_date=pd.Timestamp('2013-12-08 9:31AM', tz='UTC'), end_date=pd.Timestamp('2014-06-25 11:21AM', tz='UTC'), first_traded=pd.Timestamp('2013-12-08 9:31AM', tz='UTC'), exchange='THE MOON', ) s_unpickled = pickle.loads(pickle.dumps(s)) attrs_to_check = ['end_date', 'exchange', 'first_traded', 'asset_end_date', 'asset_name', 'asset_start_date', 'sid', 'start_date', 'symbol'] for attr in attrs_to_check: self.assertEqual(getattr(s, attr), getattr(s_unpickled, attr)) def test_asset_comparisons(self): s_23 = Asset(23) s_24 = Asset(24) self.assertEqual(s_23, s_23) self.assertEqual(s_23, 23) self.assertEqual(23, s_23) self.assertNotEqual(s_23, s_24) self.assertNotEqual(s_23, 24) self.assertNotEqual(s_23, "23") self.assertNotEqual(s_23, 23.5) self.assertNotEqual(s_23, []) self.assertNotEqual(s_23, None) self.assertLess(s_23, s_24) self.assertLess(s_23, 24) self.assertGreater(24, s_23) self.assertGreater(s_24, s_23) def test_lt(self): self.assertTrue(Asset(3) < Asset(4)) self.assertFalse(Asset(4) < Asset(4)) self.assertFalse(Asset(5) < Asset(4)) def test_le(self): self.assertTrue(Asset(3) <= Asset(4)) self.assertTrue(Asset(4) <= Asset(4)) self.assertFalse(Asset(5) <= Asset(4)) def test_eq(self): self.assertFalse(Asset(3) == Asset(4)) self.assertTrue(Asset(4) == Asset(4)) self.assertFalse(Asset(5) == Asset(4)) def test_ge(self): self.assertFalse(Asset(3) >= Asset(4)) self.assertTrue(Asset(4) >= Asset(4)) self.assertTrue(Asset(5) >= Asset(4)) def test_gt(self): self.assertFalse(Asset(3) > Asset(4)) self.assertFalse(Asset(4) > Asset(4)) self.assertTrue(Asset(5) > Asset(4)) def test_type_mismatch(self): if sys.version_info.major < 3: self.assertIsNotNone(Asset(3) < 'a') self.assertIsNotNone('a' < Asset(3)) else: with self.assertRaises(TypeError): Asset(3) < 'a' with self.assertRaises(TypeError): 'a' < Asset(3) class TestFuture(TestCase): future = Future(2468, symbol='OMK15', notice_date='2014-01-20', expiration_date='2014-02-20', contract_multiplier=500) def test_str(self): strd = self.future.__str__() self.assertEqual("Future(2468 [OMK15])", strd) def test_repr(self): reprd = self.future.__repr__() self.assertTrue("Future" in reprd) self.assertTrue("2468" in reprd) self.assertTrue("OMK15" in reprd) self.assertTrue("notice_date='2014-01-20'" in reprd) self.assertTrue("expiration_date='2014-02-20'" in reprd) self.assertTrue("contract_multiplier=500" in reprd) def test_reduce(self): reduced = self.future.__reduce__() self.assertEqual(Future, reduced[0]) def test_to_and_from_dict(self): dictd = self.future.to_dict() self.assertTrue('notice_date' in dictd) self.assertTrue('expiration_date' in dictd) self.assertTrue('contract_multiplier' in dictd) from_dict = Future.from_dict(dictd) self.assertTrue(isinstance(from_dict, Future)) self.assertEqual(self.future, from_dict) class AssetFinderTestCase(TestCase): @with_environment() def test_lookup_symbol_fuzzy(self, env=None): fuzzy_str = '@' as_of_date = datetime(2013, 1, 1, tzinfo=pytz.utc) table = FakeTable(uuid.uuid4().hex, 2, as_of_date, fuzzy_str) env.update_asset_finder(asset_metadata=table.df) sf = env.asset_finder try: for i in range(2): # we do it twice to test for caching bugs self.assertIsNone(sf.lookup_symbol('test', as_of_date)) self.assertIsNotNone(sf.lookup_symbol( 'test%s%s' % (fuzzy_str, 1), as_of_date)) self.assertIsNone(sf.lookup_symbol('test%s' % 1, as_of_date)) self.assertIsNone(sf.lookup_symbol(table.name, as_of_date, fuzzy=fuzzy_str)) self.assertIsNotNone(sf.lookup_symbol( 'test%s%s' % (fuzzy_str, 1), as_of_date, fuzzy=fuzzy_str)) self.assertIsNotNone(sf.lookup_symbol( 'test%s' % 1, as_of_date, fuzzy=fuzzy_str)) finally: env.update_asset_finder(clear_metadata=True) @with_environment() def test_lookup_symbol_resolve_multiple(self, env=None): as_of_dates = [ pd.Timestamp('2013-01-01', tz='UTC') + timedelta(days=i) # Incrementing by two so that start and end dates for each # generated Asset don't overlap (each Asset's end_date is the # day after its start date.) for i in range(0, 10, 2) ] table = FakeTableIdenticalSymbols( name='existing', as_of_dates=as_of_dates, ) env.update_asset_finder(asset_metadata=table.df) sf = env.asset_finder try: for _ in range(2): # we do it twice to test for caching bugs with self.assertRaises(SymbolNotFound): sf.lookup_symbol_resolve_multiple('non_existing', as_of_dates[0]) with self.assertRaises(MultipleSymbolsFound): sf.lookup_symbol_resolve_multiple('existing', None) for i, date in enumerate(as_of_dates): # Verify that we correctly resolve multiple symbols using # the supplied date result = sf.lookup_symbol_resolve_multiple( 'existing', date, ) self.assertEqual(result.symbol, 'existing') self.assertEqual(result.sid, i) finally: env.update_asset_finder(clear_metadata=True) @with_environment() def test_lookup_symbol_nasdaq_underscore_collisions(self, env=None): """ Ensure that each NASDAQ symbol without underscores maps back to the original symbol when using fuzzy matching. """ sf = env.asset_finder fuzzy_str = '_' collisions = [] try: for sid in sf.sids: sec = sf.retrieve_asset(sid) if sec.exchange.startswith('NASDAQ'): found = sf.lookup_symbol(sec.symbol.replace(fuzzy_str, ''), sec.end_date, fuzzy=fuzzy_str) if found != sec: collisions.append((found, sec)) # KNOWN BUG: Filter out assets that have intersections in their # start and end dates. We can't correctly resolve these. unexpected_errors = [] for first, second in collisions: overlapping_dates = ( first.end_date >= second.start_date or second.end_date >= first.end_date ) if not overlapping_dates: unexpected_errors.append((first, second)) self.assertFalse( unexpected_errors, pprint.pformat(unexpected_errors), ) finally: env.update_asset_finder(clear_metadata=True) @parameterized.expand( build_lookup_generic_cases() ) @with_environment() def test_lookup_generic(self, table, symbols, reference_date, expected, env=None): """ Ensure that lookup_generic works with various permutations of inputs. """ try: env.update_asset_finder(asset_metadata=table.df) finder = env.asset_finder results, missing = finder.lookup_generic(symbols, reference_date) self.assertEqual(results, expected) self.assertEqual(missing, []) finally: env.update_asset_finder(clear_metadata=True) @with_environment() def test_lookup_generic_handle_missing(self, env=None): try: table = FakeTableFromRecords( [ # Sids that will be found when we do lookups. { 'sid': 0, 'file_name': 'real', 'company_name': 'real', 'start_date_nano':
pd.Timestamp('2013-1-1', tz='UTC')
pandas.Timestamp
import numpy as np from sklearn.datasets import fetch_mldata import pandas as pd import matplotlib.pyplot as plt from sklearn.decomposition import PCA import time from sklearn.manifold import TSNE # import tensorflow.examples.tutorials.mnist.input_data as input_data datafile = '' #get this either from command line argument or encapslate into function that can be imported in other files data = np.loadtxt(open(datafile, 'rb'), delimiter=",", skiprows=1) X = data[:, 1:-1] y = data[:, -1] print (X.shape, y.shape) feat_cols = [ 'pixel'+str(i) for i in range(X.shape[1]) ] df =
pd.DataFrame(X,columns=feat_cols)
pandas.DataFrame
import os import json import math import numpy as np import pandas as pd import seaborn as sns; sns.set(style="ticks"); sns.set_context("paper") #sns.set_context("talk") import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter from utils.helper import make_dir from utils.sweeper import Sweeper class Plotter(object): def __init__(self, cfg): # Set default value for symmetric EMA (exponential moving average) # Note that EMA only works when merged is True cfg.setdefault('EMA', False) cfg.setdefault('ci', None) # Copy parameters self.exp = cfg['exp'] self.merged = cfg['merged'] self.x_label = cfg['x_label'] self.y_label = cfg['y_label'] self.hue_label = cfg['hue_label'] self.show = cfg['show'] self.imgType = cfg['imgType'] self.ci = cfg['ci'] self.EMA = cfg['EMA'] self.sweep_keys = cfg['sweep_keys'] self.sort_by = cfg['sort_by'] self.ascending = cfg['ascending'] self.loc = cfg['loc'] self.runs = cfg['runs'] # Get total combination of configurations self.total_combination = get_total_combination(self.exp) def merge_index(self, config_idx, mode, processed, exp=None): ''' Given exp and config index, merge the results of multiple runs ''' if exp is None: exp = self.exp result_list = [] for _ in range(self.runs): result_file = f'./logs/{exp}/{config_idx}/result_{mode}.feather' # If result file exist, read and merge result = read_file(result_file) if result is not None: # Add config index as a column result['Config Index'] = config_idx result_list.append(result) config_idx += get_total_combination(exp) if len(result_list) == 0: return None # Do symmetric EMA (exponential moving average) only # when we want the original data (i.e. no processed) if (self.EMA) and (processed == False): # Get x's and y's in form of numpy arries xs, ys = [], [] for result in result_list: xs.append(result[self.x_label].to_numpy()) ys.append(result[self.y_label].to_numpy()) # Do symetric EMA to get new x's and y's low = max(x[0] for x in xs) high = min(x[-1] for x in xs) n = min(len(x) for x in xs) for i in range(len(xs)): new_x, new_y, _ = symmetric_ema(xs[i], ys[i], low, high, n) result_list[i] = result_list[i][:n] result_list[i].loc[:, self.x_label] = new_x result_list[i].loc[:, self.y_label] = new_y else: # Cut off redundant results n = min(len(result) for result in result_list) for i in range(len(result_list)): result_list[i] = result_list[i][:n] return result_list def get_result(self, exp, config_idx, mode, get_process_result_dict=None): ''' Return: (merged, processed) result - if (merged == True) or (get_process_result_dict is not None): Return a list of (processed) result for all runs. - if (merged == False): Return unmerged result of one single run in a list. ''' if get_process_result_dict is not None: processed = True else: processed = False if self.merged == True or processed == True: # Check mode if not (mode in ['Train', 'Valid', 'Test', 'Dynamic']): return None # Merge results print(f'[{exp}]: Merge {mode} results: {config_idx}/{get_total_combination(exp)}') result_list = self.merge_index(config_idx, mode, processed, exp) if result_list is None: print(f'[{exp}]: No {mode} results for {config_idx}') return None # Process result if processed: print(f'[{exp}]: Process {mode} results: {config_idx}/{get_total_combination(exp)}') for i in range(len(result_list)): new_result = get_process_result_dict(result_list[i], config_idx, mode) result_list[i] = new_result return result_list else: result_file = f'./logs/{exp}/{config_idx}/result_{mode}.feather' result = read_file(result_file) if result is None: return None else: return [result] def plot_vanilla(self, data, image_path): ''' Plot results for data: data = [result_1_list, result_2_list, ...] result_i_list = [result_run_1, result_run_2, ...] result_run_i is a Dataframe ''' fig, ax = plt.subplots() for i in range(len(data)): # Convert to numpy array ys = [] for result in data[i]: ys.append(result[self.y_label].to_numpy()) # Compute x_mean, y_mean and y_ci ys = np.array(ys) x_mean = data[i][0][self.x_label].to_numpy() y_mean = np.mean(ys, axis=0) if self.ci == 'sd': y_ci = np.std(ys, axis=0, ddof=0) elif self.ci == 'se': y_ci = np.std(ys, axis=0, ddof=0)/math.sqrt(len(ys)) # Plot plt.plot(x_mean, y_mean, linewidth=1.0, label=data[i][0][self.hue_label][0]) if self.ci in ['sd', 'se']: plt.fill_between(x_mean, y_mean - y_ci, y_mean + y_ci, alpha=0.5) # ax.set_title(title) ax.legend(loc=self.loc) ax.set_xlabel(self.x_label) ax.set_ylabel(self.y_label) ax.get_figure().savefig(image_path) if self.show: plt.show() plt.clf() # clear figure plt.cla() # clear axis plt.close() # close window def plot_indexList(self, indexList, mode, image_name): ''' Func: Given (config index) list and mode - merged == True: plot merged result for all runs. - merged == False: plot unmerged result of one single run. ''' expIndexModeList = [] for x in indexList: expIndexModeList.append([self.exp, x ,mode]) self.plot_expIndexModeList(expIndexModeList, image_name) def plot_indexModeList(self, indexModeList, image_name): ''' Func: Given (config index, mode) list - merged == True: plot merged result for all runs. - merged == False: plot unmerged result of one single run. ''' expIndexModeList = [] for x in indexModeList: expIndexModeList.append([self.exp] + x) self.plot_expIndexModeList(expIndexModeList, image_name) def plot_expIndexModeList(self, expIndexModeList, image_name): ''' Func: Given (exp, config index, mode) list - merged == True: plot merged result for all runs. - merged == False: plot unmerged result of one single run. ''' # Get results results = [] for exp, config_idx, mode in expIndexModeList: print(f'[{exp}]: Plot {mode} results: {config_idx}') result_list = self.get_result(exp, config_idx, mode) if result_list is None: continue # Modify `hue_label` value in result_list for better visualization for i in range(len(result_list)): result_list[i][self.hue_label] = result_list[i][self.hue_label].map(lambda x: f'[{exp}] {mode} {x} {config_idx}') results.append(result_list) make_dir(f'./logs/{self.exp}/0/') # Plot if self.merged: image_path = f'./logs/{self.exp}/0/{image_name}_merged.{self.imgType}' else: image_path = f'./logs/{self.exp}/0/{image_name}.{self.imgType}' self.plot_vanilla(results, image_path) def plot_results(self, mode, indexes='all'): ''' Plot merged result for all config indexes ''' if indexes == 'all': if self.merged: indexes = range(1, self.total_combination+1) else: indexes = range(1, self.total_combination*self.runs+1) for config_idx in indexes: print(f'[{self.exp}]: Plot {mode} results: {config_idx}/{self.total_combination}') # Get result result_list = self.get_result(self.exp, config_idx, mode) if result_list is None: continue # Plot if self.merged: image_path = f'./logs/{self.exp}/{config_idx}/{mode}_{self.y_label}_merged.{self.imgType}' else: image_path = f'./logs/{self.exp}/{config_idx}/{mode}_{self.y_label}.{self.imgType}' self.plot_vanilla([result_list], image_path) def csv_results(self, mode, get_csv_result_dict, get_process_result_dict): ''' Show results: generate a *.csv file that store all merged results ''' new_result_list = [] for config_idx in range(1, self.total_combination+1): print(f'[{self.exp}]: CSV {mode} results: {config_idx}/{self.total_combination}') result_list = self.get_result(self.exp, config_idx, mode, get_process_result_dict) if result_list is None: continue result = pd.DataFrame(result_list) # Get test results dict result_dict = get_csv_result_dict(result, config_idx, mode) # Expand test result dict from config dict config_file = f'./logs/{self.exp}/{config_idx}/config.json' with open(config_file, 'r') as f: config_dict = json.load(f) for key in self.sweep_keys: result_dict[key] = find_key_value(config_dict, key) new_result_list.append(result_dict) if len(new_result_list) == 0: print(f'[{self.exp}]: No {mode} results') return make_dir(f'./logs/{self.exp}/0/') results = pd.DataFrame(new_result_list) # Sort by mean and ste of test result label value sorted_results = results.sort_values(by=self.sort_by, ascending=self.ascending) # Save sorted test results into a .feather file sorted_results_file = f'./logs/{self.exp}/0/{mode}_results.csv' sorted_results.to_csv(sorted_results_file, index=False) def one_sided_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1.0, low_counts_threshold=0.0): ''' Copy from baselines.common.plot_util Functionality: perform one-sided (causal) EMA (exponential moving average) smoothing and resampling to an even grid with n points. Does not do extrapolation, so we assume xolds[0] <= low && high <= xolds[-1] Arguments: xolds: array or list - x values of data. Needs to be sorted in ascending order yolds: array of list - y values of data. Has to have the same length as xolds low: float - min value of the new x grid. By default equals to xolds[0] high: float - max value of the new x grid. By default equals to xolds[-1] n: int - number of points in new x grid decay_steps: float - EMA decay factor, expressed in new x grid steps. low_counts_threshold: float or int - y values with counts less than this value will be set to NaN Returns: tuple sum_ys, count_ys where xs - array with new x grid ys - array of EMA of y at each point of the new x grid count_ys - array of EMA of y counts at each point of the new x grid ''' low = xolds[0] if low is None else low high = xolds[-1] if high is None else high assert xolds[0] <= low, 'low = {} < xolds[0] = {} - extrapolation not permitted!'.format(low, xolds[0]) assert xolds[-1] >= high, 'high = {} > xolds[-1] = {} - extrapolation not permitted!'.format(high, xolds[-1]) assert len(xolds) == len(yolds), 'length of xolds ({}) and yolds ({}) do not match!'.format(len(xolds), len(yolds)) xolds, yolds = xolds.astype('float64'), yolds.astype('float64') luoi = 0 # last unused old index sum_y = 0. count_y = 0. xnews = np.linspace(low, high, n) decay_period = (high - low) / (n - 1) * decay_steps interstep_decay = np.exp(- 1. / decay_steps) sum_ys = np.zeros_like(xnews) count_ys = np.zeros_like(xnews) for i in range(n): xnew = xnews[i] sum_y *= interstep_decay count_y *= interstep_decay while True: if luoi >= len(xolds): break xold = xolds[luoi] if xold <= xnew: decay = np.exp(- (xnew - xold) / decay_period) sum_y += decay * yolds[luoi] count_y += decay luoi += 1 else: break sum_ys[i] = sum_y count_ys[i] = count_y ys = sum_ys / count_ys ys[count_ys < low_counts_threshold] = np.nan return xnews, ys, count_ys def symmetric_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1.0, low_counts_threshold=0.0): ''' Copy from baselines.common.plot_util Functionality: Perform symmetric EMA (exponential moving average) smoothing and resampling to an even grid with n points. Does not do extrapolation, so we assume xolds[0] <= low && high <= xolds[-1] Arguments: xolds: array or list - x values of data. Needs to be sorted in ascending order yolds: array of list - y values of data. Has to have the same length as xolds low: float - min value of the new x grid. By default equals to xolds[0] high: float - max value of the new x grid. By default equals to xolds[-1] n: int - number of points in new x grid decay_steps: float - EMA decay factor, expressed in new x grid steps. low_counts_threshold: float or int - y values with counts less than this value will be set to NaN Returns: tuple sum_ys, count_ys where xs - array with new x grid ys - array of EMA of y at each point of the new x grid count_ys - array of EMA of y counts at each point of the new x grid ''' xs, ys1, count_ys1 = one_sided_ema(xolds, yolds, low, high, n, decay_steps, low_counts_threshold) _, ys2, count_ys2 = one_sided_ema(-xolds[::-1], yolds[::-1], -high, -low, n, decay_steps, low_counts_threshold) ys2 = ys2[::-1] count_ys2 = count_ys2[::-1] count_ys = count_ys1 + count_ys2 ys = (ys1 * count_ys1 + ys2 * count_ys2) / count_ys ys[count_ys < low_counts_threshold] = np.nan xs = [int(x) for x in xs] return xs, ys, count_ys def moving_average(values, window): ''' Smooth values by doing a moving average :param values: (numpy array) :param window: (int) :return: (numpy array) ''' weights = np.repeat(1.0, window) / window return np.convolve(values, weights, 'valid') def get_total_combination(exp): ''' Get total combination of experiment configuration ''' config_file = f'./configs/{exp}.json' assert os.path.isfile(config_file), f'[{exp}]: No config file <{config_file}>!' sweeper = Sweeper(config_file) return sweeper.config_dicts['num_combinations'] def find_key_value(config_dict, key): ''' Find key value in config dict recursively ''' for k, v in config_dict.items(): if k == key: return config_dict[k] elif type(v) == dict: value = find_key_value(v, key) if value is not '/': return value return '/' def read_file(result_file): if not os.path.isfile(result_file): print(f'[No such file <{result_file}>') return None result =
pd.read_feather(result_file)
pandas.read_feather
from seaborn.utils import locator_to_legend_entries import random import glob import calendar import pandas as pd from datetime import datetime from tqdm import tqdm import os print(os.getcwd()) class DataPreprocessing: """ This class preprocesses the data and computes transition probabilities """ def __init__(self, datapath, pattern="csv"): self.datapath = datapath self.pattern = pattern def get_files(self): return glob.glob(f'{self.datapath}/*{self.pattern}') def order_files_by_day_of_week(self): files = self.get_files() filenames = [] days = [i.split("/")[-1].split(".")[0].title() for i in files] for ordered_day in list(calendar.day_name): if ordered_day in days: index = days.index(ordered_day) filenames.append(files[index]) return filenames def read_files(self): files = self.order_files_by_day_of_week() return [pd.read_csv(i, index_col = 0, parse_dates=True, sep=";") for i in files] def get_abbreviations_from_files(self): return [i.split("/")[-1].split(".")[0][0:3] for i in self.order_files_by_day_of_week()] def put_dfs_into_dict(self): weekly_names = self.get_abbreviations_from_files() df_dict = {} count = 0 for week_name in weekly_names: df_dict[week_name] = self.read_files()[count] count += 1 return df_dict def df_with_unique_ids(self): df_dict = self.put_dfs_into_dict() df_all = [] for key in df_dict.keys(): df = df_dict[key] df["day_of_week"] = df.index.day_name() df["customer_no"] = df["customer_no"].astype(str) df["shortened_day"] = [i[0:3] for i in df["day_of_week"].tolist()] df["customer_id"] = df["customer_no"] + "_" + df["shortened_day"] df.drop("shortened_day", axis = 1, inplace=True) df_all.append(df) return pd.concat(df_all) def add_checkout_for_customers(self): df_all = self.df_with_unique_ids() groups = df_all.groupby("customer_id") df_list = [] for name, group in groups: last_location = group["location"][-1] if last_location != "checkout": get_last_row = group.iloc[-1, :] time = str(get_last_row.name) row_list = [i for i in get_last_row] time_last = datetime.strptime(f'{time.split(" ")[0]} 21:59:59', "%Y-%m-%d %H:%M:%S") group.loc[time_last] = [row_list[0], "checkout", row_list[2], row_list[3]] df_list.append(group) return pd.concat(df_list) def get_customer_and_location(self): df_mc = self.add_checkout_for_customers()[["customer_id", "location"]] df_with_entrance = df_mc[["customer_id", "location"]].groupby(["customer_id"]) df_with_entrance_all = [] for name, adf in tqdm(df_with_entrance): time_str = [i for i in adf.index.strftime("%Y-%m-%d %H:%M:%S")] time_first = datetime.strptime(time_str[0], "%Y-%m-%d %H:%M:%S") - pd.DateOffset(minutes=1) adf.loc[time_first] = [name, "entrance"] df_with_entrance_all.append(adf.sort_values("timestamp")) df = pd.concat(df_with_entrance_all) df.to_csv("customers_table.csv") return df def resample_by_one_minute(self): df_mc = self.get_customer_and_location() return df_mc.groupby("customer_id").resample('1T').ffill().sort_values("timestamp") def shift_by_one(self): df_mc = self.resample_by_one_minute() df_mc["before"] = df_mc["location"] df_mc["after"] =df_mc["location"].shift(-1) return df_mc def get_rid_of_checkout(self): df_mc = self.shift_by_one() return df_mc[df_mc["before"] != "checkout"] def get_transition_probabilities(self): df_mc_sub = self.get_rid_of_checkout() ct =
pd.crosstab(df_mc_sub["after"], df_mc_sub["before"], normalize=1)
pandas.crosstab
