prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pandas as pd def run_fengxian(path_1, path_2): """ name:“求风险值函数” function: 将分组求和后的销项发票信息和进项发票信息合并; 求销售净利率 path_1:销项发票 path_2:进项发票 """ df_1 = pd.read_csv(path_1, encoding='UTF-8') # 销项 df_2 = pd.read_csv(path_2, encoding='UTF-8') # 进项 # 删除没用的列 del df_1['发票号码'] del df_1['开票日期'] del df_1['购方单位代号'] del df_2['发票号码'] del df_2['开票日期'] del df_2['销方单位代号'] # 只保留发票状态中有效发票的行 df_1 = df_1[(df_1['发票状态'].isin(['有效发票']))] df_2 = df_2[(df_2['发票状态'].isin(['有效发票']))] # 删除整个数据表中所有含有负值的行 df_1 = df_1[df_1['金额'].apply(lambda x: x >= 0)] df_1 = df_1[df_1['税额'].apply(lambda x: x >= 0)] df_2 = df_2[df_2['金额'].apply(lambda x: x >= 0)] df_2 = df_2[df_2['税额'].apply(lambda x: x >= 0)] # 删除发票状态,为了后面的分组求和(中文求不了) del df_1['发票状态'] del df_2['发票状态'] # 分组求和 df_1 = df_1.groupby('企业代号').sum() df_1 = df_1.rename(columns={'金额': '金额_销项', '税额': '税额_销项', '价税合计': '价税合计_销项'}) df_2 = df_2.groupby('企业代号').sum() df_2 = df_2.rename(columns={'金额': '金额_进项', '税额': '税额_进项', '价税合计': '价税合计_进项'}) # 合并两张表 result = pd.concat([df_1, df_2], axis=1) # 求销售净利率 result['净利润'] = result['金额_销项'] - result['金额_进项'] + result['税额_进项'] - result['税额_销项'] result['销售收入'] = result['金额_销项'] result['销售净利率'] = result['净利润'] / result['销售收入'] # 求风险值 result["exp_销售净利率"] = result["销售净利率"].apply(pd.np.exp) result['风险值'] = 1 / (result['exp_销售净利率']) return result def run_fenxian_p3(path): """ name:“求问题三的风险值” path:求出的风险文件路径 """ df =
pd.read_csv(path, encoding='GBK')
pandas.read_csv
import pandas as pd import pytest import plotly.graph_objects as go from easyplotly import Sankey @pytest.fixture() def sankey_a_b_target(): return go.Sankey( node=dict(label=['Source A', 'Source B', 'Target']), link=dict( source=[0, 1], target=[2, 2], value=[1, 1] )) def test_sankey_df(sankey_a_b_target, df=pd.DataFrame(1, index=['Source A', 'Source B'], columns=['Target'])): assert Sankey(df) == sankey_a_b_target def test_sankey_dict(sankey_a_b_target, links={('Source A', 'Target'): 1, ('Source B', 'Target'): 1}): assert Sankey(links) == sankey_a_b_target def test_sankey_two_series(): x = pd.Series({('A', 'B'): 1}) y =
pd.Series({('B', 'C'): 1})
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import pandas as pd import os import xgboost as xgb from constants import VARS, IDS from sklearn.metrics import mean_absolute_error from utils import train_test_split from src.constants import DATA_DIR, LOGS_DIR def best_params(path): if os.path.exists(path): df_params = pd.read_json(path, lines=True) df_params = df_params.sort_values( 'target', ascending=False).reset_index(drop=True) best_params = df_params.loc[0, 'params'] min_max_params = ['feature_fraction', 'bagging_fraction'] non_zero_params = ['lambda_l1', 'lambda_l2'] int_params = ['max_depth', 'num_leaves', 'n_estimators'] for param in min_max_params: best_params[param] = max(min(best_params[param], 1), 0) for param in non_zero_params: best_params[param] = max(best_params[param], 0) for param in int_params: best_params[param] = int(round(best_params[param])) return best_params else: print('No Logs Found') def run_model(X_train, y_train, X_test, y_test, params): matrice = xgb.DMatrix(X_train, y_train) model = xgb.train(params, matrice) preds = model.predict(xgb.DMatrix(X_test)) print('MAE:', mean_absolute_error(preds, y_test)) return preds def save_preds(X_test, y_test, preds, ids_test, suffix): arrays = [ids_test, X_test, y_test, preds] arrays = [pd.DataFrame(array).reset_index(drop=True) for array in arrays] df_test =
pd.concat(arrays, axis=1)
pandas.concat
# -*- coding: utf-8 -*- from warnings import catch_warnings import numpy as np from datetime import datetime from pandas.util import testing as tm import pandas as pd from pandas.core import config as cf from pandas.compat import u from pandas._libs.tslib import iNaT from pandas import (NaT, Float64Index, Series, DatetimeIndex, TimedeltaIndex, date_range) from pandas.core.dtypes.dtypes import DatetimeTZDtype from pandas.core.dtypes.missing import ( array_equivalent, isnull, notnull, na_value_for_dtype) def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) with cf.option_context("mode.use_inf_as_null", False): assert notnull(np.inf) assert notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.all() with cf.option_context("mode.use_inf_as_null", True): assert not notnull(np.inf) assert not notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.sum() == 2 with cf.option_context("mode.use_inf_as_null", False): for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert (isinstance(isnull(s), Series)) class TestIsNull(object): def test_0d_array(self): assert isnull(np.array(np.nan)) assert not isnull(np.array(0.0)) assert not isnull(np.array(0)) # test object dtype assert isnull(np.array(np.nan, dtype=object)) assert not isnull(np.array(0.0, dtype=object)) assert not isnull(np.array(0, dtype=object)) def test_empty_object(self): for shape in [(4, 0), (4,)]: arr = np.empty(shape=shape, dtype=object) result = isnull(arr) expected = np.ones(shape=shape, dtype=bool) tm.assert_numpy_array_equal(result, expected) def test_isnull(self): assert not isnull(1.) assert isnull(None) assert isnull(np.NaN) assert float('nan') assert not isnull(np.inf) assert not isnull(-np.inf) # series for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert isinstance(isnull(s), Series) # frame for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(), tm.makeMixedDataFrame()]: result = isnull(df) expected = df.apply(isnull) tm.assert_frame_equal(result, expected) # panel with catch_warnings(record=True): for p in [tm.makePanel(), tm.makePeriodPanel(), tm.add_nans(tm.makePanel())]: result = isnull(p) expected = p.apply(isnull) tm.assert_panel_equal(result, expected) # panel 4d with catch_warnings(record=True): for p in [tm.makePanel4D(), tm.add_nans_panel4d(tm.makePanel4D())]: result = isnull(p) expected = p.apply(isnull) tm.assert_panel4d_equal(result, expected) def test_isnull_lists(self): result = isnull([[False]]) exp = np.array([[False]]) tm.assert_numpy_array_equal(result, exp) result = isnull([[1], [2]]) exp = np.array([[False], [False]]) tm.assert_numpy_array_equal(result, exp) # list of strings / unicode result = isnull(['foo', 'bar']) exp = np.array([False, False]) tm.assert_numpy_array_equal(result, exp) result = isnull([u('foo'), u('bar')]) exp = np.array([False, False]) tm.assert_numpy_array_equal(result, exp) def test_isnull_nat(self): result = isnull([NaT]) exp = np.array([True]) tm.assert_numpy_array_equal(result, exp) result = isnull(np.array([NaT], dtype=object)) exp = np.array([True]) tm.assert_numpy_array_equal(result, exp) def test_isnull_numpy_nat(self): arr = np.array([NaT, np.datetime64('NaT'), np.timedelta64('NaT'), np.datetime64('NaT', 's')]) result = isnull(arr) expected = np.array([True] * 4) tm.assert_numpy_array_equal(result, expected) def test_isnull_datetime(self): assert not isnull(datetime.now()) assert notnull(datetime.now()) idx = date_range('1/1/1990', periods=20) exp = np.ones(len(idx), dtype=bool) tm.assert_numpy_array_equal(notnull(idx), exp) idx = np.asarray(idx) idx[0] = iNaT idx = DatetimeIndex(idx) mask = isnull(idx) assert mask[0] exp = np.array([True] + [False] * (len(idx) - 1), dtype=bool) tm.assert_numpy_array_equal(mask, exp) # GH 9129 pidx = idx.to_period(freq='M') mask = isnull(pidx) assert mask[0] exp = np.array([True] + [False] * (len(idx) - 1), dtype=bool) tm.assert_numpy_array_equal(mask, exp) mask = isnull(pidx[1:]) exp = np.zeros(len(mask), dtype=bool) tm.assert_numpy_array_equal(mask, exp) def test_datetime_other_units(self): idx = pd.DatetimeIndex(['2011-01-01', 'NaT', '2011-01-02']) exp = np.array([False, True, False]) tm.assert_numpy_array_equal(isnull(idx), exp) tm.assert_numpy_array_equal(notnull(idx), ~exp) tm.assert_numpy_array_equal(isnull(idx.values), exp) tm.assert_numpy_array_equal(notnull(idx.values), ~exp) for dtype in ['datetime64[D]', 'datetime64[h]', 'datetime64[m]', 'datetime64[s]', 'datetime64[ms]', 'datetime64[us]', 'datetime64[ns]']: values = idx.values.astype(dtype) exp = np.array([False, True, False]) tm.assert_numpy_array_equal(isnull(values), exp) tm.assert_numpy_array_equal(notnull(values), ~exp) exp = pd.Series([False, True, False]) s = pd.Series(values) tm.assert_series_equal(isnull(s), exp) tm.assert_series_equal(notnull(s), ~exp) s = pd.Series(values, dtype=object) tm.assert_series_equal(isnull(s), exp) tm.assert_series_equal(notnull(s), ~exp) def test_timedelta_other_units(self): idx = pd.TimedeltaIndex(['1 days', 'NaT', '2 days']) exp = np.array([False, True, False]) tm.assert_numpy_array_equal(isnull(idx), exp) tm.assert_numpy_array_equal(notnull(idx), ~exp) tm.assert_numpy_array_equal(isnull(idx.values), exp) tm.assert_numpy_array_equal(notnull(idx.values), ~exp) for dtype in ['timedelta64[D]', 'timedelta64[h]', 'timedelta64[m]', 'timedelta64[s]', 'timedelta64[ms]', 'timedelta64[us]', 'timedelta64[ns]']: values = idx.values.astype(dtype) exp = np.array([False, True, False]) tm.assert_numpy_array_equal(isnull(values), exp) tm.assert_numpy_array_equal(
notnull(values)
pandas.core.dtypes.missing.notnull
import os import pandas as pd import numpy as np import uproot import h5py from twaml.data import dataset from twaml.data import scale_weight_sum from twaml.data import from_root, from_pytables, from_h5 branches = ["pT_lep1", "pT_lep2", "eta_lep1", "eta_lep2"] ds = from_root( ["tests/data/test_file.root"], name="myds", branches=branches, TeXlabel=r"$t\bar{t}$" ) def test_name(): assert ds.name == "myds" assert ds.TeXlabel == "$t\\bar{t}$" def test_no_name(): dst = from_root(["tests/data/test_file.root"], branches=branches) assert dst.name == "test_file.root" def test_content(): ts = [uproot.open(f)[ds.tree_name] for f in ds.files] raws = [t.array("pT_lep1") for t in ts] raw = np.concatenate([raws]) bins = np.linspace(0, 800, 21) n1, bins1 = np.histogram(raw, bins=bins) n2, bins2 = np.histogram(ds.df.pT_lep1.to_numpy(), bins=bins) np.testing.assert_array_equal(n1, n2) def test_nothing(): dst = from_root(["tests/data/test_file.root"], branches=branches) assert dst.files[0].exists() def test_with_executor(): lds = from_root(["tests/data/test_file.root"], branches=branches, nthreads=4) np.testing.assert_array_almost_equal(lds.weights, ds.weights, 8) def test_weight(): ts = [uproot.open(f)[ds.tree_name] for f in ds.files] raws = [t.array("weight_nominal") for t in ts] raw = np.concatenate(raws) raw = raw * 150.0 ds.weights = ds.weights * 150.0 np.testing.assert_array_almost_equal(raw, ds.weights, 6) def test_add(): ds2 = from_root(["tests/data/test_file.root"], name="ds2", branches=branches) ds2.weights = ds2.weights * 22 combined = ds + ds2 comb_w = np.concatenate([ds.weights, ds2.weights]) comb_df = pd.concat([ds.df, ds2.df]) np.testing.assert_array_almost_equal(comb_w, combined.weights, 5) np.testing.assert_array_almost_equal(comb_df.get_values(), combined.df.get_values(), 5) assert ds.name == combined.name assert ds.tree_name == combined.tree_name assert ds.label == combined.label def test_selection(): ds2 = from_root( ["tests/data/test_file.root"], name="ds2", selection="(reg2j2b==True) & (OS == True) & (pT_lep1 > 50)", ) upt = uproot.open("tests/data/test_file.root")["WtLoop_nominal"] reg2j2b = upt.array("reg2j2b") OS = upt.array("OS") pT_lep1 = upt.array("pT_lep1") sel = np.logical_and(np.logical_and(reg2j2b, OS), pT_lep1 > 50) w = upt.array("weight_nominal")[sel] assert np.allclose(w, ds2.weights) # np.testing.assert_array_almost_equal(w, ds2.weights) def test_append(): branches = ["pT_lep1", "pT_lep2", "eta_lep1", "eta_lep2"] ds1 = from_root(["tests/data/test_file.root"], name="myds", branches=branches) ds2 = from_root(["tests/data/test_file.root"], name="ds2", branches=branches) ds2.weights = ds2.weights * 5 # raw comb_w = np.concatenate([ds1.weights, ds2.weights]) comb_df =
pd.concat([ds1.df, ds2.df])
pandas.concat
#kMeans import random import pandas as pd import numpy as np from pandas.util.testing import assert_frame_equal import matplotlib as plt def random_sample(df,k): rindex = np.array(random.sample(xrange(len(df)), k)) return df.ix[rindex] def distance(e1,e2): return np.linalg.norm(e1-e2) def create_clusters(centers): clusters = [] for i in range(len(centers)): clusters.append(pd.DataFrame()) return clusters def closest(element,centers): smallest = None for i in range(len(centers)): center = centers.iloc[i] if smallest == None or distance(element,center) < smallest: smallest = distance(element,center) closest_center = center return closest_center def assign_clusters(df,clusters,centers): for i in range(len(df)): element = df.iloc[i] center = closest(element,centers) # Yes, this is ugly, but damn pandas is hard to grok. for c in range(len(centers)): if (centers.iloc[c] == center).all(): clusters[c] = clusters[c].append(element) return clusters def find_center(df): return df.mean(axis=0) def find_centers(clusters): centers = pd.DataFrame() for cluster in clusters: center = find_center(cluster) centers = centers.append(center,ignore_index=True) return centers def train(df,k,loop_n): init_centers = random_sample(df,k) return train_loop(df,k,init_centers,loop_n) def train_loop(df,k,centers,loop_n): step = 1 for i in range(loop_n): clusters = create_clusters(centers) clusters = assign_clusters(df,clusters,centers) old_centers = centers centers = find_centers(clusters) #return if we have not moved if frames_equal(centers,old_centers): return centers step += 1 return centers def classify(element): return 2 def frames_equal(f1,f2): try:
assert_frame_equal(f1, f2)
pandas.util.testing.assert_frame_equal
import pandas as pd #Summary null values def summary(X): ''' This Function will return the columns names as index,null_value_count,any unique character we specify & its percentage of occurance per column.''' null_values = X.apply(lambda x:X.isnull().sum()) blank_char = X.apply(lambda x:X.isin(['?']).sum()) percent_blank_char =X.apply(lambda x:round((X.isin(['?']).sum()/X.shape[0])*100, 2)) unique_values = X.apply(lambda x:len(X.unique())) return pd.DataFrame({'null_values':null_values, '? Values':blank_char,'% ? Values':percent_blank_char ,'unique_values':unique_values}) #Date split def date_split(X, date): X=X.copy() X['day']=
pd.to_datetime(X[date])
pandas.to_datetime
import pandas as pd,requests, plotly.graph_objects as go, plotly.express as px, os from dotenv import load_dotenv from plotly.subplots import make_subplots # Using requests library to create urls def req(series: str, start: str, end: str, json: str): ''' {param} series: The series we are looking at (PAYEMS, GDPC1, and CPIAUCSL) {param} start: Observation start date (default: 1776-07-04) {param} end: Observation end date (default: 9999-12-31) {param} json: File type to send {type} str, str, str, str {return} Json file of what we get from using requests.get ''' payload = {'series_id': series, 'observation_start': start, 'observation_end': end, 'file_type': json} load_dotenv() # Searches for .env file in root directory api_key = os.environ.get("Api_Key", None) # Extracting the API Key from the .env file, returns None if there is nothing with this name there payload["api_key"]=api_key r = requests.get('https://api.stlouisfed.org/fred/series/observations', params=payload) # Going to retrieve data from this command using the parameters specified above return r.json() # Gathering series from FRED PAYEMS = req("PAYEMS","2000-01-01","2020-12-31", "json") # Calling function from above to create a url then json file with these parameters GDPC1 = req("GDPC1", "2000-01-01", "2020-12-31","json") # Because we want to look at data from 2000 to 2020, # I chose the range to be the first day of 2000 to the last day of 2020 CPIAUCSL=req("CPIAUCSL", "2000-01-01", "2020-12-31", "json") # Joining the series together into one dataframe df1 = pd.json_normalize(PAYEMS, record_path=['observations']) df1.rename(columns={'value':'Total Nonfarm Employment Value'}, inplace=True) # Source: https://www.geeksforgeeks.org/how-to-rename-columns-in-pandas-dataframe/ df2 = pd.json_normalize(GDPC1, record_path=['observations']) df2.rename(columns={'value':'Real Gross Domestic Product Value'}, inplace=True) df3 = pd.json_normalize(CPIAUCSL, record_path=['observations']) """ Source: https://towardsdatascience.com/how-to-convert-json-into-a-pandas-dataframe-100b2ae1e0d8 Because the data frame had a nested list, I wanted to first extract the data from the "observations". record_path=['observations'] tells me I'm looking into the observation column at the dictionary inside of it The pd.json_normalize then takes the realtime_start, realtime_end, date, and value within each observation and creates a column for each I decided not to set meta = anything because the observation start, end, and file type parameters were the same for the three and I didn't want to confuse the dates with the actual date. """ df3.rename(columns={'value':'Consumer Price Index Value'}, inplace=True) # Renaming "value" column to "Consumer Price Index Value" in my third dataframe so I know what I am working with merged_df=pd.merge(df1, df3, how="outer") # Creating a new variable to store my joined first dataframe and second dataframe merged_df1=pd.merge(merged_df, df2, how="outer") # Using the new variable I just created w/ my first and second dataframes to join it with my third dataframe merged_df1.drop("realtime_start", axis=1, inplace=True) merged_df1.drop("realtime_end", axis=1, inplace=True) # Deleting the columns named realtime_start and realtime_end since we don't need it, source: https://www.nbshare.io/notebook/199139718/How-To-Drop-One-Or-More-Columns-In-Pandas-Dataframe/ # Saving dataframe as a .csv file merged_df1.to_csv(r"/Users/sophia/Desktop/Lowe/FRED_DF1.csv") # Source: https://stackoverflow.com/questions/16923281/writing-a-pandas-dataframe-to-csv-file # Specifying which folder I want to place my csv file with the name "Data_FRED.csv" in # Plotting two of the time series on the same plot, with time as the horizontal axis df = pd.read_csv("/Users/sophia/Desktop/Lowe/FRED_DF1.csv") #Source: https://plotly.com/python/plot-data-from-csv/ # Using pandas to read in the new csv I just created fig=make_subplots(specs=[[{"secondary_y": True}]]) # Source: https://plotly.com/python/multiple-axes/#two-y-axes # Indicating that we want two y-axes in our plot fig.add_trace( go.Scatter(x=df["date"], y=df["Consumer Price Index Value"], name="Consumer Price Index", line=dict(color="rgb(160, 97, 119)")), secondary_y=False ) # Plotting this data using date and CPI, changing the line color, and signifying that this is not the one associated with our second y-axis fig.add_trace( go.Scatter(x=df["date"], y=df["Total Nonfarm Employment Value"], name="Total Nonfarm Employment", line=dict(color="rgb(104, 133, 92)")), # Changing color of line, Source: https://stackoverflow.com/questions/58188816/plotly-how-to-set-line-color secondary_y=True ) # Adding this data to our plot and signifying that it is associated with our second y-axis fig.update_xaxes(title_text="Year<br><br>Source: FRED Economic Research</sup>") # Creating X axis label, breaking to a new line, writing source fig.update_yaxes(title_text="Consumer Price Index Value", secondary_y=False, linecolor="rgb(160, 97, 119)", title_font=dict(color="rgb(160, 97, 119)"), linewidth = 4.5) # Creating Y axis label for first variable and changing color/boldness of axis fig.update_yaxes(title_text="Thousands of Persons", secondary_y=True, linecolor="rgb(104, 133, 92)", title_font=dict(color="rgb(104, 133, 92)"), linewidth = 4.5) # Creating Y axis label for second variable and changing color/boldness of axis fig.update_layout(legend=dict( yanchor="top", y=0.99, xanchor="left", x=0.01), title_text="How CPI and Total Nonfarm Employment Change Over Time") # Source: https://plotly.com/python/legend/ # Moving legend from the top rightt corner to the top left corner within the graph and creating a graph title fig.update_xaxes( dtick="M24", tickformat="%B <br> %Y") # Source: https://plotly.com/python/time-series/ # Changing x-axis tick labels, has a label for every 24 months and displays the month and the year fig.show() # Plotting a histogram fig=px.histogram(df, x="date", y="Real Gross Domestic Product Value", nbins= 21, color_discrete_sequence=["darkseagreen"]) # Source: https://plotly.com/python/histograms/ # Creating histogram from my dataframe (df), choosing number of bins I want in my histogram, setting color of bins to "darkseagreen" fig.update_xaxes(showgrid=True, title_text="Date") fig.update_yaxes(title_text="GDP in Billions of Chained 2012 Dollars") fig.update_traces(marker_line_width=0.75,marker_line_color="white") # Source: https://stackoverflow.com/questions/67255139/how-to-change-the-edgecolor-of-an-histogram-in-plotly # Creating a white border around the bins of my histogram to show each bin individually fig.update_layout(title="GDP from 2000-2020") fig.update_xaxes( dtick="M24", tickformat="%B <br> %Y") fig.show() # Plotting a scatterplot fig=px.scatter(df, x=df["Total Nonfarm Employment Value"], y=df["Consumer Price Index Value"], color_discrete_sequence=["salmon"], title="CPI vs Nonfarm Employment Value") # Creating a scatterplot through our dataframe with the x-axis data from Total Nonfarm Employment Value and the y-axis data from CPI # Changing color of scatterplot points to be "salmon" # Source: https://plotly.com/python/line-and-scatter/ fig.show() # Pulling data from two more series RPM = req("RAILPMD11","2000-01-01","2020-12-31", "json") # https://fred.stlouisfed.org/series/RAILPMD11 ARPM = req("AIRRPMTSID11","2000-01-01","2020-12-31", "json") # https://fred.stlouisfed.org/series/AIRRPMTSID11 df_2 =
pd.json_normalize(RPM, record_path=['observations'])
pandas.json_normalize
import torch from torchtext.legacy import data from torchtext.legacy.data import Field, BucketIterator import pandas as pd import os from .NLPClassificationDataset import NLPClassificationDataset class SSTDataset(NLPClassificationDataset): def __init__(self, data_path, seed, batch_size, device, split_ratio=[0.7, 0.3]): # super(QuoraDataset, self).__init__(data_path, seed, batch_size, device, split_ratio) self.split_ratio = split_ratio self.data_path = data_path self.seed = seed self.device = device self.batch_size = batch_size self.ranges = [0, 0.2, 0.4, 0.6, 0.8, 1.0] self.labels = ['very negative', 'negative', 'neutral', 'positive', 'very positive'] self.label = [0, 1, 2, 3, 4] self.seq_data = self.load_data(self.data_path) def get_labels(self): return self.labels def load_data(self, sst_path): sst_sents = pd.read_csv(os.path.join(sst_path, 'datasetSentences.txt'), delimiter='\t') sst_phrases = pd.read_csv(os.path.join(sst_path, 'dictionary.txt'), delimiter='|', names=['phrase','phrase_id']) sst_labels = pd.read_csv(os.path.join(sst_path, 'sentiment_labels.txt'), delimiter='|') sst_sentences_phrases =
pd.merge(sst_sents, sst_phrases, how='inner', left_on=['sentence'], right_on=['phrase'])
pandas.merge
import datetime from datetime import timedelta from distutils.version import LooseVersion from io import BytesIO import os import re from warnings import catch_warnings, simplefilter import numpy as np import pytest from pandas.compat import is_platform_little_endian, is_platform_windows import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_categorical_dtype import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, Int64Index, MultiIndex, RangeIndex, Series, Timestamp, bdate_range, concat, date_range, isna, timedelta_range, ) from pandas.tests.io.pytables.common import ( _maybe_remove, create_tempfile, ensure_clean_path, ensure_clean_store, safe_close, safe_remove, tables, ) import pandas.util.testing as tm from pandas.io.pytables import ( ClosedFileError, HDFStore, PossibleDataLossError, Term, read_hdf, ) from pandas.io import pytables as pytables # noqa: E402 isort:skip from pandas.io.pytables import TableIterator # noqa: E402 isort:skip _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) @pytest.mark.single class TestHDFStore: def test_format_kwarg_in_constructor(self, setup_path): # GH 13291 with ensure_clean_path(setup_path) as path: with pytest.raises(ValueError): HDFStore(path, format="table") def test_context(self, setup_path): path = create_tempfile(setup_path) try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass finally: safe_remove(path) try: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() with HDFStore(path) as tbl: assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame finally: safe_remove(path) def test_conv_read_write(self, setup_path): path = create_tempfile(setup_path) try: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() tm.assert_series_equal(o, roundtrip("series", o)) o = tm.makeStringSeries() tm.assert_series_equal(o, roundtrip("string_series", o)) o = tm.makeDataFrame() tm.assert_frame_equal(o, roundtrip("frame", o)) # table df = DataFrame(dict(A=range(5), B=range(5))) df.to_hdf(path, "table", append=True) result = read_hdf(path, "table", where=["index>2"]) tm.assert_frame_equal(df[df.index > 2], result) finally: safe_remove(path) def test_long_strings(self, setup_path): # GH6166 df = DataFrame( {"a": tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10) ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["a"]) result = store.select("df") tm.assert_frame_equal(df, result) def test_api(self, setup_path): # GH4584 # API issue when to_hdf doesn't accept append AND format args with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True) df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True) tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", append=False, format="fixed") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False, format="f") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False) tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_store(setup_path) as store: path = store._path df = tm.makeDataFrame() _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=True, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # append to False _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # formats _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format=None) tm.assert_frame_equal(store.select("df"), df) with ensure_clean_path(setup_path) as path: # Invalid. df = tm.makeDataFrame() with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="f") with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="fixed") with pytest.raises(TypeError): df.to_hdf(path, "df", append=True, format="foo") with pytest.raises(TypeError): df.to_hdf(path, "df", append=False, format="bar") # File path doesn't exist path = "" with pytest.raises(FileNotFoundError): read_hdf(path, "df") def test_api_default_format(self, setup_path): # default_format option with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") _maybe_remove(store, "df") store.put("df", df) assert not store.get_storer("df").is_table with pytest.raises(ValueError): store.append("df2", df) pd.set_option("io.hdf.default_format", "table") _maybe_remove(store, "df") store.put("df", df) assert store.get_storer("df").is_table _maybe_remove(store, "df2") store.append("df2", df) assert store.get_storer("df").is_table pd.set_option("io.hdf.default_format", None) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") df.to_hdf(path, "df") with HDFStore(path) as store: assert not store.get_storer("df").is_table with pytest.raises(ValueError): df.to_hdf(path, "df2", append=True) pd.set_option("io.hdf.default_format", "table") df.to_hdf(path, "df3") with HDFStore(path) as store: assert store.get_storer("df3").is_table df.to_hdf(path, "df4", append=True) with HDFStore(path) as store: assert store.get_storer("df4").is_table pd.set_option("io.hdf.default_format", None) def test_keys(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() assert len(store) == 3 expected = {"/a", "/b", "/c"} assert set(store.keys()) == expected assert set(store) == expected def test_keys_ignore_hdf_softlink(self, setup_path): # GH 20523 # Puts a softlink into HDF file and rereads with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A=range(5), B=range(5))) store.put("df", df) assert store.keys() == ["/df"] store._handle.create_soft_link(store._handle.root, "symlink", "df") # Should ignore the softlink assert store.keys() == ["/df"] def test_iter_empty(self, setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(self, setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @ignore_natural_naming_warning def test_contains(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] = tm.makeDataFrame() assert "node())" in store def test_versioning(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) assert store.root.a._v_attrs.pandas_version == "0.15.2" assert store.root.b._v_attrs.pandas_version == "0.15.2" assert store.root.df1._v_attrs.pandas_version == "0.15.2" # write a file and wipe its versioning _maybe_remove(store, "df2") store.append("df2", df) # this is an error because its table_type is appendable, but no # version info store.get_node("df2")._v_attrs.pandas_version = None with pytest.raises(Exception): store.select("df2") def test_mode(self, setup_path): df = tm.makeTimeDataFrame() def check(mode): with ensure_clean_path(setup_path) as path: # constructor if mode in ["r", "r+"]: with pytest.raises(IOError): HDFStore(path, mode=mode) else: store = HDFStore(path, mode=mode) assert store._handle.mode == mode store.close() with ensure_clean_path(setup_path) as path: # context if mode in ["r", "r+"]: with pytest.raises(IOError): with HDFStore(path, mode=mode) as store: # noqa pass else: with HDFStore(path, mode=mode) as store: assert store._handle.mode == mode with ensure_clean_path(setup_path) as path: # conv write if mode in ["r", "r+"]: with pytest.raises(IOError): df.to_hdf(path, "df", mode=mode) df.to_hdf(path, "df", mode="w") else: df.to_hdf(path, "df", mode=mode) # conv read if mode in ["w"]: with pytest.raises(ValueError): read_hdf(path, "df", mode=mode) else: result = read_hdf(path, "df", mode=mode) tm.assert_frame_equal(result, df) def check_default_mode(): # read_hdf uses default mode with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", mode="w") result = read_hdf(path, "df") tm.assert_frame_equal(result, df) check("r") check("r+") check("a") check("w") check_default_mode() def test_reopen_handle(self, setup_path): with ensure_clean_path(setup_path) as path: store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # invalid mode change with pytest.raises(PossibleDataLossError): store.open("w") store.close() assert not store.is_open # truncation ok here store.open("w") assert store.is_open assert len(store) == 0 store.close() assert not store.is_open store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # reopen as read store.open("r") assert store.is_open assert len(store) == 1 assert store._mode == "r" store.close() assert not store.is_open # reopen as append store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open # reopen as append (again) store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open def test_open_args(self, setup_path): with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() # create an in memory store store = HDFStore( path, mode="a", driver="H5FD_CORE", driver_core_backing_store=0 ) store["df"] = df store.append("df2", df) tm.assert_frame_equal(store["df"], df) tm.assert_frame_equal(store["df2"], df) store.close() # the file should not have actually been written assert not os.path.exists(path) def test_flush(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store.flush() store.flush(fsync=True) def test_get(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() left = store.get("a") right = store["a"] tm.assert_series_equal(left, right) left = store.get("/a") right = store["/a"] tm.assert_series_equal(left, right) with pytest.raises(KeyError, match="'No object named b in the file'"): store.get("b") @pytest.mark.parametrize( "where, expected", [ ( "/", { "": ({"first_group", "second_group"}, set()), "/first_group": (set(), {"df1", "df2"}), "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ( "/second_group", { "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ], ) def test_walk(self, where, expected, setup_path): # GH10143 objs = { "df1": pd.DataFrame([1, 2, 3]), "df2": pd.DataFrame([4, 5, 6]), "df3": pd.DataFrame([6, 7, 8]), "df4": pd.DataFrame([9, 10, 11]), "s1": pd.Series([10, 9, 8]), # Next 3 items aren't pandas objects and should be ignored "a1": np.array([[1, 2, 3], [4, 5, 6]]), "tb1": np.array([(1, 2, 3), (4, 5, 6)], dtype="i,i,i"), "tb2": np.array([(7, 8, 9), (10, 11, 12)], dtype="i,i,i"), } with ensure_clean_store("walk_groups.hdf", mode="w") as store: store.put("/first_group/df1", objs["df1"]) store.put("/first_group/df2", objs["df2"]) store.put("/second_group/df3", objs["df3"]) store.put("/second_group/s1", objs["s1"]) store.put("/second_group/third_group/df4", objs["df4"]) # Create non-pandas objects store._handle.create_array("/first_group", "a1", objs["a1"]) store._handle.create_table("/first_group", "tb1", obj=objs["tb1"]) store._handle.create_table("/second_group", "tb2", obj=objs["tb2"]) assert len(list(store.walk(where=where))) == len(expected) for path, groups, leaves in store.walk(where=where): assert path in expected expected_groups, expected_frames = expected[path] assert expected_groups == set(groups) assert expected_frames == set(leaves) for leaf in leaves: frame_path = "/".join([path, leaf]) obj = store.get(frame_path) if "df" in leaf: tm.assert_frame_equal(obj, objs[leaf]) else: tm.assert_series_equal(obj, objs[leaf]) def test_getattr(self, setup_path): with ensure_clean_store(setup_path) as store: s = tm.makeTimeSeries() store["a"] = s # test attribute access result = store.a tm.assert_series_equal(result, s) result = getattr(store, "a") tm.assert_series_equal(result, s) df = tm.makeTimeDataFrame() store["df"] = df result = store.df tm.assert_frame_equal(result, df) # errors for x in ["d", "mode", "path", "handle", "complib"]: with pytest.raises(AttributeError): getattr(store, x) # not stores for x in ["mode", "path", "handle", "complib"]: getattr(store, "_{x}".format(x=x)) def test_put(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() store["a"] = ts store["b"] = df[:10] store["foo/bar/bah"] = df[:10] store["foo"] = df[:10] store["/foo"] = df[:10] store.put("c", df[:10], format="table") # not OK, not a table with pytest.raises(ValueError): store.put("b", df[10:], append=True) # node does not currently exist, test _is_table_type returns False # in this case _maybe_remove(store, "f") with pytest.raises(ValueError): store.put("f", df[10:], append=True) # can't put to a table (use append instead) with pytest.raises(ValueError): store.put("c", df[10:], append=True) # overwrite table store.put("c", df[:10], format="table", append=False) tm.assert_frame_equal(df[:10], store["c"]) def test_put_string_index(self, setup_path): with ensure_clean_store(setup_path) as store: index = Index( ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(20), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) # mixed length index = Index( ["abcdefghijklmnopqrstuvwxyz1234567890"] + ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(21), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) def test_put_compression(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() store.put("c", df, format="table", complib="zlib") tm.assert_frame_equal(store["c"], df) # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="zlib") @td.skip_if_windows_python_3 def test_put_compression_blosc(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="blosc") store.put("c", df, format="table", complib="blosc") tm.assert_frame_equal(store["c"], df) def test_complibs_default_settings(self, setup_path): # GH15943 df = tm.makeDataFrame() # Set complevel and check if complib is automatically set to # default value with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complevel=9) result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "zlib" # Set complib and check to see if compression is disabled with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complib="zlib") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if not setting complib or complevel results in no compression with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if file-defaults can be overridden on a per table basis with ensure_clean_path(setup_path) as tmpfile: store = pd.HDFStore(tmpfile) store.append("dfc", df, complevel=9, complib="blosc") store.append("df", df) store.close() with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None for node in h5file.walk_nodes(where="/dfc", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "blosc" def test_complibs(self, setup_path): # GH14478 df = tm.makeDataFrame() # Building list of all complibs and complevels tuples all_complibs = tables.filters.all_complibs # Remove lzo if its not available on this platform if not tables.which_lib_version("lzo"): all_complibs.remove("lzo") # Remove bzip2 if its not available on this platform if not tables.which_lib_version("bzip2"): all_complibs.remove("bzip2") all_levels = range(0, 10) all_tests = [(lib, lvl) for lib in all_complibs for lvl in all_levels] for (lib, lvl) in all_tests: with ensure_clean_path(setup_path) as tmpfile: gname = "foo" # Write and read file to see if data is consistent df.to_hdf(tmpfile, gname, complib=lib, complevel=lvl) result = pd.read_hdf(tmpfile, gname) tm.assert_frame_equal(result, df) # Open file and check metadata # for correct amount of compression h5table = tables.open_file(tmpfile, mode="r") for node in h5table.walk_nodes(where="/" + gname, classname="Leaf"): assert node.filters.complevel == lvl if lvl == 0: assert node.filters.complib is None else: assert node.filters.complib == lib h5table.close() def test_put_integer(self, setup_path): # non-date, non-string index df = DataFrame(np.random.randn(50, 100)) self._check_roundtrip(df, tm.assert_frame_equal, setup_path) @td.xfail_non_writeable def test_put_mixed_type(self, setup_path): df = tm.makeTimeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") # PerformanceWarning with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store.put("df", df) expected = store.get("df") tm.assert_frame_equal(expected, df) @pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) def test_append(self, setup_path): with ensure_clean_store(setup_path) as store: # this is allowed by almost always don't want to do it # tables.NaturalNameWarning): with catch_warnings(record=True): df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) _maybe_remove(store, "df2") store.put("df2", df[:10], format="table") store.append("df2", df[10:]) tm.assert_frame_equal(store["df2"], df) _maybe_remove(store, "df3") store.append("/df3", df[:10]) store.append("/df3", df[10:]) tm.assert_frame_equal(store["df3"], df) # this is allowed by almost always don't want to do it # tables.NaturalNameWarning _maybe_remove(store, "/df3 foo") store.append("/df3 foo", df[:10]) store.append("/df3 foo", df[10:]) tm.assert_frame_equal(store["df3 foo"], df) # dtype issues - mizxed type in a single object column df = DataFrame(data=[[1, 2], [0, 1], [1, 2], [0, 0]]) df["mixed_column"] = "testing" df.loc[2, "mixed_column"] = np.nan _maybe_remove(store, "df") store.append("df", df) tm.assert_frame_equal(store["df"], df) # uints - test storage of uints uint_data = DataFrame( { "u08": Series( np.random.randint(0, high=255, size=5), dtype=np.uint8 ), "u16": Series( np.random.randint(0, high=65535, size=5), dtype=np.uint16 ), "u32": Series( np.random.randint(0, high=2 ** 30, size=5), dtype=np.uint32 ), "u64": Series( [2 ** 58, 2 ** 59, 2 ** 60, 2 ** 61, 2 ** 62], dtype=np.uint64, ), }, index=np.arange(5), ) _maybe_remove(store, "uints") store.append("uints", uint_data) tm.assert_frame_equal(store["uints"], uint_data) # uints - test storage of uints in indexable columns _maybe_remove(store, "uints") # 64-bit indices not yet supported store.append("uints", uint_data, data_columns=["u08", "u16", "u32"]) tm.assert_frame_equal(store["uints"], uint_data) def test_append_series(self, setup_path): with ensure_clean_store(setup_path) as store: # basic ss = tm.makeStringSeries() ts = tm.makeTimeSeries() ns = Series(np.arange(100)) store.append("ss", ss) result = store["ss"] tm.assert_series_equal(result, ss) assert result.name is None store.append("ts", ts) result = store["ts"] tm.assert_series_equal(result, ts) assert result.name is None ns.name = "foo" store.append("ns", ns) result = store["ns"] tm.assert_series_equal(result, ns) assert result.name == ns.name # select on the values expected = ns[ns > 60] result = store.select("ns", "foo>60") tm.assert_series_equal(result, expected) # select on the index and values expected = ns[(ns > 70) & (ns.index < 90)] result = store.select("ns", "foo>70 and index<90") tm.assert_series_equal(result, expected) # multi-index mi = DataFrame(np.random.randn(5, 1), columns=["A"]) mi["B"] = np.arange(len(mi)) mi["C"] = "foo" mi.loc[3:5, "C"] = "bar" mi.set_index(["C", "B"], inplace=True) s = mi.stack() s.index = s.index.droplevel(2) store.append("mi", s) tm.assert_series_equal(store["mi"], s) def test_store_index_types(self, setup_path): # GH5386 # test storing various index types with ensure_clean_store(setup_path) as store: def check(format, index): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df.index = index(len(df)) _maybe_remove(store, "df") store.put("df", df, format=format) tm.assert_frame_equal(df, store["df"]) for index in [ tm.makeFloatIndex, tm.makeStringIndex, tm.makeIntIndex, tm.makeDateIndex, ]: check("table", index) check("fixed", index) # period index currently broken for table # seee GH7796 FIXME check("fixed", tm.makePeriodIndex) # check('table',tm.makePeriodIndex) # unicode index = tm.makeUnicodeIndex check("table", index) check("fixed", index) @pytest.mark.skipif( not is_platform_little_endian(), reason="reason platform is not little endian" ) def test_encoding(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A="foo", B="bar"), index=range(5)) df.loc[2, "A"] = np.nan df.loc[3, "B"] = np.nan _maybe_remove(store, "df") store.append("df", df, encoding="ascii") tm.assert_frame_equal(store["df"], df) expected = df.reindex(columns=["A"]) result = store.select("df", Term("columns=A", encoding="ascii")) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "val", [ [b"E\xc9, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"a", b"b", b"c"], [b"EE, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"\xf8\xfc", b"a", b"b", b"c"], [b"", b"a", b"b", b"c"], [b"\xf8\xfc", b"a", b"b", b"c"], [b"A\xf8\xfc", b"", b"a", b"b", b"c"], [np.nan, b"", b"b", b"c"], [b"A\xf8\xfc", np.nan, b"", b"b", b"c"], ], ) @pytest.mark.parametrize("dtype", ["category", object]) def test_latin_encoding(self, setup_path, dtype, val): enc = "latin-1" nan_rep = "" key = "data" val = [x.decode(enc) if isinstance(x, bytes) else x for x in val] ser = pd.Series(val, dtype=dtype) with ensure_clean_path(setup_path) as store: ser.to_hdf(store, key, format="table", encoding=enc, nan_rep=nan_rep) retr = read_hdf(store, key) s_nan = ser.replace(nan_rep, np.nan) if is_categorical_dtype(s_nan): assert is_categorical_dtype(retr) tm.assert_series_equal( s_nan, retr, check_dtype=False, check_categorical=False ) else: tm.assert_series_equal(s_nan, retr) # FIXME: don't leave commented-out # fails: # for x in examples: # roundtrip(s, nan_rep=b'\xf8\xfc') def test_append_some_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( { "A": Series(np.random.randn(20)).astype("int32"), "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) # some nans _maybe_remove(store, "df1") df.loc[0:15, ["A1", "B", "D", "E"]] = np.nan store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) # first column df1 = df.copy() df1.loc[:, "A1"] = np.nan _maybe_remove(store, "df1") store.append("df1", df1[:10]) store.append("df1", df1[10:]) tm.assert_frame_equal(store["df1"], df1) # 2nd column df2 = df.copy() df2.loc[:, "A2"] = np.nan _maybe_remove(store, "df2") store.append("df2", df2[:10]) store.append("df2", df2[10:]) tm.assert_frame_equal(store["df2"], df2) # datetimes df3 = df.copy() df3.loc[:, "E"] = np.nan _maybe_remove(store, "df3") store.append("df3", df3[:10]) store.append("df3", df3[10:]) tm.assert_frame_equal(store["df3"], df3) def test_append_all_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( {"A1": np.random.randn(20), "A2": np.random.randn(20)}, index=np.arange(20), ) df.loc[0:15, :] = np.nan # nan some entire rows (dropna=True) _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df[-4:]) # nan some entire rows (dropna=False) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # tests the option io.hdf.dropna_table pd.set_option("io.hdf.dropna_table", False) _maybe_remove(store, "df3") store.append("df3", df[:10]) store.append("df3", df[10:]) tm.assert_frame_equal(store["df3"], df) pd.set_option("io.hdf.dropna_table", True) _maybe_remove(store, "df4") store.append("df4", df[:10]) store.append("df4", df[10:]) tm.assert_frame_equal(store["df4"], df[-4:]) # nan some entire rows (string are still written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # nan some entire rows (but since we have dates they are still # written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # Test to make sure defaults are to not drop. # Corresponding to Issue 9382 df_with_missing = DataFrame( {"col1": [0, np.nan, 2], "col2": [1, np.nan, np.nan]} ) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df_with_missing", format="table") reloaded = read_hdf(path, "df_with_missing") tm.assert_frame_equal(df_with_missing, reloaded) def test_read_missing_key_close_store(self, setup_path): # GH 25766 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(path, "k2") # smoke test to test that file is properly closed after # read with KeyError before another write df.to_hdf(path, "k2") def test_read_missing_key_opened_store(self, setup_path): # GH 28699 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") store = pd.HDFStore(path, "r") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(store, "k2") # Test that the file is still open after a KeyError and that we can # still read from it. pd.read_hdf(store, "k1") def test_append_frame_column_oriented(self, setup_path): with ensure_clean_store(setup_path) as store: # column oriented df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df.iloc[:, :2], axes=["columns"]) store.append("df1", df.iloc[:, 2:]) tm.assert_frame_equal(store["df1"], df) result = store.select("df1", "columns=A") expected = df.reindex(columns=["A"]) tm.assert_frame_equal(expected, result) # selection on the non-indexable result = store.select("df1", ("columns=A", "index=df.index[0:4]")) expected = df.reindex(columns=["A"], index=df.index[0:4]) tm.assert_frame_equal(expected, result) # this isn't supported with pytest.raises(TypeError): store.select("df1", "columns=A and index>df.index[4]") def test_append_with_different_block_ordering(self, setup_path): # GH 4096; using same frames, but different block orderings with ensure_clean_store(setup_path) as store: for i in range(10): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df["index"] = range(10) df["index"] += i * 10 df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") if i % 2 == 0: del df["int64"] df["int64"] = Series([1] * len(df), dtype="int64") if i % 3 == 0: a = df.pop("A") df["A"] = a df.set_index("index", inplace=True) store.append("df", df) # test a different ordering but with more fields (like invalid # combinate) with ensure_clean_store(setup_path) as store: df = DataFrame(np.random.randn(10, 2), columns=list("AB"), dtype="float64") df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") store.append("df", df) # store additional fields in different blocks df["int16_2"] = Series([1] * len(df), dtype="int16") with pytest.raises(ValueError): store.append("df", df) # store multile additional fields in different blocks df["float_3"] = Series([1.0] * len(df), dtype="float64") with pytest.raises(ValueError): store.append("df", df) def test_append_with_strings(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big", df) tm.assert_frame_equal(store.select("df_big"), df) check_col("df_big", "values_block_1", 15) # appending smaller string ok df2 = DataFrame([[124, "asdqy"], [346, "dggnhefbdfb"]]) store.append("df_big", df2) expected = concat([df, df2]) tm.assert_frame_equal(store.select("df_big"), expected) check_col("df_big", "values_block_1", 15) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big2", df, min_itemsize={"values": 50}) tm.assert_frame_equal(store.select("df_big2"), df) check_col("df_big2", "values_block_1", 50) # bigger string on next append store.append("df_new", df) df_new = DataFrame( [[124, "abcdefqhij"], [346, "abcdefghijklmnopqrtsuvwxyz"]] ) with pytest.raises(ValueError): store.append("df_new", df_new) # min_itemsize on Series index (GH 11412) df = tm.makeMixedDataFrame().set_index("C") store.append("ss", df["B"], min_itemsize={"index": 4}) tm.assert_series_equal(store.select("ss"), df["B"]) # same as above, with data_columns=True store.append( "ss2", df["B"], data_columns=True, min_itemsize={"index": 4} ) tm.assert_series_equal(store.select("ss2"), df["B"]) # min_itemsize in index without appending (GH 10381) store.put("ss3", df, format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") store.append("ss3", df2) tm.assert_frame_equal(store.select("ss3"), pd.concat([df, df2])) # same as above, with a Series store.put("ss4", df["B"], format="table", min_itemsize={"index": 6}) store.append("ss4", df2["B"]) tm.assert_series_equal( store.select("ss4"), pd.concat([df["B"], df2["B"]]) ) # with nans _maybe_remove(store, "df") df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[1:4, "string"] = np.nan df["string2"] = "bar" df.loc[4:8, "string2"] = np.nan df["string3"] = "bah" df.loc[1:, "string3"] = np.nan store.append("df", df) result = store.select("df") tm.assert_frame_equal(result, df) with ensure_clean_store(setup_path) as store: def check_col(key, name, size): assert getattr( store.get_storer(key).table.description, name ).itemsize, size df = DataFrame(dict(A="foo", B="bar"), index=range(10)) # a min_itemsize that creates a data_column _maybe_remove(store, "df") store.append("df", df, min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["B", "A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"values": 200}) check_col("df", "B", 200) check_col("df", "values_block_0", 200) assert store.get_storer("df").data_columns == ["B"] # infer the .typ on subsequent appends _maybe_remove(store, "df") store.append("df", df[:5], min_itemsize=200) store.append("df", df[5:], min_itemsize=200) tm.assert_frame_equal(store["df"], df) # invalid min_itemsize keys df = DataFrame(["foo", "foo", "foo", "barh", "barh", "barh"], columns=["A"]) _maybe_remove(store, "df") with pytest.raises(ValueError): store.append("df", df, min_itemsize={"foo": 20, "foobar": 20}) def test_append_with_empty_string(self, setup_path): with ensure_clean_store(setup_path) as store: # with all empty strings (GH 12242) df = DataFrame({"x": ["a", "b", "c", "d", "e", "f", ""]}) store.append("df", df[:-1], min_itemsize={"x": 1}) store.append("df", df[-1:], min_itemsize={"x": 1}) tm.assert_frame_equal(store.select("df"), df) def test_to_hdf_with_min_itemsize(self, setup_path): with ensure_clean_path(setup_path) as path: # min_itemsize in index with to_hdf (GH 10381) df = tm.makeMixedDataFrame().set_index("C") df.to_hdf(path, "ss3", format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") df2.to_hdf(path, "ss3", append=True, format="table") tm.assert_frame_equal(pd.read_hdf(path, "ss3"), pd.concat([df, df2])) # same as above, with a Series df["B"].to_hdf(path, "ss4", format="table", min_itemsize={"index": 6}) df2["B"].to_hdf(path, "ss4", append=True, format="table") tm.assert_series_equal( pd.read_hdf(path, "ss4"), pd.concat([df["B"], df2["B"]]) ) @pytest.mark.parametrize( "format", [pytest.param("fixed", marks=td.xfail_non_writeable), "table"] ) def test_to_hdf_errors(self, format, setup_path): data = ["\ud800foo"] ser = pd.Series(data, index=pd.Index(data)) with ensure_clean_path(setup_path) as path: # GH 20835 ser.to_hdf(path, "table", format=format, errors="surrogatepass") result = pd.read_hdf(path, "table", errors="surrogatepass") tm.assert_series_equal(result, ser) def test_append_with_data_columns(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() df.iloc[0, df.columns.get_loc("B")] = 1.0 _maybe_remove(store, "df") store.append("df", df[:2], data_columns=["B"]) store.append("df", df[2:]) tm.assert_frame_equal(store["df"], df) # check that we have indices created assert store._handle.root.df.table.cols.index.is_indexed is True assert store._handle.root.df.table.cols.B.is_indexed is True # data column searching result = store.select("df", "B>0") expected = df[df.B > 0] tm.assert_frame_equal(result, expected) # data column searching (with an indexable and a data_columns) result = store.select("df", "B>0 and index>df.index[3]") df_new = df.reindex(index=df.index[4:]) expected = df_new[df_new.B > 0] tm.assert_frame_equal(result, expected) # data column selection with a string data_column df_new = df.copy() df_new["string"] = "foo" df_new.loc[1:4, "string"] = np.nan df_new.loc[5:6, "string"] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"]) result = store.select("df", "string='foo'") expected = df_new[df_new.string == "foo"] tm.assert_frame_equal(result, expected) # using min_itemsize and a data column def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"string": 30} ) check_col("df", "string", 30) _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"], min_itemsize=30) check_col("df", "string", 30) _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"values": 30} ) check_col("df", "string", 30) with ensure_clean_store(setup_path) as store: df_new["string2"] = "foobarbah" df_new["string_block1"] = "foobarbah1" df_new["string_block2"] = "foobarbah2" _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string", "string2"], min_itemsize={"string": 30, "string2": 40, "values": 50}, ) check_col("df", "string", 30) check_col("df", "string2", 40) check_col("df", "values_block_1", 50) with ensure_clean_store(setup_path) as store: # multiple data columns df_new = df.copy() df_new.iloc[0, df_new.columns.get_loc("A")] = 1.0 df_new.iloc[0, df_new.columns.get_loc("B")] = -1.0 df_new["string"] = "foo" sl = df_new.columns.get_loc("string") df_new.iloc[1:4, sl] = np.nan df_new.iloc[5:6, sl] = "bar" df_new["string2"] = "foo" sl = df_new.columns.get_loc("string2") df_new.iloc[2:5, sl] = np.nan df_new.iloc[7:8, sl] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["A", "B", "string", "string2"]) result = store.select( "df", "string='foo' and string2='foo' and A>0 and B<0" ) expected = df_new[ (df_new.string == "foo") & (df_new.string2 == "foo") & (df_new.A > 0) & (df_new.B < 0) ] tm.assert_frame_equal(result, expected, check_index_type=False) # yield an empty frame result = store.select("df", "string='foo' and string2='cool'") expected = df_new[(df_new.string == "foo") & (df_new.string2 == "cool")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example df_dc = df.copy() df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc["string2"] = "cool" df_dc["datetime"] = Timestamp("20010102") df_dc = df_dc._convert(datetime=True) df_dc.loc[3:5, ["A", "B", "datetime"]] = np.nan _maybe_remove(store, "df_dc") store.append( "df_dc", df_dc, data_columns=["B", "C", "string", "string2", "datetime"] ) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected, check_index_type=False) result = store.select("df_dc", ["B > 0", "C > 0", "string == foo"]) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example part 2 np.random.seed(1234) index = date_range("1/1/2000", periods=8) df_dc = DataFrame( np.random.randn(8, 3), index=index, columns=["A", "B", "C"] ) df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc.loc[:, ["B", "C"]] = df_dc.loc[:, ["B", "C"]].abs() df_dc["string2"] = "cool" # on-disk operations store.append("df_dc", df_dc, data_columns=["B", "C", "string", "string2"]) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected) result = store.select("df_dc", ["B > 0", "C > 0", 'string == "foo"']) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected) def test_create_table_index(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # data columns df = tm.makeTimeDataFrame() df["string"] = "foo" df["string2"] = "bar" store.append("f", df, data_columns=["string", "string2"]) assert col("f", "index").is_indexed is True assert col("f", "string").is_indexed is True assert col("f", "string2").is_indexed is True # specify index=columns store.append( "f2", df, index=["string"], data_columns=["string", "string2"] ) assert col("f2", "index").is_indexed is False assert col("f2", "string").is_indexed is True assert col("f2", "string2").is_indexed is False # try to index a non-table _maybe_remove(store, "f2") store.put("f2", df) with pytest.raises(TypeError): store.create_table_index("f2") def test_append_hierarchical(self, setup_path): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo", "bar"], ) df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.append("mi", df) result = store.select("mi") tm.assert_frame_equal(result, df) # GH 3748 result = store.select("mi", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) with ensure_clean_path("test.hdf") as path: df.to_hdf(path, "df", format="table") result = read_hdf(path, "df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) def test_column_multiindex(self, setup_path): # GH 4710 # recreate multi-indexes properly index = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")], names=["first", "second"] ) df = DataFrame(np.arange(12).reshape(3, 4), columns=index) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df", df) tm.assert_frame_equal( store["df"], expected, check_index_type=True, check_column_type=True ) store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) with pytest.raises(ValueError): store.put("df2", df, format="table", data_columns=["A"]) with pytest.raises(ValueError): store.put("df3", df, format="table", data_columns=True) # appending multi-column on existing table (see GH 6167) with ensure_clean_store(setup_path) as store: store.append("df2", df) store.append("df2", df) tm.assert_frame_equal(store["df2"], concat((df, df))) # non_index_axes name df = DataFrame( np.arange(12).reshape(3, 4), columns=Index(list("ABCD"), name="foo") ) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) def test_store_multiindex(self, setup_path): # validate multi-index names # GH 5527 with ensure_clean_store(setup_path) as store: def make_index(names=None): return MultiIndex.from_tuples( [ (datetime.datetime(2013, 12, d), s, t) for d in range(1, 3) for s in range(2) for t in range(3) ], names=names, ) # no names _maybe_remove(store, "df") df = DataFrame(np.zeros((12, 2)), columns=["a", "b"], index=make_index()) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # partial names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", None, None]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # series _maybe_remove(store, "s") s = Series(np.zeros(12), index=make_index(["date", None, None])) store.append("s", s) xp = Series(np.zeros(12), index=make_index(["date", "level_1", "level_2"])) tm.assert_series_equal(store.select("s"), xp) # dup with column _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "a", "t"]), ) with pytest.raises(ValueError): store.append("df", df) # dup within level _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "date", "date"]), ) with pytest.raises(ValueError): store.append("df", df) # fully names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "s", "t"]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) def test_select_columns_in_where(self, setup_path): # GH 6169 # recreate multi-indexes when columns is passed # in the `where` argument index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo_name", "bar_name"], ) # With a DataFrame df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") expected = df[["A"]] tm.assert_frame_equal(store.select("df", columns=["A"]), expected) tm.assert_frame_equal(store.select("df", where="columns=['A']"), expected) # With a Series s = Series(np.random.randn(10), index=index, name="A") with ensure_clean_store(setup_path) as store: store.put("s", s, format="table") tm.assert_series_equal(store.select("s", where="columns=['A']"), s) def test_mi_data_columns(self, setup_path): # GH 14435 idx = pd.MultiIndex.from_arrays( [date_range("2000-01-01", periods=5), range(5)], names=["date", "id"] ) df = pd.DataFrame({"a": [1.1, 1.2, 1.3, 1.4, 1.5]}, index=idx) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=True) actual = store.select("df", where="id == 1") expected = df.iloc[[1], :] tm.assert_frame_equal(actual, expected) def test_pass_spec_to_storer(self, setup_path): df = tm.makeDataFrame() with ensure_clean_store(setup_path) as store: store.put("df", df) with pytest.raises(TypeError): store.select("df", columns=["A"]) with pytest.raises(TypeError): store.select("df", where=[("columns=A")]) @td.xfail_non_writeable def test_append_misc(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df, chunksize=1) result = store.select("df") tm.assert_frame_equal(result, df) store.append("df1", df, expectedrows=10) result = store.select("df1") tm.assert_frame_equal(result, df) # more chunksize in append tests def check(obj, comparator): for c in [10, 200, 1000]: with ensure_clean_store(setup_path, mode="w") as store: store.append("obj", obj, chunksize=c) result = store.select("obj") comparator(result, obj) df = tm.makeDataFrame() df["string"] = "foo" df["float322"] = 1.0 df["float322"] = df["float322"].astype("float32") df["bool"] = df["float322"] > 0 df["time1"] = Timestamp("20130101") df["time2"] = Timestamp("20130102") check(df, tm.assert_frame_equal) # empty frame, GH4273 with ensure_clean_store(setup_path) as store: # 0 len df_empty = DataFrame(columns=list("ABC")) store.append("df", df_empty) with pytest.raises(KeyError, match="'No object named df in the file'"): store.select("df") # repeated append of 0/non-zero frames df = DataFrame(np.random.rand(10, 3), columns=list("ABC")) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) store.append("df", df_empty) tm.assert_frame_equal(store.select("df"), df) # store df = DataFrame(columns=list("ABC")) store.put("df2", df) tm.assert_frame_equal(store.select("df2"), df) def test_append_raise(self, setup_path): with ensure_clean_store(setup_path) as store: # test append with invalid input to get good error messages # list in column df = tm.makeDataFrame() df["invalid"] = [["a"]] * len(df) assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # multiple invalid columns df["invalid2"] = [["a"]] * len(df) df["invalid3"] = [["a"]] * len(df) with pytest.raises(TypeError): store.append("df", df) # datetime with embedded nans as object df = tm.makeDataFrame() s = Series(datetime.datetime(2001, 1, 2), index=df.index) s = s.astype(object) s[0:5] = np.nan df["invalid"] = s assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # directly ndarray with pytest.raises(TypeError): store.append("df", np.arange(10)) # series directly with pytest.raises(TypeError): store.append("df", Series(np.arange(10))) # appending an incompatible table df = tm.makeDataFrame() store.append("df", df) df["foo"] = "foo" with pytest.raises(ValueError): store.append("df", df) def test_table_index_incompatible_dtypes(self, setup_path): df1 = DataFrame({"a": [1, 2, 3]}) df2 = DataFrame({"a": [4, 5, 6]}, index=date_range("1/1/2000", periods=3)) with ensure_clean_store(setup_path) as store: store.put("frame", df1, format="table") with pytest.raises(TypeError): store.put("frame", df2, format="table", append=True) def test_table_values_dtypes_roundtrip(self, setup_path): with ensure_clean_store(setup_path) as store: df1 = DataFrame({"a": [1, 2, 3]}, dtype="f8") store.append("df_f8", df1) tm.assert_series_equal(df1.dtypes, store["df_f8"].dtypes) df2 = DataFrame({"a": [1, 2, 3]}, dtype="i8") store.append("df_i8", df2) tm.assert_series_equal(df2.dtypes, store["df_i8"].dtypes) # incompatible dtype with pytest.raises(ValueError): store.append("df_i8", df1) # check creation/storage/retrieval of float32 (a bit hacky to # actually create them thought) df1 = DataFrame(np.array([[1], [2], [3]], dtype="f4"), columns=["A"]) store.append("df_f4", df1) tm.assert_series_equal(df1.dtypes, store["df_f4"].dtypes) assert df1.dtypes[0] == "float32" # check with mixed dtypes df1 = DataFrame( { c: Series(np.random.randint(5), dtype=c) for c in ["float32", "float64", "int32", "int64", "int16", "int8"] } ) df1["string"] = "foo" df1["float322"] = 1.0 df1["float322"] = df1["float322"].astype("float32") df1["bool"] = df1["float32"] > 0 df1["time1"] = Timestamp("20130101") df1["time2"] = Timestamp("20130102") store.append("df_mixed_dtypes1", df1) result = store.select("df_mixed_dtypes1").dtypes.value_counts() result.index = [str(i) for i in result.index] expected = Series( { "float32": 2, "float64": 1, "int32": 1, "bool": 1, "int16": 1, "int8": 1, "int64": 1, "object": 1, "datetime64[ns]": 2, } ) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) def test_table_mixed_dtypes(self, setup_path): # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: store.append("df1_mixed", df) tm.assert_frame_equal(store.select("df1_mixed"), df) def test_unimplemented_dtypes_table_columns(self, setup_path): with ensure_clean_store(setup_path) as store: dtypes = [("date", datetime.date(2001, 1, 2))] # currently not supported dtypes #### for n, f in dtypes: df = tm.makeDataFrame() df[n] = f with pytest.raises(TypeError): store.append("df1_{n}".format(n=n), df) # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["datetime1"] = datetime.date(2001, 1, 2) df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: # this fails because we have a date in the object block...... with pytest.raises(TypeError): store.append("df_unimplemented", df) @td.xfail_non_writeable @pytest.mark.skipif( LooseVersion(np.__version__) == LooseVersion("1.15.0"), reason=( "Skipping pytables test when numpy version is " "exactly equal to 1.15.0: gh-22098" ), ) def test_calendar_roundtrip_issue(self, setup_path): # 8591 # doc example from tseries holiday section weekmask_egypt = "Sun Mon Tue Wed Thu" holidays = [ "2012-05-01", datetime.datetime(2013, 5, 1), np.datetime64("2014-05-01"), ] bday_egypt = pd.offsets.CustomBusinessDay( holidays=holidays, weekmask=weekmask_egypt ) dt = datetime.datetime(2013, 4, 30) dts = date_range(dt, periods=5, freq=bday_egypt) s = Series(dts.weekday, dts).map(Series("Mon Tue Wed Thu Fri Sat Sun".split())) with ensure_clean_store(setup_path) as store: store.put("fixed", s) result = store.select("fixed") tm.assert_series_equal(result, s) store.append("table", s) result = store.select("table") tm.assert_series_equal(result, s) def test_roundtrip_tz_aware_index(self, setup_path): # GH 17618 time = pd.Timestamp("2000-01-01 01:00:00", tz="US/Eastern") df = pd.DataFrame(data=[0], index=[time]) with ensure_clean_store(setup_path) as store: store.put("frame", df, format="fixed") recons = store["frame"] tm.assert_frame_equal(recons, df) assert recons.index[0].value == 946706400000000000 def test_append_with_timedelta(self, setup_path): # GH 3577 # append timedelta df = DataFrame( dict( A=Timestamp("20130101"), B=[ Timestamp("20130101") + timedelta(days=i, seconds=10) for i in range(10) ], ) ) df["C"] = df["A"] - df["B"] df.loc[3:5, "C"] = np.nan with ensure_clean_store(setup_path) as store: # table _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df") tm.assert_frame_equal(result, df) result = store.select("df", where="C<100000") tm.assert_frame_equal(result, df) result = store.select("df", where="C<pd.Timedelta('-3D')") tm.assert_frame_equal(result, df.iloc[3:]) result = store.select("df", "C<'-3D'") tm.assert_frame_equal(result, df.iloc[3:]) # a bit hacky here as we don't really deal with the NaT properly result = store.select("df", "C<'-500000s'") result = result.dropna(subset=["C"]) tm.assert_frame_equal(result, df.iloc[6:]) result = store.select("df", "C<'-3.5D'") result = result.iloc[1:] tm.assert_frame_equal(result, df.iloc[4:]) # fixed _maybe_remove(store, "df2") store.put("df2", df) result = store.select("df2") tm.assert_frame_equal(result, df) def test_remove(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeDataFrame() store["a"] = ts store["b"] = df _maybe_remove(store, "a") assert len(store) == 1 tm.assert_frame_equal(df, store["b"]) _maybe_remove(store, "b") assert len(store) == 0 # nonexistence with pytest.raises( KeyError, match="'No object named a_nonexistent_store in the file'" ): store.remove("a_nonexistent_store") # pathing store["a"] = ts store["b/foo"] = df _maybe_remove(store, "foo") _maybe_remove(store, "b/foo") assert len(store) == 1 store["a"] = ts store["b/foo"] = df _maybe_remove(store, "b") assert len(store) == 1 # __delitem__ store["a"] = ts store["b"] = df del store["a"] del store["b"] assert len(store) == 0 def test_invalid_terms(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[0:4, "string"] = "bar" store.put("df", df, format="table") # some invalid terms with pytest.raises(TypeError): Term() # more invalid with pytest.raises(ValueError): store.select("df", "df.index[3]") with pytest.raises(SyntaxError): store.select("df", "index>") # from the docs with ensure_clean_path(setup_path) as path: dfq = DataFrame( np.random.randn(10, 4), columns=list("ABCD"), index=date_range("20130101", periods=10), ) dfq.to_hdf(path, "dfq", format="table", data_columns=True) # check ok read_hdf( path, "dfq", where="index>Timestamp('20130104') & columns=['A', 'B']" ) read_hdf(path, "dfq", where="A>0 or C>0") # catch the invalid reference with ensure_clean_path(setup_path) as path: dfq = DataFrame( np.random.randn(10, 4), columns=list("ABCD"), index=date_range("20130101", periods=10), ) dfq.to_hdf(path, "dfq", format="table") with pytest.raises(ValueError):
read_hdf(path, "dfq", where="A>0 or C>0")
pandas.io.pytables.read_hdf
import numpy as np import pandas as pd from astropy.table import Table from astropy.io.fits import getdata from astropy.time import Time from astropy.io import fits import sys from astroquery.simbad import Simbad from astropy.coordinates import SkyCoord import astropy.units as u # Read base CSV from the Google drive df = pd.read_csv('csv/straycats2_merged.csv') df['SEQID'] = pd.to_numeric(df['SEQID']) df['Module'] = [mod.strip() for mod in df['Module']] # Greenlist the columns that we want greenlist = ['SL Target', 'SEQID', 'Module', 'Primary Target', 'Exposure (s)', 'RA', 'DEC'] for col in df.columns: if col not in greenlist: df = df.drop(axis=1, labels=col) # Drop everything with NaN in the SL Target column df = df.dropna(subset=['SL Target']) df = df.rename(columns={"Exposure (s)": "Exposure"}) df['SL Target'] = df['SL Target'].str.strip() df['RA'] = pd.to_numeric(df['RA']) df['DEC'] =
pd.to_numeric(df['DEC'])
pandas.to_numeric
#test dataset model from deepforest import get_data from deepforest import dataset from deepforest import utilities import os import pytest import torch import pandas as pd import numpy as np import tempfile def single_class(): csv_file = get_data("example.csv") return csv_file def multi_class(): csv_file = get_data("testfile_multi.csv") return csv_file @pytest.mark.parametrize("csv_file,label_dict",[(single_class(), {"Tree":0}), (multi_class(),{"Alive":0,"Dead":1})]) def test_TreeDataset(csv_file, label_dict): root_dir = os.path.dirname(get_data("OSBS_029.png")) ds = dataset.TreeDataset(csv_file=csv_file, root_dir=root_dir, label_dict=label_dict) raw_data = pd.read_csv(csv_file) assert len(ds) == len(raw_data.image_path.unique()) for i in range(len(ds)): #Between 0 and 1 path, image, targets = ds[i] assert image.max() <= 1 assert image.min() >= 0 assert targets["boxes"].shape == (raw_data.shape[0],4) assert targets["labels"].shape == (raw_data.shape[0],) assert len(np.unique(targets["labels"])) == len(raw_data.label.unique()) def test_single_class_with_empty(tmpdir): """Add fake empty annotations to test parsing """ csv_file1 = get_data("example.csv") csv_file2 = get_data("OSBS_029.csv") df1 = pd.read_csv(csv_file1) df2 =
pd.read_csv(csv_file2)
pandas.read_csv
#coding=utf-8 from sklearn.metrics import roc_auc_score import pandas as pd import os val = pd.read_csv('../data/validation/validation_set.csv') """ for i in range(30): xgb = pd.read_csv('./val/svm_{0}.csv'.format(i)) tmp = pd.merge(xgb,val,on='Idx') auc = roc_auc_score(tmp.target.values,tmp.score.values) xgb.to_csv('./val/svm{0}_{1}.csv'.format(i,auc),index=None,encoding='utf-8') """ files = os.listdir('./val') pred = pd.read_csv('./val/'+files[0]) Idx = pred.Idx score = pred.score for f in files[1:]: pred = pd.read_csv('./val/'+f) score += pred.score score /= len(files) pred =
pd.DataFrame(Idx,columns=['Idx'])
pandas.DataFrame
import logging import os import sys import pandas as pd import pytest import handy as hd log: logging.Logger @pytest.fixture def setup_logging(): logging.basicConfig(level=logging.INFO, stream=sys.stdout) global log log = logging.getLogger('handy test') log.setLevel(logging.INFO) return log def test_nothing(setup_logging): global log # this is to show how to use logging with pycharm + pytest # it will be printed if pytest is run with options `-p no:logging -s` # Add them to "Additional Arguments" in your Run Configuration or # Run Configuration Template for pytest print('\nignore the communicates from this method. This is test.') print('this is how to print to console, without logging') log.warning('Just a test warning message. Ignore it.') log.warning('This is how to print a warning with logging') log.info('This is how to print an info with logging') assert True, "dummy assertion" def test_round_up(): assert hd.round_up(98) == 100 assert hd.round_up(55) == 60 assert hd.round_up(10) == 10 assert hd.round_up(345) == 400 def test_tidy_bins(): assert hd.tidy_bins([21,35,92], 4).tolist() == [0,25,50,75,100] assert hd.tidy_bins([21,35,92]).tolist() == [0,10,20,30,40,50,60,70,80,90,100] assert hd.tidy_bins([21,35,92], 5).tolist() == [0,20,40,60,80,100] def test_to_datetime(): days = ['2021-04-05 00:00', # Mon '2021-04-10 11:46', # Sat '2021-04-11 23:59' # Sun ] df = pd.DataFrame({'input': days}) df = hd.to_datetime(df, input_column='input', output_column='output') assert df.output[2] == pd.to_datetime(days[2]) def test_monday_before_and_after(): days = ['2021-04-05 00:00', # Mon '2021-04-10 11:46', # Sat '2021-04-11-23:59' # Sun ] days_dt = pd.to_datetime(days) mon_before = pd.to_datetime('2021-04-05 00:00') mon_after = pd.to_datetime('2021-04-12 00:00') for d in days_dt: assert (hd.monday_before(d) == mon_before) assert (hd.monday_after(d) == mon_after) log.info('test_monday_before_after: PASS') @pytest.fixture def load_testdata_5m(): # load the 5-months data set to be used for tests data_dir = '../data' src_file = 'sample01.csv' f = os.path.join(data_dir, src_file) df = pd.read_csv(f, encoding='latin_1', sep=';', error_bad_lines=False) df['created'] = pd.to_datetime(df['created'], format=hd.format_dash, errors='coerce') df['resolved'] = pd.to_datetime(df['resolved'], format=hd.format_dash, errors='coerce') df = hd.augment_columns(df) return df # expect the data as loaded by load_testdata_5m def test_week_boundaries(setup_logging, load_testdata_5m): df = load_testdata_5m # correct results inner_boundaries = (pd.Timestamp('2020-09-07 00:00:00'), pd.Timestamp('2021-01-25 00:00:00'), 20.0) outer_boundaries = (
pd.Timestamp('2020-08-31 00:00:00')
pandas.Timestamp
# ***************************************************************************** # © Copyright IBM Corp. 2018. All Rights Reserved. # # This program and the accompanying materials # are made available under the terms of the Apache V2.0 license # which accompanies this distribution, and is available at # http://www.apache.org/licenses/LICENSE-2.0 # # ***************************************************************************** """ The Built In Functions module contains preinstalled functions """ import itertools as it import datetime as dt import importlib import logging import time import numpy as np import pandas as pd import scipy as sp from pyod.models.cblof import CBLOF import numpy as np import pandas as pd import scipy as sp from pyod.models.cblof import CBLOF import ruptures as rpt # for Spectral Analysis from scipy import signal, fftpack import skimage as ski from skimage import util as skiutil # for nifty windowing # for KMeans from sklearn import ensemble from sklearn import linear_model from sklearn import metrics from sklearn.covariance import MinCovDet from sklearn.neighbors import (KernelDensity, LocalOutlierFactor) from sklearn.pipeline import Pipeline, TransformerMixin from sklearn.model_selection import train_test_split from sklearn.preprocessing import (StandardScaler, RobustScaler, MinMaxScaler, minmax_scale, PolynomialFeatures) from sklearn.utils import check_array # for Matrix Profile import stumpy # for KDEAnomalyScorer import statsmodels.api as sm from statsmodels.nonparametric.kernel_density import KDEMultivariate from statsmodels.tsa.arima.model import ARIMA # EXCLUDED until we upgrade to statsmodels 0.12 #from statsmodels.tsa.forecasting.stl import STLForecast from .base import (BaseTransformer, BaseRegressor, BaseEstimatorFunction, BaseSimpleAggregator) from .bif import (AlertHighValue) from .ui import (UISingle, UIMulti, UIMultiItem, UIFunctionOutSingle, UISingleItem, UIFunctionOutMulti) # VAE import torch import torch.autograd import torch.nn as nn logger = logging.getLogger(__name__) try: # for gradient boosting import lightgbm except (AttributeError, ImportError): logger.exception('') logger.debug(f'Could not import lightgm package. Might have issues when using GBMRegressor catalog function') PACKAGE_URL = 'git+https://github.com/ibm-watson-iot/functions.git@' _IS_PREINSTALLED = True Error_SmallWindowsize = 0.0001 Error_Generic = 0.0002 FrequencySplit = 0.3 DefaultWindowSize = 12 SmallEnergy = 1e-20 KMeans_normalizer = 1 Spectral_normalizer = 100 / 2.8 FFT_normalizer = 1 Saliency_normalizer = 1 Generalized_normalizer = 1 / 300 # from # https://stackoverflow.com/questions/44790072/sliding-window-on-time-series-data def view_as_windows1(temperature, length, step): logger.info('VIEW ' + str(temperature.shape) + ' ' + str(length) + ' ' + str(step)) def moving_window(x, length, _step=1): if type(step) != 'int' or _step < 1: logger.info('MOVE ' + str(_step)) _step = 1 streams = it.tee(x, length) return zip(*[it.islice(stream, i, None, _step) for stream, i in zip(streams, it.count(step=1))]) x_ = list(moving_window(temperature, length, step)) return np.asarray(x_) def view_as_windows(temperature, length, step): return skiutil.view_as_windows(temperature, window_shape=(length,), step=step) def custom_resampler(array_like): # initialize if 'gap' not in dir(): gap = 0 if array_like.values.size > 0: gap = 0 return 0 else: gap += 1 return gap def min_delta(df): # minimal time delta for merging if df is None: return pd.Timedelta('5 seconds'), df elif len(df.index.names) > 1: df2 = df.reset_index(level=df.index.names[1:], drop=True) else: df2 = df try: mindelta = df2.index.to_series().diff().min() except Exception as e: logger.debug('Min Delta error: ' + str(e)) mindelta = pd.Timedelta('5 seconds') if mindelta == dt.timedelta(seconds=0) or pd.isnull(mindelta): mindelta = pd.Timedelta('5 seconds') return mindelta, df2 def set_window_size_and_overlap(windowsize, trim_value=2 * DefaultWindowSize): # make sure it exists if windowsize is None: windowsize = DefaultWindowSize # make sure it is positive and not too large trimmed_ws = np.minimum(np.maximum(windowsize, 1), trim_value) # overlap if trimmed_ws == 1: ws_overlap = 0 else: # larger overlap - half the window ws_overlap = trimmed_ws // 2 return trimmed_ws, ws_overlap def dampen_anomaly_score(array, dampening): if dampening is None: dampening = 0.9 # gradient dampening if dampening >= 1: return array if dampening < 0.01: return array if array.size <= 1: return array gradient = np.gradient(array) # dampened grad_damp = np.float_power(abs(gradient), dampening) * np.sign(gradient) # reconstruct (dampened) anomaly score by discrete integration integral = [] x = array[0] for x_el in np.nditer(grad_damp): x = x + x_el integral.append(x) # shift array slightly to the right to position anomaly score array_damp = np.roll(np.asarray(integral), 1) array_damp[0] = array_damp[1] # normalize return array_damp / dampening / 2 # Saliency helper functions # copied from https://github.com/y-bar/ml-based-anomaly-detection # remove the boring part from an image resp. time series def series_filter(values, kernel_size=3): """ Filter a time series. Practically, calculated mean value inside kernel size. As math formula, see https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html. :param values: :param kernel_size: :return: The list of filtered average """ filter_values = np.cumsum(values, dtype=float) logger.info('SERIES_FILTER: ' + str(values.shape) + ',' + str(filter_values.shape) + ',' + str(kernel_size)) filter_values[kernel_size:] = filter_values[kernel_size:] - filter_values[:-kernel_size] filter_values[kernel_size:] = filter_values[kernel_size:] / kernel_size for i in range(1, kernel_size): filter_values[i] /= i + 1 return filter_values # Saliency class # see https://www.inf.uni-hamburg.de/en/inst/ab/cv/research/research1-visual-attention.html class Saliency(object): def __init__(self, amp_window_size, series_window_size, score_window_size): self.amp_window_size = amp_window_size self.series_window_size = series_window_size self.score_window_size = score_window_size def transform_saliency_map(self, values): """ Transform a time-series into spectral residual, which is method in computer vision. For example, See https://docs.opencv.org/master/d8/d65/group__saliency.html :param values: a list or numpy array of float values. :return: silency map and spectral residual """ freq = np.fft.fft(values) mag = np.sqrt(freq.real ** 2 + freq.imag ** 2) # remove the boring part of a timeseries spectral_residual = np.exp(np.log(mag) - series_filter(np.log(mag), self.amp_window_size)) freq.real = freq.real * spectral_residual / mag freq.imag = freq.imag * spectral_residual / mag # and apply inverse fourier transform saliency_map = np.fft.ifft(freq) return saliency_map def transform_spectral_residual(self, values): saliency_map = self.transform_saliency_map(values) spectral_residual = np.sqrt(saliency_map.real ** 2 + saliency_map.imag ** 2) return spectral_residual def merge_score(dfEntity, dfEntityOrig, column_name, score, mindelta): """ Fit interpolated score to original entity slice of the full dataframe """ # equip score with time values, make sure it's positive score[score < 0] = 0 dfEntity[column_name] = score # merge dfEntityOrig = pd.merge_asof(dfEntityOrig, dfEntity[column_name], left_index=True, right_index=True, direction='nearest', tolerance=mindelta) if column_name + '_y' in dfEntityOrig: merged_score = dfEntityOrig[column_name + '_y'].to_numpy() else: merged_score = dfEntityOrig[column_name].to_numpy() return merged_score ####################################################################################### # Scalers ####################################################################################### class Standard_Scaler(BaseEstimatorFunction): """ Learns and applies standard scaling """ eval_metric = staticmethod(metrics.r2_score) # class variables train_if_no_model = True def set_estimators(self): self.estimators['standard_scaler'] = (StandardScaler, self.params) logger.info('Standard Scaler initialized') def __init__(self, features=None, targets=None, predictions=None): super().__init__(features=features, targets=targets, predictions=predictions, keep_current_models=True) # do not run score and call transform instead of predict self.is_scaler = True self.experiments_per_execution = 1 self.normalize = True # support for optional scaling in subclasses self.prediction = self.predictions[0] # support for subclasses with univariate focus self.params = {} self.whoami = 'Standard_Scaler' # used by all the anomaly scorers based on it def prepare_data(self, dfEntity): logger.debug(self.whoami + ': prepare Data for ' + self.prediction + ' column') # operate on simple timestamp index # needed for aggregated data with 3 or more indices if len(dfEntity.index.names) > 1: index_names = dfEntity.index.names dfe = dfEntity.reset_index(index_names[1:]) else: dfe = dfEntity # interpolate gaps - data imputation try: dfe = dfe.interpolate(method="time") except Exception as e: logger.error('Prepare data error: ' + str(e)) # one dimensional time series - named temperature for catchyness temperature = dfe[self.prediction].fillna(0).to_numpy(dtype=np.float64) return dfe, temperature # dummy function for scaler, can be replaced with anomaly functions def kexecute(self, entity, df_copy): return df_copy def execute(self, df): df_copy = df.copy() entities = np.unique(df_copy.index.levels[0]) logger.debug(str(entities)) missing_cols = [x for x in self.predictions if x not in df_copy.columns] for m in missing_cols: df_copy[m] = None for entity in entities: normalize_entity = self.normalize try: check_array(df_copy.loc[[entity]][self.features].values, allow_nd=True) except Exception as e: normalize_entity = False logger.error( 'Found Nan or infinite value in feature columns for entity ' + str(entity) + ' error: ' + str(e)) # support for optional scaling in subclasses if normalize_entity: dfe = super()._execute(df_copy.loc[[entity]], entity) df_copy.loc[entity, self.predictions] = dfe[self.predictions] else: self.prediction = self.features[0] df_copy = self.kexecute(entity, df_copy) self.prediction = self.predictions[0] logger.info('Standard_Scaler: Found columns ' + str(df_copy.columns)) return df_copy @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UIMultiItem(name='features', datatype=float, required=True)) inputs.append(UIMultiItem(name='targets', datatype=float, required=True, output_item='predictions', is_output_datatype_derived=True)) # define arguments that behave as function outputs outputs = [] return inputs, outputs class Robust_Scaler(BaseEstimatorFunction): """ Learns and applies robust scaling, scaling after outlier removal """ eval_metric = staticmethod(metrics.r2_score) # class variables train_if_no_model = True def set_estimators(self): self.estimators['robust_scaler'] = (RobustScaler, self.params) logger.info('Robust Scaler initialized') def __init__(self, features=None, targets=None, predictions=None): super().__init__(features=features, targets=targets, predictions=predictions, keep_current_models=True) # do not run score and call transform instead of predict self.is_scaler = True self.experiments_per_execution = 1 self.params = {} def execute(self, df): df_copy = df.copy() entities = np.unique(df_copy.index.levels[0]) logger.debug(str(entities)) missing_cols = [x for x in self.predictions if x not in df_copy.columns] for m in missing_cols: df_copy[m] = None for entity in entities: # per entity - copy for later inplace operations try: check_array(df_copy.loc[[entity]][self.features].values, allow_nd=True) except Exception as e: logger.error( 'Found Nan or infinite value in feature columns for entity ' + str(entity) + ' error: ' + str(e)) continue dfe = super()._execute(df_copy.loc[[entity]], entity) df_copy.loc[entity, self.predictions] = dfe[self.predictions] return df_copy @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UIMultiItem(name='features', datatype=float, required=True)) inputs.append(UIMultiItem(name='targets', datatype=float, required=True, output_item='predictions', is_output_datatype_derived=True)) # define arguments that behave as function outputs outputs = [] return inputs, outputs class MinMax_Scaler(BaseEstimatorFunction): """ Learns and applies minmax scaling """ eval_metric = staticmethod(metrics.r2_score) # class variables train_if_no_model = True def set_estimators(self): self.estimators['minmax_scaler'] = (MinMaxScaler, self.params) logger.info('MinMax Scaler initialized') def __init__(self, features=None, targets=None, predictions=None): super().__init__(features=features, targets=targets, predictions=predictions, keep_current_models=True) # do not run score and call transform instead of predict self.is_scaler = True self.experiments_per_execution = 1 self.params = {} def execute(self, df): df_copy = df.copy() entities = np.unique(df_copy.index.levels[0]) logger.debug(str(entities)) missing_cols = [x for x in self.predictions if x not in df_copy.columns] for m in missing_cols: df_copy[m] = None for entity in entities: try: check_array(df_copy.loc[[entity]][self.features].values, allow_nd=True) except Exception as e: logger.error( 'Found Nan or infinite value in feature columns for entity ' + str(entity) + ' error: ' + str(e)) continue dfe = super()._execute(df_copy.loc[[entity]], entity) df_copy.loc[entity, self.predictions] = dfe[self.predictions] return df_copy @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UIMultiItem(name='features', datatype=float, required=True)) inputs.append(UIMultiItem(name='targets', datatype=float, required=True, output_item='predictions', is_output_datatype_derived=True)) # define arguments that behave as function outputs outputs = [] return inputs, outputs ####################################################################################### # Anomaly Scorers ####################################################################################### class AnomalyScorer(BaseTransformer): """ Superclass of all unsupervised anomaly detection functions. """ def __init__(self, input_item, windowsize, output_items): super().__init__() logger.debug(input_item) self.input_item = input_item # use 12 by default self.windowsize, self.windowoverlap = set_window_size_and_overlap(windowsize) # assume 1 per sec for now self.frame_rate = 1 # step self.step = self.windowsize - self.windowoverlap self.output_items = output_items self.normalize = False self.whoami = 'Anomaly' def get_model_name(self, prefix='model', suffix=None): name = [] if prefix is not None: name.append(prefix) name.extend([self._entity_type.name, self.whoami]) name.append(self.output_items[0]) if suffix is not None: name.append(suffix) name = '.'.join(name) return name # make sure data is evenly spaced def prepare_data(self, dfEntity): logger.debug(self.whoami + ': prepare Data') # operate on simple timestamp index if len(dfEntity.index.names) > 1: index_names = dfEntity.index.names dfe = dfEntity.reset_index(index_names[1:]) else: dfe = dfEntity # interpolate gaps - data imputation try: dfe = dfe.dropna(subset=[self.input_item]).interpolate(method="time") except Exception as e: logger.error('Prepare data error: ' + str(e)) # one dimensional time series - named temperature for catchyness temperature = dfe[self.input_item].fillna(0).to_numpy(dtype=np.float64) return dfe, temperature def execute(self, df): logger.debug('Execute ' + self.whoami) df_copy = df # no copy # check data type if not pd.api.types.is_numeric_dtype(df_copy[self.input_item].dtype): logger.error('Anomaly scoring on non-numeric feature:' + str(self.input_item)) return df_copy # set output columns to zero for output_item in self.output_items: df_copy[output_item] = 0 # delegate to _calc logger.debug('Execute ' + self.whoami + ' enter per entity execution') # group over entities group_base = [pd.Grouper(axis=0, level=0)] df_copy = df_copy.groupby(group_base).apply(self._calc) logger.debug('Scoring done') return df_copy def _calc(self, df): entity = df.index.levels[0][0] # get rid of entity id as part of the index df = df.droplevel(0) # Get new data frame with sorted index dfe_orig = df.sort_index() # remove all rows with only null entries dfe = dfe_orig.dropna(how='all') # minimal time delta for merging mindelta, dfe_orig = min_delta(dfe_orig) logger.debug('Timedelta:' + str(mindelta) + ' Index: ' + str(dfe_orig.index)) # one dimensional time series - named temperature for catchyness # interpolate gaps - data imputation by default # for missing data detection we look at the timestamp gradient instead dfe, temperature = self.prepare_data(dfe) logger.debug( self.whoami + ', Entity: ' + str(entity) + ', Input: ' + str(self.input_item) + ', Windowsize: ' + str( self.windowsize) + ', Output: ' + str(self.output_items) + ', Overlap: ' + str( self.windowoverlap) + ', Inputsize: ' + str(temperature.size)) if temperature.size <= self.windowsize: logger.debug(str(temperature.size) + ' <= ' + str(self.windowsize)) for output_item in self.output_items: dfe[output_item] = Error_SmallWindowsize else: logger.debug(str(temperature.size) + str(self.windowsize)) for output_item in self.output_items: dfe[output_item] = Error_Generic temperature = self.scale(temperature, entity) scores = self.score(temperature) # length of time_series_temperature, signal_energy and ets_zscore is smaller than half the original # extend it to cover the full original length logger.debug('->') try: for i,output_item in enumerate(self.output_items): # check for fast path, no interpolation required diff = temperature.size - scores[i].size # slow path - interpolate result score to stretch it to the size of the input data if diff > 0: dfe[output_item] = 0.0006 time_series_temperature = np.linspace(self.windowsize // 2, temperature.size - self.windowsize // 2 + 1, temperature.size - diff) linear_interpolate = sp.interpolate.interp1d(time_series_temperature, scores[i], kind='linear', fill_value='extrapolate') zScoreII = merge_score(dfe, dfe_orig, output_item, abs(linear_interpolate(np.arange(0, temperature.size, 1))), mindelta) # fast path - either cut off or just copy elif diff < 0: zScoreII = scores[i][0:temperature.size] else: zScoreII = scores[i] df[output_item] = zScoreII except Exception as e: logger.error(self.whoami + ' score integration failed with ' + str(e)) logger.debug('--->') return df def score(self, temperature): #scores = np.zeros((len(self.output_items), ) + temperature.shape) scores = [] for output_item in self.output_items: scores.append(np.zeros(temperature.shape)) try: # super simple 1-dimensional z-score ets_zscore = abs(sp.stats.zscore(temperature)) scores[0] = ets_zscore # 2nd argument to return the modified input argument (for no data) if len(self.output_items) > 1: scores[1] = temperature except Exception as e: logger.error(self.whoami + ' failed with ' + str(e)) return scores def scale(self, temperature, entity): normalize_entity = self.normalize if not normalize_entity: return temperature temp = temperature.reshape(-1, 1) logger.info(self.whoami + ' scaling ' + str(temperature.shape)) try: check_array(temp, allow_nd=True) except Exception as e: logger.error('Found Nan or infinite value in input data, error: ' + str(e)) return temperature db = self._entity_type.db scaler_model = None # per entity - copy for later inplace operations model_name = self.get_model_name(suffix=entity) try: scaler_model = db.model_store.retrieve_model(model_name) logger.info('load model %s' % str(scaler_model)) except Exception as e: logger.error('Model retrieval failed with ' + str(e)) # failed to load a model, so train it if scaler_model is None: # all variables should be continuous scaler_model = StandardScaler().fit(temp) logger.debug('Created Scaler ' + str(scaler_model)) try: db.model_store.store_model(model_name, scaler_model) except Exception as e: logger.error('Model store failed with ' + str(e)) if scaler_model is not None: temp = scaler_model.transform(temp) return temp.reshape(temperature.shape) return temperature ##### # experimental function to interpolate over larger gaps #### class Interpolator(AnomalyScorer): """ Interpolates NaN and data to be interpreted as NaN (for example 0 as invalid sensor reading) The window size is typically set large enough to allow for "bridging" gaps Missing indicates sensor readings to be interpreted as invalid. """ def __init__(self, input_item, windowsize, missing, output_item): super().__init__(input_item, windowsize, [output_item]) logger.debug(input_item) self.missing = missing self.whoami = 'Interpolator' def prepare_data(self, dfEntity): logger.debug(self.whoami + ': prepare Data') # operate on simple timestamp index if len(dfEntity.index.names) > 1: index_names = dfEntity.index.names dfe = dfEntity.reset_index(index_names[1:]) else: dfe = dfEntity # remove Nan dfe = dfe[dfe[self.input_item].notna()] # remove self.missing dfe = dfe[dfe[self.input_item] != self.missing] # interpolate gaps - data imputation try: dfe = dfe.interpolate(method="time") except Exception as e: logger.error('Prepare data error: ' + str(e)) # one dimensional time series - named temperature for catchyness # replace NaN with self.missing temperature = dfe[self.input_item].fillna(0).to_numpy(dtype=np.float64) return dfe, temperature @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name='input_item', datatype=float, description='Data item to interpolate')) inputs.append( UISingle(name='windowsize', datatype=int, description='Minimal size of the window for interpolating data.')) inputs.append(UISingle(name='missing', datatype=int, description='Data to be interpreted as not-a-number.')) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name='output_item', datatype=float, description='Interpolated data')) return (inputs, outputs) class NoDataAnomalyScoreExt(AnomalyScorer): """ An unsupervised anomaly detection function. Uses z-score AnomalyScorer to find gaps in data. The function moves a sliding window across the data signal and applies the anomaly model to each window. The window size is typically set to 12 data points. """ def __init__(self, input_item, windowsize, output_item): super().__init__(input_item, windowsize, [output_item]) self.whoami = 'NoDataExt' self.normalizer = 1 logger.debug('NoDataExt') def prepare_data(self, dfEntity): logger.debug(self.whoami + ': prepare Data') # operate on simple timestamp index if len(dfEntity.index.names) > 1: index_names = dfEntity.index.names dfe = dfEntity.reset_index(index_names[1:]) else: dfe = dfEntity # count the timedelta in seconds between two events timeSeq = (dfe.index.values - dfe.index[0].to_datetime64()) / np.timedelta64(1, 's') #dfe = dfEntity.copy() # one dimensional time series - named temperature for catchyness # we look at the gradient of the time series timestamps for anomaly detection # might throw an exception - we catch it in the super class !! try: temperature = np.gradient(timeSeq) dfe[[self.input_item]] = temperature except Exception as pe: logger.info("NoData Gradient failed with " + str(pe)) dfe[[self.input_item]] = 0 temperature = dfe[[self.input_item]].values temperature[0] = 10 ** 10 temperature = temperature.astype('float64').reshape(-1) return dfe, temperature @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name='input_item', datatype=float, description='Data item to analyze')) inputs.append(UISingle(name='windowsize', datatype=int, description='Size of each sliding window in data points. Typically set to 12.')) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name='output_item', datatype=float, description='No data anomaly score')) return inputs, outputs class ChangePointDetector(AnomalyScorer): ''' An unsupervised anomaly detection function. Applies a spectral analysis clustering techniqueto extract features from time series data and to create z scores. Moves a sliding window across the data signal and applies the anomalymodelto each window. The window size is typically set to 12 data points. Try several anomaly detectors on your data and use the one that fits your data best. ''' def __init__(self, input_item, windowsize, chg_pts): super().__init__(input_item, windowsize, [chg_pts]) logger.debug(input_item) self.whoami = 'ChangePointDetector' def score(self, temperature): scores = [] sc = np.zeros(temperature.shape) try: algo = rpt.BottomUp(model="l2", jump=2).fit(temperature) chg_pts = algo.predict(n_bkps=15) for j in chg_pts: x = np.arange(0, temperature.shape[0], 1) Gaussian = sp.stats.norm(j-1, temperature.shape[0]/20) # high precision y = Gaussian.pdf(x) * temperature.shape[0]/8 # max is ~1 sc += y except Exception as e: logger.error(self.whoami + ' failed with ' + str(e)) scores.append(sc) return scores @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name='input_item', datatype=float, description='Data item to analyze')) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name='chg_pts', datatype=float, description='Change points')) return inputs, outputs ENSEMBLE = '_ensemble_' SPECTRALEXT = 'SpectralAnomalyScoreExt' class EnsembleAnomalyScore(BaseTransformer): ''' Call a set of anomaly detectors and return an joint vote along with the individual results ''' def __init__(self, input_item, windowsize, scorers, thresholds, output_item): super().__init__() self.input_item = input_item self.windowsize = windowsize self.output_item = output_item logger.debug(input_item) self.whoami = 'EnsembleAnomalyScore' self.list_of_scorers = scorers.split(',') self.thresholds = list(map(int, thresholds.split(','))) self.klasses = [] self.instances = [] self.output_items = [] module = importlib.import_module('mmfunctions.anomaly') for m in self.list_of_scorers: klass = getattr(module, m) self.klasses.append(klass) print(klass.__name__) if klass.__name__ == SPECTRALEXT: inst = klass(input_item, windowsize, output_item + ENSEMBLE + klass.__name__, output_item + ENSEMBLE + klass.__name__ + '_inv') else: inst = klass(input_item, windowsize, output_item + ENSEMBLE + klass.__name__) self.output_items.append(output_item + ENSEMBLE + klass.__name__) self.instances.append(inst) def execute(self, df): logger.debug('Execute ' + self.whoami) df_copy = df # no copy binned_indices_list = [] for inst, output, threshold in zip(self.instances, self.output_items, self.thresholds): logger.info('Execute anomaly scorer ' + str(inst.__class__.__name__) + ' with threshold ' + str(threshold)) tic = time.perf_counter_ns() df_copy = inst.execute(df_copy) toc = time.perf_counter_ns() logger.info('Executed anomaly scorer ' + str(inst.__class__.__name__) + ' in ' +\ str((toc-tic)//1000000) + ' milliseconds') arr = df_copy[output] # sort results into bins that depend on the thresholds # 0 - below 3/4 threshold, 1 - up to the threshold, 2 - crossed the threshold, # 3 - very high, 4 - extreme if inst.__class__.__name__ == SPECTRALEXT and isinstance(threshold, int): # hard coded threshold for inverted values threshold_ = 5 bins = [threshold * 0.75, threshold, threshold * 1.5, threshold * 2] binned_indices_list.append(np.searchsorted(bins, arr, side='left')) if inst.__class__.__name__ == SPECTRALEXT: bins = [threshold_ * 0.75, threshold_, threshold_ * 1.5, threshold_ * 2] arr = df_copy[output + '_inv'] binned_indices_list.append(np.searchsorted(bins, arr, side='left')) binned_indices = np.vstack(binned_indices_list).mean(axis=0) # should we explicitly drop the columns generated by the ensemble members #df[self.output_item] = binned_indices df_copy[self.output_item] = binned_indices return df_copy @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name='input_item', datatype=float, description='Data item to analyze')) inputs.append(UISingle(name='windowsize', datatype=int, description='Size of each sliding window in data points. Typically set to 12.')) # define arguments that behave as function outputs outputs = [] outputs.append( UIFunctionOutSingle(name='output_item', datatype=float, description='Spectral anomaly score (z-score)')) return inputs, outputs class SpectralAnomalyScore(AnomalyScorer): ''' An unsupervised anomaly detection function. Applies a spectral analysis clustering techniqueto extract features from time series data and to create z scores. Moves a sliding window across the data signal and applies the anomalymodelto each window. The window size is typically set to 12 data points. Try several anomaly detectors on your data and use the one that fits your data best. ''' def __init__(self, input_item, windowsize, output_item): if isinstance(output_item, list): super().__init__(input_item, windowsize, output_item) else: super().__init__(input_item, windowsize, [output_item]) logger.debug(input_item) self.whoami = 'SpectralAnomalyScore' def score(self, temperature): scores = [] for output_item in self.output_items: scores.append(np.zeros(temperature.shape)) try: # Fourier transform: # frequency, time, spectral density frequency_temperature, time_series_temperature, spectral_density_temperature = signal.spectrogram( temperature, fs=self.frame_rate, window='hanning', nperseg=self.windowsize, noverlap=self.windowoverlap, detrend='l', scaling='spectrum') # cut off freqencies too low to fit into the window frequency_temperatureb = (frequency_temperature > 2 / self.windowsize).astype(int) frequency_temperature = frequency_temperature * frequency_temperatureb frequency_temperature[frequency_temperature == 0] = 1 / self.windowsize signal_energy = np.dot(spectral_density_temperature.T, frequency_temperature) signal_energy[signal_energy < SmallEnergy] = SmallEnergy inv_signal_energy = np.divide(np.ones(signal_energy.size), signal_energy) ets_zscore = abs(sp.stats.zscore(signal_energy)) * Spectral_normalizer inv_zscore = abs(sp.stats.zscore(inv_signal_energy)) scores[0] = ets_zscore if len(self.output_items) > 1: scores[1] = inv_zscore # 3rd argument to return the raw windowed signal energy if len(self.output_items) > 2: scores[2] = signal_energy # 4th argument to return the modified input argument (for no data) if len(self.output_items) > 3: scores[3] = temperature.copy() logger.debug( 'Spectral z-score max: ' + str(ets_zscore.max()) + ', Spectral inv z-score max: ' + str( inv_zscore.max())) except Exception as e: logger.error(self.whoami + ' failed with ' + str(e)) return scores @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name='input_item', datatype=float, description='Data item to analyze')) inputs.append(UISingle(name='windowsize', datatype=int, description='Size of each sliding window in data points. Typically set to 12.')) # define arguments that behave as function outputs outputs = [] outputs.append( UIFunctionOutSingle(name='output_item', datatype=float, description='Spectral anomaly score (z-score)')) return inputs, outputs class SpectralAnomalyScoreExt(SpectralAnomalyScore): ''' An unsupervised anomaly detection function. Applies a spectral analysis clustering techniqueto extract features from time series data and to create z scores. Moves a sliding window across the data signal and applies the anomalymodelto each window. The window size is typically set to 12 data points. Try several anomaly detectors on your data and use the one that fits your data best. ''' def __init__(self, input_item, windowsize, output_item, inv_zscore, signal_energy=None): if signal_energy is None: super().__init__(input_item, windowsize, [output_item, inv_zscore]) else: super().__init__(input_item, windowsize, [output_item, inv_zscore, signal_energy]) logger.debug(input_item) self.whoami = 'SpectralAnomalyScoreExt' @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name='input_item', datatype=float, description='Data item to analyze')) inputs.append(UISingle(name='windowsize', datatype=int, description='Size of each sliding window in data points. Typically set to 12.')) # define arguments that behave as function outputs outputs = [] outputs.append( UIFunctionOutSingle(name='output_item', datatype=float, description='Spectral anomaly score (z-score)')) outputs.append(UIFunctionOutSingle(name='inv_zscore', datatype=float, description='z-score of inverted signal energy - detects unusually low activity')) outputs.append(UIFunctionOutSingle(name='signal_enerty', datatype=float, description='signal energy')) return inputs, outputs class KMeansAnomalyScore(AnomalyScorer): """ An unsupervised anomaly detection function. Applies a k-means analysis clustering technique to time series data. Moves a sliding window across the data signal and applies the anomaly model to each window. The window size is typically set to 12 data points. Try several anomaly models on your data and use the one that fits your data best. """ def __init__(self, input_item, windowsize, output_item, expr=None): super().__init__(input_item, windowsize, [output_item]) logger.debug(input_item) self.whoami = 'KMeans' def score(self, temperature): scores = [] for output_item in self.output_items: scores.append(np.zeros(temperature.shape)) try: # Chop into overlapping windows slices = view_as_windows(temperature, self.windowsize, self.step) if self.windowsize > 1: n_cluster = 40 else: n_cluster = 20 n_cluster = np.minimum(n_cluster, slices.shape[0] // 2) logger.debug(self.whoami + 'params, Clusters: ' + str(n_cluster) + ', Slices: ' + str(slices.shape)) cblofwin = CBLOF(n_clusters=n_cluster, n_jobs=-1) try: cblofwin.fit(slices) except Exception as e: logger.info('KMeans failed with ' + str(e)) self.trace_append('KMeans failed with' + str(e)) return scores pred_score = cblofwin.decision_scores_.copy() * KMeans_normalizer scores[0] = pred_score logger.debug('KMeans score max: ' + str(pred_score.max())) except Exception as e: logger.error(self.whoami + ' failed with ' + str(e)) return scores @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name='input_item', datatype=float, description='Data item to analyze')) inputs.append(UISingle(name='windowsize', datatype=int, description='Size of each sliding window in data points. Typically set to 12.')) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name='output_item', datatype=float, description='Anomaly score (kmeans)')) return inputs, outputs class GeneralizedAnomalyScore(AnomalyScorer): """ An unsupervised anomaly detection function. Applies the Minimum Covariance Determinant (FastMCD) technique to detect outliers. Moves a sliding window across the data signal and applies the anomaly model to each window. The window size is typically set to 12 data points. Try several anomaly detectors on your data and use the one that fits your data best. """ def __init__(self, input_item, windowsize, output_item): super().__init__(input_item, windowsize, [output_item]) logger.debug(input_item) self.whoami = 'GAM' self.normalizer = Generalized_normalizer def feature_extract(self, temperature): logger.debug(self.whoami + ': feature extract') slices = view_as_windows(temperature, self.windowsize, self.step) return slices def score(self, temperature): scores = [] for output_item in self.output_items: scores.append(np.zeros(temperature.shape)) logger.debug(str(temperature.size) + "," + str(self.windowsize)) temperature -= np.mean(temperature.astype(np.float64), axis=0) mcd = MinCovDet() # Chop into overlapping windows (default) or run through FFT first slices = self.feature_extract(temperature) try: mcd.fit(slices) pred_score = mcd.mahalanobis(slices).copy() * self.normalizer except ValueError as ve: pred_score = np.zeros(temperature.shape) logger.info(self.whoami + ", Input: " + str( self.input_item) + ", WindowSize: " + str(self.windowsize) + ", Output: " + str( self.output_items[0]) + ", Step: " + str(self.step) + ", InputSize: " + str( slices.shape) + " failed in the fitting step with \"" + str(ve) + "\" - scoring zero") except Exception as e: pred_score = np.zeros(temperature.shape) logger.error(self.whoami + ", Input: " + str( self.input_item) + ", WindowSize: " + str(self.windowsize) + ", Output: " + str( self.output_items[0]) + ", Step: " + str(self.step) + ", InputSize: " + str( slices.shape) + " failed in the fitting step with " + str(e)) scores[0] = pred_score logger.debug(self.whoami + ' score max: ' + str(pred_score.max())) return scores @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name="input_item", datatype=float, description="Data item to analyze", )) inputs.append(UISingle(name="windowsize", datatype=int, description="Size of each sliding window in data points. Typically set to 12.")) # define arguments that behave as function outputs outputs = [] outputs.append( UIFunctionOutSingle(name="output_item", datatype=float, description="Anomaly score (GeneralizedAnomaly)", )) return inputs, outputs class NoDataAnomalyScore(GeneralizedAnomalyScore): """ An unsupervised anomaly detection function. Uses FastMCD to find gaps in data. The function moves a sliding window across the data signal and applies the anomaly model to each window. The window size is typically set to 12 data points. """ def __init__(self, input_item, windowsize, output_item): super().__init__(input_item, windowsize, output_item) self.whoami = 'NoData' self.normalizer = 1 logger.debug('NoData') def prepare_data(self, dfEntity): logger.debug(self.whoami + ': prepare Data') # operate on simple timestamp index if len(dfEntity.index.names) > 1: index_names = dfEntity.index.names[1:] dfe = dfEntity.reset_index(index_names) else: dfe = dfEntity # count the timedelta in seconds between two events logger.debug('type of index[0] is ' + str(type(dfEntity.index[0]))) try: timeSeq = (dfe.index.values - dfe.index[0].to_datetime64()) / np.timedelta64(1, 's') except Exception: try: time_to_numpy = np.array(dfe.index[0], dtype='datetime64') print('5. ', type(time_to_numpy), dfe.index[0][0]) timeSeq = (time_to_numpy - dfe.index[0][0].to_datetime64()) / np.timedelta64(1, 's') except Exception: print('Nochens') timeSeq = 1.0 #dfe = dfEntity.copy() # one dimensional time series - named temperature for catchyness # we look at the gradient of the time series timestamps for anomaly detection # might throw an exception - we catch it in the super class !! try: temperature = np.gradient(timeSeq) dfe[[self.input_item]] = temperature except Exception as pe: logger.info("NoData Gradient failed with " + str(pe)) dfe[[self.input_item]] = 0 temperature = dfe[[self.input_item]].values temperature[0] = 10 ** 10 temperature = temperature.astype('float64').reshape(-1) return dfe, temperature @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name='input_item', datatype=float, description='Data item to analyze')) inputs.append(UISingle(name='windowsize', datatype=int, description='Size of each sliding window in data points. Typically set to 12.')) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name='output_item', datatype=float, description='No data anomaly score')) return inputs, outputs class FFTbasedGeneralizedAnomalyScore(GeneralizedAnomalyScore): """ An unsupervised and robust anomaly detection function. Extracts temporal features from time series data using Fast Fourier Transforms. Applies the GeneralizedAnomalyScore to the features to detect outliers. Moves a sliding window across the data signal and applies the anomaly models to each window. The window size is typically set to 12 data points. Try several anomaly detectors on your data and use the one that fits your data best. """ def __init__(self, input_item, windowsize, output_item): super().__init__(input_item, windowsize, output_item) self.whoami = 'FFT' self.normalizer = FFT_normalizer logger.debug('FFT') def feature_extract(self, temperature): logger.debug(self.whoami + ': feature extract') slices_ = view_as_windows(temperature, self.windowsize, self.step) slicelist = [] for slice in slices_: slicelist.append(fftpack.rfft(slice)) return np.stack(slicelist, axis=0) @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name="input_item", datatype=float, description="Data item to analyze", )) inputs.append(UISingle(name="windowsize", datatype=int, description="Size of each sliding window in data points. Typically set to 12.")) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name="output_item", datatype=float, description="Anomaly score (FFTbasedGeneralizedAnomalyScore)", )) return inputs, outputs class MatrixProfileAnomalyScore(AnomalyScorer): """ An unsupervised anomaly detection function. Applies matrix profile analysis on time series data. Moves a sliding window across the data signal to calculate the euclidean distance from one window to all others to build a distance profile. The window size is typically set to 12 data points. Try several anomaly models on your data and use the one that fits your data best. """ DATAPOINTS_AFTER_LAST_WINDOW = 1e-15 INIT_SCORES = 1e-20 ERROR_SCORES = 1e-16 def __init__(self, input_item, window_size, output_item): super().__init__(input_item, window_size, [output_item]) logger.debug(f'Input item: {input_item}') self.whoami = 'MatrixProfile' def score(self, temperature): scores = [] for output_item in self.output_items: scores.append(np.zeros(temperature.shape)) try: # calculate scores matrix_profile = stumpy.aamp(temperature, m=self.windowsize)[:, 0] # fill in a small value for newer data points outside the last possible window fillers = np.array([self.DATAPOINTS_AFTER_LAST_WINDOW] * (self.windowsize - 1)) matrix_profile = np.append(matrix_profile, fillers) except Exception as er: logger.warning(f' Error in calculating Matrix Profile Scores. {er}') matrix_profile = np.array([self.ERROR_SCORES] * temperature.shape[0]) scores[0] = matrix_profile logger.debug('Matrix Profile score max: ' + str(matrix_profile.max())) return scores @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [UISingleItem(name="input_item", datatype=float, description="Time series data item to analyze", ), UISingle(name="window_size", datatype=int, description="Size of each sliding window in data points. Typically set to 12.")] # define arguments that behave as function outputs outputs = [UIFunctionOutSingle(name="output_item", datatype=float, description="Anomaly score (MatrixProfileAnomalyScore)", )] return inputs, outputs class SaliencybasedGeneralizedAnomalyScore(GeneralizedAnomalyScore): """ An unsupervised anomaly detection function. Based on salient region detection models, it uses fast fourier transform to reconstruct a signal using the salient features of a the signal. It applies GeneralizedAnomalyScore to the reconstructed signal. The function moves a sliding window across the data signal and applies its analysis to each window. The window size is typically set to 12 data points. Try several anomaly detectors on your data and use the one that fits your data best. """ def __init__(self, input_item, windowsize, output_item): super().__init__(input_item, windowsize, output_item) self.whoami = 'Saliency' self.saliency = Saliency(windowsize, 0, 0) self.normalizer = Saliency_normalizer logger.debug('Saliency') def feature_extract(self, temperature): logger.debug(self.whoami + ': feature extract') slices = view_as_windows(temperature, self.windowsize, self.step) return slices @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name="input_item", datatype=float, description="Data item to analyze")) inputs.append(UISingle(name="windowsize", datatype=int, description="Size of each sliding window in data points. Typically set to 12.", )) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name="output_item", datatype=float, description="Anomaly score (SaliencybasedGeneralizedAnomalyScore)", )) return (inputs, outputs) ####################################################################################### # Anomaly detectors with scaling ####################################################################################### class KMeansAnomalyScoreV2(KMeansAnomalyScore): def __init__(self, input_item, windowsize, normalize, output_item, expr=None): super().__init__(input_item, windowsize, output_item) logger.debug(input_item) self.normalize = normalize self.whoami = 'KMeansV2' @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name='input_item', datatype=float, description='Data item to analyze')) inputs.append(UISingle(name='windowsize', datatype=int, description='Size of each sliding window in data points. Typically set to 12.')) inputs.append(UISingle(name='normalize', datatype=bool, description='Flag for normalizing data.')) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name='output_item', datatype=float, description='Anomaly score (kmeans)')) return (inputs, outputs) class GeneralizedAnomalyScoreV2(GeneralizedAnomalyScore): """ An unsupervised anomaly detection function. Applies the Minimum Covariance Determinant (FastMCD) technique to detect outliers. Moves a sliding window across the data signal and applies the anomaly model to each window. The window size is typically set to 12 data points. The normalize switch allows to learn and apply a standard scaler prior to computing the anomaly score. Try several anomaly detectors on your data and use the one that fits your data best. """ def __init__(self, input_item, windowsize, normalize, output_item, expr=None): super().__init__(input_item, windowsize, output_item) logger.debug(input_item) # do not run score and call transform instead of predict self.normalize = normalize self.whoami = 'GAMV2' @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name="input_item", datatype=float, description="Data item to analyze", )) inputs.append(UISingle(name="windowsize", datatype=int, description="Size of each sliding window in data points. Typically set to 12.")) inputs.append(UISingle(name='normalize', datatype=bool, description='Flag for normalizing data.')) # define arguments that behave as function outputs outputs = [] outputs.append( UIFunctionOutSingle(name="output_item", datatype=float, description="Anomaly score (GeneralizedAnomaly)", )) return inputs, outputs class FFTbasedGeneralizedAnomalyScoreV2(GeneralizedAnomalyScoreV2): """ An unsupervised and robust anomaly detection function. Extracts temporal features from time series data using Fast Fourier Transforms. Applies the GeneralizedAnomalyScore to the features to detect outliers. Moves a sliding window across the data signal and applies the anomaly models to each window. The window size is typically set to 12 data points. The normalize switch allows to learn and apply a standard scaler prior to computing the anomaly score. Try several anomaly detectors on your data and use the one that fits your data best. """ def __init__(self, input_item, windowsize, normalize, output_item): super().__init__(input_item, windowsize, normalize, output_item) self.normalize = normalize self.whoami = 'FFTV2' self.normalizer = FFT_normalizer logger.debug('FFT') def feature_extract(self, temperature): logger.debug(self.whoami + ': feature extract') slices_ = view_as_windows(temperature, self.windowsize, self.step) slicelist = [] for slice in slices_: slicelist.append(fftpack.rfft(slice)) return np.stack(slicelist, axis=0) @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name="input_item", datatype=float, description="Data item to analyze", )) inputs.append(UISingle(name="windowsize", datatype=int, description="Size of each sliding window in data points. Typically set to 12.")) inputs.append(UISingle(name='normalize', datatype=bool, description='Flag for normalizing data.')) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name="output_item", datatype=float, description="Anomaly score (FFTbasedGeneralizedAnomalyScore)", )) return inputs, outputs class SaliencybasedGeneralizedAnomalyScoreV2(SaliencybasedGeneralizedAnomalyScore): """ An unsupervised anomaly detection function. Based on salient region detection models, it uses fast fourier transform to reconstruct a signal using the salient features of a the signal. It applies GeneralizedAnomalyScore to the reconstructed signal. The function moves a sliding window across the data signal and applies its analysis to each window. The window size is typically set to 12 data points. The normalize switch allows to learn and apply a standard scaler prior to computing the anomaly score. Try several anomaly detectors on your data and use the one that fits your data best. """ def __init__(self, input_item, windowsize, normalize, output_item): super().__init__(input_item, windowsize, output_item) self.whoami = 'SaliencyV2' self.normalize = normalize logger.debug('SaliencyV2') @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name="input_item", datatype=float, description="Data item to analyze")) inputs.append(UISingle(name="windowsize", datatype=int, description="Size of each sliding window in data points. Typically set to 12.", )) inputs.append(UISingle(name='normalize', datatype=bool, description='Flag for normalizing data.')) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name="output_item", datatype=float, description="Anomaly score (SaliencybasedGeneralizedAnomalyScore)", )) return inputs, outputs KMeansAnomalyScorev2 = KMeansAnomalyScoreV2 FFTbasedGeneralizedAnomalyScorev2 = FFTbasedGeneralizedAnomalyScoreV2 SaliencybasedGeneralizedAnomalyScorev2 = SaliencybasedGeneralizedAnomalyScoreV2 GeneralizedAnomalyScorev2 = GeneralizedAnomalyScoreV2 ####################################################################################### # Base class to handle models ####################################################################################### class SupervisedLearningTransformer(BaseTransformer): name = 'SupervisedLearningTransformer' """ Base class for anomaly scorers that can be trained with historic data in a notebook and automatically store a trained model in the tenant database Inferencing is run in the pipeline """ def __init__(self, features, targets): super().__init__() logging.debug("__init__" + self.name) # do NOT automatically train if no model is found (subclasses) self.auto_train = False self.delete_model = False self.features = features self.targets = targets parms = [] if features is not None: parms.extend(features) if targets is not None: parms.extend(targets) parms = '.'.join(parms) logging.debug("__init__ done with parameters: " + parms) ''' Generate unique model name from entity, optionally features and target for consistency checks ''' def get_model_name(self, prefix='model', features=None, targets=None, suffix=None): name = [] if prefix is not None: name.append(prefix) name.extend([self._entity_type.name, self.name]) if features is not None: name.extend(features) if targets is not None: name.extend(targets) if suffix is not None: name.append(suffix) name = '.'.join(name) return name def load_model(self, suffix=None): model_name = self.get_model_name(targets=self.targets, suffix=suffix) my_model = None try: my_model = self._entity_type.db.model_store.retrieve_model(model_name) logger.info('load model %s' % str(my_model)) except Exception as e: logger.error('Model retrieval failed with ' + str(e)) pass # ditch old model version = 1 if self.delete_model: if my_model is not None: if hasattr(my_model, 'version'): version = my_model.version + 1 logger.debug('Deleting robust model ' + str(version-1) + ' for entity: ' + str(suffix)) my_model = None return model_name, my_model, version def execute(self, df): logger.debug('Execute ' + self.whoami) df_copy = df # no copy # check data type #if df[self.input_item].dtype != np.float64: for feature in self.features: if not
pd.api.types.is_numeric_dtype(df_copy[feature].dtype)
pandas.api.types.is_numeric_dtype
from datetime import datetime, timedelta import numpy as np import pandas as pd import xarray as xr from pandas.api.types import ( is_datetime64_any_dtype, is_numeric_dtype, is_string_dtype, is_timedelta64_dtype, ) def to_1d(value, unique=False, flat=True, get=None): # pd.Series converts datetime to Timestamps if isinstance(value, xr.DataArray): value = value.values array = np.atleast_1d(value) if is_datetime(value): array = pd.to_datetime(array).values elif is_timedelta(value): array = pd.to_timedelta(array).values if array.ndim > 1 and get is not None: array = array[get] if unique: try: array =
pd.unique(array)
pandas.unique
# -*- coding: utf-8 -*- import pandas as pd import numpy as np from tqdm import tqdm as pb import datetime import re import warnings import matplotlib.pyplot as plt import pylab as mpl from docx import Document from docx.shared import Pt from data_source import local_source def concat_ts_codes(df): #拼接df中所有TS_CODE为输入条件的格式 result = '' for code in df["TS_CODE"]: result = result + 'TS_CODE = "' + code + '" or ' result = result[:-4] return result def drop_duplicates_keep_nonnan(df,subset): #保留nan最少的行, 暂时没用 warnings.filterwarnings("ignore") subset_values = [] df_result = pd.DataFrame(columns=df.columns) for i in range(len(df)): subset_value = list(df[subset].iloc[i,:]) if subset_value not in subset_values: subset_values.append(subset_value) for subset_value in subset_values: df_sub = df[(df[subset]==subset_value).product(axis=1)==1] df_sub["nan_count"] = 0 df_sub.loc[:,"nan_count"] = df_sub.isnull().sum(axis=1) df_sub.sort_values(by='nan_count',ascending=True, inplace=True) df_sub =
pd.DataFrame(df_sub.iloc[0,:])
pandas.DataFrame
# Copyright (C) 2014-2017 <NAME>, <NAME>, <NAME>, <NAME> (in alphabetic order) # # This file is part of OpenModal. # # OpenModal is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, version 3 of the License. # # OpenModal is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with OpenModal. If not, see <http://www.gnu.org/licenses/>. from OpenModal.gui.widgets.animation import TableModel,Model from PyQt5 import QtCore, QtGui,QtWidgets import pyqtgraph as pg import numpy as np from numpy.core.umath_tests import inner1d import time import pandas as pd from pyqtgraph.parametertree import Parameter, ParameterTree from OpenModal.anim_tools import AnimWidgBase import os from OpenModal.keys import keys import qtawesome as qta from OpenGL.GL import * from functools import partial from OpenModal.gui.templates import COLOR_PALETTE, LIST_FONT_FAMILY, LIST_FONT_SIZE, MENUBAR_WIDTH from string import Template SHADER='OpenModal' GLOPTS= { GL_DEPTH_TEST: True, GL_BLEND: False, GL_ALPHA_TEST: False, GL_CULL_FACE: False} #'glLightModeli':(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE)} SMOOTH=True COMPUTENORMALS=True DRAW_EDGES_NODES=False DRAW_EDGES_ELEMENTS=True DRAW_EDGES_GCS=False # ## Switch to using white background and black foreground pg.setConfigOption('background', 'w') pg.setConfigOption('foreground', 'k') class CustomQTableView(QtWidgets.QTableView): def __init__(self,parent): super(self.__class__, self).__init__(parent) self.catch=False #for catching right/left arrow keypress events in editor mode self.keys = [QtCore.Qt.Key_Left, QtCore.Qt.Key_Right] def focusInEvent(self, event): self.catch = False return QtWidgets.QTableView.focusInEvent(self, event) def focusOutEvent(self, event): self.catch = True return QtWidgets.QTableView.focusOutEvent(self, event) def event(self, event): if self.catch and event.type() == QtCore.QEvent.KeyRelease and event.key() in self.keys: self._moveCursor(event.key()) return QtWidgets.QTableView.event(self,event) def keyPressEvent(self, event): if not self.catch: return QtWidgets.QTableView.keyPressEvent(self, event) self._moveCursor(event.key()) def _moveCursor(self, key): row = self.currentIndex().row() col = self.currentIndex().column() if key == QtCore.Qt.Key_Left and col > 0: col -= 1 elif key == QtCore.Qt.Key_Right and col < (self.model().columnCount()-1): col += 1 elif key == QtCore.Qt.Key_Up and row > 0: row -= 1 elif key == QtCore.Qt.Key_Down and row < (self.model().rowCount()-1): row += 1 else: return self.setCurrentIndex(self.model().createIndex(row,col)) self.edit(self.currentIndex()) def mousePressEvent(self,event): """ Reimplement mousePressEvent in order to deselect rows when clicking into blank space """ if self.indexAt(event.pos()).isValid(): super(self.__class__, self).mousePressEvent(event) else: #user has clicked into blank space...clear selection and send signal self.selectionModel().clearSelection() class GeometryWidget(AnimWidgBase): # def __init__(self, modaldata_object,status_bar,language, preferences=dict(), desktop_widget=None, parent=None): def __init__(self, *args, **kwargs): super(self.__class__, self).__init__(*args, **kwargs) self.setContentsMargins(0, 0, 0, 0) self.selection=[] # list of nodes clicked with mouse in 3d view self.selection_ind=[] # list of indicies of selected nodes self.selection_color=[] # original model color self.selected_elem_ids=[] #element ids of elements selected in element table view self.selected_elem_col=None #color of selected elements self.activated_models=[] # model_ids of currently activated models #default widget mode! self.widget_mode = 'nodes' #connect cliked signal from 3d view self.model_view.clicked_signal.clicked.connect(self.mouse_clicked) def color_selected_node(self,test,nodes_index,nodes): #index of the node in the original dataframe ind=nodes_index[test] #check if node was already selected, if it was...deselect it if ind in self.selection_ind: #index already selected -> deselect it loc=self.selection_ind.index(ind) del self.selection_ind[loc] del self.selection[loc] #if ind already in selection -> set default color self.modaldata.tables['geometry'].ix[ind, 'clr_r']=self.selection_color[0] self.modaldata.tables['geometry'].ix[ind, 'clr_g']=self.selection_color[1] self.modaldata.tables['geometry'].ix[ind, 'clr_b']=self.selection_color[2] self.modaldata.tables['geometry'].ix[ind, 'clr_a']=self.selection_color[3] else: #index not yet selected -> add it to selection self.selection.append(nodes.iloc[test][['node_nums','x','y','z','model_id','color']].values[0]) self.selection_ind.append(ind) self.selection_color=[self.modaldata.tables['geometry'].ix[ind, 'clr_r'].values[0], self.modaldata.tables['geometry'].ix[ind, 'clr_g'].values[0], self.modaldata.tables['geometry'].ix[ind, 'clr_b'].values[0], self.modaldata.tables['geometry'].ix[ind, 'clr_a'].values[0]] self.modaldata.tables['geometry'].ix[ind, 'clr_r']=1 self.modaldata.tables['geometry'].ix[ind, 'clr_g']=0 self.modaldata.tables['geometry'].ix[ind, 'clr_b']=0 self.modaldata.tables['geometry'].ix[ind, 'clr_a']=1 def handle_node_clicked(self): ''' Check if click was near a node, if it was then add it to selection, if coincident with previously selected node, deselect it. Also node is colored if selected. :return: ''' #get cube size for determening selection sphere size for model_id, model_obj in self.models.items(): if model_obj.activated: cube_scale, lcs_scale=model_obj.get_cube_and_lcs_scale() #look only among activated models act_mod=[] for model_id, model_obj in self.models.items(): if model_obj.activated: act_mod.append(model_obj.model_id) nodes=self.modaldata.tables['geometry'][self.modaldata.tables['geometry']['x'].notnull()] nodes=nodes[nodes['model_id'].isin(act_mod)] nodes_index=nodes.index.values ind=-1 node_data=nodes.ix[:,['x','y','z']].values # CHECK if nodes are near clicked point start_point=self.model_view.ray[0] #get ray data from 3d view widget ray_dir=self.model_view.ray[1] #sel_sph_r=0.05 # selection sphere radius sel_sph_r=cube_scale*3 aux_1=-node_data+start_point aux_1=aux_1.astype(np.float64) b=inner1d(ray_dir,aux_1) c=inner1d(aux_1,aux_1)-sel_sph_r**2 #get boolean array - true means that node is under mouse test=(b**2-c)>=0 #check for coincident nodes! coincident_nodes=np.sum(test)-1 # =0 if only one node clicked, >0 if multiple nodes clicked if coincident_nodes==0: self.color_selected_node(test,nodes_index,nodes) self.plot_activated_models() elif coincident_nodes>0: #TODO: handle this! print('multiple nodes clicked! - NOT HANDLED YET') elif coincident_nodes==-1: #TODO: handle this! print('blank space clicked') def clear_node_selection(self): """ Clear selected nodes and restore node colors to default :return: """ self.selection=[] for ind in self.selection_ind: self.modaldata.tables['geometry'].ix[ind, 'clr_r']=self.selection_color[0] self.modaldata.tables['geometry'].ix[ind, 'clr_g']=self.selection_color[1] self.modaldata.tables['geometry'].ix[ind, 'clr_b']=self.selection_color[2] self.modaldata.tables['geometry'].ix[ind, 'clr_a']=self.selection_color[3] self.selection_ind=[] self.selection_color=[] self.plot_activated_models() def mouse_clicked(self): """ For 2D plot cross hair selection :param evt: :return: """ #only select nodes if widget is not in geometry mode if self.widget_mode!='nodes': self.handle_node_clicked() if self.widget_mode=='lines': nr_of_nodes=2 if len(self.selection)==nr_of_nodes: self.addElement(nr_of_nodes) self.clear_node_selection() if self.widget_mode=='elements': nr_of_nodes=3 if len(self.selection)==nr_of_nodes: self.addElement(nr_of_nodes) self.clear_node_selection() def addElement(self,nr_of_nodes): """ Add selection data to modal_data object as new element :return: """ #get next pandas index if len(self.modaldata.tables['elements_index'].index)==0: ind=0 node_ind=0 element_id=1 else: ind= self.modaldata.tables['elements_index'].index.max() + 1 element_id= self.modaldata.tables['elements_index']['element_id'].max() + 1 node_ind= self.modaldata.tables['elements_values'].index.max() + 1 #store data data from selection #store element model_id=self.selection[0][4] def get_color(id,elem_type): for model_id, model_obj in self.models.items(): if model_id==id: if elem_type=='triangle': color=model_obj.cur_triangle_color elif elem_type=='line': color=model_obj.cur_line_color return color aux_color=self.selection[0][5] if nr_of_nodes==3: element_descriptor='triangle' color=get_color(model_id,element_descriptor) self.modaldata.tables['elements_index'].loc[ind]=[model_id, element_id, element_descriptor, aux_color, nr_of_nodes, color.red() / 255., color.green() / 255., color.blue() / 255., color.alpha() / 255.] #store nodes for i in range(nr_of_nodes): node_id=self.selection[i][0] node_pos=i self.modaldata.tables['elements_values'].loc[node_ind]=[model_id, element_id, node_id, node_pos] node_ind=node_ind+1 if nr_of_nodes==2: element_descriptor='line' color=get_color(model_id,element_descriptor) self.modaldata.tables['elements_index'].loc[ind]=[model_id, element_id, element_descriptor, aux_color, nr_of_nodes, color.red() / 255., color.green() / 255., color.blue() / 255., color.alpha() / 255.] #store nodes for i in range(nr_of_nodes): node_id=self.selection[i][0] node_pos=i self.modaldata.tables['elements_values'].loc[node_ind]=[model_id, element_id, node_id, node_pos] node_ind=node_ind+1 ## for line the third node is same as second #update table model self.populate_elem_table_view([model_id]) def delete_selection_aux(self): """ Delete selection in table view via context menu :return: """ if self.gcs_type==0: self.delete_selection(self.geom_table_view,self.geom_table_model) if self.gcs_type==1: self.delete_selection(self.cyl_geom_table_view,self.cyl_geom_table_model) def delete_selection(self,geom_table_view,geom_table_model): if self.widget_mode=='nodes': cells=geom_table_view.selectedIndexes() cells.sort() # start index is where first cell is selected (caution: table view shows only a view into table model, # selections indexes are relative to current view!) curr_row=cells[0].model().datatable.index.values[0] cols=[] rows=[] for cell in cells: rows.append(curr_row+cell.row()) cols.append(cells[0].model().datatable.columns[cell.column()]) geom_table_model.datatable.ix[rows,cols]=np.nan geom_table_model.dataIn.ix[rows,cols]=np.nan # this is necessary as update method does not work with NANs geom_table_model.dataIn.update(geom_table_model.datatable) geom_table_model.dataChanged.emit(geom_table_model.createIndex(0, 0), geom_table_model.createIndex(geom_table_model.rowCount(0), geom_table_model.columnCount(0))) geom_table_model.layoutChanged.emit() if self.widget_mode=='lines' or self.widget_mode=='elements': rows=self.elem_table_view.selectionModel().selectedRows() rows.sort() el_id_list=[] for row in rows: el_id_list.append(self.elem_table_model.datatable['element_id'].iloc[[row.row()]].values[0]) element_id_mask=self.modaldata.tables['elements_values']['element_id'].isin(el_id_list) self.modaldata.tables['elements_values'].drop(self.modaldata.tables['elements_values']['element_id'].index[element_id_mask], inplace=True) element_id_mask=self.elem_table_model.datatable['element_id'].isin(el_id_list) self.elem_table_model.datatable.drop(self.elem_table_model.datatable['element_id'].index[element_id_mask],inplace=True) # change stuff in GUI self.elem_table_model.dataIn.update(self.elem_table_model.datatable) element_id_mask=self.elem_table_model.dataIn['element_id'].isin(el_id_list) self.elem_table_model.dataIn.drop(self.elem_table_model.dataIn['element_id'].index[element_id_mask],inplace=True) # change stuff directly in modal data obj #PyQt self.elem_table_model.dataChanged.emit(self.elem_table_model.createIndex(0, 0), self.elem_table_model.createIndex(self.elem_table_model.rowCount(0), self.elem_table_model.columnCount(0))) self.elem_table_model.layoutChanged.emit() def copy_selection(self): if self.gcs_type==0: cells=self.geom_table_view.selectedIndexes() elif self.gcs_type==1: cells=self.cyl_geom_table_view.selectedIndexes() cells.sort() curr_row=cells[0].row() text='' for cell in cells: if len(text)==0: text=str(cell.data()) else: if cell.row()!=curr_row: #text=text+' \\n ' text=text+os.linesep # os independent newline seperator curr_row=curr_row+1 else: text=text+'\t' text=text+str(cell.data()) QtCore.QCoreApplication.instance().clipboard().setText(text) def paste_selection(self): text=QtCore.QCoreApplication.instance().clipboard().text() lines=text.splitlines() if self.gcs_type==0: cells=self.geom_table_view.selectedIndexes() elif self.gcs_type==1: cells=self.cyl_geom_table_view.selectedIndexes() cells.sort() # start index is where first cell is selected (caution: table view shows only a view into table model, # selections indexes are relative to current view!) curr_row=cells[0].model().datatable.index.values[0]+cells[0].row() curr_col=cells[0].column() # get selection dimensions num_of_cols=len(lines[0].split('\t')) num_of_rows=len(lines) # expand table if number of rows in clipboard is larger than current table size for model_id in self.activated_models: #get node index corresponding with existing geomtry table model_mask=self.modaldata.tables['geometry'].ix[:,'model_id']==model_id node_index=self.modaldata.tables['geometry'].ix[model_mask].index if (curr_row+num_of_rows)>len(node_index): # add rows for selected model rows_to_add=curr_row+num_of_rows-len(node_index) self.add_geom_rows(rows_to_add=rows_to_add) # duplicate stuff from clipboard based on the selection size # we want to copy rows if num_of_cols==(cells[-1].column()-cells[0].column()+1): copy_rows=(cells[-1].row()-cells[0].row()+1)/num_of_rows if copy_rows>1: lines=lines*np.floor(copy_rows) # we want to copy columns elif num_of_rows==(cells[-1].row()-cells[0].row()+1): copy_cols=(cells[-1].column()-cells[0].column()-num_of_cols+1)/num_of_cols if copy_cols>0: lines=[(i+('\t'+i)*np.floor(copy_cols)) for i in lines] for line in lines: data=line.split('\t') for val in data: if val=='': #skip empty cell curr_col=curr_col+1 else: try: if self.gcs_type==0: self.geom_table_model.datatable.set_value(curr_row, cells[0].model().datatable.columns[curr_col], float(val)) if self.gcs_type==1: self.cyl_geom_table_model.datatable.set_value(curr_row, cells[0].model().datatable.columns[curr_col], float(val)) except ValueError: if self.gcs_type==0: self.geom_table_model.datatable.set_value(curr_row, cells[0].model().datatable.columns[curr_col], float(val.replace(',', '.'))) if self.gcs_type==1: self.cyl_geom_table_model.datatable.set_value(curr_row, cells[0].model().datatable.columns[curr_col], float(val.replace(',', '.'))) curr_col=curr_col+1 curr_col=cells[0].column() #restart column index curr_row=curr_row+1 if self.gcs_type==0: self.geom_table_model.dataIn.update(self.geom_table_model.datatable) self.geom_table_model.dataChanged.emit(self.geom_table_model.createIndex(0, 0), self.geom_table_model.createIndex(self.geom_table_model.rowCount(0), self.geom_table_model.columnCount(0))) self.geom_table_model.layoutChanged.emit() if self.gcs_type==1: self.cyl_geom_table_model.dataIn.update(self.geom_table_model.datatable) self.cyl_geom_table_model.dataChanged.emit(self.cyl_geom_table_model.createIndex(0, 0), self.cyl_geom_table_model.createIndex(self.cyl_geom_table_model.rowCount(0), self.cyl_geom_table_model.columnCount(0))) self.cyl_geom_table_model.layoutChanged.emit() def keyPressEvent(self,evt): """ Catch Ctrl+C and Ctrl+V to handle copying from clipboard Catch Delete to delete values in selected cells :param evt: :return: """ if evt.key()==QtCore.Qt.Key_C and evt.modifiers()==QtCore.Qt.ControlModifier: self.copy_selection() if evt.key()==QtCore.Qt.Key_V and evt.modifiers()==QtCore.Qt.ControlModifier: self.paste_selection() if evt.key()==QtCore.Qt.Key_Delete: self.delete_selection_aux() super(self.__class__,self).keyPressEvent(evt) def create_toolbar_actions(self): super(self.__class__,self).create_toolbar_actions() self.act_new_model = QtWidgets.QAction('New model', self, statusTip='Create new model', triggered=self.new_model) self.act_delete_model = QtWidgets.QAction('Delete model', self, statusTip='Delete model', triggered=self.delete_model_dialog) self.act_nodes_mode = QtWidgets.QAction('Nodes', self, statusTip='Geometry input mode', triggered=self.nodes_data_mode) self.act_lines_mode = QtWidgets.QAction('Lines', self, statusTip='Lines input mode', triggered=self.lines_data_mode) self.act_elements_mode = QtWidgets.QAction('Elements', self, statusTip='Elements input mode', triggered=self.elements_data_mode) def create_model_view_actions(self): super(self.__class__,self).create_model_view_actions() self.elem_desel_act = QtWidgets.QAction('Deselect elements', self, checkable=False, statusTip='Clear element selection', triggered=partial(self.handle_elem_select,True)) def nodes_data_mode(self): self.elem_table_view.hide() if self.gcs_type==0: self.geom_table_view.show() self.cyl_geom_table_view.hide() #cartesian gcs self.geom_table_model.update(self.modaldata.tables['geometry'], self.activated_models, self.fields) elif self.gcs_type==1: self.cyl_geom_table_view.show() self.geom_table_view.hide() #cylindrical csys self.cyl_geom_table_model.update(self.modaldata.tables['geometry'], self.activated_models, self.cyl_fields) self.widget_mode = 'nodes' self._button3.setChecked(True) self._button6.setChecked(False) self._button4.setChecked(False) def lines_data_mode(self): self.elem_table_view.show() self.geom_table_view.hide() self.cyl_geom_table_view.hide() self.widget_mode = 'lines' self._button3.setChecked(False) self._button6.setChecked(True) self._button4.setChecked(False) def elements_data_mode(self): self.elem_table_view.show() self.geom_table_view.hide() self.cyl_geom_table_view.hide() self.widget_mode = 'elements' self._button3.setChecked(False) self._button6.setChecked(False) self._button4.setChecked(True) def model_view_context_menu(self, pos): menu = QtWidgets.QMenu() menu.addAction(self.act_fit_view) menu.addAction(self.elem_desel_act) display_menu = menu.addMenu('Display') display_menu.addAction(self.plot_nodes_act) display_menu.addAction(self.plot_lines_act) display_menu.addAction(self.plot_elements_act) display_menu.addAction(self.plot_node_lcs_act) display_menu.addAction(self.plot_node_labels_act) display_menu.addAction(self.plot_gcs_act) #display_menu.addMenu('Trace lines') color_menu = menu.addMenu('Colors') color_menu.addAction(self.node_color_act) color_menu.addAction(self.line_color_act) color_menu.addAction(self.elem_color_act) csys_menu = menu.addMenu('Change csys') csys_menu.addAction(self.cart_csys_act) csys_menu.addAction(self.cyl_csys_act) menu.exec_(QtGui.QCursor.pos()) def paintEvent(self, event): # button sizes w = 140 #this is overridden by css h = 33 border_thk=1 # app window size window_width=self.rect().width() window_height=self.rect().height() # global positioning of buttons x_margin=20 x = (window_width - w - x_margin-2*border_thk) y = 0.2*window_height offset=h+5 # relative positioning of buttons self._button.setGeometry(x,y,w,h) self._button5.setGeometry(x,y+offset,w,h) self._button2.setGeometry(x,y+2*offset,w,h) self._b_geom_prim.setGeometry(x,y+3*offset,w,h) # positioning of elements/geometry table table_width=window_width*0.6 table_height=window_height*0.3 table_x=window_width/2-table_width/2 table_y=0.68*window_height x_btn=window_width/2-1.5*w-5 y_btn=40 self._button3.setGeometry(x_btn,table_y-y_btn,w,h) self._button6.setGeometry(x_btn+w+5,table_y-y_btn,w,h) self._button4.setGeometry(x_btn+2*w+10,table_y-y_btn,w,h) self.cyl_geom_table_view.setGeometry(table_x,table_y,table_width,table_height) self.cyl_geom_table_view.horizontalHeader().setSectionResizeMode(QtWidgets.QHeaderView.Stretch) self.geom_table_view.setGeometry(table_x,table_y,table_width,table_height) self.geom_table_view.horizontalHeader().setSectionResizeMode(QtWidgets.QHeaderView.Stretch) self.elem_table_view.setGeometry(table_x,table_y,table_width,table_height) self.elem_table_view.horizontalHeader().setSectionResizeMode(QtWidgets.QHeaderView.Stretch) # selected model label #self._label.setGeometry(window_width/2-self._label.width()/2,0.1*window_height,200,20) # create buttons for available models offset=0 x = x_margin y = 0.2*window_height for model_id,button in self.model_buttons.items(): width = self._button.width()+20 height = self._button.height() button.setGeometry(x,y+offset,width,height) offset=offset+height+5 def table_view_context_menu(self, pos): menu = QtWidgets.QMenu() menu.addAction(self.act_delete) menu.addAction(self.act_copy) menu.addAction(self.act_paste) menu.addAction(self.elem_desel_act) menu.addAction(self.add_rows_act) menu.exec_(QtGui.QCursor.pos()) def model_btn_context_menu(self, pos): #get model button which was right clicked self.sending_button = self.sender() menu = QtWidgets.QMenu() menu.addAction(self.act_model_rename) menu.exec_(QtGui.QCursor.pos()) def model_btn_context_menu_act(self): self.act_model_rename = QtWidgets.QAction('Rename', self, statusTip='Rename model', triggered=self.rename_model) def context_menu_act(self): self.act_delete = QtWidgets.QAction('Delete', self, statusTip='Delete selection', triggered=self.delete_selection_aux) self.act_copy = QtWidgets.QAction('Copy', self, statusTip='Copy selection', triggered=self.copy_selection) self.act_paste = QtWidgets.QAction('Paste', self, statusTip='Paste selection', triggered=self.paste_selection) self.add_rows_act = QtWidgets.QAction('Add 100 rows', self, checkable=False, statusTip='Add 100 blank rows', triggered=partial(self.add_geom_rows,rows_to_add=100)) def create_layout(self): """ Create layout of the central Qwidget and add widgets :return: """ super(self.__class__,self).create_layout() self._button = QtWidgets.QPushButton(qta.icon('fa.plus-circle', color='white'),'New model', self) self._button.setObjectName('medium') self._button.clicked.connect(self.new_model) self._button5 = QtWidgets.QPushButton(qta.icon('fa.trash-o', color='white'),'Delete model', self) self._button5.setObjectName('medium') self._button5.clicked.connect(self.delete_model_dialog) self._button2 = QtWidgets.QPushButton(qta.icon('fa.search', color='white'),'Fit view', self) self._button2.setObjectName('medium') self._button2.clicked.connect(self.autofit_3d_view) self._b_geom_prim= QtWidgets.QPushButton(qta.icon('fa.industry', color='white'),'Create geometry', self) self._b_geom_prim.setObjectName('medium') self._b_geom_prim.clicked.connect(self.create_geom_primitive) self._button3 = QtWidgets.QPushButton('Add nodes', self) self._button3.setObjectName('table_button') self._button3.setCheckable(True) self._button3.setChecked(True) self._button3.clicked.connect(self.nodes_data_mode) self._button6 = QtWidgets.QPushButton('Add lines', self) self._button6.setObjectName('table_button') self._button6.setCheckable(True) self._button6.clicked.connect(self.lines_data_mode) self._button4 = QtWidgets.QPushButton('Add triangles', self) self._button4.setObjectName('table_button') self._button4.setCheckable(True) self._button4.clicked.connect(self.elements_data_mode) # common for both tables self.context_menu_act() #create actions for table context menu # Context menu actions for model buttons self.model_btn_context_menu_act() # geometry Table (cartesian coordinate system) self.geom_table_model = TableModel(self) self.fields = ['node_nums','x', 'y', 'z','thz', 'thy', 'thx' , 'model_id'] self.geom_table_model.update(self.modaldata.tables['geometry'], [0], self.fields) # show some data self.geom_table_view = CustomQTableView(self) self.geom_table_view.setModel(self.geom_table_model) self.geom_table_model.dataChanged.connect(self.geometry_changed) self.geom_table_view.setSortingEnabled(False) self.geom_table_view.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) self.geom_table_view.customContextMenuRequested.connect(self.table_view_context_menu) #replace header from dataframe with custom one self.geom_table_model.header_labels=[keys['node_nums']['15'], keys['x']['15'], keys['y']['15'], keys['z']['15'], keys['thz']['15'], keys['thy']['15'], keys['thx']['15'] , keys['model_id']['15']] # geometry Table (cylindrical coordinate system) self.cyl_geom_table_model = TableModel(self) self.cyl_fields = ['node_nums','r', 'phi', 'z','cyl_thz', 'thy', 'thx' , 'model_id'] self.cyl_geom_table_model.update(self.modaldata.tables['geometry'], [0], self.cyl_fields) # show some data self.cyl_geom_table_view = CustomQTableView(self) self.cyl_geom_table_view.setModel(self.cyl_geom_table_model) self.cyl_geom_table_model.dataChanged.connect(self.geometry_changed) self.cyl_geom_table_view.hide() self.cyl_geom_table_view.setSortingEnabled(False) self.cyl_geom_table_view.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) self.cyl_geom_table_view.customContextMenuRequested.connect(self.table_view_context_menu) #replace header from dataframe with custom one self.cyl_geom_table_model.header_labels=[keys['node_nums']['15'], keys['r']['15'], keys['phi']['15'], keys['z']['15'], keys['cyl_thz']['15'], keys['thy']['15'], keys['thx']['15'] , keys['model_id']['15']] # elements Table self.elem_table_model = TableModel(self) #print(self.modal_data.tables['analysis_index']) self.elem_fields = ['model_id', 'element_id', 'element_descriptor', 'color', 'nr_of_nodes'] self.elem_table_model.update(self.modaldata.tables['elements_index'], [0], self.elem_fields) # show some data self.elem_table_view = CustomQTableView(self) self.elem_table_view.setModel(self.elem_table_model) self.elem_table_view.setSelectionBehavior(QtWidgets.QAbstractItemView.SelectRows) self.elem_table_model.dataChanged.connect(self.plot_activated_models) self.elem_table_view.setMinimumHeight(150) self.elem_table_view.setSortingEnabled(True) self.elem_table_view.hide() self.elem_table_view.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) self.elem_table_view.customContextMenuRequested.connect(self.table_view_context_menu) #replace header from dataframe with custom one self.elem_table_model.header_labels=[keys['model_id']['15'], keys['element_id']['15'], keys['element_descriptor']['15'], keys['color']['15'], keys['nr_of_nodes']['15']] self.elem_table_view.setColumnHidden(3,True) #hide color self.elem_table_view.setColumnHidden(4,True) #hide nr_of_nodes selection = self.elem_table_view.selectionModel() selection.selectionChanged.connect(self.handle_elem_select) def restore_elem_color(self,elem_ids): """ Change element color to original (before selection) :param elem_ids: :return: """ #restore color element_id_mask=self.modaldata.tables['elements_index']['element_id'].isin(elem_ids) self.modaldata.tables['elements_index'].ix[element_id_mask, 'clr_r']=self.selected_elem_col[0] # rbg values 0-1 self.modaldata.tables['elements_index'].ix[element_id_mask, 'clr_g']=self.selected_elem_col[1] # rbg values 0-1 self.modaldata.tables['elements_index'].ix[element_id_mask, 'clr_b']=self.selected_elem_col[2] # rbg values 0-1 self.modaldata.tables['elements_index'].ix[element_id_mask, 'clr_a']=self.selected_elem_col[3] # alpha values 0-1 def change_elem_color(self,elem_ids,selection_color): #change color of selected elements element_id_mask=self.modaldata.tables['elements_index']['element_id'].isin(elem_ids) #store current element color self.selected_elem_col= self.modaldata.tables['elements_index'][element_id_mask][['clr_r', 'clr_g', 'clr_b', 'clr_a']].values[0, :] self.modaldata.tables['elements_index'].ix[element_id_mask, 'clr_r']= selection_color[0] / 255. # rbg values 0-1 self.modaldata.tables['elements_index'].ix[element_id_mask, 'clr_g']= selection_color[1] / 255. # rbg values 0-1 self.modaldata.tables['elements_index'].ix[element_id_mask, 'clr_b']= selection_color[2] / 255. # rbg values 0-1 self.modaldata.tables['elements_index'].ix[element_id_mask, 'clr_a']= selection_color[3] / 255. # alpha values 0-1 def handle_elem_select(self,deselect=False): """ Change color of elements selected in element table :return: """ #element selection color #TODO: move this to color pallete? #TODO: fix - selecting mulitple lines and triangles changes their color - element color change must be element type sensitive rgba_color = QtGui.QColor(255, 0, 0, 255) rgba_color = pg.colorTuple(rgba_color) rows=self.elem_table_view.selectionModel().selectedRows() rows.sort() new_elem_ids=[] # newly selected elements for row in rows: new_elem_ids.append(self.elem_table_model.datatable['element_id'].iloc[[row.row()]].values[0]) if deselect==True: self.restore_elem_color(self.selected_elem_ids) self.selected_elem_ids=[] else: #restore color of previously selected elements if len(self.selected_elem_ids)!=0: self.restore_elem_color(self.selected_elem_ids) #change color of selected elements if len(new_elem_ids)!=0: self.change_elem_color(new_elem_ids,rgba_color) # store current selection self.selected_elem_ids=new_elem_ids self.plot_activated_models(wheel_event=True) def create_geom_primitive(self): """ Create geometry primitives (nodes + triangles) for currently active model :return: """ response,input_data=dialog_geom_primitives.return_data() if response==1: if input_data['geom_type']=='line': self.create_line_geom(input_data) if input_data['geom_type']=='plane': self.create_plane_geom(input_data) if input_data['geom_type']=='box': self.create_box_geom(input_data) if input_data['geom_type']=='cylinder': self.create_cyl_geom(input_data) def create_line_geom(self,line_data): """ Create line geometry based on user input (for currently active model) :return: """ xs=float(line_data['xs']) # s = start point ys=float(line_data['ys']) zs=float(line_data['zs']) xe=float(line_data['xe']) # e = end point ye=float(line_data['ye']) ze=float(line_data['ze']) num_of_points=int(line_data['num_of_points']) start_num=float(line_data['start_num']) s_point=np.array((xs,ys,zs)) e_point=np.array((xe,ye,ze)) for model_id in self.activated_models: node_nums=np.arange(start_num,start_num+num_of_points) line_vec=(e_point-s_point) dir_arr=np.tile(line_vec,(num_of_points,1)) div_arr=np.linspace(0,1,num_of_points) div_arr_rshp=np.tile(div_arr.reshape(num_of_points,1),3) nodes=np.tile(s_point,(num_of_points,1))+div_arr_rshp*dir_arr #realign index in order to prevent double node names (geometry data frame starts with 1 by default) #node_index=node_nums-1 #get node index corresponding with existing geomtry table model_mask=self.modaldata.tables['geometry'].ix[:,'model_id']==model_id node_mask=self.modaldata.tables['geometry'].ix[:,'node_nums'].isin(node_nums) final_mask=model_mask & node_mask node_index=self.modaldata.tables['geometry'].ix[final_mask].index if len(node_nums)>len(node_index): # add rows for selected model rows_to_add=len(node_nums)-len(node_index) self.add_geom_rows(rows_to_add=rows_to_add) # get index model_mask=self.modaldata.tables['geometry'].ix[:,'model_id']==model_id node_mask=self.modaldata.tables['geometry'].ix[:,'node_nums'].isin(node_nums) final_mask=model_mask*node_mask node_index=self.modaldata.tables['geometry'].ix[final_mask].index #create node data df=pd.DataFrame(index=node_index, columns=self.modaldata.tables['geometry'].columns) df['model_id']=model_id df['node_nums']=node_nums df['x']=nodes[:,0] df['y']=nodes[:,1] df['z']=nodes[:,2] #TODO: oritent lcs according to line orientation df['thx']=0 df['thy']=0 df['thz']=0 rgba_color = pg.colorTuple(QtGui.QColor(0,255,0,255)) df['clr_r']=rgba_color[0]/ 255. # rbg values 0-1 df['clr_g']=rgba_color[1]/ 255. # rbg values 0-1 df['clr_b']=rgba_color[2]/ 255. # rbg values 0-1 df['clr_a']=rgba_color[3]/ 255. # alpha values 0-1 #calculate r,phi from x,y df['r'] = np.sqrt(df['x']**2 + df['y']**2) df['phi'] = np.arcsin(df['y']/df['r'])*180./np.pi df['cyl_thz']= 0 #update geometry table with new data self.modaldata.tables['geometry'].update(df)#,overwrite=True) #self.modal_data.tables['geometry']=pd.concat([self.modal_data.tables['geometry'],df]) #create element data #get next pandas index if len(self.modaldata.tables['elements_index'].index)==0: ind=0 elem_node_ind=0 element_id=0 else: ind= self.modaldata.tables['elements_index'].index.max() + 1 element_id= self.modaldata.tables['elements_index']['element_id'].max() + 1 elem_node_ind= self.modaldata.tables['elements_values'].index.max() + 1 for model_id_aux, model_obj_aux in self.models.items(): if model_obj_aux.model_id==model_id: color=model_obj_aux.cur_triangle_color element_descriptor='line' nr_of_nodes=2 tot_num_of_elem=num_of_points-1 #total number of elements elem_nums=np.arange(ind,ind+tot_num_of_elem) elem_ids=np.arange(element_id,element_id+tot_num_of_elem) df_elem=pd.DataFrame(index=elem_nums, columns=self.modaldata.tables['elements_index'].columns) df_elem['model_id']=model_id df_elem['element_id']=elem_ids df_elem['element_descriptor']=element_descriptor df_elem['color']=color df_elem['nr_of_nodes']=nr_of_nodes df_elem['clr_r']=color.red()/255. df_elem['clr_g']=color.green()/255. df_elem['clr_b']=color.blue()/255. df_elem['clr_a']=color.alpha()/255. if len(self.modaldata.tables['elements_index'].index)==0: self.modaldata.tables['elements_index']=df_elem else: #self.modal_data.tables['elements_index'].update(df_elem)#,overwrite=True) self.modaldata.tables['elements_index']=pd.concat([self.modaldata.tables['elements_index'], df_elem]) #store nodes #tot_elem_nums=circ_div*(height_div-1)*2 #total number of elements #elem_nums=np.arange(element_id,element_id+tot_elem_nums+1) #walk through nodes and store elements pos_1=[] pos_2=[] node_number=start_num for i in range(1,int(num_of_points)): pos_1.append(node_number) pos_2.append(node_number+1) node_number=node_number+1 df_elem_index=np.arange(elem_node_ind,elem_node_ind+len(np.tile(elem_ids,2))) df_elem_nodes=pd.DataFrame(index=df_elem_index, columns=self.modaldata.tables['elements_values'].columns) #df_elem_nodes['model_id']=model_id df_elem_nodes['element_id']=np.tile(elem_ids,2) df_elem_nodes['node_id']=np.asarray(pos_1+pos_2) #node numbers df_elem_nodes['node_pos']=np.repeat([1,2],len(pos_1)) #node position in element if len(self.modaldata.tables['elements_values'].index)==0: self.modaldata.tables['elements_values']=df_elem_nodes else: #self.modal_data.tables['elements_values'].update(df_elem_nodes)#,overwrite=True) self.modaldata.tables['elements_values']=pd.concat([self.modaldata.tables['elements_values'], df_elem_nodes]) #refresh self.calc_node_lcs() self.populate_table_view(self.activated_models) self.populate_elem_table_view(self.activated_models) self.plot_activated_models() def add_geom_rows(self,rows_to_add=100): """ Add 100 blank rows to geometry table of selected model id :return: """ for model_id in self.activated_models: #get node index corresponding with existing geomtry table model_mask=self.modaldata.tables['geometry'].ix[:,'model_id']==model_id if len(self.modaldata.tables['geometry'][model_mask].index)==0: ind=0 node_num=0 else: ind= self.modaldata.tables['geometry'][model_mask].index.max() + 1 node_num = self.modaldata.tables['geometry'].ix[model_mask,'node_nums'].max() + 1 node_nums=np.arange(node_num,node_num+rows_to_add) node_index=np.arange(ind,ind+rows_to_add) #create node data df=pd.DataFrame(index=node_index, columns=self.modaldata.tables['geometry'].columns) df['model_id']=model_id df['node_nums']=node_nums rgba_color = pg.colorTuple(QtGui.QColor(0,255,0,255)) df['clr_r']=rgba_color[0]/ 255. # rbg values 0-1 df['clr_g']=rgba_color[1]/ 255. # rbg values 0-1 df['clr_b']=rgba_color[2]/ 255. # rbg values 0-1 df['clr_a']=rgba_color[3]/ 255. # alpha values 0-1 if len(self.modaldata.tables['geometry'].index)==0: self.modaldata.tables['geometry']=df else: #self.modal_data.tables['elements_values'].update(df_elem_nodes)#,overwrite=True) self.modaldata.tables['geometry']=pd.concat([self.modaldata.tables['geometry'], df]) #refresh self.populate_table_view(self.activated_models) def create_plane_nodes_df(self,plane_orient,len1,len2,div1,div2,start_num,model_id,x_offset,y_offset,z_offset): maximum_number_of_nodes=div1*div2 node_nums=np.arange(start_num,start_num+maximum_number_of_nodes) len1_arr = np.linspace(0, len1, div1) len2_arr = np.linspace(0, len2, div2) if plane_orient=='XY': xx, yy = np.meshgrid(len1_arr, len2_arr) zz=np.zeros((maximum_number_of_nodes)) if plane_orient=='YZ': yy, zz = np.meshgrid(len1_arr, len2_arr) xx=np.zeros((maximum_number_of_nodes)) if plane_orient=='ZX': zz, xx = np.meshgrid(len1_arr, len2_arr) yy=np.zeros((maximum_number_of_nodes)) #realign index in order to prevent double node names (geometry data frame starts with 1 by default) #node_index=node_nums-1 #get node index corresponding with existing geomtry table model_mask=self.modaldata.tables['geometry'].ix[:,'model_id']==model_id node_mask=self.modaldata.tables['geometry'].ix[:,'node_nums'].isin(node_nums) final_mask=model_mask*node_mask node_index=self.modaldata.tables['geometry'].ix[final_mask].index if len(node_nums)>len(node_index): # add rows for selected model rows_to_add=len(node_nums)-len(node_index) self.add_geom_rows(rows_to_add=rows_to_add) # get index model_mask=self.modaldata.tables['geometry'].ix[:,'model_id']==model_id node_mask=self.modaldata.tables['geometry'].ix[:,'node_nums'].isin(node_nums) final_mask=model_mask*node_mask node_index=self.modaldata.tables['geometry'].ix[final_mask].index #create node data df=pd.DataFrame(index=node_index, columns=self.modaldata.tables['geometry'].columns) df['model_id']=model_id df['node_nums']=node_nums df['x']=xx.flatten()+x_offset df['y']=yy.flatten()+y_offset df['z']=zz.flatten()+z_offset df['thx']=0 df['thy']=0 df['thz']=0 rgba_color = pg.colorTuple(QtGui.QColor(0,255,0,255)) df['clr_r']=rgba_color[0]/ 255. # rbg values 0-1 df['clr_g']=rgba_color[1]/ 255. # rbg values 0-1 df['clr_b']=rgba_color[2]/ 255. # rbg values 0-1 df['clr_a']=rgba_color[3]/ 255. # alpha values 0-1 #calculate r,phi from x,y df['r'] = np.sqrt(df['x']**2 + df['y']**2) df['phi'] = np.arcsin(df['y']/df['r'])*180./np.pi df['cyl_thz']= 0 return df def create_plane_elem_df(self,div1,div2,start_num,model_id,custom_num=None): #create element data #get next pandas index if custom_num==None: if len(self.modaldata.tables['elements_index'].index)==0: ind=0 elem_node_ind=0 element_id=0 else: ind= self.modaldata.tables['elements_index'].index.max() + 1 element_id= self.modaldata.tables['elements_index']['element_id'].max() + 1 elem_node_ind= self.modaldata.tables['elements_values'].index.max() + 1 else: ind=custom_num['ind'] element_id=custom_num['element_id'] elem_node_ind=custom_num['elem_node_ind'] for model_id_aux, model_obj_aux in self.models.items(): if model_obj_aux.model_id==model_id: color=model_obj_aux.cur_triangle_color element_descriptor='triangle' nr_of_nodes=3 tot_num_of_elem=(div1-1)*(div2-1)*2 #total number of elements elem_nums=np.arange(ind,ind+tot_num_of_elem) elem_ids=np.arange(element_id,element_id+tot_num_of_elem) df_elem=pd.DataFrame(index=elem_nums, columns=self.modaldata.tables['elements_index'].columns) df_elem['model_id']=model_id df_elem['element_id']=elem_ids df_elem['element_descriptor']=element_descriptor df_elem['color']=color df_elem['nr_of_nodes']=nr_of_nodes df_elem['clr_r']=color.red()/255. df_elem['clr_g']=color.green()/255. df_elem['clr_b']=color.blue()/255. df_elem['clr_a']=color.alpha()/255. #store element nodes #walk through nodes and store elements pos_1=[] pos_2=[] pos_3=[] node_number=start_num k=0 for i in range(1,int(div2+1)): # len1 division for j in range(1,int(div1+1)): # len2 divisions if j==div1: #last column pass else: if i==(div2): #vertical #last row/last column pass else: pos_1.append(node_number) pos_2.append(node_number+1) pos_3.append(node_number+1+div1) pos_1.append(node_number) pos_2.append(node_number+div1) pos_3.append(node_number+1+div1) node_number=node_number+1 df_elem_index=np.arange(elem_node_ind,elem_node_ind+len(np.tile(elem_ids,3))) df_elem_nodes=pd.DataFrame(index=df_elem_index, columns=self.modaldata.tables['elements_values'].columns) #df_elem_nodes['model_id']=model_id df_elem_nodes['element_id']=np.tile(elem_ids,3) df_elem_nodes['node_id']=np.asarray(pos_1+pos_2+pos_3) #node numbers df_elem_nodes['node_pos']=np.repeat([1,2,3],len(pos_1)) #node position in element return df_elem,df_elem_nodes def create_plane_geom(self,plane_data): """ Create cylinder geometry based on user input (for currently active model) :return: """ plane_orient=plane_data['plane_orient'] len1=float(plane_data['len1']) len2=float(plane_data['len2']) div1=float(plane_data['div1']) div2=float(plane_data['div2']) x_offset=float(plane_data['x_offset']) y_offset=float(plane_data['y_offset']) z_offset=float(plane_data['z_offset']) start_num=float(plane_data['start_num']) for model_id in self.activated_models: # get nodes df=self.create_plane_nodes_df(plane_orient,len1,len2,div1,div2,start_num,model_id,x_offset,y_offset,z_offset) #update geometry table with new data self.modaldata.tables['geometry'].update(df)#,overwrite=True) # get elements and element connectivity df_elem,df_elem_nodes=self.create_plane_elem_df(div1,div2,start_num,model_id) # update modal_data object with new geometry if len(self.modaldata.tables['elements_index'].index)==0: self.modaldata.tables['elements_index']=df_elem else: self.modaldata.tables['elements_index']=pd.concat([self.modaldata.tables['elements_index'], df_elem]) if len(self.modaldata.tables['elements_values'].index)==0: self.modaldata.tables['elements_values']=df_elem_nodes else: self.modaldata.tables['elements_values']=pd.concat([self.modaldata.tables['elements_values'], df_elem_nodes]) #refresh self.calc_node_lcs() self.populate_table_view(self.activated_models) self.populate_elem_table_view(self.activated_models) self.plot_activated_models() def create_box_geom(self,box_data): """ Create box geometry based on user input (for currently active model) :return: """ lenx=float(box_data['lenx']) leny=float(box_data['leny']) lenz=float(box_data['lenz']) divx=float(box_data['divx']) divy=float(box_data['divy']) divz=float(box_data['divz']) x_offset=float(box_data['x_offset']) y_offset=float(box_data['y_offset']) z_offset=float(box_data['z_offset']) start_num=float(box_data['start_num']) for model_id in self.activated_models: maximum_number_of_nodes=2*divx*divy+(divz-2)*(divy+(divx-1)+(divy-1)+(divx-2)) node_nums=np.arange(start_num,start_num+maximum_number_of_nodes) # xz plane spc_x=np.linspace(0,lenx,divx) x_arr_1=np.repeat(spc_x,divz) y_arr_1=np.zeros((divx*divz)) spc_z=np.linspace(0,lenz,divz) z_arr_1=np.tile(spc_z[::-1],divx) # far side yz plane x_arr_2=np.repeat([lenx],divy*divz) spc_y=np.linspace(0,leny,divy) y_arr_2=np.repeat(spc_y,divz) z_arr_2=np.tile(spc_z[::-1],divy) # far side xz plane spc_x=np.linspace(0,lenx,divx) x_arr_3=np.repeat(spc_x[::-1],divz) y_arr_3=np.repeat([leny],divx*divz) spc_z=np.linspace(0,lenz,divz) z_arr_3=np.tile(spc_z[::-1],divx) # yz plane x_arr_4=np.repeat([0],divy*divz) spc_y=np.linspace(0,leny,divy) y_arr_4=np.repeat(spc_y[::-1],divz) z_arr_4=np.tile(spc_z[::-1],divy) # xy plane (top) x_arr_5=np.tile(spc_x,divy) spc_y=np.linspace(0,leny,divy) y_arr_5=np.repeat(spc_y,divx) z_arr_5=np.repeat(lenz,divy*divx) #remove corner nodes x_mask=(x_arr_5!