"""Classes for report generation and add-ons.""" import os from copy import copy import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from jinja2 import FileSystemLoader, Environment from json2html import json2html from sklearn.metrics import roc_auc_score, precision_recall_fscore_support, roc_curve, precision_recall_curve, \ average_precision_score, explained_variance_score, mean_absolute_error, \ mean_squared_error, median_absolute_error, r2_score, f1_score, precision_score, recall_score, confusion_matrix from ..utils.logging import get_logger logger = get_logger(__name__) base_dir = os.path.dirname(__file__) def extract_params(input_struct): params = dict() iterator = input_struct if isinstance(input_struct, dict) else input_struct.__dict__ for key in iterator: if key.startswith(('_', 'autonlp_params')): continue value = iterator[key] if type(value) in [bool, int, float, str]: params[key] = value elif value is None: params[key] = None elif hasattr(value, '__dict__') or isinstance(value, dict): params[key] = extract_params(value) else: params[key] = str(type(value)) return params def plot_roc_curve_image(data, path): sns.set(style="whitegrid", font_scale=1.5) plt.figure(figsize=(10, 10)); fpr, tpr, _ = roc_curve(data['y_true'], data['y_pred']) auc_score = roc_auc_score(data['y_true'], data['y_pred']) lw = 2 plt.plot(fpr, tpr, color='blue', lw=lw, label='Trained model'); plt.plot([0, 1], [0, 1], color='red', lw=lw, linestyle='--', label='Random model'); plt.xlim([-0.05, 1.05]); plt.ylim([-0.05, 1.05]); plt.xlabel('False Positive Rate'); plt.ylabel('True Positive Rate'); lgd = plt.legend(bbox_to_anchor=(0.5, -0.15), loc='upper center', ncol=2); plt.xticks(np.arange(0, 1.01, 0.05), rotation=45); plt.yticks(np.arange(0, 1.01, 0.05)); plt.grid(color='gray', linestyle='-', linewidth=1); plt.title('ROC curve (GINI = {:.3f})'.format(2 * auc_score - 1)); plt.savefig(path, bbox_extra_artists=(lgd,), bbox_inches='tight'); plt.close() return auc_score def plot_pr_curve_image(data, path): sns.set(style="whitegrid", font_scale=1.5) plt.figure(figsize=(10, 10)); precision, recall, _ = precision_recall_curve(data['y_true'], data['y_pred']) ap_score = average_precision_score(data['y_true'], data['y_pred']) lw = 2 plt.plot(recall, precision, color='blue', lw=lw, label='Trained model'); positive_rate = np.sum(data['y_true'] == 1) / data.shape[0] plt.plot([0, 1], [positive_rate, positive_rate], \ color='red', lw=lw, linestyle='--', label='Random model'); plt.xlim([-0.05, 1.05]); plt.ylim([0.45, 1.05]); plt.xlabel('Recall'); plt.ylabel('Precision'); lgd = plt.legend(bbox_to_anchor=(0.5, -0.15), loc='upper center', ncol=2); plt.xticks(np.arange(0, 1.01, 0.05), rotation=45); plt.yticks(np.arange(0, 1.01, 0.05)); plt.grid(color='gray', linestyle='-', linewidth=1); plt.title('PR curve (AP = {:.3f})'.format(ap_score)); plt.savefig(path, bbox_extra_artists=(lgd,), bbox_inches='tight'); plt.close() def plot_preds_distribution_by_bins(data, path): sns.set(style="whitegrid", font_scale=1.5) fig, axs = plt.subplots(figsize=(16, 10)) box_plot_data = [] labels = [] for name, group in data.groupby('bin'): labels.append(name) box_plot_data.append(group['y_pred'].values) box = axs.boxplot(box_plot_data, patch_artist=True, labels=labels) for patch in box['boxes']: patch.set_facecolor('green') axs.set_yscale('log') axs.set_xlabel('Bin number') axs.set_ylabel('Prediction') axs.set_title('Distribution of object predictions by bin') fig.savefig(path, bbox_inches='tight'); plt.close() def plot_distribution_of_logits(data, path): sns.set(style="whitegrid", font_scale=1.5) fig, axs = plt.subplots(figsize=(16, 10)) data['proba_logit'] = np.log(data['y_pred'].values / (1 - data['y_pred'].values)) sns.kdeplot(data[data['y_true'] == 0]['proba_logit'], shade=True, color="r", label='Class 0 logits', ax=axs) sns.kdeplot(data[data['y_true'] == 1]['proba_logit'], shade=True, color="g", label='Class 1 logits', ax=axs) axs.set_xlabel('Logits') axs.set_ylabel('Density') axs.set_title('Logits distribution of object predictions (by classes)'); fig.savefig(path, bbox_inches='tight'); plt.close() def plot_pie_f1_metric(data, F1_thresh, path): tn, fp, fn, tp = confusion_matrix(data['y_true'], (data['y_pred'] > F1_thresh).astype(int)).ravel() (_, prec), (_, rec), (_, F1), (_, _) = precision_recall_fscore_support(data['y_true'], (data['y_pred'] > F1_thresh).astype(int)) sns.set(style="whitegrid", font_scale=1.5) fig, ax = plt.subplots(figsize=(20, 10), subplot_kw=dict(aspect="equal")) recipe = ["{} True Positives".format(tp), "{} False Positives".format(fp), "{} False Negatives".format(fn), "{} True Negatives".format(tn)] wedges, texts = ax.pie([tp, fp, fn, tn], wedgeprops=dict(width=0.5), startangle=-40) bbox_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=0.72) kw = dict(arrowprops=dict(arrowstyle="-", color='k'), bbox=bbox_props, zorder=0, va="center") for i, p in enumerate(wedges): ang = (p.theta2 - p.theta1) / 2. + p.theta1 y = np.sin(np.deg2rad(ang)) x = np.cos(np.deg2rad(ang)) horizontalalignment = {-1: "right", 1: "left"}[int(np.sign(x))] connectionstyle = "angle,angleA=0,angleB={}".format(ang) kw["arrowprops"].update({"connectionstyle": connectionstyle}) ax.annotate(recipe[i], xy=(x, y), xytext=(1.35 * np.sign(x), 1.4 * y), horizontalalignment=horizontalalignment, **kw) ax.set_title( "Trained model: Precision = {:.2f}%, Recall = {:.2f}%, F1-Score = {:.2f}%".format(prec * 100, rec * 100, F1 * 100)) plt.savefig(path, bbox_inches='tight'); plt.close() return prec, rec, F1 def f1_score_w_co(data, min_co=.01, max_co=.99, step=0.01): data['y_pred'] = np.clip(np.ceil(data['y_pred'].values / step) * step, min_co, max_co) pos = data['y_true'].sum() neg = data['y_true'].shape[0] - pos grp = pd.DataFrame(data).groupby('y_pred')['y_true'].agg(['sum', 'count']) grp.sort_index(inplace=True) grp['fp'] = grp['sum'].cumsum() grp['tp'] = pos - grp['fp'] grp['tn'] = (grp['count'] - grp['sum']).cumsum() grp['fn'] = neg - grp['tn'] grp['pr'] = grp['tp'] / (grp['tp'] + grp['fp']) grp['rec'] = grp['tp'] / (grp['tp'] + grp['fn']) grp['f1_score'] = 2 * (grp['pr'] * grp['rec']) / (grp['pr'] + grp['rec']) best_score = grp['f1_score'].max() best_co = grp.index.values[grp['f1_score'] == best_score].mean() # print((y_pred < best_co).mean()) return best_score, best_co def get_bins_table(data): bins_table = data.groupby('bin').agg({'y_true': [len, np.mean], \ 'y_pred': [np.min, np.mean, np.max]}).reset_index() bins_table.columns = ['Bin number', 'Amount of objects', 'Mean target', \ 'Min probability', 'Average probability', 'Max probability'] return bins_table.to_html(index=False) # Regression plots: def plot_target_distribution_1(data, path): sns.set(style="whitegrid", font_scale=1.5) fig, axs = plt.subplots(2, 1, figsize=(16, 20)) sns.kdeplot(data['y_true'], shade=True, color="g", ax=axs[0]) axs[0].set_xlabel('Target value') axs[0].set_ylabel('Density') axs[0].set_title('Target distribution (y_true)'); sns.kdeplot(data['y_pred'], shade=True, color="r", ax=axs[1]) axs[1].set_xlabel('Target value') axs[1].set_ylabel('Density') axs[1].set_title('Target distribution (y_pred)'); fig.savefig(path, bbox_inches='tight'); plt.close() def plot_target_distribution_2(data, path): sns.set(style="whitegrid", font_scale=1.5) fig, axs = plt.subplots(figsize=(16, 10)) sns.kdeplot(data['y_true'], shade=True, color="g", label="y_true", ax=axs) sns.kdeplot(data['y_pred'], shade=True, color="r", label="y_pred", ax=axs) axs.set_xlabel('Target value') axs.set_ylabel('Density') axs.set_title('Target distribution'); fig.savefig(path, bbox_inches='tight'); plt.close() def plot_target_distribution(data, path): data_pred = pd.DataFrame({'Target value': data['y_pred']}) data_pred['source'] = 'y_pred' data_true = pd.DataFrame({'Target value': data['y_true']}) data_true['source'] = 'y_true' data = pd.concat([data_pred, data_true], ignore_index=True) sns.set(style="whitegrid", font_scale=1.5) g = sns.displot(data, x="Target value", row="source", height=9, aspect=1.5, kde=True, color="m", facet_kws=dict(margin_titles=True)) g.fig.suptitle("Target distribution") g.fig.tight_layout() g.fig.subplots_adjust(top=0.95) g.fig.savefig(path, bbox_inches='tight'); plt.close() def plot_error_hist(data, path): sns.set(style="whitegrid", font_scale=1.5) fig, ax = plt.subplots(figsize=(16, 10)) g = sns.kdeplot(data['y_pred'] - data['y_true'], shade=True, color="m", ax=ax) ax.set_xlabel('Error = y_pred - y_true') ax.set_ylabel('Density') ax.set_title('Error histogram'); fig.savefig(path, bbox_inches='tight'); plt.close() def plot_reg_scatter(data, path): sns.set(style="whitegrid", font_scale=1.5) g = sns.jointplot(x="y_pred", y="y_true", data=data, \ kind="reg", truncate=False, color="m", \ height=14) g.fig.suptitle("Scatter plot") g.fig.tight_layout() g.fig.subplots_adjust(top=0.95) g.fig.savefig(path, bbox_inches='tight'); plt.close() # Multiclass plots: def plot_confusion_matrix(data, path): sns.set(style="whitegrid", font_scale=1.5) fig, ax = plt.subplots(figsize=(16, 12)) cmat = confusion_matrix(data['y_true'], data['y_pred'], normalize='true') g = sns.heatmap(cmat, annot=True, linewidths=.5, cmap='Purples', ax=ax) ax.set_xlabel('y_pred') ax.set_ylabel('y_true') ax.set_title('Confusion matrix'); fig.savefig(path, bbox_inches='tight'); plt.close() class ReportDeco: """ Decorator to wrap :class:`~lightautoml.automl.base.AutoML` class to generate html report on ``fit_predict`` and ``predict``. Example: >>> report_automl = ReportDeco(output_path='output_path', report_file_name='report_file_name')(automl). >>> report_automl.fit_predict(train_data) >>> report_automl.predict(test_data) Report will be generated at output_path/report_file_name automatically. Warning: Do not use it just to inference (if you don't need report), because: - It needs target variable to calc performance metrics. - It takes additional time to generate report. - Dump of decorated automl takes more memory to store. To get unwrapped fitted instance to pickle and inferecne access ``report_automl.model`` attribute. """ @property def model(self): """Get unwrapped model. Returns: model. """ return self._model @property def mapping(self): return self._model.reader.class_mapping def __init__(self, *args, **kwargs): """ Note: Valid kwargs are: - output_path: Folder with report files. - report_file_name: Name of main report file. Args: *args: Arguments. **kwargs: Additional parameters. """ if not kwargs: kwargs = {} # self.task = kwargs.get('task', 'binary') self.n_bins = kwargs.get('n_bins', 20) self.template_path = kwargs.get('template_path', os.path.join(base_dir, 'lama_report_templates/')) self.output_path = kwargs.get('output_path', 'lama_report/') self.report_file_name = kwargs.get('report_file_name', 'lama_interactive_report.html') if not os.path.exists(self.output_path): os.makedirs(self.output_path, exist_ok=True) self._base_template_path = 'lama_base_template.html' self._model_section_path = 'model_section.html' self._train_set_section_path = 'train_set_section.html' self._results_section_path = 'results_section.html' self._inference_section_path = {'binary': 'binary_inference_section.html', \ 'reg': 'reg_inference_section.html', \ 'multiclass': 'multiclass_inference_section.html'} self.title = 'LAMA report' self.sections_order = ['intro', 'model', 'train_set', 'results'] self._sections = {} self._sections['intro'] = '<p>This report was generated automatically.</p>' self._model_results = [] self.generate_report() def __call__(self, model): self._model = model # AutoML only self.task = self._model.task._name # valid_task_names = ['binary', 'reg', 'multiclass'] # add informataion to report self._model_name = model.__class__.__name__ self._model_parameters = json2html.convert(extract_params(model)) self._model_summary = None self._sections = {} self._sections['intro'] = '<p>This report was generated automatically.</p>' self._model_results = [] self._n_test_sample = 0 self._generate_model_section() self.generate_report() return self def _binary_classification_details(self, data): self._inference_content['sample_bins_table'] = get_bins_table(data) prec, rec, F1 = plot_pie_f1_metric(data, self._F1_thresh, \ path=os.path.join(self.output_path, self._inference_content['pie_f1_metric'])) auc_score = plot_roc_curve_image(data, path=os.path.join(self.output_path, self._inference_content['roc_curve'])) plot_pr_curve_image(data, path=os.path.join(self.output_path, self._inference_content['pr_curve'])) plot_preds_distribution_by_bins(data, path=os.path.join(self.output_path, \ self._inference_content['preds_distribution_by_bins'])) plot_distribution_of_logits(data, path=os.path.join(self.output_path, \ self._inference_content['distribution_of_logits'])) return auc_score, prec, rec, F1 def _regression_details(self, data): # graphics plot_target_distribution(data, path=os.path.join(self.output_path, self._inference_content['target_distribution'])) plot_error_hist(data, path=os.path.join(self.output_path, self._inference_content['error_hist'])) plot_reg_scatter(data, path=os.path.join(self.output_path, self._inference_content['scatter_plot'])) # metrics mean_ae = mean_absolute_error(data['y_true'], data['y_pred']) median_ae = median_absolute_error(data['y_true'], data['y_pred']) mse = mean_squared_error(data['y_true'], data['y_pred']) r2 = r2_score(data['y_true'], data['y_pred']) evs = explained_variance_score(data['y_true'], data['y_pred']) return mean_ae, median_ae, mse, r2, evs def _multiclass_details(self, data): y_true = data['y_true'] y_pred = data['y_pred'] # precision p_micro = precision_score(y_true, y_pred, average='micro') p_macro = precision_score(y_true, y_pred, average='macro') p_weighted = precision_score(y_true, y_pred, average='weighted') # recall r_micro = recall_score(y_true, y_pred, average='micro') r_macro = recall_score(y_true, y_pred, average='macro') r_weighted = recall_score(y_true, y_pred, average='weighted') # f1-score f_micro = f1_score(y_true, y_pred, average='micro') f_macro = f1_score(y_true, y_pred, average='macro') f_weighted = f1_score(y_true, y_pred, average='weighted') # classification report for features classes = sorted(self.mapping, key=self.mapping.get) p, r, f, s = precision_recall_fscore_support(y_true, y_pred) cls_report = pd.DataFrame({'Class name': classes, 'Precision': p, 'Recall': r, 'F1-score': f, 'Support': s}) self._inference_content['classification_report'] = cls_report.to_html(index=False, float_format='{:.4f}'.format, justify='left') plot_confusion_matrix(data, path=os.path.join(self.output_path, self._inference_content['confusion_matrix'])) return [p_micro, p_macro, p_weighted, r_micro, r_macro, r_weighted, f_micro, f_macro, f_weighted] def _collect_data(self, preds, sample): data = pd.DataFrame({'y_true': sample[self._target].values}) if self.task in 'multiclass': if self.mapping is not None: data['y_true'] = np.array([self.mapping[y] for y in data['y_true'].values]) data['y_pred'] = preds._data.argmax(axis=1) else: data['y_pred'] = preds._data[:, 0] data.sort_values('y_pred', ascending=False, inplace=True) data['bin'] = (np.arange(data.shape[0]) / data.shape[0] * self.n_bins).astype(int) # remove NaN in predictions: data = data[~data['y_pred'].isnull()] return data def fit_predict(self, *args, **kwargs): """Wrapped ``automl.fit_predict`` method. Valid args, kwargs are the same as wrapped automl. Args: *args: Arguments. **kwargs: Additional parameters. Returns: OOF predictions. """ # TODO: parameters parsing in general case preds = self._model.fit_predict(*args, **kwargs) train_data = kwargs["train_data"] if "train_data" in kwargs else args[0] input_roles = kwargs["roles"] if "roles" in kwargs else args[1] self._target = input_roles['target'] valid_data = kwargs.get("valid_data", None) if valid_data is None: data = self._collect_data(preds, train_data) else: data = self._collect_data(preds, valid_data) self._inference_content = {} if self.task == 'binary': # filling for html self._inference_content = {} self._inference_content['roc_curve'] = 'valid_roc_curve.png' self._inference_content['pr_curve'] = 'valid_pr_curve.png' self._inference_content['pie_f1_metric'] = 'valid_pie_f1_metric.png' self._inference_content['preds_distribution_by_bins'] = 'valid_preds_distribution_by_bins.png' self._inference_content['distribution_of_logits'] = 'valid_distribution_of_logits.png' # graphics and metrics _, self._F1_thresh = f1_score_w_co(data) auc_score, prec, rec, F1 = self._binary_classification_details(data) # update model section evaluation_parameters = ['AUC-score', \ 'Precision', \ 'Recall', \ 'F1-score'] self._model_summary = pd.DataFrame({'Evaluation parameter': evaluation_parameters, \ 'Validation sample': [auc_score, prec, rec, F1]}) elif self.task == 'reg': # filling for html self._inference_content['target_distribution'] = 'valid_target_distribution.png' self._inference_content['error_hist'] = 'valid_error_hist.png' self._inference_content['scatter_plot'] = 'valid_scatter_plot.png' # graphics and metrics mean_ae, median_ae, mse, r2, evs = self._regression_details(data) # model section evaluation_parameters = ['Mean absolute error', \ 'Median absolute error', \ 'Mean squared error', \ 'R^2 (coefficient of determination)', \ 'Explained variance'] self._model_summary = pd.DataFrame({'Evaluation parameter': evaluation_parameters, \ 'Validation sample': [mean_ae, median_ae, mse, r2, evs]}) elif self.task == 'multiclass': self._inference_content['confusion_matrix'] = 'valid_confusion_matrix.png' index_names = np.array([['Precision', 'Recall', 'F1-score'], \ ['micro', 'macro', 'weighted']]) index = pd.MultiIndex.from_product(index_names, names=['Evaluation metric', 'Average']) summary = self._multiclass_details(data) self._model_summary = pd.DataFrame({'Validation sample': summary}, index=index) self._inference_content['title'] = 'Results on validation sample' self._generate_model_section() # generate train data section self._train_data_overview = self._data_genenal_info(train_data) self._describe_roles(train_data) self._describe_dropped_features(train_data) self._generate_train_set_section() # generate fit_predict section self._generate_inference_section(data) self.generate_report() return preds def predict(self, *args, **kwargs): """Wrapped automl.predict method. Valid args, kwargs are the same as wrapped automl. Args: *args: arguments. **kwargs: additional parameters. Returns: predictions. """ self._n_test_sample += 1 # get predictions test_preds = self._model.predict(*args, **kwargs) test_data = kwargs["test"] if "test" in kwargs else args[0] data = self._collect_data(test_preds, test_data) if self.task == 'binary': # filling for html self._inference_content = {} self._inference_content['roc_curve'] = 'test_roc_curve_{}.png'.format(self._n_test_sample) self._inference_content['pr_curve'] = 'test_pr_curve_{}.png'.format(self._n_test_sample) self._inference_content['pie_f1_metric'] = 'test_pie_f1_metric_{}.png'.format(self._n_test_sample) self._inference_content['bins_preds'] = 'test_bins_preds_{}.png'.format(self._n_test_sample) self._inference_content['preds_distribution_by_bins'] = 'test_preds_distribution_by_bins_{}.png'.format( self._n_test_sample) self._inference_content['distribution_of_logits'] = 'test_distribution_of_logits_{}.png'.format(self._n_test_sample) # graphics and metrics auc_score, prec, rec, F1 = self._binary_classification_details(data) if self._n_test_sample >= 2: self._model_summary['Test sample {}'.format(self._n_test_sample)] = [auc_score, prec, rec, F1] else: self._model_summary['Test sample'] = [auc_score, prec, rec, F1] elif self.task == 'reg': # filling for html self._inference_content = {} self._inference_content['target_distribution'] = 'test_target_distribution_{}.png'.format(self._n_test_sample) self._inference_content['error_hist'] = 'test_error_hist_{}.png'.format(self._n_test_sample) self._inference_content['scatter_plot'] = 'test_scatter_plot_{}.png'.format(self._n_test_sample) # graphics mean_ae, median_ae, mse, r2, evs = self._regression_details(data) # update model section if self._n_test_sample >= 2: self._model_summary['Test sample {}'.format(self._n_test_sample)] = [mean_ae, median_ae, mse, r2, evs] else: self._model_summary['Test sample'] = [mean_ae, median_ae, mse, r2, evs] elif self.task == 'multiclass': self._inference_content['confusion_matrix'] = 'test_confusion_matrix_{}.png'.format(self._n_test_sample) test_summary = self._multiclass_details(data) if self._n_test_sample >= 2: self._model_summary['Test sample {}'.format(self._n_test_sample)] = test_summary else: self._model_summary['Test sample'] = test_summary # layout depends on number of test samples if self._n_test_sample >= 2: self._inference_content['title'] = 'Results on test sample {}'.format(self._n_test_sample) else: self._inference_content['title'] = 'Results on test sample' # update model section self._generate_model_section() # generate predict section self._generate_inference_section(data) self.generate_report() return test_preds def _data_genenal_info(self, data): general_info = pd.DataFrame(columns=['Parameter', 'Value']) general_info.loc[0] = ('Number of records', data.shape[0]) general_info.loc[1] = ('Total number of features', data.shape[1]) general_info.loc[2] = ('Used features', len(self._model.reader._used_features)) general_info.loc[3] = ('Dropped features', len(self._model.reader._dropped_features)) # general_info.loc[4] = ('Number of positive cases', np.sum(data[self._target] == 1)) # general_info.loc[5] = ('Number of negative cases', np.sum(data[self._target] == 0)) return general_info.to_html(index=False, justify='left') def _describe_roles(self, train_data): # detect feature roles roles = self._model.reader._roles numerical_features = [feat_name for feat_name in roles if roles[feat_name].name == 'Numeric'] categorical_features = [feat_name for feat_name in roles if roles[feat_name].name == 'Category'] datetime_features = [feat_name for feat_name in roles if roles[feat_name].name == 'Datetime'] # numerical roles numerical_features_df = [] for feature_name in numerical_features: item = {'Feature name': feature_name} item['NaN ratio'] = "{:.4f}".format(train_data[feature_name].isna().sum() / train_data.shape[0]) values = train_data[feature_name].dropna().values item['min'] = np.min(values) item['quantile_25'] = np.quantile(values, 0.25) item['average'] = np.mean(values) item['median'] = np.median(values) item['quantile_75'] = np.quantile(values, 0.75) item['max'] = np.max(values) numerical_features_df.append(item) if numerical_features_df == []: self._numerical_features_table = None else: self._numerical_features_table = pd.DataFrame(numerical_features_df).to_html(index=False, float_format='{:.2f}'.format, justify='left') # categorical roles categorical_features_df = [] for feature_name in categorical_features: item = {'Feature name': feature_name} item['NaN ratio'] = "{:.4f}".format(train_data[feature_name].isna().sum() / train_data.shape[0]) value_counts = train_data[feature_name].value_counts(normalize=True) values = value_counts.index.values counts = value_counts.values item['Number of unique values'] = len(counts) item['Most frequent value'] = values[0] item['Occurance of most frequent'] = "{:.1f}%".format(100 * counts[0]) item['Least frequent value'] = values[-1] item['Occurance of least frequent'] = "{:.1f}%".format(100 * counts[-1]) categorical_features_df.append(item) if categorical_features_df == []: self._categorical_features_table = None else: self._categorical_features_table = pd.DataFrame(categorical_features_df).to_html(index=False, justify='left') # datetime roles datetime_features_df = [] for feature_name in datetime_features: item = {'Feature name': feature_name} item['NaN ratio'] = "{:.4f}".format(train_data[feature_name].isna().sum() / train_data.shape[0]) values = train_data[feature_name].dropna().values item['min'] = np.min(values) item['max'] = np.max(values) item['base_date'] = self._model.reader._roles[feature_name].base_date datetime_features_df.append(item) if datetime_features_df == []: self._datetime_features_table = None else: self._datetime_features_table =
pd.DataFrame(datetime_features_df)
pandas.DataFrame
import torch import torch.nn as nn import torch.nn.functional as F import pandas as pd import numpy as np import tqdm from rec.model.pinsage import PinSage from rec.datasets.movielens import MovieLens from rec.utils import cuda from dgl import DGLGraph import argparse import pickle import os parser = argparse.ArgumentParser() parser.add_argument('--opt', type=str, default='SGD') parser.add_argument('--lr', type=float, default=1) parser.add_argument('--sched', type=str, default='none') parser.add_argument('--layers', type=int, default=2) parser.add_argument('--use-feature', action='store_true') parser.add_argument('--sgd-switch', type=int, default=-1) parser.add_argument('--n-negs', type=int, default=1) parser.add_argument('--loss', type=str, default='hinge') parser.add_argument('--hard-neg-prob', type=float, default=0) args = parser.parse_args() print(args) cache_file = 'ml.pkl' if os.path.exists(cache_file): with open(cache_file, 'rb') as f: ml = pickle.load(f) else: ml = MovieLens('./ml-1m') with open(cache_file, 'wb') as f: pickle.dump(ml, f) g = ml.g neighbors = ml.user_neighbors + ml.movie_neighbors n_hidden = 100 n_layers = args.layers batch_size = 256 margin = 0.9 n_negs = args.n_negs hard_neg_prob = args.hard_neg_prob sched_lambda = { 'none': lambda epoch: 1, 'decay': lambda epoch: max(0.98 ** epoch, 1e-4), } loss_func = { 'hinge': lambda diff: (diff + margin).clamp(min=0).mean(), 'bpr': lambda diff: (1 - torch.sigmoid(-diff)).mean(), } model = cuda(PinSage( g.number_of_nodes(), [n_hidden] * (n_layers + 1), 20, 0.5, 10, use_feature=args.use_feature, G=g, )) opt = getattr(torch.optim, args.opt)(model.parameters(), lr=args.lr) sched = torch.optim.lr_scheduler.LambdaLR(opt, sched_lambda[args.sched]) def forward(model, g_prior, nodeset, train=True): if train: return model(g_prior, nodeset) else: with torch.no_grad(): return model(g_prior, nodeset) def filter_nid(nids, nid_from): nids = [nid.numpy() for nid in nids] nid_from = nid_from.numpy() np_mask = np.logical_and(*[np.isin(nid, nid_from) for nid in nids]) return [torch.from_numpy(nid[np_mask]) for nid in nids] def runtrain(g_prior_edges, g_train_edges, train): global opt if train: model.train() else: model.eval() g_prior_src, g_prior_dst = g.find_edges(g_prior_edges) g_prior = DGLGraph() g_prior.add_nodes(g.number_of_nodes()) g_prior.add_edges(g_prior_src, g_prior_dst) g_prior.ndata.update({k: cuda(v) for k, v in g.ndata.items()}) edge_batches = g_train_edges[torch.randperm(g_train_edges.shape[0])].split(batch_size) with tqdm.tqdm(edge_batches) as tq: sum_loss = 0 sum_acc = 0 count = 0 for batch_id, batch in enumerate(tq): count += batch.shape[0] src, dst = g.find_edges(batch) dst_neg = [] for i in range(len(dst)): if np.random.rand() < hard_neg_prob: nb = torch.LongTensor(neighbors[dst[i].item()]) mask = ~(g.has_edges_between(nb, src[i].item()).byte()) dst_neg.append(np.random.choice(nb[mask].numpy(), n_negs)) else: dst_neg.append(np.random.randint( len(ml.user_ids), len(ml.user_ids) + len(ml.movie_ids), n_negs)) dst_neg = torch.LongTensor(dst_neg) dst = dst.view(-1, 1).expand_as(dst_neg).flatten() src = src.view(-1, 1).expand_as(dst_neg).flatten() dst_neg = dst_neg.flatten() mask = (g_prior.in_degrees(dst_neg) > 0) & \ (g_prior.in_degrees(dst) > 0) & \ (g_prior.in_degrees(src) > 0) src = src[mask] dst = dst[mask] dst_neg = dst_neg[mask] if len(src) == 0: continue nodeset = cuda(torch.cat([src, dst, dst_neg])) src_size, dst_size, dst_neg_size = \ src.shape[0], dst.shape[0], dst_neg.shape[0] h_src, h_dst, h_dst_neg = ( forward(model, g_prior, nodeset, train) .split([src_size, dst_size, dst_neg_size])) diff = (h_src * (h_dst_neg - h_dst)).sum(1) loss = loss_func[args.loss](diff) acc = (diff < 0).sum() assert loss.item() == loss.item() grad_sqr_norm = 0 if train: opt.zero_grad() loss.backward() for name, p in model.named_parameters(): assert (p.grad != p.grad).sum() == 0 grad_sqr_norm += p.grad.norm().item() ** 2 opt.step() sum_loss += loss.item() sum_acc += acc.item() / n_negs avg_loss = sum_loss / (batch_id + 1) avg_acc = sum_acc / count tq.set_postfix({'loss': '%.6f' % loss.item(), 'avg_loss': '%.3f' % avg_loss, 'avg_acc': '%.3f' % avg_acc, 'grad_norm': '%.6f' % np.sqrt(grad_sqr_norm)}) return avg_loss, avg_acc def runtest(g_prior_edges, validation=True): model.eval() n_users = len(ml.users.index) n_items = len(ml.movies.index) g_prior_src, g_prior_dst = g.find_edges(g_prior_edges) g_prior = DGLGraph() g_prior.add_nodes(g.number_of_nodes()) g_prior.add_edges(g_prior_src, g_prior_dst) g_prior.ndata.update({k: cuda(v) for k, v in g.ndata.items()}) hs = [] with torch.no_grad(): with tqdm.trange(n_users + n_items) as tq: for node_id in tq: nodeset = cuda(torch.LongTensor([node_id])) h = forward(model, g_prior, nodeset, False) hs.append(h) h = torch.cat(hs, 0) rr = [] with torch.no_grad(): with tqdm.trange(n_users) as tq: for u_nid in tq: uid = ml.user_ids[u_nid] pids_exclude = ml.ratings[ (ml.ratings['user_id'] == uid) & (ml.ratings['train'] | ml.ratings['test' if validation else 'valid']) ]['movie_id'].values pids_candidate = ml.ratings[ (ml.ratings['user_id'] == uid) & ml.ratings['valid' if validation else 'test'] ]['movie_id'].values pids = np.setdiff1d(ml.movie_ids, pids_exclude) p_nids = np.array([ml.movie_ids_invmap[pid] for pid in pids]) p_nids_candidate = np.array([ml.movie_ids_invmap[pid] for pid in pids_candidate]) dst = torch.from_numpy(p_nids) + n_users src = torch.zeros_like(dst).fill_(u_nid) h_dst = h[dst] h_src = h[src] score = (h_src * h_dst).sum(1) score_sort_idx = score.sort(descending=True)[1].cpu().numpy() rank_map = {v: i for i, v in enumerate(p_nids[score_sort_idx])} rank_candidates = np.array([rank_map[p_nid] for p_nid in p_nids_candidate]) rank = 1 / (rank_candidates + 1) rr.append(rank.mean()) tq.set_postfix({'rank': rank.mean()}) return np.array(rr) def train(): global opt, sched best_mrr = 0 for epoch in range(500): ml.refresh_mask() g_prior_edges = g.filter_edges(lambda edges: edges.data['prior']) g_train_edges = g.filter_edges(lambda edges: edges.data['train'] & ~edges.data['inv']) g_prior_train_edges = g.filter_edges( lambda edges: edges.data['prior'] | edges.data['train']) print('Epoch %d validation' % epoch) with torch.no_grad(): valid_mrr = runtest(g_prior_train_edges, True) if best_mrr < valid_mrr.mean(): best_mrr = valid_mrr.mean() torch.save(model.state_dict(), 'model.pt') print(pd.Series(valid_mrr).describe()) print('Epoch %d test' % epoch) with torch.no_grad(): test_mrr = runtest(g_prior_train_edges, False) print(
pd.Series(test_mrr)
pandas.Series