=lenx)*(x_arr_5!=0) # True where x coordinate is not on edge y_mask=(y_arr_5!=leny)*(y_arr_5!=0) # True where y coordinate is not on edge fin_mask=x_mask*y_mask x_arr_5=x_arr_5[fin_mask] y_arr_5=y_arr_5[fin_mask] z_arr_5=z_arr_5[fin_mask] # xy plane (bottom) x_arr_6=np.tile(spc_x,divy) spc_y=np.linspace(0,leny,divy) y_arr_6=np.repeat(spc_y,divx) z_arr_6=np.repeat(0,divy*divx) #remove corner nodes x_mask=(x_arr_6!=lenx)*(x_arr_6!=0) # True where x coordinate is not on edge y_mask=(y_arr_6!=leny)*(y_arr_6!=0) # True where y coordinate is not on edge fin_mask=x_mask*y_mask x_arr_6=x_arr_6[fin_mask] y_arr_6=y_arr_6[fin_mask] z_arr_6=z_arr_6[fin_mask] x_arr=np.concatenate((x_arr_1[:-divz],x_arr_2[:-divz],x_arr_3[:-divz],x_arr_4[:-divz],x_arr_5,x_arr_6)) y_arr=np.concatenate((y_arr_1[:-divz],y_arr_2[:-divz],y_arr_3[:-divz],y_arr_4[:-divz],y_arr_5,y_arr_6)) z_arr=np.concatenate((z_arr_1[:-divz],z_arr_2[:-divz],z_arr_3[:-divz],z_arr_4[:-divz],z_arr_5,z_arr_6)) #realign index in order to prevent double node names (geometry data frame starts with 1 by default) #node_index=node_nums-1 #get node index corresponding with existing geomtry table model_mask=self.modaldata.tables['geometry'].ix[:,'model_id']==model_id node_mask=self.modaldata.tables['geometry'].ix[:,'node_nums'].isin(node_nums) final_mask=model_mask*node_mask node_index=self.modaldata.tables['geometry'].ix[final_mask].index if len(node_nums)>len(node_index): # add rows for selected model rows_to_add=len(node_nums)-len(node_index) self.add_geom_rows(rows_to_add=rows_to_add) # get index model_mask=self.modaldata.tables['geometry'].ix[:,'model_id']==model_id node_mask=self.modaldata.tables['geometry'].ix[:,'node_nums'].isin(node_nums) final_mask=model_mask*node_mask node_index=self.modaldata.tables['geometry'].ix[final_mask].index #create node data df=pd.DataFrame(index=node_index, columns=self.modaldata.tables['geometry'].columns) df['model_id']=model_id df['node_nums']=node_nums df['x']=x_arr+x_offset df['y']=y_arr+y_offset df['z']=z_arr+z_offset df['thx']=0 df['thy']=0 df['thz']=0 rgba_color = pg.colorTuple(QtGui.QColor(0,255,0,255)) df['clr_r']=rgba_color[0]/ 255. # rbg values 0-1 df['clr_g']=rgba_color[1]/ 255. # rbg values 0-1 df['clr_b']=rgba_color[2]/ 255. # rbg values 0-1 df['clr_a']=rgba_color[3]/ 255. # alpha values 0-1 #calculate r,phi from x,y df['r'] = np.sqrt(df['x']**2 + df['y']**2) df['phi'] = np.arcsin(df['y']/df['r'])*180./np.pi df['cyl_thz']= 0 #update geometry table with new data self.modaldata.tables['geometry'].update(df)#,overwrite=True) #self.modal_data.tables['geometry']=pd.concat([self.modal_data.tables['geometry'],df]) # #create element data #get next pandas index if len(self.modaldata.tables['elements_index'].index)==0: ind=0 elem_node_ind=0 element_id=0 else: ind= self.modaldata.tables['elements_index'].index.max() + 1 element_id= self.modaldata.tables['elements_index']['element_id'].max() + 1 elem_node_ind= self.modaldata.tables['elements_values'].index.max() + 1 for model_id_aux, model_obj_aux in self.models.items(): if model_obj_aux.model_id==model_id: color=model_obj_aux.cur_triangle_color element_descriptor='triangle' nr_of_nodes=3 tot_num_of_elem=4*(divx-1)*(divz-1)+4*(divy-1)*(divz-1)+4*(divy-1)*(divx-1) #total number of elements elem_nums=np.arange(ind,ind+tot_num_of_elem) elem_ids=np.arange(element_id,element_id+tot_num_of_elem) df_elem=pd.DataFrame(index=elem_nums, columns=self.modaldata.tables['elements_index'].columns) df_elem['model_id']=model_id df_elem['element_id']=elem_ids df_elem['element_descriptor']=element_descriptor df_elem['color']=color df_elem['nr_of_nodes']=nr_of_nodes df_elem['clr_r']=color.red()/255. df_elem['clr_g']=color.green()/255. df_elem['clr_b']=color.blue()/255. df_elem['clr_a']=color.alpha()/255. if len(self.modaldata.tables['elements_index'].index)==0: self.modaldata.tables['elements_index']=df_elem else: #self.modal_data.tables['elements_index'].update(df_elem)#,overwrite=True) self.modaldata.tables['elements_index']=pd.concat([self.modaldata.tables['elements_index'], df_elem]) #store nodes #walk through nodes and store elements pos_1=[] pos_2=[] pos_3=[] node_number=start_num num_of_divs=int(2*divx+2*(divy-2)) # number of verticals along z k=0 for i in range(1,num_of_divs+1): for j in range(1,int(divz+1)): if i==num_of_divs: #last vertical line - elements have nodes also from first vertical line if j==(divz): #last row pass else: pos_1.append(node_number) pos_2.append(node_number+1) pos_3.append(start_num+k+1) pos_1.append(node_number) pos_2.append(start_num+k) pos_3.append(start_num+k+1) k=k+1 else: if j==(divz): #vertical #last row/last column pass else: pos_1.append(node_number) pos_2.append(node_number+1) pos_3.append(node_number+1+divz) pos_1.append(node_number) pos_2.append(node_number+divz) pos_3.append(node_number+1+divz) node_number=node_number+1 def get_nnum(x,y,z): # get node number based on known location x_mask = x_arr == x y_mask = y_arr == y z_mask = z_arr == z fin_mask=x_mask*y_mask*z_mask nnum=node_nums[fin_mask] return nnum x_cord=np.linspace(0,lenx,divx) y_cord=np.linspace(0,leny,divy) # Top plane z_cord=lenz for i in range(0,int(divy-1)): for j in range(0,int(divx-1)): pos_1.append(get_nnum(x_cord[j],y_cord[i],z_cord)) pos_2.append(get_nnum(x_cord[j+1],y_cord[i],z_cord)) pos_3.append(get_nnum(x_cord[j+1],y_cord[i+1],z_cord)) pos_1.append(get_nnum(x_cord[j],y_cord[i],z_cord)) pos_2.append(get_nnum(x_cord[j],y_cord[i+1],z_cord)) pos_3.append(get_nnum(x_cord[j+1],y_cord[i+1],z_cord)) # Bottom plane z_cord=0 for i in range(0,int(divy-1)): for j in range(0,int(divx-1)): pos_1.append(get_nnum(x_cord[j],y_cord[i],z_cord)) pos_2.append(get_nnum(x_cord[j+1],y_cord[i],z_cord)) pos_3.append(get_nnum(x_cord[j+1],y_cord[i+1],z_cord)) pos_1.append(get_nnum(x_cord[j],y_cord[i],z_cord)) pos_2.append(get_nnum(x_cord[j],y_cord[i+1],z_cord)) pos_3.append(get_nnum(x_cord[j+1],y_cord[i+1],z_cord)) df_elem_index=np.arange(elem_node_ind,elem_node_ind+len(np.tile(elem_ids,3))) df_elem_nodes=pd.DataFrame(index=df_elem_index, columns=self.modaldata.tables['elements_values'].columns) df_elem_nodes['element_id']=np.tile(elem_ids,3) df_elem_nodes['node_id']=np.asarray(pos_1+pos_2+pos_3) #node numbers df_elem_nodes['node_pos']=np.repeat([1,2,3],len(pos_1)) #node position in element if len(self.modaldata.tables['elements_values'].index)==0: self.modaldata.tables['elements_values']=df_elem_nodes else: #self.modal_data.tables['elements_values'].update(df_elem_nodes)#,overwrite=True) self.modaldata.tables['elements_values']=pd.concat([self.modaldata.tables['elements_values'], df_elem_nodes]) #refresh self.calc_node_lcs() self.populate_table_view(self.activated_models) self.populate_elem_table_view(self.activated_models) self.plot_activated_models() def create_cyl_geom(self,cylinder_data): """ Create cylinder geometry based on user input (for currently active model) :return: """ cyl_r=float(cylinder_data['radius']) cyl_h=float(cylinder_data['height']) start_num=cylinder_data['start_num'] num_orient=cylinder_data['num_orient'] z_offset=cylinder_data['z_offset'] height_div=float(cylinder_data['height_div']) circ_div=float(cylinder_data['circ_div']) for model_id in self.activated_models: maximum_number_of_nodes=height_div*circ_div node_nums=np.arange(start_num,start_num+maximum_number_of_nodes) cyl_r_array=np.repeat(cyl_r,maximum_number_of_nodes) phi_div=360./circ_div cyl_phi_single_row=np.arange(0,360.,phi_div) if num_orient=='Vertical': cyl_phi_array=np.repeat(cyl_phi_single_row,height_div) # VERTICAL NUMBERING else: cyl_phi_array=np.tile(cyl_phi_single_row,height_div) # HORIZONTAL NUMBERING ##bottom->up numbering #cyl_z_array_single_row=np.arange(0,cyl_h+z_div,z_div) #top->down numbering cyl_z_array_single_row=np.linspace(0,cyl_h,height_div) cyl_z_array_single_row=cyl_z_array_single_row[::-1] if num_orient=='Vertical': cyl_z_array=np.tile(cyl_z_array_single_row,circ_div) # VERTICAL NUMBERING else: cyl_z_array=np.repeat(cyl_z_array_single_row,circ_div) # HORIZONTAL NUMBERING #realign index in order to prevent double node names (geometry data frame starts with 1 by default) #node_index=node_nums-1 #get node index corresponding with existing geomtry table model_mask=self.modaldata.tables['geometry'].ix[:,'model_id']==model_id node_mask=self.modaldata.tables['geometry'].ix[:,'node_nums'].isin(node_nums) final_mask=model_mask*node_mask node_index=self.modaldata.tables['geometry'].ix[final_mask].index if len(node_nums)>len(node_index): # add rows for selected model rows_to_add=len(node_nums)-len(node_index) self.add_geom_rows(rows_to_add=rows_to_add) # get index model_mask=self.modaldata.tables['geometry'].ix[:,'model_id']==model_id node_mask=self.modaldata.tables['geometry'].ix[:,'node_nums'].isin(node_nums) final_mask=model_mask*node_mask node_index=self.modaldata.tables['geometry'].ix[final_mask].index #create node data df=pd.DataFrame(index=node_index, columns=self.modaldata.tables['geometry'].columns) df['model_id']=model_id df['node_nums']=node_nums df['r']=cyl_r_array df['phi']=cyl_phi_array df['z']=cyl_z_array+z_offset df['thx']=0 df['thy']=0 df['cyl_thz']=0 rgba_color = pg.colorTuple(QtGui.QColor(0,255,0,255)) df['clr_r']=rgba_color[0]/ 255. # rbg values 0-1 df['clr_g']=rgba_color[1]/ 255. # rbg values 0-1 df['clr_b']=rgba_color[2]/ 255. # rbg values 0-1 df['clr_a']=rgba_color[3]/ 255. # alpha values 0-1 #calculate x,y from r,phi df['x'] = df['r'] * np.cos(df['phi'].astype(np.float64)*np.pi/180) df['y'] = df['r'] * np.sin(df['phi'].astype(np.float64)*np.pi/180) df['thz']= df['cyl_thz'] + df['phi'] #update geometry table with new data self.modaldata.tables['geometry'].update(df)#,overwrite=True) #self.modaldata.tables['geometry']=pd.concat([self.modaldata.tables['geometry'],df]) #create element data #get next pandas index if len(self.modaldata.tables['elements_index'].index)==0: ind=0 elem_node_ind=0 element_id=0 else: ind= self.modaldata.tables['elements_index'].index.max() + 1 element_id= self.modaldata.tables['elements_index']['element_id'].max() + 1 elem_node_ind= self.modaldata.tables['elements_values'].index.max() + 1 for model_id_aux, model_obj_aux in self.models.items(): if model_obj_aux.model_id==model_id: color=model_obj_aux.cur_triangle_color element_descriptor='triangle' nr_of_nodes=3 tot_num_of_elem=circ_div*(height_div-1)*2 #total number of elements elem_nums=np.arange(ind,ind+tot_num_of_elem) elem_ids=np.arange(element_id,element_id+tot_num_of_elem) df_elem=pd.DataFrame(index=elem_nums, columns=self.modaldata.tables['elements_index'].columns) df_elem['model_id']=model_id df_elem['element_id']=elem_ids df_elem['element_descriptor']=element_descriptor df_elem['color']=color df_elem['nr_of_nodes']=nr_of_nodes df_elem['clr_r']=color.red()/255. df_elem['clr_g']=color.green()/255. df_elem['clr_b']=color.blue()/255. df_elem['clr_a']=color.alpha()/255. if len(self.modaldata.tables['elements_index'].index)==0: self.modaldata.tables['elements_index']=df_elem else: #self.modal_data.tables['elements_index'].update(df_elem)#,overwrite=True) self.modaldata.tables['elements_index']=pd.concat([self.modaldata.tables['elements_index'], df_elem]) #store nodes #tot_elem_nums=circ_div*(height_div-1)*2 #total number of elements #elem_nums=np.arange(element_id,element_id+tot_elem_nums+1) #walk through nodes and store elements pos_1=[] pos_2=[] pos_3=[] node_number=start_num if num_orient=='Vertical': k=0 for i in range(1,int(circ_div+1)): # circumference division for j in range(1,int(height_div+1)): # height divisions if i==circ_div: #last circumference division - elements have nodes also from first division if j==(height_div): #last row pass else: pos_1.append(node_number) pos_2.append(node_number+1) pos_3.append(start_num+k+1) pos_1.append(node_number) pos_2.append(start_num+k) pos_3.append(start_num+k+1) k=k+1 else: if j==(height_div): #vertical #last row/last column pass else: pos_1.append(node_number) pos_2.append(node_number+1) pos_3.append(node_number+1+height_div) pos_1.append(node_number) pos_2.append(node_number+height_div) pos_3.append(node_number+1+height_div) node_number=node_number+1 else: k=0 for i in range(1,int(height_div+1)): # height division for j in range(1,int(circ_div+1)): # circumference divisions if j==circ_div: #last circumference division - elements have nodes also from first division if i==(height_div): #last row pass else: pos_1.append((start_num-1)+i*circ_div) # 4, 8 pos_2.append(start_num+k*circ_div) # 1, 5 pos_3.append(start_num+i*circ_div) # 5, 9 pos_1.append((start_num-1)+i*circ_div) # 4, 8 pos_2.append((start_num-1)+(i+1)*circ_div) # 8, 12 pos_3.append(start_num+i*circ_div) # 5, 9 k=k+1 else: if i==(height_div): #last row pass else: pos_1.append(node_number) # 1,2 pos_2.append(node_number+1) # 2,3 pos_3.append(node_number+circ_div) # 5,6 pos_1.append(node_number+1) # 1, 2 pos_2.append(node_number+circ_div) # 5, 6 pos_3.append(node_number+1+circ_div) # 6, 7 node_number=node_number+1 df_elem_index=np.arange(elem_node_ind,elem_node_ind+len(np.tile(elem_ids,3))) df_elem_nodes=
pd.DataFrame(index=df_elem_index, columns=self.modaldata.tables['elements_values'].columns)
pandas.DataFrame
# -*- coding: utf-8 -*- from __future__ import absolute_import import pandas as pd import cobra from cobra_utils.query.met_info import classify_metabolites_by_type def rxn_info_from_metabolites(model, metabolites, verbose=True): ''' This function looks for all the reactions where the metabolites in the list participate. Also, it retrieves the genes associated to those reactions. Parameters ---------- model : cobra.core.Model.Model A cobra model. metabolites : array-like An iterable object containing a list of metabolite ids present in the model. verbose : boolean, True by default. A variable to enable or disable the printings of this function. Returns ------- rxn_gene_association : pandas.DataFrame A pandas dataframe containing the information retrieved. The columns are : 'MetName', 'MetID', 'RxnID', 'RxnName', 'GeneID', 'Subsystem', 'RxnFormula' ''' if verbose: print('Using list of metabolites to get reactions where they participate. Also, getting genes of those reactions.') rxn_gene_association = [] for metabolite in metabolites: met = model.metabolites.get_by_id(metabolite) for rxn in met.reactions: if len(rxn.genes) != 0: for gene in rxn.genes: rxn_gene_association.append( (rxn.id, rxn.name, str(gene.id), rxn.subsystem, rxn.reaction, met.id, met.name)) else: rxn_gene_association.append( (rxn.id, rxn.name, '', rxn.subsystem, rxn.reaction, met.id, met.name)) labels = ['RxnID', 'RxnName', 'GeneID', 'Subsystem', 'RxnFormula', 'MetID', 'MetName'] rxn_gene_association = pd.DataFrame.from_records(rxn_gene_association, columns=labels) if verbose: print('Information correctly obtained.') return rxn_gene_association def rxn_info_from_reactions(model, reactions, verbose=True): ''' This function looks for all the reactions and genes that are associated from a list of reactions ids. Parameters ---------- model : cobra.core.Model.Model A cobra model. reactions : array-like An iterable object containing a list of reaction ids present in the model. verbose : boolean, True by default. A variable to enable or disable the printings of this function. Returns ------- rxn_gene_association : pandas.DataFrame A pandas dataframe containing the information retrieved. The columns are : 'GeneID', 'RxnID', 'RxnName', 'SubSystem', 'RxnFormula' ''' if verbose: print('Using list of reactions to get their information and genes associated.') rxn_gene_association = [] for reaction in reactions: rxn = model.reactions.get_by_id(reaction) if len(rxn.genes) != 0: for gene in rxn.genes: rxn_gene_association.append((str(gene.id), rxn.id, rxn.name, rxn.subsystem, rxn.reaction)) else: rxn_gene_association.append(('', rxn.id, rxn.name, rxn.subsystem, rxn.reaction)) labels = ['GeneID', 'RxnID', 'RxnName', 'SubSystem', 'RxnFormula'] rxn_gene_association = pd.DataFrame.from_records(rxn_gene_association, columns=labels) if verbose: print('Information correctly obtained.') return rxn_gene_association def rxn_info_from_genes(model, genes, verbose=True): ''' This function looks for all the reactions and genes that are associated from a list of gene ids. Parameters ---------- model : cobra.core.Model.Model A cobra model. genes : array-like An iterable object containing a list of gene ids present in the model. verbose : boolean, True by default. A variable to enable or disable the printings of this function. Returns ------- rxn_gene_association : pandas.DataFrame A pandas dataframe containing the information retrieved. The columns are : 'GeneID', 'RxnID', 'RxnName', 'SubSystem', 'RxnFormula' ''' if verbose: print('Using list of genes to get the reactions associated and their information.') rxn_gene_association = [] for gene in genes: g = model.genes.get_by_id(gene) for rxn in g.reactions: rxn_gene_association.append((str(g.id), rxn.id, rxn.name, rxn.subsystem, rxn.reaction)) labels = ['GeneID', 'RxnID', 'RxnName', 'SubSystem', 'RxnFormula'] rxn_gene_association =
pd.DataFrame.from_records(rxn_gene_association, columns=labels)
pandas.DataFrame.from_records
import os import gc import re import json import random import numpy as np import pandas as pd import scipy.io as sio from tqdm import tqdm import matplotlib.pyplot as plt from daisy.utils.data import incorporate_in_ml100k from scipy.sparse import csr_matrix from collections import defaultdict from IPython import embed def convert_unique_idx(df, col): column_dict = {x: i for i, x in enumerate(df[col].unique())} df[col] = df[col].apply(column_dict.get) assert df[col].min() == 0 assert df[col].max() == len(column_dict) - 1 return df def cut_down_data_half(df): cut_df = pd.DataFrame([]) for u in np.unique(df.user): aux = df[df['user'] == u].copy() cut_df = cut_df.append(df.sample(int(len(aux) / 2))) return cut_df def filter_users_and_items(df, num_users=None, freq_items=None, top_items=None, keys=['user', 'item']): ''' Reduces the dataframe to a number of users = num_users and it filters the items by frequency ''' if num_users is not None: # df = df[df['user_id'].isin(np.unique(df.user_id)[:num_users])] df = df[df[keys[0]].isin(np.unique(df[keys[0]])[:num_users])] # Get top5k books if top_items is not None: top5k_books = df[keys[1]].value_counts()[:top_items].index df = df[df[keys[1]].isin(top5k_books)] if freq_items is not None: frequent_items = df['item'].value_counts()[df['item'].value_counts() > freq_items].index df = df[df[keys[1]].isin(frequent_items)] return df def run_statistics(df, src): path = f'histograms/{src}' bins = 30 os.makedirs(path, exist_ok=True) f = open(os.path.join(path, "information.txt"), "w+") f.write("Information:\n") f.write("==========================\n") f.write(f"Interactions: {len(df)}\n") f.write(f"#users = {df['user'].nunique()}\n") f.write(f"#items = {df['item'].nunique()}\n") f.close() for key in ['user', 'item']: # OPCIÓ A: HISTOGRAMA a = pd.DataFrame(df.groupby([key])[key].count()) a.columns = ['value_counts'] a.reset_index(level=[0], inplace=True) dims = (15, 5) fig, ax = plt.subplots(figsize=dims) a["value_counts"].hist(bins=200) # fig.savefig('hist.jpg') fig.savefig(os.path.join(path, f'{src}_histogram_{key}_bins={bins}.png')) fig.clf() # OPCIÓ : BARPLOT # a = pd.DataFrame(df_year.groupby(['user'])['user'].count()) # a.columns = ['value_counts'] # a.reset_index(level=[0], inplace=True) # dims = (15, 5) # fig, ax = plt.subplots(figsize=dims) # sns.set_style("darkgrid") # sns.barplot(ax=ax, x="user", y="value_counts", data=a, palette="Blues_d") # ax.set(xlabel="User", ylabel="Value Counts") # plt.xticks(rotation=45) # plt.show() # fig.savefig('data.jpg') def load_rate(src='ml-100k', prepro='origin', binary=True, pos_threshold=None, level='ui', context=False, gce_flag=False, cut_down_data=False, side_info=False, context_type='', context_as_userfeat=False, flag_run_statistics=False, remove_top_users=0, remove_on='item'): """ Method of loading certain raw data Parameters ---------- src : str, the name of dataset prepro : str, way to pre-process raw data input, expect 'origin', f'{N}core', f'{N}filter', N is integer value binary : boolean, whether to transform rating to binary label as CTR or not as Regression pos_threshold : float, if not None, treat rating larger than this threshold as positive sample level : str, which level to do with f'{N}core' or f'{N}filter' operation (it only works when prepro contains 'core' or 'filter') Returns ------- df : pd.DataFrame, rating information with columns: user, item, rating, (options: timestamp) user_num : int, the number of users item_num : int, the number of items """ df = pd.DataFrame() # import mat73 # a = mat73.loadmat('data/gen-disease/genes_phenes.mat') # which dataset will use if src == 'ml-100k': df = pd.read_csv(f'./data/{src}/u.data', sep='\t', header=None, names=['user', 'item', 'rating', 'timestamp'], engine='python') if cut_down_data: df = cut_down_data_half(df) # from 100k to 49.760 interactions elif src == 'drugs': union = False if union == True: df = pd.read_csv(f'./data/{src}/train_data_contextUNION_sideeffect.csv', engine='python', index_col=0) df.drop(columns=['context'], inplace=True) df.rename(columns={'drug': 'user', 'disease': 'item', 'context_union': 'context', 'proteins': 'item-feat', 'side_effect': 'user-feat'}, inplace=True) else: df = pd.read_csv(f'./data/{src}/train_data_allcontext_sideeffect.csv', engine='python', index_col=0) df.rename(columns={'drug': 'user', 'disease': 'item', # 'proteins_drug': 'user-feat', 'proteins': 'item-feat', 'side_effect': 'user-feat'}, inplace=True) if not context: df = df[['user', 'item']] else: if context_as_userfeat: df = df[['user', 'item', 'user-feat', 'item-feat']] else: df = df[['user', 'item', 'context', 'user-feat']] df['array_context_flag'] = True df['timestamp'] = 1 df['rating'] = 1 elif src == 'ml-1m': df = pd.read_csv(f'./data/{src}/ratings.dat', sep='::', header=None, names=['user', 'item', 'rating', 'timestamp'], engine='python') # only consider rating >=4 for data density # df = df.query('rating >= 4').reset_index(drop=True).copy() elif src == 'ml-10m': df = pd.read_csv(f'./data/{src}/ratings.dat', sep='::', header=None, names=['user', 'item', 'rating', 'timestamp'], engine='python') # df = df.query('rating >= 4').reset_index(drop=True).copy() elif src == 'ml-20m': df = pd.read_csv(f'./data/{src}/ratings.csv') df.rename(columns={'userId': 'user', 'movieId': 'item'}, inplace=True) # df = df.query('rating >= 4').reset_index(drop=True) elif src == 'books': if not os.path.exists(f'./data/{src}/preprocessed_books_complete_timestamp.csv'): df = pd.read_csv(f'./data/{src}/preprocessed_books_complete.csv', sep=',', engine='python') df.rename(columns={'user_id': 'user', 'book_id': 'item', 'date_added': 'timestamp'}, inplace=True) df = convert_unique_idx(df, 'user') df = convert_unique_idx(df, 'item') df['rating'] = 1.0 # if type(df['timestamp'][0]) == 'str': df['date'] = pd.to_datetime(df['timestamp']) df['timestamp'] = pd.to_datetime(df['date'], utc=True) df['timestamp'] = df.timestamp.astype('int64') // 10 ** 9 df.to_csv(f'./data/{src}/preprocessed_books_complete_timestamp.csv', sep=',', index=False) else: df = pd.read_csv(f'./data/{src}/preprocessed_books_complete_timestamp.csv', sep=',', engine='python') del df['date'] # reduce users to 3000 and filter items by clicked_frequency > 10 df = filter_users_and_items(df, num_users=4000, freq_items=50, top_items=5000, keys=['user', 'item']) # 35422 books elif src == 'music': df = pd.read_csv(f'./data/{src}-context/train.csv') if side_info: # ['user_id', 'track_id', 'hashtag', 'created_at', 'score', 'lang', 'tweet_lang', 'time_zone', # 'instrumentalness', 'liveness', 'speechiness', 'danceability', 'valence', 'loudness', 'tempo', # 'acousticness', 'energy', 'mode', 'key', 'rating'] df.rename(columns={'user_id': 'user', 'track_id': 'item', 'created_at': 'timestamp', 'speechiness': 'side_info'}, inplace=True) df = df[['user', 'item', 'timestamp', 'side_info']] # PREPROCESS SPEECHINESS # VALUE 10 FOR NON EXISTING FEATURE df['side_info'] = df['side_info'].round(1) df['side_info'] = df['side_info']*10 df['side_info'] = df['side_info'].fillna(10) df['side_info'] = df['side_info'].astype(int) else: df.rename(columns={'user_id': 'user', 'track_id': 'item', 'created_at': 'timestamp'}, inplace=True) df = df[['user', 'item', 'timestamp']] # df = df.query('rating >= 4').reset_index(drop=True) df = convert_unique_idx(df, 'user') df = convert_unique_idx(df, 'item') df = filter_users_and_items(df, num_users=3000, freq_items=20, keys=['user', 'item']) # 18508 songs - 3981 users # FILTER USERS WHITH LESS THAN 4 INTERACTIONS df_aux = df.groupby('user').count().reset_index()[['user', 'item']] indexes = df_aux[df_aux['item'] >= 3]['user'].index df = df[df['user'].isin(indexes)] df['rating'] = 1.0 df['timestamp'] = pd.to_datetime(df['timestamp'], utc=True) df['timestamp'] = df.timestamp.astype('int64') // 10 ** 9 prepro = 'origin' elif src == 'frappe': df1 = pd.read_csv(f'./data/{src}/{src}_xin/train.csv', sep=',', header=None) df2 = pd.read_csv(f'./data/{src}/{src}_xin/test.csv', sep=',', header=None) df = pd.concat([df1, df2]) df['item'] = df[1].apply(lambda x: x.split('-')[0]) df['i-feature'] = df[1].apply(lambda x: x.split('-')[1]) df['user'] = df[0].apply(lambda x: x.split('-')[0]) df['user-context'] = df[0].apply(lambda x: '-'.join(x.split('-')[1:])) # http://web.archive.org/web/20180422190150/http://baltrunas.info/research-menu/frappe # columNames = ['labels', 'user', 'item', 'daytime', 'weekday', 'isweekend', 'homework', 'cost', 'weather', # 'country', 'city'] context_type = ['daytime', 'weekday', 'isweekend', 'homework', 'cost', 'weather', 'country', 'city'] # df = pd.read_csv(f'./data/{src}/{src}.csv', sep=' ', engine='python', names=columNames) df = pd.read_csv(f'./data/{src}/{src}.csv', sep='\t') # TODO: select one context if context: # context_type df = df[['user', 'item']+context_type] for context_aux in context_type: df = convert_unique_idx(df, context_aux) else: df = df[['user', 'item']] # treat weight as interaction, as 1 df['rating'] = 1.0 df['timestamp'] = 1 # fake timestamp column elif src == 'netflix': cnt = 0 tmp_file = open(f'./data/{src}/training_data.csv', 'w') tmp_file.write('user,item,rating,timestamp' + '\n') for f in os.listdir(f'./data/{src}/training_set/'): cnt += 1 if cnt % 5000 == 0: print(f'Finish Process {cnt} file......') txt_file = open(f'./data/{src}/training_set/{f}', 'r') contents = txt_file.readlines() item = contents[0].strip().split(':')[0] for val in contents[1:]: user, rating, timestamp = val.strip().split(',') tmp_file.write(','.join([user, item, rating, timestamp]) + '\n') txt_file.close() tmp_file.close() df = pd.read_csv(f'./data/{src}/training_data.csv') df['rating'] = df.rating.astype(float) df['timestamp'] =
pd.to_datetime(df['timestamp'])
pandas.to_datetime
from sklearn.cluster import MeanShift, estimate_bandwidth import pandas as pd import numpy as np from clusteredmvfts.partitioner import KMeansPartitioner from pyFTS.benchmarks import Measures from clusteredmvfts.fts import cmvhofts #Set target and input variables target_station = 'DHHL_3' #All neighbor stations with residual correlation greater than .90 neighbor_stations_90 = ['DHHL_3', 'DHHL_4','DHHL_5','DHHL_10','DHHL_11','DHHL_9','DHHL_2', 'DHHL_6','DHHL_7','DHHL_8'] df =
pd.read_pickle("../../notebooks/df_oahu.pkl")
pandas.read_pickle
# -*- encoding:utf-8 -*- """ 中间层,从上层拿到x,y,df 拥有create estimator """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import os import functools from enum import Enum import numpy as np import pandas as pd from sklearn.base import TransformerMixin, ClassifierMixin, RegressorMixin, clone from sklearn import metrics from sklearn.datasets import load_iris from sklearn.feature_selection import RFE, VarianceThreshold from sklearn.preprocessing import label_binarize, StandardScaler, binarize from . import ABuMLExecute from .ABuMLCreater import AbuMLCreater from ..CoreBu import ABuEnv from ..CoreBu.ABuFixes import train_test_split, cross_val_score, mean_squared_error_scorer, six from ..UtilBu import ABuFileUtil from ..UtilBu.ABuProgress import AbuProgress from ..UtilBu.ABuDTUtil import warnings_filter from ..UtilBu.ABuDTUtil import params_to_numpy from ..CoreBu.ABuFixes import signature __author__ = '阿布' __weixin__ = 'abu_quant' p_dir = os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), os.path.pardir)) ML_TEST_FILE = os.path.join(p_dir, 'RomDataBu/ml_test.csv') class _EMLScoreType(Enum): """针对有监督学习的度量支持enum""" """有监督学习度量准确率""" E_SCORE_ACCURACY = 'accuracy' """有监督学习度量mse""" E_SCORE_MSE = mean_squared_error_scorer """有监督学习度量roc_auc""" E_SCORE_ROC_AUC = 'roc_auc' class EMLFitType(Enum): """支持常使用的学习器类别enum""" """有监督学习:自动选择,根据y的label数量,> 10使用回归否则使用分类""" E_FIT_AUTO = 'auto' """有监督学习:回归""" E_FIT_REG = 'reg' """有监督学习:分类""" E_FIT_CLF = 'clf' """无监督学习:HMM""" E_FIT_HMM = 'hmm' """无监督学习:PCA""" E_FIT_PCA = 'pca' """无监督学习:KMEAN""" E_FIT_KMEAN = 'kmean' def entry_wrapper(support=(EMLFitType.E_FIT_CLF, EMLFitType.E_FIT_REG, EMLFitType.E_FIT_HMM, EMLFitType.E_FIT_PCA, EMLFitType.E_FIT_KMEAN)): """ 类装饰器函数,对关键字参数中的fiter_type进行标准化,eg,fiter_type参数是'clf', 转换为EMLFitType(fiter_type) 赋予self.fiter_type,检测当前使用的具体学习器不在support参数中不执行被装饰的func函数了,打个log返回 :param support: 默认 support=(EMLFitType.E_FIT_CLF, EMLFitType.E_FIT_REG, EMLFitType.E_FIT_HMM, EMLFitType.E_FIT_PCA, EMLFitType.E_FIT_KMEAN) 即支持所有,被装饰的函数根据自身特性选择装饰参数 """ def decorate(func): @functools.wraps(func) def wrapper(self, *args, **kwargs): org_fiter_type = self.fiter_type if 'fiter_type' in kwargs: # 如果传递了fiter_type参数,pop出来 fiter_type = kwargs.pop('fiter_type') # 如果传递的fiter_type参数是str,eg:'clf', 转换为EMLFitType(fiter_type) if isinstance(fiter_type, six.string_types): fiter_type = EMLFitType(fiter_type) self.fiter_type = fiter_type check_support = self.fiter_type if self.fiter_type == EMLFitType.E_FIT_AUTO: # 把auto的归到具体的分类或者回归 check_y = self.y if 'y' in kwargs: check_y = kwargs['y'] check_support = EMLFitType.E_FIT_CLF if len(np.unique(check_y)) <= 10 else EMLFitType.E_FIT_REG if check_support not in support: # 当前使用的具体学习器不在support参数中不执行被装饰的func函数了,打个log返回 self.log_func('{} not support {}!'.format(func.__name__, check_support.value)) # 如果没能成功执行把类型再切换回来 self.fiter_type = org_fiter_type return return func(self, *args, **kwargs) return wrapper return decorate # noinspection PyUnresolvedReferences class AbuML(object): """封装有简单学习及无监督学习方法以及相关操作类""" @classmethod def create_test_fiter(cls): """ 类方法:使用iris数据构造AbuML对象,测试接口,通过简单iris数据对方法以及策略进行验证 iris数据量小,如需要更多数据进行接口测试可使用create_test_more_fiter接口 eg: iris_abu = AbuML.create_test_fiter() :return: AbuML(x, y, df), eg: df y x0 x1 x2 x3 0 0 5.1 3.5 1.4 0.2 1 0 4.9 3.0 1.4 0.2 2 0 4.7 3.2 1.3 0.2 3 0 4.6 3.1 1.5 0.2 4 0 5.0 3.6 1.4 0.2 .. .. ... ... ... ... 145 2 6.7 3.0 5.2 2.3 146 2 6.3 2.5 5.0 1.9 147 2 6.5 3.0 5.2 2.0 148 2 6.2 3.4 5.4 2.3 149 2 5.9 3.0 5.1 1.8 """ iris = load_iris() x = iris.data """ eg: iris.data array([[ 5.1, 3.5, 1.4, 0.2], [ 4.9, 3. , 1.4, 0.2], [ 4.7, 3.2, 1.3, 0.2], [ 4.6, 3.1, 1.5, 0.2], [ 5. , 3.6, 1.4, 0.2], ....... ....... ....... [ 6.7, 3. , 5.2, 2.3], [ 6.3, 2.5, 5. , 1.9], [ 6.5, 3. , 5.2, 2. ], [ 6.2, 3.4, 5.4, 2.3], [ 5.9, 3. , 5.1, 1.8]]) """ y = iris.target """ eg: y array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]) """ x_df = pd.DataFrame(x, columns=['x0', 'x1', 'x2', 'x3']) y_df = pd.DataFrame(y, columns=['y']) df = y_df.join(x_df) return AbuML(x, y, df) @classmethod def load_ttn_raw_df(cls): """ 读取泰坦尼克测试数据 :return: pd.DataFrame对象,from接口pd.read_csv(train_csv_path) """ train_csv_path = ML_TEST_FILE if not ABuFileUtil.file_exist(train_csv_path): # 泰坦尼克数据文件如果不存在RuntimeError raise RuntimeError('{} not exist, please down a ml_test.csv!'.format(train_csv_path)) # 训练文件使用read_csv从文件读取 return pd.read_csv(train_csv_path) @classmethod @warnings_filter def create_test_more_fiter(cls): """ 类方法:使用泰坦尼克数据构造AbuML对象,测试接口,对方法以及策略进行验证 比iris数据多 eg: ttn_abu = AbuML.create_test_more_fiter() :return: AbuML(x, y, df),构造AbuML最终的泰坦尼克数据形式如: eg: df Survived SibSp Parch Cabin_No Cabin_Yes Embarked_C Embarked_Q \ 0 0 1 0 1 0 0 0 1 1 1 0 0 1 1 0 2 1 0 0 1 0 0 0 3 1 1 0 0 1 0 0 4 0 0 0 1 0 0 0 5 0 0 0 1 0 0 1 6 0 0 0 0 1 0 0 7 0 3 1 1 0 0 0 8 1 0 2 1 0 0 0 9 1 1 0 1 0 1 0 .. ... ... ... ... ... ... ... Embarked_S Sex_female Sex_male Pclass_1 Pclass_2 Pclass_3 \ 0 1 0 1 0 0 1 1 0 1 0 1 0 0 2 1 1 0 0 0 1 3 1 1 0 1 0 0 4 1 0 1 0 0 1 5 0 0 1 0 0 1 6 1 0 1 1 0 0 7 1 0 1 0 0 1 8 1 1 0 0 0 1 9 0 1 0 0 1 0 .. ... ... ... ... ... ... Age_scaled Fare_scaled 0 -0.5614 -0.5024 1 0.6132 0.7868 2 -0.2677 -0.4889 3 0.3930 0.4207 4 0.3930 -0.4863 5 -0.4271 -0.4781 6 1.7877 0.3958 7 -2.0295 -0.2241 8 -0.1943 -0.4243 .. ... ... """ raw_df = cls.load_ttn_raw_df() def set_missing_ages(p_df): """ 对数据中缺失的年龄使用RandomForestRegressor进行填充 """ from sklearn.ensemble import RandomForestRegressor age_df = p_df[['Age', 'Fare', 'Parch', 'SibSp', 'Pclass']] known_age = age_df[age_df.Age.notnull()].as_matrix() unknown_age = age_df[age_df.Age.isnull()].as_matrix() y_inner = known_age[:, 0] x_inner = known_age[:, 1:] rfr_inner = RandomForestRegressor(random_state=0, n_estimators=2000, n_jobs=-1) rfr_inner.fit(x_inner, y_inner) predicted_ages = rfr_inner.predict(unknown_age[:, 1::]) p_df.loc[(p_df.Age.isnull()), 'Age'] = predicted_ages return p_df, rfr_inner def set_cabin_type(p_df): """ 对数据中缺失的Cabin处理 """ p_df.loc[(p_df.Cabin.notnull()), 'Cabin'] = "Yes" p_df.loc[(p_df.Cabin.isnull()), 'Cabin'] = "No" return p_df raw_df, rfr = set_missing_ages(raw_df) raw_df = set_cabin_type(raw_df) # 对多label使用get_dummies进行离散二值化处理 dummies_cabin = pd.get_dummies(raw_df['Cabin'], prefix='Cabin') """ eg: data_train['Cabin']: 0 No 1 Yes 2 No 3 Yes 4 No 5 No 6 Yes 7 No 8 No 9 No ... dummies_cabin: Cabin_No Cabin_Yes 0 1 0 1 0 1 2 1 0 3 0 1 4 1 0 5 1 0 6 0 1 7 1 0 8 1 0 9 1 0 .. ... ... """ dummies__embarked = pd.get_dummies(raw_df['Embarked'], prefix='Embarked') dummies__sex =
pd.get_dummies(raw_df['Sex'], prefix='Sex')
pandas.get_dummies
import os import pickle from pathlib import Path from typing import Union import joblib import numpy as np import pandas as pd from matplotlib import pyplot as plt from numpy import interp from sklearn.metrics import roc_curve, auc import thoipapy.common import thoipapy.figs import thoipapy.utils import thoipapy.validation import thoipapy.validation.bocurve from thoipapy.figs.create_BOcurve_files import save_BO_linegraph_and_barchart, save_extra_BO_figs from thoipapy.validation.bocurve import parse_BO_data_csv_to_excel from thoipapy.utils import get_test_and_train_set_lists def run_testset_trainset_validation(s, logging): # create list of test and train datasets # if only one is given, make a list with only one dataset test_set_list, train_set_list = thoipapy.utils.get_test_and_train_set_lists(s) validate_LIPS_for_testset(s, logging) validate_LIPS_for_testset(s, logging, LIPS_name="LIPS_surface_ranked", pred_col="LIPS_surface_ranked") validate_THOIPA_for_testset_trainset_combination(s, test_set_list, train_set_list, logging) def validate_THOIPA_for_testset_trainset_combination(s, test_set_list, train_set_list, logging): """ Creates ROC and BO-curve for a particular testset-trainset combination. Parameters ---------- s : dict Settings dictionary for figures. test_set_list : list List of test datasets in selection E.g. ["set03", "set31"] train_set_list : list List of training datasets in selection E.g. ["set02", "set04"] Saved Files ----------- THOIPA_pred_csv : csv THOIPA result for this testset-trainset combination Columns = "residue_num", "residue_name", "THOIPA" Index = range index of residues combined_incl_THOIPA_csv : csv The combined file with all features. THOIPA prediction is added as a new column THOIPA_ROC_pkl : pickle Pickled output dictionary with ROC curves keys = accessions values = dictionary with fpr, tpr etc for each protein Could not be saved easily as a dataframe, because the number of residues is different for each protein """ names_excel_path = os.path.join(s["base_dir"], "protein_names.xlsx") namedict = thoipapy.utils.create_namedict(names_excel_path) for n, train_set in enumerate(train_set_list): trainsetname = "set{:02d}".format(int(train_set)) model_pkl = Path(s["data_dir"]) / f"results/{trainsetname}/{trainsetname}_ML_model.lpkl" for test_set in test_set_list: testsetname = "set{:02d}".format(int(test_set)) # BO_curve_folder = Path(s["data_dir"]) / f"results{testsetname}/blindvalidation/thoipa.train{trainsetname}" # THOIPA_BO_curve_data_csv = os.path.join(s["data_dir"], "results", "compare_testset_trainset", "data", "Test{}_Train{}.THOIPA".format(testsetname, trainsetname), "data", "Test{}_Train{}.THOIPA.best_overlap_data.csv".format(testsetname, trainsetname)) THOIPA_BO_curve_data_csv = Path(s["data_dir"]) / f"results/{testsetname}/blindvalidation/thoipa.train{trainsetname}/THOIPA.best_overlap_data.csv" # THOIPA_ROC_pkl = os.path.join(s["data_dir"], "results", "compare_testset_trainset", "data", "Test{}_Train{}.THOIPA".format(testsetname, trainsetname), "data", "Test{}_Train{}.THOIPA.ROC_data.pkl".format(testsetname, trainsetname)) THOIPA_ROC_pkl = Path(s["data_dir"]) / f"results/{testsetname}/blindvalidation/thoipa.train{trainsetname}/ROC_data.pkl" bocurve_data_xlsx = Path(s["data_dir"]) / f"results/{testsetname}/blindvalidation/thoipa.train{trainsetname}/bocurve_data.xlsx" BO_linechart_png = Path(s["data_dir"]) / f"results/{testsetname}/blindvalidation/thoipa.train{trainsetname}/BO_linechart.png" BO_barchart_png = Path(s["data_dir"]) / f"results/{testsetname}/blindvalidation/thoipa.train{trainsetname}/AUBOC_barchart.png" thoipapy.utils.make_sure_path_exists(bocurve_data_xlsx, isfile=True) testset_path = thoipapy.common.get_path_of_protein_set(testsetname, s["sets_dir"]) testdataset_df = pd.read_excel(testset_path) THOIPA_BO_data_df = pd.DataFrame() # LIPS_BO_data_df = pd.DataFrame() # save all outputs to a cross-validation dictionary, to be saved as a pickle file xv_dict_THOIPA = {} mean_tpr = 0.0 mean_fpr = np.linspace(0, 1, 100) for i in testdataset_df.index: acc = testdataset_df.loc[i, "acc"] database = testdataset_df.loc[i, "database"] acc_db = acc + "-" + database testdata_combined_file = os.path.join(s["data_dir"], "features", "combined", database, "{}.surr20.gaps5.combined_features.csv".format(acc)) THOIPA_pred_csv = Path(s["data_dir"]) / f"results/{testsetname}/predictions/thoipa.train{trainsetname}/{database}.{acc}.thoipa.train{trainsetname}.csv" combined_incl_THOIPA_csv = Path(s["data_dir"]) / f"results/{testsetname}/predictions/thoipa.train{trainsetname}/{database}.{acc}.thoipa.train{trainsetname}_incl_combined.csv" thoipapy.utils.make_sure_path_exists(combined_incl_THOIPA_csv, isfile=True) combined_incl_THOIPA_df = save_THOIPA_pred_indiv_prot(s, model_pkl, testdata_combined_file, THOIPA_pred_csv, combined_incl_THOIPA_csv, trainsetname, logging) ####################################################################################################### # # # Processing BO curve data for each single protein # # # ####################################################################################################### combined_incl_THOIPA_df["LIPS_L*E"] = -1 * combined_incl_THOIPA_df["LIPS_L*E"] if database == "crystal" or database == "NMR": # (it is closest distance and low value means high propencity of interfacial) combined_incl_THOIPA_df["interface_score"] = -1 * combined_incl_THOIPA_df["interface_score"] THOIPA_BO_single_prot_df = thoipapy.validation.bocurve.calc_best_overlap_from_selected_column_in_df(acc_db, combined_incl_THOIPA_df, pred_col=f"thoipa.train{trainsetname}") if THOIPA_BO_data_df.empty: THOIPA_BO_data_df = THOIPA_BO_single_prot_df else: THOIPA_BO_data_df = pd.concat([THOIPA_BO_data_df, THOIPA_BO_single_prot_df], axis=1, join="outer") ####################################################################################################### # # # Processing ROC data for each single protein, saving to nested dict # # # ####################################################################################################### df_for_roc = combined_incl_THOIPA_df.dropna(subset=["interface_score"]) predictor_name = f"thoipa.train{trainsetname}" fpr, tpr, thresholds = roc_curve(df_for_roc.interface, df_for_roc[predictor_name], drop_intermediate=False) roc_auc = auc(fpr, tpr) mean_tpr += interp(mean_fpr, fpr, tpr) mean_tpr[0] = 0.0 xv_dict_THOIPA[acc_db] = {"fpr": fpr, "tpr": tpr, "roc_auc": roc_auc} ####################################################################################################### # # # Processing BO CURVE data, saving to csv and running the BO curve analysis script # # # ####################################################################################################### THOIPA_BO_data_df.to_csv(THOIPA_BO_curve_data_csv) # THOIPA_linechart_mean_obs_and_rand = analyse_bo_curve_underlying_data(THOIPA_BO_curve_data_csv, BO_curve_folder, names_excel_path) parse_BO_data_csv_to_excel(THOIPA_BO_curve_data_csv, bocurve_data_xlsx, s["n_residues_AUBOC_validation"], logging) AUC_ser = pd.Series(xv_dict_THOIPA[acc_db]["roc_auc"]) AUBOC = save_BO_linegraph_and_barchart(s, bocurve_data_xlsx, BO_linechart_png, BO_barchart_png, namedict, logging, AUC_ser) if "you_want_more_details" == "TRUE": other_figs_path: Union[Path, str] = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/other_figs" save_extra_BO_figs(bocurve_data_xlsx, other_figs_path) ####################################################################################################### # # # Processing dictionary with ROC data, saving to pickle # # # ####################################################################################################### mean_tpr /= testdataset_df.shape[0] mean_tpr[-1] = 1.0 mean_roc_auc = auc(mean_fpr, mean_tpr) ROC_out_dict = {"xv_dict_THOIPA": xv_dict_THOIPA} ROC_out_dict["true_positive_rate_mean"] = mean_tpr ROC_out_dict["false_positive_rate_mean"] = mean_fpr ROC_out_dict["mean_roc_auc"] = mean_roc_auc # save dict as pickle with open(THOIPA_ROC_pkl, "wb") as f: pickle.dump(ROC_out_dict, f, protocol=pickle.HIGHEST_PROTOCOL) create_ROC_fig_for_testset_trainset_combination(THOIPA_ROC_pkl) logging.info("test{}_train{} AUC({:.03f}), AUBOC({:.2f}). ({})".format(testsetname, trainsetname, mean_roc_auc, AUBOC, BO_barchart_png)) def validate_LIPS_for_testset(s, logging, LIPS_name="LIPS_LE", pred_col="LIPS_L*E"): names_excel_path = os.path.join(s["base_dir"], "protein_names.xlsx") namedict = thoipapy.utils.create_namedict(names_excel_path) # create list of test and train datasets # if only one is given, make a list with only one dataset test_set_list, train_set_list = thoipapy.utils.get_test_and_train_set_lists(s) for test_set in test_set_list: testsetname = "set{:02d}".format(int(test_set)) LIPS_BO_curve_data_csv = Path(s["data_dir"]) / "results" / testsetname / f"blindvalidation/{LIPS_name}/{LIPS_name}.best_overlap_data.csv.csv" # LIPS_BO_curve_data_csv = os.path.join(s["data_dir"], "results", "compare_testset_trainset", "data", "Test{}.{}".format(testsetname, LIPS_name), "Test{}.{}.best_overlap_data.csv".format(testsetname, LIPS_name)) # BO_curve_folder = os.path.join(s["data_dir"], "results", "compare_testset_trainset", "data", "Test{}.{}".format(testsetname, LIPS_name)) BO_curve_folder = Path(s["data_dir"]) / "results" / testsetname / f"blindvalidation/{LIPS_name}" LIPS_ROC_pkl = Path(s["data_dir"]) / "results" / testsetname / f"blindvalidation/{LIPS_name}/ROC_data.pkl" # LIPS_ROC_pkl = os.path.join(s["data_dir"], "results", "compare_testset_trainset", "data", "Test{}.{}".format(testsetname, LIPS_name), "data", "Test{}.{}.ROC_data.pkl".format(testsetname, LIPS_name)) thoipapy.utils.make_sure_path_exists(LIPS_BO_curve_data_csv, isfile=True) bocurve_data_xlsx = os.path.join(BO_curve_folder, "data", "bocurve_data.xlsx") BO_linechart_png = os.path.join(BO_curve_folder, "BO_linechart.png") BO_barchart_png = os.path.join(BO_curve_folder, "AUBOC_barchart.png") thoipapy.utils.make_sure_path_exists(bocurve_data_xlsx, isfile=True) testset_path = thoipapy.common.get_path_of_protein_set(testsetname, s["sets_dir"]) testdataset_df = pd.read_excel(testset_path) LIPS_BO_data_df = pd.DataFrame() # save all outputs to a cross-validation dictionary, to be saved as a pickle file xv_dict_LIPS = {} mean_tpr = 0.0 mean_fpr = np.linspace(0, 1, 100) for i in testdataset_df.index: acc = testdataset_df.loc[i, "acc"] database = testdataset_df.loc[i, "database"] acc_db = acc + "-" + database testdata_combined_file = os.path.join(s["data_dir"], "features", "combined", database, "{}.surr20.gaps5.combined_features.csv".format(acc)) combined_df = pd.read_csv(testdata_combined_file, index_col=0) ####################################################################################################### # # # Processing BO curve data for each single protein # # # ####################################################################################################### # SAVE LIPS PREDICTION DATA # this is somewhat inefficient, as it is conducted for every test dataset # LIPS_pred_csv = os.path.join(os.path.dirname(s["data_dir"]), "features", "Predictions", "testset_trainset", database, "{}.LIPS_pred.csv".format(acc, testsetname)) LIPS_pred_csv = Path(s["data_dir"]) / f"results/{testsetname}/predictions/{LIPS_name}/{database}.{acc}.{LIPS_name}.csv" LIPS_pred_df = combined_df[["residue_name", "residue_num", "LIPS_polarity", "LIPS_entropy", "LIPS_L*E", "LIPS_surface", "LIPS_surface_ranked"]] thoipapy.utils.make_sure_path_exists(LIPS_pred_csv, isfile=True) LIPS_pred_df.to_csv(LIPS_pred_csv) if pred_col == "LIPS_L*E": combined_df[pred_col] = -1 * combined_df[pred_col] if database == "crystal" or database == "NMR": # (it is closest distance and low value means high propencity of interfacial) combined_df["interface_score"] = -1 * combined_df["interface_score"] LIPS_BO_single_prot_df = thoipapy.validation.bocurve.calc_best_overlap_from_selected_column_in_df(acc_db, combined_df, experiment_col="interface_score", pred_col=pred_col) if LIPS_BO_single_prot_df.empty: LIPS_BO_data_df = LIPS_BO_single_prot_df else: LIPS_BO_data_df = pd.concat([LIPS_BO_data_df, LIPS_BO_single_prot_df], axis=1, join="outer") ####################################################################################################### # # # Processing ROC data for each single protein, saving to nested dict # # # ####################################################################################################### df_for_roc = combined_df.dropna(subset=["interface_score"]) fpr, tpr, thresholds = roc_curve(df_for_roc.interface, df_for_roc[pred_col], drop_intermediate=False) roc_auc = auc(fpr, tpr) mean_tpr += interp(mean_fpr, fpr, tpr) mean_tpr[0] = 0.0 xv_dict_LIPS[acc_db] = {"fpr": fpr, "tpr": tpr, "roc_auc": roc_auc} ####################################################################################################### # # # Processing BO CURVE data, saving to csv and running the BO curve analysis script # # # ####################################################################################################### LIPS_BO_data_df.to_csv(LIPS_BO_curve_data_csv) names_excel_path = os.path.join(s["base_dir"], "protein_names.xlsx") # LIPS_linechart_mean_obs_and_rand = analyse_bo_curve_underlying_data(LIPS_BO_curve_data_csv, BO_curve_folder, names_excel_path) # parse_BO_data_csv_to_excel(LIPS_BO_curve_data_csv, BO_curve_folder, names_excel_path) parse_BO_data_csv_to_excel(LIPS_BO_curve_data_csv, bocurve_data_xlsx, s["n_residues_AUBOC_validation"], logging) AUC_ser = pd.Series(xv_dict_LIPS[acc_db]["roc_auc"]) AUBOC = save_BO_linegraph_and_barchart(s, bocurve_data_xlsx, BO_linechart_png, BO_barchart_png, namedict, logging, AUC_ser) if "you_want_more_details" == "TRUE": other_figs_path: Union[Path, str] = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/other_figs" save_extra_BO_figs(bocurve_data_xlsx, other_figs_path) ####################################################################################################### # # # Processing dictionary with ROC data, saving to pickle # # # ####################################################################################################### mean_tpr /= testdataset_df.shape[0] mean_tpr[-1] = 1.0 mean_roc_auc = auc(mean_fpr, mean_tpr) ROC_out_dict = {"xv_dict_THOIPA": xv_dict_LIPS} ROC_out_dict["true_positive_rate_mean"] = mean_tpr ROC_out_dict["false_positive_rate_mean"] = mean_fpr ROC_out_dict["mean_roc_auc"] = mean_roc_auc # save dict as pickle with open(LIPS_ROC_pkl, "wb") as f: pickle.dump(ROC_out_dict, f, protocol=pickle.HIGHEST_PROTOCOL) create_ROC_fig_for_testset_trainset_combination(LIPS_ROC_pkl) logging.info("test{}.{} AUC({:.03f}), AUBOC({:.2f}). ({})".format(testsetname, LIPS_name, mean_roc_auc, AUBOC, BO_barchart_png)) def create_ROC_fig_for_testset_trainset_combination(THOIPA_ROC_pkl): # plt.rcParams.update({'font.size': 6}) ROC_pkl_basename = os.path.basename(THOIPA_ROC_pkl)[:-4] ROC_pkl_dir = os.path.dirname(THOIPA_ROC_pkl) ROC_png = os.path.join(ROC_pkl_dir, "{}.ROC.png".format(ROC_pkl_basename)) thoipapy.utils.make_sure_path_exists(ROC_png, isfile=True) # open pickle file with open(THOIPA_ROC_pkl, "rb") as f: ROC_out_dict = pickle.load(f) xv_dict_THOIPA = ROC_out_dict["xv_dict_THOIPA"] figsize = np.array([3.42, 3.42]) * 2 # DOUBLE the real size, due to problems on Bo computer with fontsizes fig, ax = plt.subplots(figsize=figsize) for acc_db in xv_dict_THOIPA: roc_auc = xv_dict_THOIPA[acc_db]["roc_auc"] ax.plot(xv_dict_THOIPA[acc_db]["fpr"], xv_dict_THOIPA[acc_db]["tpr"], lw=1, label='{} ({:0.2f})'.format(acc_db, roc_auc), alpha=0.8) # mean_roc_auc = auc(df_xv["false_positive_rate"], df_xv["true_positive_rate"]) mean_roc_auc = ROC_out_dict["mean_roc_auc"] ax.plot(ROC_out_dict["false_positive_rate_mean"], ROC_out_dict["true_positive_rate_mean"], color="k", label='mean (area = %0.2f)' % mean_roc_auc, lw=1.5) ax.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='random') ax.set_xlim([-0.05, 1.05]) ax.set_ylim([-0.05, 1.05]) ax.set_xlabel("False positive rate") ax.set_ylabel("True positive rate") ax.legend(loc="lower right") fig.tight_layout() fig.savefig(ROC_png, dpi=240) # fig.savefig(thoipapy.utils.pdf_subpath(ROC_png)) def save_THOIPA_pred_indiv_prot(s, model_pkl, testdata_combined_file, THOIPA_pred_csv, test_combined_incl_pred, trainsetname, logging): combined_incl_THOIPA_df =
pd.read_csv(testdata_combined_file, sep=',', engine='python', index_col=0)
pandas.read_csv
# -*- coding: utf-8 -*- """ @file @brief Defines a streaming dataframe. """ import pickle import os from io import StringIO, BytesIO from inspect import isfunction import numpy import numpy.random as nrandom import pandas from pandas.testing import assert_frame_equal from pandas.io.json import json_normalize from .dataframe_split import sklearn_train_test_split, sklearn_train_test_split_streaming from .dataframe_io_helpers import enumerate_json_items, JsonIterator2Stream class StreamingDataFrameSchemaError(Exception): """ Reveals an issue with inconsistant schemas. """ pass class StreamingDataFrame: """ Defines a streaming dataframe. The goal is to reduce the memory footprint. The class takes a function which creates an iterator on :epkg:`dataframe`. We assume this function can be called multiple time. As a matter of fact, the function is called every time the class needs to walk through the stream with the following loop: :: for df in self: # self is a StreamingDataFrame # ... The constructor cannot receive an iterator otherwise this class would be able to walk through the data only once. The main reason is it is impossible to :epkg:`*py:pickle` (or :epkg:`dill`) an iterator: it cannot be replicated. Instead, the class takes a function which generates an iterator on :epkg:`DataFrame`. Most of the methods returns either a :epkg:`DataFrame` either a @see cl StreamingDataFrame. In the second case, methods can be chained. By default, the object checks that the schema remains the same between two chunks. This can be disabled by setting *check_schema=False* in the constructor. The user should expect the data to remain stable. Every loop should produce the same data. However, in some situations, it is more efficient not to keep that constraints. Draw a random @see me sample is one of these cases. :param iter_creation: function which creates an iterator or an instance of @see cl StreamingDataFrame :param check_schema: checks that the schema is the same for every :epkg:`dataframe` :param stable: indicates if the :epkg:`dataframe` remains the same whenever it is walked through """ def __init__(self, iter_creation, check_schema=True, stable=True): self._delete_ = [] if isinstance(iter_creation, (pandas.DataFrame, dict, numpy.ndarray, str)): raise TypeError( "Unexpected type %r for iter_creation. It must " "be an iterator." % type(iter_creation)) if isinstance(iter_creation, StreamingDataFrame): self.iter_creation = iter_creation.iter_creation self.stable = iter_creation.stable else: self.iter_creation = iter_creation self.stable = stable self.check_schema = check_schema def is_stable(self, do_check=False, n=10): """ Tells if the :epkg:`dataframe` is supposed to be stable. @param do_check do not trust the value sent to the constructor @param n number of rows used to check the stability, None for all rows @return boolean *do_check=True* means the methods checks the first *n* rows remains the same for two iterations. """ if do_check: for i, (a, b) in enumerate(zip(self, self)): if n is not None and i >= n: break try:
assert_frame_equal(a, b)
pandas.testing.assert_frame_equal
"""Transform signaling data to smoothed trajectories.""" import sys import numpy import pandas as pd import geopandas as gpd import shapely.geometry import matplotlib.patches import matplotlib.pyplot as plt import mobilib.voronoi SAMPLING = pd.Timedelta('00:01:00') STD =
pd.Timedelta('00:05:00')
pandas.Timedelta
import pandas as pd import os import re import pprint import shutil # Clean all the obvious typos corrections ={'BAUGHWJV':'BAUGHMAN', 'BOHNE':'BOEHNE', 'EISEMENGER':'EISENMENGER', 'GEITHER':'GEITHNER', 'KIMBREL':'KIMEREL', 'MATTINGLY': 'MATTLINGLY', 'FORESTALL':'FORRESTAL', 'GRENSPAN':'GREENSPAN', 'GREESPAN':'GREENSPAN', 'GREENPSAN':'GREENSPAN', 'GREENSPAN,':'GREENSPAN', 'GREENPAN':'GREENSPAN', 'McANDREWS':'MCANDREWS', 'MCDONUGH':'MCDONOUGH', 'MOSCOW':'MOSKOW', 'MORRIS':'MORRRIS', 'MONHOLLAN':'MONHOLLON', 'MILIER':'MILLER', 'MILER':'MILLER', 'SCWLTZ':'SCHULTZ', 'SCHELD':'SCHIELD', 'WILLZAMS':'WILLIAMS', 'WALLJCH':'WALLICH', 'VOLCKFR':'VOLCKER', 'VOLCRER':'VOLKER', 'ALLISON for':'ALLISON', 'ALTMA"':'ALTMANN', 'B A U G W':'BAUGW', 'BIES (as read by Ms':'BIES', 'BLACK &':'BLACK', 'MAYO/MR':'MAYO', 'Greene':"GREENE", 'CROSS,':'CROSS', 'GREENSPAN,':'GREENSPAN', 'HOSKINS,':'HOSKINS', 'MACCLAURY':'MACLAURY', 'MORRRIS':'MORRIS', "O'CONNELL":'O’CONNELL', 'SOLOMON]':'SOLOMON', 'TRUMAN-':'TRUMAN', 'VOLCKER,':'VOLCKER', 'VOLKER,':'VOLCKER', 'WALLlCH':'WALLICH', '[BALLES]':'BALLES', '[GARDNER]':'GARDNER', '[KICHLINE]?':'KICHLINE', '[PARDEE]':'PARDEE', '[ROOS]':'ROOS', '[STERN':'STERN', '[WILLES]':'WILLES', 'ŞAHIN':'SAHIN', '[STERN(?)':'STERN', '[STERN]':'STERN', 'GRALEY':'GRAMLEY', 'ALTMA”':'ALTMANN'} def name_corr(val): sentence="" dictkeys=[key for key, value in corrections.items()] if val in dictkeys: val = corrections[val] else: if re.match(".*\(\?\)",val): val = re.search("(.*)(\(\?\))",val)[1] if val in dictkeys: val = corrections[val] if len(val.split(" "))>1: #print(val.split(" ")[0]) #print(val.split(" ")[1:]) sentencehelp = " ".join(val.split(" ")[1:]) if not len(re.findall("Yes",sentencehelp))>7: if len(sentencehelp)>10: sentence = sentencehelp #print(sentence) val = val.split(" ")[0] if val in dictkeys: val = corrections[val] #print(val) return val,sentence def get_interjections(): base_directory = base_directory = "../../../collection/python/data/transcript_raw_text" raw_doc = os.listdir(base_directory) filelist = sorted(raw_doc) documents = [] if os.path.exists("../output/speaker_data"): shutil.rmtree("../output/speaker_data") os.mkdir("../output/speaker_data") for doc_path in filelist: with open("{}/{}".format(base_directory,doc_path),'r') as f: documents.append(f.read().replace("\n"," ").replace(":",".").replace(r"\s\s+"," ")) date = pd.Series(data=filelist).apply(lambda x: x[0:10]) #print(date) parsed_text = pd.DataFrame() for doc_index in range(len(documents)): if doc_index%10 == 0: print("Working on producing interjections for doc #{} of ~{}".format(doc_index,len(documents))) #THIS METRIC FAILES FOR 59 out of 4857 occurances interjections = re.split(' MR\. | MS\. | CHAIRMAN | VICE CHAIRMAN ', documents[doc_index])[1:] temp_df = pd.DataFrame(columns=['Date','Speaker','content'],index=range(len(interjections))) #Temporary data frame for j in range(len(interjections)): interjection = interjections[j] temp_df['Date'].loc[j] = date[doc_index] #speaker = "".join([char for char in if char.isalnum()]) speakercontent = interjection.split('.')[0].strip() name,sentence = name_corr(speakercontent) content = ''.join(interjection.split('.')[1:]) if not sentence=="": content = sentence +" "+content #print(content) temp_df['Speaker'].loc[j] = name temp_df['content'].loc[j] = content parsed_text = pd.concat([parsed_text,temp_df],ignore_index=True) parsed_text.to_pickle("parsed_text.pkl") parsed_text = pd.read_pickle("parsed_text.pkl") #speakerlist = sorted(parsed_text["Speaker"].unique().tolist()) # Get names of indexes for which we have an unidentified speaker and drop those indexNames = parsed_text[ (parsed_text['Speaker'] == 'mY0') | (parsed_text['Speaker'] == 'WL”') | (parsed_text['Speaker'] == 'W') | (parsed_text['Speaker'] == 'AL"N') ].index parsed_text.drop(indexNames , inplace=True) parsed_text["content"] = parsed_text["content"].apply(lambda x: " ".join(str(x).split()[1:]) if len(str(x).split())>1 and str(x).split()[0]=="LINDSEY" else x) parsed_text["Speaker"] = parsed_text["Speaker"].apply(lambda x: "LINDSEY" if x=="D" else x) # Delete content with a check for presence of members. #parsed_text['check']=parsed_text['content'].apply(lambda x: len(re.findall("Yes",x))) #parsed_text['d_presence']=parsed_text['check']>7 parsed_text.to_csv("../output/interjections.csv",index=False) return parsed_text ''' The FOMC Transcript is split into 2 sections: 1)Economic Discussion, 2) Policy Discussion This function tags each interjection by an FOMC member with their assosiated FOMC discussion ''' def tag_interjections_with_section(interjection_df): separation_df = pd.read_excel("../data/Separation.xlsx") meeting_df = pd.read_csv("../../../derivation/python/output/meeting_derived_file.csv") separation_df = separation_df.rename(columns={separation_df.columns[0]:"date_string"}) separation_df.date_string = separation_df.date_string.apply(str) separation_df['Date'] = pd.to_datetime(separation_df.date_string,format="%Y%m") interjection_df['Date'] = pd.to_datetime(interjection_df['Date']) interjection_df = interjection_df[(interjection_df.Date>pd.to_datetime("1987-07-31"))& (interjection_df.Date<pd.to_datetime("2006-02-01"))] cc_df = meeting_df[meeting_df.event_type=="Meeting"] print(cc_df) cc_df['Date'] = pd.to_datetime(cc_df['start_date']) cc_df['end_date'] = pd.to_datetime(cc_df['end_date']) interjection_df = interjection_df[interjection_df['Date'].isin(cc_df['Date'])] interjection_df = pd.merge(interjection_df,cc_df[['Date','end_date']],on="Date",how="left") interjection_df['date_string'] = interjection_df.end_date.\ apply(lambda x: x.strftime("%Y%m")).apply(str) separation_df['date_ind'] = separation_df.date_string.astype(int) separation_df = separation_df.set_index('date_ind') meeting_groups = interjection_df.groupby("Date") tagged_interjections =
pd.DataFrame(columns=interjection_df.columns)
pandas.DataFrame
from EL.models import resnet import os from EL import CONSTS import torch.nn as nn from torchvision import transforms import torch from sacred import Experiment import argparse import numpy as np from EL.data.data import ChexpertDataset from EL.models.models import SenderChexpert, ReceiverChexpert from EL.utils.utils import dump_sender_receiver from EL.experiments import Trainer import pandas as pd from captum.attr import NeuronConductance LOG_DIR_PATH = os.path.join(CONSTS.RESULTS_DIR, 'logs') # PLOT_DIR = CONSTS.OUTPUT_DIR ex = Experiment('EL') # ex.observers.append(FileStorageObserver(LOG_DIR_PATH)) @ex.config def config(): batch_size = 100 img_size_x = 224 img_size_y = 224 exp_name = 'chexpert_pleural_game_gs_scratch' gpu = 0 max_len = 3 embed_dim = 75 lr = 1e-3 hidden_size = 100 vocab_size = 100 temperature = 1 @ex.named_config def gs(): vocab_size = 100 hidden_size = 50 temperature = 1 exp_name = 'chexpert_pleural_game_gs' @ex.named_config def rnn(): embed_dim = 75 vocab_size = 100 hidden_size = 100 temperature = 0.7 max_len = 4 exp_name = 'chexpert_pleural_game_rnn' def loss(sender_input, _message, _receiver_input, receiver_output, _labels): loss = nn.CrossEntropyLoss()(receiver_output, _labels) acc = (torch.argmax(receiver_output, 1) == _labels).sum().item() return loss, {'acc': acc/len(_labels)} @ex.automain def main(_run): # =============== # INTRO # =============== args = argparse.Namespace(**_run.config) torch.manual_seed(args.seed) np.random.seed(args.seed) if args.gpu > -1: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False if args.gpu < 0: device = torch.device("cpu") else: device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") data_transforms = { 'test': transforms.Compose([ transforms.Resize((args.img_size_x, 224)), transforms.ToTensor(), transforms.Lambda(lambda x: x.repeat(3, 1, 1)) ]), } test_dataset = ChexpertDataset(os.path.join(CONSTS.DATA_DIR, 'CheXpert', 'test_pleural.csv'), root_dir=CONSTS.DATA_DIR, transform=data_transforms['test']) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False) # exp_name = 'chexpert_plueral' # model_path = os.path.join(CONSTS.RESULTS_DIR, 'models', exp_name, 'best_model.pth') model = resnet.resnet50(pretrained=False) sender = SenderChexpert(model=model, output_size=args.vocab_size) receiver = ReceiverChexpert(input_size=args.hidden_size) model_path = os.path.join(CONSTS.RESULTS_DIR, 'models', args.exp_name) if not os.path.exists(model_path): os.makedirs(model_path) output_dir = os.path.join(CONSTS.RESULTS_DIR, 'outputs', args.exp_name) if not os.path.exists(output_dir): os.makedirs(output_dir) tensorboard_path = os.path.join(CONSTS.RESULTS_DIR, 'logs', 'tensorboard', args.exp_name) if not os.path.exists(tensorboard_path): os.makedirs(tensorboard_path) run_type = None if len(_run.meta_info['options']['UPDATE']) != 0: run_type = _run.meta_info['options']['UPDATE'][0] if run_type == 'rnn': from EL.models.multi_symbol_gs import RnnSenderGS, RnnReceiverGS, SenderReceiverRnnGS sender = RnnSenderGS(agent=sender, cell='lstm', max_len=args.max_len, embed_dim=args.embed_dim, force_eos=True, vocab_size=args.vocab_size, hidden_size=args.hidden_size, temperature=args.temperature, straight_through=False, trainable_temperature=False) receiver = RnnReceiverGS(agent=receiver, cell='lstm', embed_dim=args.embed_dim, vocab_size=args.vocab_size, hidden_size=args.hidden_size) game = SenderReceiverRnnGS(sender=sender, receiver=receiver, loss=loss, length_cost=0.0) else: from EL.models.single_symbol_gs import GumbelSoftmaxWrapper, SymbolReceiverWrapper, SymbolGameGS sender = GumbelSoftmaxWrapper(sender, temperature=args.temperature) # wrapping into a GS interface, requires GS temperature receiver = SymbolReceiverWrapper(receiver, args.vocab_size, agent_input_size=args.hidden_size) game = SymbolGameGS(sender, receiver, loss) checkpoint = torch.load(os.path.join(model_path, 'best_model.pth')) game.load_state_dict(checkpoint) game.to(device) optimizer = torch.optim.Adam(game.parameters(), lr=1e-3) trainer = Trainer( game=game, optimizer=optimizer, train_data=test_loader, train_batches_per_epoch=None, validation_data=test_loader, val_batches_per_epoch=None) trainer.eval() sender_inputs, messages, receiver_inputs, receiver_outputs, labels = \ dump_sender_receiver(game=game, dataset=test_loader, gs=True, variable_length=False, device=device) msgs = [] for m in messages: msgs.append(int(m.cpu())) predictions = [] for pred in receiver_outputs: predictions.append(int(torch.argmax(pred).cpu())) lbls = [] for l in labels: lbls.append(int(l.cpu())) df =
pd.DataFrame({'ID': test_dataset.img_paths, 'Ground Truth': lbls, 'Predictions': predictions, 'Message': msgs})
pandas.DataFrame
# -*- coding: utf-8 -*- # /home/smokybobo/opt/repos/git/personal/loadlimit/test/unit/stat/test_tmp.py # Copyright (C) 2016 authors and contributors (see AUTHORS file) # # This module is released under the MIT License. """Tempy""" # ============================================================================ # Imports # ============================================================================ # Stdlib imports import asyncio from collections import defaultdict, namedtuple from concurrent.futures import ThreadPoolExecutor from functools import partial # Third-party imports import pandas as pd from pandas import DataFrame, Series, Timestamp import pytest import uvloop # Local imports from loadlimit.core import BaseLoop from loadlimit.event import NoEventTasksError, timedata, shutdown from loadlimit.stat import timecoro from loadlimit.util import aiter # ============================================================================ # Globals # ============================================================================ pytestmark = pytest.mark.usefixtures('testlogging') # ============================================================================ # Helpers # ============================================================================ class Period(defaultdict): """Store time series data by key""" def __init__(self, *args, **kwargs): super().__init__(list, *args, **kwargs) self.numdata = 0 self.start_date = None self.end_date = None def total(self): """Calculate the total number of data points are stored""" ret = sum(len(s) for slist in self.values() for s in slist) self.numdata = ret return ret async def atotal(self): """Async total calculator""" ret = 0 async for slist in aiter(self.values()): async for s in aiter(slist): ret = ret + len(s) self.numdata = ret return ret def dataframe(self, key, startind=0): """Create a dataframe from a stored list of series""" slist = self[key] index = list(range(startind, startind + len(slist))) return DataFrame(slist, index=index) def clearvals(self, key=None): """Clear list of given key If key is None, clears list of all keys. """ if key is not None: self[key] = [] else: for key in self: self[key] = [] self.numdata = 0 async def aclearvals(self, key=None): """Async version of clearvals()""" if key is not None: self[key] = [] else: async for key in aiter(self): self[key] = [] self.numdata = 0 def hdf5_results(store, statsdict): """Create results from hdf5 store""" # Dates start = statsdict.start_date end = statsdict.end_date # Duration (in seconds) duration = (end - start).total_seconds() results = {} index = ['Total', 'Median', 'Average', 'Min', 'Max', 'Rate'] ResultType = namedtuple('ResultType', [n.lower() for n in index]) for name in statsdict: key = 'timeseries/{}'.format(name) # Number of iterations storeobj = store.get_storer(key) numiter = storeobj.nrows df = store[key] delta = df['delta'] r = [numiter] for val in [delta.median(), delta.mean(), delta.min(), delta.max()]: r.append(val.total_seconds() * 1000) r.append(numiter / duration) r = ResultType(*r) results[name] = Series(r, index=index) dfindex = list(sorted(results, key=lambda k: k)) vals = [results[v] for v in dfindex] df = DataFrame(vals, index=dfindex) print(df) # print(df.info()) def memory_results(statsdict): """Create results from hdf5 store""" # key = 'timeseries/{}'.format(name) # Dates start = statsdict.start_date end = statsdict.end_date # Duration (in seconds) duration = (end - start).total_seconds() results = {} index = ['Total', 'Median', 'Average', 'Min', 'Max', 'Rate'] ResultType = namedtuple('ResultType', [n.lower() for n in index]) # Number of iterations # storeobj = store.get_storer(key) # numiter = storeobj.nrows for name, slist in statsdict.items(): numiter = len(slist) df = DataFrame(slist, index=list(range(numiter))) delta = df['delta'] numiter = len(slist) r = [numiter] for val in [delta.median(), delta.mean(), delta.min(), delta.max()]: r.append(val.total_seconds() * 1000) r.append(numiter / duration) r = ResultType(*r) results[name] = Series(r, index=index) dfindex = list(sorted(results, key=lambda k: k)) vals = [results[v] for v in dfindex] df =
DataFrame(vals, index=dfindex)
pandas.DataFrame
import functools import numpy as np import scipy import scipy.linalg import scipy import scipy.sparse as sps import scipy.sparse.linalg as spsl import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings import logging import tables as tb import os import sandy import pytest pd.options.display.float_format = '{:.5e}'.format __author__ = "<NAME>" __all__ = [ "CategoryCov", "EnergyCov", "triu_matrix", "corr2cov", "random_corr", "random_cov", "sample_distribution", ] S = np.array([[1, 1, 1], [1, 2, 1], [1, 3, 1]]) var = np.array([[0, 0, 0], [0, 2, 0], [0, 0, 3]]) minimal_covtest = pd.DataFrame( [[9437, 2, 1e-2, 9437, 2, 1e-2, 0.02], [9437, 2, 2e5, 9437, 2, 2e5, 0.09], [9437, 2, 1e-2, 9437, 102, 1e-2, 0.04], [9437, 2, 2e5, 9437, 102, 2e5, 0.05], [9437, 102, 1e-2, 9437, 102, 1e-2, 0.01], [9437, 102, 2e5, 9437, 102, 2e5, 0.01]], columns=["MAT", "MT", "E", "MAT1", "MT1", 'E1', "VAL"] ) def cov33csv(func): def inner(*args, **kwargs): key = "<KEY>" kw = kwargs.copy() if key in kw: if kw[key]: print(f"found argument '{key}', ignore oher arguments") out = func( *args, index_col=[0, 1, 2], header=[0, 1, 2], ) out.index.names = ["MAT", "MT", "E"] out.columns.names = ["MAT", "MT", "E"] return out else: del kw[key] out = func(*args, **kw) return out return inner class _Cov(np.ndarray): """Covariance matrix treated as a `numpy.ndarray`. Methods ------- corr extract correlation matrix corr2cov produce covariance matrix given correlation matrix and standard deviation array eig get covariance matrix eigenvalues and eigenvectors get_L decompose and extract lower triangular matrix sampling draw random samples """ def __new__(cls, arr): obj = np.ndarray.__new__(cls, arr.shape, float) obj[:] = arr[:] if not obj.ndim == 2: raise sandy.Error("covariance matrix must have two dimensions") if not np.allclose(obj, obj.T): raise sandy.Error("covariance matrix must be symmetric") if (np.diag(arr) < 0).any(): raise sandy.Error("covariance matrix must have positive variances") return obj @staticmethod def _up2down(self): U = np.triu(self) L = np.triu(self, 1).T C = U + L return C def eig(self): """ Extract eigenvalues and eigenvectors. Returns ------- `Pandas.Series` real part of eigenvalues sorted in descending order `np.array` matrix of eigenvectors """ E, V = scipy.linalg.eig(self) E, V = E.real, V.real return E, V def corr(self): """Extract correlation matrix. .. note:: zeros on the covariance matrix diagonal are translated into zeros also on the the correlation matrix diagonal. Returns ------- `sandy.formats.utils.Cov` correlation matrix """ std = np.sqrt(np.diag(self)) with np.errstate(divide='ignore', invalid='ignore'): coeff = np.true_divide(1, std) coeff[~ np.isfinite(coeff)] = 0 # -inf inf NaN corr = np.multiply(np.multiply(self.T, coeff).T, coeff) return self.__class__(corr) def _reduce_size(self): """ Reduces the size of the matrix, erasing the null values. Returns ------- nonzero_idxs : numpy.ndarray The indices of the diagonal that are not null. cov_reduced : sandy.core.cov._Cov The reduced matrix. """ nonzero_idxs = np.flatnonzero(np.diag(self)) cov_reduced = self[nonzero_idxs][:, nonzero_idxs] return nonzero_idxs, cov_reduced @classmethod def _restore_size(cls, nonzero_idxs, cov_reduced, dim): """ Restore the size of the matrix Parameters ---------- nonzero_idxs : numpy.ndarray The indices of the diagonal that are not null. cov_reduced : sandy.core.cov._Cov The reduced matrix. dim : int Dimension of the original matrix. Returns ------- cov : sandy.core.cov._Cov Matrix of specified dimensions. """ cov = _Cov(np.zeros((dim, dim))) for i, ni in enumerate(nonzero_idxs): cov[ni, nonzero_idxs] = cov_reduced[i] return cov def sampling(self, nsmp, seed=None): """ Extract random samples from the covariance matrix, either using the cholesky or the eigenvalue decomposition. Parameters ---------- nsmp : `int` number of samples seed : `int` seed for the random number generator (default is `None`) Returns ------- `np.array` 2D array of random samples with dimension `(self.shape[0], nsmp)` """ dim = self.shape[0] np.random.seed(seed=seed) y = np.random.randn(dim, nsmp) nonzero_idxs, cov_reduced = self._reduce_size() L_reduced = cov_reduced.get_L() L = self.__class__._restore_size(nonzero_idxs, L_reduced, dim) samples = np.array(L.dot(y)) return samples def get_L(self): """ Extract lower triangular matrix `L` for which `L*L^T == self`. Returns ------- `np.array` lower triangular matrix """ try: L = scipy.linalg.cholesky( self, lower=True, overwrite_a=False, check_finite=False ) except np.linalg.linalg.LinAlgError: E, V = self.eig() E[E <= 0] = 0 Esqrt = np.diag(np.sqrt(E)) M = V.dot(Esqrt) Q, R = scipy.linalg.qr(M.T) L = R.T return L class CategoryCov(): """ Properties ---------- data covariance matrix as a dataframe size first dimension of the covariance matrix Methods ------- corr2cov create a covariance matrix given a correlation matrix and a standard deviation vector from_stack create a covariance matrix from a stacked `pd.DataFrame` from_stdev construct a covariance matrix from a stdev vector from_var construct a covariance matrix from a variance vector get_corr extract correlation matrix from covariance matrix get_eig extract eigenvalues and eigenvectors from covariance matrix get_L extract lower triangular matrix such that $C=L L^T$ get_std extract standard deviations from covariance matrix invert calculate the inverse of the matrix sampling extract perturbation coefficients according to chosen distribution and covariance matrix """ def __repr__(self): return self.data.__repr__() def __init__(self, *args, **kwargs): self.data = pd.DataFrame(*args, **kwargs) @property def data(self): """ Covariance matrix as a dataframe. Attributes ---------- index : `pandas.Index` or `pandas.MultiIndex` indices columns : `pandas.Index` or `pandas.MultiIndex` columns values : `numpy.array` covariance values as `float` Returns ------- `pandas.DataFrame` covariance matrix Notes ----- ..note :: In the future, another tests will be implemented to check that the covariance matrix is symmetric and have positive variances. Examples -------- >>> with pytest.raises(TypeError): sandy.CategoryCov(np.array[1]) >>> with pytest.raises(TypeError): sandy.CategoryCov(np.array([[1, 2], [2, -4]])) >>> with pytest.raises(TypeError): sandy.CategoryCov(np.array([[1, 2], [3, 4]])) """ return self._data @data.setter def data(self, data): self._data = pd.DataFrame(data, dtype=float) if not len(data.shape) == 2 and data.shape[0] == data.shape[1]: raise TypeError("Covariance matrix must have two dimensions") if not (np.diag(data) >= 0).all(): raise TypeError("Covariance matrix must have positive variance") sym_limit = 10 # Round to avoid numerical fluctuations if not (data.values.round(sym_limit) == data.values.T.round(sym_limit)).all(): raise TypeError("Covariance matrix must be symmetric") @property def size(self): return self.data.values.shape[0] def get_std(self): """ Extract standard deviations. Returns ------- `pandas.Series` 1d array of standard deviations Examples -------- >>> sandy.CategoryCov([[1, 0.4],[0.4, 1]]).get_std() 0 1.00000e+00 1 1.00000e+00 Name: STD, dtype: float64 """ cov = self.to_sparse().diagonal() std = np.sqrt(cov) return pd.Series(std, index=self.data.index, name="STD") def get_eig(self, tolerance=None): """ Extract eigenvalues and eigenvectors. Parameters ---------- tolerance : `float`, optional, default is `None` replace all eigenvalues smaller than a given tolerance with zeros. The replacement condition is implemented as: .. math:: $$ \frac{e_i}{e_{MAX}} < tolerance $$ Then, a `tolerance=1e-3` will replace all eigenvalues 1000 times smaller than the largest eigenvalue. A `tolerance=0` will replace all negative eigenvalues. Returns ------- `Pandas.Series` array of eigenvalues `pandas.DataFrame` matrix of eigenvectors Notes ----- .. note:: only the real part of the eigenvalues is preserved .. note:: the discussion associated to the implementeation of this algorithm is available [here](https://github.com/luca-fiorito-11/sandy/discussions/135) Examples -------- Extract eigenvalues of correlation matrix. >>> sandy.CategoryCov([[1, 0.4], [0.4, 1]]).get_eig()[0] 0 1.40000e+00 1 6.00000e-01 Name: EIG, dtype: float64 Extract eigenvectors of correlation matrix. >>> sandy.CategoryCov([[1, 0.4], [0.4, 1]]).get_eig()[1] 0 1 0 7.07107e-01 -7.07107e-01 1 7.07107e-01 7.07107e-01 Extract eigenvalues of covariance matrix. >>> sandy.CategoryCov([[0.1, 0.1], [0.1, 1]]).get_eig()[0] 0 8.90228e-02 1 1.01098e+00 Name: EIG, dtype: float64 Set up a tolerance. >>> sandy.CategoryCov([[0.1, 0.1], [0.1, 1]]).get_eig(tolerance=0.1)[0] 0 0.00000e+00 1 1.01098e+00 Name: EIG, dtype: float64 Test with negative eigenvalues. >>> sandy.CategoryCov([[1, 2], [2, 1]]).get_eig()[0] 0 3.00000e+00 1 -1.00000e+00 Name: EIG, dtype: float64 Replace negative eigenvalues. >>> sandy.CategoryCov([[1, 2], [2, 1]]).get_eig(tolerance=0)[0] 0 3.00000e+00 1 0.00000e+00 Name: EIG, dtype: float64 Check output size. >>> cov = sandy.CategoryCov.random_cov(50, seed=11) >>> assert cov.get_eig()[0].size == cov.data.shape[0] == 50 >>> sandy.CategoryCov([[1, 0.2, 0.1], [0.2, 2, 0], [0.1, 0, 3]]).get_eig()[0] 0 9.56764e-01 1 2.03815e+00 2 3.00509e+00 Name: EIG, dtype: float64 Real test on H1 file >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) >>> ek = sandy.energy_grids.CASMO12 >>> err = endf6.get_errorr(ek_errorr=ek, err=1) >>> cov = err.get_cov() >>> cov.get_eig()[0].sort_values(ascending=False).head(7) 0 3.66411e-01 1 7.05311e-03 2 1.55346e-03 3 1.60175e-04 4 1.81374e-05 5 1.81078e-06 6 1.26691e-07 Name: EIG, dtype: float64 >>> assert not (cov.get_eig()[0] >= 0).all() >>> assert (cov.get_eig(tolerance=0)[0] >= 0).all() """ E, V = scipy.linalg.eig(self.data) E = pd.Series(E.real, name="EIG") V = pd.DataFrame(V.real) if tolerance is not None: E[E/E.max() < tolerance] = 0 return E, V def get_corr(self): """ Extract correlation matrix. Returns ------- df : :obj: `CetgoryCov` correlation matrix Examples -------- >>> sandy.CategoryCov([[4, 2.4],[2.4, 9]]).get_corr() 0 1 0 1.00000e+00 4.00000e-01 1 4.00000e-01 1.00000e+00 """ cov = self.data.values with np.errstate(divide='ignore', invalid='ignore'): coeff = np.true_divide(1, self.get_std().values) coeff[~ np.isfinite(coeff)] = 0 # -inf inf NaN corr = np.multiply(np.multiply(cov, coeff).T, coeff) df = pd.DataFrame( corr, index=self.data.index, columns=self.data.columns, ) return self.__class__(df) def invert(self, rows=None): """ Method for calculating the inverse matrix. Parameters ---------- tables : `bool`, optional Option to use row calculation for matrix calculations. The default is False. rows : `int`, optional Option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. The default is None. Returns ------- `CategoryCov` The inverse matrix. Examples -------- >>> S = sandy.CategoryCov(np.diag(np.array([1, 2, 3]))) >>> S.invert() 0 1 2 0 1.00000e+00 0.00000e+00 0.00000e+00 1 0.00000e+00 5.00000e-01 0.00000e+00 2 0.00000e+00 0.00000e+00 3.33333e-01 >>> S = sandy.CategoryCov(np.diag(np.array([0, 2, 3]))) >>> S.invert() 0 1 2 0 0.00000e+00 0.00000e+00 0.00000e+00 1 0.00000e+00 5.00000e-01 0.00000e+00 2 0.00000e+00 0.00000e+00 3.33333e-01 >>> S = sandy.CategoryCov(np.diag(np.array([0, 2, 3]))) >>> S.invert(rows=1) 0 1 2 0 0.00000e+00 0.00000e+00 0.00000e+00 1 0.00000e+00 5.00000e-01 0.00000e+00 2 0.00000e+00 0.00000e+00 3.33333e-01 """ index = self.data.index columns = self.data.columns M_nonzero_idxs, M_reduce = reduce_size(self.data) cov = sps.csc_matrix(M_reduce.values) rows_ = cov.shape[0] if rows is None else rows data = sparse_tables_inv(cov, rows=rows_) M_inv = restore_size(M_nonzero_idxs, data, len(self.data)) M_inv = M_inv.reindex(index=index, columns=columns).fillna(0) return self.__class__(M_inv) def log2norm_cov(self, mu): """ Transform covariance matrix to the one of the underlying normal distribution. Parameters ---------- mu : iterable The desired mean values of the target lognormal distribution. Returns ------- `CategoryCov` of the underlying normal covariance matrix Examples -------- >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> cov.log2norm_cov(pd.Series(np.ones(cov.data.shape[0]), index=cov.data.index)) A B C A 2.19722e+00 1.09861e+00 1.38629e+00 B 1.09861e+00 2.39790e+00 1.60944e+00 C 1.38629e+00 1.60944e+00 2.07944e+00 >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> mu = pd.Series([1, 2, .5], index=["A", "B", "C"]) >>> cov.log2norm_cov(mu) A B C A 2.19722e+00 6.93147e-01 1.94591e+00 B 6.93147e-01 1.25276e+00 1.60944e+00 C 1.94591e+00 1.60944e+00 3.36730e+00 >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> mu = [1, 2, .5] >>> cov.log2norm_cov(mu) A B C A 2.19722e+00 6.93147e-01 1.94591e+00 B 6.93147e-01 1.25276e+00 1.60944e+00 C 1.94591e+00 1.60944e+00 3.36730e+00 >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> mu = np.array([1, 2, .5]) >>> cov.log2norm_cov(mu) A B C A 2.19722e+00 6.93147e-01 1.94591e+00 B 6.93147e-01 1.25276e+00 1.60944e+00 C 1.94591e+00 1.60944e+00 3.36730e+00 Notes ----- ..notes:: Reference for the equation is 10.1016/j.nima.2012.06.036 .. math:: $$ cov(lnx_i, lnx_j) = \ln\left(\frac{cov(x_i,x_j)}{<x_i>\cdot<x_j>}+1\right) $$ """ mu_ = np.diag(1 / pd.Series(mu)) mu_ = pd.DataFrame(mu_, index=self.data.index, columns=self.data.index) return self.__class__(np.log(self.sandwich(mu_).data + 1)) def log2norm_mean(self, mu): """ Transform mean values to the mean values of the undelying normal distribution. Parameters ---------- mu : iterable The target mean values. Returns ------- `pd.Series` of the underlyig normal distribution mean values Examples -------- >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> mu = pd.Series(np.ones(cov.data.shape[0]), index=cov.data.index) >>> cov.log2norm_mean(mu) A -1.09861e+00 B -1.19895e+00 C -1.03972e+00 dtype: float64 >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> cov.log2norm_mean([1, 1, 1]) A -1.09861e+00 B -1.19895e+00 C -1.03972e+00 dtype: float64 >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> mu = np.ones(cov.data.shape[0]) >>> cov.log2norm_mean(mu) A -1.09861e+00 B -1.19895e+00 C -1.03972e+00 dtype: float64 Reindexing example """ mu_ = pd.Series(mu) mu_.index = self.data.index return np.log(mu_**2 / np.sqrt(np.diag(self.data) + mu_**2)) def sampling(self, nsmp, seed=None, rows=None, pdf='normal', tolerance=None, relative=True): """ Extract perturbation coefficients according to chosen distribution with covariance from given covariance matrix. See note for non-normal distribution sampling. The samples' mean will be 1 or 0 depending on `relative` kwarg. Parameters ---------- nsmp : `int` number of samples. seed : `int`, optional, default is `None` seed for the random number generator (by default use `numpy` dafault pseudo-random number generator). rows : `int`, optional, default is `None` option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. pdf : `str`, optional, default is 'normal' random numbers distribution. Available distributions are: * `'normal'` * `'uniform'` * `'lognormal'` tolerance : `float`, optional, default is `None` replace all eigenvalues smaller than a given tolerance with zeros. relative : `bool`, optional, default is `True` flag to switch between relative and absolute covariance matrix handling * `True`: samples' mean will be 1 * `False`: samples' mean will be 0 Returns ------- `sandy.Samples` object containing samples Notes ----- .. note:: sampling with uniform distribution is performed on diagonal covariance matrix, neglecting all correlations. .. note:: sampling with lognormal distribution gives a set of samples with mean=1 as lognormal distribution can not have mean=0. Therefore, `relative` parameter does not apply to it. Examples -------- Draw 3 sets of samples using custom seed: >>> sandy.CategoryCov([[1, 0.4],[0.4, 1]]).sampling(3, seed=11) 0 1 0 -7.49455e-01 -2.13159e+00 1 1.28607e+00 1.10684e+00 2 1.48457e+00 9.00879e-01 >>> sandy.CategoryCov([[1, 0.4],[0.4, 1]]).sampling(3, seed=11, rows=1) 0 1 0 -7.49455e-01 -2.13159e+00 1 1.28607e+00 1.10684e+00 2 1.48457e+00 9.00879e-01 >>> sample = sandy.CategoryCov([[1, 0.4],[0.4, 1]]).sampling(1000000, seed=11) >>> sample.data.cov() 0 1 0 9.98662e-01 3.99417e-01 1 3.99417e-01 9.98156e-01 Small negative eigenvalue: >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(3, seed=11, tolerance=0) 0 1 0 2.74945e+00 5.21505e+00 1 7.13927e-01 1.07147e+00 2 5.15435e-01 1.64683e+00 >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, tolerance=0).data.cov() 0 1 0 9.98662e-01 -1.99822e-01 1 -1.99822e-01 2.99437e+00 Sampling with different `pdf`: >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(3, seed=11, pdf='uniform', tolerance=0) 0 1 0 -1.07578e-01 2.34960e+00 1 -6.64587e-01 5.21222e-01 2 8.72585e-01 9.12563e-01 >>> sandy.CategoryCov([[1, .2],[.2, 3]]).sampling(3, seed=11, pdf='lognormal', tolerance=0) 0 1 0 3.03419e+00 1.57919e+01 1 5.57248e-01 4.74160e-01 2 4.72366e-01 6.50840e-01 >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, pdf='uniform', tolerance=0).data.cov() 0 1 0 1.00042e+00 -1.58806e-03 1 -1.58806e-03 3.00327e+00 >>> sandy.CategoryCov([[1, .2],[.2, 3]]).sampling(1000000, seed=11, pdf='lognormal', tolerance=0).data.cov() 0 1 0 1.00219e+00 1.99199e-01 1 1.99199e-01 3.02605e+00 `relative` kwarg usage: >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, pdf='normal', tolerance=0, relative=True).data.mean(axis=0) 0 1.00014e+00 1 9.99350e-01 dtype: float64 >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, pdf='normal', tolerance=0, relative=False).data.mean(axis=0) 0 1.41735e-04 1 -6.49679e-04 dtype: float64 >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, pdf='uniform', tolerance=0, relative=True).data.mean(axis=0) 0 9.98106e-01 1 9.99284e-01 dtype: float64 >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, pdf='uniform', tolerance=0, relative=False).data.mean(axis=0) 0 -1.89367e-03 1 -7.15929e-04 dtype: float64 Lognormal distribution sampling indeoendency from `relative` kwarg >>> sandy.CategoryCov([[1, .2],[.2, 3]]).sampling(1000000, seed=11, pdf='lognormal', tolerance=0, relative=True).data.mean(axis=0) 0 9.99902e-01 1 9.99284e-01 dtype: float64 >>> sandy.CategoryCov([[1, .2],[.2, 3]]).sampling(1000000, seed=11, pdf='lognormal', tolerance=0, relative=False).data.mean(axis=0) 0 9.99902e-01 1 9.99284e-01 dtype: float64 """ dim = self.data.shape[0] pdf_ = pdf if pdf != 'lognormal' else 'normal' y = sample_distribution(dim, nsmp, seed=seed, pdf=pdf_) - 1 y = sps.csc_matrix(y) # the covariance matrix to decompose is created depending on the chosen # pdf if pdf == 'uniform': to_decompose = self.__class__(np.diag(np.diag(self.data))) elif pdf == 'lognormal': ones = np.ones(self.data.shape[0]) to_decompose = self.log2norm_cov(ones) else: to_decompose = self L = sps.csr_matrix(to_decompose.get_L(rows=rows, tolerance=tolerance)) samples = pd.DataFrame(L.dot(y).toarray(), index=self.data.index, columns=list(range(nsmp))) if pdf == 'lognormal': # mean value of lognormally sampled distributions will be one by # defaul samples = np.exp(samples.add(self.log2norm_mean(ones), axis=0)) elif relative: samples += 1 return sandy.Samples(samples.T) @classmethod def from_var(cls, var): """ Construct the covariance matrix from the variance vector. Parameters ---------- var : 1D iterable Variance vector. Returns ------- `CategoryCov` Object containing the covariance matrix. Example ------- >>> S = pd.Series(np.array([0, 2, 3]), index=pd.Index([1, 2, 3])) >>> cov = sandy.CategoryCov.from_var(S) >>> cov 1 2 3 1 0.00000e+00 0.00000e+00 0.00000e+00 2 0.00000e+00 2.00000e+00 0.00000e+00 3 0.00000e+00 0.00000e+00 3.00000e+00 >>> assert type(cov) is sandy.CategoryCov >>> S = sandy.CategoryCov.from_var((1, 2, 3)) >>> S 0 1 2 0 1.00000e+00 0.00000e+00 0.00000e+00 1 0.00000e+00 2.00000e+00 0.00000e+00 2 0.00000e+00 0.00000e+00 3.00000e+00 >>> assert type(S) is sandy.CategoryCov >>> assert type(sandy.CategoryCov.from_var([1, 2, 3])) is sandy.CategoryCov """ var_ = pd.Series(var) cov_values = sps.diags(var_.values).toarray() cov = pd.DataFrame(cov_values, index=var_.index, columns=var_.index) return cls(cov) @classmethod def from_stdev(cls, std): """ Construct the covariance matrix from the standard deviation vector. Parameters ---------- std : `pandas.Series` Standard deviations vector. Returns ------- `CategoryCov` Object containing the covariance matrix. Example ------- >>> S = pd.Series(np.array([0, 2, 3]), index=pd.Index([1, 2, 3])) >>> cov = sandy.CategoryCov.from_stdev(S) >>> cov 1 2 3 1 0.00000e+00 0.00000e+00 0.00000e+00 2 0.00000e+00 4.00000e+00 0.00000e+00 3 0.00000e+00 0.00000e+00 9.00000e+00 >>> assert type(cov) is sandy.CategoryCov >>> S = sandy.CategoryCov.from_stdev((1, 2, 3)) >>> S 0 1 2 0 1.00000e+00 0.00000e+00 0.00000e+00 1 0.00000e+00 4.00000e+00 0.00000e+00 2 0.00000e+00 0.00000e+00 9.00000e+00 >>> assert type(S) is sandy.CategoryCov >>> assert type(sandy.CategoryCov.from_stdev([1, 2, 3])) is sandy.CategoryCov """ std_ = pd.Series(std) var = std_ * std_ return cls.from_var(var) @classmethod def from_stack(cls, data_stack, index, columns, values, rows=10000000, kind='upper'): """ Create a covariance matrix from a stacked dataframe. Parameters ---------- data_stack : `pd.Dataframe` Stacked dataframe. index : 1D iterable, optional Index of the final covariance matrix. columns : 1D iterable, optional Columns of the final covariance matrix. values : `str`, optional Name of the column where the values are located. rows : `int`, optional Number of rows to take into account into each loop. The default is 10000000. kind : `str`, optional Select if the stack data represents upper or lower triangular matrix. The default is 'upper. Returns ------- `sandy.CategoryCov` Covarinace matrix. Examples -------- If the stack data represents the covariance matrix: >>> S = pd.DataFrame(np.array([[1, 1, 1], [1, 2, 1], [1, 1, 1]])) >>> S = S.stack().reset_index().rename(columns = {'level_0': 'dim1', 'level_1': 'dim2', 0: 'cov'}) >>> S = S[S['cov'] != 0] >>> sandy.CategoryCov.from_stack(S, index=['dim1'], columns=['dim2'], values='cov', kind='all') dim2 0 1 2 dim1 0 1.00000e+00 1.00000e+00 1.00000e+00 1 1.00000e+00 2.00000e+00 1.00000e+00 2 1.00000e+00 1.00000e+00 1.00000e+00 If the stack data represents only the upper triangular part of the covariance matrix: >>> test_1 = sandy.CategoryCov.from_stack(minimal_covtest, index=["MAT", "MT", "E"], columns=["MAT1", "MT1", "E1"], values='VAL').data >>> test_1 MAT1 9437 MT1 2 102 E1 1.00000e-02 2.00000e+05 1.00000e-02 2.00000e+05 MAT MT E 9437 2 1.00000e-02 2.00000e-02 0.00000e+00 4.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 9.00000e-02 0.00000e+00 5.00000e-02 102 1.00000e-02 4.00000e-02 0.00000e+00 1.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 5.00000e-02 0.00000e+00 1.00000e-02 >>> test_2 = sandy.CategoryCov.from_stack(minimal_covtest, index=["MAT", "MT", "E"], columns=["MAT1", "MT1", "E1"], values='VAL', rows=1).data >>> test_2 MAT1 9437 MT1 2 102 E1 1.00000e-02 2.00000e+05 1.00000e-02 2.00000e+05 MAT MT E 9437 2 1.00000e-02 2.00000e-02 0.00000e+00 4.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 9.00000e-02 0.00000e+00 5.00000e-02 102 1.00000e-02 4.00000e-02 0.00000e+00 1.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 5.00000e-02 0.00000e+00 1.00000e-02 >>> assert (test_1 == test_2).all().all() If the stack data represents only the lower triangular part of the covariance matrix: >>> test_1 = sandy.CategoryCov.from_stack(minimal_covtest, index=["MAT1", "MT1", "E1"], columns=["MAT", "MT", "E"], values='VAL', kind="lower").data >>> test_1 MAT 9437 MT 2 102 E 1.00000e-02 2.00000e+05 1.00000e-02 2.00000e+05 MAT1 MT1 E1 9437 2 1.00000e-02 2.00000e-02 0.00000e+00 4.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 9.00000e-02 0.00000e+00 5.00000e-02 102 1.00000e-02 4.00000e-02 0.00000e+00 1.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 5.00000e-02 0.00000e+00 1.00000e-02 >>> test_2 = sandy.CategoryCov.from_stack(minimal_covtest, index=["MAT1", "MT1", "E1"], columns=["MAT", "MT", "E"], values='VAL', kind="lower", rows=1).data >>> test_2 MAT 9437 MT 2 102 E 1.00000e-02 2.00000e+05 1.00000e-02 2.00000e+05 MAT1 MT1 E1 9437 2 1.00000e-02 2.00000e-02 0.00000e+00 4.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 9.00000e-02 0.00000e+00 5.00000e-02 102 1.00000e-02 4.00000e-02 0.00000e+00 1.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 5.00000e-02 0.00000e+00 1.00000e-02 >>> assert (test_1 == test_2).all().all() """ cov = segmented_pivot_table(data_stack, rows=rows, index=index, columns=columns, values=values) if kind == 'all': return cls(cov) else: return triu_matrix(cov, kind=kind) def _gls_Vy_calc(self, S, rows=None): """ 2D calculated output using .. math:: $$ S\cdot V_{x_{prior}}\cdot S.T $$ Parameters ---------- S : 2D iterable Sensitivity matrix (MXN). rows : `int`, optional Option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. The default is None. Returns ------- `pd.DataFrame` Covariance matrix `Vy_calc` calculated using S.dot(Vx_prior).dot(S.T) Example ------- >>> S = np.array([[1, 2], [3, 4]]) >>> cov = sandy.CategoryCov.from_var([1, 1]) >>> cov._gls_Vy_calc(S) 0 1 0 5.00000e+00 1.10000e+01 1 1.10000e+01 2.50000e+01 >>> cov._gls_Vy_calc(S, rows=1) 0 1 0 5.00000e+00 1.10000e+01 1 1.10000e+01 2.50000e+01 """ index = pd.DataFrame(S).index S_ = pd.DataFrame(S).values rows_ = S_.shape[0] if rows is None else rows Vy_calc = sparse_tables_dot_multiple([S_, self.data.values, S_.T], rows=rows_) return pd.DataFrame(Vy_calc, index=index, columns=index) def _gls_G(self, S, Vy_extra=None, rows=None): """ 2D calculated output using .. math:: $$ S\cdot V_{x_{prior}}\cdot S.T + V_{y_{extra}} $$ Parameters ---------- S : 2D iterable Sensitivity matrix (MXN). Vy_extra : 2D iterable, optional. 2D covariance matrix for y_extra (MXM). rows : `int`, optional Option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. The default is None. Returns ------- `pd.DataFrame` Covariance matrix `G` calculated using S.dot(Vx_prior).dot(S.T) + Vy_extra Example ------- >>> S = np.array([[1, 2], [3, 4]]) >>> cov = sandy.CategoryCov.from_var([1, 1]) >>> Vy = np.diag(pd.Series([1, 1])) >>> cov._gls_G(S, Vy) 0 1 0 6.00000e+00 1.10000e+01 1 1.10000e+01 2.60000e+01 >>> cov._gls_G(S, Vy, rows=1) 0 1 0 6.00000e+00 1.10000e+01 1 1.10000e+01 2.60000e+01 >>> cov._gls_G(S) 0 1 0 5.00000e+00 1.10000e+01 1 1.10000e+01 2.50000e+01 >>> cov._gls_G(S, rows=1) 0 1 0 5.00000e+00 1.10000e+01 1 1.10000e+01 2.50000e+01 """ # GLS_sensitivity: Vy_calc = self._gls_Vy_calc(S, rows=rows) if Vy_extra is not None: # Data in a appropriate format Vy_extra_ = sandy.CategoryCov(Vy_extra).data index = pd.DataFrame(Vy_extra).index Vy_extra_ = Vy_extra_.values Vy_calc = Vy_calc.reindex(index=index, columns=index).fillna(0).values # Calculations: Vy_calc = sps.csr_matrix(Vy_calc) Vy_extra_ = sps.csr_matrix(Vy_extra_) # G calculation G = Vy_calc + Vy_extra_ G = pd.DataFrame(G.toarray(), index=index, columns=index) else: G = Vy_calc return G def _gls_G_inv(self, S, Vy_extra=None, rows=None): """ 2D calculated output using .. math:: $$ \left(S\cdot V_{x_{prior}}\cdot S.T + V_{y_{extra}}\right)^{-1} $$ Parameters ---------- S : 2D iterable Sensitivity matrix (MXN). Vy_extra : 2D iterable, optional 2D covariance matrix for y_extra (MXM). rows : `int`, optional Option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. The default is None. Returns ------- `pd.DataFrame` Covariance matrix `G_inv` calculated using (S.dot(Vx_prior).dot(S.T) + Vy_extra)^-1 Example ------- >>> S = np.array([[1, 2], [3, 4]]) >>> cov = sandy.CategoryCov.from_var([1, 1]) >>> Vy = np.diag(pd.Series([1, 1])) >>> cov._gls_G_inv(S, Vy) 0 1 0 7.42857e-01 -3.14286e-01 1 -3.14286e-01 1.71429e-01 >>> cov._gls_G_inv(S, Vy, rows=1) 0 1 0 7.42857e-01 -3.14286e-01 1 -3.14286e-01 1.71429e-01 >>> cov._gls_G_inv(S) 0 1 0 6.25000e+00 -2.75000e+00 1 -2.75000e+00 1.25000e+00 >>> cov._gls_G_inv(S, rows=1) 0 1 0 6.25000e+00 -2.75000e+00 1 -2.75000e+00 1.25000e+00 """ if Vy_extra is not None: index = pd.DataFrame(Vy_extra).index G = self._gls_G(S, Vy_extra=Vy_extra, rows=rows).values else: index = pd.DataFrame(S).index G = self._gls_Vy_calc(S, rows=rows).values G_inv = sandy.CategoryCov(G).invert(rows=rows).data.values return pd.DataFrame(G_inv, index=index, columns=index) def _gls_general_sensitivity(self, S, Vy_extra=None, rows=None, threshold=None): """ Method to obtain general sensitivity according to GLS .. math:: $$ V_{x_{prior}}\cdot S.T \cdot \left(S\cdot V_{x_{prior}}\cdot S.T + V_{y_{extra}}\right)^{-1} $$ Parameters ---------- S : 2D iterable Sensitivity matrix (MXN). Vy_extra : 2D iterable 2D covariance matrix for y_extra (MXM). rows : `int`, optional Option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. The default is None. threshold : `int`, optional threshold to avoid numerical fluctuations. The default is None. Returns ------- `GLS` GLS sensitivity for a given Vy_extra and S. Example ------- >>> S = np.array([[1, 2], [3, 4]]) >>> cov = sandy.CategoryCov.from_var([1, 1]) >>> Vy = np.diag(pd.Series([1, 1])) >>> cov._gls_general_sensitivity(S, Vy) 0 1 0 -2.00000e-01 2.00000e-01 1 2.28571e-01 5.71429e-02 >>> S = pd.DataFrame([[1, 2], [3, 4]], index=[1, 2],columns=[3, 4]) >>> cov = sandy.CategoryCov.from_var([1, 1]) >>> Vy = pd.DataFrame([[1, 0], [0, 1]], index=[1, 2], columns=[1, 2]) >>> cov._gls_general_sensitivity(S, Vy_extra=Vy) 1 2 3 -2.00000e-01 2.00000e-01 4 2.28571e-01 5.71429e-02 >>> cov._gls_general_sensitivity(S, Vy_extra=Vy, rows=1) 1 2 3 -2.00000e-01 2.00000e-01 4 2.28571e-01 5.71429e-02 >>> cov._gls_general_sensitivity(S) 1 2 3 -2.00000e+00 1.00000e+00 4 1.50000e+00 -5.00000e-01 >>> cov._gls_general_sensitivity(S, rows=1) 1 2 3 -2.00000e+00 1.00000e+00 4 1.50000e+00 -5.00000e-01 """ index = pd.DataFrame(S).columns columns = pd.DataFrame(S).index S_ = pd.DataFrame(S).values # GLS_sensitivity: G_inv = self._gls_G_inv(S, Vy_extra=Vy_extra, rows=rows).values rows_ = S_.shape[0] if rows is None else rows sensitivity = sparse_tables_dot_multiple([self.data.values, S_.T, G_inv], rows=rows_) if threshold is not None: sensitivity[abs(sensitivity) < threshold] = 0 return pd.DataFrame(sensitivity, index=index, columns=columns) def _gls_constrained_sensitivity(self, S, rows=None, threshold=None): """ Method to obtain sensitivity according to constrained Least-Squares: .. math:: $$ \left(S\cdot V_{x_{prior}}\cdot S.T + V_{y_{extra}}\right)^{-1} \cdot S \cdot V_{x_{prior}} $$ Parameters ---------- S : 2D iterable Sensitivity matrix (MXN). rows : `int`, optional Option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. The default is None. threshold : `int`, optional threshold to avoid numerical fluctuations. The default is None. Returns ------- `pd.DataFrame` constrained Least-Squares sensitivity. Notes ----- ..note :: This method is equivalent to `_gls_general_sensitivity` but for a constrained system Example ------- >>> S = np.array([[1, 2], [3, 4]]) >>> cov = CategoryCov.from_var([1, 1]) >>> cov._gls_constrained_sensitivity(S) 0 1 0 -2.00000e+00 1.50000e+00 1 1.00000e+00 -5.00000e-01 >>> cov._gls_constrained_sensitivity(S, rows=1) 0 1 0 -2.00000e+00 1.50000e+00 1 1.00000e+00 -5.00000e-01 """ # Data in a appropiate format S_ = pd.DataFrame(S) index = S_.index columns = S_.columns G_inv = self._gls_G_inv(S, rows=rows).values rows_ = S_.shape[0] if rows is None else rows sensitivity = sparse_tables_dot_multiple([G_inv, S_, self.data.values], rows=rows_) if threshold is not None: sensitivity[abs(sensitivity) < threshold] = 0 return pd.DataFrame(sensitivity, index=index, columns=columns) def _gls_cov_sensitivity(self, S, Vy_extra=None, rows=None, threshold=None): """ Method to obtain covariance sensitivity according to GLS: .. math:: $$ V_{x_{prior}}\cdot S^T \cdot \left(S\cdot V_{x_{prior}}\cdot S.T + V_{y_{extra}}\right)^{-1} \cdot S $$ Parameters ---------- S : 2D iterable Sensitivity matrix (MXN). Vy_extra : 2D iterable 2D covariance matrix for y_extra (MXM). rows : `int`, optional Option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. The default is None. threshold : `int`, optional threshold to avoid numerical fluctuations. The default is None. Returns ------- `pd.DataFrame` GlS sensitivity for a given Vy and S. Example ------- >>> S = np.array([[1, 2], [3, 4]]) >>> cov = sandy.CategoryCov.from_var([1, 1]) >>> Vy = np.diag(pd.Series([1, 1])) >>> cov._gls_cov_sensitivity(S, Vy) 0 1 0 4.00000e-01 4.00000e-01 1 4.00000e-01 6.85714e-01 >>> S = pd.DataFrame([[1, 2], [3, 4]], index=[1, 2],columns=[3, 4]) >>> cov = sandy.CategoryCov.from_var([1, 1]) >>> Vy = pd.DataFrame([[1, 0], [0, 1]], index=[1, 2], columns=[1, 2]) >>> cov._gls_cov_sensitivity(S, Vy) 3 4 3 4.00000e-01 4.00000e-01 4 4.00000e-01 6.85714e-01 >>> cov._gls_cov_sensitivity(S, Vy, rows=1) 3 4 3 4.00000e-01 4.00000e-01 4 4.00000e-01 6.85714e-01 """ index = columns = pd.DataFrame(S).columns S_ = pd.DataFrame(S).values general_sens = self._gls_general_sensitivity(S, Vy_extra=Vy_extra, rows=rows, threshold=threshold).values rows_ = S_.shape[0] if rows is None else rows cov_sens = sparse_tables_dot(general_sens, S_, rows=rows_).toarray() if threshold is not None: cov_sens[abs(cov_sens) < threshold] = 0 return pd.DataFrame(cov_sens, index=index, columns=columns) def gls_update(self, S, Vy_extra=None, rows=None, threshold=None): """ Perform GlS update for a given variance and sensitivity: .. math:: $$ V_{x_{post}} = V_{x_{prior}} - V_{x_{prior}}\cdot S.T \cdot \left(S\cdot V_{x_{prior}}\cdot S.T + V_{y_{extra}}\right)^{-1} \cdot S \cdot V_{x_{prior}} $$ Parameters ---------- Vy_extra : 2D iterable, optional 2D covariance matrix for y_extra (MXM). S : 2D iterable Sensitivity matrix (MXN). rows : `int`, optional Option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. The default is None. threshold : `int`, optional Thereshold to avoid numerical fluctuations. The default is None. Returns ------- `CategoryCov` GLS method apply to a CategoryCov object for a given Vy and S. Example ------- >>> S = np.array([[1, 2], [3, 4]]) >>> cov = sandy.CategoryCov.from_var([1, 1]) >>> Vy = np.diag(pd.Series([1, 1])) >>> cov.gls_update(S, Vy) 0 1 0 6.00000e-01 -4.00000e-01 1 -4.00000e-01 3.14286e-01 >>> cov.gls_update(S, Vy, rows=1) 0 1 0 6.00000e-01 -4.00000e-01 1 -4.00000e-01 3.14286e-01 """ index, columns = self.data.index, self.data.columns A = self._gls_cov_sensitivity(S, Vy_extra=Vy_extra, rows=rows, threshold=threshold).values rows_ = self.data.shape[0] if rows is None else rows Vx_prior = self.to_sparse(method='csc_matrix') diff = sparse_tables_dot(A, Vx_prior, rows=rows_) # gls update Vx_post = Vx_prior - diff Vx_post = Vx_post.toarray() if threshold is not None: Vx_post[abs(Vx_post) < threshold] = 0 return self.__class__(pd.DataFrame(Vx_post, index=index, columns=columns)) def constrained_gls_update(self, S, rows=None, threshold=None): """ Perform constrained Least-Squares update for a given sensitivity: .. math:: $$ V_{x_{post}} = V_{x_{prior}} - V_{x_{prior}}\cdot S.T \cdot \left(S\cdot V_{x_{prior}}\cdot S.T\right)^{-1} \cdot S \cdot V_{x_{prior}} $$ Parameters ---------- S : 2D iterable Sensitivity matrix (MXN). rows : `int`, optional Option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. The default is None. threshold : `int`, optional Thereshold to avoid numerical fluctuations. The default is None. Returns ------- `CategoryCov` Constrained Least-squares method apply to a CategoryCov object for a given S. Notes ----- ..note :: This method is equivalent to `gls_update` but for a constrained system Example ------- >>> S = np.array([[1, 2], [3, 4]]) >>> cov = sandy.CategoryCov.from_var([1, 1]) >>> cov_update = cov.constrained_gls_update(S).data.round(decimals=6) >>> assert np.amax(cov_update.values) == 0.0 >>> cov_update = cov.constrained_gls_update(S, rows=1).data.round(decimals=6) >>> assert np.amax(cov_update.values) == 0.0 """ return self.gls_update(S, Vy_extra=None, rows=rows, threshold=threshold) def sandwich(self, s, rows=None, threshold=None): """ Apply the sandwich formula to the CategoryCov object for a given pandas.Series. Parameters ---------- s : 1D or 2D iterable General sensitivities. rows : `int`, optional Option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. The default is None. threshold : `int`, optional Thereshold to avoid numerical fluctuations. The default is None. Returns ------- `float` (if s is 1D iterable) The resulting scalar number after having applied the sandwich formula for a given 1D iterable. `CategoryCov` (if s is 2D iterable) `CategoryCov` object to which we have applied sandwich formula for a given 2D iterable. Warnings -------- The `CategoryCov` object and the sensitivity (S) must have the same indices. Examples -------- >>> var = np.array([1, 2, 3]) >>> s = pd.Series([1, 2, 3]) >>> cov = sandy.CategoryCov.from_var(var) >>> cov.sandwich(s) 36.0 >>> s = np.array([1, 2, 3]) >>> var = pd.Series([1, 2, 3]) >>> cov = sandy.CategoryCov.from_var(var) >>> var = sandy.CategoryCov.from_var(s).data >>> cov.sandwich(var) 0 1 2 0 1.00000e+00 0.00000e+00 0.00000e+00 1 0.00000e+00 8.00000e+00 0.00000e+00 2 0.00000e+00 0.00000e+00 2.70000e+01 """ if pd.DataFrame(s).shape[1] == 1: s_ = pd.Series(s) sandwich = s_.dot(self.data.dot(s_.T)) # sandwich variable is a scalar return sandwich else: s_ = pd.DataFrame(s).T sandwich = self._gls_Vy_calc(s_, rows=rows) if threshold is not None: sandwich[sandwich < threshold] = 0 return self.