import pandas as pd import numpy as np import math import warnings import scipy.stats as st from pandas.core.common import SettingWithCopyWarning warnings.simplefilter(action="ignore", category=SettingWithCopyWarning) from .utils import * LULC_COLORS_DEFAULT = pd.DataFrame( columns=['lulc', 'color'], data=[ ['Pasture','#ffc100'], ['Annual crop','#D5A6BD'], ['Tree plantation','#935132'], ['Semi-perennial crop','#C27BA0'], ['Urban infrastructure','#af2a2a'], ['Wetland','#18b08d'], ['Grassland formation','#B8AF4F'], ['Forest formation','#006400'], ['Savanna formation','#32CD32'], ['Water','#0000FF'], ['Other','#5f5f5f'], ['Perennial crop','#D5A6BD'], ['Other non-forest natural formation','#BDB76B'] ] ) class Area_Estimator: def __init__(self, samples, weight_col, strata_col, lulc_col, id_col, year_col, pixel_size, confidence_interval, lulc_colors=None, verbose = True): self.samples = samples self.weight_col = weight_col self.lulc_col = lulc_col self.id_col = id_col self.year_col = year_col self.pixel_size = pixel_size self.strata_col = strata_col self.verbose = verbose self.confidence_interval = confidence_interval # Density points according the confidence interval self.std_norm = round(st.norm.ppf(1 - ( 1 - confidence_interval ) / 2), 2) # Area in hectares self.pixel_area = (self.pixel_size * self.pixel_size) / 10000 self.lulc_list = self._unique_vals(self.lulc_col) self.year_list = self._unique_vals(self.year_col) # Min and max years for the lulc change analysis self.min_year = self.samples[self.year_col].min() self.max_year = self.samples[self.year_col].max() if lulc_colors is None: self.lulc_colors = LULC_COLORS_DEFAULT else: self.lulc_colors = lulc_colors def _unique_vals(self, column): return list(self.samples[column].unique()) def _verbose(self, *args, **kwargs): if self.verbose: ttprint(*args, **kwargs) def _population(self, samples): population = (1 * samples[self.weight_col]).sum() return population, (population * self.pixel_area) def _calc_se(self, samples, mask, population): def _strata_variance(samples_strata, var_map_correct_s): nsamples_s, _ = samples_strata.shape population_s = (1 * samples_strata[self.weight_col]).sum() strata_var = 0 if population_s > 0: strata_var = math.pow(population_s,2) \ * (1 - nsamples_s / population_s) \ * var_map_correct_s / nsamples_s return strata_var args = [] var_map_correct_s = np.var(mask.astype('int')) for name, samples_strata in samples.groupby(self.strata_col): args.append((samples_strata, var_map_correct_s)) glob_var = 0 for strata_var in do_parallel(_strata_variance, args, backend='threading'): glob_var += strata_var glob_var = 1 / math.pow(population, 2) * glob_var glob_se = self.std_norm * math.sqrt(glob_var) return glob_se def _calc_area(self, samples, year, value_col, value_list, region_label): result = [] for value in value_list: try: lulc_mask = (samples[value_col] == value) samples.loc[:, 'ESTIMATOR'] = 0 samples.loc[lulc_mask, 'ESTIMATOR'] = 1 population, area_population = self._population(samples) lulc_proportion = ((samples['ESTIMATOR'] * samples[self.weight_col]).sum()) / population lulc_se = self._calc_se(samples, lulc_mask, population) lulc_area = lulc_proportion * area_population result.append([value, lulc_area, lulc_proportion, lulc_se, year, region_label]) except: self._verbose(f'_calc_area ERROR for value_col={value_col} value={value}, ' + \ 'year={year}, region_label={region_label} ') continue return result def _filter_samples(self, region_filter = None): return self.samples if (region_filter is None) else self.samples[region_filter] def _valid_year_range(self, year, n_years, backward = False): step = -1 if backward else 1 start_year = year + step end_year = year + (n_years * step) + 1 end_year = self.min_year - 1 if end_year < self.min_year else end_year end_year = self.max_year + 1 if end_year > self.max_year else end_year #if start_year == end_year: # return [ year ] #else: result =[ y for y in range(start_year, end_year, step) ] return result def _change_mask(self, samples, lulc_arr, year, past_arr, past_nyears, future_arr, future_nyears): past_years = self._valid_year_range(year, past_nyears, backward = True) future_years = self._valid_year_range(year, future_nyears, backward = False) # Considering all the samples past_mask = np.logical_and( self.samples[self.lulc_col].isin(past_arr), self.samples[self.year_col].isin(past_years) ) #print(past_arr, past_years, np.unique(past_mask, return_counts=True)) # Considering all the samples future_mask = np.logical_and( self.samples[self.lulc_col].isin(future_arr), self.samples[self.year_col].isin(future_years) ) past_fur_mask = np.logical_or(past_mask, future_mask) n_years = len(past_years) + len(future_years) # Considering all the samples samples_ids = self.samples[[self.id_col]].copy() samples_ids['past_fur_mask'] = 0 samples_ids['past_fur_mask'].loc[past_fur_mask] = 1 past_fur_agg = samples_ids[past_fur_mask][['id', 'past_fur_mask']].groupby('id').sum() past_fur_ids = past_fur_agg[past_fur_agg['past_fur_mask'] == n_years].index # Considering samples passed as params change_mask = np.logical_and( samples[self.lulc_col].isin(lulc_arr), samples[self.id_col].isin(past_fur_ids) ) #print('change_mask', samples.shape) change_mask = np.logical_and(change_mask, samples[self.year_col] == year) #print(np.unique(change_mask, return_counts=True)) return change_mask def lulc(self, lulc = None, year = None, region_label = 'Brazil', region_filter = None): args = [] _samples = self._filter_samples(region_filter) _lulc_list = self.lulc_list if (lulc is None) else [lulc] _year_list = self.year_list if (year is None) else [year] result = [] self._verbose(f'Estimating area of {len(_lulc_list)} LULC classes for {region_label} ({len(_year_list)} years)') for _year in _year_list: year_samples = _samples[_samples[self.year_col] == _year] args.append((year_samples, _year, self.lulc_col, _lulc_list, region_label)) result = [] for year_result in do_parallel(self._calc_area, args): result += year_result self._verbose(f'Finished') result =
pd.DataFrame(result, columns=['lulc', 'area_ha', 'proportion', 'se', 'year', 'region'])
pandas.DataFrame
"""the simple baseline for autograph""" import random import os import joblib import numpy as np import pandas as pd import torch import torch.nn.functional as F import torch_geometric.utils as gtils from collections import defaultdict from torch_geometric.data import Data from sklearn.model_selection import train_test_split from scipy.stats import gmean from models import * from models import MODEL_PARAMETER_LIB from utils import * from preprocessing import * from config import Config from utils.ensemble import get_top_models_by_std, get_top_models_by_r from utils.drop_edge import DropEdgeEachStep import copy import gc def fix_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True logger = get_logger("INFO", use_error_log=True) class Model: def __init__(self): self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') self.config = None self.metadata = {} self._num_nodes = None self._origin_graph_data_indices = None self._valid_indices = None self._valid_mask = None self._train_indices = None self._train_mask = None self._test_mask = None self._sampler = None self._n_class = None self.y_train = None self.models_topK = defaultdict(list) self.used_model_num = 0 self.citation_configs = ['a', 'b', 'demo', 'coauthor-cs', 'coauthor-phy', 'phy10000'] self.use_adaptive_topK = True def load_config(self, data, n_class): dir_path = os.path.dirname(__file__) try: tree = joblib.load(f"{dir_path}/meta.model") encoder = joblib.load(f"{dir_path}/meta.encoder") # pd.set_option('display.max_columns', None) meta_info = pd.Series( extract_graph_feature(data, n_class) ) logger.info("meta_info:\n {}".format(meta_info)) meta_info =
pd.DataFrame([meta_info])
pandas.DataFrame
"""Tests for the sdv.constraints.tabular module.""" import uuid from datetime import datetime from unittest.mock import Mock import numpy as np import pandas as pd import pytest from sdv.constraints.errors import MissingConstraintColumnError from sdv.constraints.tabular import ( Between, ColumnFormula, CustomConstraint, GreaterThan, Negative, OneHotEncoding, Positive, Rounding, Unique, UniqueCombinations) def dummy_transform_table(table_data): return table_data def dummy_reverse_transform_table(table_data): return table_data def dummy_is_valid_table(table_data): return [True] * len(table_data) def dummy_transform_table_column(table_data, column): return table_data def dummy_reverse_transform_table_column(table_data, column): return table_data def dummy_is_valid_table_column(table_data, column): return [True] * len(table_data[column]) def dummy_transform_column(column_data): return column_data def dummy_reverse_transform_column(column_data): return column_data def dummy_is_valid_column(column_data): return [True] * len(column_data) class TestCustomConstraint(): def test___init__(self): """Test the ``CustomConstraint.__init__`` method. The ``transform``, ``reverse_transform`` and ``is_valid`` methods should be replaced by the given ones, importing them if necessary. Setup: - Create dummy functions (created above this class). Input: - dummy transform and revert_transform + is_valid FQN Output: - Instance with all the methods replaced by the dummy versions. """ is_valid_fqn = __name__ + '.dummy_is_valid_table' # Run instance = CustomConstraint( transform=dummy_transform_table, reverse_transform=dummy_reverse_transform_table, is_valid=is_valid_fqn ) # Assert assert instance._transform == dummy_transform_table assert instance._reverse_transform == dummy_reverse_transform_table assert instance._is_valid == dummy_is_valid_table def test__run_transform_table(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy transform function with ``table_data`` argument. Side Effects: - Run transform function once with ``table_data`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_table, return_value=table_data) # Run instance = CustomConstraint(transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args dummy_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_reverse_transform_table(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy reverse transform function with ``table_data`` argument. Side Effects: - Run reverse transform function once with ``table_data`` as input. Output: - applied identity transformation "table_data = reverse_transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_table, return_value=table_data) # Run instance = CustomConstraint(reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args dummy_reverse_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_table(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy is valid function with ``table_data`` argument. Side Effects: - Run is valid function once with ``table_data`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_table) # Run instance = CustomConstraint(is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args dummy_is_valid_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) np.testing.assert_array_equal(is_valid, expected_out) def test__run_transform_table_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy transform function with ``table_data`` and ``column`` arguments. Side Effects: - Run transform function once with ``table_data`` and ``column`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_table_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args assert called[0][1] == 'a' dummy_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_reverse_transform_table_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy reverse transform function with ``table_data`` and ``column`` arguments. Side Effects: - Run reverse transform function once with ``table_data`` and ``column`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_table_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args assert called[0][1] == 'a' dummy_reverse_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_table_column(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy is valid function with ``table_data`` and ``column`` argument. Side Effects: - Run is valid function once with ``table_data`` and ``column`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_table_column) # Run instance = CustomConstraint(columns='a', is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args assert called[0][1] == 'a' dummy_is_valid_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) np.testing.assert_array_equal(is_valid, expected_out) def test__run_transform_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy transform function with ``column_data`` argument. Side Effects: - Run transform function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_reverse_transform_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy reverse transform function with ``column_data`` argument. Side Effects: - Run reverse transform function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - Applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_column(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy is valid function with ``column_data`` argument. Side Effects: - Run is valid function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_column) # Run instance = CustomConstraint(columns='a', is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) np.testing.assert_array_equal(is_valid, expected_out) class TestUniqueCombinations(): def test___init__(self): """Test the ``UniqueCombinations.__init__`` method. It is expected to create a new Constraint instance and receiving the names of the columns that need to produce unique combinations. Side effects: - instance._colums == columns """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns) # Assert assert instance._columns == columns def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``UniqueCombinations.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns, handling_strategy='transform') # Assert assert instance.rebuild_columns == tuple(columns) def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``UniqueCombinations.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns, handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test___init__with_one_column(self): """Test the ``UniqueCombinations.__init__`` method with only one constraint column. Expect a ``ValueError`` because UniqueCombinations requires at least two constraint columns. Side effects: - A ValueError is raised """ # Setup columns = ['c'] # Run and assert with pytest.raises(ValueError): UniqueCombinations(columns=columns) def test_fit(self): """Test the ``UniqueCombinations.fit`` method. The ``UniqueCombinations.fit`` method is expected to: - Call ``UniqueCombinations._valid_separator``. - Find a valid separator for the data and generate the joint column name. Input: - Table data (pandas.DataFrame) """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) instance.fit(table_data) # Asserts expected_combinations = pd.DataFrame({ 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) assert instance._separator == '#' assert instance._joint_column == 'b#c' pd.testing.assert_frame_equal(instance._combinations, expected_combinations) def test_is_valid_true(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['D', 'E', 'F'], 'c': ['g', 'h', 'i'] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_true(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_false(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [6, 7, 8], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``UniqueCombinations.transform`` method. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns concatenated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a') pd.testing.assert_series_equal(expected_out_a, out['a']) try: [uuid.UUID(u) for c, u in out['b#c'].items()] except ValueError: assert False def test_transform_non_string(self): """Test the ``UniqueCombinations.transform`` method with non strings. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns as UUIDs. Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a') pd.testing.assert_series_equal(expected_out_a, out['a']) try: [uuid.UUID(u) for c, u in out['b#c#d'].items()] except ValueError: assert False def test_transform_not_all_columns_provided(self): """Test the ``UniqueCombinations.transform`` method. If some of the columns needed for the transform are missing, and ``fit_columns_model`` is False, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns, fit_columns_model=False) instance.fit(table_data) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def test_reverse_transform(self): """Test the ``UniqueCombinations.reverse_transform`` method. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run transformed_data = instance.transform(table_data) out = instance.reverse_transform(transformed_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_non_string(self): """Test the ``UniqueCombinations.reverse_transform`` method with a non string column. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run transformed_data = instance.transform(table_data) out = instance.reverse_transform(transformed_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) pd.testing.assert_frame_equal(expected_out, out) class TestGreaterThan(): def test__validate_scalar(self): """Test the ``_validate_scalar`` method. This method validates the inputs if and transforms them into the correct format. Input: - scalar_column = 0 - column_names = 'b' Output: - column_names == ['b'] """ # Setup scalar_column = 0 column_names = 'b' scalar = 'high' # Run out = GreaterThan._validate_scalar(scalar_column, column_names, scalar) # Assert out == ['b'] def test__validate_scalar_list(self): """Test the ``_validate_scalar`` method. This method validates the inputs if and transforms them into the correct format. Input: - scalar_column = 0 - column_names = ['b'] Output: - column_names == ['b'] """ # Setup scalar_column = 0 column_names = ['b'] scalar = 'low' # Run out = GreaterThan._validate_scalar(scalar_column, column_names, scalar) # Assert out == ['b'] def test__validate_scalar_error(self): """Test the ``_validate_scalar`` method. This method raises an error when the the scalar column is a list. Input: - scalar_column = 0 - column_names = 'b' Side effect: - Raise error since the scalar is a list """ # Setup scalar_column = [0] column_names = 'b' scalar = 'high' # Run / Assert with pytest.raises(TypeError): GreaterThan._validate_scalar(scalar_column, column_names, scalar) def test__validate_inputs_high_is_scalar(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 3 - scalar = 'high' Output: - low == ['a'] - high == 3 - constraint_columns = ('a') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=3, scalar='high', drop=None) # Assert low == ['a'] high == 3 constraint_columns == ('a',) def test__validate_inputs_low_is_scalar(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 3 - high = 'b' - scalar = 'low' - drop = None Output: - low == 3 - high == ['b'] - constraint_columns = ('b') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low=3, high='b', scalar='low', drop=None) # Assert low == 3 high == ['b'] constraint_columns == ('b',) def test__validate_inputs_scalar_none(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 3 # where 3 is a column name - scalar = None - drop = None Output: - low == ['a'] - high == [3] - constraint_columns = ('a', 3) """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=3, scalar=None, drop=None) # Assert low == ['a'] high == [3] constraint_columns == ('a', 3) def test__validate_inputs_scalar_none_lists(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = ['a'] - high = ['b', 'c'] - scalar = None - drop = None Output: - low == ['a'] - high == ['b', 'c'] - constraint_columns = ('a', 'b', 'c') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low=['a'], high=['b', 'c'], scalar=None, drop=None) # Assert low == ['a'] high == ['b', 'c'] constraint_columns == ('a', 'b', 'c') def test__validate_inputs_scalar_none_two_lists(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = ['a', 0] - high = ['b', 'c'] - scalar = None - drop = None Side effect: - Raise error because both high and low are more than one column """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low=['a', 0], high=['b', 'c'], scalar=None, drop=None) def test__validate_inputs_scalar_unknown(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 'b' - scalar = 'unknown' - drop = None Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low='a', high='b', scalar='unknown', drop=None) def test__validate_inputs_drop_error_low(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 2 - high = 'b' - scalar = 'low' - drop = 'low' Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low=2, high='b', scalar='low', drop='low') def test__validate_inputs_drop_error_high(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 'a' - high = 3 - scalar = 'high' - drop = 'high' Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low='a', high=3, scalar='high', drop='high') def test__validate_inputs_drop_success(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 'a' - high = 'b' - scalar = 'high' - drop = 'low' Output: - low = ['a'] - high = 0 - constraint_columns == ('a') """ # Run / Assert low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=0, scalar='high', drop='low') assert low == ['a'] assert high == 0 assert constraint_columns == ('a',) def test___init___(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Input: - low = 'a' - high = 'b' Side effects: - instance._low == 'a' - instance._high == 'b' - instance._strict == False """ # Run instance = GreaterThan(low='a', high='b') # Asserts assert instance._low == ['a'] assert instance._high == ['b'] assert instance._strict is False assert instance._scalar is None assert instance._drop is None assert instance.constraint_columns == ('a', 'b') def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``GreaterThan.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Run instance = GreaterThan(low='a', high='b', handling_strategy='transform') # Assert assert instance.rebuild_columns == ['b'] def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``GreaterThan.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Run instance = GreaterThan(low='a', high='b', handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test___init___high_is_scalar(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Make sure ``scalar`` is set to ``'high'``. Input: - low = 'a' - high = 0 - strict = True - drop = 'low' - scalar = 'high' Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._drop = 'low' - instance._scalar == 'high' """ # Run instance = GreaterThan(low='a', high=0, strict=True, drop='low', scalar='high') # Asserts assert instance._low == ['a'] assert instance._high == 0 assert instance._strict is True assert instance._scalar == 'high' assert instance._drop == 'low' assert instance.constraint_columns == ('a',) def test___init___low_is_scalar(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Make sure ``scalar`` is set to ``'high'``. Input: - low = 0 - high = 'a' - strict = True - drop = 'high' - scalar = 'low' Side effects: - instance._low == 0 - instance._high == 'a' - instance._stric == True - instance._drop = 'high' - instance._scalar == 'low' """ # Run instance = GreaterThan(low=0, high='a', strict=True, drop='high', scalar='low') # Asserts assert instance._low == 0 assert instance._high == ['a'] assert instance._strict is True assert instance._scalar == 'low' assert instance._drop == 'high' assert instance.constraint_columns == ('a',) def test___init___strict_is_false(self): """Test the ``GreaterThan.__init__`` method. Ensure that ``operator`` is set to ``np.greater_equal`` when ``strict`` is set to ``False``. Input: - low = 'a' - high = 'b' - strict = False """ # Run instance = GreaterThan(low='a', high='b', strict=False) # Assert assert instance.operator == np.greater_equal def test___init___strict_is_true(self): """Test the ``GreaterThan.__init__`` method. Ensure that ``operator`` is set to ``np.greater`` when ``strict`` is set to ``True``. Input: - low = 'a' - high = 'b' - strict = True """ # Run instance = GreaterThan(low='a', high='b', strict=True) # Assert assert instance.operator == np.greater def test__init__get_columns_to_reconstruct_default(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' Side effects: - self._columns_to_reconstruct == ['b'] """ # Setup instance = GreaterThan(low='a', high='b') instance._columns_to_reconstruct == ['b'] def test__init__get_columns_to_reconstruct_drop_high(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' - drop = 'high' Side effects: - self._columns_to_reconstruct == ['b'] """ # Setup instance = GreaterThan(low='a', high='b', drop='high') instance._columns_to_reconstruct == ['b'] def test__init__get_columns_to_reconstruct_drop_low(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' - drop = 'low' Side effects: - self._columns_to_reconstruct == ['a'] """ # Setup instance = GreaterThan(low='a', high='b', drop='low') instance._columns_to_reconstruct == ['a'] def test__init__get_columns_to_reconstruct_scalar_high(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 0 - scalar = 'high' Side effects: - self._columns_to_reconstruct == ['a'] """ # Setup instance = GreaterThan(low='a', high=0, scalar='high') instance._columns_to_reconstruct == ['a'] def test__get_value_column_list(self): """Test the ``GreaterThan._get_value`` method. This method returns a scalar or a ndarray of values depending on the type of the ``field``. Input: - Table with given data. - field = 'low' """ # Setup instance = GreaterThan(low='a', high='b') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9] }) out = instance._get_value(table_data, 'low') # Assert expected = table_data[['a']].values np.testing.assert_array_equal(out, expected) def test__get_value_scalar(self): """Test the ``GreaterThan._get_value`` method. This method returns a scalar or a ndarray of values depending on the type of the ``field``. Input: - Table with given data. - field = 'low' - scalar = 'low' """ # Setup instance = GreaterThan(low=3, high='b', scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9] }) out = instance._get_value(table_data, 'low') # Assert expected = 3 assert out == expected def test__get_diff_columns_name_low_is_scalar(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal to the given columns plus tokenized with '#'. Input: - Table with given data. """ # Setup instance = GreaterThan(low=0, high=['a', 'b#'], scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b#': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a#', 'b##'] assert out == expected def test__get_diff_columns_name_high_is_scalar(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal to the given columns plus tokenized with '#'. Input: - Table with given data. """ # Setup instance = GreaterThan(low=['a', 'b'], high=0, scalar='high') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a#', 'b#'] assert out == expected def test__get_diff_columns_name_scalar_is_none(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='b#', scalar=None) table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b#': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['b##a'] assert out == expected def test__get_diff_columns_name_scalar_is_none_multi_column_low(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low=['a#', 'c'], high='b', scalar=None) table_data = pd.DataFrame({ 'a#': [1, 2, 4], 'b': [4, 5, 6], 'c#': [7, 8, 9] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a##b', 'c#b'] assert out == expected def test__get_diff_columns_name_scalar_is_none_multi_column_high(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low=0, high=['b', 'c'], scalar=None) table_data = pd.DataFrame({ 0: [1, 2, 4], 'b': [4, 5, 6], 'c#': [7, 8, 9] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['b#0', 'c#0'] assert out == expected def test__check_columns_exist_success(self): """Test the ``GreaterThan._check_columns_exist`` method. This method raises an error if the specified columns in ``low`` or ``high`` do not exist. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='b') # Run / Assert table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) instance._check_columns_exist(table_data, 'low') instance._check_columns_exist(table_data, 'high') def test__check_columns_exist_error(self): """Test the ``GreaterThan._check_columns_exist`` method. This method raises an error if the specified columns in ``low`` or ``high`` do not exist. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='c') # Run / Assert table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) instance._check_columns_exist(table_data, 'low') with pytest.raises(KeyError): instance._check_columns_exist(table_data, 'high') def test__fit_only_one_datetime_arg(self): """Test the ``Between._fit`` method by passing in only one arg as datetime. If only one of the high / low args is a datetime type, expect a ValueError. Input: - low is an int column - high is a datetime Output: - n/a Side Effects: - ValueError """ # Setup instance = GreaterThan(low='a', high=pd.to_datetime('2021-01-01'), scalar='high') # Run and assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(ValueError): instance._fit(table_data) def test__fit__low_is_not_found_and_scalar_is_none(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``low`` is set to a value not seen in ``table_data``. Input: - Table without ``low`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low=3, high='b') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__high_is_not_found_and_scalar_is_none(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``high`` is set to a value not seen in ``table_data``. Input: - Table without ``high`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low='a', high=3) # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__low_is_not_found_scalar_is_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``low`` is set to a value not seen in ``table_data``. Input: - Table without ``low`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low='c', high=3, scalar='high') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__high_is_not_found_scalar_is_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``high`` is set to a value not seen in ``table_data``. Input: - Table without ``high`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low=3, high='c', scalar='low') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__columns_to_reconstruct_drop_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to ``instance._high`` if ``instance_drop`` is `high`. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b', drop='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__columns_to_reconstruct_drop_low(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to ``instance._low`` if ``instance_drop`` is `low`. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b', drop='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['a'] def test__fit__columns_to_reconstruct_default(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `high` by default. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__columns_to_reconstruct_high_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `low` if ``instance._scalar`` is ``'high'``. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b', scalar='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['a'] def test__fit__columns_to_reconstruct_low_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `high` if ``instance._scalar`` is ``'low'``. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b', scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__diff_columns_one_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_diff_columns`` to the one column in ``instance.constraint_columns`` plus a token if there is only one column in that set. Input: - Table with one column. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high=3, scalar='high') # Run table_data = pd.DataFrame({'a': [1, 2, 3]}) instance._fit(table_data) # Asserts assert instance._diff_columns == ['a#'] def test__fit__diff_columns_multiple_columns(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_diff_columns`` to the two columns in ``instance.constraint_columns`` separated by a token if there both columns are in that set. Input: - Table with two column. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._diff_columns == ['b#a'] def test__fit_int(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns with the high one being made of integers. Side Effect: - The _dtype attribute gets `int` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'i' for dtype in instance._dtype]) def test__fit_float(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns with the high one being made of float values. Side Effect: - The _dtype attribute gets `float` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_datetime(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns of datetimes. Side Effect: - The _dtype attribute gets `datetime` as the value. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01']), 'b': pd.to_datetime(['2020-01-02']) }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'M' for dtype in instance._dtype]) def test__fit_type__high_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``low`` column as the ``_dtype`` attribute if ``_scalar`` is ``'high'``. Input: - Table that contains two constrained columns with the low one being made of floats. Side Effect: - The _dtype attribute gets `float` as the value. """ # Setup instance = GreaterThan(low='a', high=3, scalar='high') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_type__low_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_scalar`` is ``'low'``. Input: - Table that contains two constrained columns with the high one being made of floats. Side Effect: - The _dtype attribute gets `float` as the value. """ # Setup instance = GreaterThan(low=3, high='b', scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_high_is_scalar_multi_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns with different dtype. """ # Setup instance = GreaterThan(low=['a', 'b'], high=0, scalar='high') dtype_int = pd.Series([1]).dtype dtype_float = np.dtype('float') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4., 5., 6.] }) instance._fit(table_data) # Assert expected_diff_columns = ['a#', 'b#'] expected_dtype = pd.Series([dtype_int, dtype_float], index=table_data.columns) assert instance._diff_columns == expected_diff_columns pd.testing.assert_series_equal(instance._dtype, expected_dtype) def test__fit_low_is_scalar_multi_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns with different dtype. """ # Setup instance = GreaterThan(low=0, high=['a', 'b'], scalar='low') dtype_int = pd.Series([1]).dtype dtype_float = np.dtype('float') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4., 5., 6.] }) instance._fit(table_data) # Assert expected_diff_columns = ['a#', 'b#'] expected_dtype = pd.Series([dtype_int, dtype_float], index=table_data.columns) assert instance._diff_columns == expected_diff_columns pd.testing.assert_series_equal(instance._dtype, expected_dtype) def test_is_valid_strict_false(self): """Test the ``GreaterThan.is_valid`` method with strict False. If strict is False, equal values should count as valid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - False should be returned for the strictly invalid row and True for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=False) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_strict_true(self): """Test the ``GreaterThan.is_valid`` method with strict True. If strict is True, equal values should count as invalid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - True should be returned for the strictly valid row and False for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, False, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_scalar_high_is_column(self): """Test the ``GreaterThan.is_valid`` method. If low is a scalar, and high is a column name, then the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low=3, high='b', strict=False, scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, False, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_scalar_low_is_column(self): """Test the ``GreaterThan.is_valid`` method. If high is a scalar, and low is a column name, then the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below high. Output: - True should be returned for the rows where the low column is below high. """ # Setup instance = GreaterThan(low='a', high=2, strict=False, scalar='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_scalar_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If high is a scalar, and low is multi column, then the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below high. Output: - True should be returned for the rows where the low column is below high. """ # Setup instance = GreaterThan(low=['a', 'b'], high=2, strict=False, scalar='high') table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [False, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_scalar_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If low is a scalar, and high is multi column, then the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low=2, high=['a', 'b'], strict=False, scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [False, True, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_scalar_is_none_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If scalar is none, and high is multi column, then the values in that column should all be higher than in the low column. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low='b', high=['a', 'c'], strict=False) table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) # Run out = instance.is_valid(table_data) # Assert expected_out = [False, True, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_datetime(self): """Test the ``GreaterThan.is_valid`` method. If high is a datetime and low is a column, the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below `high`. Output: - True should be returned for the rows where the low column is below `high`. """ # Setup high_dt = pd.to_datetime('8/31/2021') instance = GreaterThan(low='a', high=high_dt, strict=False, scalar='high') table_data = pd.DataFrame({ 'a': [datetime(2020, 5, 17), datetime(2020, 2, 1), datetime(2021, 9, 1)], 'b': [4, 2, 2], }) # Run out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_datetime(self): """Test the ``GreaterThan.is_valid`` method. If low is a datetime and high is a column, the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below `low`. Output: - True should be returned for the rows where the high column is above `low`. """ # Setup low_dt = pd.to_datetime('8/31/2021') instance = GreaterThan(low=low_dt, high='a', strict=False, scalar='low') table_data = pd.DataFrame({ 'a': [datetime(2021, 9, 17), datetime(2021, 7, 1), datetime(2021, 9, 1)], 'b': [4, 2, 2], }) # Run out = instance.is_valid(table_data) # Assert expected_out = [True, False, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_two_cols_with_nans(self): """Test the ``GreaterThan.is_valid`` method with nan values. If there is a NaN row, expect that `is_valid` returns True. Input: - Table with a NaN row Output: - True should be returned for the NaN row. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, None, 3], 'b': [4, None, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_two_cols_with_one_nan(self): """Test the ``GreaterThan.is_valid`` method with nan values. If there is a row in which we compare one NaN value with one non-NaN value, expect that `is_valid` returns True. Input: - Table with a row that contains only one NaN value. Output: - True should be returned for the row with the NaN value. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, None, 3], 'b': [4, 5, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test__transform_int_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_int_drop_high(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the high column. Setup: - ``_drop`` is set to ``high``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the high column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_int_drop_low(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the low column. Setup: - ``_drop`` is set to ``low``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the low column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_float_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type float. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_datetime_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type datetime. If the columns are of type datetime, ``_transform`` is expected to convert the timedelta distance into numeric before applying the +1 and logarithm. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with values at a distance of exactly 1 second. Output: - Same table with a diff column of the logarithms of the dinstance in nanoseconds + 1, which is np.log(1_000_000_001). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] instance._is_datetime = True # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_not_all_columns_provided(self): """Test the ``GreaterThan.transform`` method. If some of the columns needed for the transform are missing, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, fit_columns_model=False) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def test__transform_high_is_scalar(self): """Test the ``GreaterThan._transform`` method with high as scalar. The ``GreaterThan._transform`` method is expected to compute the distance between the high scalar value and the low column and create a diff column with the logarithm of the distance + 1. Setup: - ``_high`` is set to 5 and ``_scalar`` is ``'high'``. Input: - Table with one low column and two dummy columns. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high=5, strict=True, scalar='high') instance._diff_columns = ['a#b'] instance.constraint_columns = ['a'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(5), np.log(4), np.log(3)], }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_low_is_scalar(self): """Test the ``GreaterThan._transform`` method with high as scalar. The ``GreaterThan._transform`` method is expected to compute the distance between the high scalar value and the low column and create a diff column with the logarithm of the distance + 1. Setup: - ``_high`` is set to 5 and ``_scalar`` is ``'low'``. Input: - Table with one low column and two dummy columns. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low=2, high='b', strict=True, scalar='low') instance._diff_columns = ['a#b'] instance.constraint_columns = ['b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(3), np.log(4), np.log(5)], }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_high_is_scalar_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=['a', 'b'], high=3, strict=True, scalar='high') instance._diff_columns = ['a#', 'b#'] instance.constraint_columns = ['a', 'b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(3), np.log(2), np.log(1)], 'b#': [np.log(0), np.log(-1), np.log(-2)], }) pd.testing.assert_frame_equal(out, expected) def test__transform_low_is_scalar_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=3, high=['a', 'b'], strict=True, scalar='low') instance._diff_columns = ['a#', 'b#'] instance.constraint_columns = ['a', 'b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(-1), np.log(0), np.log(1)], 'b#': [np.log(2), np.log(3), np.log(4)], }) pd.testing.assert_frame_equal(out, expected) def test__transform_scalar_is_none_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=['a', 'c'], high='b', strict=True) instance._diff_columns = ['a#', 'c#'] instance.constraint_columns = ['a', 'c'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(4)] * 3, 'c#': [np.log(-2)] * 3, }) pd.testing.assert_frame_equal(out, expected) def test_reverse_transform_int_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column - convert the output to integers - add back the dropped column Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the high column replaced by the low one + 3, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'b': [4, 5, 6], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_float_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype float. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column - convert the output to float values - add back the dropped column Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the high column replaced by the low one + 3, as float values and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [np.dtype('float')] instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1.1, 2.2, 3.3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1.1, 2.2, 3.3], 'c': [7, 8, 9], 'b': [4.1, 5.2, 6.3], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - add the low column - convert the output to datetimes Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). Output: - Same table with the high column replaced by the low one + one second and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [np.dtype('<M8[ns]')] instance._diff_columns = ['a#b'] instance._is_datetime = True instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'c': [1, 2], 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']) }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_int_drop_low(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high column - convert the output to integers - add back the dropped column Setup: - ``_drop`` is set to ``low``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the low column replaced by the high one - 3, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['a'] # Run transformed = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a': [1, 2, 3], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_low(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - subtract from the high column - convert the output to datetimes Setup: - ``_drop`` is set to ``low``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). Output: - Same table with the low column replaced by the high one - one second and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._dtype = [np.dtype('<M8[ns]')] instance._diff_columns = ['a#b'] instance._is_datetime = True instance._columns_to_reconstruct = ['a'] # Run transformed = pd.DataFrame({ 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']) }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_int_drop_none(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low column is higher than the high column. Output: - Same table with the high column replaced by the low one + 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 1, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_none(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - add the low column when the row is invalid - convert the output to datetimes Setup: - ``_drop`` is set to ``None``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). The table should have one invalid row where the low column is higher than the high column. Output: - Same table with the high column replaced by the low one + one second for all invalid rows, and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._dtype = [np.dtype('<M8[ns]')] instance._diff_columns = ['a#b'] instance._is_datetime = True instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-01T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2] }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_low_is_scalar(self): """Test the ``GreaterThan.reverse_transform`` method with low as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_low`` is set to an int and ``_scalar`` is ``'low'``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low value is higher than the high column. Output: - Same table with the high column replaced by the low value + 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low=3, high='b', strict=True, scalar='low') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 1, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 6, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_high_is_scalar(self): """Test the ``GreaterThan.reverse_transform`` method with high as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_high`` is set to an int and ``_scalar`` is ``'high'``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low column is higher than the high value. Output: - Same table with the low column replaced by the high one - 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high=3, strict=True, scalar='high') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['a'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 0], 'b': [4, 5, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_high_is_scalar_multi_column(self): """Test the ``GreaterThan.reverse_transform`` method with high as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_high`` is set to an int and ``_scalar`` is ``'high'``. - ``_low`` is set to multiple columns. Input: - Table with a diff column that contains the constant np.log(4)/np.log(5). The table should have one invalid row where the low column is higher than the high value. Output: - Same table with the low column replaced by the high one - 3/-4 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low=['a', 'b'], high=3, strict=True, scalar='high') dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._dtype = [dtype, dtype] instance._diff_columns = ['a#', 'b#'] instance._columns_to_reconstruct = ['a', 'b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 4], 'b': [0, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(4)] * 3, 'b#': [np.log(5)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 0, 0], 'b': [0, -1, -1], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_low_is_scalar_multi_column(self): """Test the ``GreaterThan.reverse_transform`` method with low as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_low`` is set to an int and ``_scalar`` is ``'low'``. - ``_high`` is set to multiple columns. Input: - Table with a diff column that contains the constant np.log(4)/np.log(5). The table should have one invalid row where the low value is higher than the high column. Output: - Same table with the high column replaced by the low value +3/+4 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low=3, high=['a', 'b'], strict=True, scalar='low') dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._dtype = [dtype, dtype] instance._diff_columns = ['a#', 'b#'] instance._columns_to_reconstruct = ['a', 'b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(4)] * 3, 'b#': [np.log(5)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [6, 6, 4], 'b': [7, 7, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_scalar_is_none_multi_column(self): """Test the ``GreaterThan.reverse_transform`` method with low as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low value when the row is invalid - convert the output to integers Setup: - ``_low`` = ['a', 'c']. - ``_high`` = ['b']. Input: - Table with a diff column that contains the constant np.log(4)/np.log(-2). The table should have one invalid row where the low value is higher than the high column. Output: - Same table with the high column replaced by the low value +3/-4 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low=['a', 'c'], high=['b'], strict=True) dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._dtype = [dtype, dtype] instance._diff_columns = ['a#', 'c#'] instance._columns_to_reconstruct = ['a', 'c'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(1)] * 3, 'c#': [np.log(1)] * 3, }) out = instance.reverse_transform(transformed) print(out) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_multi_column_positive(self): """Test the ``GreaterThan.reverse_transform`` method for positive constraint. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high value when the row is invalid - convert the output to integers Input: - Table with given data. Output: - Same table with with replaced rows and dropped columns. """ # Setup instance = GreaterThan(low=0, high=['a', 'b'], strict=True, scalar='low') dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._dtype = [dtype, dtype] instance._diff_columns = ['a#', 'b#'] instance._columns_to_reconstruct = ['a', 'b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, -1], 'c': [7, 8, 9], 'a#': [np.log(2), np.log(3), np.log(4)], 'b#': [np.log(5), np.log(6), np.log(0)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 0], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_multi_column_negative(self): """Test the ``GreaterThan.reverse_transform`` method for negative constraint. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high value when the row is invalid - convert the output to integers Input: - Table with given data. Output: - Same table with with replaced rows and dropped columns. """ # Setup instance = GreaterThan(low=['a', 'b'], high=0, strict=True, scalar='high') dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._dtype = [dtype, dtype] instance._diff_columns = ['a#', 'b#'] instance._columns_to_reconstruct = ['a', 'b'] # Run transformed = pd.DataFrame({ 'a': [-1, -2, 1], 'b': [-4, -5, -1], 'c': [7, 8, 9], 'a#': [np.log(2), np.log(3), np.log(0)], 'b#': [np.log(5), np.log(6), np.log(2)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [-1, -2, 0], 'b': [-4, -5, -1], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) class TestPositive(): def test__init__(self): """ Test the ``Positive.__init__`` method. The method is expected to set the ``_low`` instance variable to 0, the ``_scalar`` variable to ``'low'``. The rest of the parameters should be passed. Check that ``_drop`` is set to ``None`` when ``drop`` is ``False``. Input: - strict = True - low = 'a' - drop = False Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._scalar == 'low' - instance._drop = None """ # Run instance = Positive(columns='a', strict=True, drop=False) # Asserts assert instance._low == 0 assert instance._high == ['a'] assert instance._strict is True assert instance._scalar == 'low' assert instance._drop is None def test__init__drop_true(self): """ Test the ``Positive.__init__`` method with drop is ``True``. Check that ``_drop`` is set to 'high' when ``drop`` is ``True``. Input: - strict = True - low = 'a' - drop = True Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._scalar == 'low' - instance._drop = 'high' """ # Run instance = Positive(columns='a', strict=True, drop=True) # Asserts assert instance._low == 0 assert instance._high == ['a'] assert instance._strict is True assert instance._scalar == 'low' assert instance._drop == 'high' class TestNegative(): def test__init__(self): """ Test the ``Negative.__init__`` method. The method is expected to set the ``_high`` instance variable to 0, the ``_scalar`` variable to ``'high'``. The rest of the parameters should be passed. Check that ``_drop`` is set to ``None`` when ``drop`` is ``False``. Input: - strict = True - low = 'a' - drop = False Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._scalar = 'high' - instance._drop = None """ # Run instance = Negative(columns='a', strict=True, drop=False) # Asserts assert instance._low == ['a'] assert instance._high == 0 assert instance._strict is True assert instance._scalar == 'high' assert instance._drop is None def test__init__drop_true(self): """ Test the ``Negative.