__class__(sandwich) def corr2cov(self, std): """ Produce covariance matrix given correlation matrix and standard deviation array. Same as :obj: `corr2cov` but it works with :obj: `CategoryCov` instances. Parameters ---------- corr : :obj: `CategoryCov` square 2D correlation matrix std : 1d iterable array of standard deviations Returns ------- :obj: `CategoryCov` covariance matrix Examples -------- Initialize index and columns >>> idx = ["A", "B", "C"] >>> std = np.array([1, 2, 3]) >>> corr = sandy.CategoryCov([[1, 0, 2], [0, 3, 0], [2, 0, 1]], index=idx, columns=idx) >>> corr.corr2cov(std) A B C A 1.00000e+00 0.00000e+00 6.00000e+00 B 0.00000e+00 1.20000e+01 0.00000e+00 C 6.00000e+00 0.00000e+00 9.00000e+00 """ cov = corr2cov(self.data, std) index = self.data.index columns = self.data.columns return self.__class__(cov, index=index, columns=columns) @classmethod @cov33csv def from_csv(cls, file, **kwargs): """ Read covariance matrix from csv file using `pandas.read_csv`. Parameters ---------- file: `str` csv file containing covariance matrix (with or w/o indices and columns) kwargs: `dict` keyword arguments to pass to `pd.read_csv` Returns ------- `CategoryCov` object containing covariance matrix Examples -------- Read a 2x2 matrix from a string in csv format. >>> from io import StringIO >>> cov = pd.DataFrame([[1, 0.4],[0.4, 1]]) >>> string = StringIO(cov.to_csv()) >>> sandy.CategoryCov.from_csv(string, index_col=0) 0 1 0 1.00000e+00 4.00000e-01 1 4.00000e-01 1.00000e+00 Now use `pandas.MultiIndex` as `index` and `columns`. This example represents the case of a cross section covariance matrix for `MAT=9437`, `MT=18` and two energy points `[1e-5, 1e6]`. >>> tuples = [(9437, 18, 1e-5), (9437, 18, 1e6)] >>> index = pd.MultiIndex.from_tuples(tuples, names=("MAT", "MT", "E")) >>> cov.index = cov.columns = index >>> string = StringIO(cov.to_csv()) >>> pos = [0, 1, 2] >>> sandy.CategoryCov.from_csv(string, index_col=pos, header=pos) MAT 9437 MT 18 E 1e-05 1000000.0 MAT MT E 9437 18 1.00000e-05 1.00000e+00 4.00000e-01 1.00000e+06 4.00000e-01 1.00000e+00 """ df = pd.read_csv(file, **kwargs) return cls(df) @classmethod def random_corr(cls, size, correlations=True, seed=None, **kwargs): """ >>> sandy.CategoryCov.random_corr(2, seed=1) 0 1 0 1.00000e+00 4.40649e-01 1 4.40649e-01 1.00000e+00 >>> sandy.CategoryCov.random_corr(2, correlations=False, seed=1) 0 1 0 1.00000e+00 0.00000e+00 1 0.00000e+00 1.00000e+00 """ np.random.seed(seed=seed) corr = np.eye(size) if correlations: offdiag = np.random.uniform(-1, 1, size**2).reshape(size, size) up = np.triu(offdiag, 1) else: up = np.zeros([size, size]) corr += up + up.T return cls(corr, **kwargs) @classmethod def random_cov(cls, size, stdmin=0.0, stdmax=1.0, correlations=True, seed=None, **kwargs): """ Construct a covariance matrix with random values Parameters ---------- size : `int` Dimension of the original matrix stdmin : `float`, default is 0 minimum value of the uniform standard deviation vector stdmax : `float`, default is 1 maximum value of the uniform standard deviation vector correlation : `bool`, default is True flag to insert the random correlations in the covariance matrix seed : `int`, optional, default is `None` seed for the random number generator (by default use `numpy` dafault pseudo-random number generator) Returns ------- `CategoryCov` object containing covariance matrix Examples -------- >>> sandy.CategoryCov.random_cov(2, seed=1) 0 1 0 2.15373e-02 5.97134e-03 1 5.97134e-03 8.52642e-03 """ corr = random_corr(size, correlations=correlations, seed=seed) std = np.random.uniform(stdmin, stdmax, size) return CategoryCov(corr).corr2cov(std) def to_sparse(self, method='csr_matrix'): """ Method to extract `CategoryCov` values into a sparse matrix Parameters ---------- method : `str`, optional SciPy 2-D sparse matrix. The default is 'csr_matrix'. Methods ------- `csr_matrix`: Compressed Sparse Row matrix. `bsr_matrix`: Block Sparse Row matrix. `coo_matrix`: A sparse matrix in COOrdinate format. `csc_matrix`: Compressed Sparse Column matrix. `dia_matrix`: Sparse matrix with DIAgonal storage. `dok_matrix`: Dictionary Of Keys based sparse matrix. `lil_matrix`: Row-based list of lists sparse matrix. Returns ------- data_sp : `scipy.sparse.matrix` `CategoryCov` instance values stored as a sparse matrix """ data = self.data.values if method == 'csr_matrix': data_sp = sps.csr_matrix(data) elif method == 'bsr_matrix': data_sp = sps.bsr_matrix(data) elif method == 'coo_matrix': data_sp = sps.coo_matrix(data) elif method == 'csc_matrix': data_sp = sps.csc_matrix(data) elif method == 'dia_matrix': data_sp = sps.dia_matrix(data) elif method == 'dok_matrix': data_sp = sps.dok_matrix(data) elif method == 'lil_matrix': data_sp = sps.lil_matrix(data) else: raise ValueError('The method does not exist in scipy.sparse') return data_sp def get_L(self, rows=None, tolerance=None): """ Extract lower triangular matrix `L` for which `L*L^T == self`. Parameters ---------- rows : `int`, optional Option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. The default is None. tolerance : `float`, optional, default is `None` replace all eigenvalues smaller than a given tolerance with zeros. Returns ------- `pandas.DataFrame` Cholesky descomposition low triangular matrix. Examples -------- Positive define matrix: >>> a = np.array([[4, 12, -16], [12, 37, -43], [-16, -43, 98]]) >>> sandy.CategoryCov(a).get_L() 0 1 2 0 -2.00000e+00 0.00000e+00 0.00000e+00 1 -6.00000e+00 1.00000e+00 0.00000e+00 2 8.00000e+00 5.00000e+00 3.00000e+00 >>> sandy.CategoryCov(a).get_L(tolerance=0) 0 1 2 0 -2.00000e+00 0.00000e+00 0.00000e+00 1 -6.00000e+00 1.00000e+00 0.00000e+00 2 8.00000e+00 5.00000e+00 3.00000e+00 >>> sandy.CategoryCov(a).get_L(rows=1) 0 1 2 0 -2.00000e+00 0.00000e+00 0.00000e+00 1 -6.00000e+00 1.00000e+00 0.00000e+00 2 8.00000e+00 5.00000e+00 3.00000e+00 Matrix with negative eigenvalues >>> sandy.CategoryCov([[1, -2],[-2, 3]]).get_L(rows=1, tolerance=0) 0 1 0 -1.08204e+00 0.00000e+00 1 1.75078e+00 0.00000e+00 >>> sandy.CategoryCov([[1, -2],[-2, 3]]).get_L(tolerance=0) 0 1 0 -1.08204e+00 0.00000e+00 1 1.75078e+00 0.00000e+00 Decomposition test: >>> L = sandy.CategoryCov(a).get_L() >>> L.dot(L.T) 0 1 2 0 4.00000e+00 1.20000e+01 -1.60000e+01 1 1.20000e+01 3.70000e+01 -4.30000e+01 2 -1.60000e+01 -4.30000e+01 9.80000e+01 Matrix with negative eigenvalues, tolerance of 0: >>> L = sandy.CategoryCov([[1, -2],[-2, 3]]).get_L(rows=1, tolerance=0) >>> L.dot(L.T) 0 1 0 1.17082e+00 -1.89443e+00 1 -1.89443e+00 3.06525e+00 """ index = self.data.index columns = self.data.columns # Reduces the size of the matrix, erasing the zero values nonzero_idxs, cov_reduced = reduce_size(self.data) # Obtain the eigenvalues and eigenvectors: E, V = sandy.CategoryCov(cov_reduced).get_eig(tolerance=tolerance) E = sps.diags(np.sqrt(E)).toarray() # Construct the matrix: rows_ = cov_reduced.shape[0] if rows is None else rows A = sandy.cov.sparse_tables_dot(V, E, rows=rows_).T.toarray() # QR decomposition: Q, R = scipy.linalg.qr(A) L_redu = R.T # Original size L = restore_size(nonzero_idxs, L_redu, len(self.data)).values return pd.DataFrame(L, index=index, columns=columns) class EnergyCov(CategoryCov): """ Dataframe for a multigroup covariance matrix. .. note:: It is assumed that the covariance matrix is defined over multi-group energy grids. Only 'zero' interpolation is supported. Attributes ---------- data : `pandas.DataFrame` covariance matrix as a dataframe Methods ------- add change_grid from_lb1 from_lb2 from_lb5_sym from_lb5_asym from_lb6 sum_covs Raises ------ `sandy.Error` if index values are not monotonically increasing `sandy.Error` if columns values are not monotonically increasing """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) @property def data(self): """ Covariance matrix as a dataframe. Attributes ---------- index : `pandas.Index` indices columns : `pandas.MultiIndex` indices values : `numpy.array` covariance values as `float` Returns ------- `pandas.DataFrame` covariance matrix Raises ------ `sandy.Error` if `index` or `columns` are not monotonically increasing """ return self._data @data.setter def data(self, data): self._data = pd.DataFrame(data) self._data.index = pd.Index( self._data.index.values, name="E", ) self._data.columns = pd.Index( self._data.columns.values, name="E", ) if not self._data.index.is_monotonic_increasing: raise sandy.Error("index values are not monotonically increasing") if not self._data.columns.is_monotonic_increasing: raise sandy.Error("columns values are not monotonically " "increasing") def change_grid(self, ex, ey, inplace=False): """ Given one energy grid for the x-axis and one energy grid for the y-axis, interpolate/extrapolate the covariance matrix over the new points using the *forward-filling* method. .. important:: * backward extrapolated values (e.g. below threshold) are replaced by 0 * forward extrapolated values (e.g. above 20 MeV) are replaced by the covariance coefficient that refers to the last point in the original grid Parameters ---------- ex : `iterable` energy grid for the x-axis ey : `iterable` energy grid for the y-axis Returns ------- `sandy.EnergyCov` Covariance matrix interpolated over the new axes. Examples -------- >>> eg = [1e-2, 1e6] >>> C = sandy.EnergyCov.random_corr(2, seed=1, index=eg, columns=eg) >>> C.change_grid([0, 1, 1e6, 1e7], [0, 1, 1e6, 1e7]) E 0.00000e+00 1.00000e+00 1.00000e+06 1.00000e+07 E 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 4.40649e-01 4.40649e-01 1.00000e+06 0.00000e+00 4.40649e-01 1.00000e+00 1.00000e+00 1.00000e+07 0.00000e+00 4.40649e-01 1.00000e+00 1.00000e+00 """ df = self.data.reindex(index=ex, method="ffill") \ .reindex(columns=ey, method="ffill") \ .fillna(0) if not inplace: return self.__class__(df) self.data = df def _plot_matrix(self, ax, xscale='log', yscale='log', cmap='bwr', vmin=-1, vmax=1, emin=1e-5, emax=2e7, **kwargs): new_xgrid = np.unique([*self.data.index, *[emin, emax]]) new_ygrid = np.unique([*self.data.columns, *[emin, emax]]) data = self.change_grid(ex=new_xgrid, ey=new_ygrid).data X, Y = np.meshgrid(data.index.values, data.columns.values) qmesh = ax.pcolormesh( X.T, Y.T, data.values, cmap=cmap, vmin=vmin, vmax=vmax, **kwargs, ) ax.set_xlim([emin, emax]) ax.set_ylim([emin, emax]) plt.colorbar(qmesh) ax.set_xscale(xscale) ax.set_yscale(yscale) return ax def add(self, cov, inplace=False): """ Add the content of another `EnergyCov` (sum). If the energy grids do not match, interpolate. Parameters ---------- cov : `sandy.EnergyCov` multigroup covariance matrices (axes can be different) inplace : `bool`, optional, default is `False` flag to operate **inplace** Returns ------- `sandy.EnergyCov` Multi-group covariance matrix. Examples -------- >>> eg = [1e-2, 1e6] >>> C = sandy.EnergyCov.random_corr(2, seed=1, index=eg, columns=eg) >>> C.add(C) E 1.00000e-02 1.00000e+06 E 1.00000e-02 2.00000e+00 8.81298e-01 1.00000e+06 8.81298e-01 2.00000e+00 >>> eg = [1e-1, 1] >>> D = sandy.EnergyCov.random_corr(2, seed=5, index=eg, columns=eg) >>> C.add(D) E 1.00000e-02 1.00000e-01 1.00000e+00 1.00000e+06 E 1.00000e-02 1.00000e+00 1.00000e+00 1.00000e+00 4.40649e-01 1.00000e-01 1.00000e+00 2.00000e+00 1.74146e+00 1.18211e+00 1.00000e+00 1.00000e+00 1.74146e+00 2.00000e+00 1.44065e+00 1.00000e+06 4.40649e-01 1.18211e+00 1.44065e+00 2.00000e+00 >>> assert C.add(D).data.equals(D.add(C).data) """ ex = np.unique([*self.data.index, *cov.data.index]) ey = np.unique([*self.data.columns, *cov.data.columns]) x = self.change_grid(ex, ey) y = cov.change_grid(ex, ey) data = x.data.add(y.data) if inplace: self.data = data else: return self.__class__(data) @classmethod def sum_covs(cls, *covs): """ Sum multigroup covariance matrices into a single one. Parameters ---------- covs : iterable of `sandy.EnergyCov` list of multigroup covariance matrices (axes can be different) Returns ------- `sandy.EnergyCov` Multi-group covariance matrix. Examples -------- Sum two 2x2 correlation matrices with different indices and columns >>> eg = [1e-2, 1e6] >>> C = sandy.EnergyCov.random_corr(2, seed=1, index=eg, columns=eg) >>> eg = [1e-1, 1] >>> D = sandy.EnergyCov.random_corr(2, seed=5, index=eg, columns=eg) >>> sandy.EnergyCov.sum_covs(C, D) E 1.00000e-02 1.00000e-01 1.00000e+00 1.00000e+06 E 1.00000e-02 1.00000e+00 1.00000e+00 1.00000e+00 4.40649e-01 1.00000e-01 1.00000e+00 2.00000e+00 1.74146e+00 1.18211e+00 1.00000e+00 1.00000e+00 1.74146e+00 2.00000e+00 1.44065e+00 1.00000e+06 4.40649e-01 1.18211e+00 1.44065e+00 2.00000e+00 """ return functools.reduce(lambda x, y: x.add(y), covs) @classmethod def from_lb1(cls, evalues, fvalues): """Extract square covariance matrix from NI-type sub-subsection data with flag `lb=1`. Parameters ---------- evalues : iterable covariance energy grid (same for both axes) fvalues : iterable array of F-values (covriance matrix diagonal) Returns ------- `sandy.EnergyCov` Multi-group covariance matrix. """ cov = np.diag(fvalues) return cls(cov, index=evalues, columns=evalues) @classmethod def from_lb2(cls, evalues, fvalues): """Extract square covariance matrix from NI-type sub-subsection data with flag `lb=2`. Parameters ---------- evalues : `iterable` covariance energy grid for both axis fvalues : `iterable` array of F-values Returns ------- `sandy.formats.utils.EnergyCov` Multi-group covariance matrix. """ f = np.array(fvalues) cov = f*f.reshape(-1,1) return cls(cov, index=evalues, columns=evalues) @classmethod def from_lb5_sym(cls, evalues, fvalues): """Extract square symmetric covariance matrix from NI-type sub-subsection data with flag `lb=5`. Parameters ---------- evalues : `iterable` covariance energy grid for both axis fvalues : `iterable` array of F-values (flattened upper triangular matrix coefficients) Returns ------- `sandy.formats.utils.EnergyCov` Multi-group covariance matrix. """ ne = len(evalues) cov = np.zeros([ne - 1, ne - 1]) indices = np.triu_indices(ne - 1) cov[indices] = np.array(fvalues) cov += np.triu(cov, 1).T # add zero row and column at the end of the matrix cov = np.insert(cov, cov.shape[0], [0]*cov.shape[1], axis=0) cov = np.insert(cov, cov.shape[1], [0]*cov.shape[0], axis=1) return cls(cov, index=evalues, columns=evalues) @classmethod def from_lb5_asym(cls, evalues, fvalues): """ Extract square asymmetric covariance matrix from NI-type sub-subsection data with flag `lb=5`. Parameters ---------- evalues : `iterable` covariance energy grid for both axis fvalues : `iterable` array of F-values (flattened full matrix) Returns ------- `sandy.formats.utils.EnergyCov` Multi-group covariance matrix. """ ne = len(evalues) cov = np.array(fvalues).reshape(ne - 1, ne - 1) # add zero row and column at the end of the matrix cov = np.insert(cov, cov.shape[0], [0]*cov.shape[1], axis=0) cov = np.insert(cov, cov.shape[1], [0]*cov.shape[0], axis=1) return cls(cov, index=evalues, columns=evalues) @classmethod def from_lb6(cls, evalues_r, evalues_c, fvalues): """Extract covariance matrix from NI-type sub-subsection data with flag `lb6`. Parameters ---------- evalues_r : `iterable` covariance energy grid for row axis evalues_c : `iterable` covariance energy grid for column axis fvalues : `iterable` array of F-values (flattened full matrix) Returns ------- `sandy.formats.utils.EnergyCov` Multi-group covariance matrix. """ ner = len(evalues_r) nec = len(evalues_c) cov = np.array(fvalues).reshape(ner-1, nec-1) # add zero row and column at the end of the matrix cov = np.insert(cov, cov.shape[0], [0]*cov.shape[1], axis=0) cov = np.insert(cov, cov.shape[1], [0]*cov.shape[0], axis=1) return cls(cov, index=evalues_r, columns=evalues_c) class GlobalCov(CategoryCov): @classmethod def from_list(cls, iterable): """ Extract global cross section/nubar covariance matrix from iterables of `EnergyCovs`. Parameters ---------- iterable : iterable list of tuples/lists/iterables with content `[mat, mt, mat1, mt1, EnergyCov]` Returns ------- `XsCov` or `pandas.DataFrame` global cross section/nubar covariance matrix (empty dataframe if no covariance matrix was found) """ columns = ["KEYS_ROWS", "KEYS_COLS", "COV"] # Reindex the cross-reaction matrices covs = pd.DataFrame.from_records(iterable).set_axis(columns, axis=1).set_index(columns[:-1]).COV for (keys_rows,keys_cols), cov in covs.iteritems(): if keys_rows == keys_cols: # diagonal terms if cov.data.shape[0] != cov.data.shape[1]: raise SandyError("non-symmetric covariance matrix for ({}, {})".format(keys_rows, keys_cols)) if not np.allclose(cov.data, cov.data.T): raise SandyError("non-symmetric covariance matrix for ({}, {})".format(keys_rows, keys_cols)) else: # off-diagonal terms condition1 = (keys_rows,keys_rows) in covs.index condition2 = (keys_cols,keys_cols) in covs.index if not (condition1 and condition2): covs[keys_rows,keys_cols] = np.nan logging.warn("skip covariance matrix for ({}, {})".format(keys_rows, keys_cols)) continue ex = covs[keys_rows,keys_rows].data.index.values ey = covs[keys_cols,keys_cols].data.columns.values covs[keys_rows,keys_cols] = cov.change_grid(ex, ey) covs.dropna(inplace=True) if covs.empty: logging.warn("covariance matrix is empty") return pd.DataFrame() # Create index for global matrix rows_levels = covs.index.levels[0] indexlist = [(*keys,e) for keys in rows_levels for e in covs[(keys,keys)].data.index.values] index = pd.MultiIndex.from_tuples(indexlist, names=cls.labels) # Create global matrix matrix = np.zeros((len(index),len(index))) for (keys_rows,keys_cols), cov in covs.iteritems(): ix = index.get_loc(keys_rows) ix1 = index.get_loc(keys_cols) matrix[ix.start:ix.stop,ix1.start:ix1.stop] = cov.data if keys_rows != keys_cols: matrix[ix1.start:ix1.stop,ix.start:ix.stop] = cov.data.T return cls(matrix, index=index, columns=index) def corr2cov(corr, s): """ Produce covariance matrix given correlation matrix and standard deviation array. Parameters ---------- corr : 2D iterable square 2D correlation matrix s : 1D iterable 1D iterable with standard deviations Returns ------- `numpy.ndarray` square 2D covariance matrix Examples -------- Test with integers >>> s = np.array([1, 2, 3]) >>> corr = np.array([[1, 0, 2], [0, 3, 0], [2, 0, 1]]) >>> corr2cov(corr, s) array([[ 1, 0, 6], [ 0, 12, 0], [ 6, 0, 9]]) Test with float >>> corr2cov(corr, s.astype(float)) array([[ 1., 0., 6.], [ 0., 12., 0.], [ 6., 0., 9.]]) """ s_ = np.diag(s) return s_.dot(corr.dot(s_)) def sparse_tables_dot(a, b, rows=1000): """ Function to perform multiplications between matrices stored on local disk instead of memory. Parameters ---------- a : 2D iterable Matrix. b : 2D iterable Matrix. rows : `int`, optional. Number of rows to be calculated in each loop. The default is 1000. Returns ------- dot_product : "scipy.sparse.csc_matrix" The multiplication of 2 matrix. """ a_ = sps.csr_matrix(a) b_ = sps.csc_matrix(b) l, n = a_.shape[0], b_.shape[1] f = tb.open_file('dot.h5', 'w') filters = tb.Filters(complevel=5, complib='blosc') out_data = f.create_earray(f.root, 'data', tb.Float64Atom(), shape=(0,), filters=filters) out_indices = f.create_earray(f.root, 'indices', tb.Int64Atom(), shape=(0,), filters=filters) out_indptr = f.create_earray(f.root, 'indptr', tb.Int64Atom(), shape=(0,), filters=filters) out_indptr.append(np.array([0])) max_indptr = 0 for i in range(0, l, rows): res = a_[i:min(i+rows, l), :].dot(b_) out_data.append(res.data) indices = res.indices indptr = res.indptr out_indices.append(indices) out_indptr.append(max_indptr+indptr[1:]) max_indptr += indices.shape[0] f.flush() dot_product = sps.csr_matrix((f.root.data[:], f.root.indices[:], f.root.indptr[:]), shape=(l, n)) f.close() os.remove('dot.h5') return dot_product def sparse_tables_dot_multiple(matrix_list, rows=1000): """ Function to perform multiplications between matrices stored on local disk instead of memory. Parameters ---------- matrix_list : 1D iterables Iterable with the matrix inside rows : `int`, optional. Number of rows to be calculated in each loop. The default is 1000. Returns ------- matrix : "scipy.sparse.csc_matrix" Result of the multiplication of 2 matrix. Example ------- >>> S = np.array([[1, 2], [3, 4]]) >>> cov = sandy.CategoryCov.from_var([1, 1]).data.values >>> sparse_tables_dot_multiple([S, cov, S.T], 1) array([[ 5., 11.], [11., 25.]]) """ matrix = matrix_list[0] for b in matrix_list[1::]: intermediate_matrix = sparse_tables_dot(matrix, b, rows=rows) matrix = intermediate_matrix return matrix.toarray() def sparse_tables_inv(a, rows=1000): """ Function to perform matrix inversion stored on local disk instead of memory. Parameters ---------- a : 2D iterable Matrix to be inverted. rows : `int`, optional. Number of rows to be calculated in each loop. The default is 1000. Returns ------- invert_matrix : "numpy.ndarray" The inverted matrix. Example ------- >>> S = sandy.CategoryCov(np.diag(np.array([1, 2, 3]))).data.values >>> sandy.cov.sparse_tables_inv(S, 1).round(2) array([[1. , 0. , 0. ], [0. , 0.5 , 0. ], [0. , 0. , 0.33]]) """ a_ = sps.csc_matrix(a) l, n = a_.shape[0], a_.shape[1] LU = spsl.splu(a_) f = tb.open_file('inv.h5', 'w') filters = tb.Filters(complevel=5, complib='blosc') out_data = f.create_carray(f.root, 'data', tb.Float64Atom(), shape=(l, n), filters=filters) Identity = np.hsplit(sps.diags([1], shape=a_.shape).toarray(), l/rows) j = 0 for i in range(0, l, rows): I_split = Identity[j] tmpResult = LU.solve(I_split) out_data[:, i:min(i+rows, l)] = tmpResult f.flush() j += 1 invert_matrix = sps.csr_matrix(out_data).toarray() f.close() os.remove('inv.h5') return invert_matrix def segmented_pivot_table(data_stack, index, columns, values, rows=10000000): """ Create a pivot table from a stacked dataframe. Parameters ---------- data_stack : `pd.Dataframe` Stacked dataframe. index : 1D iterable, optional Index of the final covariance matrix. columns : 1D iterable, optional Columns of the final covariance matrix. values : `str`, optional Name of the column where the values are located. rows : `int`, optional Number of rows to take into account into each loop. The default is 10000000. Returns ------- pivot_matrix : `pd.DataFrame` Covariance matrix created from a stacked data Examples -------- >>> S = pd.DataFrame(np.array([[1, 1, 1], [0, 2, 1], [0, 0, 1]])) >>> S = S.stack().reset_index().rename(columns = {'level_0': 'dim1', 'level_1': 'dim2', 0: 'cov'}) >>> sandy.cov.segmented_pivot_table(S, index=['dim1'], columns=['dim2'], values='cov') dim2 0 1 2 dim1 0 1 1 1 1 0 2 1 2 0 0 1 >>> sandy.cov.segmented_pivot_table(S, index=['dim1'], columns=['dim2'], values='cov', rows=1) dim2 0 1 2 dim1 0 1.00000e+00 1.00000e+00 1.00000e+00 1 0.00000e+00 2.00000e+00 1.00000e+00 2 0.00000e+00 0.00000e+00 1.00000e+00 """ size = data_stack.shape[0] pivot_matrix = [] for i in range(0, size, rows): partial_pivot = data_stack[i: min(i+rows, size)].pivot_table( index=index, columns=columns, values=values, fill_value=0, aggfunc=np.sum, ) pivot_matrix.append(partial_pivot) pivot_matrix =
pd.concat(pivot_matrix)
pandas.concat
# -*- coding: utf-8 -*- # pylint: disable-msg=W0612,E1101 import itertools import warnings from warnings import catch_warnings from datetime import datetime from pandas.types.common import (is_integer_dtype, is_float_dtype, is_scalar) from pandas.compat import range, lrange, lzip, StringIO, lmap from pandas.tslib import NaT from numpy import nan from numpy.random import randn import numpy as np import pandas as pd from pandas import option_context from pandas.core.indexing import _non_reducing_slice, _maybe_numeric_slice from pandas.core.api import (DataFrame, Index, Series, Panel, isnull, MultiIndex, Timestamp, Timedelta, UInt64Index) from pandas.formats.printing import pprint_thing from pandas import concat from pandas.core.common import PerformanceWarning from pandas.tests.indexing.common import _mklbl import pandas.util.testing as tm from pandas import date_range _verbose = False # ------------------------------------------------------------------------ # Indexing test cases def _generate_indices(f, values=False): """ generate the indicies if values is True , use the axis values is False, use the range """ axes = f.axes if values: axes = [lrange(len(a)) for a in axes] return itertools.product(*axes) def _get_value(f, i, values=False): """ return the value for the location i """ # check agains values if values: return f.values[i] # this is equiv of f[col][row]..... # v = f # for a in reversed(i): # v = v.__getitem__(a) # return v with catch_warnings(record=True): return f.ix[i] def _get_result(obj, method, key, axis): """ return the result for this obj with this key and this axis """ if isinstance(key, dict): key = key[axis] # use an artifical conversion to map the key as integers to the labels # so ix can work for comparisions if method == 'indexer': method = 'ix' key = obj._get_axis(axis)[key] # in case we actually want 0 index slicing try: xp = getattr(obj, method).__getitem__(_axify(obj, key, axis)) except: xp = getattr(obj, method).__getitem__(key) return xp def _axify(obj, key, axis): # create a tuple accessor axes = [slice(None)] * obj.ndim axes[axis] = key return tuple(axes) class TestIndexing(tm.TestCase): _objs = set(['series', 'frame', 'panel']) _typs = set(['ints', 'uints', 'labels', 'mixed', 'ts', 'floats', 'empty', 'ts_rev']) def setUp(self): self.series_ints = Series(np.random.rand(4), index=lrange(0, 8, 2)) self.frame_ints = DataFrame(np.random.randn(4, 4), index=lrange(0, 8, 2), columns=lrange(0, 12, 3)) self.panel_ints = Panel(np.random.rand(4, 4, 4), items=lrange(0, 8, 2), major_axis=lrange(0, 12, 3), minor_axis=lrange(0, 16, 4)) self.series_uints = Series(np.random.rand(4), index=UInt64Index(lrange(0, 8, 2))) self.frame_uints = DataFrame(np.random.randn(4, 4), index=UInt64Index(lrange(0, 8, 2)), columns=UInt64Index(lrange(0, 12, 3))) self.panel_uints = Panel(np.random.rand(4, 4, 4), items=UInt64Index(lrange(0, 8, 2)), major_axis=UInt64Index(lrange(0, 12, 3)), minor_axis=UInt64Index(lrange(0, 16, 4))) self.series_labels = Series(np.random.randn(4), index=list('abcd')) self.frame_labels = DataFrame(np.random.randn(4, 4), index=list('abcd'), columns=list('ABCD')) self.panel_labels = Panel(np.random.randn(4, 4, 4), items=list('abcd'), major_axis=list('ABCD'), minor_axis=list('ZYXW')) self.series_mixed = Series(np.random.randn(4), index=[2, 4, 'null', 8]) self.frame_mixed = DataFrame(np.random.randn(4, 4), index=[2, 4, 'null', 8]) self.panel_mixed = Panel(np.random.randn(4, 4, 4), items=[2, 4, 'null', 8]) self.series_ts = Series(np.random.randn(4), index=date_range('20130101', periods=4)) self.frame_ts = DataFrame(np.random.randn(4, 4), index=date_range('20130101', periods=4)) self.panel_ts = Panel(np.random.randn(4, 4, 4), items=date_range('20130101', periods=4)) dates_rev = (date_range('20130101', periods=4) .sort_values(ascending=False)) self.series_ts_rev = Series(np.random.randn(4), index=dates_rev) self.frame_ts_rev = DataFrame(np.random.randn(4, 4), index=dates_rev) self.panel_ts_rev = Panel(np.random.randn(4, 4, 4), items=dates_rev) self.frame_empty = DataFrame({}) self.series_empty = Series({}) self.panel_empty = Panel({}) # form agglomerates for o in self._objs: d = dict() for t in self._typs: d[t] = getattr(self, '%s_%s' % (o, t), None) setattr(self, o, d) def check_values(self, f, func, values=False): if f is None: return axes = f.axes indicies = itertools.product(*axes) for i in indicies: result = getattr(f, func)[i] # check agains values if values: expected = f.values[i] else: expected = f for a in reversed(i): expected = expected.__getitem__(a) tm.assert_almost_equal(result, expected) def check_result(self, name, method1, key1, method2, key2, typs=None, objs=None, axes=None, fails=None): def _eq(t, o, a, obj, k1, k2): """ compare equal for these 2 keys """ if a is not None and a > obj.ndim - 1: return def _print(result, error=None): if error is not None: error = str(error) v = ("%-16.16s [%-16.16s]: [typ->%-8.8s,obj->%-8.8s," "key1->(%-4.4s),key2->(%-4.4s),axis->%s] %s" % (name, result, t, o, method1, method2, a, error or '')) if _verbose: pprint_thing(v) try: rs = getattr(obj, method1).__getitem__(_axify(obj, k1, a)) try: xp = _get_result(obj, method2, k2, a) except: result = 'no comp' _print(result) return detail = None try: if is_scalar(rs) and is_scalar(xp): self.assertEqual(rs, xp) elif xp.ndim == 1: tm.assert_series_equal(rs, xp) elif xp.ndim == 2: tm.assert_frame_equal(rs, xp) elif xp.ndim == 3: tm.assert_panel_equal(rs, xp) result = 'ok' except AssertionError as e: detail = str(e) result = 'fail' # reverse the checks if fails is True: if result == 'fail': result = 'ok (fail)' _print(result) if not result.startswith('ok'): raise AssertionError(detail) except AssertionError: raise except Exception as detail: # if we are in fails, the ok, otherwise raise it if fails is not None: if isinstance(detail, fails): result = 'ok (%s)' % type(detail).__name__ _print(result) return result = type(detail).__name__ raise AssertionError(_print(result, error=detail)) if typs is None: typs = self._typs if objs is None: objs = self._objs if axes is not None: if not isinstance(axes, (tuple, list)): axes = [axes] else: axes = list(axes) else: axes = [0, 1, 2] # check for o in objs: if o not in self._objs: continue d = getattr(self, o) for a in axes: for t in typs: if t not in self._typs: continue obj = d[t] if obj is not None: obj = obj.copy() k2 = key2 _eq(t, o, a, obj, key1, k2) def test_ix_deprecation(self): # GH 15114 df = DataFrame({'A': [1, 2, 3]}) with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): df.ix[1, 'A'] def test_indexer_caching(self): # GH5727 # make sure that indexers are in the _internal_names_set n = 1000001 arrays = [lrange(n), lrange(n)] index = MultiIndex.from_tuples(lzip(*arrays)) s = Series(np.zeros(n), index=index) str(s) # setitem expected = Series(np.ones(n), index=index) s = Series(np.zeros(n), index=index) s[s == 0] = 1 tm.assert_series_equal(s, expected) def test_at_and_iat_get(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: result = getattr(f, func)[i] expected = _get_value(f, i, values) tm.assert_almost_equal(result, expected) for o in self._objs: d = getattr(self, o) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, self.check_values, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_and_iat_set(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: getattr(f, func)[i] = 1 expected = _get_value(f, i, values) tm.assert_almost_equal(expected, 1) for t in self._objs: d = getattr(self, t) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, _check, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_iat_coercion(self): # as timestamp is not a tuple! dates = date_range('1/1/2000', periods=8) df = DataFrame(randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) s = df['A'] result = s.at[dates[5]] xp = s.values[5] self.assertEqual(result, xp) # GH 7729 # make sure we are boxing the returns s = Series(['2014-01-01', '2014-02-02'], dtype='datetime64[ns]') expected = Timestamp('2014-02-02') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) s = Series(['1 days', '2 days'], dtype='timedelta64[ns]') expected = Timedelta('2 days') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) def test_iat_invalid_args(self): pass def test_imethods_with_dups(self): # GH6493 # iat/iloc with dups s = Series(range(5), index=[1, 1, 2, 2, 3], dtype='int64') result = s.iloc[2] self.assertEqual(result, 2) result = s.iat[2] self.assertEqual(result, 2) self.assertRaises(IndexError, lambda: s.iat[10]) self.assertRaises(IndexError, lambda: s.iat[-10]) result = s.iloc[[2, 3]] expected = Series([2, 3], [2, 2], dtype='int64') tm.assert_series_equal(result, expected) df = s.to_frame() result = df.iloc[2] expected = Series(2, index=[0], name=2) tm.assert_series_equal(result, expected) result = df.iat[2, 0] expected = 2 self.assertEqual(result, 2) def test_repeated_getitem_dups(self): # GH 5678 # repeated gettitems on a dup index returing a ndarray df = DataFrame( np.random.random_sample((20, 5)), index=['ABCDE' [x % 5] for x in range(20)]) expected = df.loc['A', 0] result = df.loc[:, 0].loc['A'] tm.assert_series_equal(result, expected) def test_iloc_exceeds_bounds(self): # GH6296 # iloc should allow indexers that exceed the bounds df = DataFrame(np.random.random_sample((20, 5)), columns=list('ABCDE')) expected = df # lists of positions should raise IndexErrror! with tm.assertRaisesRegexp(IndexError, 'positional indexers are out-of-bounds'): df.iloc[:, [0, 1, 2, 3, 4, 5]] self.assertRaises(IndexError, lambda: df.iloc[[1, 30]]) self.assertRaises(IndexError, lambda: df.iloc[[1, -30]]) self.assertRaises(IndexError, lambda: df.iloc[[100]]) s = df['A'] self.assertRaises(IndexError, lambda: s.iloc[[100]]) self.assertRaises(IndexError, lambda: s.iloc[[-100]]) # still raise on a single indexer msg = 'single positional indexer is out-of-bounds' with tm.assertRaisesRegexp(IndexError, msg): df.iloc[30] self.assertRaises(IndexError, lambda: df.iloc[-30]) # GH10779 # single positive/negative indexer exceeding Series bounds should raise # an IndexError with tm.assertRaisesRegexp(IndexError, msg): s.iloc[30] self.assertRaises(IndexError, lambda: s.iloc[-30]) # slices are ok result = df.iloc[:, 4:10] # 0 < start < len < stop expected = df.iloc[:, 4:] tm.assert_frame_equal(result, expected) result = df.iloc[:, -4:-10] # stop < 0 < start < len expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4:-1] # 0 < stop < len < start (down) expected = df.iloc[:, :4:-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, 4:-10:-1] # stop < 0 < start < len (down) expected = df.iloc[:, 4::-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:4] # start < 0 < stop < len expected = df.iloc[:, :4] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4] # 0 < stop < len < start expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:-11:-1] # stop < start < 0 < len (down) expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:11] # 0 < len < start < stop expected = df.iloc[:, :0]
tm.assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
''' calculate intrinsic economic value of a property based on buy or rent decision indifference (arbitrage) Rent = Price*mortgage_rate + DEPRECIATION_RATE*min(Building, Price) - growth * Land + Price*tax - (Price - 24k) * tax_braket + Price * mortgage_insurance ''' ### PATHES to change HOST = "/home/invisement/PROJECTS/inVisement2/apps-workshop/" INPUT_PATH = HOST + "data/" OUTPUT_PATH = HOST + "data/" def main(): ''' read all input files, prepare housing table, calculate intrinsic value, add return columns, and save output ''' housing_table = read_and_join_input_files() housing_table = prepare_housing_valuation_table(housing_table) housing_table['intrinsic house value'] = calculate_intrinsic_value (housing_table).round() housing_table["total return"] = (housing_table['intrinsic house value'] - housing_table['house price'])/housing_table['house price'] housing_table['net annual return'] = housing_table['total return'] * (housing_table['mortgage rate']+PMI_RATE) housing_table['annual return'] = housing_table['net annual return'] + housing_table['mortgage rate'] + PMI_RATE return prune_and_save (housing_table) ### LIBRARIES import datetime, pandas as pd, numpy as np ### CONSTANTS PMI_RATE = 0.01 # private mortgage insurance rate FEDERAL_INCOME_TAX_RATE = 0.30 # federal tax bracket rate DEPRECIATION_RATE = 0.03 # home annual depreciation rate for a base home (building) STANDARD_TAX_DEDUCTION = 24000 MAX_MORTGAGE_CREDIT = 1000000 # maximum allowance for tax deduction on mortgage BASE_QUANTILE = 0.3 ### INPUTS PRICE_FILE = INPUT_PATH + "house price by county.csv" RENT_FILE = INPUT_PATH + "rent by county.csv" MORTGAGE_FILE = INPUT_PATH + "mortgage rate 30 year fixed.csv" GROWTH_FILE = INPUT_PATH + "nominal gdp growth.csv" TAX_FILE = INPUT_PATH + "property tax by fips.csv" ### OUTPUTS HOUSING_FILE = OUTPUT_PATH + "housing valuation.csv" LATEST_HOUSING_FILE = OUTPUT_PATH + "latest housing valuation.csv" ### FUNCTIONS def read_and_join_input_files (base_quantile=BASE_QUANTILE): price = pd.read_csv(PRICE_FILE, dtype=str) price['house price'] = pd.to_numeric(price['house price']) price['fips'] = price['state fips'].str.zfill(2) + price['county fips'].str.zfill(3) price = price.filter(['fips', 'state', 'county', 'date', 'house price']) rent = pd.read_csv(RENT_FILE, dtype=str) rent['rent'] = pd.to_numeric(rent['rent']) * 12 # convert to annual rent['fips'] = rent['state fips'].str.zfill(2) + rent['county fips'].str.zfill(3) rent = rent.filter(["fips", "date", "rent"]) rate = (pd.read_csv(MORTGAGE_FILE) .set_index('date') .rename(columns = {"mortgage rate 30 year fixed": "mortgage rate"}) .filter(["mortgage rate"]) ) rate = rate/100 rate.index = pd.to_datetime(rate.index) average_growth = ( pd.read_csv (GROWTH_FILE, index_col="date")#["nominal gdp growth"] .rename(columns = {"nominal gdp growth": "growth"}) .sort_index() .filter(["growth"]) .rolling(80) .mean() # moving average of nominal growth with 80 quarters ) average_growth = average_growth/100 average_growth.index = pd.to_datetime(average_growth.index) #fips_to_zipcode = pd.read_csv(config['map path']+"zipcode fips mapping.csv") property_tax = pd.read_csv(TAX_FILE).filter(["fips", "property tax rate"]) property_tax['fips'] = property_tax['fips'].astype(str).str.zfill(5) #property_tax_by_zipcode = pd.merge(fips_to_zipcode, property_tax, on=["fips"]).drop_duplicates(subset=['zipcode']).set_index(['zipcode'])['property tax rate'] table = price.merge(rent, how="inner", on=["fips", "date"], suffixes=["", "2"]).sort_values("date") table['date'] =
pd.to_datetime(table['date'])
pandas.to_datetime
import math import numpy as np import datetime as dt import pandas_datareader.data as web import pandas as pd pd.core.common.is_list_like = pd.api.types.is_list_like # Z-score normalization def scale(data): col = data.columns[0] return (data[col] - data[col].mean()) / data[col].std() # 전일 Close price와 금일 Close price를 이용하여 변동성을 계산한다 def CloseVol(ohlc, n): rtn = pd.DataFrame(ohlc['Close']).apply(lambda x: np.log(x) - np.log(x.shift(1))) vol = pd.DataFrame(rtn).rolling(window=n).std() return pd.DataFrame(vol, index=ohlc.index) # Yahoo site로 부터 주가 데이터를 수집 def getStockDataYahoo(stockCode, start='', end=''): # 수집 기간 if start == '': start = dt.datetime(2007, 1, 1) else: start = dt.datetime.strptime(start, '%Y-%m-%d') if end == '': end = dt.date.today() else: end = dt.datetime.strptime(end, '%Y-%m-%d') stock =
pd.DataFrame()
pandas.DataFrame
from __future__ import annotations import re import warnings from enum import Enum, auto from typing import Dict, List, Union, Tuple, Optional import numpy as np import pandas as pd import torch from ..exceptions import TsFileParseException from ..utils import stack_pad class TsTagValuePattern(Enum): """ Enumeration holding the known `.ts` file headers tag value types in the form of regex expressions. """ BOOLEAN = re.compile('(?:tru|fals)e') ANY_CONNECTED_STRING = re.compile('\\w+') INTEGER_NUMBER = re.compile('\\d+') CLASS_LABEL = re.compile('(?:tru|fals)e(?:(?<=true)((?: [^\s]+)+)|(?<=false))') # ((?:tru|fals)e)(?(?<=true)((?: \w+)+))(?=\s) class TsTag(str, Enum): """ Enumeration holding the names of the known `.ts` file tag names. """ PROBLEM_NAME = 'problemName' TIMESTAMPS = 'timeStamps' MISSING = 'missing' EQUAL_LENGTH = 'equalLength' SERIES_LENGTH = 'seriesLength' CLASS_LABEL = 'classLabel' UNIVARIATE = 'univariate' DIMENSIONS = 'dimensions' class TSFileLoader: """ File loader that can load time series files in sktimes `.ts` file format. Args: filepath (str): The path to the `.ts` file. """ class State(Enum): """ TSFileLoader's internal parsing state. """ PREFACE = 0 HEADER = 1 BODY = 2 BODY_TIME_STAMPS = 21 # Dict mapping known `.ts` file header tags to their respective parsing expression header_info: Dict[TsTag, TsTagValuePattern] = { TsTag.PROBLEM_NAME: TsTagValuePattern.ANY_CONNECTED_STRING, TsTag.TIMESTAMPS: TsTagValuePattern.BOOLEAN, TsTag.MISSING: TsTagValuePattern.BOOLEAN, TsTag.EQUAL_LENGTH: TsTagValuePattern.BOOLEAN, TsTag.SERIES_LENGTH: TsTagValuePattern.INTEGER_NUMBER, TsTag.CLASS_LABEL: TsTagValuePattern.CLASS_LABEL, TsTag.UNIVARIATE: TsTagValuePattern.BOOLEAN, TsTag.DIMENSIONS: TsTagValuePattern.INTEGER_NUMBER } required_meta_info: List[TsTag] = [TsTag.PROBLEM_NAME, TsTag.CLASS_LABEL, TsTag.EQUAL_LENGTH, TsTag.MISSING, TsTag.TIMESTAMPS] def as_tensor(self, return_targets: bool = False) -> Union[torch.Tensor, Tuple[torch.Tensor, List[str]]]: """Return the loaded data as a 3 dimensional tensor of the form (N, C, S). Keyword Args: return_targets (bool): Returns: torch.Tensor: A 3 dimensional tensor. """ data_ = [] if len(self.data) == 0: self.parse() for dim in self.data: data_.append(stack_pad(dim)) data_ = torch.permute(torch.stack(data_, dim=-1), (0, 2, 1)) if self.header[TsTag.CLASS_LABEL] and return_targets: return data_, self.targets return data_ def as_dataframe(self, return_targets: bool = False) -> pd.DataFrame: """Return the loaded data as a pandas dataframe. Keyword Args: return_targets (bool): Identifies whether the targets should be included in the returned dataframe. If True, the targets will be added as an additional column 'targets' to the dataframe. This only has an effect if there are class labels available in the datafile that was parsed in the first place. Returns: pd.DataFrame: A nested pandas dataframe holding the dimensions as columns and the number examples as rows, where every cell contains a pandas Series containing a univariate time series. If `return_targets` is set, it will also contain a column 'targets' that contains the class labels of every example. """ data = pd.DataFrame(dtype=np.float32) if len(self.data) == 0: self.parse() for dim in range(0, len(self.data)): data["dim_" + str(dim)] = self.data[dim] if self.header[TsTag.CLASS_LABEL] and return_targets: data["targets"] = self.targets return data def get_classes(self): """Return the classes found in the '.ts' file Returns: List[str]: List of class names as string. """ if self.header[TsTag.CLASS_LABEL]: return self.header[TsTag.CLASS_LABEL] else: raise AttributeError(f"The '.ts' file {self.filename} does not have any class labels") def __init__(self, filepath: str, nan_replace_value: Union[int, float, str] = "NaN"): self.filename = filepath self.line_number = 1 self.file = open(filepath, "r", encoding="utf-8") self.state = self.State.PREFACE self.header = {k: None for k in self.header_info.keys()} self.data = [] self.targets = [] self.dim = None self.series_length = 0 self.timestamp_type = None self.nan_replace_value = nan_replace_value def parse_header(self, line: str) -> None: """Parses a line of a `.ts` file header and updates the internal state of the loader with the extracted information. Args: line (str): The header line to parse. Returns: None """ if not line.startswith("@"): raise TsFileParseException( f"Line number {self.line_number} was interpreted as HEADER but does not start with '@'!" ) line = line[1:] if len(line) == 0: raise TsFileParseException( f"Line number {self.line_number} contains an empty tag!" ) tokens = line.split(" ", maxsplit=1) token_len = len(tokens) if token_len == 1: raise TsFileParseException( f"tag '{tokens[0]}' at line number {self.line_number} requires an associated value!" ) tag = TsTag(tokens[0]) value_pattern = self.header_info[tag] value = value_pattern.value.match(tokens[1]) if value: if len(value.groups()) > 1: raise TsFileParseException( "Value extractor should return exactly ONE match!" ) if len(value.groups()) > 0: value = value.group(1) else: value = value.group(0) self.header[tag] = self.parse_header_value(value, value_pattern) def parse_header_value(self, value: str, value_type: TsTagValuePattern) -> Union[bool, str, int, List[str]]: """Parse a single header value that was extracted by the header line parser and return its value as the appropriate python object. Args: value (str): Extracted header value that should be parsed. value_type (TsTagValuePattern): The expected type of the value, which should be applied. Returns: bool: If the value is of type BOOLEAN. `value` converted to bool str: If the value is of type ANY_CONNECTED_STRING. Returns the stripped value string. List[str]: If the value is of type CLASS_LABEL. Returns a list of space separated string class labels. """ if value_type == TsTagValuePattern.BOOLEAN: return value == 'true' if value_type == TsTagValuePattern.ANY_CONNECTED_STRING: return value.strip() if value_type == TsTagValuePattern.CLASS_LABEL: if value is None: return False return value.strip().split(" ") if value_type == TsTagValuePattern.INTEGER_NUMBER: try: value = int(value) except ValueError: raise TsFileParseException( f"Value '{value}' in line {self.line_number} could not be interpreted as int" ) return value def parse_body(self, line: str) -> None: """Parse a line of the `@data` content of a `.ts` file if `@timeStamps` is `False`. Args: line (str): The `@data` line to parse. Returns: None """ dimensions = line.split(":") if not self.data: if not self.header[TsTag.DIMENSIONS]: warnings.warn("Meta information for '@dimensions' is missing. Inferring from data.", UserWarning, stacklevel=2) self.dim = len(dimensions) # last dimension is the target if self.header[TsTag.CLASS_LABEL]: self.dim -= 1 self.data = [[] for _ in range(self.dim)] # Check dimensionality of the data of the current line # All dimensions should be included for all series, even if they are empty line_dim = len(dimensions) if self.header[TsTag.CLASS_LABEL]: line_dim -= 1 if line_dim != self.dim: raise TsFileParseException( f"Inconsistent number of dimensions. Expecting {self.dim} but got {line_dim} " f"in line number {self.line_number}." ) # Process the data for each dimension for dim in range(0, self.dim): dimension = dimensions[dim].strip() if dimension: dimension = dimension.replace("?", self.nan_replace_value) data_series = dimension.split(",") data_series = [float(i) for i in data_series] dim_len = len(data_series) if self.series_length < dim_len: if not self.header[TsTag.EQUAL_LENGTH]: self.series_length = dim_len else: raise TsFileParseException( f"Series length was given as {self.series_length} but dimension {dim} in line " f"{self.line_number} is of length {dim_len}" ) self.data[dim].append(pd.Series(data_series)) else: self.data[dim].append(
pd.Series(dtype="object")
pandas.Series
import datetime import apimoex import pandas as pd import requests from tqdm import tqdm def get_board_tickers(board={"board": "TQBR", "shares": "shares"}): """This function returns list with tickers available on a specific board. :Input: :board : dict like {'board': 'TQBR', 'shares': 'shares'}, :Output: : tickers - list """ arguments = {"securities.columns": ("SECID," "REGNUMBER," "LOTSIZE," "SHORTNAME")} brd = board.get("board") shares = board.get("shares") request_url = ( "https://iss.moex.com/iss/engines/stock/" f"markets/{shares}/boards/{brd}/securities.json" ) with requests.Session() as session: iss = apimoex.ISSClient(session, request_url, arguments) iis_data = iss.get() board_df = pd.DataFrame(iis_data["securities"]) board_df.set_index("SECID", inplace=True) return board_df.index.tolist() def _download_moex( tickers: list, start_date: datetime, end_date: datetime, boards: list ) -> pd.DataFrame: data = pd.DataFrame() arguments = {"securities.columns": ("SECID," "REGNUMBER," "LOTSIZE," "SHORTNAME")} for board in boards: board_tickers = [] brd = board.get("board") shares = board.get("shares") request_url = ( "https://iss.moex.com/iss/engines/stock/" f"markets/{shares}/boards/{brd}/securities.json" ) with requests.Session() as session: iss = apimoex.ISSClient(session, request_url, arguments) iis_data = iss.get() board_df = pd.DataFrame(iis_data["securities"]) board_df.set_index("SECID", inplace=True) columns = ["TRADEDATE", "WAPRICE", "CLOSE"] stocks_prices = [] if len(tickers) == 0: board_tickers = board_df.index.tolist() else: board_tickers = tickers pbar = tqdm(total=len(board_df.index)) for stock in board_df.index: if stock in board_tickers: stock_data = apimoex.get_board_history( session=session, security=stock, start=start_date, end=end_date, columns=columns, market=shares, board=brd, ) stock_df = pd.DataFrame(stock_data) stock_df["TRADEDATE"] = pd.to_datetime(stock_df["TRADEDATE"]) stock_df.set_index("TRADEDATE", inplace=True) stock_df = pd.concat([stock_df], axis=1, keys=[stock]).swaplevel( 0, 1, 1 ) stocks_prices.append(stock_df) pbar.update(1) pbar.clear() if len(stocks_prices) > 0: data1 = pd.concat(stocks_prices, join="outer", axis=1) if len(data.columns) == 0: data = data1.copy(deep=True) else: data =
pd.concat([data, data1], join="outer", axis=1)
pandas.concat
import pandas as pd from xml.etree import ElementTree as etree from pprint import pprint from yattag import * import pdb #------------------------------------------------------------------------------------------------------------------------ class Line: tierInfo = [] spokenTextID = "" rootElement = None tierElements = [] doc = None lineNumber = None # phoneme tokens and their gloss tokens are equal in number, often different in length, # and displayed in horizontal alignment, each vertical pair in a horizontal space # large enough to holder the longer of the two. for instance, from <NAME> # how daylight was stolen, line 3, fourth word, needs 18 character spaces # gʷә-s-čal # uncertain-means-get # this next member variable holds these values once calculated wordSpacing = [] def __init__(self, doc, lineNumber): self.doc = doc self.lineNumber = lineNumber self.rootElement = self.doc.findall("TIER/ANNOTATION/ALIGNABLE_ANNOTATION")[lineNumber] self.allElements = findChildren(self.doc, self.rootElement) # need tier info to guide traverse self.tierInfo = [doc.attrib for doc in doc.findall("TIER")] # [{'LINGUISTIC_TYPE_REF': 'default-lt', 'TIER_ID': 'AYA'}, # {'LINGUISTIC_TYPE_REF': 'phonemic', 'PARENT_REF': 'AYA', 'TIER_ID': 'AYA2'}, # {'LINGUISTIC_TYPE_REF': 'translation', 'PARENT_REF': 'AYA', 'TIER_ID': 'ENG'}, # {'LINGUISTIC_TYPE_REF': 'translation', 'PARENT_REF': 'AYA2', 'TIER_ID': 'GL'}] self.tbl = buildTable(doc, self.allElements) self.rootSpokenTextID = self.deduceSpokenTextID() self.wordRepresentation = self.deduceWordRepresentation() self.traverseAndClassify() self.words = [] self.glosses = [] self.extractWords() self.wordSpacing = [] if(len(self.words) > 0): self.wordSpacing = [10 for x in range(len(self.words))] #self.deduceStructure() #self.wordSpacing = []; #self.calculateSpacingOfWordsAndTheirGlosses() def getImmediateChildrenOfRoot(self): rootID = self.deduceSpokenTextID() def getTierCount(self): return(len(self.tierElements)) def getTable(self): return(self.tbl) def classifyTier(self, tierNumber): assert(tierNumber < self.getTable().shape[0]) tierInfo = self.getTable().ix[tierNumber].to_dict() tierType = tierInfo['LINGUISTIC_TYPE_REF'] hasTimes = tierInfo['START'] >= 0 and tierInfo['END'] >= 0 hasText = tierInfo['TEXT'] != "" # pdb.set_trace() # the root is the full spoken text, a single string, in practical orthography # is this tier a direct child of root? # 1) the full (untokenized) translation # 2) words, in one of (so far) two representations: # a) phonetic transcription: tab-delimited text, with a child tier of glosses # b) a set of direct children, each with 1 or 2 child elements of their own directRootChildElement = tierInfo["ANNOTATION_REF"] == self.rootSpokenTextID hasChildren = any((self.tbl["ANNOTATION_REF"] == tierInfo["ANNOTATION_ID"]).tolist()) #pdb.set_trace() if(hasTimes): return("spokenText") if(not hasText): return("empty") if(directRootChildElement and hasChildren): return("nativeMorpheme") if(not directRootChildElement and not hasChildren): return("nativeGlossOrFreeTranslation") return("freeTranslation") # hasTokenizedText = False # if(hasText): # hasTokenizedText = tierInfo['TEXT'].find("\t") > 0 # if((hasTimes)): # return("spokenText") # if(tierType == "phonemic" and hasTokenizedText): # return("tokenizedWords") # if(tierType == "translation" and hasTokenizedText): # return("tokenizedGlosses") # if(tierType == "translation" and hasText and not hasTokenizedText): # return("freeTranslation") # return ("unrecognized") #---------------------------------------------------------------------------------------------------- def deduceSpokenTextID(self): return(self.tbl.loc[pd.isnull(self.tbl['ANNOTATION_REF'])]["ANNOTATION_ID"][0]) #---------------------------------------------------------------------------------------------------- def deduceWordRepresentation(self): rootSpokenTextID = self.deduceSpokenTextID() tbl_emptyLinesRemoved = self.tbl.query("TEXT != ''") # do not wish to count children with empty text fields numberOfDirectChildrenOfRoot = tbl_emptyLinesRemoved.ix[self.tbl["ANNOTATION_REF"] == rootSpokenTextID].shape[0] # add test for present but empty word tier, as in monkey line 1 if(numberOfDirectChildrenOfRoot == 1): return("noWords") elif(numberOfDirectChildrenOfRoot == 2): return("tokenizedWords") elif(numberOfDirectChildrenOfRoot > 2): return("wordsDistributedInElements") else: print("unrecognized word representation") #---------------------------------------------------------------------------------------------------- def getWordRepresentation(self): return(self.wordRepresentation) #---------------------------------------------------------------------------------------------------- def traverseAndClassify(self): """ assumes rootSpokenTextID and wordRepresentation have been figured out at present, this method only identifies and assigns the freeTranslationRow """ rootID = self.rootSpokenTextID self.spokenTextRow = self.tbl.ix[self.tbl["ANNOTATION_ID"] == rootID].index[0] tbl = self.tbl # allows more compact expressions self.wordRows = None #pdb.set_trace() # "noWords" "tokenizedWords" "wordsDistributedInElements" if(self.wordRepresentation == "noWords"): self.freeTranslationRow = self.tbl.ix[self.tbl["ANNOTATION_REF"] == rootID].index[0] elif(self.wordRepresentation == "tokenizedWords"): self.freeTranslationRow = tbl[(tbl.HAS_TABS == False) & (tbl.ANNOTATION_REF == self.rootSpokenTextID)].index.tolist()[0] wordRow = tbl[(tbl.ANNOTATION_REF == rootID) & tbl.HAS_TABS].index.tolist()[0] wordRowID = tbl.ix[wordRow, 'ANNOTATION_ID'] glossRow = tbl[tbl.ANNOTATION_REF == wordRowID].index.tolist()[0] self.glossRows = [glossRow] self.wordRows = [wordRow] elif(self.wordRepresentation == "wordsDistributedInElements"): self.freeTranslationRow = tbl[(tbl.HAS_SPACES == True) & (tbl.ANNOTATION_REF == self.rootSpokenTextID)].index.tolist()[0] #---------------------------------------------------------------------------------------------------- def calculateSpacingOfPhonemeAndGlossTokens(self): #phonemesTier = line0.getTable().loc[tbl['LINGUISTIC_TYPE_REF'] == "phonemic"]['TEXT'] #phonemeGlossesTier = line0.getTable().loc[tbl['LINGUISTIC_TYPE_REF'] == "translation"]['TEXT'] # import pdb; pdb.set_trace(); phonemesTierText = self.getTable().ix[1]['TEXT'] phonemeGlossesTierText = self.getTable().ix[3]['TEXT'] phonemes = phonemesTierText.split("\t") phonemeGlosses = phonemeGlossesTierText.split("\t") print(phonemes) print(phonemeGlosses) assert(len(phonemes) == len(phonemeGlosses)) for i in range(len(phonemes)): phonemeSize = len(phonemes[i]) glossSize = len(phonemeGlosses[i]) self.phonemeSpacing.append(max(phonemeSize, glossSize) + 1) #---------------------------------------------------------------------------------------------------- def show(self): pprint(vars(self)) #---------------------------------------------------------------------------------------------------- def getSpokenText(self): return(self.tbl.ix[0, "TEXT"]) #---------------------------------------------------------------------------------------------------- def extractWords(self): tokens = [] if(self.wordRepresentation == "tokenizedWords"): self.words = self.tbl.ix[self.wordRows[0], "TEXT"].split("\t") self.glosses = self.tbl.ix[self.glossRows[0], "TEXT"].split("\t") if(self.wordRepresentation == "wordsDistributedInElements"): tokens = ["not", "figured", "out", "yet"] return(tokens) #---------------------------------------------------------------------------------------------------- def spokenTextToHtml(self, htmlDoc): spokenTextTier = self.spokenTextRow tierObj = self.getTable().ix[spokenTextTier].to_dict() speechText = tierObj['TEXT'] with htmlDoc.tag("div", klass="speech-tier"): htmlDoc.text(speechText) #---------------------------------------------------------------------------------------------------- def wordsToHtml(self, htmlDoc): #tierNumber = self.wordRows[0] #tierObj = self.getTable().ix[tierNumber].to_dict() #phonemes = tierObj['TEXT'].split("\t") #styleString = "grid-template-columns: %s;" % ''.join(["%dch " % len(p) for p in phonemes]) styleString = "grid-template-columns: %s;" % ''.join(["%dch " % p for p in self.wordSpacing]) with htmlDoc.tag("div", klass="phoneme-tier", style=styleString): for word in self.words: with htmlDoc.tag("div", klass="phoneme-cell"): htmlDoc.text(word) #---------------------------------------------------------------------------------------------------- def glossesToHtml(self, htmlDoc): #tierObj = self.getTable().ix[tierNumber].to_dict() #phonemeGlosses = tierObj['TEXT'].split("\t") #styleString = "grid-template-columns: %s;" % ''.join(["%dch " % len(p) for p in phonemeGlosses]) styleString = "grid-template-columns: %s;" % ''.join(["%dch " % p for p in self.wordSpacing]) with htmlDoc.tag("div", klass="phoneme-tier", style=styleString): for gloss in self.glosses: with htmlDoc.tag("div", klass="phoneme-cell"): htmlDoc.text(gloss) #---------------------------------------------------------------------------------------------------- def freeTranslationToHtml(self, htmlDoc): freeTranslationTier = self.freeTranslationRow tierObj = self.getTable().ix[freeTranslationTier].to_dict() speechText = tierObj['TEXT'] with htmlDoc.tag("div", klass="freeTranslation-tier"): htmlDoc.text(speechText) #---------------------------------------------------------------------------------------------------- def getHtmlHead(self): playerLibrary = open("player2.js").read(); #s = "<head><script src='http://localhost:9999/player2.js'></script></head>" s = "<head></head>" return(s) #---------------------------------------------------------------------------------------------------- def toHtml(self): print("toHtml, nothing here yet") #---------------------------------------------------------------------------------------------------- def tmp(self): # should be exactly one alignable tier, so it is safe to get the first one found alignableTierType_id = self.doc.find("LINGUISTIC_TYPE[@TIME_ALIGNABLE='true']").attrib["LINGUISTIC_TYPE_ID"] pattern = "TIER[@LINGUISTIC_TYPE_REF='%s']" % alignableTierType_id alignableTierId = self.doc.find(pattern).attrib["TIER_ID"] # we could use alignableTierId to select the tier, then the ALIGNABLE_ANNOTATION[lineNumber] # but the ALIGNABLE_ANNOTATION[lineNumber] tag accomplishes the same thing alignableElement = self.doc.findall("TIER/ANNOTATION/ALIGNABLE_ANNOTATION")[lineNumber] alignableElementId = alignableElement.attrib["ANNOTATION_ID"] timeSlot1 = alignableElement.attrib["TIME_SLOT_REF1"] timeSlot2 = alignableElement.attrib["TIME_SLOT_REF2"] #------------------------------------------------------------------------------------------------------------------------ def findChildren(doc, rootElement): elementsToDo = [rootElement] elementsCompleted = [] while(len(elementsToDo) > 0): currentElement = elementsToDo[0] parentRef = currentElement.attrib["ANNOTATION_ID"] pattern = "TIER/ANNOTATION/REF_ANNOTATION[@ANNOTATION_REF='%s']" % parentRef childElements = doc.findall(pattern) elementsToDo.remove(currentElement) elementsCompleted.append(currentElement) if(len(childElements) > 0): elementsToDo.extend(childElements) return(elementsCompleted) #------------------------------------------------------------------------------------------------------------------------ def buildTable(doc, lineElements): tbl_elements =