__init__`` method with drop is ``True``. Check that ``_drop`` is set to 'low' when ``drop`` is ``True``. Input: - strict = True - low = 'a' - drop = True Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._scalar = 'high' - instance._drop = 'low' """ # Run instance = Negative(columns='a', strict=True, drop=True) # Asserts assert instance._low == ['a'] assert instance._high == 0 assert instance._strict is True assert instance._scalar == 'high' assert instance._drop == 'low' def new_column(data): """Formula to be used for the ``TestColumnFormula`` class.""" if data['a'] is None or data['b'] is None: return None return data['a'] + data['b'] class TestColumnFormula(): def test___init__(self): """Test the ``ColumnFormula.__init__`` method. It is expected to create a new Constraint instance, import the formula to use for the computation, and set the specified constraint column. Input: - column = 'col' - formula = new_column """ # Setup column = 'col' # Run instance = ColumnFormula(column=column, formula=new_column) # Assert assert instance._column == column assert instance._formula == new_column assert instance.constraint_columns == ('col', ) def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``ColumnFormula.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Setup column = 'col' # Run instance = ColumnFormula(column=column, formula=new_column, handling_strategy='transform') # Assert assert instance.rebuild_columns == (column,) def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``ColumnFormula.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Setup column = 'col' # Run instance = ColumnFormula(column=column, formula=new_column, handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test_is_valid_valid(self): """Test the ``ColumnFormula.is_valid`` method for a valid data. If the data fulfills the formula, result is a series of ``True`` values. Input: - Table data fulfilling the formula (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_valid(self): """Test the ``ColumnFormula.is_valid`` method for a non-valid data. If the data does not fulfill the formula, result is a series of ``False`` values. Input: - Table data not fulfilling the formula (pandas.DataFrame) Output: - Series of ``False`` values (pandas.Series) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [1, 2, 3] }) instance = ColumnFormula(column=column, formula=new_column) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([False, False, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_with_nans(self): """Test the ``ColumnFormula.is_valid`` method for with a formula that produces nans. If the data fulfills the formula, result is a series of ``True`` values. Input: - Table data fulfilling the formula (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, None], 'c': [5, 7, None] }) instance = ColumnFormula(column=column, formula=new_column) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test__transform(self): """Test the ``ColumnFormula._transform`` method. It is expected to drop the indicated column from the table. Input: - Table data (pandas.DataFrame) Output: - Table data without the indicated column (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_without_dropping_column(self): """Test the ``ColumnFormula._transform`` method without dropping the column. If `drop_column` is false, expect to not drop the constraint column. Input: - Table data (pandas.DataFrame) Output: - Table data with the indicated column (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column, drop_column=False) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_missing_column(self): """Test the ``ColumnFormula._transform`` method when the constraint column is missing. When ``_transform`` is called with data that does not contain the constraint column, expect to return the data as-is. Input: - Table data (pandas.DataFrame) Output: - Table data, unchanged (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'd': [5, 7, 9] }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'd': [5, 7, 9] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform(self): """Test the ``ColumnFormula.reverse_transform`` method. It is expected to compute the indicated column by applying the given formula. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [1, 1, 1] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) pd.testing.assert_frame_equal(expected_out, out) class TestRounding(): def test___init__(self): """Test the ``Rounding.__init__`` method. It is expected to create a new Constraint instance and set the rounding args. Input: - columns = ['b', 'c'] - digits = 2 """ # Setup columns = ['b', 'c'] digits = 2 # Run instance = Rounding(columns=columns, digits=digits) # Assert assert instance._columns == columns assert instance._digits == digits def test___init__invalid_digits(self): """Test the ``Rounding.__init__`` method with an invalid argument. Pass in an invalid ``digits`` argument, and expect a ValueError. Input: - columns = ['b', 'c'] - digits = 20 """ # Setup columns = ['b', 'c'] digits = 20 # Run with pytest.raises(ValueError): Rounding(columns=columns, digits=digits) def test___init__invalid_tolerance(self): """Test the ``Rounding.__init__`` method with an invalid argument. Pass in an invalid ``tolerance`` argument, and expect a ValueError. Input: - columns = ['b', 'c'] - digits = 2 - tolerance = 0.1 """ # Setup columns = ['b', 'c'] digits = 2 tolerance = 0.1 # Run with pytest.raises(ValueError): Rounding(columns=columns, digits=digits, tolerance=tolerance) def test_is_valid_positive_digits(self): """Test the ``Rounding.is_valid`` method for a positive digits argument. Input: - Table data with desired decimal places (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup columns = ['b', 'c'] digits = 2 tolerance = 1e-3 instance = Rounding(columns=columns, digits=digits, tolerance=tolerance) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [4.12, 5.51, None, 6.941, 1.129], 'c': [5.315, 7.12, 1.12, 9.131, 12.329], 'd': ['a', 'b', 'd', 'e', None], 'e': [123.31598, -1.12001, 1.12453, 8.12129, 1.32923] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([False, True, False, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_negative_digits(self): """Test the ``Rounding.is_valid`` method for a negative digits argument. Input: - Table data with desired decimal places (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup columns = ['b'] digits = -2 tolerance = 1 instance = Rounding(columns=columns, digits=digits, tolerance=tolerance) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [401, 500, 6921, 799, None], 'c': [5.3134, 7.1212, 9.1209, 101.1234, None], 'd': ['a', 'b', 'd', 'e', 'f'] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, False, True, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_zero_digits(self): """Test the ``Rounding.is_valid`` method for a zero digits argument. Input: - Table data not with the desired decimal places (pandas.DataFrame) Output: - Series of ``False`` values (pandas.Series) """ # Setup columns = ['b', 'c'] digits = 0 tolerance = 1e-4 instance = Rounding(columns=columns, digits=digits, tolerance=tolerance) # Run table_data = pd.DataFrame({ 'a': [1, 2, None, 3, 4], 'b': [4, 5.5, 1.2, 6.0001, 5.99999], 'c': [5, 7.12, 1.31, 9.00001, 4.9999], 'd': ['a', 'b', None, 'd', 'e'], 'e': [2.1254, 17.12123, 124.12, 123.0112, -9.129434] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, False, False, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_reverse_transform_positive_digits(self): """Test the ``Rounding.reverse_transform`` method with positive digits. Expect that the columns are rounded to the specified integer digit. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup columns = ['b', 'c'] digits = 3 instance = Rounding(columns=columns, digits=digits) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, None, 4], 'b': [4.12345, None, 5.100, 6.0001, 1.7999], 'c': [1.1, 1.234, 9.13459, 4.3248, 6.1312], 'd': ['a', 'b', 'd', 'e', None] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3, None, 4], 'b': [4.123, None, 5.100, 6.000, 1.800], 'c': [1.100, 1.234, 9.135, 4.325, 6.131], 'd': ['a', 'b', 'd', 'e', None] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_negative_digits(self): """Test the ``Rounding.reverse_transform`` method with negative digits. Expect that the columns are rounded to the specified integer digit. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup columns = ['b'] digits = -3 instance = Rounding(columns=columns, digits=digits) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [41234.5, None, 5000, 6001, 5928], 'c': [1.1, 1.23423, 9.13459, 12.12125, 18.12152], 'd': ['a', 'b', 'd', 'e', 'f'] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [41000.0, None, 5000.0, 6000.0, 6000.0], 'c': [1.1, 1.23423, 9.13459, 12.12125, 18.12152], 'd': ['a', 'b', 'd', 'e', 'f'] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_zero_digits(self): """Test the ``Rounding.reverse_transform`` method with zero digits. Expect that the columns are rounded to the specified integer digit. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup columns = ['b', 'c'] digits = 0 instance = Rounding(columns=columns, digits=digits) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [4.12345, None, 5.0, 6.01, 7.9], 'c': [1.1, 1.0, 9.13459, None, 8.89], 'd': ['a', 'b', 'd', 'e', 'f'] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [4.0, None, 5.0, 6.0, 8.0], 'c': [1.0, 1.0, 9.0, None, 9.0], 'd': ['a', 'b', 'd', 'e', 'f'] }) pd.testing.assert_frame_equal(expected_out, out) def transform(data, low, high): """Transform to be used for the TestBetween class.""" data = (data - low) / (high - low) * 0.95 + 0.025 return np.log(data / (1.0 - data)) class TestBetween(): def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``Between.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Setup column = 'col' # Run instance = Between(column=column, low=10, high=20, handling_strategy='transform') # Assert assert instance.rebuild_columns == (column,) def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``Between.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Setup column = 'col' # Run instance = Between(column=column, low=10, high=20, handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test_fit_only_one_datetime_arg(self): """Test the ``Between.fit`` method by passing in only one arg as datetime. If only one of the bound parameters is a datetime type, expect a ValueError. Input: - low is an int scalar - high is a datetime Output: - n/a Side Effects: - ValueError """ # Setup column = 'a' low = 0.0 high = pd.to_datetime('2021-01-01') instance = Between(column=column, low=low, high=high) # Run and assert table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [4, 5, 6], }) with pytest.raises(ValueError): instance.fit(table_data) def test_transform_scalar_scalar(self): """Test the ``Between.transform`` method by passing ``low`` and ``high`` as scalars. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 0.0 high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [4, 5, 6], }) instance.fit(table_data) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'a#0.0#1.0': transform(table_data[column], low, high) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_scalar_column(self): """Test the ``Between._transform`` method with ``low`` as scalar and ``high`` as a column. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 0.0 high = 'b' instance = Between(column=column, low=low, high=high, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [0.5, 1, 6], }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [0.5, 1, 6], 'a#0.0#b': transform(table_data[column], low, table_data[high]) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_column_scalar(self): """Test the ``Between._transform`` method with ``low`` as a column and ``high`` as scalar. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [0, -1, 0.5], }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [0, -1, 0.5], 'a#b#1.0': transform(table_data[column], table_data[low], high) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_column_column(self): """Test the ``Between._transform`` method by passing ``low`` and ``high`` as columns. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 'c' instance = Between(column=column, low=low, high=high) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [0, -1, 0.5], 'c': [0.5, 1, 6] }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [0, -1, 0.5], 'c': [0.5, 1, 6], 'a#b#c': transform(table_data[column], table_data[low], table_data[high]) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_datetime_datetime(self): """Test the ``Between._transform`` method by passing ``low`` and ``high`` as datetimes. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) - High and Low as datetimes Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = pd.to_datetime('1900-01-01') high = pd.to_datetime('2021-01-01') instance = Between(column=column, low=low, high=high, high_is_scalar=True, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-01'), pd.to_datetime('2020-08-03'), ], 'b': [4, 5, 6], }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'a#1900-01-01T00:00:00.000000000#2021-01-01T00:00:00.000000000': transform( table_data[column], low, high) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_datetime_column(self): """Test the ``Between._transform`` method with ``low`` as datetime and ``high`` as a column. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = pd.to_datetime('1900-01-01') high = 'b' instance = Between(column=column, low=low, high=high, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-01'), pd.to_datetime('2020-08-03'), ], 'b': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ], }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ], 'a#1900-01-01T00:00:00.000000000#b': transform( table_data[column], low, table_data[high]) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_column_datetime(self): """Test the ``Between._transform`` method with ``low`` as a column and ``high`` as datetime. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = pd.to_datetime('2021-01-01') instance = Between(column=column, low=low, high=high, high_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-01'), pd.to_datetime('2020-08-03'), ], 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], 'a#b#2021-01-01T00:00:00.000000000': transform( table_data[column], table_data[low], high) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_column_column_datetime(self): """Test the ``Between._transform`` method with ``low`` and ``high`` as datetime columns. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 'c' instance = Between(column=column, low=low, high=high) # Run table_data = pd.DataFrame({ 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-01'), pd.to_datetime('2020-08-03'), ], 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], 'c': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ] }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], 'c': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ], 'a#b#c': transform(table_data[column], table_data[low], table_data[high]) }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_scalar_scalar(self): """Test ``Between.reverse_transform`` with ``low`` and ``high`` as scalars. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 0.0 high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True, low_is_scalar=True) table_data = pd.DataFrame({ 'b': [4, 5, 6], 'a': [0.1, 0.5, 0.9] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [4, 5, 6], 'a#0.0#1.0': transform(table_data[column], low, high) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_scalar_column(self): """Test ``Between.reverse_transform`` with ``low`` as scalar and ``high`` as a column. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 0.0 high = 'b' instance = Between(column=column, low=low, high=high, low_is_scalar=True) table_data = pd.DataFrame({ 'b': [0.5, 1, 6], 'a': [0.1, 0.5, 0.9] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [0.5, 1, 6], 'a#0.0#b': transform(table_data[column], low, table_data[high]) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_column_scalar(self): """Test ``Between.reverse_transform`` with ``low`` as a column and ``high`` as scalar. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True) table_data = pd.DataFrame({ 'b': [0, -1, 0.5], 'a': [0.1, 0.5, 0.9] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [0, -1, 0.5], 'a#b#1.0': transform(table_data[column], table_data[low], high) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_column_column(self): """Test ``Between.reverse_transform`` with ``low`` and ``high`` as columns. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 'c' instance = Between(column=column, low=low, high=high) table_data = pd.DataFrame({ 'b': [0, -1, 0.5], 'c': [0.5, 1, 6], 'a': [0.1, 0.5, 0.9] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [0, -1, 0.5], 'c': [0.5, 1, 6], 'a#b#c': transform(table_data[column], table_data[low], table_data[high]) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_datetime_datetime(self): """Test ``Between.reverse_transform`` with ``low`` and ``high`` as datetime. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) - High and low as datetimes Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = pd.to_datetime('1900-01-01') high = pd.to_datetime('2021-01-01') instance = Between(column=column, low=low, high=high, high_is_scalar=True, low_is_scalar=True) table_data = pd.DataFrame({ 'b': [4, 5, 6], 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-01'), pd.to_datetime('2020-08-03'), ], }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [4, 5, 6], 'a#1900-01-01T00:00:00.000000000#2021-01-01T00:00:00.000000000': transform( table_data[column], low, high) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_series_equal(expected_out['b'], out['b']) pd.testing.assert_series_equal(expected_out['a'], out['a'].astype('datetime64[ms]')) def test_reverse_transform_datetime_column(self): """Test ``Between.reverse_transform`` with ``low`` as datetime and ``high`` as a column. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = pd.to_datetime('1900-01-01') high = 'b' instance = Between(column=column, low=low, high=high, low_is_scalar=True) table_data = pd.DataFrame({ 'b': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ], 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-02'), pd.to_datetime('2020-08-03'), ] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ], 'a#1900-01-01T00:00:00.000000000#b': transform( table_data[column], low, table_data[high]) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_column_datetime(self): """Test ``Between.reverse_transform`` with ``low`` as a column and ``high`` as datetime. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = pd.to_datetime('2021-01-01') instance = Between(column=column, low=low, high=high, high_is_scalar=True) table_data = pd.DataFrame({ 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-03'), pd.to_datetime('2020-08-04'), ], }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [ pd.to_datetime('2020-01-03'),
pd.to_datetime('2020-02-01')
pandas.to_datetime
from datetime import datetime import inspect import numpy as np import pytest from pandas.core.dtypes.common import ( is_categorical_dtype, is_interval_dtype, is_object_dtype, ) from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, IntervalIndex, Series, Timestamp, cut, date_range, to_datetime, ) import pandas._testing as tm class TestDataFrameAlterAxes: def test_set_index_directly(self, float_string_frame): df = float_string_frame idx = Index(np.arange(len(df))[::-1]) df.index = idx tm.assert_index_equal(df.index, idx) with pytest.raises(ValueError, match="Length mismatch"): df.index = idx[::2] def test_convert_dti_to_series(self): # don't cast a DatetimeIndex WITH a tz, leave as object # GH 6032 idx = DatetimeIndex( to_datetime(["2013-1-1 13:00", "2013-1-2 14:00"]), name="B" ).tz_localize("US/Pacific") df = DataFrame(np.random.randn(2, 1), columns=["A"]) expected = Series( np.array( [ Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), Timestamp("2013-01-02 14:00:00-0800", tz="US/Pacific"), ], dtype="object", ), name="B", ) # convert index to series result = Series(idx) tm.assert_series_equal(result, expected) # assign to frame df["B"] = idx result = df["B"] tm.assert_series_equal(result, expected) # convert to series while keeping the timezone msg = "stop passing 'keep_tz'" with tm.assert_produces_warning(FutureWarning) as m: result = idx.to_series(keep_tz=True, index=[0, 1]) tm.assert_series_equal(result, expected) assert msg in str(m[0].message) # convert to utc with tm.assert_produces_warning(FutureWarning) as m: df["B"] = idx.to_series(keep_tz=False, index=[0, 1]) result = df["B"] comp = Series(DatetimeIndex(expected.values).tz_localize(None), name="B") tm.assert_series_equal(result, comp) msg = "do 'idx.tz_convert(None)' before calling" assert msg in str(m[0].message) result = idx.to_series(index=[0, 1]) tm.assert_series_equal(result, expected) with tm.assert_produces_warning(FutureWarning) as m: result = idx.to_series(keep_tz=False, index=[0, 1]) tm.assert_series_equal(result, expected.dt.tz_convert(None)) msg = "do 'idx.tz_convert(None)' before calling" assert msg in str(m[0].message) # list of datetimes with a tz df["B"] = idx.to_pydatetime() result = df["B"] tm.assert_series_equal(result, expected) # GH 6785 # set the index manually import pytz df = DataFrame([{"ts": datetime(2014, 4, 1, tzinfo=pytz.utc), "foo": 1}]) expected = df.set_index("ts") df.index = df["ts"] df.pop("ts") tm.assert_frame_equal(df, expected) def test_set_columns(self, float_string_frame): cols = Index(np.arange(len(float_string_frame.columns))) float_string_frame.columns = cols with pytest.raises(ValueError, match="Length mismatch"): float_string_frame.columns = cols[::2] def test_dti_set_index_reindex(self): # GH 6631 df = DataFrame(np.random.random(6)) idx1 = date_range("2011/01/01", periods=6, freq="M", tz="US/Eastern") idx2 =
date_range("2013", periods=6, freq="A", tz="Asia/Tokyo")
pandas.date_range
import numpy as np import pandas as pd from pandas.testing import assert_frame_equal from MyAIGuide.utilities.dataFrameUtilities import ( subset_period, insert_data_to_tracker_mean_steps, adjust_var_and_place_in_data, insert_rolling_mean_columns, insert_relative_values_columns ) def create_test_dataframe(start_date, num_periods): """This creates a dummy dataframe for testing. It has date index starting at given start date with a number of periods. Params: start_date: initial date for the index num_periods: number of index values """ i = pd.date_range(start_date, periods=num_periods, freq='1D') sLength = len(i) empty = pd.Series(np.zeros(sLength)).values d = { 'col1': empty + 1, 'col2': empty + 3, 'tracker_mean_steps': empty } return pd.DataFrame(data=d, index=i) def test_subset_period(): # create empty (full of 0s) test dataframe test_data = create_test_dataframe('2020-07-01', 4) # only 1 day period1 = ('2020-07-01', '2020-07-01') # usual period of more than 1 day period2 = ('2020-07-01', '2020-07-02') # wrong period with start_date > end_date period3 = ('2020-07-01', '2020-06-30') # generate expected dataframes expected_data1 = create_test_dataframe('2020-07-01', 1) expected_data2 = create_test_dataframe('2020-07-01', 2) expected_data3 = create_test_dataframe('2020-07-01', 0) # run the function with the test data result1 = subset_period(test_data, period1[0], period1[1]) result2 = subset_period(test_data, period2[0], period2[1]) # attention, function does not raise warning when start_date > end_date result3 = subset_period(test_data, period3[0], period3[1]) # compare results and expected dataframes assert_frame_equal(result1, expected_data1) assert_frame_equal(result2, expected_data2) assert_frame_equal(result3, expected_data3) def test_insert_data_to_tracker_mean_steps(): # create empty (full of 0s) test dataframe test_data = create_test_dataframe('2020-07-01', 4) # only 1 day period1 = ('2020-07-01', '2020-07-01') # usual period of more than 1 day period2 = ('2020-07-01', '2020-07-02') # wrong period with start_date > end_date period3 = ('2020-07-01', '2020-06-30') # generate expected dataframes expected_data1 = create_test_dataframe('2020-07-01', 4) expected_data1['tracker_mean_steps'] = [1.0, 0.0, 0.0, 0.0] expected_data2 = create_test_dataframe('2020-07-01', 4) expected_data2['tracker_mean_steps'] = [1.0, 1.0, 0.0, 0.0] expected_data3 = create_test_dataframe('2020-07-01', 4) # run the function with the test data result1 = insert_data_to_tracker_mean_steps(period1, test_data, 'col1', 'tracker_mean_steps') result2 = insert_data_to_tracker_mean_steps(period2, test_data, 'col1', 'tracker_mean_steps') # attention, function does not raise warning when start_date > end_date result3 = insert_data_to_tracker_mean_steps(period3, test_data, 'col1', 'tracker_mean_steps') # compare results and expected dataframes assert_frame_equal(result1, expected_data1) assert_frame_equal(result2, expected_data2) assert_frame_equal(result3, expected_data3) def test_adjust_var_and_place_in_data(): # create empty (full of 0s) test dataframe test_data = create_test_dataframe('2020-07-01', 4) # only 1 day period1 = ('2020-07-01', '2020-07-01') # usual period of more than 1 day period2 = ('2020-07-01', '2020-07-02') # generate expected dataframes expected_data1 = create_test_dataframe('2020-07-01', 4) expected_data1['tracker_mean_steps'] = [3.0, 0.0, 0.0, 0.0] expected_data2 = create_test_dataframe('2020-07-01', 4) expected_data2['tracker_mean_steps'] = [3.0, 3.0, 0.0, 0.0] # run the function with the test data result1 = adjust_var_and_place_in_data(period1, test_data, 'col1', 'col2', 'tracker_mean_steps') result2 = adjust_var_and_place_in_data(period2, test_data, 'col1', 'col2', 'tracker_mean_steps') # compare results and expected dataframes
assert_frame_equal(result1, expected_data1)
pandas.testing.assert_frame_equal
#%% import pandas as pd import numpy as np import requests from datetime import datetime as dt from io import StringIO import os import us import git from functools import reduce from datetime import datetime, timedelta, date #%% def clean_df(df, date): """Cleans up dataframe to get only US counties (i.e. things with FIPS)""" df.dropna(subset=['FIPS', 'Admin2'], inplace=True) pd.options.mode.chained_assignment = None df = df[[df.columns[0]] + list(df.columns[-5:-1])] df.loc[:, 'Date'] = date return df # list all dates between two dates def daterange(start_date, end_date): for n in range(int ((end_date - start_date).days)): yield (start_date + timedelta(n)).strftime('%m-%d-%Y') # urls for data in Johns Hopkins github repository urls = {} # Note that JHU only started reporting county information from this date # Which is why we start our query from 3/23/2020 start_date = date(2020, 3, 23) end_date = date.today() for d in daterange(start_date, end_date): urls[d] = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/" + d + ".csv" # Initialize dictionary to save output dataframes output_dfs = {} # Loop urls for condition, url in urls.items(): # Obtain data request = requests.get(url) # Convert into string txt = StringIO(request.text) # Convert into dataframe df = pd.read_csv(txt) # Add to dictionary output_dfs[condition] = clean_df(df, condition) # Find home directory for repo repo = git.Repo("./", search_parent_directories=True) homedir = repo.working_dir datadir = f"{homedir}/data/us/covid/" dfs = list(output_dfs.values()) dfs =
pd.concat(dfs)
pandas.concat
# # Copyright (C) 2014 Xinguard Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # -*- coding: utf-8 -*- import pandas as pd import os import re from flask import Flask from flask import render_template, jsonify, request, g, abort, redirect, url_for import json #from xinui.rest import Rest from rest import Rest app = Flask(__name__) global_flow_table = {} # Summary page @app.route("/") def summary(): sw_desc = Rest.get_switch_desc() if sw_desc is False: abort(404) return render_template("summary.html", sw_desc=sw_desc) # Policy page @app.route("/policy/") def policy(): sw_dpid_list = Rest.get_switch_list() if sw_dpid_list is False: abort(404) return render_template("policy.html", sw_dpid_list=sw_dpid_list) @app.route("/policy/<dpid>") def dpid_policy(dpid): sw_dpid_list = Rest.get_switch_list() if sw_dpid_list is False or int(dpid) not in sw_dpid_list: abort(404) flow_table = None flow_table = Rest.get_flow_table(dpid) global global_flow_table global_flow_table = flow_table port = Rest.get_switch_port(dpid) return render_template("policy.html", sw_dpid_list=sw_dpid_list, dpid=dpid, port=port, flow_table=flow_table) # Topology page @app.route("/topology") def topology(): topo = Rest.get_topology() return render_template("topology.html", topo=topo) @app.route("/_query_flow/") def query_flow(dpid): #dpid = request.args.get("dpid") flow_table = Rest.get_flow_table(dpid) #print flow_table return render_template("policy.html", flow_table=flow_table) #return jsonify(flow_table) @app.route("/_query_port") def query_port(): dpid = request.args.get("dpid") port = Rest.get_switch_port(dpid) return jsonify(port) @app.route("/_add_flow", methods=["POST"]) def add_flow(): req = json.loads(request.form["flow_cmd"]) flow_cmd = {} match_dict = {} action_list = [] flow_cmd["dpid"] = req["common"]["dpid"] flow_cmd["priority"] = req["common"]["priority"] flow_cmd["idle_timeout"] = req["common"]["idle"] flow_cmd["hard_timeout"] = req["common"]["hard"] if req["match"]["input"] != "Any": match_dict["in_port"] = int(req["match"]["input"]) if req["match"]["dl_saddr"] != "None": match_dict["dl_src"] = req["match"]["dl_saddr"] if req["match"]["dl_daddr"] != "None": match_dict["dl_dst"] = req["match"]["dl_daddr"] if req["match"]["nw_saddr"] != "None": match_dict["nw_src"] = req["match"]["nw_saddr"] if req["match"]["nw_daddr"] != "None": match_dict["nw_dst"] = req["match"]["nw_daddr"] if req["match"]["nw_saddr"] != "None" or req["match"]["nw_daddr"] != "None" or req["match"]["l4_proto"]: match_dict["dl_type"] = 2048 if req["match"]["l4_proto"] != "None": if req["match"]["l4_proto"] == "TCP": match_dict["nw_proto"] = 6 elif req["match"]["l4_proto"] == "UDP": match_dict["nw_proto"] = 17 if req["match"]["sport"] != "None": match_dict["tp_src"] = int(req["match"]["sport"]) if req["match"]["dport"] != "None": match_dict["tp_dst"] = int(req["match"]["dport"]) if req["match"]["vlan_id"] != "None": match_dict["dl_vlan"] = int(req["match"]["vlan_id"]) if req["action"]["output"] != "Drop": for value in req["action"]["output"].split(" "): action_dict = {} action_dict["port"] = int(value) action_dict["type"] = "OUTPUT" action_list.append(action_dict) if req["action"]["vlan_action"] != "None": if "Strip" in req["action"]["vlan_action"]: action_dict = {} action_dict["type"] = "POP_VLAN" action_list.append(action_dict) elif "Swap" in req["action"]["vlan_action"]: action_dict = {} action_dict["field"] = "vlan_vid" action_dict["value"] = req["action"]["vlan_action"].split(" ")[-1] action_dict["type"] = "SET_FIELD" action_list.append(action_dict) elif "New" in req["action"]["vlan_action"]: push_vlan_dict = {} push_vlan_dict["ethertype"] = 33024 push_vlan_dict["type"] = "PUSH_VLAN" action_list.append(push_vlan_dict) action_dict = {} action_dict["field"] = "vlan_vid" action_dict["value"] = req["action"]["vlan_action"].split(" ")[-1] action_dict["type"] = "SET_FIELD" action_list.append(action_dict) flow_cmd["match"] = match_dict flow_cmd["actions"] = action_list #print json.dumps(flow_cmd) Rest.add_flow(json.dumps(flow_cmd)) return "foo" @app.route("/_del_flow", methods=["POST"]) def del_flow(): index = request.form["index"] flow_cmd = {} match_dict = {} for key, list in global_flow_table.iteritems(): flow_cmd["dpid"] = key match_dict = list[int(index)]["match"] flow_cmd["match"] = match_dict #print json.dumps(flow_cmd) Rest.del_flow(json.dumps(flow_cmd)) return "foo" @app.errorhandler(404) def page_not_found(error): return render_template("page_not_found.html"), 404 #CRUD @app.route("/get") def show_tables(): filename = 'example2.xlsx' data = pd.read_excel(filename,sheetname='Sheet1') data = data.fillna('') return render_template('index.html',tables=[re.sub(' mytable', '" id="example', data.to_html(classes='mytable'))], titles = ['Excel Data to Flask']) @app.route('/insert', methods= ['POST','GET']) def insert(): q1 = request.form['num1'] q2 = request.form['num2'] print(q1,q2) df = pd.DataFrame({'a': [q1], 'b': [q2]}) book = pd.read_excel('example2.xlsx') writer =
pd.ExcelWriter('example2.xlsx', engine='openpyxl')
pandas.ExcelWriter
from __future__ import absolute_import import pytest skimage = pytest.importorskip("skimage") import numpy as np import pandas as pd from datashader.bundling import directly_connect_edges, hammer_bundle from datashader.layout import circular_layout, forceatlas2_layout, random_layout @pytest.fixture def nodes(): # Four nodes arranged at the corners of a 200x200 square with one node # at the center nodes_df = pd.DataFrame({'id': np.arange(5), 'x': [0, -100, 100, -100, 100], 'y': [0, 100, 100, -100, -100]}) nodes_df.set_index('id') return nodes_df @pytest.fixture def edges(): # Four edges originating from the center node and connected to each # corner edges_df = pd.DataFrame({'id': np.arange(4), 'source': np.zeros(4, dtype=int), 'target': np.arange(1, 5)}) edges_df.set_index('id') return edges_df @pytest.fixture def weighted_edges(): # Four weighted edges originating from the center node and connected # to each corner edges_df = pd.DataFrame({'id': np.arange(4), 'source': np.zeros(4, dtype=int), 'target': np.arange(1, 5), 'weight': np.ones(4)}) edges_df.set_index('id') return edges_df def test_immutable_nodes(nodes, edges): # Expect nodes to remain immutable after any bundling operation original = nodes.copy() directly_connect_edges(nodes, edges) assert original.equals(nodes) @pytest.mark.parametrize('bundle', [directly_connect_edges, hammer_bundle]) def test_renamed_columns(nodes, weighted_edges, bundle): nodes = nodes.rename(columns={'x': 'xx', 'y': 'yy'}) edges = weighted_edges.rename(columns={'source': 'src', 'target': 'dst', 'weight': 'w'}) df = bundle(nodes, edges, x='xx', y='yy', source='src', target='dst', weight='w') assert 'xx' in df and 'x' not in df assert 'yy' in df and 'y' not in df assert 'w' in df and 'weight' not in df @pytest.mark.parametrize('bundle', [directly_connect_edges, hammer_bundle]) @pytest.mark.parametrize('layout', [random_layout, circular_layout, forceatlas2_layout]) def test_same_path_endpoints(layout, bundle): # Expect path endpoints to match original edge source/target edges = pd.DataFrame({'id': [0], 'source': [0], 'target': [1]}).set_index('id') nodes = pd.DataFrame({'id': np.unique(edges.values)}).set_index('id') node_positions = layout(nodes, edges) bundled = bundle(node_positions, edges) source, target = edges.iloc[0] expected_source = node_positions.loc[source] expected_target = node_positions.loc[target] actual_source = bundled.loc[0] actual_target = bundled.loc[len(bundled)-2] assert np.allclose(expected_source, actual_source) assert np.allclose(expected_target, actual_target) @pytest.mark.parametrize("include_edge_id", [True, False]) def test_directly_connect_with_weights(nodes, weighted_edges, include_edge_id): # Expect four lines starting at center (0.5, 0.5) and terminating # at a different corner and NaN data = pd.DataFrame({'edge_id': [1.0, 1.0, np.nan, 2.0, 2.0, np.nan, 3.0, 3.0, np.nan, 4.0, 4.0, np.nan], 'x': [0.0, -100.0, np.nan, 0.0, 100.0, np.nan, 0.0, -100.0, np.nan, 0.0, 100.0, np.nan], 'y': [0.0, 100.0, np.nan, 0.0, 100.0, np.nan, 0.0, -100.0, np.nan, 0.0, -100.0, np.nan]}) columns = ['edge_id', 'x', 'y'] if include_edge_id else ['x', 'y'] expected =
pd.DataFrame(data, columns=columns)
pandas.DataFrame
import pandas as pd import numpy as np import os #from urllib import urlopen # python2 #import urllib2 # python2 import urllib.request as urllib2 #import StringIO python2 from io import StringIO import gzip import pybedtools from pybedtools import BedTool from .gtf import GTFtoBED from .gtf import readGTF from .gtf import retrieve_GTF_field import sys def writeBED(inBED, file_path): """ Writes a bed dataframe into a bed file. Bed format: 'chrom','chromStart','chromEnd','name','score','strand' :param inBED: bed dataframe to be written. :param file_path: /path/to/file.bed :returns: nothing """ inBED.to_csv(file_path,index=None,sep="\t",header=None) def GetBEDnarrowPeakgz(URL_or_PATH_TO_file): """ Reads a gz compressed BED narrow peak file from a web address or local file :param URL_or_PATH_TO_file: web address of path to local file :returns: a Pandas dataframe """ if os.path.isfile(URL_or_PATH_TO_file): response=open(URL_or_PATH_TO_file, "r") compressedFile = StringIO.StringIO(response.read()) else: response = urllib2.urlopen(URL_or_PATH_TO_file) compressedFile = StringIO.StringIO(response.read()) decompressedFile = gzip.GzipFile(fileobj=compressedFile) out=decompressedFile.read().split("\n") out=[ s.split("\t") for s in out] out=
pd.DataFrame(out)
pandas.DataFrame
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from collections import UserList import io import pathlib import pytest import socket import threading import weakref import numpy as np import pyarrow as pa from pyarrow.tests.util import changed_environ try: from pandas.testing import assert_frame_equal, assert_series_equal import pandas as pd except ImportError: pass class IpcFixture: write_stats = None def __init__(self, sink_factory=lambda: io.BytesIO()): self._sink_factory = sink_factory self.sink = self.get_sink() def get_sink(self): return self._sink_factory() def get_source(self): return self.sink.getvalue() def write_batches(self, num_batches=5, as_table=False): nrows = 5 schema = pa.schema([('one', pa.float64()), ('two', pa.utf8())]) writer = self._get_writer(self.sink, schema) batches = [] for i in range(num_batches): batch = pa.record_batch( [np.random.randn(nrows), ['foo', None, 'bar', 'bazbaz', 'qux']], schema=schema) batches.append(batch) if as_table: table = pa.Table.from_batches(batches) writer.write_table(table) else: for batch in batches: writer.write_batch(batch) self.write_stats = writer.stats writer.close() return batches class FileFormatFixture(IpcFixture): is_file = True options = None def _get_writer(self, sink, schema): return pa.ipc.new_file(sink, schema, options=self.options) def _check_roundtrip(self, as_table=False): batches = self.write_batches(as_table=as_table) file_contents = pa.BufferReader(self.get_source()) reader = pa.ipc.open_file(file_contents) assert reader.num_record_batches == len(batches) for i, batch in enumerate(batches): # it works. Must convert back to DataFrame batch = reader.get_batch(i) assert batches[i].equals(batch) assert reader.schema.equals(batches[0].schema) assert isinstance(reader.stats, pa.ipc.ReadStats) assert isinstance(self.write_stats, pa.ipc.WriteStats) assert tuple(reader.stats) == tuple(self.write_stats) class StreamFormatFixture(IpcFixture): # ARROW-6474, for testing writing old IPC protocol with 4-byte prefix use_legacy_ipc_format = False # ARROW-9395, for testing writing old metadata version options = None is_file = False def _get_writer(self, sink, schema): return pa.ipc.new_stream( sink, schema, use_legacy_format=self.use_legacy_ipc_format, options=self.options, ) class MessageFixture(IpcFixture): def _get_writer(self, sink, schema): return pa.RecordBatchStreamWriter(sink, schema) @pytest.fixture def ipc_fixture(): return IpcFixture() @pytest.fixture def file_fixture(): return FileFormatFixture() @pytest.fixture def stream_fixture(): return StreamFormatFixture() @pytest.fixture(params=[ pytest.param( pytest.lazy_fixture('file_fixture'), id='File Format' ), pytest.param( pytest.lazy_fixture('stream_fixture'), id='Stream Format' ) ]) def format_fixture(request): return request.param def test_empty_file(): buf = b'' with pytest.raises(pa.ArrowInvalid): pa.ipc.open_file(pa.BufferReader(buf)) def test_file_simple_roundtrip(file_fixture): file_fixture._check_roundtrip(as_table=False) def test_file_write_table(file_fixture): file_fixture._check_roundtrip(as_table=True) @pytest.mark.parametrize("sink_factory", [ lambda: io.BytesIO(), lambda: pa.BufferOutputStream() ]) def test_file_read_all(sink_factory): fixture = FileFormatFixture(sink_factory) batches = fixture.write_batches() file_contents = pa.BufferReader(fixture.get_source()) reader = pa.ipc.open_file(file_contents) result = reader.read_all() expected = pa.Table.from_batches(batches) assert result.equals(expected) def test_open_file_from_buffer(file_fixture): # ARROW-2859; APIs accept the buffer protocol file_fixture.write_batches() source = file_fixture.get_source() reader1 = pa.ipc.open_file(source) reader2 = pa.ipc.open_file(pa.BufferReader(source)) reader3 = pa.RecordBatchFileReader(source) result1 = reader1.read_all() result2 = reader2.read_all() result3 = reader3.read_all() assert result1.equals(result2) assert result1.equals(result3) st1 = reader1.stats assert st1.num_messages == 6 assert st1.num_record_batches == 5 assert reader2.stats == st1 assert reader3.stats == st1 @pytest.mark.pandas def test_file_read_pandas(file_fixture): frames = [batch.to_pandas() for batch in file_fixture.write_batches()] file_contents = pa.BufferReader(file_fixture.get_source()) reader = pa.ipc.open_file(file_contents) result = reader.read_pandas() expected =
pd.concat(frames)
pandas.concat
""" Test for the normalization operation """ from datetime import datetime from unittest import TestCase import numpy as np import pandas as pd import pyproj import xarray as xr from jdcal import gcal2jd from numpy.testing import assert_array_almost_equal from xcube.core.gridmapping import GridMapping from xcube.core.new import new_cube from xcube.core.normalize import DatasetIsNotACubeError from xcube.core.normalize import adjust_spatial_attrs from xcube.core.normalize import decode_cube from xcube.core.normalize import encode_cube from xcube.core.normalize import normalize_coord_vars from xcube.core.normalize import normalize_dataset from xcube.core.normalize import normalize_missing_time # noinspection PyPep8Naming def assertDatasetEqual(expected, actual): # this method is functionally equivalent to # `assert expected == actual`, but it # checks each aspect of equality separately for easier debugging assert expected.equals(actual), (expected, actual) class DecodeCubeTest(TestCase): def test_cube_stays_cube(self): dataset = new_cube(variables=dict(a=1, b=2, c=3)) cube, grid_mapping, rest = decode_cube(dataset) self.assertIs(dataset, cube) self.assertIsInstance(grid_mapping, GridMapping) self.assertTrue(grid_mapping.crs.is_geographic) self.assertIsInstance(rest, xr.Dataset) self.assertEqual(set(), set(rest.data_vars)) def test_no_cube_vars_are_dropped(self): dataset = new_cube(variables=dict(a=1, b=2, c=3)) dataset = dataset.assign( d=xr.DataArray([8, 9, 10], dims='level'), crs=xr.DataArray(0, attrs=pyproj.CRS.from_string('CRS84').to_cf()), ) self.assertEqual({'a', 'b', 'c', 'd', 'crs'}, set(dataset.data_vars)) cube, grid_mapping, rest = decode_cube(dataset) self.assertIsInstance(cube, xr.Dataset) self.assertIsInstance(grid_mapping, GridMapping) self.assertEqual({'a', 'b', 'c'}, set(cube.data_vars)) self.assertEqual(pyproj.CRS.from_string('CRS84'), grid_mapping.crs) self.assertIsInstance(rest, xr.Dataset) self.assertEqual({'d', 'crs'}, set(rest.data_vars)) def test_encode_is_inverse(self): dataset = new_cube(variables=dict(a=1, b=2, c=3), x_name='x', y_name='y') dataset = dataset.assign( d=xr.DataArray([8, 9, 10], dims='level'), crs=xr.DataArray(0, attrs=pyproj.CRS.from_string('CRS84').to_cf()), ) cube, grid_mapping, rest = decode_cube(dataset) dataset2 = encode_cube(cube, grid_mapping, rest) self.assertEqual(set(dataset.data_vars), set(dataset2.data_vars)) self.assertIn('crs', dataset2.data_vars) def test_no_cube_vars_found(self): dataset = new_cube() self.assertEqual(set(), set(dataset.data_vars)) with self.assertRaises(DatasetIsNotACubeError) as cm: decode_cube(dataset, force_non_empty=True) self.assertEqual("No variables found with dimensions" " ('time', [...] 'lat', 'lon')" " or dimension sizes too small", f'{cm.exception}') def test_no_grid_mapping(self): dataset = xr.Dataset(dict(a=[1, 2, 3], b=0.5)) with self.assertRaises(DatasetIsNotACubeError) as cm: decode_cube(dataset) self.assertEqual("Failed to detect grid mapping:" " cannot find any grid mapping in dataset", f'{cm.exception}') def test_grid_mapping_not_geographic(self): dataset = new_cube(x_name='x', y_name='y', variables=dict(a=0.5), crs='epsg:25832') with self.assertRaises(DatasetIsNotACubeError) as cm: decode_cube(dataset, force_geographic=True) self.assertEqual("Grid mapping must use geographic CRS," " but was 'ETRS89 / UTM zone 32N'", f'{cm.exception}') class EncodeCubeTest(TestCase): def test_geographical_crs(self): cube = new_cube(variables=dict(a=1, b=2, c=3)) gm = GridMapping.from_dataset(cube) dataset = encode_cube(cube, gm) self.assertIs(cube, dataset) dataset = encode_cube(cube, gm, xr.Dataset(dict(d=True))) self.assertIsInstance(dataset, xr.Dataset) self.assertEqual({'a', 'b', 'c', 'd'}, set(dataset.data_vars)) def test_non_geographical_crs(self): cube = new_cube(x_name='x', y_name='y', crs='epsg:25832', variables=dict(a=1, b=2, c=3)) gm = GridMapping.from_dataset(cube) dataset = encode_cube(cube, gm, xr.Dataset(dict(d=True))) self.assertIsInstance(dataset, xr.Dataset) self.assertEqual({'a', 'b', 'c', 'd', 'crs'}, set(dataset.data_vars)) class TestNormalize(TestCase): def test_normalize_zonal_lat_lon(self): resolution = 10 lat_size = 3 lat_coords = np.arange(0, 30, resolution) lon_coords = [i + 5. for i in np.arange(-180.0, 180.0, resolution)] lon_size = len(lon_coords) one_more_dim_size = 2 one_more_dim_coords = np.random.random(2) var_values_1_1d = xr.DataArray(np.random.random(lat_size), coords=[('latitude_centers', lat_coords)], dims=['latitude_centers'], attrs=dict(chunk_sizes=[lat_size], dimensions=['latitude_centers'])) var_values_1_1d.encoding = {'chunks': (lat_size,)} var_values_1_2d = xr.DataArray(np.array([var_values_1_1d.values for _ in lon_coords]).T, coords={'lat': lat_coords, 'lon': lon_coords}, dims=['lat', 'lon'], attrs=dict(chunk_sizes=[lat_size, lon_size], dimensions=['lat', 'lon'])) var_values_1_2d.encoding = {'chunks': (lat_size, lon_size)} var_values_2_2d = xr.DataArray(np.random.random(lat_size * one_more_dim_size). reshape(lat_size, one_more_dim_size), coords={'latitude_centers': lat_coords, 'one_more_dim': one_more_dim_coords}, dims=['latitude_centers', 'one_more_dim'], attrs=dict(chunk_sizes=[lat_size, one_more_dim_size], dimensions=['latitude_centers', 'one_more_dim'])) var_values_2_2d.encoding = {'chunks': (lat_size, one_more_dim_size)} var_values_2_3d = xr.DataArray(np.array([var_values_2_2d.values for _ in lon_coords]).T, coords={'one_more_dim': one_more_dim_coords, 'lat': lat_coords, 'lon': lon_coords, }, dims=['one_more_dim', 'lat', 'lon', ], attrs=dict(chunk_sizes=[one_more_dim_size, lat_size, lon_size], dimensions=['one_more_dim', 'lat', 'lon'])) var_values_2_3d.encoding = {'chunks': (one_more_dim_size, lat_size, lon_size)} dataset = xr.Dataset({'first': var_values_1_1d, 'second': var_values_2_2d}) expected = xr.Dataset({'first': var_values_1_2d, 'second': var_values_2_3d}) expected = expected.assign_coords( lon_bnds=xr.DataArray([[i - (resolution / 2), i + (resolution / 2)] for i in expected.lon.values], dims=['lon', 'bnds'])) expected = expected.assign_coords( lat_bnds=xr.DataArray([[i - (resolution / 2), i + (resolution / 2)] for i in expected.lat.values], dims=['lat', 'bnds'])) actual = normalize_dataset(dataset) xr.testing.assert_equal(actual, expected) self.assertEqual(actual.first.chunk_sizes, expected.first.chunk_sizes) self.assertEqual(actual.second.chunk_sizes, expected.second.chunk_sizes) def test_normalize_lon_lat_2d(self): """ Test nominal execution """ dims = ('time', 'y', 'x') attrs = {'valid_min': 0., 'valid_max': 1.} t_size = 2 y_size = 3 x_size = 4 a_data = np.random.random_sample((t_size, y_size, x_size)) b_data = np.random.random_sample((t_size, y_size, x_size)) time_data = [1, 2] lat_data = [[10., 10., 10., 10.], [20., 20., 20., 20.], [30., 30., 30., 30.]] lon_data = [[-10., 0., 10., 20.], [-10., 0., 10., 20.], [-10., 0., 10., 20.]] dataset = xr.Dataset({'a': (dims, a_data, attrs), 'b': (dims, b_data, attrs) }, {'time': (('time',), time_data), 'lat': (('y', 'x'), lat_data), 'lon': (('y', 'x'), lon_data) }, {'geospatial_lon_min': -15., 'geospatial_lon_max': 25., 'geospatial_lat_min': 5., 'geospatial_lat_max': 35. } ) new_dims = ('time', 'lat', 'lon') expected = xr.Dataset({'a': (new_dims, a_data, attrs), 'b': (new_dims, b_data, attrs)}, {'time': (('time',), time_data), 'lat': (('lat',), [10., 20., 30.]), 'lon': (('lon',), [-10., 0., 10., 20.]), }, {'geospatial_lon_min': -15., 'geospatial_lon_max': 25., 'geospatial_lat_min': 5., 'geospatial_lat_max': 35.}) actual = normalize_dataset(dataset) xr.testing.assert_equal(actual, expected) def test_normalize_lon_lat(self): """ Test nominal execution """ dataset = xr.Dataset({'first': (['latitude', 'longitude'], [[1, 2, 3], [2, 3, 4]])}) expected = xr.Dataset({'first': (['lat', 'lon'], [[1, 2, 3], [2, 3, 4]])}) actual = normalize_dataset(dataset) assertDatasetEqual(actual, expected) dataset = xr.Dataset({'first': (['lat', 'long'], [[1, 2, 3], [2, 3, 4]])}) expected = xr.Dataset({'first': (['lat', 'lon'], [[1, 2, 3], [2, 3, 4]])}) actual = normalize_dataset(dataset) assertDatasetEqual(actual, expected) dataset = xr.Dataset({'first': (['latitude', 'spacetime'], [[1, 2, 3], [2, 3, 4]])}) expected = xr.Dataset({'first': (['lat', 'spacetime'], [[1, 2, 3], [2, 3, 4]])}) actual = normalize_dataset(dataset) assertDatasetEqual(actual, expected) dataset = xr.Dataset({'first': (['zef', 'spacetime'], [[1, 2, 3], [2, 3, 4]])}) expected = xr.Dataset({'first': (['zef', 'spacetime'], [[1, 2, 3], [2, 3, 4]])}) actual = normalize_dataset(dataset) assertDatasetEqual(actual, expected) def test_normalize_does_not_reorder_increasing_lat(self): first = np.zeros([3, 45, 90]) first[0, :, :] = np.eye(45, 90) ds = xr.Dataset({ 'first': (['time', 'lat', 'lon'], first), 'second': (['time', 'lat', 'lon'], np.zeros([3, 45, 90])), 'lat': np.linspace(-88, 88, 45), 'lon': np.linspace(-178, 178, 90), 'time': [datetime(2000, x, 1) for x in range(1, 4)]}).chunk( chunks={'time': 1}) actual = normalize_dataset(ds) xr.testing.assert_equal(actual, ds) def test_normalize_with_missing_time_dim(self): ds = xr.Dataset({'first': (['lat', 'lon'], np.zeros([90, 180])), 'second': (['lat', 'lon'], np.zeros([90, 180]))}, coords={'lat': np.linspace(-89.5, 89.5, 90), 'lon': np.linspace(-179.5, 179.5, 180)}, attrs={'time_coverage_start': '20120101', 'time_coverage_end': '20121231'}) norm_ds = normalize_dataset(ds) self.assertIsNot(norm_ds, ds) self.assertEqual(len(norm_ds.coords), 4) self.assertIn('lon', norm_ds.coords) self.assertIn('lat', norm_ds.coords) self.assertIn('time', norm_ds.coords) self.assertIn('time_bnds', norm_ds.coords) self.assertEqual(norm_ds.first.shape, (1, 90, 180)) self.assertEqual(norm_ds.second.shape, (1, 90, 180)) self.assertEqual(norm_ds.coords['time'][0], xr.DataArray(pd.to_datetime('2012-07-01T12:00:00'))) self.assertEqual(norm_ds.coords['time_bnds'][0][0], xr.DataArray(
pd.to_datetime('2012-01-01')
pandas.to_datetime
# -*- coding: utf-8 -*- # 検体検査結果データ(患者ごと)の読み込みと検体検査結果データ(検査項目ごと)の出力 # └→RS_Base_laboファイル # # 入力ファイル # └→患者マスターファイル   :name.csv # └→検体検査結果データファイル:患者ID.txt(例:101.txt,102.txt,103.txt・・・) # # Create 2017/07/09 : Update 2017/07/09 # Auther Katsumi.Oshiro import csv # csvモジュールの読み込み(CSVファイルの読み書き) import glob # globモジュールの読み込み(ファイル名のパターンマッチング) import pandas as pd # pandasモジュールの読み込み import os # osモジュールの読み込み print('# RS_Base_laboデータによる検体検査データの作成(START)') # 辞書(患者ID、生年月日)の作成 birth = {} # 患者マスター(name.csv)の読み込み count = 0 with open('../data/name.csv', 'r')as f: reader = csv.reader(f) for row in reader: # print(row[0],row[1],row[2],row[3]) birth.update({row[0]:row[3]}) count += 1 print('# 患者マスター読み込み件数--------->', count) # 辞書(birth):生年月日の検索テスト(患者ID:679) print('# 辞書テスト:患者ID:679の生年月日->', birth["679"]) # 年齢計算テスト(患者ID:679) today = int(pd.to_datetime('today').strftime('%Y%m%d')) birthday = int(pd.to_datetime(birth["679"]).strftime('%Y%m%d')) print('# 年齢テスト:患者ID:697の年齢----->', int((today - birthday)/ 10000)) # フォルダ内の検体検査ファイル名の取得(ワイルドカードが使用可能) txt_file = glob.glob('../data/labo/*.txt') blood = input('# 検体検査名を入力して下さい:') count = 0 # 検体検査結果ファイル(検査項目ごと)の作成 # 元データ:low[0]生年月日,low[1]患者ID,low[2]氏名,low[3]性別,low[5]検査項目名,low[6]判定,low[10]結果値) with open("../data/labo/" + blood + ".csv", "w") as f: writer = csv.writer(f, lineterminator='\n') header = [] header.append('患者ID') header.append('年齢') header.append('基準値(男)') header.append('基準値(女)') header.append('基準値以下(男)') header.append('基準値以下(女)') header.append('基準値以上(男)') header.append('基準値以上(女)') header.append('私') writer.writerow(header) for file_name in txt_file: with open(file_name, 'r')as f2: reader = csv.reader(f2) for low in reader: if low[5] == blood: writer = csv.writer(f, lineterminator='\n') listdata = [] listdata.append(low[1]) today = int(pd.to_datetime(low[0]).strftime('%Y%m%d')) birthday = int(
pd.to_datetime(birth[low[1]])
pandas.to_datetime
#!/usr/bin/env python # -*- coding: utf-8 -*- # In[211]: import uuid from pathlib import Path import pandas_profiling import numpy as np import pandas as pd import matplotlib.pyplot as plt import neptune.new as neptune import neptune.new.types import seaborn as sns import sklearn.ensemble import sklearn.metrics import sklearn.model_selection import sklearn.preprocessing import xgboost as xgb from IPython.display import display # In[5]: run_id = uuid.uuid4() # In[ ]: # Include source files. # source_files=["model.py", "prep_data.py"] # In[10]: run = neptune.init( name=f'run_{run_id}', # source_files=source_files, ) # In[13]: # https://numpy.org/doc/stable/reference/generated/numpy.set_printoptions.html np.set_printoptions(suppress=True) # Print floating point numbers using fixed point notation. # https://pandas.pydata.org/pandas-docs/stable/user_guide/options.html # Print out the full DataFrame repr for wide DataFrames across multiple lines.
pd.set_option('display.expand_frame_repr', True)
pandas.set_option
import datetime import math import os import glob import matplotlib.pyplot as plt import pandas as pd # Instructions at the bottom of the script if False: import matplotlib matplotlib.rcParams['interactive'] == True matplotlib.use('MacOSX') save = True only_agg = True fsize = (8, 6) plot_name = "DEFAULT" comp_with_flink = False no_title = True sort_sinks = True def extractInfo(sink_name: str, socket=''): prefix = 'sock ' + socket.split('socket')[1].split('_')[0] if socket else '' if 'flink' in sink_name: return prefix + ' flink ' + sink_name.split('_')[3] + ' f: ' + \ sink_name.split('%')[1] type = sink_name.split('_')[2] param_list = sink_name.split('%')[1:8] additions = param_list[0] removals = param_list[2] wait = param_list[4] fixed = param_list[6] if comp_with_flink: return prefix + ' ' + type + ' f:' + fixed else: return prefix + ' ' + type + ' a:' + additions + ' r:' + removals + ' ' \ 'w:' + wait + ' f:' + fixed def make_plot_name(prefix, newline=False): if no_title: return "" return prefix + ' ' + ' '.join(n for n in ' '.join(plot_name.split( 'V')).split(' ') if not n.isdecimal()) + '\n' if newline else '' def extractInfoWithNumber(sink_name: str): base = extractInfo(sink_name) return 'sink ' + sink_name.split('_')[1] + base def saveIfNeeded(plt, name, skip=False): if save and not skip: plt.savefig('chart_' + name + '.pdf', format='pdf', bbox_inches='tight') def should_take_sink(name: str): should = False for element in must_contain: if element in name: should = True for element in must_not_contain: if element in name: should = False return should def read_mulitple_dir(directories: list): l_df_sinks = [] l_df_sockets = [] l_matches = [] l_filenameSinks = [] l_filenameSockets = [] for dire in directories: a_df_sinks, a_df_sockets, a_matches, a_filenameSinks, a_filenameSockets = \ read_and_match_files(dire) l_df_sinks.extend(a_df_sinks) l_df_sockets.extend(a_df_sockets) l_matches.extend(a_matches) l_filenameSinks.extend(a_filenameSinks) l_filenameSockets.extend(a_filenameSockets) return l_df_sinks, l_df_sockets, l_matches, l_filenameSinks, l_filenameSockets def read_and_match_files(directory: str): run_dir = r"~/hdes-data/" + directory filenameSockets = sorted([file for file in glob.glob( os.path.expanduser(run_dir) + os.sep + 'socket*')]) filenameSinks = sorted([file for file in glob.glob( os.path.expanduser(run_dir) + os.sep + 'sink*')]) matches = [] for sourceName in filenameSockets: sourceTime = list(map(int, sourceName.split('_')[-1][0:-4].split('-'))) sourceTime = datetime.datetime(2020, 1, 1, sourceTime[0], sourceTime[ 1], sourceTime[2]).timestamp() candidate = filenameSinks[0] candidateTime = list( map(int, candidate.split('_')[-1][1:-4].split('-'))) candidateTime = datetime.datetime(2020, 1, 1, candidateTime[0], candidateTime[ 1], candidateTime[2]).timestamp() for name in filenameSinks[1:]: time = list(map(int, name.split('_')[-1][1:-4].split('-'))) time = datetime.datetime(2020, 1, 1, time[0], time[ 1], time[2]).timestamp() if math.fabs(sourceTime - time) < math.fabs( sourceTime - candidateTime): candidateTime = time candidate = name matches.append((candidate, sourceName)) print('Sockets and Matches:', matches) df_sockets = [] remaining_matches = [] for sinkFile, socketFile in matches: if should_take_sink(sinkFile): try: df_sockets.append( pd.read_csv(socketFile, header=0, sep=",", dtype={ 'seconds': 'Int64', 'events': 'Int64'})) except Exception as e: matches = [m for m in matches if socketFile not in m] print('Skipped ', socketFile) print(e) remaining_matches.append((sinkFile, socketFile)) matches = remaining_matches # Event Time, Processing Time, Ejection Time df_sinks = [] existingSinks = [] for sinkFile in filenameSinks: if should_take_sink(sinkFile): try: if 'flink' in sinkFile: flink_df = pd.read_csv(sinkFile, header=None, names=['eventTime', 'processingTime', 'ejectionTime' ], sep=",", dtype={ 'eventTime': 'Int64', 'processingTime': 'Int64', 'ejectionTime': 'Int64'})[:-1] if flink_df.shape[0] > 0: df_sinks.append(flink_df) else: raise Exception("empty csv") else: df_sinks.append( pd.read_csv(sinkFile, header=0, sep=",", dtype={ 'eventTime': 'Int64', 'processingTime': 'Int64', 'ejectionTime': 'Int64'})[:-1]) existingSinks.append(sinkFile) except Exception as e: print('Skipped ', sinkFile) print(e) filenameSinks = existingSinks matches = [extractInfo(m, sock) for m, sock in matches] print(matches) return df_sinks, df_sockets, matches, filenameSinks, filenameSockets # Ingested Tuples sum def ingested_tuples_sum(): sum = {'name': [], 'events': []} for df, name, match in zip(df_sockets, filenameSockets, matches): sum['name'].append(match) sum['events'].append(df['events'].sum()) sumdf = pd.DataFrame(sum) sumdf.plot(kind='bar', x='name', y='events', title=make_plot_name('#Ingested Tuples')) plt.ylabel('#events') saveIfNeeded(plt, 'IngestedTuples') plt.show() def ingested_tuples_sum_collapsed_bar(): sums = {} for df, name, match in zip(df_sockets, filenameSockets, matches): if sums.get(match[6:]) is not None: new_df = sums[match[6:]] + df['events'] sums[match[6:]] = new_df else: sums[match[6:]] = df['events'] sumdf = pd.DataFrame.from_dict(sums) sumdf.plot(kind='bar', title=make_plot_name('#Ingested Tuples')) plt.ylabel('Events per second') plt.title(make_plot_name('Events per second')) saveIfNeeded(plt, 'IngestedTuplesBar' + plot_name) plt.show() # Ingested Tuples sum def ingested_tuples_sum_collapsed_box(): sums = {} for df, name, match in zip(df_sockets, filenameSockets, matches): if sums.get(match[6:]) is not None: new_df = sums[match[6:]] + df['events'] sums[match[6:]] = new_df else: sums[match[6:]] = df['events'] sumdf = pd.DataFrame.from_dict(sums) sumdf.boxplot(rot=90, showfliers=False) plt.ylabel('Events per second') plt.title(make_plot_name('Events per second', True)) saveIfNeeded(plt, 'IngestedTuples' + plot_name) plt.show() # Ejected Tuples sum def ejected_tuples_sum(): sum = {'name': [], 'events': []} for df, name in zip(df_sinks, filenameSinks): sum['name'].append(extractInfoWithNumber(name)) sum['events'].append(df['ejectionTime'].count() * 1000) sumdf = pd.DataFrame(sum) sumdf.plot(kind='bar', x='name', y='events', title='#Resulting Tuples') plt.ylabel('avg_events/sec') saveIfNeeded(plt, 'resultingTuples' + plot_name) plt.show() # Comparison average ingested tuples def avg_ingested_tup_comp(): ax = None for df, name, match in zip(df_sockets, filenameSockets, matches): appendix = match df['avg15 ' + appendix] = df['events'].rolling(15).mean() df[appendix] = df['events'] df = df[[appendix, 'avg15 ' + appendix]] ax = df.plot(kind="line", title="Throughput", ax=ax, figsize=fsize) plt.ylabel('#events') plt.xlabel('seconds') plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.10), ncol=3) saveIfNeeded(plt, 'ThroughputComp' + plot_name) plt.show() def throughput_diagramm(): ax = None temp = {} for df, name, match in zip(df_sockets, filenameSockets, matches): appendix = match[7:] df[appendix] = df['events'] df = df[[appendix]][:301] if temp.get(appendix) is not None: combined_df = temp.get(appendix) + df ax = combined_df.plot(kind="line", title=make_plot_name( "Throughput"), ax=ax, figsize=fsize) elif 'map' in appendix or 'filter' in appendix or 'Filter' in appendix: ax = df.plot(kind="line", title=make_plot_name("Throughput"), ax=ax, figsize=fsize) else: temp[appendix] = df plt.ylabel('#events') plt.xlabel('seconds') plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.10), ncol=3) saveIfNeeded(plt, 'ThroughputComp' + plot_name) plt.show() def throughput_rolling_average(rolling_avg): ax = None temp = {} for df, name, match in zip(df_sockets, filenameSockets, matches): appendix = match[7:] df['avg15 ' + appendix] = df['events'].rolling(rolling_avg).mean() df = df[['avg15 ' + appendix]][:301] if temp.get(appendix) is not None: combined_df = temp.get(appendix) + df ax = combined_df.plot(kind="line", title=make_plot_name( "Throughput"), ax=ax, figsize=fsize) else: temp[appendix] = df plt.ylabel('#events') plt.xlabel('seconds') plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.10), ncol=3) saveIfNeeded(plt, 'ThroughputComp' + plot_name) plt.show() # Latency comparision between runs def latency_comp(etl=True, ptl=True): ax = None if sort_sinks: for sink in df_sinks: if ptl: sink.sort_values(['processingTime'], inplace=True) sink['time'] = (sink['processingTime'] - sink['processingTime'][ 0]) / 1_000 if etl: sink.sort_values(['eventTime'], inplace=True) sink['time'] = (sink['eventTime'] - sink['eventTime'][ 0]) / 1_000 for df, name in zip(df_sinks, filenameSinks): df['etl'] = df['ejectionTime'] - df['eventTime'] df['ptl'] = df['ejectionTime'] - df['processingTime'] # df['time'] = (df['ejectionTime'] - df['ejectionTime'][0]) / 1_000 y = ['etl'] if etl else [] y = y + ['ptl'] if ptl else y label = [l + extractInfo(name) for l in y] df = df[df['time'] < 301] df = df[df['time'] >= 0] ax = df.plot(kind="line", y=y, label=label, title=make_plot_name('Latency'), x='time', ax=ax, figsize=fsize) plt.ylabel('latency in milliseconds') plt.xlabel('runtime in seconds') plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.10), ncol=2) saveIfNeeded(plt, 'Latency' + plot_name) plt.show() def latency_comp_box(): final_df = pd.DataFrame() for df, name in zip(df_sinks, filenameSinks): df['eventTimeLatency'] = df['ejectionTime'] - df['eventTime'] df['processingTimeLatency'] = df['ejectionTime'] - df['processingTime'] final_df['etl' + extractInfo(name)] = df['eventTimeLatency'] final_df['ptl' + extractInfo(name)] = df[ 'processingTimeLatency'] final_df.boxplot(rot=90, showfliers=False) plt.ylabel('Latency in milliseconds') plt.title(make_plot_name('Latencies', True)) saveIfNeeded(plt, 'PLatency-Box' + plot_name) plt.show() def latency_comp_box_etl(): final_df =
pd.DataFrame()
pandas.DataFrame
import MELC.utils.myFiles as myF import pandas as pd from os.path import join import cv2 import tifffile as tiff from numpy import unique, where from config import * import sys SEPARATOR = '/' class RawDataset: """RawDataset loader. works with RAW folder structure of MELC images. Basicaly only one thing it does is that creates pandas DataFrame with the list of the files in the folder/bleach and folder/source This class is used in another function for converting raw data to the raw-melc structured folder into standardized uint16 tiff files Example: from myFiles import RawDataset path = "root/data/MELC" dataset = RawDataset(path) dataframe = dataset.merged() """ def __init__(self, path_raw_data): f_source, c_source = self.get_dataFrame_MELCraw(join(path_raw_data, 'source')) f_bleach, c_bleach = self.get_dataFrame_MELCraw(join(path_raw_data, 'bleach')) source_raw_pd = pd.DataFrame(f_source) source_raw_pd[1] = pd.DataFrame(c_source) bleach_raw_pd = pd.DataFrame(f_bleach) bleach_raw_pd[1] = pd.DataFrame(c_bleach) self.merged_pd = pd.concat([source_raw_pd, bleach_raw_pd]) self.merged_pd = self.merged_pd.reset_index(drop=True) def get_dataFrame_MELCraw(self, path_raw_data): files_png, creation_times = myF.get_files(path_raw_data, ('png')) files_pd = pd.DataFrame(files_png) creation_times =
pd.DataFrame(creation_times)
pandas.DataFrame
import pandas as _pd import warnings from apodeixi.text_layout.excel_layout import Palette from apodeixi.util.a6i_error import ApodeixiError from apodeixi.util.dataframe_utils import DataFrameUtils, TupleColumnUtils from apodeixi.util.time_buckets import FY_Quarter from apodeixi.util.warning_utils import WarningUtils class ReportWriterUtils(): ''' Utility class aiming to provide common methods for writing Excel reports ''' def __init__(self): # We call self.write_report multiple times, and want each subsequent time to never shrink columns to # less than previously set. # That is the purpose of this dictionary # # Keys are ints (column number starting at 0), and values are floats (column width) self.remembered_column_widths = {} def _set_column_width(self, parent_trace, report_ws, column_nb, width): ''' Helper method. Wraps the corresponding xlsxwriter method by "remembering" widths and making sure they are never less than what might have been previously set as the width for the column in question. This comes handy when multiple DataFrames are reported on the same worksheet. @column_nb An int, representing a column number, starting at 0 @width A float, representing the width of a column ''' if column_nb in self.remembered_column_widths.keys(): prior_width = self.remembered_column_widths[column_nb] width_to_use = max(width, prior_width) else: width_to_use = width self.remembered_column_widths[column_nb] = width_to_use report_ws.set_column(column_nb, column_nb, width_to_use) def write_report(self, parent_trace, report_df, column_widths, workbook, sheet, description, x_offset=0, y_offset=0): ''' Helper method used as part of the process to create one or more reports in an Excel file. The caller determines how many worksheets the Excel file should have, and is reponsible for persisting the Excel file. This method helps with the portion of that process that populates the contents of one of the worksheets, i.e., one report. Thus the caller is expected to have initialized the an xlsxwriter.Workbook object, to which a call to this method results in adding and populating a worksheet. After this method returns, the caller is responsible for saving the `workbook` object. The content for the report populated by this method comes from `data`, with headers taken from `columns` The amount of space taken by the report is (N + 2) * (M + 1), where: * N is the number of rows in `report_df`. Two additioal rows are added at the top: for the description, and the columns. * M is the number of columns. An additional column is added on the left, for the index of `report_df` @param report_df A DataFrame, whose contents are to be written into Excel @param column_widths: A list of floats, whose length must equal the number of elements in `columns`. They determine how wide each of the Excel columns should be @param workbook An xlsxwriter.Workbook object, to which the report must be added in a dedicated worksheet @param sheet A string, corresponding to the name in the `workbook` into which the report must be written @param description A string, used to give a description of the report. Example: "big-rock_v1-v2_diff". @param x_offset The first Excel column with content for this report. Defaults to 0. @param y_offset The first Excel column for the content of this report. Defaults to 0. ''' ROOT_FMT = {'text_wrap': True, 'valign': 'top', 'border': True, 'border_color': Palette.WHITE} HEADER_FMT = ROOT_FMT | {'bold': True, 'font_color': Palette.WHITE, 'align': 'center','border_color': Palette.WHITE, 'right': True, 'fg_color': Palette.DARK_BLUE} header_format = workbook.add_format(HEADER_FMT) report_ws = workbook.get_worksheet_by_name(sheet) if report_ws == None: report_ws = workbook.add_worksheet(sheet) report_ws.set_zoom(85) contextual_trace = parent_trace.doing("Writing a report", data = {"description": str(description), "sheet": str(sheet)}) my_trace = contextual_trace.doing("Writing out the description") if True: fmt_dict ={'bold': True, 'font_color': Palette.DARK_BLUE} fmt = workbook.add_format(fmt_dict) self._write_val( parent_trace = my_trace, ws = report_ws, x = x_offset + 1, y = y_offset, val = description, fmt = fmt) my_trace = contextual_trace.doing("Extracting data and row labels") if True: # GOTCHA - # For some reports, the index is not an integer. If we do DataFrame.iterrows(), # the "index" row[0] might be a string, not an int, as we need for the "idx%s" remainder logic to alternate # row colors. # So we do a prepartory loop to get the row data into a list of series objects, and another loop on a # list so we have integer indexing as we count row numbers data_rows = [] # A list of series, one per row row_labels = [] for row in report_df.iterrows(): data_rows.append(row[1]) row_labels.append(str(row[0])) labels_width = max([len(label) for label in row_labels]) * 1.1 # Make enough room for the row labels #report_ws.set_column(x_offset, x_offset, labels_width) self._set_column_width(parent_trace, report_ws, x_offset, labels_width) my_trace = contextual_trace.doing("Writing out columns") columns = list(report_df.columns) # Check if we have a multi-level index if type(columns[0]) == tuple: nb_levels = len(columns[0]) y_offset += nb_levels - 1 if True: # Write the headers. for idx in range(len(columns)): #report_ws.set_column(idx + x_offset + 1, idx + x_offset + 1, column_widths[idx]) self._set_column_width(parent_trace, report_ws, idx + x_offset + 1, column_widths[idx]) col = columns[idx] if type(col) == tuple: for level in range(nb_levels): self._write_val( parent_trace = my_trace, ws = report_ws, x = idx + x_offset + 1, y = y_offset + 2 - nb_levels + level, val = col[level], fmt = header_format) else: self._write_val( parent_trace = my_trace, ws = report_ws, x = idx + x_offset + 1, y = y_offset + 1, val = col, fmt = header_format) my_trace = contextual_trace.doing("Writing the rows") if True: for idx in range(len(data_rows)): row = data_rows[idx] # First write the row label self._write_val( parent_trace = my_trace, ws = report_ws, x = x_offset, y = idx + y_offset + 2, val = row_labels[idx], fmt = header_format) # Now write the "real" columns for jdx in range(len(columns)): col = columns[jdx] val = row[col] clean_val = DataFrameUtils().clean(val) fmt_dict = ROOT_FMT.copy() if idx%2 == 0: fmt_dict |= {'bg_color': Palette.LIGHT_BLUE} fmt = workbook.add_format(fmt_dict) # GOTCHA # # For some reports (e.g., diffs of manifests), the clean_val might be a "field name", i.e., the column in # a DataFrame's column for a manifest being diff-ed. # In such cases, clean_val might be a tuple if it is a MultiLevel column in the manifest's DataFrame. # If so, covert it to a string to avoid errors writing it out. # if type(clean_val) == tuple: clean_val = str(clean_val) self._write_val( parent_trace = my_trace, ws = report_ws, x = jdx + x_offset + 1, y = idx + y_offset + 2, val = clean_val, fmt = fmt) def _write_val(self, parent_trace, ws, x, y, val, fmt): ''' Helper method to wrap xlsxwriter in order to catch its Exceptions ''' try: ws.write(y, x, val, fmt) except Exception as ex: raise ApodeixiError(parent_trace, "Unable to write value to Excel", data = {"x": str(x), "y": str(y), "val": str(val), "error": str(ex)}) class TimebucketDataFrameJoiner(): ''' Utility class to join DataFrames so that timebuckets are grouped together and sorted, and return the resulting DataFrame For example, imagine having three DataFrames: * A DataFrame of sales regions - columns are strings like "Region", "Country" * A DataFrame of sales targets for 2 years - columns are tuples for timebuckets, like ("Q1", "FY23"), ...., ("Q4", "FY24) * A DataFrame of sales actuals for 3 quarters- columns are tuples like ("Q1", "FY23"), ..., ("Q3", "FY23") Morever, assume that the DataFrames for sales targets and actuals either have the same index as the DataFrame for sales regions, or else have a foreign key pointing to the sales regions (as a not necessarily injection, i.e., some regions may lack a sales target or actual) Then this class provides functionality to "merge" all these 3 DataFrames into 1 DataFrame with columns that are 2-level tuples, returning someting that looks like this: | Q1 FY23 | Q2 FY23 | Q3 FY23 | Q4 FY23 | Q1 FY24 | Q2 FY24 | Q3 FY24 | Q4 FY24 Region | Country | Target | Actual | Target | Actual | Target | Actual | Target | Target | Target | Target | Target ============================================================================================================================= | | | | | | | | | | | | In particular: * Timebuckets are standardized. If they are provided as tuples, they are turned into strings * A lower level (like "Target" and "Actual") can be introduced by the caller. The caller can also introduce "higher levels" and the standard grouping semantics are enforced: lower-levels are grouped within the same time bucket, whereas time buckets are grouped per higher level value, if higher levels are provided. * Timebuckets may be provided as size-2 tuples or as size-1 tuples or as strings * The non-timebucket columns are made to appear to the left, as the first columns @param reference_df A DataFrame none of whose columns are for a timebucket. All columns must be strings. @param link_field May be None. If not null, must be a column of `reference_df` (i.e., a string) such that "could be used as an index", in the sense that all rows of `reference_df` have a different value for this column. @param timebucket_df_list A list of DataFrames all of which have only timebucket columns. A "timebucket column" can be either a string or a tuple whole last 1 or 2 levels can be parsed as a FY_Quarter object. Valid examples: "Q2 FY23", "FY 2025", ("Q2", "FY 24"), ("Q2 FY22"). The index for all these DataFrames must be the same (or a subset) of the index of `reference_df`, or else must contain a column whose name equals the `link_field` parameter, and which has unique values per row. @param timebucket_df_lower_tags May be None. If not null, must be a list of the same length as `timebucket_df_list`, all of it strings or all of it tuples of strings of the same size. @param timebucket_df_upper_tags May be None. If not null, must be a list of the same length as `timebucket_df_list`, all of it strings or all of it tuples of strings of the same size. @param a6i_config Apodeixi configuration. @return A DataFrame ''' def __init__(self, parent_trace, reference_df, link_field, timebucket_df_list, timebucket_df_lower_tags, timebucket_df_upper_tags, a6i_config): standardizer = TimebucketStandardizer() my_trace = parent_trace.doing("Validating inputs provided to TimebucketDataFrameJoiner") if True: # Check reference_df is a DataFrame if not type(reference_df) == _pd.DataFrame: raise ApodeixiError(my_trace, "Bad reference_df provided: it should be a DataFrame, not a '" + str(type(reference_df)) + "'") # Check no column of reference_df is a timebucket bad_cols = [col for col in reference_df.columns if standardizer.is_a_timebucket_column(my_trace, col, a6i_config)] if len(bad_cols) > 0: raise ApodeixiError(my_trace, "Invalid reference DataFrame provided: it contains some timebucket columns, but it " + "shouldn't", data = {"ts_cols": str(bad_cols)}) # Check every column of reference_df is a string bad_cols = [col for col in reference_df.columns if not type(col)==str] if len(bad_cols) > 0: raise ApodeixiError(my_trace, "Invalid reference DataFrame provided: it contains some non-string columns, but it " + "shouldn't", data = {"ts_cols": str(bad_cols)}) # Check link_field is either null or is a valid column of reference_df if link_field != None and not link_field in reference_df.columns: raise ApodeixiError(my_trace, "Invalid link field provided: it should be a column in reference DataFrame ", data = {"link_field": str(link_field), "reference_df.columns": str(reference_df.columns)}) # Check timebucket_df_list is a list if type(timebucket_df_list) != list: raise ApodeixiError(my_trace, "Invalid timebucket_df_list provided: should be a list, not a '" + str(type(timebucket_df_list)) + "'") # Check timebucket_df_list is not empty list if len(timebucket_df_list) == 0: raise ApodeixiError(my_trace, "Invalid timebucket_df_list provided: it is emtpy, and it shouldn't") # Check timebucket_df_lower_tags is a list if timebucket_df_lower_tags !=None and type(timebucket_df_lower_tags) != list: raise ApodeixiError(my_trace, "Invalid timebucket_df_lower_tags provided: should be a list, not a '" + str(type(timebucket_df_lower_tags)) + "'") # Check timebucket_df_upper_tags is a list if timebucket_df_upper_tags != None and type(timebucket_df_upper_tags) != list: raise ApodeixiError(my_trace, "Invalid timebucket_df_upper_tags provided: should be a list, not a '" + str(type(timebucket_df_upper_tags)) + "'") # Check timebucket_df_lower_tags are unique if timebucket_df_lower_tags !=None and len(timebucket_df_lower_tags) != len(set(timebucket_df_lower_tags)): raise ApodeixiError(my_trace, "Invalid timebucket_df_lower_tags provided: it has duplicates, and shouldn't: '" + str(timebucket_df_lower_tags) + "'") # Check timebucket_df_upper_tags are unique if timebucket_df_upper_tags !=None and len(timebucket_df_upper_tags) != len(set(timebucket_df_upper_tags)): raise ApodeixiError(my_trace, "Invalid timebucket_df_upper_tags provided: it has duplicates, and shouldn't: '" + str(timebucket_df_upper_tags) + "'") # Check all members of timebucket_df_list are DataFrames bad_list = [elt for elt in timebucket_df_list if type(elt) != _pd.DataFrame] if len(bad_list) > 0: raise ApodeixiError(my_trace, "Invalid timebucket_df_list provided: some elements are not DataFrames. " + "Instead they are " + ", ".join([str(type(elt)) for elt in bad_list])) # Check all columns for members of timebucket_df_list are timebuckets, except for the linkfield, if it exists for df in timebucket_df_list: for col in df.columns: if self._is_a_link_column(col, link_field): # Skip if col "is" the linkfield, where "is" must be tuple-sensitive (i.e., maybe the last level of col # is the link_field) continue flattened_col, timebucket, timebucket_indices = standardizer.standardizeOneTimebucketColumn(my_trace, raw_col = col, a6i_config = a6i_config, expected_collapsing_info = None) if timebucket == None: raise ApodeixiError(my_trace, "Invalid timebucket_df_list: all columns of all DataFrames should be " + "timebuckets, but at least one column is not: '" + str(col) + "'") if type(flattened_col) == tuple and max(timebucket_indices) < len(flattened_col) - 1: raise ApodeixiError(my_trace, "Invalid timebucket_df_list: at least 1 DataFrame has a column " + "has lower levels below the timebucket levels: '" + str(col) + "'") # Check all members of timebucket_df_list contain the link_field, if it is set if link_field != None: for df in timebucket_df_list: if len([col for col in df.columns if self._is_a_link_column(col, link_field)]) == 0: raise ApodeixiError(my_trace, "Invalid link_field '" + str(link_field) + "' : it is not present " + "as a column in at least some of the input dataframes supposed to join on that field", data = {"dataframe columns": str(df.columns)}) if len([col for col in df.columns if self._is_a_link_column(col, link_field)]) > 1: raise ApodeixiError(my_trace, "Invalid link_field '" + str(link_field) + "' : it present " + "in multiple columns in at least some of the input dataframes supposed to join " + "on that field (should be present in exactly 1 column", data = {"dataframe columns": str(df.columns)}) # Check tags lists (if not null) are of the right length if timebucket_df_lower_tags != None and len(timebucket_df_lower_tags) != len(timebucket_df_list): raise ApodeixiError(my_trace, "Invalid timebucket_df_lower_tags: size does not match that of timebucket_df_list", data = {"len(timebucket_df_lower_tags)": str(len(timebucket_df_lower_tags)), "len(timebucket_df_list)": str(len(timebucket_df_list))}) if timebucket_df_upper_tags != None and len(timebucket_df_upper_tags) != len(timebucket_df_list): raise ApodeixiError(my_trace, "Invalid timebucket_df_upper_tags: size does not match that of timebucket_df_list", data = {"len(timebucket_df_upper_tags)": str(len(timebucket_df_upper_tags)), "len(timebucket_df_list)": str(len(timebucket_df_list))}) # Check tag lists (if not null) are of the same number of MultiIndex levels if timebucket_df_lower_tags != None: tag_lengths = [len(tag) if type(tag)==tuple else 0 for tag in timebucket_df_lower_tags] tag_lengths = list(set(tag_lengths)) # Remove duplicates if len(tag_lengths) != 1: raise ApodeixiError(my_trace, "Invalid timebucket_df_lower_tags: there are tags of various lengths", data = {"tag_lengths": str(tag_lengths)}) if timebucket_df_upper_tags != None: tag_lengths = [len(tag) if type(tag)==tuple else 0 for tag in timebucket_df_upper_tags] tag_lengths = list(set(tag_lengths)) # Remove duplicates if len(tag_lengths) != 1: raise ApodeixiError(my_trace, "Invalid timebucket_df_upper_tags: there are tags of various lengths", data = {"tag_lengths": str(tag_lengths)}) self.reference_df = reference_df self.link_field = link_field self.timebucket_df_list = timebucket_df_list self.timebucket_df_lower_tags = timebucket_df_lower_tags self.timebucket_df_upper_tags = timebucket_df_upper_tags self.a6i_config = a6i_config BINARY_OPERATION = "BINARY_OPERATION" UNARY_OPERATION = "UNARY_OPERATION" CUMULATIVE_OPERATION = "CUMULATIVE_OPERATION" def _is_a_link_column(self, col, link_field): ''' Helper method that returns a boolean, determining if a DataFrame's column `col` "is" the link_field, where "is linke field" is interpreted in a tuple-sensitive way: ie, a column `col` is considered to be the `link_field` if either * col == link_field * or col is a tuple and link_field is col's last level @param col A DataFrame's column @param link_field A string ''' if col==link_field or (type(col)==tuple and col[-1]==link_field): return True else: return False def _untuple_link_column(self, parent_trace, df): ''' Returns a DataFrame almost identical to the input `df`, except that it might rename "the link_field column" of df, if self.link_field is not null, so that it is a string in the event it is a tuple. Example: Suppose the link_field is "Country". Because of how Pandas reads Excel into DataFrames such as `df`, it is possible that in `df` the column is held as a tuple, like ("", "", Country). In that case, that thuple column is replaced by a string column "Country" ''' if self.link_field == None: # Nothing to do return df matching_columns = [col for col in df.columns if self._is_a_link_column(col, self.link_field)] if len(matching_columns) == 0: # No column to rename return df elif len(matching_columns) > 1: raise ApodeixiError(parent_trace, "Invalid DataFrame provided: multiple columns can be considered to have " + "the link field '" + self.link_field + "'", data = {"df columns": str(df.columns)}) original_link_field_col = matching_columns[0] # Now replace the column of df from possibly ("", "Country") to "Country" (see comments in Example above) cleaned_df = df.copy() cleaned_df.columns = [col if col != original_link_field_col else self.link_field for col in df.columns] return cleaned_df def enrich_with_tb_binary_operation(self, parent_trace, a_ltag, b_ltag, c_ltag, func): ''' Used to compute derived DataFrames. Example use case: suppose that self.timebucket_df_list has two DataFrames, with lower tags called "Sales Target", "Sales Actual". Then this methoc can be used to derive a third DataFrame which the caller (via the c_ltag) can choose to tag as "% Target Achieved", computed (via the `func` function parameter) as the ration of actuals to targets, row-by-row. More generally: This method enlarges self.timebucket_df_list by adding 1 additional DataFrame C_df, derived from two of the pre-existing DataFrames A_df, B_df already in self.timebucket_df_list, so that the following holds true: 1) A_df is the unique member self.timebucket_df_list[idx] such that a_ltag = self.timebucket_df_lower_tags[idx] 2) Same as 1), but for B_df and b_ltag 3) For each timebucket column col in both A_df, and B_df, C_df[col] = func(A_df[col], B_df[col]) 4) If self.link_field is not null, then C_df[link_field] = A_df[link_field] 5) If A_df and B_df don't have the "same rows", then the above hold true with A_df, B_df replaced by the intersection of rows both in A_df and B_df. By "same rows" we mean: rows where A_df, B_df have the same value for self.link_field or, if self._link_field is null, rows with the same index value. It also enriches self.timebucket_df_lower_tags by adding c_ltag for C_df @param a_ltag A string, which must belong to self.timebucket_df_lower_tags, and the latter must not be null @param b_ltag A string, which must belong to self.timebucket_df_lower_tags, and the latter must not be null @param c_ltag A string that should be used as a lower tag for the result. It must not already exist in self.timebucket_df_lower_tags, and it is appended to the latter, increasing its size by 1. @func A function that takes 3 arguments: a FunctionalTrace object, and two Pandas series, and returns a third series. The function may assume that both input series have the same index. ''' with warnings.catch_warnings(record=True) as w: WarningUtils().turn_traceback_on(parent_trace, warnings_list=w) my_trace = parent_trace.doing("Checking if a_ltag is valid") if True: if not a_ltag in self.timebucket_df_lower_tags: raise ApodeixiError(my_trace, "Can't use tag '" + str(a_ltag) + "' to identify which DataFrame to use as an " + " enrichment input because " + "tag is not in valid list of tags", data = {"allowed tags": str(self.timebucket_df_lower_tags)}) my_trace = parent_trace.doing("Identifying a_df") if True: a_idx = self.timebucket_df_lower_tags.index(a_ltag) a_df = self.timebucket_df_list[a_idx] self._enrich_with_tb_operation(parent_trace, a_df = a_df, b_ltag = b_ltag, c_ltag = c_ltag, func = func, operation_type = self.BINARY_OPERATION, ref_column = None) WarningUtils().handle_warnings(parent_trace, warning_list=w) return def enrich_with_tb_unary_operation(self, parent_trace, ref_column, b_ltag, c_ltag, func): ''' Used to compute derived DataFrames. Example use case: suppose that self.reference_df has a column called "Journey Target", to represent how many modernization tasks to do over the course of a multi-year modernization program. And suppose self.timebucket_df_list contains a DataFrame (identified by lower tag b_ltag) with quarterly targets for such tasks. Then this this methoc can be used to derive another DataFrame corresponding to "% Target Achieved", computed (via the `func` function parameter) as the ration of actuals to targets, row-by-row. This derived DataFrame would get a lower tag given by c_ltag. More generally: This method enlarges self.timebucket_df_list by adding 1 additional DataFrame C_df, derived from self.reference_df and from a pre-existing DataFrame ref_df, B_df already in self.timebucket_df, so that the following holds true: 1) ref_column is a column in self.reference_df 2) B_df is the unique member self.timebucket_df_list[idx] such that b_ltag = self.timebucket_df_lower_tags[idx] 3) For each timebucket column col in B_df, C_df[col] = func(self.reference_df[ref_column], B_df[col]) 4) If self.link_field is not null, then C_df[link_field] = A_df[link_field] 5) If self.reference_df and B_df don't have the "same rows", then the above hold true with self.reference_df, B_df replaced by the intersection of rows both in self.reference_df and B_df. By "same rows" we mean: rows where self.reference_df, B_df have the same value for self.link_field or, if self._link_field is null, rows with the same index value. It also enriches self.timebucket_df_lower_tags by adding c_ltag for C_df @param ref_column A string, which must be a column in self.reference_df @param b_ltag A string, which must belong to self.timebucket_df_lower_tags, and the latter must not be null @param c_ltag A string that should be used as a lower tag for the result. It must not already exist in self.timebucket_df_lower_tags, and it is appended to the latter, increasing its size by 1. @func A function that takes 3 arguments: a FunctionalTrace object, and two Pandas series, and returns a third series. The function may assume that both input series have the same index. ''' with warnings.catch_warnings(record=True) as w: WarningUtils().turn_traceback_on(parent_trace, warnings_list=w) if not ref_column in self.reference_df.columns: raise ApodeixiError(parent_trace, "Can't apply unary operation to enrich DataFrames list because '" + str(ref_column) + "' is not a valid column for self.reference_df", data = {"valid columns": str(self.reference_df.columns)}) self._enrich_with_tb_operation(parent_trace, a_df = self.reference_df, b_ltag = b_ltag, c_ltag = c_ltag, func = func, operation_type = self.UNARY_OPERATION, ref_column = ref_column) WarningUtils().handle_warnings(parent_trace, warning_list=w) def enrich_with_tb_cumulative_operation(self, parent_trace, b_ltag, c_ltag, func): ''' Used to compute derived DataFrames. Example use case: suppose that self.reference_df has a column called "Sales", to represent sales per quarter, and you would like to have an additional column "Cum Sales" for the accumulated sales for all prior quarters, up to the current quarter. Then this this methoc can be used to derive another DataFrame corresponding to "Cum Sales", computed (via the `func` function parameter) as the accumulation of quarterly sales, row-by-row. This derived DataFrame would get a lower tag given by c_ltag. More generally: This method enlarges self.timebucket_df_list by adding 1 additional DataFrame C_df, derived from a pre-existing DataFrame ref_df, B_df already in self.timebucket_df, so that the following holds true: 1) B_df is the unique member self.timebucket_df_list[idx] such that b_ltag = self.timebucket_df_lower_tags[idx] 2) For each timebucket column col in B_df, C_df[col] = func(C_df[col-], B_df[col]) where col- is the column in C_df preceding col, unless col is the first row in C_df, in whic case C_df[col-] = None 3) If self.link_field is not null, then C_df[link_field] = A_df[link_field] It also enriches self.timebucket_df_lower_tags by adding c_ltag for C_df @param b_ltag A string, which must belong to self.timebucket_df_lower_tags, and the latter must not be null @param c_ltag A string that should be used as a lower tag for the result. It must not already exist in self.timebucket_df_lower_tags, and it is appended to the latter, increasing its size by 1. @func A function that takes 3 arguments: a FunctionalTrace object, and two Pandas Series. It returns a third series. The function may assume that both input series have the same index. ''' with warnings.catch_warnings(record=True) as w: WarningUtils().turn_traceback_on(parent_trace, warnings_list=w) self._enrich_with_tb_operation(parent_trace, a_df = None, b_ltag = b_ltag, c_ltag = c_ltag, func = func, operation_type = self.CUMULATIVE_OPERATION, ref_column = None) WarningUtils().handle_warnings(parent_trace, warning_list=w) def _enrich_with_tb_operation(self, parent_trace, a_df, b_ltag, c_ltag, func, operation_type, ref_column): ''' @param operation_type A string, which must be one of: self.BINARY_OPERATION, self.UNARY_OPERATION, self.CUMULATIVE_OPERATION ''' my_trace = parent_trace.doing("Validate inputs to enrich_with_binary_operation method") if True: if self.timebucket_df_lower_tags == None: raise ApodeixiError(my_trace, "Can't use enrich list of DataFrames to join unless lower tags are provided") if c_ltag in self.timebucket_df_lower_tags: raise ApodeixiError(my_trace, "Can't use tag '" + str(c_ltag) + "' to enrich list of DataFrames because " + "tag is already used by another DataFrame in the list", data = {"tags already used": str(self.timebucket_df_lower_tags)}) if not b_ltag in self.timebucket_df_lower_tags: raise ApodeixiError(my_trace, "Can't use tag '" + str(b_ltag) + "' to identify which DataFrame to use as an " + " enrichment input because " + "tag is not in valid list of tags", data = {"allowed tags": str(self.timebucket_df_lower_tags)}) if not operation_type in [self.BINARY_OPERATION, self.UNARY_OPERATION, self.CUMULATIVE_OPERATION]: raise ApodeixiError(my_trace, "Invalid operation type '" + str(operation_type) + "': should be one of: " + str([self.BINARY_OPERATION, self.UNARY_OPERATION, self.CUMULATIVE_OPERATION])) my_trace = parent_trace.doing("Combining DataFrames as preparation to applying binary operation") if True: LEFT_SUFFIX = "_left" RIGHT_SUFFIX = "_right" b_idx = self.timebucket_df_lower_tags.index(b_ltag) b_df = self.timebucket_df_list[b_idx] if operation_type in [self.BINARY_OPERATION, self.UNARY_OPERATION]: left_df = a_df.copy() right_df = b_df.copy() if self.link_field != None: left_df = self._untuple_link_column(my_trace, left_df) # Need to untuple before setting index right_df = self._untuple_link_column(my_trace, right_df) # Need to untuple before setting index right_df = right_df.set_index(self.link_field) joined_df = left_df.join(right_df, on=self.link_field, how="inner", lsuffix=LEFT_SUFFIX, rsuffix=RIGHT_SUFFIX) else: joined_df = left_df.join(right_df, how="inner", lsuffix=LEFT_SUFFIX, rsuffix=RIGHT_SUFFIX) else: # b_df might not have columns sorted by timebucket, but we need to sort them before we start doing the cumulative # operation, since cumulative operations are order dependent standardizer = TimebucketStandardizer() joined_df, info = standardizer.standardizeAllTimebucketColumns(my_trace, a6i_config = self.a6i_config, df = b_df, lower_level_key = None) my_trace = parent_trace.doing("Populating derived DataFrame") if True: derived_df =
_pd.DataFrame({})
pandas.DataFrame
import matplotlib.pyplot as plt import matplotlib.image as mpimg import pandas as pd import pylab as pl import numpy as np from scipy import ndimage from scipy.cluster import hierarchy from scipy.spatial import distance_matrix from sklearn import manifold, datasets, preprocessing, metrics from sklearn.cluster import AgglomerativeClustering from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.datasets._samples_generator import make_blobs from io import StringIO from math import sqrt import pydotplus import itertools # Storing the movie information into a pandas dataframe movies_df =
pd.read_csv('movies.csv')
pandas.read_csv
if "snakemake" in locals(): debug = False else: debug = True if not debug: import sys sys.stderr = open(snakemake.log[0], "w") import pandas as pd def merge_deep_arg_calls(mapping, meta_data, deep_arg_calls, output): mapping = pd.read_excel(mapping) meta_data = pd.read_csv(meta_data, sep="|") merged_data = pd.merge( mapping, meta_data, how="left", left_on="label", right_on="label", validate="1:1", ) merged_data = merged_data.drop(columns=["osd_id_y"]).rename( columns={"osd_id_x": "osd_id"} ) deep_arg_calls =
pd.read_csv(deep_arg_calls, sep="\t")
pandas.read_csv
import typing as T import pickle import itertools as it from enum import Enum from pathlib import Path import defopt import numpy as np import pandas as pd import scipy.stats as st from sklearn.base import BaseEstimator from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn.compose import make_column_transformer, make_column_selector from sklearn.pipeline import make_pipeline from sklearn.dummy import DummyClassifier from sklearn.linear_model import LogisticRegression from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from lightgbm import LGBMClassifier import dask from dask.distributed import Client from dask_jobqueue import SLURMCluster import dask_ml.model_selection as dcv def columns_transform(): return make_column_transformer( ( StandardScaler(), make_column_selector("^(?!crashYear)", dtype_include=np.number), ), ( OneHotEncoder(handle_unknown="ignore"), make_column_selector(dtype_include=object), ), ) def fit_dummy(X, y, n_iter): """Fit a dummy estimator""" model = DummyClassifier(strategy="prior") model.fit(X, y) return model def fit_linear(X, y, n_iter): """Fit a logistic regression model""" model = LogisticRegression(max_iter=500, penalty="elasticnet", solver="saga") model = make_pipeline(columns_transform(), model) param_space = { "logisticregression__l1_ratio": st.uniform(0, 1), "logisticregression__C": st.loguniform(1e-4, 1e4), } model = dcv.RandomizedSearchCV( model, param_space, scoring="neg_log_loss", n_iter=n_iter, random_state=42, cv=5 ) model.fit(X, y) return model def fit_mlp(X, y, n_iter): """Fit a simple multi-layer perceptron model""" model = MLPClassifier(random_state=42, early_stopping=True) model = make_pipeline(columns_transform(), model) layers_options = [ [n_units] * n_layers for n_units, n_layers in it.product([32, 64, 128, 256, 512], [1, 2]) ] param_space = { "mlpclassifier__hidden_layer_sizes": layers_options, "mlpclassifier__alpha": st.loguniform(1e-5, 1e-2), "mlpclassifier__learning_rate_init": st.loguniform(1e-4, 1e-1), } model = dcv.RandomizedSearchCV( model, param_space, scoring="neg_log_loss", n_iter=n_iter, random_state=42, cv=5 ) model.fit(X, y) return model def loguniform_int(a, b): """Create a discrete random variable following a log-uniform distribution""" xs = np.arange(a, b + 1) probs = 1 / (xs * np.log(b / a)) probs /= probs.sum() return st.rv_discrete(a=a, b=b, values=[xs, probs], name="loguniform_int") def fit_knn(X, y, n_iter): """Fit a KNN model on geographical coordinates only""" columns_tf = make_column_transformer(("passthrough", ["X", "Y"])) model = make_pipeline(columns_tf, KNeighborsClassifier()) param_space = { "kneighborsclassifier__n_neighbors": loguniform_int(1, 500), "kneighborsclassifier__weights": ["uniform", "distance"], } model = dcv.RandomizedSearchCV( model, param_space, scoring="neg_log_loss", n_iter=n_iter, random_state=42, cv=5 ) model.fit(X, y) return model def fit_gbdt(X, y, n_iter): """Fit a gradient boosted decision trees model""" model = LGBMClassifier(n_estimators=2000, random_state=42) model = make_pipeline(columns_transform(), model) param_space = { "lgbmclassifier__min_data_in_leaf": loguniform_int(5, 500), "lgbmclassifier__num_leaves": loguniform_int(31, 500), "lgbmclassifier__reg_alpha": st.loguniform(1e-10, 1.0), "lgbmclassifier__reg_lambda": st.loguniform(1e-10, 1.0), "lgbmclassifier__learning_rate": st.loguniform(1e-4, 1e-1), } model = dcv.RandomizedSearchCV( model, param_space, scoring="neg_log_loss", n_iter=n_iter, random_state=42, cv=5 ) model.fit(X, y) return model def slurm_cluster(n_workers, cores_per_worker, mem_per_worker, walltime, dask_folder): """helper function to start a Dask Slurm-based cluster :param n_workers: maximum number of workers to use :param cores_per_worker: number of cores per worker :param mem_per_worker: maximum of RAM for workers :param walltime: maximum time for workers :param dask_folder: folder to keep workers temporary data """ dask.config.set( { "distributed.worker.memory.target": False, # avoid spilling to disk "distributed.worker.memory.spill": False, # avoid spilling to disk } ) cluster = SLURMCluster( cores=cores_per_worker, processes=1, memory=mem_per_worker, walltime=walltime, log_directory=dask_folder / "logs", # folder for SLURM logs for each worker local_directory=dask_folder, # folder for workers data ) cluster.adapt(minimum=1, maximum=n_workers) client = Client(cluster) return client ModelType = Enum("ModelType", "dummy linear mlp knn gbdt") def fit( dset: Path, output_file: Path, *, model_type: ModelType = ModelType.linear, n_iter: int = 50, n_workers: int = 1, cores_per_worker: int = 4, dask_folder: Path = Path.cwd() / "dask", mem_per_worker: str = "2GB", walltime: str = "0-00:30", use_slurm: bool = False, ) -> BaseEstimator: """Fit a model :param dset: CAS dataset :param output_file: output .pickle file :param model_type: type of model to use :param n_iter: budget for hyper-parameters optimization :param n_workers: number of workers to use, maximum number for Slurm backend :param cores_per_worker: number of cores per worker :param dask_folder: folder to keep workers temporary data :param mem_per_worker: maximum of RAM for workers, only for Slurm backend :param walltime: maximum time for workers, only for Slurm backend :param use_slurm: use Slurm backend for the Dask cluster :returns: fitted model """ dset = pd.read_csv(dset) X = dset[dset.fold == "train"].drop(columns="fold") y = X.pop("injuryCrash") # find function to fit the model in the global namespace model_func = globals()["fit_" + model_type.name] # start a Dask cluster, local by default, use a configuration file for Slurm if use_slurm: client = slurm_cluster( n_workers=n_workers, cores_per_worker=cores_per_worker, mem_per_worker=mem_per_worker, walltime=walltime, dask_folder=dask_folder, ) else: client = Client( n_workers=n_workers, threads_per_worker=cores_per_worker, local_directory=dask_folder, ) client.wait_for_workers(1) model = model_func(X, y, n_iter=n_iter) with output_file.open("wb") as fd: pickle.dump(model, fd) def predict( dset: T.Union[pd.DataFrame, Path], model: T.Union[BaseEstimator, Path], *, output_file: T.Optional[Path] = None, ) -> pd.Series: """Make predictions from a fitted model :param dset: CAS dataset :param model: trained model :param output_file: output .csv file :returns: predictions """ if isinstance(dset, Path): dset = pd.read_csv(dset) if isinstance(model, Path): with model.open("rb") as fd: model = pickle.load(fd) X = dset.drop(columns=["injuryCrash", "fold"]) y_prob = model.predict_proba(X) y_prob =
pd.Series(y_prob[:, 1], name="crashInjuryProb")
pandas.Series
import re import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.core.arrays import IntervalArray class TestSeriesReplace: def test_replace_explicit_none(self): # GH#36984 if the user explicitly passes value=None, give it to them ser = pd.Series([0, 0, ""], dtype=object) result = ser.replace("", None) expected = pd.Series([0, 0, None], dtype=object) tm.assert_series_equal(result, expected) df = pd.DataFrame(np.zeros((3, 3))) df.iloc[2, 2] = "" result = df.replace("", None) expected = pd.DataFrame( { 0: np.zeros(3), 1: np.zeros(3), 2: np.array([0.0, 0.0, None], dtype=object), } ) assert expected.iloc[2, 2] is None tm.assert_frame_equal(result, expected) # GH#19998 same thing with object dtype ser = pd.Series([10, 20, 30, "a", "a", "b", "a"]) result = ser.replace("a", None) expected = pd.Series([10, 20, 30, None, None, "b", None]) assert expected.iloc[-1] is None tm.assert_series_equal(result, expected) def test_replace_noop_doesnt_downcast(self): # GH#44498 ser = pd.Series([None, None, pd.Timestamp("2021-12-16 17:31")], dtype=object) res = ser.replace({np.nan: None}) # should be a no-op tm.assert_series_equal(res, ser) assert res.dtype == object # same thing but different calling convention res = ser.replace(np.nan, None) tm.assert_series_equal(res, ser) assert res.dtype == object def test_replace(self): N = 100 ser = pd.Series(np.random.randn(N)) ser[0:4] = np.nan ser[6:10] = 0 # replace list with a single value return_value = ser.replace([np.nan], -1, inplace=True) assert return_value is None exp = ser.fillna(-1) tm.assert_series_equal(ser, exp) rs = ser.replace(0.0, np.nan) ser[ser == 0.0] = np.nan tm.assert_series_equal(rs, ser) ser = pd.Series(np.fabs(np.random.randn(N)), tm.makeDateIndex(N), dtype=object) ser[:5] = np.nan ser[6:10] = "foo" ser[20:30] = "bar" # replace list with a single value rs = ser.replace([np.nan, "foo", "bar"], -1) assert (rs[:5] == -1).all() assert (rs[6:10] == -1).all() assert (rs[20:30] == -1).all() assert (pd.isna(ser[:5])).all() # replace with different values rs = ser.replace({np.nan: -1, "foo": -2, "bar": -3}) assert (rs[:5] == -1).all() assert (rs[6:10] == -2).all() assert (rs[20:30] == -3).all() assert (pd.isna(ser[:5])).all() # replace with different values with 2 lists rs2 = ser.replace([np.nan, "foo", "bar"], [-1, -2, -3]) tm.assert_series_equal(rs, rs2) # replace inplace return_value = ser.replace([np.nan, "foo", "bar"], -1, inplace=True) assert return_value is None assert (ser[:5] == -1).all() assert (ser[6:10] == -1).all() assert (ser[20:30] == -1).all() def test_replace_nan_with_inf(self): ser = pd.Series([np.nan, 0, np.inf]) tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) ser = pd.Series([np.nan, 0, "foo", "bar", np.inf, None, pd.NaT]) tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) filled = ser.copy() filled[4] = 0 tm.assert_series_equal(ser.replace(np.inf, 0), filled) def test_replace_listlike_value_listlike_target(self, datetime_series): ser = pd.Series(datetime_series.index) tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) # malformed msg = r"Replacement lists must match in length\. Expecting 3 got 2" with pytest.raises(ValueError, match=msg): ser.replace([1, 2, 3], [np.nan, 0]) # ser is dt64 so can't hold 1 or 2, so this replace is a no-op result = ser.replace([1, 2], [np.nan, 0]) tm.assert_series_equal(result, ser) ser = pd.Series([0, 1, 2, 3, 4]) result = ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0]) tm.assert_series_equal(result, pd.Series([4, 3, 2, 1, 0])) def test_replace_gh5319(self): # API change from 0.12? # GH 5319 ser = pd.Series([0, np.nan, 2, 3, 4]) expected = ser.ffill() result = ser.replace([np.nan]) tm.assert_series_equal(result, expected) ser = pd.Series([0, np.nan, 2, 3, 4]) expected = ser.ffill() result = ser.replace(np.nan) tm.assert_series_equal(result, expected) def test_replace_datetime64(self): # GH 5797 ser = pd.Series(pd.date_range("20130101", periods=5)) expected = ser.copy() expected.loc[2] = pd.Timestamp("20120101") result = ser.replace({pd.Timestamp("20130103"): pd.Timestamp("20120101")}) tm.assert_series_equal(result, expected) result = ser.replace(pd.Timestamp("20130103"), pd.Timestamp("20120101")) tm.assert_series_equal(result, expected) def test_replace_nat_with_tz(self): # GH 11792: Test with replacing NaT in a list with tz data ts = pd.Timestamp("2015/01/01", tz="UTC") s = pd.Series([pd.NaT, pd.Timestamp("2015/01/01", tz="UTC")]) result = s.replace([np.nan, pd.NaT], pd.Timestamp.min) expected = pd.Series([pd.Timestamp.min, ts], dtype=object) tm.assert_series_equal(expected, result) def test_replace_timedelta_td64(self): tdi = pd.timedelta_range(0, periods=5) ser = pd.Series(tdi) # Using a single dict argument means we go through replace_list result = ser.replace({ser[1]: ser[3]}) expected = pd.Series([ser[0], ser[3], ser[2], ser[3], ser[4]]) tm.assert_series_equal(result, expected) def test_replace_with_single_list(self): ser = pd.Series([0, 1, 2, 3, 4]) result = ser.replace([1, 2, 3]) tm.assert_series_equal(result, pd.Series([0, 0, 0, 0, 4])) s = ser.copy() return_value = s.replace([1, 2, 3], inplace=True) assert return_value is None tm.assert_series_equal(s, pd.Series([0, 0, 0, 0, 4])) # make sure things don't get corrupted when fillna call fails s = ser.copy() msg = ( r"Invalid fill method\. Expecting pad \(ffill\) or backfill " r"\(bfill\)\. Got crash_cymbal" ) with pytest.raises(ValueError, match=msg): return_value = s.replace([1, 2, 3], inplace=True, method="crash_cymbal") assert return_value is None tm.assert_series_equal(s, ser) def test_replace_mixed_types(self): ser = pd.Series(np.arange(5), dtype="int64") def check_replace(to_rep, val, expected): sc = ser.copy() result = ser.replace(to_rep, val) return_value = sc.replace(to_rep, val, inplace=True) assert return_value is None tm.assert_series_equal(expected, result) tm.assert_series_equal(expected, sc) # 3.0 can still be held in our int64 series, so we do not upcast GH#44940 tr, v = [3], [3.0] check_replace(tr, v, ser) # Note this matches what we get with the scalars 3 and 3.0 check_replace(tr[0], v[0], ser) # MUST upcast to float e = pd.Series([0, 1, 2, 3.5, 4]) tr, v = [3], [3.5] check_replace(tr, v, e) # casts to object e = pd.Series([0, 1, 2, 3.5, "a"]) tr, v = [3, 4], [3.5, "a"] check_replace(tr, v, e) # again casts to object e = pd.Series([0, 1, 2, 3.5, pd.Timestamp("20130101")]) tr, v = [3, 4], [3.5, pd.Timestamp("20130101")] check_replace(tr, v, e) # casts to object e = pd.Series([0, 1, 2, 3.5, True], dtype="object") tr, v = [3, 4], [3.5, True] check_replace(tr, v, e) # test an object with dates + floats + integers + strings dr = pd.Series(pd.date_range("1/1/2001", "1/10/2001", freq="D")) result = dr.astype(object).replace([dr[0], dr[1], dr[2]], [1.0, 2, "a"]) expected = pd.Series([1.0, 2, "a"] + dr[3:].tolist(), dtype=object) tm.assert_series_equal(result, expected) def test_replace_bool_with_string_no_op(self): s = pd.Series([True, False, True]) result = s.replace("fun", "in-the-sun") tm.assert_series_equal(s, result) def test_replace_bool_with_string(self): # nonexistent elements s = pd.Series([True, False, True]) result = s.replace(True, "2u") expected = pd.Series(["2u", False, "2u"]) tm.assert_series_equal(expected, result) def test_replace_bool_with_bool(self): s = pd.Series([True, False, True]) result = s.replace(True, False) expected = pd.Series([False] * len(s)) tm.assert_series_equal(expected, result) def test_replace_with_dict_with_bool_keys(self): s = pd.Series([True, False, True]) result = s.replace({"asdf": "asdb", True: "yes"}) expected = pd.Series(["yes", False, "yes"]) tm.assert_series_equal(result, expected) def test_replace_Int_with_na(self, any_int_ea_dtype): # GH 38267 result = pd.Series([0, None], dtype=any_int_ea_dtype).replace(0, pd.NA) expected = pd.Series([pd.NA, pd.NA], dtype=any_int_ea_dtype) tm.assert_series_equal(result, expected) result = pd.Series([0, 1], dtype=any_int_ea_dtype).replace(0, pd.NA) result.replace(1, pd.NA, inplace=True)
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
from statistics import stdev, mean import pandas as pd import pickle from .visualisations import stability_visualizer import re def pickle_reader(filename): accuracies_ = pickle.load(open(filename, 'rb')) return accuracies_ class ResultAnalysis(): def __init__(self, filename, seq_len): self.pkl_file = filename + '_logs.pkl' self.txt_file = filename + '.txt' self.seq_len = seq_len self.data = pickle_reader(self.pkl_file) self.size_to_reports_dict = self.data['reports'] self.size_to_detailed_acc = self.data['detailed_acc'] def compute_avg_report_by_sizes(self): """ Function to compute the average over scikit-learn's list of classification_report objects. :param size_to_reports_dict: Dictionary with keys = labels indicating tp/holdout sizes, values = list of sklearn's classification_report objects :return: dict with keys = keys of size_to_reports_dict, values = metrics averaged over the respective sequence of values of size_to_reports_dict """ # del self.size_to_reports_dict[4] # del self.size_to_reports_dict[6] # del self.size_to_reports_dict[8] # del self.size_to_reports_dict[10] # del self.size_to_reports_dict[15] accuracy_by_person = {} precision = 3 # round off limit for size_key, _list in self.size_to_reports_dict.items(): print(len(_list), size_key) # assert len(_list) == self.seq_len, f"Sequence lengths should be exactly {self.seq_len}." # calculate avg over this tp by_tp = {key: {'precision': [], 'recall': [], 'f1-score': [], 'support': []} if key != 'accuracy' else [] for key, val in _list[0].items()} for sequence in _list: for key, val in sequence.items(): if key != 'accuracy': for metric, score in val.items(): by_tp[key][metric].append(score) else: by_tp[key].append(val) averaged_dict = {key: {metric: f"{mean(scores) * 100:.{precision}f} +/- {stdev(scores) * 100:.{precision}f}" for metric, scores in metric_dict.items()} if key != 'accuracy' else f"{mean(metric_dict) * 100:.{precision}f} +/- {stdev(metric_dict) * 100:.{precision}f}" for key, metric_dict in by_tp.items()} accuracy_by_person[size_key] = averaged_dict for key in self.size_to_reports_dict.keys(): print(" =================== " * 10) print(f"\n\nAveraged classification report for tp/holdout: {key}") with pd.option_context('display.max_rows', None, 'display.max_columns', None): print(
pd.DataFrame(accuracy_by_person[key])
pandas.DataFrame
import os import warnings from typing import List import joblib import mlflow import pandas as pd from fastapi import FastAPI from pydantic import BaseModel pokemon_app = FastAPI() class Pokemon(BaseModel): hp: int attack: int defence: int special_attack: int special_defense: int speed: int @pokemon_app.get("/") def show_welcome_page(): model_name: str = os.getenv("MLFLOW_MODEL_NAME") model_version: str = os.getenv("MLFLOW_MODEL_VERSION") return {"Message": "Welcome to pokemon api", "Model_name": f"{model_name}", "Model_version": f"{model_version}"} @pokemon_app.get("/pokemon-type") def get_pokemon_type(hp: int, attack: int, defence: int, special_attack: int, special_defense: int, speed: int): df = pd.DataFrame(columns=["hp", "attack", "defence", "special_attack", "special_defense", "speed"]) df.loc[0] = pd.Series({'hp': hp, 'attack': attack, 'defence': defence, 'special_attack': special_attack, 'special_defense': special_defense, 'speed': speed}) model = get_model() res = bool(model.predict(df)[0]) return {"is_legendary": res} @pokemon_app.post("/pokemon-type") def post_pokemon_type(pokemon: Pokemon): df =
pd.DataFrame(columns=["hp", "attack", "defence", "special_attack", "special_defense", "speed"])
pandas.DataFrame