pd.DataFrame(e.attrib for e in lineElements)
pandas.DataFrame
import pandas as pd import os import numpy as np SUMMARY_RESULTS='summaryResults/' NUM_BINS = 100 BITS_IN_BYTE = 8.0 MILLISEC_IN_SEC = 1000.0 M_IN_B = 1000000.0 VIDEO_LEN = 44 K_IN_M = 1000.0 K_IN_B=1000.0 REBUF_P = 4.3 SMOOTH_P = 1 POWER_RANGE= 648 #Difference between max and min avg power BASE_POWER_XCOVER=1800.0 BASE_POWER_GALAXY=1016.0 #Power consumption without streaming ######################################## ###### This part is added for network power estimation p_alpha = 210 p_betha = 28 SEGMENT_SIZE = 4.0 power_threshold = 1500 byte_to_KB = 1000 KB_to_MB=1000.0 def Estimate_Network_Power_Consumption(thr, chunk_file_size): return (chunk_file_size * (p_alpha*1/thr+p_betha)) ######################################################## # QOE calculation for the entire session based on the standard model def calculateQOE(total_vmaf, total_rebuf, total_rebuf_count, total_vmaf_change, total_smooth_count): return 0.07713539*total_vmaf-1.24971639*total_rebuf -2.87757412*total_rebuf_count -0.04938335*total_vmaf_change -1.436473*total_smooth_count # aggregates the result for each streaming session def CreateSummaryResults(video, model): log_dir='./test_results/'+video+'/' energy_g_dir='../powerMeasurementFiles/'+'galaxy_'+video.upper()+'_streaming.csv' energy_x_dir='../powerMeasurementFiles/'+'xcover_'+video.upper()+'_streaming.csv' en_g=
pd.read_csv(energy_g_dir)
pandas.read_csv
import numpy as np import pandas as pd import random from rpy2.robjects.packages import importr utils = importr('utils') prodlim = importr('prodlim') survival = importr('survival') #KMsurv = importr('KMsurv') #cvAUC = importr('pROC') #utils.install_packages('pseudo') #utils.install_packages('prodlim') #utils.install_packages('survival') #utils.install_packages('KMsurv') #utils.install_packages('pROC') import rpy2.robjects as robjects from rpy2.robjects import r def sim_event_times_case1(trainset, num_samples): train_n = int( .8 * num_samples) test_n = int( (.2) * num_samples) cov = np.random.standard_normal(size=(num_samples, 9)) treatment = np.random.binomial(n=1,p=.5,size=num_samples) treatment=np.expand_dims(treatment,1) clinical_data = np.concatenate((treatment, cov), axis=1) index = np.arange(len(trainset.targets)) idx_sample = np.random.choice(index, num_samples,replace=False) digits = np.array(trainset.targets)[idx_sample] denom = np.exp( 1.7* digits+ .6*np.cos(digits)*clinical_data[:,0]+.2*clinical_data[:,1]+.3*clinical_data[:,0] ) true_times = np.sqrt(-np.log( np.random.uniform(low=0,high=1,size=num_samples) )/ denom ) censored_times = np.random.uniform(low=0,high=true_times) censored_indicator = np.random.binomial(n=1,p=.3,size=digits.shape[0]) times = np.where(censored_indicator==1, censored_times,true_times) event = np.where(censored_indicator==1,0,1) cutoff = np.array(np.quantile(true_times,(.2,.3,.4,.5,.6))) event_1= np.where(true_times<= cutoff[0],1,0) event_2= np.where(true_times<= cutoff[1],1,0) event_3= np.where(true_times<= cutoff[2],1,0) event_4= np.where(true_times<= cutoff[3],1,0) event_5= np.where(true_times<= cutoff[4],1,0) cens_perc = np.sum(censored_indicator)/num_samples cens_perc_train = np.sum(censored_indicator[:train_n])/train_n df = np.concatenate((np.expand_dims(idx_sample,axis=1), np.expand_dims(times,axis=1),np.expand_dims(event,axis=1), np.expand_dims(event_1,axis=1),np.expand_dims(event_2,axis=1),np.expand_dims(event_3,axis=1),np.expand_dims(event_4,axis=1),np.expand_dims(event_5,axis=1),clinical_data),axis=1) df = pd.DataFrame(df,columns= ('ID','time','event','event_1','event_2','event_3','event_4','event_5','cov1','cov2','cov3','cov4','cov5','cov6','cov7','cov8','cov9','cov10')) # the ID is the image chosen #split data train_clindata_all = df.iloc[0:train_n,:] order_time = np.argsort(train_clindata_all['time']) train_clindata_all = train_clindata_all.iloc[order_time,:] test_clindata_all = df.iloc[train_n:,:] time_r = robjects.FloatVector(train_clindata_all['time']) event_r = robjects.BoolVector(train_clindata_all['event']) cutoff_r = robjects.FloatVector(cutoff) robjects.globalenv["time_r"] = time_r robjects.globalenv["event_r"] = event_r robjects.globalenv["cutoff"] = cutoff_r r('km_out <- prodlim(Hist(time_r,event_r)~1)') r(' surv_pso <- jackknife(km_out,times=cutoff) ' ) risk_pso1 = r('1-surv_pso[,1]') risk_pso2 = r('1-surv_pso[,2]') risk_pso3 = r('1-surv_pso[,3]') risk_pso4 = r('1-surv_pso[,4]') risk_pso5 = r('1-surv_pso[,5]') train_clindata_all = train_clindata_all.assign(risk_pso1 = np.array(risk_pso1,dtype=np.float64), risk_pso2 = np.array(risk_pso2,dtype=np.float64), risk_pso3 = np.array(risk_pso3,dtype=np.float64), risk_pso4 = np.array(risk_pso4,dtype=np.float64), risk_pso5 = np.array(risk_pso5,dtype=np.float64) ) long_df = pd.melt(train_clindata_all, id_vars=['ID'],value_vars=['risk_pso1','risk_pso2','risk_pso3','risk_pso4','risk_pso5'] ) long_df.rename(columns={'variable': 'time_point','value': 'ps_risk'}, inplace=True) mymap= {'risk_pso1': 'time1', 'risk_pso2': 'time2', 'risk_pso3': 'time3', 'risk_pso4': 'time4', 'risk_pso5': 'time5' } long_df = long_df.applymap(lambda s : mymap.get(s) if s in mymap else s) train_val_clindata = pd.get_dummies(long_df, columns=['time_point']) test_clindata_all = test_clindata_all.assign( time_point1=1,time_point2=2,time_point3=3,time_point4=4,time_point5=5 ) long_test_df = pd.melt(test_clindata_all, id_vars=['ID'],value_vars=['time_point1','time_point2','time_point3','time_point4','time_point5'] ) long_test_df.rename(columns={'value': 'time_point'}, inplace=True) long_test_clindata_all = pd.merge(left=long_test_df, right=test_clindata_all, how='left',left_on='ID' ,right_on='ID') cols_test = long_test_clindata_all.columns.tolist() long_test_clindata = long_test_clindata_all[ ['ID'] + ['time_point'] + ['time'] + ['event'] + ['event_1'] + ['event_2'] + ['event_3'] + ['event_4'] + ['event_5']] long_test_clindata = pd.get_dummies(long_test_clindata, columns=['time_point']) covariates = df[['ID'] + df.columns.tolist()[8:]] clindata = {'train_val':train_val_clindata , 'test':long_test_clindata, 'covariates': covariates,'time_train': train_clindata_all['time'], 'event_train': train_clindata_all['event'], 'slide_id_test': test_clindata_all['ID'], 'cutoff': cutoff , 'cens': cens_perc, 'cens_train': cens_perc_train} return clindata def sim_event_times_case2(trainset, num_samples): train_n = int( .8 * num_samples) test_n = int( (.2) * num_samples) cov = np.random.standard_normal(size=(num_samples, 9)) treatment = np.random.binomial(n=1,p=.5,size=num_samples) treatment=np.expand_dims(treatment,1) clinical_data = np.concatenate((treatment, cov), axis=1) index = np.arange(len(trainset.targets)) idx_sample = np.random.choice(index, num_samples,replace=False) digits = np.array(trainset.targets)[idx_sample] denom = np.exp( 1.7* digits+ .6*np.cos(digits)*clinical_data[:,0]+.2*clinical_data[:,1]+.3*clinical_data[:,0] ) true_times = np.sqrt(-np.log( np.random.uniform(low=0,high=1,size=num_samples) )/ denom ) denom = np.exp( 1.4*clinical_data[:,0]+2.6*clinical_data[:,1] -.2*clinical_data[:,2] )*6 censored_times = np.sqrt(-np.log(np.random.uniform(low=0,high=1,size=num_samples))/denom ) censored_indicator = (true_times > censored_times)*1 times = np.where(censored_indicator==1, censored_times,true_times) event = np.where(censored_indicator==1,0,1) cutoff = np.array(np.quantile(true_times,(.2,.3,.4,.5,.6))) event_1= np.where(true_times<= cutoff[0],1,0) event_2= np.where(true_times<= cutoff[1],1,0) event_3= np.where(true_times<= cutoff[2],1,0) event_4= np.where(true_times<= cutoff[3],1,0) event_5= np.where(true_times<= cutoff[4],1,0) cens_perc = np.sum(censored_indicator)/num_samples cens_perc_train = np.sum(censored_indicator[:train_n])/train_n df = np.concatenate((np.expand_dims(idx_sample,axis=1), np.expand_dims(times,axis=1),np.expand_dims(event,axis=1), np.expand_dims(event_1,axis=1),np.expand_dims(event_2,axis=1),np.expand_dims(event_3,axis=1),np.expand_dims(event_4,axis=1),np.expand_dims(event_5,axis=1),clinical_data),axis=1) df = pd.DataFrame(df,columns= ('ID','time','event','event_1','event_2','event_3','event_4','event_5','cov1','cov2','cov3','cov4','cov5','cov6','cov7','cov8','cov9','cov10')) # the ID is the image chosen train_clindata_all = df.iloc[0:train_n,:] order_time = np.argsort(train_clindata_all['time']) train_clindata_all = train_clindata_all.iloc[order_time,:] test_clindata_all = df.iloc[train_n:,:] time_r = robjects.FloatVector(train_clindata_all['time']) event_r = robjects.BoolVector(train_clindata_all['event']) cutoff_r = robjects.FloatVector(cutoff) robjects.globalenv["time_r"] = time_r robjects.globalenv["event_r"] = event_r robjects.globalenv["cutoff"] = cutoff_r r('km_out <- prodlim(Hist(time_r,event_r)~1)') r(' surv_pso <- jackknife(km_out,times=cutoff) ' ) risk_pso1 = r('1-surv_pso[,1]') risk_pso2 = r('1-surv_pso[,2]') risk_pso3 = r('1-surv_pso[,3]') risk_pso4 = r('1-surv_pso[,4]') risk_pso5 = r('1-surv_pso[,5]') train_clindata_all = train_clindata_all.assign(risk_pso1 = np.array(risk_pso1,dtype=np.float64), risk_pso2 = np.array(risk_pso2,dtype=np.float64), risk_pso3 = np.array(risk_pso3,dtype=np.float64), risk_pso4 = np.array(risk_pso4,dtype=np.float64), risk_pso5 = np.array(risk_pso5,dtype=np.float64) ) long_df = pd.melt(train_clindata_all, id_vars=['ID'],value_vars=['risk_pso1','risk_pso2','risk_pso3','risk_pso4','risk_pso5'] ) long_df.rename(columns={'variable': 'time_point','value': 'ps_risk'}, inplace=True) mymap= {'risk_pso1': 'time1', 'risk_pso2': 'time2', 'risk_pso3': 'time3', 'risk_pso4': 'time4', 'risk_pso5': 'time5' } long_df = long_df.applymap(lambda s : mymap.get(s) if s in mymap else s) train_val_clindata = pd.get_dummies(long_df, columns=['time_point']) test_clindata_all = test_clindata_all.assign( time_point1=1,time_point2=2,time_point3=3,time_point4=4,time_point5=5 ) long_test_df = pd.melt(test_clindata_all, id_vars=['ID'],value_vars=['time_point1','time_point2','time_point3','time_point4','time_point5'] ) long_test_df.rename(columns={'value': 'time_point'}, inplace=True) long_test_clindata_all = pd.merge(left=long_test_df, right=test_clindata_all, how='left',left_on='ID' ,right_on='ID') cols_test = long_test_clindata_all.columns.tolist() long_test_clindata = long_test_clindata_all[ ['ID'] + ['time_point'] + ['time'] + ['event'] + ['event_1'] + ['event_2'] + ['event_3'] + ['event_4'] + ['event_5']] long_test_clindata = pd.get_dummies(long_test_clindata, columns=['time_point']) covariates = df[['ID'] + df.columns.tolist()[8:]] clindata = {'train_val':train_val_clindata , 'test':long_test_clindata, 'covariates': covariates,'time_train': train_clindata_all['time'], 'event_train': train_clindata_all['event'], 'slide_id_test': test_clindata_all['ID'], 'cutoff': cutoff , 'cens': cens_perc, 'cens_train': cens_perc_train} return clindata def sim_event_times_case3(trainset, num_samples): train_n = int( .8 * num_samples) test_n = int( (.2) * num_samples) cov = np.random.standard_normal(size=(num_samples, 9)) treatment = np.random.binomial(n=1,p=.5,size=num_samples) treatment=np.expand_dims(treatment,1) clinical_data = np.concatenate((treatment, cov), axis=1) index = np.arange(len(trainset.targets)) idx_sample = np.random.choice(index, num_samples,replace=False) digits = np.array(trainset.targets)[idx_sample] denom = np.exp( 1* digits- 1.6*np.cos(digits)*clinical_data[:,0]+.3*clinical_data[:,1]*clinical_data[:,0] )* (.7/2) true_times = np.sqrt(-np.log( np.random.uniform(low=0,high=1,size=num_samples) )/ denom ) #denom = np.exp( 1.4*clinical_data[:,0]+2.6*clinical_data[:,1] -.2*clinical_data[:,2] )*6 shape_c = np.maximum(0.001,np.exp(-1.8*clinical_data[:,0]+1.4*clinical_data[:,1]+1.5 *clinical_data[:,0]*clinical_data[:,1])) censored_times = np.random.gamma(shape_c,digits, num_samples) censored_indicator = (true_times > censored_times)*1 times = np.where(censored_indicator==1, censored_times,true_times) event = np.where(censored_indicator==1,0,1) cutoff = np.array(np.quantile(true_times,(.2,.3,.4,.5,.6))) event_1= np.where(true_times<= cutoff[0],1,0) event_2= np.where(true_times<= cutoff[1],1,0) event_3= np.where(true_times<= cutoff[2],1,0) event_4= np.where(true_times<= cutoff[3],1,0) event_5= np.where(true_times<= cutoff[4],1,0) cens_perc = np.sum(censored_indicator)/num_samples cens_perc_train = np.sum(censored_indicator[:train_n])/train_n df = np.concatenate((np.expand_dims(idx_sample,axis=1), np.expand_dims(times,axis=1),np.expand_dims(event,axis=1), np.expand_dims(event_1,axis=1),np.expand_dims(event_2,axis=1),np.expand_dims(event_3,axis=1),np.expand_dims(event_4,axis=1),np.expand_dims(event_5,axis=1),clinical_data),axis=1) df = pd.DataFrame(df,columns= ('ID','time','event','event_1','event_2','event_3','event_4','event_5','cov1','cov2','cov3','cov4','cov5','cov6','cov7','cov8','cov9','cov10')) # the ID is the image chosen train_clindata_all = df.iloc[0:train_n,:] order_time = np.argsort(train_clindata_all['time']) train_clindata_all = train_clindata_all.iloc[order_time,:] test_clindata_all = df.iloc[train_n:,:] time_r = robjects.FloatVector(train_clindata_all['time']) event_r = robjects.BoolVector(train_clindata_all['event']) cutoff_r = robjects.FloatVector(cutoff) robjects.globalenv["time_r"] = time_r robjects.globalenv["event_r"] = event_r robjects.globalenv["cutoff"] = cutoff_r r('km_out <- prodlim(Hist(time_r,event_r)~1)') r(' surv_pso <- jackknife(km_out,times=cutoff) ' ) risk_pso1 = r('1-surv_pso[,1]') risk_pso2 = r('1-surv_pso[,2]') risk_pso3 = r('1-surv_pso[,3]') risk_pso4 = r('1-surv_pso[,4]') risk_pso5 = r('1-surv_pso[,5]') train_clindata_all = train_clindata_all.assign(risk_pso1 = np.array(risk_pso1,dtype=np.float64), risk_pso2 = np.array(risk_pso2,dtype=np.float64), risk_pso3 = np.array(risk_pso3,dtype=np.float64), risk_pso4 = np.array(risk_pso4,dtype=np.float64), risk_pso5 = np.array(risk_pso5,dtype=np.float64) ) long_df = pd.melt(train_clindata_all, id_vars=['ID'],value_vars=['risk_pso1','risk_pso2','risk_pso3','risk_pso4','risk_pso5'] ) long_df.rename(columns={'variable': 'time_point','value': 'ps_risk'}, inplace=True) mymap= {'risk_pso1': 'time1', 'risk_pso2': 'time2', 'risk_pso3': 'time3', 'risk_pso4': 'time4', 'risk_pso5': 'time5' } long_df = long_df.applymap(lambda s : mymap.get(s) if s in mymap else s) train_val_clindata = pd.get_dummies(long_df, columns=['time_point']) test_clindata_all = test_clindata_all.assign( time_point1=1,time_point2=2,time_point3=3,time_point4=4,time_point5=5 ) long_test_df = pd.melt(test_clindata_all, id_vars=['ID'],value_vars=['time_point1','time_point2','time_point3','time_point4','time_point5'] ) long_test_df.rename(columns={'value': 'time_point'}, inplace=True) long_test_clindata_all = pd.merge(left=long_test_df, right=test_clindata_all, how='left',left_on='ID' ,right_on='ID') cols_test = long_test_clindata_all.columns.tolist() long_test_clindata = long_test_clindata_all[ ['ID'] + ['time_point'] + ['time'] + ['event'] + ['event_1'] + ['event_2'] + ['event_3'] + ['event_4'] + ['event_5']] long_test_clindata = pd.get_dummies(long_test_clindata, columns=['time_point']) covariates = df[['ID'] + df.columns.tolist()[8:]] clindata = {'train_val':train_val_clindata , 'test':long_test_clindata, 'covariates': covariates,'time_train': train_clindata_all['time'], 'event_train': train_clindata_all['event'], 'slide_id_test': test_clindata_all['ID'], 'cutoff': cutoff , 'cens': cens_perc, 'cens_train': cens_perc_train} return clindata def sim_event_times_case4(trainset, num_samples): train_n = int( .8 * num_samples) test_n = int( (.2) * num_samples) cov = np.random.standard_normal(size=(num_samples, 9)) treatment = np.random.binomial(n=1,p=.5,size=num_samples) treatment=np.expand_dims(treatment,1) clinical_data = np.concatenate((treatment, cov), axis=1) index = np.arange(len(trainset.targets)) idx_sample = np.random.choice(index, num_samples,replace=False) digits = np.array(trainset.targets)[idx_sample] shape = np.maximum(0.001,np.exp(.5*digits+.2*clinical_data[:,0] * np.cos(digits)+1.5*clinical_data[:,1]+1.2*clinical_data[:,0])) true_times = np.random.gamma(shape,digits, num_samples) # shape = shape; scale = digits censored_times = np.random.uniform(low=0,high=true_times) censored_indicator = np.random.binomial(n=1,p=.3,size=digits.shape[0]) times = np.where(censored_indicator==1, censored_times,true_times) event = np.where(censored_indicator==1,0,1) cutoff = np.array(np.quantile(true_times,(.2,.3,.4,.5,.6))) event_1= np.where(true_times<= cutoff[0],1,0) event_2= np.where(true_times<= cutoff[1],1,0) event_3= np.where(true_times<= cutoff[2],1,0) event_4= np.where(true_times<= cutoff[3],1,0) event_5= np.where(true_times<= cutoff[4],1,0) cens_perc = np.sum(censored_indicator)/num_samples cens_perc_train = np.sum(censored_indicator[:train_n])/train_n df = np.concatenate((np.expand_dims(idx_sample,axis=1), np.expand_dims(times,axis=1),np.expand_dims(event,axis=1), np.expand_dims(event_1,axis=1),np.expand_dims(event_2,axis=1),np.expand_dims(event_3,axis=1),np.expand_dims(event_4,axis=1),np.expand_dims(event_5,axis=1),clinical_data),axis=1) df = pd.DataFrame(df,columns= ('ID','time','event','event_1','event_2','event_3','event_4','event_5','cov1','cov2','cov3','cov4','cov5','cov6','cov7','cov8','cov9','cov10')) # the ID is the image chosen train_clindata_all = df.iloc[0:train_n,:] order_time = np.argsort(train_clindata_all['time']) train_clindata_all = train_clindata_all.iloc[order_time,:] test_clindata_all = df.iloc[train_n:,:] time_r = robjects.FloatVector(train_clindata_all['time']) event_r = robjects.BoolVector(train_clindata_all['event']) cutoff_r = robjects.FloatVector(cutoff) robjects.globalenv["time_r"] = time_r robjects.globalenv["event_r"] = event_r robjects.globalenv["cutoff"] = cutoff_r r('km_out <- prodlim(Hist(time_r,event_r)~1)') r(' surv_pso <- jackknife(km_out,times=cutoff) ' ) risk_pso1 = r('1-surv_pso[,1]') risk_pso2 = r('1-surv_pso[,2]') risk_pso3 = r('1-surv_pso[,3]') risk_pso4 = r('1-surv_pso[,4]') risk_pso5 = r('1-surv_pso[,5]') train_clindata_all = train_clindata_all.assign(risk_pso1 = np.array(risk_pso1,dtype=np.float64), risk_pso2 = np.array(risk_pso2,dtype=np.float64), risk_pso3 = np.array(risk_pso3,dtype=np.float64), risk_pso4 = np.array(risk_pso4,dtype=np.float64), risk_pso5 = np.array(risk_pso5,dtype=np.float64) ) long_df = pd.melt(train_clindata_all, id_vars=['ID'],value_vars=['risk_pso1','risk_pso2','risk_pso3','risk_pso4','risk_pso5'] ) long_df.rename(columns={'variable': 'time_point','value': 'ps_risk'}, inplace=True) mymap= {'risk_pso1': 'time1', 'risk_pso2': 'time2', 'risk_pso3': 'time3', 'risk_pso4': 'time4', 'risk_pso5': 'time5' } long_df = long_df.applymap(lambda s : mymap.get(s) if s in mymap else s) train_val_clindata =
pd.get_dummies(long_df, columns=['time_point'])
pandas.get_dummies
from Bio import AlignIO import pandas as pd import os import sys # This script makes the file with allele ID similar to bionumerics output script=sys.argv[0] base_dir=sys.argv[1]+"/prod_fasta/" allele_dir=base_dir+"../../all_alleles/" os.chdir(allele_dir) dic1={} def Parse(filename,seqs): file = open(filename) seqs={} name = '' for line in file: line = line.rstrip() if line.startswith('>'): name=line.replace('>',"") seqs[name] = '' else: seqs[name] = seqs[name] + line return seqs for file in os.listdir("."): if file.endswith(".fasta"): dic1=dict(dic1,**Parse(file,dic1)) os.chdir(base_dir+'/seqrecords/pergene_seqrecords/muslce_output/') dic3={} for file in os.listdir("."): if file.endswith("fasta2.fasta"): corename=file.split("_")[0] alignment=AlignIO.read(file,"fasta") dic2={} for record in alignment : record.id1=record.id.split("_")[::-1][0] dic2.setdefault(str(record.id1),[]).append(str(record.seq).replace("-","")) for key1 in dic1: for key2 in dic2: if dic1.get(key1) in dic2.get(key2): dic3.setdefault(str(key2),[]).append(str(key1)) file= open(base_dir+"../../new_49gene.list") v=[] for line in file: line=line.rstrip() for k,v in dic3.items(): if line not in str(v): v=v.append(line+"_"+"0") dic4={} for k,v in dic3.items(): v=sorted(v,key=lambda x:x.split("_")[0]) dic4[k]=v df=pd.DataFrame.from_dict(dic4,orient='index') df.columns=df.iloc[0].apply(lambda x: x.split('_')[0]) df.to_csv("newTtable1_nogap.csv") dfnew=
pd.read_csv("newTtable1_nogap.csv",index_col=0)
pandas.read_csv
from datetime import datetime, timedelta import sys import fnmatch import os import numpy as np from scipy import io as sio import pandas as pd import pyarrow as pa import pyarrow.parquet as pq import zarr from numcodecs import Blosc from mat_files import masc_mat_file_to_dict,masc_mat_triplet_to_dict,triplet_images_reshape from mat_files import digits_dictionary from weather_data import blowingsnow sys.path.insert(1,'/home/grazioli/CODES/python/py-masc-gan-3Deval') from gan3d_lib import gan3d def files_in_dir_recursive(top, pattern="*", include_dir=True): for (root, dirs, files) in os.walk(top): match_files = (fn for fn in files if fnmatch.fnmatchcase(fn, pattern)) if include_dir: match_files = (os.path.join(root,fn) for fn in match_files) for fn in match_files: yield fn def find_matched(data_dir, min_files=3): files = {} for fn_full in files_in_dir_recursive( data_dir, pattern="*_flake_*_cam_?.mat"): fn = fn_full.split("/")[-1] fn = ".".join(fn.split(".")[:-1]) fn_parts = fn.split("_") cam = int(fn_parts[-1]) flake_id = int(fn_parts[-3]) timestamp = "_".join(fn.split("_")[:2]) time = datetime.strptime(timestamp, "%Y.%m.%d_%H.%M.%S") key = (time,flake_id) if key not in files: files[key] = {} files[key][cam] = fn_full print(len(files)) files = {k: files[k] for k in files if len(files[k])>=min_files} print(len(files)) delete_keys = [] for (i,k) in enumerate(files): if i%1000==0: print("{}/{}, {} deleted".format(i,len(files),len(delete_keys))) if any(not valid_file(files[k][c]) for c in files[k]): delete_keys.append(k) for k in delete_keys: del files[k] print(len(files)) return files def valid_file(fn, xhi_min=7, max_intens_min=0.03, min_size=8, max_size=2048): m = sio.loadmat(fn) xhi = m["roi"]["xhi"][0,0][0,0] if xhi < xhi_min: return False max_intens = m["roi"]["max_intens"][0,0][0,0] if max_intens < max_intens_min: return False shape = m["roi"]["data"][0,0].shape size = np.max(shape) if not (min_size <= size <= max_size): return False # Check if any nan in riming if np.isnan(m["roi"][0,0]['riming_probs'][0]).any(): return False return True def valid_triplet(triplet_files, min_size=12, max_ysize_var=1.4, max_ysize_delta=60, # Pixels xhi_low=8, xhi_high=8.5): mat = [sio.loadmat(triplet_files[i]) for i in range(3)] def get_size(m): shape = m["roi"]["data"][0,0].shape return shape[0] def get_xhi(m): return m["roi"]["xhi"][0,0][0,0] sizes = [get_size(m) for m in mat] largest = max(sizes) smallest = min(sizes) xhis = [get_xhi(m) for m in mat] xhi_min = min(xhis) xhi_max = max(xhis) return (largest>=min_size) and (largest-smallest <= max_ysize_delta) and (largest/smallest<=max_ysize_var) and ((xhi_min >= xhi_low) or (xhi_max >= xhi_high)) def filter_triplets(files): return {k: files[k] for k in files if valid_triplet(files[k])} def filter_condensation(df0, threshold_var=2.5, Dmax_min=0.001): """ Filter condensation based on excessive stability of adjacent descriptors Input: df0: pandas dataframe of one camera threshold_var : minimum allowed variation [%] of some descriptors Dmax_min : minumum Dmax to consider for this filter """ df0_s = df0.copy() #Save ind=[] df0 = df0[['area','perim','Dmax','roi_centroid_X','roi_centroid_Y']] # Shift forward diff1 = 100*np.abs(df0.diff()/df0) diff1['mean'] = diff1.mean(axis=1) diff1 = diff1[['mean']] # Shift backward diff2 = 100*np.abs(df0.diff(periods=-1)/df0) diff2['mean'] = diff2.mean(axis=1) diff2 = diff2[['mean']] df0_1= df0_s[diff1['mean'] < threshold_var] df0_1 = df0_1[df0_1.Dmax > Dmax_min] ind.extend(np.asarray(df0_1.index)) df0_2= df0_s[diff2['mean'] < threshold_var] df0_2 = df0_2[df0_2.Dmax > Dmax_min] ind.extend(np.asarray(df0_2.index)) return ind def create_triplet_dataframes(triplet_files, out_dir,campaign_name='EPFL'): """ Put in a dataframe the descriptors of the images for each cam """ c0=[] c1=[] c2=[] tri=[] for (i,k) in enumerate(sorted(triplet_files.keys())): if i%10000 == 0: print("{}/{}".format(i,len(triplet_files))) triplet = triplet_files[k] # Create and increment the data frames c0.append(masc_mat_file_to_dict(triplet[0])) c1.append(masc_mat_file_to_dict(triplet[1])) c2.append(masc_mat_file_to_dict(triplet[2])) tri.append(masc_mat_triplet_to_dict(triplet,campaign=campaign_name)) c0 = pd.DataFrame.from_dict(c0) c1 = pd.DataFrame.from_dict(c1) c2 = pd.DataFrame.from_dict(c2) tri = pd.DataFrame.from_dict(tri) # Filter possible contaminations from condensation print("Filtering possible condensation") ind=[] ind.extend(filter_condensation(c0)) ind.extend(filter_condensation(c1)) ind.extend(filter_condensation(c2)) bad_indexes = list(set(ind)) bad_indexes.sort() c0.drop(bad_indexes,inplace=True) c0 = c0.reset_index() c1.drop(bad_indexes,inplace=True) c1 = c1.reset_index() c2.drop(bad_indexes,inplace=True) c2 = c2.reset_index() tri.drop(bad_indexes,inplace=True) tri = tri.reset_index() print("Removed flakes total: "+str(len(bad_indexes))) # Write tables table = pa.Table.from_pandas(c0) pq.write_table(table, out_dir+campaign_name+'_cam0.parquet') table = pa.Table.from_pandas(c1) pq.write_table(table, out_dir+campaign_name+'_cam1.parquet') table = pa.Table.from_pandas(c2) pq.write_table(table, out_dir+campaign_name+'_cam2.parquet') table = pa.Table.from_pandas(tri) pq.write_table(table, out_dir+campaign_name+'_triplet.parquet') # Update the triplet files removing the filtered files sorted_keys = sorted(triplet_files) remove_keys= [sorted_keys[bad_indexes[jj]] for jj in range(len(bad_indexes))] return {k: triplet_files[k] for k in triplet_files if k not in remove_keys } def create_triplet_image_array(triplet_files, out_dir,campaign_name='EPFL',dim_in=1024,chunks_n=16): """ Create an image array of (resized) triplet. Store on disk for each campaign """ # Define the output array (data flushed directly) compressor=Blosc(cname='zstd', clevel=2, shuffle=Blosc.BITSHUFFLE) z1 = zarr.open(out_dir+campaign_name+'.zarr', mode='w', shape = [len(triplet_files),dim_in,dim_in,3],compressor=compressor, dtype='u1',chunks=[chunks_n,dim_in,dim_in,3] ) # Size N files, 1024, 1024, 3 for (i,k) in enumerate(sorted(triplet_files.keys())): if i%10000 == 0: print("{}/{}".format(i,len(triplet_files))) triplet = triplet_files[k] z1[i,:,:,:] = triplet_images_reshape(triplet,newshape=[dim_in,dim_in]) def add_gan3d_to_parquet(triplet_parquet,gan3d_folder): """ Add GAN3D mass and volume to triplet files """ ganfile = gan3d_folder+'masc_3D_print_grids.nc' mascfile = gan3d_folder+'masc_3D_print_triplets.nc' # Get the gan3d files g3d = gan3d(ganfile=ganfile,mascfile=mascfile) # Read the parquet file table = pd.read_parquet(triplet_parquet) flake_uid = table.datetime.apply(lambda x: x.strftime('%Y%m%d%H%M%S'))+'_'+table.flake_number_tmp.apply(str) # Get GAN time in proper format and fill the precooked vector mass = np.asarray(table['gan3d_mass']) vol = np.asarray(table['gan3d_volume']) r_g = np.asarray(table['gan3d_gyration']) for i in range(len(g3d.time)): tt = timestamp=datetime.utcfromtimestamp(g3d.time[i]).strftime("%Y%m%d%H%M%S")+'_'+str(g3d.particle_id[i]) try: mass[(np.where(flake_uid == tt))]=g3d.mass_1d[i] vol[(np.where(flake_uid == tt))]=g3d.V_ch[i] r_g[(np.where(flake_uid == tt))]=g3d.r_g[i] except: print("Flake id: "+tt+" not in the database") table['gan3d_mass'] = mass table['gan3d_volume'] = vol table['gan3d_gyration'] = r_g # Store table and overwrite table=table.round(decimals=digits_dictionary()) table = pa.Table.from_pandas(table) pq.write_table(table, triplet_parquet) def add_bs_to_parquet(triplet_parquet,file_bs,verbose=False): """ Add Blowing Snow information to triplet files Input: triplet_parquet: parquet file with info about MASC triplets file_bs : CSV file of blowing snow """ # Read the parquet file table = pd.read_parquet(triplet_parquet) flake_uid = table.datetime.apply(lambda x: x.strftime('%Y%m%d%H%M%S'))+'_'+table.flake_number_tmp.apply(str) # Read the blowingsnow file bs = blowingsnow(file_bs) # Fill the precooked vector bs_nor_angle = np.asarray(table['bs_normalized_angle']) bs_mix_ind = np.asarray(table['bs_mixing_ind']) bs_precip_type = table['bs_precip_class_name'].copy() # Intersect arrays ind1=np.intersect1d(flake_uid,bs.flake_uid,return_indices=True)[1] ind2=np.intersect1d(flake_uid,bs.flake_uid,return_indices=True)[2] # Fill bs_nor_angle[ind1] = bs.df["Normalized_Angle"][ind2] bs_mix_ind[ind1] = bs.df["Flag_mixed"][ind2] # Add the class ID bs_class_id = np.asarray([0] * len(table)) # Fill also a precooked flag bs_precip_type[bs_nor_angle > 0.881]='blowing_snow' bs_class_id[bs_nor_angle > 0.881] = 3 bs_precip_type[bs_nor_angle < 0.193]='precip' bs_class_id[bs_nor_angle < 0.193] = 1 bs_precip_type[bs_mix_ind >= 0.0]='mixed' bs_class_id[bs_mix_ind >= 0.0] = 2 table['bs_normalized_angle'] = bs_nor_angle table['bs_mixing_ind'] = bs_mix_ind table['bs_precip_class_name'] = bs_precip_type table['bs_precip_class_id'] = bs_class_id # Store table and overwrite table=table.round(decimals=digits_dictionary()) table = pa.Table.from_pandas(table) pq.write_table(table, triplet_parquet) def add_weather_to_parquet(triplet_parquet,file_weather, verbose=False): """" Add weather data (from pre-compiled minute-scaled pickle) to the triplet file """ # Read the parquet file and get the time string table = pd.read_parquet(triplet_parquet) flake_uid = table.datetime.round('min') # Round to minute as weather info is in minute # Read the blowingsnow file env = pd.read_pickle(file_weather) # Fill the precooked vectors of environmental info T = np.asarray(table['env_T']) P = np.asarray(table['env_P']) DD = np.asarray(table['env_DD']) FF = np.asarray(table['env_FF']) RH = np.asarray(table['env_RH']) # Ugly unefficent loop for i in range(len(flake_uid)): ID = flake_uid[i] # Find the closest emvironmental info try: index = env.index.searchsorted(ID) vec = env.iloc[index] T[i] = vec["T"] P[i] = vec["P"] DD[i] = vec["DD"] FF[i] = vec["FF"] RH[i] = vec["RH"] except: if verbose: print("Cannot find environemntal information for this datetime: ") print(ID) table['env_T'] = T table['env_P'] = P table['env_DD'] = DD table['env_FF'] = FF table['env_RH'] = RH # Store table and overwrite table=table.round(decimals=digits_dictionary()) table = pa.Table.from_pandas(table) pq.write_table(table, triplet_parquet) def merge_triplet_dataframes(path, campaigns, out_path, out_name='all'): """ Merge triplet dataframes into a single one. Input: path : input path campaigns: list of campaign names (parquet must exist) out_path: out_path out_name: string used in the output name """ # Dataframes databases=['cam0','cam1','cam2','triplet'] for db in databases: print('Merging database: '+db) # Read the parquet files for i in range(len(campaigns)): print('Merging campaign: '+campaigns[i]) if i == 0: df = pd.read_parquet(path+campaigns[i]+'_'+db+'.parquet') else: df = pd.concat([df, pd.read_parquet(path+campaigns[i]+'_'+db+'.parquet')], axis=0).reset_index(drop=True) # Write to file --------------------- print('Writing output') if db == 'triplet': df = df.rename(columns={'n_roi':'flake_n_roi'}) df=df.drop(columns="index") df=df.round(decimals=digits_dictionary()) table = pa.Table.from_pandas(df) pq.write_table(table, out_path+out_name+'_'+db+'.parquet') def add_trainingset_flag(cam_parquet, trainingset_pkl_path, cam=None): """ Add to a single-cam parquet the information flags (adding columns) indicating if a given cam view was used in a training set for melting, hydro classif or riming degree Input cam_parquet: parquet file to add the columns to trainingset_pkl_path: path where the pickles of the trainingset flags are locally stored cam = 'cam0', 'cam1' or 'cam2' """ print('CAM: '+cam) # Read the parquet file table = pd.read_parquet(cam_parquet) flake_uid = table.datetime.apply(lambda x: x.strftime('%Y.%m.%d_%H.%M.%S'))+'_flake_'+table.flake_number_tmp.apply(str) # 1 Add hydro columns add = pd.read_pickle(trainingset_pkl_path+'hydro_trainingset_'+cam+'.pkl') is_in = np.asarray([0] * len(table)) value_in = np.asarray([np.nan] * len(table)) # Intersect intersect = np.intersect1d(flake_uid,add.flake_id,return_indices=True) ind1=intersect[1] ind2=intersect[2] # Fill is_in[ind1] = 1 value_in[ind1] = add.class_id.iloc[ind2] table['hl_snowflake'] = is_in table['hl_snowflake_class_id'] = value_in print('Found: '+str(len(ind1))+' in training, for hydro' ) # 2 Add melting columns add =
pd.read_pickle(trainingset_pkl_path+'melting_trainingset_'+cam+'.pkl')
pandas.read_pickle
""" Tests the coalescence tree object. """ import os import random import shutil import sqlite3 import sys import unittest import numpy as np import pandas as pd from pandas.testing import assert_frame_equal from setup_tests import setUpAll, tearDownAll, skipLongTest from pycoalescence import Simulation from pycoalescence.coalescence_tree import CoalescenceTree, get_parameter_description from pycoalescence.sqlite_connection import check_sql_table_exist def setUpModule(): """ Creates the output directory and moves logging files """ setUpAll() t = CoalescenceTree("sample/sample.db") t.clear_calculations() def tearDownModule(): """ Removes the output directory """ tearDownAll() class TestNullSimulationErrors(unittest.TestCase): """ Tests that simulations that are not linked raise the correct error. """ def testRaisesError(self): """ Tests that a null simulation will raise an error when any operation is performed. """ t = CoalescenceTree() with self.assertRaises(RuntimeError): t.get_species_richness() with self.assertRaises(RuntimeError): t.calculate_fragment_richness() with self.assertRaises(RuntimeError): t.calculate_alpha_diversity() with self.assertRaises(RuntimeError): t.calculate_beta_diversity() with self.assertRaises(RuntimeError): t.calculate_fragment_abundances() with self.assertRaises(RuntimeError): t.calculate_fragment_octaves() with self.assertRaises(RuntimeError): t.calculate_octaves() with self.assertRaises(RuntimeError): t.get_fragment_list() with self.assertRaises(RuntimeError): t.get_alpha_diversity() with self.assertRaises(RuntimeError): t.get_beta_diversity() with self.assertRaises(RuntimeError): t.get_community_references() with self.assertRaises(RuntimeError): t.get_metacommunity_references() with self.assertRaises(RuntimeError): t.get_species_locations() with self.assertRaises(RuntimeError): t.get_species_abundances() with self.assertRaises(RuntimeError): t.get_species_list() with self.assertRaises(RuntimeError): _ = t.get_simulation_parameters() with self.assertRaises(RuntimeError): t.get_fragment_abundances("null", 1) with self.assertRaises(RuntimeError): t.get_species_richness() with self.assertRaises(RuntimeError): t.get_octaves(1) class TestParameterDescriptions(unittest.TestCase): """ Tests that program correctly reads from the parameter_descriptions.json dictionary. """ def testReadsCorrectly(self): """ Tests that the dictionary is read correctly. """ tmp_dict = { "habitat_change_rate": "the rate of change from present density maps to historic density maps", "sample_file": "the sample area map for spatially selective sampling. Can be null to sample all " "cells", "sample_x": "the sample map x dimension", "sample_y": "the sample map y dimension", "sample_x_offset": "the sample x map offset from the grid", "sample_y_offset": "the sample y map offset from the grid", "output_dir": "the output directory for the simulation database", "seed": "the random seed to start the simulation, for repeatability", "coarse_map_x": "the coarse density map x dimension", "fine_map_file": "the density map file location at the finer resolution, covering a smaller area", "tau": "the tau dispersal value for fat-tailed dispersal", "grid_y": "the simulated grid y dimension", "dispersal_relative_cost": "the relative rate of moving through non-habitat compared to habitat", "fine_map_y_offset": "the number of cells the fine map is offset from the sample map in the y " "dimension, at the fine resolution", "gen_since_historical": "the number of generations that occur before the historical, or historic," " state is reached", "dispersal_method": "the dispersal method used. Can be one of 'normal', 'norm-uniform' or " "'fat-tail'.", "historical_fine_map": "the historical, or historic, coarse density map file location", "coarse_map_scale": "the scale of the coarse density map compared to the fine density map. 1 " "means equal density", "grid_x": "the simulated grid x dimension", "coarse_map_file": "the density map file location at the coarser resolution, covering a larger " "area", "min_num_species": "the minimum number of species known to exist (currently has no effect)", "historical_coarse_map": "the historical, or historic, coarse density map file location", "m_probability": "the probability of choosing from the uniform dispersal kernel in normal-uniform" " dispersal", "sigma": "the sigma dispersal value for normal, fat-tailed and normal-uniform dispersals", "deme": "the number of individuals inhabiting a cell at a map density of 1", "time_config_file": "will be 'set' if temporal sampling is used, 'null' otherwise", "coarse_map_y": "the coarse density map y dimension", "fine_map_x": "the fine density map x dimension", "coarse_map_y_offset": "the number of cells the coarse map is offset from the fine map in the y " "dimension, at the fine resolution", "cutoff": "the maximal dispersal distance possible, for normal-uniform dispersal", "fine_map_y": "the fine density map y dimension", "sample_size": "the proportion of individuals to sample from each cell (0-1)", "fine_map_x_offset": "the number of cells the fine map is offset from the sample map in the x " "dimension, at the fine resolution", "speciation_rate": "the minimum speciation rate the simulation was run with", "task": "the job or task reference number given to this simulation", "coarse_map_x_offset": "the number of cells the coarse map is offset from the fine map in the x " "dimension, at the fine resolution", "landscape_type": "if false, landscapes have hard boundaries. Otherwise, can be infinite, " "with 1s everywhere, or tiled_coarse or tiled_fine for repeated units of tiled " "maps", "max_time": "the maximum simulation time to run for (in seconds)", "sim_complete": "set to true upon simulation completion, false for incomplete simulations", "protracted": "if true, the simulation was run with protracted speciation.", "min_speciation_gen": "the minimum number of generations required before speciation can occur", "max_speciation_gen": "the maximum number of generations a lineage can exist before it is " "speciated", "dispersal_map": "a tif file where rows represent cumulative dispersal probability to every other " "cell, using the row number = x + (y * x_max)", } t = CoalescenceTree("sample/sample.db") sim_output = t.get_simulation_parameters() for key in sim_output.keys(): self.assertIn(key, get_parameter_description().keys()) self.assertEqual(get_parameter_description(key), t.get_parameter_description(key)) for key in get_parameter_description().keys(): self.assertIn(key, sim_output.keys()) for key in tmp_dict.keys(): self.assertEqual(tmp_dict[key], get_parameter_description(key)) self.assertDictEqual(tmp_dict, get_parameter_description()) with self.assertRaises(KeyError): get_parameter_description(key="notakey") dispersal_parameters = t.dispersal_parameters() expected_disp_dict = { "dispersal_method": "normal", "sigma": 3.55, "tau": 0.470149, "m_probability": 0, "cutoff": 0, } for key in dispersal_parameters.keys(): self.assertIn(key, tmp_dict.keys()) self.assertIn(key, expected_disp_dict.keys()) for key, val in expected_disp_dict.items(): self.assertIn(key, dispersal_parameters.keys()) if isinstance(val, float): self.assertAlmostEqual(val, dispersal_parameters[key]) else: self.assertEqual(val, dispersal_parameters[key]) class TestCoalescenceTreeSettingSpeciationParameters(unittest.TestCase): """Tests that the correct errors are raised when speciation parameters are supplied incorrectly.""" @classmethod def setUpClass(cls): """Generates the temporary databases to attempt analysis on.""" src = [os.path.join("sample", "sample{}.db".format(x)) for x in [2, 3]] cls.dst = [os.path.join("output", "sample{}.db".format(x)) for x in [2, 3]] for tmp_src, tmp_dst in zip(src, cls.dst): if os.path.exists(tmp_dst): os.remove(tmp_dst) shutil.copy(tmp_src, tmp_dst) def testSetSpeciationRates(self): """Tests setting speciation rates works as intended and raises appropriate errors""" ct = CoalescenceTree(self.dst[0]) for attempt in ["a string", ["a", "string"], [["list", "list2"], 0.2, 0.1], [None]]: with self.assertRaises(TypeError): ct._set_speciation_rates(attempt) with self.assertRaises(RuntimeError): ct._set_speciation_rates(None) for attempt in [-10, -2.0, 1.1, 100, [-1, 0.1, 0.2], [0.2, 0.8, 1.1]]: with self.assertRaises(ValueError): ct._set_speciation_rates(attempt) expected_list = [0.1, 0.2, 0.3] ct._set_speciation_rates(expected_list) self.assertEqual(expected_list, ct.applied_speciation_rates_list) ct._set_speciation_rates(0.2) self.assertEqual([0.2], ct.applied_speciation_rates_list) def testSetRecordFragments(self): """Tests that setting the record_fragments flag works as expected.""" ct = CoalescenceTree(self.dst[0]) ct._set_record_fragments(True) self.assertEqual("null", ct.record_fragments) ct._set_record_fragments(False) self.assertEqual("F", ct.record_fragments) for each in ["PlotBiodiversityMetrics.db", "doesntexist.csv"]: config_path = os.path.join("sample", each) with self.assertRaises(IOError): ct._set_record_fragments(config_path) expected = os.path.join("sample", "FragmentsTest.csv") ct._set_record_fragments(expected) self.assertEqual(expected, ct.record_fragments) def testSetRecordSpatial(self): """Tests that the setting the record_spatial flag works as expected""" ct = CoalescenceTree(self.dst[0]) ct._set_record_spatial("T") self.assertTrue(ct.record_spatial) ct._set_record_spatial("F") self.assertFalse(ct.record_spatial) with self.assertRaises(TypeError): ct._set_record_spatial("nota bool") ct._set_record_spatial(True) self.assertTrue(ct.record_spatial) def testSetMetacommunityParameters(self): """Tests that setting the metacommunity parameters works as expected.""" ct = CoalescenceTree(self.dst[0]) for size, spec in [[-10, 0.1], [10, -0.1], [10, 1.1]]: with self.assertRaises(ValueError): ct.fragments = "F" ct._set_record_fragments(False) ct._set_record_spatial(False) ct.times = [0.0] ct._set_metacommunity_parameters(size, spec) ct._set_metacommunity_parameters() self.assertEqual(0.0, ct.metacommunity_size) self.assertEqual(0.0, ct.metacommunity_speciation_rate) ct._set_metacommunity_parameters(10, 0.1, "simulated") self.assertEqual(10, ct.metacommunity_size) self.assertEqual(0.1, ct.metacommunity_speciation_rate) def testSetProtractedParameters(self): """Tests that setting the protracted parameters works as expected.""" ct = CoalescenceTree(self.dst[0]) with self.assertRaises(ValueError): ct._set_protracted_parameters(0.1, 100) ct = CoalescenceTree(self.dst[1]) ct._set_protracted_parameters(10, 100) self.assertEqual((10.0, 100.0), ct.protracted_parameters[0]) ct.protracted_parameters = [] for min_proc, max_proc in [[200, 5000], [80, 50], [200, 11000]]: with self.assertRaises(ValueError): ct._check_protracted_parameters(min_proc, max_proc) with self.assertRaises(ValueError): ct._set_protracted_parameters(min_proc, max_proc) with self.assertRaises(ValueError): ct.add_protracted_parameters(min_proc, max_proc) ct._set_protracted_parameters(50, 5000) self.assertEqual((50.0, 5000.0), ct.protracted_parameters[0]) ct.protracted_parameters = [] ct._set_protracted_parameters() self.assertEqual((0.0, 0.0), ct.protracted_parameters[0]) def testSetSampleFile(self): """Tests that the sample file is correctly set.""" ct = CoalescenceTree(self.dst[0]) for file in ["notafile.tif", os.path.join("sample", "sample.db")]: with self.assertRaises(IOError): ct._set_sample_file(file) ct._set_sample_file() self.assertEqual("null", ct.sample_file) expected_file = os.path.join("sample", "SA_sample_coarse.tif") ct._set_sample_file(expected_file) self.assertEqual(expected_file, ct.sample_file) def testSetTimes(self): """Tests that times are correctly set.""" ct = CoalescenceTree(self.dst[0]) ct._set_times(None) self.assertEqual(0.0, ct.times[0]) with self.assertRaises(TypeError): ct.add_times(0.5) with self.assertRaises(TypeError): ct.add_times([0.2, 0.5, "string"]) ct.times = None ct.add_times([0.2, 0.5, 10]) self.assertEqual([0.0, 0.2, 0.5, 10.0], ct.times) ct.times = None ct._set_times(0.2) self.assertEqual([0.0, 0.2], ct.times) ct.times = None ct._set_times([0.1, 0.5, 10.0]) self.assertEqual([0.0, 0.1, 0.5, 10.0], ct.times) class TestCoalescenceTreeParameters(unittest.TestCase): """Tests that parameters are correctly obtained from the databases and the relevant errors are raised.""" def testCommunityParameters1(self): """Tests the community parameters make sense in a very simple community.""" shutil.copyfile(os.path.join("sample", "sample3.db"), os.path.join("output", "temp_sample3.db")) t = CoalescenceTree(os.path.join("output", "temp_sample3.db"), logging_level=50) self.assertEqual([], t.get_metacommunity_references()) self.assertEqual([1], t.get_community_references()) params = t.get_community_parameters(1) expected_dict = { "speciation_rate": 0.001, "time": 0.0, "fragments": 0, "metacommunity_reference": 0, "min_speciation_gen": 100.0, "max_speciation_gen": 10000.0, } self.assertEqual(expected_dict, params) with self.assertRaises(sqlite3.Error): t.get_metacommunity_parameters(1) with self.assertRaises(KeyError): t.get_community_parameters(2) with self.assertRaises(KeyError): t.get_community_reference(0.1, 0.0, 0, 0, 0.0, min_speciation_gen=100.0, max_speciation_gen=10000.0) with self.assertRaises(KeyError): _ = t.get_community_reference(speciation_rate=0.001, time=0.0, fragments=False) ref = t.get_community_reference( speciation_rate=0.001, time=0.0, fragments=False, min_speciation_gen=100.0, max_speciation_gen=10000.0 ) self.assertEqual(1, ref) self.assertEqual(expected_dict, t.get_community_parameters(ref)) t.wipe_data() with self.assertRaises(IOError): t.get_community_parameters_pd() def testCommunityParameters2(self): """Tests the community parameters make sense in a very simple community.""" t = CoalescenceTree(os.path.join("sample", "sample4.db")) self.assertEqual([1, 2, 3, 4, 5], t.get_community_references()) expected_params1 = {"speciation_rate": 0.1, "time": 0.0, "fragments": 0, "metacommunity_reference": 0} expected_params2 = {"speciation_rate": 0.1, "time": 0.0, "fragments": 0, "metacommunity_reference": 1} expected_params3 = {"speciation_rate": 0.2, "time": 0.0, "fragments": 0, "metacommunity_reference": 1} expected_params4 = {"speciation_rate": 0.1, "time": 0.0, "fragments": 0, "metacommunity_reference": 2} expected_params5 = {"speciation_rate": 0.2, "time": 0.0, "fragments": 0, "metacommunity_reference": 2} expected_meta_params1 = { "speciation_rate": 0.001, "metacommunity_size": 10000.0, "option": "simulated", "external_reference": 0, } expected_meta_params2 = { "speciation_rate": 0.001, "metacommunity_size": 10000.0, "option": "analytical", "external_reference": 0, } params1 = t.get_community_parameters(1) params2 = t.get_community_parameters(2) params3 = t.get_community_parameters(3) params4 = t.get_community_parameters(4) params5 = t.get_community_parameters(5) params6 = t.get_metacommunity_parameters(1) params7 = t.get_metacommunity_parameters(2) self.assertEqual([1, 2], t.get_metacommunity_references()) self.assertEqual(expected_params1, params1) self.assertEqual(expected_params2, params2) self.assertEqual(expected_params3, params3) self.assertEqual(expected_params4, params4) self.assertEqual(expected_params5, params5) self.assertEqual(expected_meta_params1, params6) self.assertEqual(expected_meta_params2, params7) with self.assertRaises(KeyError): t.get_community_parameters(6) with self.assertRaises(KeyError): t.get_metacommunity_parameters(3) ref1 = t.get_community_reference(speciation_rate=0.1, time=0.0, fragments=False) with self.assertRaises(KeyError): t.get_community_reference( speciation_rate=0.1, time=0.0, fragments=False, min_speciation_gen=0.1, max_speciation_gen=10000.0 ) ref2 = t.get_community_reference( speciation_rate=0.1, time=0.0, fragments=False, metacommunity_size=10000.0, metacommunity_speciation_rate=0.001, metacommunity_option="simulated", ) with self.assertRaises(KeyError): t.get_community_reference( speciation_rate=0.1, time=0.0, fragments=False, metacommunity_size=10000.0, metacommunity_speciation_rate=0.01, metacommunity_option="simulated", ) ref3 = t.get_community_reference( speciation_rate=0.2, time=0.0, fragments=False, metacommunity_size=10000.0, metacommunity_speciation_rate=0.001, metacommunity_option="simulated", ) ref4 = t.get_community_reference( speciation_rate=0.1, time=0.0, fragments=False, metacommunity_size=10000.0, metacommunity_speciation_rate=0.001, metacommunity_option="analytical", ) ref5 = t.get_community_reference( speciation_rate=0.2, time=0.0, fragments=False, metacommunity_size=10000.0, metacommunity_speciation_rate=0.001, metacommunity_option="analytical", ) self.assertEqual(1, ref1) self.assertEqual(2, ref2) self.assertEqual(3, ref3) self.assertEqual(4, ref4) self.assertEqual(5, ref5) expected_community_params_list = [] for reference in t.get_community_references(): params = t.get_community_parameters(reference) params["reference"] = reference expected_community_params_list.append(params) expected_community_params = pd.DataFrame(expected_community_params_list) actual_output = t.get_community_parameters_pd() assert_frame_equal(expected_community_params, actual_output, check_like=True) def testIsComplete(self): """Tests sims are correctly identified as complete.""" t = CoalescenceTree(os.path.join("sample", "sample4.db")) self.assertTrue(t.is_complete) class TestCoalescenceTreeAnalysis(unittest.TestCase): """Tests analysis is performed correctly""" @classmethod def setUpClass(cls): """Sets up the Coalescence object test case.""" dst1 = os.path.join("output", "sampledb0.db") for i in range(0, 11): dst = os.path.join("output", "sampledb{}.db".format(i)) if os.path.exists(dst): os.remove(dst) shutil.copyfile(os.path.join("sample", "sample.db"), dst) shutil.copyfile(os.path.join("sample", "nse_reference.db"), os.path.join("output", "nse_reference1.db")) random.seed(2) cls.test = CoalescenceTree(dst1, logging_level=50) cls.test.clear_calculations() cls.test.import_comparison_data(os.path.join("sample", "PlotBiodiversityMetrics.db")) cls.test.calculate_fragment_richness() cls.test.calculate_fragment_octaves() cls.test.calculate_octaves_error() cls.test.calculate_alpha_diversity() cls.test.calculate_beta_diversity() cls.test2 = CoalescenceTree() cls.test2.set_database(os.path.join("sample", "sample_nofrag.db")) dstx = os.path.join("output", "sampledbx.db") shutil.copyfile(dst1, dstx) c = CoalescenceTree(dstx) c.import_comparison_data(os.path.join("sample", "PlotBiodiversityMetrics.db")) c.calculate_goodness_of_fit() @classmethod def tearDownClass(cls): """ Removes the files from output." """ cls.test.clear_calculations() def testComparisonDataNoExistError(self): c = CoalescenceTree(os.path.join("sample", "sample.db")) with self.assertRaises(IOError): c.import_comparison_data(os.path.join("sample", "doesnotexist.db")) def testFragmentOctaves(self): num = self.test.cursor.execute( "SELECT richness FROM FRAGMENT_OCTAVES WHERE fragment == 'P09' AND octave == 0" " AND community_reference == 1" ).fetchall()[0][0] self.assertEqual(num, 7, msg="Fragment octaves not correctly calculated.") num = self.test.cursor.execute( "SELECT richness FROM FRAGMENT_OCTAVES WHERE fragment == 'P09' AND octave == 0 " " AND community_reference == 2" ).fetchall()[0][0] self.assertEqual(num, 7, msg="Fragment octaves not correctly calculated.") num = self.test.cursor.execute( "SELECT richness FROM FRAGMENT_OCTAVES WHERE fragment == 'cerrogalera' AND octave == 1 " " AND community_reference == 1" ).fetchall()[0][0] self.assertEqual(num, 3, msg="Fragment octaves not correctly calculated.") num = self.test.cursor.execute( "SELECT richness FROM FRAGMENT_OCTAVES WHERE fragment == 'whole' AND octave == 1 " " AND community_reference == 2" ).fetchall()[0][0] self.assertEqual(num, 221, msg="Fragment octaves not correctly calculated.") def testFragmentAbundances(self): """ Tests that fragment abundances are produced properly by the fragment detection functions. """ num = self.test.cursor.execute( "SELECT COUNT(fragment) FROM FRAGMENT_ABUNDANCES WHERE fragment == 'P09' " " AND community_reference == 1" ).fetchall()[0][0] self.assertEqual(num, 9, msg="Fragment abundances not correctly calculated.") num = self.test.cursor.execute( "SELECT COUNT(fragment) FROM FRAGMENT_ABUNDANCES WHERE fragment == 'P09' " " AND community_reference == 2" ).fetchall()[0][0] self.assertEqual(num, 9, msg="Fragment abundances not correctly calculated.") num = self.test.cursor.execute( "SELECT COUNT(fragment) FROM FRAGMENT_ABUNDANCES WHERE fragment == 'cerrogalera' " " AND community_reference == 1" ).fetchall()[0][0] self.assertEqual(num, 9, msg="Fragment abundances not correctly calculated.") def testSpeciesAbundances(self): """Tests that the produced species abundances are correct by comparing species richness.""" num = self.test.cursor.execute( "SELECT COUNT(species_id) FROM SPECIES_ABUNDANCES WHERE community_reference == 2" ).fetchall()[0][0] self.assertEqual(num, 1029, msg="Species abundances not correctly calculated.") num = self.test.cursor.execute( "SELECT COUNT(species_id) FROM SPECIES_ABUNDANCES WHERE community_reference == 1" ).fetchall()[0][0] self.assertEqual(num, 884, msg="Species abundances not correctly calculated.") def testGetOctaves(self): """Tests getting the octaves.""" c = CoalescenceTree(os.path.join("output", "sampledb4.db")) c.clear_calculations() c.import_comparison_data(os.path.join("sample", "PlotBiodiversityMetrics.db")) c.calculate_richness() self.assertEqual([[0, 585], [1, 231], [2, 59], [3, 5]], c.get_octaves(1)) c = CoalescenceTree(os.path.join("output", "sampledb4.db")) c.clear_calculations() c.import_comparison_data(os.path.join("sample", "PlotBiodiversityMetrics.db")) c.calculate_richness() actual = c.get_octaves_pd().head() expected = pd.DataFrame( [[1, 0, 585], [1, 1, 231], [1, 2, 59], [1, 3, 5], [2, 0, 760]], columns=["community_reference", "octave", "richness"], ) assert_frame_equal(actual, expected, check_like=True) def testSpeciesLocations(self): """ Tests that species locations have been correctly assigned. """ num = self.test.cursor.execute( "SELECT species_id FROM SPECIES_LOCATIONS WHERE x==1662 AND y==4359 " " AND community_reference == 1" ).fetchall() self.assertEqual(len(set(num)), 2, msg="Species locations not correctly assigned") all_list = self.test.get_species_locations() select_list = self.test.get_species_locations(community_reference=1) self.assertListEqual([1, 1662, 4359, 1], all_list[0]) self.assertListEqual([1, 1662, 4359], select_list[0]) def testAlphaDiversity(self): """ Tests that alpha diversity is correctly calculated and fetched for each parameter reference """ c = CoalescenceTree(os.path.join("sample", "sample.db")) with self.assertRaises(IOError): c.get_alpha_diversity_pd() self.assertEqual(9, self.test.get_alpha_diversity(1)) self.assertEqual(10, self.test.get_alpha_diversity(2)) expected_alphas_list = [] for reference in self.test.get_community_references(): expected_alphas_list.append( {"community_reference": reference, "alpha_diversity": self.test.get_alpha_diversity(reference)} ) expected_alphas = pd.DataFrame(expected_alphas_list).reset_index(drop=True) actual_alphas = self.test.get_alpha_diversity_pd().reset_index(drop=True) assert_frame_equal(expected_alphas, actual_alphas, check_like=True) def testBetaDiversity(self): """ Tests that beta diversity is correctly calculated and fetched for the reference """ c = CoalescenceTree(os.path.join("sample", "sample.db")) with self.assertRaises(IOError): c.get_beta_diversity_pd() self.assertAlmostEqual(98.111111111, self.test.get_beta_diversity(1), places=5) self.assertAlmostEqual(102.8, self.test.get_beta_diversity(2), places=5) expected_betas_list = [] for reference in self.test.get_community_references(): expected_betas_list.append( {"community_reference": reference, "beta_diversity": self.test.get_beta_diversity(reference)} ) expected_betas = pd.DataFrame(expected_betas_list).reset_index(drop=True) actual_betas = self.test.get_beta_diversity_pd().reset_index(drop=True) assert_frame_equal(expected_betas, actual_betas, check_like=True) def testGetNumberIndividuals(self): """Tests that the number of individuals is obtained correctly.""" c = CoalescenceTree(os.path.join("output", "sampledb7.db")) self.assertEqual(1504, c.get_number_individuals(community_reference=1)) self.assertEqual(12, c.get_number_individuals(fragment="P09", community_reference=1)) c.wipe_data() c.import_comparison_data(os.path.join("sample", "PlotBiodiversityMetrics.db")) with self.assertRaises(IOError): c.get_number_individuals(fragment="none") with self.assertRaises(IOError): c.get_number_individuals() def testGetFragmentAbundances(self): """Tests that fragment abundances are correctly obtained.""" c = CoalescenceTree(os.path.join("sample", "sample3.db")) with self.assertRaises(IOError): c.get_fragment_abundances(fragment="P09", reference=1) with self.assertRaises(IOError): c.get_fragment_abundances_pd() abundances = self.test.get_fragment_abundances(fragment="P09", reference=1) expected_abundances = [[302, 1], [303, 1], [304, 1], [305, 1], [306, 1], [307, 1], [546, 2], [693, 1], [732, 3]] self.assertEqual(expected_abundances, abundances[:10]) all_abundances = self.test.get_all_fragment_abundances() expected_abundances2 = [ [1, "P09", 302, 1], [1, "P09", 303, 1], [1, "P09", 304, 1], [1, "P09", 305, 1], [1, "P09", 306, 1], [1, "P09", 307, 1], [1, "P09", 546, 2], [1, "P09", 693, 1], [1, "P09", 732, 3], [1, "cerrogalera", 416, 1], ] self.assertEqual(expected_abundances2, all_abundances[:10]) df = pd.DataFrame( expected_abundances2, columns=["community_reference", "fragment", "species_id", "no_individuals"] ) actual_df = self.test.get_fragment_abundances_pd().head(n=10) assert_frame_equal(df, actual_df, check_like=True) def testGetFragmentListErrors(self): """Tests the error is raised when obtaining fragment list.""" c = CoalescenceTree(os.path.join("output", "sampledb8.db")) c.wipe_data() with self.assertRaises(IOError): c.get_fragment_list() def testClearGoodnessFit(self): """Tests that goodness of fit are correctly cleared.""" c = CoalescenceTree(os.path.join("output", "sampledbx.db")) exec_command = "SELECT * FROM BIODIVERSITY_METRICS WHERE metric LIKE 'goodness_%'" self.assertTrue(len(c.cursor.execute(exec_command).fetchall()) >= 1) c._clear_goodness_of_fit() self.assertFalse(len(c.cursor.execute(exec_command).fetchall()) >= 1) def testGetBiodiversityMetrics(self): """Tests that biodiversity metrics are correctly obtained from the database.""" c1 = CoalescenceTree(os.path.join("sample", "sample.db")) with self.assertRaises(IOError): c1.get_biodiversity_metrics() c2 = CoalescenceTree(os.path.join("sample", "sample2.db")) expected_biodiversity_metrics = pd.DataFrame( [ [1, "fragment_richness", "fragment2", 129.0, np.NaN, np.NaN], [2, "fragment_richness", "fragment2", 130.0, np.NAN, np.NaN], [1, "fragment_richness", "fragment1", 174.0, np.NaN, np.NaN], [2, "fragment_richness", "fragment1", 175.0, np.NaN, np.NaN], [1, "fragment_richness", "whole", 1163.0, np.NaN, np.NaN], [2, "fragment_richness", "whole", 1170.0, np.NaN, np.NaN], ], columns=["community_reference", "metric", "fragment", "value", "simulated", "actual"], ).reset_index(drop=True) actual_biodiversity_metrics = c2.get_biodiversity_metrics().reset_index(drop=True).fillna(value=np.nan) assert_frame_equal(expected_biodiversity_metrics, actual_biodiversity_metrics) def testRaisesErrorNoFragmentsAlpha(self): """ Tests that an error is raised when alpha diversity is calculated without any fragment abundance data """ with self.assertRaises(IOError): self.test2.calculate_alpha_diversity() def testRaisesErrorNoFragmentsBeta(self): """ Tests that an error is raised when alpha diversity is calculated without any fragment abundance data """ with self.assertRaises(IOError): self.test2.calculate_beta_diversity() def testRaisesErrorNoFragmentsRichness(self): """ Tests that an error is raised when fragment richness is calculated without any fragment abundance data """ with self.assertRaises(IOError): self.test2.calculate_fragment_richness() def testRaisesErrorNoFragmentsOctaves(self): """ Tests that an error is raised when fragment richness is calculated without any fragment abundance data """ with self.assertRaises(IOError): self.test2.calculate_fragment_octaves() @unittest.skipIf(sys.version[0] != "3", "Skipping Python 3.x tests") def testModelFitting2(self): """ Tests that the goodness-of-fit calculations are correctly performed. """ random.seed(2) self.test.calculate_goodness_of_fit() self.assertAlmostEqual(self.test.get_goodness_of_fit(), 0.30140801329929373, places=6) self.assertAlmostEqual(self.test.get_goodness_of_fit_fragment_octaves(), 0.0680205429120108, places=6) self.assertAlmostEqual(self.test.get_goodness_of_fit_fragment_richness(), 0.9244977999898334, places=6) @unittest.skipIf(sys.version[0] == "3", "Skipping Python 2.x tests") def testModelFitting3(self): """ Tests that the goodness-of-fit calculations are correctly performed. """ random.seed(2) self.test.calculate_goodness_of_fit() self.assertAlmostEqual(self.test.get_goodness_of_fit(), 0.30140801329929373, places=6) self.assertAlmostEqual(self.test.get_goodness_of_fit_fragment_octaves(), 0.0680205429120108, places=6) self.assertAlmostEqual(self.test.get_goodness_of_fit_fragment_richness(), 0.9244977999898334, places=6) def testErrorIfNotApplied(self): """Tests that an error is raised if outputting is attempted without applying any community parameters.""" c = CoalescenceTree(os.path.join("sample", "sample.db")) with self.assertRaises(RuntimeError): c.output() def testFragmentNumbersMatching(self): """Checks behaviour when matching fragment numbers.""" test = CoalescenceTree(os.path.join("output", "sampledb1.db"), logging_level=50) test.clear_calculations() with self.assertRaises(RuntimeError): test._check_fragment_numbers_match() with self.assertRaises(ValueError): test.calculate_fragment_abundances() test._check_fragment_numbers_match() test.comparison_file = os.path.join("sample", "PlotBiodiversityMetrics.db") self.assertTrue(test._check_fragment_numbers_match()) test.fragment_abundances.pop(0) self.assertFalse(test._check_fragment_numbers_match()) def testFragmentNumbersEqualisation(self): """Checks behaviour when equalising fragment numbers.""" test = CoalescenceTree(os.path.join("output", "sampledb2.db"), logging_level=50) test.clear_calculations() test.import_comparison_data(os.path.join("sample", "PlotBiodiversityMetrics.db")) test.calculate_fragment_richness() self.test._equalise_fragment_number("notafrag", 1) test.fragment_abundances[0][2] += 1000 test._equalise_fragment_number("P09", 1) self.assertTrue(test._check_fragment_numbers_match()) def testFragmentNumbersErrors(self): """Checks behaviour when equalising fragment numbers.""" test = CoalescenceTree(os.path.join("output", "sampledb3.db"), logging_level=50) test.clear_calculations() test.import_comparison_data(os.path.join("sample", "PlotBiodiversityMetrics.db")) test.comparison_abundances = None with self.assertRaises(ValueError): test._equalise_all_fragment_numbers() def testAdjustBiodiversityMetrics(self): """Checks that biodiversity metrics are correctly adjusted.""" test = CoalescenceTree(os.path.join("output", "sampledb5.db"), logging_level=50) test.clear_calculations() test.import_comparison_data(os.path.join("sample", "PlotBiodiversityMetrics.db")) test.adjust_data() def testComparisonOctavesModification(self): """Tests that the comparison database is modified.""" test = CoalescenceTree(os.path.join("output", "sampledb6.db"), logging_level=50) dst = os.path.join("output", "PlotBiodiversityMetricsNoAlpha2.db") shutil.copy(os.path.join("sample", "PlotBiodiversityMetricsNoAlpha.db"), dst) test.import_comparison_data(dst) test.calculate_comparison_octaves(store=True) self.assertTrue(os.path.exists(dst)) @unittest.skipIf(sys.version[0] == "2", "Skipping Python 3.x tests") def testDownsamplingAndRevert(self): """Tests that downsampling works as intended and can be reverted.""" c = CoalescenceTree(os.path.join("output", "sampledb9.db")) random.seed(a=10, version=3) original_individuals = c.get_number_individuals() original_richness = c.get_species_richness_pd() c.wipe_data() with self.assertRaises(ValueError): c.downsample(sample_proportion=2.0) c.downsample(sample_proportion=0.1) c.set_speciation_parameters([0.1, 0.2]) c.apply() new_individuals = c.get_number_individuals() self.assertEqual(1452, new_individuals) self.assertTrue(check_sql_table_exist(c.database, "SPECIES_LIST")) self.assertTrue(check_sql_table_exist(c.database, "SPECIES_LIST_ORIGINAL")) c = CoalescenceTree(os.path.join("output", "sampledb9.db")) c.revert_downsample() c.wipe_data() c.set_speciation_parameters([0.1, 0.2]) c.apply() final_individuals = c.get_number_individuals() assert_frame_equal(original_richness, c.get_species_richness_pd()) self.assertEqual(original_individuals, final_individuals) self.assertTrue(check_sql_table_exist(c.database, "SPECIES_LIST")) self.assertFalse(check_sql_table_exist(c.database, "SPECIES_LIST_ORIGINAL")) # Now test with NSE sim to ensure correct sampling c = CoalescenceTree(os.path.join("output", "nse_reference1.db")) nse_richness = c.get_species_richness_pd() nse_no_individuals = c.get_number_individuals() c.wipe_data() c.downsample(sample_proportion=0.1) c.set_speciation_parameters([0.000001, 0.999999]) c.apply() new_no_individuals = c.get_number_individuals() self.assertAlmostEqual(new_no_individuals / nse_no_individuals, 0.1, 5) self.assertEqual(1000, c.get_species_richness(reference=2)) self.assertTrue(check_sql_table_exist(c.database, "SPECIES_LIST")) self.assertTrue(check_sql_table_exist(c.database, "SPECIES_LIST_ORIGINAL")) c = CoalescenceTree(os.path.join("output", "nse_reference1.db")) c.revert_downsample() c.wipe_data() c.set_speciation_parameters([0.000001, 0.999999]) c.apply_incremental() c.set_speciation_parameters([0.5]) c.apply() actual_richness = c.get_species_richness_pd() assert_frame_equal(nse_richness, actual_richness) self.assertEqual(nse_no_individuals, c.get_number_individuals()) self.assertTrue(check_sql_table_exist(c.database, "SPECIES_LIST")) self.assertFalse(check_sql_table_exist(c.database, "SPECIES_LIST_ORIGINAL")) with self.assertRaises(IOError): c.revert_downsample() @unittest.skipIf(sys.version[0] == "2", "Skipping Python 3.x tests") def testDownsamplingByLocationAndRevert(self): """Tests that downsampling works as intended and can be reverted.""" c = CoalescenceTree(os.path.join("output", "sampledb10.db")) random.seed(a=10, version=3) original_individuals = c.get_number_individuals() original_richness = c.get_species_richness_pd() c.wipe_data() with self.assertRaises(ValueError): c.downsample_at_locations(fragment_csv=os.path.join("sample", "FragmentsTestFail1.csv")) with self.assertRaises(IOError): c.downsample_at_locations(fragment_csv="not_a_file.csv") c.downsample_at_locations(fragment_csv=os.path.join("sample", "FragmentsTest3.csv")) c.set_speciation_parameters([0.1, 0.2]) c.apply() new_individuals = c.get_number_individuals() self.assertEqual(2, new_individuals) self.assertTrue(check_sql_table_exist(c.database, "SPECIES_LIST")) self.assertTrue(check_sql_table_exist(c.database, "SPECIES_LIST_ORIGINAL")) c = CoalescenceTree(os.path.join("output", "sampledb10.db")) c.revert_downsample() c.wipe_data() c.set_speciation_parameters([0.1, 0.2]) c.apply() final_individuals = c.get_number_individuals() assert_frame_equal(original_richness, c.get_species_richness_pd()) self.assertEqual(original_individuals, final_individuals) self.assertTrue(check_sql_table_exist(c.database, "SPECIES_LIST")) self.assertFalse(check_sql_table_exist(c.database, "SPECIES_LIST_ORIGINAL")) c = CoalescenceTree(os.path.join("output", "sampledb10.db")) c.wipe_data() c.downsample_at_locations(fragment_csv=os.path.join("sample", "FragmentsTest4.csv"), ignore_errors=True) c.set_speciation_parameters([0.1, 0.2]) c.apply() new_individuals = c.get_number_individuals() self.assertEqual(3, new_individuals) class TestCoalescenceTreeWriteCsvs(unittest.TestCase): """Tests that csvs are correctly outputted.""" @classmethod def setUpClass(cls): """Creates the CoalescenceTree object.""" cls.c = CoalescenceTree(os.path.join("sample", "nse_reference.db")) def testWriteCommunityParameterToCsv(self): """Tests that community parameters are correctly written to a csv.""" output_csv = os.path.join("output", "community_parameters1.csv") self.c.write_to_csv(output_csv, "COMMUNITY_PARAMETERS") self.assertTrue(os.path.exists(output_csv)) import csv if sys.version_info[0] < 3: # pragma: no cover infile = open(output_csv, "rb") else: infile = open(output_csv, "r") expected_output = [ ["reference", "speciation_rate", "time", "fragments", "metacommunity_reference"], ["1", "1e-06", "0.0", "0", "0"], ["2", "0.99999", "0.0", "0", "0"], ["3", "0.5", "0.0", "0", "0"], ] actual_output = [] with infile as csv_file: csv_reader = csv.reader(csv_file) for row in csv_reader: actual_output.append(row) self.assertEqual(expected_output, actual_output) with self.assertRaises(IOError): self.c.write_to_csv(output_csv, "COMMUNITY_PARAMETERS") with self.assertRaises(KeyError): self.c.write_to_csv("notacsv.csv", "NOTATABLE") def testWritesAllCsvs(self): """Tests that all csvs write to the output correctly.""" output_dir = os.path.join("output", "csvdir") if os.path.exists(output_dir): os.remove(output_dir) self.c.write_all_to_csvs(output_dir, "out1") expected_tables = ["COMMUNITY_PARAMETERS", "SIMULATION_PARAMETERS", "SPECIES_ABUNDANCES", "SPECIES_LIST"] for table in expected_tables: self.assertTrue(os.path.exists(os.path.join(output_dir, "out1_{}.csv".format(table)))) for file in os.listdir(output_dir): if ".csv" in file: self.assertIn(file, ["out1_{}.csv".format(x) for x in expected_tables]) self.c.write_all_to_csvs(output_dir, "out2.csv") for table in expected_tables: self.assertTrue(os.path.exists(os.path.join(output_dir, "out2_{}.csv".format(table)))) self.c.write_all_to_csvs(output_dir, "out3.") for table in expected_tables: self.assertTrue(os.path.exists(os.path.join(output_dir, "out3_{}.csv".format(table)))) class TestCoalescenceTreeSpeciesDistances(unittest.TestCase): """Tests analysis is performed correctly.""" @classmethod def setUpClass(cls): """ Sets up the Coalescence object test case. """ dst = os.path.join("output", "sampledb1.db") if os.path.exists(dst): os.remove(dst) shutil.copyfile(os.path.join("sample", "sample.db"), dst) cls.test = CoalescenceTree(dst) cls.test.clear_calculations() cls.test.import_comparison_data(os.path.join("sample", "PlotBiodiversityMetrics.db")) cls.test.calculate_species_distance_similarity() def testSpeciesDistanceSimilarity(self): """ Tests that the species distance similarity function works as intended. """ mean = self.test.cursor.execute( "SELECT value FROM BIODIVERSITY_METRICS WHERE community_reference == 1 AND " "metric == 'mean_distance_between_individuals'" ).fetchone()[0] self.assertAlmostEqual(mean, 5.423769507803121, places=5) species_distances = self.test.get_species_distance_similarity(community_reference=1) # for distance, similar in species_distances: # self.assertLessEqual(similar, dissimilar) self.assertListEqual(species_distances[0], [0, 11]) self.assertListEqual(species_distances[1], [1, 274]) self.assertListEqual(species_distances[2], [2, 289]) class TestCoalescenceTreeAnalyseIncorrectComparison(unittest.TestCase): """ Tests errors are raised correctly for incorrect comparison data. """ @classmethod def setUpClass(cls): """ Sets up the Coalescence object test case. """ random.seed(10) dst = os.path.join("output", "sampledb2.db") if os.path.exists(dst): os.remove(dst) shutil.copyfile(os.path.join("sample", "sample.db"), dst) cls.test = CoalescenceTree(logging_level=40) cls.test.set_database(dst) cls.test.import_comparison_data(os.path.join("sample", "PlotBiodiversityMetricsNoAlpha.db")) cls.test.calculate_comparison_octaves(False) cls.test.clear_calculations() cls.test.calculate_fragment_richness() cls.test.calculate_fragment_octaves() cls.test.calculate_octaves_error() cls.test.calculate_alpha_diversity() cls.test.calculate_alpha_diversity() cls.test.calculate_beta_diversity() cls.test2 = CoalescenceTree() cls.test2.set_database(os.path.join("sample", "sample_nofrag.db")) @classmethod def tearDownClass(cls): """ Removes the files from output." """ cls.test.clear_calculations() def testRaisesErrorMismatchParameters(self): """ Tests that an error is raised when there is a parameter mismatch """ with self.assertRaises(ValueError): self.test.calculate_goodness_of_fit() class TestSimulationAnalysisTemporal(unittest.TestCase): """Tests that applying multiple times works as expected.""" @classmethod def setUpClass(cls): """Generates the analysis object.""" src = os.path.join("sample", "sample2.db") dst = os.path.join("output", "sample2.db") if not os.path.exists(dst): shutil.copy(src, dst) cls.tree = CoalescenceTree() cls.tree.set_database(dst) cls.tree.wipe_data() def testTimesWrongFormatError(self): """Tests that an error is raised when the times are in the wrong format.""" with self.assertRaises(TypeError): self.tree.set_speciation_parameters([0.4, 0.6], times=[0.1, 0.2, "notafloat"]) with self.assertRaises(TypeError): # noinspection PyTypeChecker self.tree.set_speciation_parameters([0.4, 0.6], times="notafloat") self.tree.times = [] self.tree.set_speciation_parameters([0.4, 0.6], times=[0, 1, 10]) self.assertEqual([0.0, 1.0, 10.0], self.tree.times) class TestSimulationAnalysis(unittest.TestCase): """ Tests that the simulation can perform all required analyses, and that the correct errors are thrown if the object does not exist. """ @classmethod def setUpClass(cls): """Copies the sample databases and applies a basic set of community parameters.""" src = os.path.join("sample", "sample2.db") dst = os.path.join("output", "sample2.db") if os.path.exists(dst): os.remove(dst) shutil.copy(src, dst) cls.tree = CoalescenceTree(logging_level=50) cls.tree.set_database(dst) cls.tree.wipe_data() cls.tree.set_speciation_parameters( speciation_rates=[0.5, 0.7], record_spatial="T", record_fragments=os.path.join("sample", "FragmentsTest.csv"), sample_file=os.path.join("sample", "SA_samplemaskINT.tif"), ) cls.tree.apply() cls.tree.calculate_fragment_richness() cls.tree.calculate_fragment_octaves() np.random.seed(100) def testSetDatabaseErrors(self): """Tests that the set database errors are correctly raised.""" sim = Simulation() c = CoalescenceTree() with self.assertRaises(RuntimeError): c.set_database(sim) c = CoalescenceTree() with self.assertRaises(IOError): c.set_database(os.path.join("sample", "failsampledoesntexist.db")) def testFragmentConfigNoExistError(self): """Tests that an error is raised if the fragment config file does not exist.""" tree = CoalescenceTree(self.tree.file) with self.assertRaises(IOError): tree.set_speciation_parameters( speciation_rates=[0.5, 0.7], record_spatial="T", record_fragments=os.path.join("sample", "notafragmentconfig.csv"), sample_file=os.path.join("sample", "SA_samplemaskINT.tif"), ) with self.assertRaises(IOError): tree.set_speciation_parameters( speciation_rates=[0.5, 0.7], record_spatial="T", record_fragments=os.path.join("sample", "example_historical_fine.tif"), sample_file=os.path.join("sample", "SA_samplemaskINT.tif"), ) def testReadsFragmentsRichness(self): """ Tests that the fragment richness can be read correctly """ sim_params = self.tree.get_simulation_parameters() expected_params = dict( seed=9, task=1, output_dir="output", speciation_rate=0.5, sigma=2.828427, tau=2.0, deme=1, sample_size=0.1, max_time=2.0, dispersal_relative_cost=1.0, min_num_species=1, habitat_change_rate=0.0, gen_since_historical=200.0, time_config_file="null", coarse_map_file="sample/SA_sample_coarse.tif", coarse_map_x=35, coarse_map_y=41, coarse_map_x_offset=11, coarse_map_y_offset=14, coarse_map_scale=1.0, fine_map_file="sample/SA_sample_fine.tif", fine_map_x=13, fine_map_y=13, fine_map_x_offset=0, fine_map_y_offset=0, sample_file="sample/SA_samplemaskINT.tif", grid_x=13, grid_y=13, sample_x=13, sample_y=13, sample_x_offset=0, sample_y_offset=0, historical_coarse_map="none", historical_fine_map="none", sim_complete=1, dispersal_method="normal", m_probability=0.0, cutoff=0.0, landscape_type="closed", protracted=0, min_speciation_gen=0.0, max_speciation_gen=0.0, dispersal_map="none", ) for key in sim_params.keys(): self.assertEqual( sim_params[key], expected_params[key], msg="Error in {}: {} != {}".format(key, sim_params[key], expected_params[key]), ) fragment2_richness = ["fragment2", 1, 129] self.assertEqual(self.tree.get_fragment_richness(fragment="fragment2", reference=1), 129) self.assertEqual(self.tree.get_fragment_richness(fragment="fragment1", reference=2), 175) octaves = self.tree.get_fragment_richness() self.assertListEqual(fragment2_richness, [list(x) for x in octaves if x[0] == "fragment2" and x[1] == 1][0]) expected_fragment_richness = [] for reference in self.tree.get_community_references(): for fragment in self.tree.get_fragment_list(reference): fragment_richness = self.tree.get_fragment_richness(fragment=fragment, reference=reference) expected_fragment_richness.append( {"fragment": fragment, "community_reference": reference, "fragment_richness": fragment_richness} ) expected_fragment_richness_df = ( pd.DataFrame(expected_fragment_richness) .sort_values(by=["fragment", "community_reference"]) .reset_index(drop=True) ) actual_fragment_richness = self.tree.get_fragment_richness_pd().reset_index(drop=True) assert_frame_equal(expected_fragment_richness_df, actual_fragment_richness, check_like=True) def testGetsFragmentList(self): """ Tests that fetching the list of fragments from FRAGMENT_ABUNDANCES is as expected """ fragment_list = self.tree.get_fragment_list() expected_list = ["fragment1", "fragment2"] self.assertListEqual(expected_list, fragment_list) def testReadsFragmentAbundances(self): """ Tests that the fragment abundances are correctly read """ expected_abundances = [ [610, 1], [611, 1], [612, 1], [613, 1], [614, 1], [615, 1], [616, 1], [617, 1], [618, 1], [619, 1], ] actual_abundances = self.tree.get_species_abundances(fragment="fragment2", reference=1) for i, each in enumerate(expected_abundances): self.assertListEqual(actual_abundances[i], each) with self.assertRaises(ValueError): self.tree.get_species_abundances(fragment="fragment2") expected_fragment_abundances_list = [] for reference in self.tree.get_community_references(): for fragment in self.tree.get_fragment_list(reference): fragment_abundances = self.tree.get_fragment_abundances(fragment=fragment, reference=reference) for species_id, abundance in fragment_abundances: expected_fragment_abundances_list.append( { "fragment": fragment, "community_reference": reference, "species_id": species_id, "no_individuals": abundance, } ) expected_fragment_abundances = ( pd.DataFrame(expected_fragment_abundances_list) .sort_values(by=["fragment", "community_reference", "species_id"]) .reset_index(drop=True) ) actual_fragment_abundances = ( self.tree.get_fragment_abundances_pd() .sort_values(by=["fragment", "community_reference", "species_id"]) .reset_index(drop=True) ) assert_frame_equal(expected_fragment_abundances, actual_fragment_abundances, check_like=True) def testFragmentRichnessRaiseError(self): """ Tests that the correct errors are raised when no fragment exists with that name, or with the specified speciation rate, or time. Also checks SyntaxErrors and sqlite3.Errors when no FRAGMENT_RICHNESS table exists. """ failtree = CoalescenceTree() failtree.set_database(os.path.join("sample", "failsample.db")) with self.assertRaises(IOError): failtree.get_fragment_richness() with self.assertRaises(IOError): failtree.get_fragment_richness_pd() with self.assertRaises(IOError): self.tree.get_fragment_richness(fragment="fragment4", reference=1) with self.assertRaises(SyntaxError): self.tree.get_fragment_richness(fragment="fragment4") with self.assertRaises(SyntaxError): self.tree.get_fragment_richness(reference=1) def testReadsFragmentOctaves(self): """ Tests that the fragment octaves can be read correctly. """ octaves = self.tree.get_fragment_octaves(fragment="fragment2", reference=1) octaves2 = self.tree.get_fragment_octaves(fragment="fragment1", reference=1) all_octaves = self.tree.get_fragment_octaves() desired = ["fragment1", 1, 0, 173] self.assertListEqual([0, 128], octaves[0]) self.assertListEqual([0, 173], octaves2[0]) self.assertListEqual(desired, [x for x in all_octaves if x[0] == "fragment1" and x[1] == 1 and x[2] == 0][0]) expected_fragment_octaves_list = [] for reference in self.tree.get_community_references(): fragment_list = self.tree.get_fragment_list(reference) fragment_list.append("whole") for fragment in fragment_list: try: octaves = self.tree.get_fragment_octaves(fragment=fragment, reference=reference) for octave, richness in octaves: expected_fragment_octaves_list.append( { "fragment": fragment, "community_reference": reference, "octave": octave, "richness": richness, } ) except RuntimeError: continue expected_fragment_octaves = ( pd.DataFrame(expected_fragment_octaves_list) .sort_values(["fragment", "community_reference", "octave"], axis=0) .reset_index(drop=True) ) actual_fragment_octaves = ( self.tree.get_fragment_octaves_pd() .sort_values(["fragment", "community_reference", "octave"], axis=0) .reset_index(drop=True) ) assert_frame_equal(expected_fragment_octaves, actual_fragment_octaves, check_like=True) def testFragmentOctavesRaiseError(self): """ Tests that the correct errors are raised for different situations for reading fragment octaves """ failtree = CoalescenceTree() try: failtree.set_database("sample/failsample.db") except sqlite3.Error: pass with self.assertRaises(sqlite3.Error): failtree.get_fragment_octaves(fragment="fragment4", reference=100) with self.assertRaises(RuntimeError): self.tree.get_fragment_octaves(fragment="fragment4", reference=100) with self.assertRaises(SyntaxError): self.tree.get_fragment_octaves(fragment="fragment4") with self.assertRaises(SyntaxError): self.tree.get_fragment_octaves(reference=100) def testFragmentSampling(self): """ Tests that sampling from fragments is accurate. """ self.assertEqual( 10, self.tree.sample_fragment_richness( fragment="fragment1", number_of_individuals=10, n=1, community_reference=2 ), ) self.assertEqual( 10, self.tree.sample_fragment_richness( fragment="fragment2", number_of_individuals=10, n=10, community_reference=2 ), ) def testLandscapeSampling(self): """Tests that the sampling from the landscape works as intended.""" number_dict = {"fragment1": 3, "fragment2": 10} np.random.seed(100) self.assertEqual( 13, self.tree.sample_landscape_richness(number_of_individuals=number_dict, n=1, community_reference=2) ) self.assertAlmostEqual( 99.9, self.tree.sample_landscape_richness(number_of_individuals=100, n=10, community_reference=1), places=3 ) def testRaisesSamplingErrors(self): """Tests that sampling errors are correctly raised""" number_dict = {"fragment1": 3000000, "fragment2": 10} with self.assertRaises(KeyError): self.assertEqual( 13, self.tree.sample_landscape_richness(number_of_individuals=number_dict, n=1, community_reference=2) ) number_dict2 = {"fragment": 10, "fragment2": 10} with self.assertRaises(KeyError): self.assertEqual( 13, self.tree.sample_landscape_richness(number_of_individuals=number_dict2, n=1, community_reference=2) ) def testSpeciesRichness(self): """Tests that the simulation species richness is read correctly.""" actual_species_richness = ( self.tree.get_species_richness_pd().sort_values(by=["community_reference"]).reset_index(drop=True) ) expected_species_richness_list = [] for reference in self.tree.get_community_references(): expected_species_richness_list.append( {"community_reference": reference, "richness": self.tree.get_species_richness(reference=reference)} ) expected_species_richness = pd.DataFrame(expected_species_richness_list) assert_frame_equal(actual_species_richness, expected_species_richness, check_like=True) def testOctaves(self): """Tests that the simulation octave classes are correctly calculated.""" actual_species_octaves = ( self.tree.get_octaves_pd().sort_values(by=["community_reference", "octave"]).reset_index(drop=True) ) expected_species_octaves_list = [] for reference in self.tree.get_community_references(): for octave, richness in self.tree.get_octaves(reference): expected_species_octaves_list.append( {"community_reference": reference, "octave": octave, "richness": richness} ) expected_species_octaves = pd.DataFrame(expected_species_octaves_list) assert_frame_equal(actual_species_octaves, expected_species_octaves, check_like=True) class TestMetacommunityApplication(unittest.TestCase): """ Tests that a metacommunity can be applied correctly under the three different scenarios. Note that this does not test edge cases, just that the parameters are correctly stored and the different application methods work as intended. """ @classmethod def setUpClass(cls): """Initialises the three database files to use.""" src = os.path.join("sample", "sample.db") for i in range(6): dst = os.path.join("output", "sample_{}.db".format(i)) if os.path.exists(dst): os.remove(dst) shutil.copy2(src, dst) def testMetacommunityAddingInvalidParameters(self): """Tests that adding invalid parameter for a metacommunity raises the appropriate errors.""" tree = CoalescenceTree(os.path.join("output", "sample_0.db")) tree.wipe_data() with self.assertRaises(IOError): tree.get_metacommunity_parameters_pd() tree.set_speciation_parameters([0.1, 0.2]) for size, spec, opt, ref in [ [0, 0.1, "simulated", None], [10, 0.0, "analytical", None], [None, None, "analytical", None], [10, 0.0, "path/to/file", None], [0, 0.0, "path/to/file", None], [0, 0.0, "path/to/not/a/file.db", 1], ]: with self.assertRaises(ValueError): tree.add_metacommunity_parameters( metacommunity_size=size, metacommunity_speciation_rate=spec, metacommunity_option=opt, metacommunity_reference=ref, ) with self.assertRaises(IOError): tree.add_metacommunity_parameters(metacommunity_option="not/a/file/db.db", metacommunity_reference=1) def testMetacommunitySimulation(self): """Tests that a simulated metacommunity works as intended.""" tree = CoalescenceTree(os.path.join("output", "sample_1.db")) tree.wipe_data() tree.set_speciation_parameters( [0.1, 0.2], metacommunity_size=10000, metacommunity_speciation_rate=0.001, metacommunity_option="simulated" ) tree.add_metacommunity_parameters( metacommunity_size=15000, metacommunity_speciation_rate=0.1, metacommunity_option="simulated" ) tree.add_metacommunity_parameters( metacommunity_size=100000, metacommunity_speciation_rate=0.001, metacommunity_option="simulated" ) tree.apply() params_1 = tree.get_metacommunity_parameters(1) params_2 = tree.get_metacommunity_parameters(2) params_3 = tree.get_metacommunity_parameters(3) self.assertEqual(10000, params_1["metacommunity_size"]) self.assertEqual(0.001, params_1["speciation_rate"]) self.assertEqual("simulated", params_1["option"]) self.assertEqual(0, params_1["external_reference"]) self.assertEqual(15000, params_2["metacommunity_size"]) self.assertEqual(0.1, params_2["speciation_rate"]) self.assertEqual("simulated", params_2["option"]) self.assertEqual(0, params_2["external_reference"]) self.assertEqual(100000, params_3["metacommunity_size"]) self.assertEqual(0.001, params_3["speciation_rate"]) self.assertEqual("simulated", params_3["option"]) self.assertEqual(0, params_3["external_reference"]) self.assertEqual(51, tree.get_species_richness(1)) self.assertEqual(47, tree.get_species_richness(2)) self.assertEqual(681, tree.get_species_richness(3)) self.assertEqual(783, tree.get_species_richness(4)) self.assertEqual(247, tree.get_species_richness(5)) self.assertEqual(241, tree.get_species_richness(6)) expected_metacommunity_parameters_list = [] for reference in tree.get_community_references(): try: params = tree.get_metacommunity_parameters(reference) params["reference"] = reference expected_metacommunity_parameters_list.append(params) except KeyError: continue expected_metacommunity_parameters =
pd.DataFrame(expected_metacommunity_parameters_list)
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt from empiricaldist import Pmf from scipy.stats import gaussian_kde from scipy.stats import binom from scipy.stats import gamma from scipy.stats import poisson def values(series): """Make a series of values and the number of times they appear. Returns a DataFrame because they get rendered better in Jupyter. series: Pandas Series returns: Pandas DataFrame """ series = series.value_counts(dropna=False).sort_index() series.index.name = 'values' series.name = 'counts' return pd.DataFrame(series) def write_table(table, label, **options): """Write a table in LaTex format. table: DataFrame label: string options: passed to DataFrame.to_latex """ filename = f'tables/{label}.tex' fp = open(filename, 'w') s = table.to_latex(**options) fp.write(s) fp.close() def write_pmf(pmf, label): """Write a Pmf object as a table. pmf: Pmf label: string """ df = pd.DataFrame() df['qs'] = pmf.index df['ps'] = pmf.values write_table(df, label, index=False) def underride(d, **options): """Add key-value pairs to d only if key is not in d. d: dictionary options: keyword args to add to d """ for key, val in options.items(): d.setdefault(key, val) return d def decorate(**options): """Decorate the current axes. Call decorate with keyword arguments like decorate(title='Title', xlabel='x', ylabel='y') The keyword arguments can be any of the axis properties https://matplotlib.org/api/axes_api.html """ ax = plt.gca() ax.set(**options) handles, labels = ax.get_legend_handles_labels() if handles: ax.legend(handles, labels) plt.tight_layout() def savefig(root, **options): """Save the current figure. root: string filename root options: passed to plt.savefig """ format = options.pop('format', None) if format: formats = [format] else: formats = ['pdf', 'png'] for format in formats: fname = f'figs/{root}.{format}' plt.savefig(fname, **options) def make_die(sides): """Pmf that represents a die with the given number of sides. sides: int returns: Pmf """ outcomes = np.arange(1, sides+1) die = Pmf(1/sides, outcomes) return die def add_dist_seq(seq): """Distribution of sum of quantities from PMFs. seq: sequence of Pmf objects returns: Pmf """ total = seq[0] for other in seq[1:]: total = total.add_dist(other) return total def make_mixture(pmf, pmf_seq): """Make a mixture of distributions. pmf: mapping from each hypothesis to its probability (or it can be a sequence of probabilities) pmf_seq: sequence of Pmfs, each representing a conditional distribution for one hypothesis returns: Pmf representing the mixture """ df =
pd.DataFrame(pmf_seq)
pandas.DataFrame
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright © Spyder Project Contributors # # Licensed under the terms of the MIT License # (see spyder/__init__.py for details) # ---------------------------------------------------------------------------- """ Tests for the Variable Explorer Collections Editor. """ # Standard library imports import os # Example module for testing display inside CollecitonsEditor from os import path import copy import datetime from xml.dom.minidom import parseString try: from unittest.mock import Mock except ImportError: from mock import Mock # Python 2 # Third party imports import numpy import pandas import pytest from flaky import flaky from qtpy.QtCore import Qt from qtpy.QtWidgets import QWidget # Local imports from spyder.plugins.variableexplorer.widgets.collectionseditor import ( RemoteCollectionsEditorTableView, CollectionsEditorTableView, CollectionsModel, CollectionsEditor, LARGE_NROWS, ROWS_TO_LOAD) from spyder.plugins.variableexplorer.widgets.namespacebrowser import ( NamespacesBrowserFinder) from spyder.plugins.variableexplorer.widgets.tests.test_dataframeeditor import \ generate_pandas_indexes from spyder.py3compat import PY2 # ============================================================================= # Constants # ============================================================================= # Full path to this file's parent directory for loading data LOCATION = path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) # ============================================================================= # Utility functions # ============================================================================= def data(cm, i, j): return cm.data(cm.index(i, j)) def data_table(cm, n_rows, n_cols): return [[data(cm, i, j) for i in range(n_rows)] for j in range(n_cols)] # ============================================================================= # Pytest Fixtures # ============================================================================= @pytest.fixture def nonsettable_objects_data(): """Rturn Python objects with immutable attribs to test CollectionEditor.""" test_objs = [pandas.Period("2018-03"), pandas.Categorical([1, 2, 42])] expected_objs = [pandas.Period("2018-03"), pandas.Categorical([1, 2, 42])] keys_test = [["_typ", "day", "dayofyear", "hour"], ["_typ", "nbytes", "ndim"]] return zip(test_objs, expected_objs, keys_test) # ============================================================================= # Tests # ============================================================================ def test_rename_variable(qtbot): """Test renaming of the correct variable.""" variables = {'a': 1, 'b': 2, 'c': 3, 'd': '4', 'e': 5} editor = CollectionsEditorTableView(None, variables.copy()) qtbot.addWidget(editor) editor.setCurrentIndex(editor.model.index(1, 0)) editor.rename_item(new_name='b2') assert editor.model.rowCount() == 5 assert data(editor.model, 0, 0) == 'a' assert data(editor.model, 1, 0) == 'b2' assert data(editor.model, 2, 0) == 'c' assert data(editor.model, 3, 0) == 'd' assert data(editor.model, 4, 0) == 'e' # Reset variables and try renaming one again new_variables = {'a': 1, 'b': 2, 'b2': 2, 'c': 3, 'd': '4', 'e': 5} editor.set_data(new_variables.copy()) editor.adjust_columns() editor.setCurrentIndex(editor.model.index(1, 0)) editor.rename_item(new_name='b3') assert editor.model.rowCount() == 6 assert data(editor.model, 0, 0) == 'a' assert data(editor.model, 1, 0) == 'b2' assert data(editor.model, 2, 0) == 'b3' assert data(editor.model, 3, 0) == 'c' assert data(editor.model, 4, 0) == 'd' assert data(editor.model, 5, 0) == 'e' def test_remove_variable(qtbot): """Test removing of the correct variable.""" variables = {'a': 1, 'b': 2, 'c': 3, 'd': '4', 'e': 5} editor = CollectionsEditorTableView(None, variables.copy()) qtbot.addWidget(editor) editor.setCurrentIndex(editor.model.index(1, 0)) editor.remove_item(force=True) assert editor.model.rowCount() == 4 assert data(editor.model, 0, 0) == 'a' assert data(editor.model, 1, 0) == 'c' assert data(editor.model, 2, 0) == 'd' assert data(editor.model, 3, 0) == 'e' # Reset variables and try removing one again editor.set_data(variables.copy()) editor.adjust_columns() editor.setCurrentIndex(editor.model.index(1, 0)) editor.remove_item(force=True) assert editor.model.rowCount() == 4 assert data(editor.model, 0, 0) == 'a' assert data(editor.model, 1, 0) == 'c' assert data(editor.model, 2, 0) == 'd' assert data(editor.model, 3, 0) == 'e' def test_remove_remote_variable(qtbot, monkeypatch): """Test the removing of the correct remote variable.""" variables = {'a': {'type': 'int', 'size': 1, 'color': '#0000ff', 'view': '1'}, 'b': {'type': 'int', 'size': 1, 'color': '#0000ff', 'view': '2'}, 'c': {'type': 'int', 'size': 1, 'color': '#0000ff', 'view': '3'}, 'd': {'type': 'str', 'size': 1, 'color': '#800000', 'view': '4'}, 'e': {'type': 'int', 'size': 1, 'color': '#0000ff', 'view': '5'}} editor = RemoteCollectionsEditorTableView(None, variables.copy()) qtbot.addWidget(editor) editor.setCurrentIndex(editor.model.index(1, 0)) # Monkey patch remove variables def remove_values(ins, names): assert names == ['b'] data = {'a': {'type': 'int', 'size': 1, 'color': '#0000ff', 'view': '1'}, 'c': {'type': 'int', 'size': 1, 'color': '#0000ff', 'view': '3'}, 'd': {'type': 'str', 'size': 1, 'color': '#800000', 'view': '4'}, 'e': {'type': 'int', 'size': 1, 'color': '#0000ff', 'view': '5'}} editor.set_data(data) monkeypatch.setattr( 'spyder.plugins.variableexplorer.widgets' '.collectionseditor.RemoteCollectionsEditorTableView.remove_values', remove_values) editor.remove_item(force=True) assert editor.model.rowCount() == 4 assert data(editor.model, 0, 0) == 'a' assert data(editor.model, 1, 0) == 'c' assert data(editor.model, 2, 0) == 'd' assert data(editor.model, 3, 0) == 'e' # Reset variables and try removing one again editor.set_data(variables.copy()) editor.adjust_columns() editor.setCurrentIndex(editor.model.index(1, 0)) editor.remove_item(force=True) assert editor.model.rowCount() == 4 assert data(editor.model, 0, 0) == 'a' assert data(editor.model, 1, 0) == 'c' assert data(editor.model, 2, 0) == 'd' assert data(editor.model, 3, 0) == 'e' def test_filter_rows(qtbot): """Test rows filtering.""" df = pandas.DataFrame(['foo', 'bar']) editor = CollectionsEditorTableView(None, {'dfa': df, 'dfb': df}) editor.finder = NamespacesBrowserFinder(editor, editor.set_regex) qtbot.addWidget(editor) # Initially two rows assert editor.model.rowCount() == 2 # Match two rows by name editor.finder.setText("df") assert editor.model.rowCount() == 2 # Match two rows by type editor.finder.setText("DataFrame") assert editor.model.rowCount() == 2 # Only one match editor.finder.setText("dfb") assert editor.model.rowCount() == 1 # No match editor.finder.setText("dfbc") assert editor.model.rowCount() == 0 def test_create_dataframeeditor_with_correct_format(qtbot, monkeypatch): MockDataFrameEditor = Mock() mockDataFrameEditor_instance = MockDataFrameEditor() monkeypatch.setattr('spyder.plugins.variableexplorer.widgets.collectionsdelegate.DataFrameEditor', MockDataFrameEditor) df = pandas.DataFrame(['foo', 'bar']) editor = CollectionsEditorTableView(None, {'df': df}) qtbot.addWidget(editor) editor.set_dataframe_format('%10d') editor.delegate.createEditor(None, None, editor.model.index(0, 3)) mockDataFrameEditor_instance.dataModel.set_format.assert_called_once_with('%10d') def test_accept_sig_option_changed_from_dataframeeditor(qtbot, monkeypatch): df =
pandas.DataFrame(['foo', 'bar'])
pandas.DataFrame
#!/home/caoy7/anaconda2/envs/py37/bin/python3 #--coding:utf-8-- """ tracPre.py Pre-processing code for Hi-Trac data, implemented with cLoops2, from fastq to bedpe files and qc report. 2020-02-27: finished and well tested. 2020-06-30: add linker filter, new stat, and changing mapping to end-to-end """ __author__ = "<NAME>" __email__ = "<EMAIL>" #systematic library import os import time import gzip import argparse import subprocess from glob import glob from datetime import datetime from argparse import RawTextHelpFormatter #3rd library import pandas as pd from joblib import Parallel, delayed from Bio.Seq import Seq from Bio.SeqIO.QualityIO import FastqGeneralIterator #cLoops2 from cLoops2.utils import getLogger, callSys, isTool #global settings #logger date = time.strftime(' %Y-%m-%d', time.localtime(time.time())) logger = getLogger(fn=os.getcwd() + "/" + date.strip() + "_" + os.path.basename(__file__) + ".log") def help(): """ Create the command line interface for the script. """ description = """ Preprocess the raw reads of FASTQ files of Trac-looping to reference geneome with bowtie2 and obtain the unqiue PETs with quality control results. Fastqs files should be named with suffix pattern as _R1.fastq.gz, _R2.fastq.gz. Example: tracPre.py -fqd ../1.fq -o ./ -ref ../bowtie2/hg38 -n 10 -p 5 -mapq 10 """ parser = argparse.ArgumentParser(description=description, formatter_class=RawTextHelpFormatter) parser.add_argument( "-fqd", dest="fqd", required=True, type=str, help="The directory for raw .fastq.gz files, for example ../1.fastq/ ") parser.add_argument( "-o", dest="output", required=False, type=str, default="./", help= "Output directory, default is ./, if directory not exists, create one." ) parser.add_argument( "-ref", dest="ref", required=True, type=str, help= "Bowtie2 reference index prefix, such as ./ref/hg38, generated from\n"\ "bowtie2-build hg38.fa hg38." ) parser.add_argument( "-n", dest="number", required=False, type=int, default=1, help="How many Bowtie2 to run at the same time, default is 1. ") parser.add_argument( "-p", dest="cpu", required=False, type=int, default=5, help="How many cpus used by each Bowtie2 or following processing,\n"\ "default is 5. " ) parser.add_argument("-mapq", dest="mapq", required=False, default=10, type=int, help="MAPQ cutoffs for filtering PETs, default is 10.") op = parser.parse_args() return op def preFqs(fastqRoot): """ If the fastq files are well prepared, suitable. """ fastqs = glob(fastqRoot + "/*.fastq.gz") data = {} for fq in fastqs: s = os.path.split(fq)[1] s = s.replace(".fastq.gz", "") if s.endswith("_R1"): sample = s.replace("_R1", "") if sample not in data: data[sample] = [0, 0] data[sample][0] = fq if s.endswith("_R2"): sample = s.replace("_R2", "") if sample not in data: data[sample] = [0, 0] data[sample][1] = fq for key, fqs in data.items(): if len(fqs) != 2: logger.error( "for %s there is not paired fastq files, only %s found" % (key, ",".join(fqs))) del data[key] return data def findLinker(seq, linker): """ Match the linker in the read sequence. """ pos = -1 for i in range(len(seq) - 9): seed = seq[i:i + 9] if linker.startswith(seed): pos = i break return pos def checkStarts(seq): """ Check the starts """ flag = False ss = ["CATG", "AATT", "NATG", "NATT"] for s in ss: if seq.startswith(s): flag = True break return flag def cutLinker(fq1, fq2, pre, rlen=10, linker="CTGTCTCTTATACACATCT"): """ Cut linkers and filter too short reads """ sample = pre.split("/")[-1] nf1 = pre + "_R1.fastq.gz" nf2 = pre + "_R2.fastq.gz" if os.path.isfile(nf1) and os.path.isfile(nf2): print("%s has been generated, return" % pre) return None fouts = { "fo_r1": gzip.open(nf1, "wt"), "fo_r2": gzip.open(nf2, "wt"), } #processing pairing fastqs with gzip.open(fq1, "rt") as f1, gzip.open(fq2, "rt") as f2: i = 0 j = 0 for r1, r2 in zip(FastqGeneralIterator(f1), FastqGeneralIterator(f2)): r1, r2 = list(r1), list(r2) i += 1 if i % 100000 == 0: print("%s reads processed for %s" % (i, pre)) #check the starts """ if not (checkStarts(r1[1]) and checkStarts(r2[1])): continue if r1[1][0] == "N": r1[1] = r1[1][1:] r1[2] = r1[2][1:] if r2[1][0] == "N": r2[1] = r2[1][1:] r2[2] = r2[2][1:] """ #check the linker r1pos = findLinker(r1[1], linker) r2pos = findLinker(r2[1], linker) #trim reads if r1pos != -1: r1[1] = r1[1][:r1pos] r1[2] = r1[2][:r1pos] if r2pos != -1: r2[1] = r2[1][:r2pos] r2[2] = r2[2][:r2pos] rid = "_".join(list(map(str, [i, r1pos, r2pos]))) r1[0] = rid r2[0] = rid if len(r1[1]) >= rlen and len(r2[1]) >= rlen: j += 1 fouts["fo_r1"].write("@%s\n%s\n+\n%s\n" % (r1[0], r1[1], r1[2])) fouts["fo_r2"].write("@%s\n%s\n+\n%s\n" % (r2[0], r2[1], r2[2])) return sample, i, j, nf1, nf2 def tracMapping(sample, fqs, ref, outdir, cpus=25): """ Mapping settings for Trac-looping data. """ logger.info("Start mapping %s.\n" % sample) od = os.path.join(outdir, sample) if not os.path.exists(od): os.makedirs(od, exist_ok=True) sam = od + "/" + sample + ".sam" bam = od + "/" + sample + ".bam" if os.path.isfile(sam): logger.error("%s:%s exists, return." % (sample, sam)) return None if os.path.isfile(bam): logger.error("%s:%s exists, return." % (sample, bam)) return None doBowtie = "bowtie2 -p {cpus} -q --end-to-end --very-sensitive -x {ref} -1 {fq1} -2 {fq2} -S {sam}".format( cpus=cpus, ref=ref, fq1=fqs[0], fq2=fqs[1], sam=sam) logger.info(doBowtie) stat, output = subprocess.getstatusoutput(doBowtie) #trim with "Warning" output = output.split("\n") output = [t for t in output if not t.startswith("Warning")] output = "\n".join(output) logger.info("FLAG_A:" + sample + "\n" + output + "\nFLAG_A\n") return sample, sam def getUniqueBedpe(f, fout): """ Get unique bedpe. Read id indicate the linker location. """ if os.path.isfile(fout): return print("Getting unique PETs from %s to %s" % (f, fout)) redus = set() with open(fout, "w") as fo: for i, line in enumerate(open(f)): line = line.split("\n")[0].split("\t") if len(line) < 6: continue rid = list(map(int, line[6].split("_"))) #for cis short reads, requiring the linkers if line[0] == line[3]: dis = abs((int(line[1]) + int(line[2])) / 2 - (int(line[4]) + int(line[5])) / 2) if dis < 1000 and rid[1] + rid[2] == -2: continue #for trans reads, requiring the linkers if line[0] != line[3]: if rid[1] + rid[2] == -2: continue #remove redudant PETs r = hash(tuple(line[:6])) if r in redus: continue else: redus.add(r) fo.write("\t".join(line) + "\n") def sam2bamBedpe(sample, sam, mapq=10): """ SAM to BAM and bedpe file """ n = os.path.splitext(sam)[0] bam = n + ".bam" bedpeAll = n + "_all.bedpe" bedpeUni = n + "_unique.bedpe" #sam to bam, filtering mapq samview = "samtools view -b -F 4 -@ 2 -q {mapq} -o {bam} {sam}".format( mapq=mapq, bam=bam, sam=sam) #sort by read name samsort = "samtools sort -n -@ 2 {bam} -T {pre} -o {bam}".format( bam=bam, pre=bam.replace(".bam", "")) rmsam = "rm %s" % (sam) cmds = [samview, samsort, rmsam] callSys(cmds, logger) bam2bedpe = "bamToBed -bedpe -i {bam} > {bedpe}".format(bam=bam, bedpe=bedpeAll) logger.info(bam2bedpe) stat, output = subprocess.getstatusoutput(bam2bedpe) getUniqueBedpe(bedpeAll, bedpeUni) cmd = "gzip %s %s" % (bedpeAll, bedpeUni) callSys([cmd], logger) return sample, bedpeAll + ".gz", bedpeUni + ".gz" def sParseBowtie(lines): """ Parse Bowtie2 log file, to obtain mapping stastics. """ d, s = None, None lines = lines.split("\n") s = lines[0] totalReads = int(lines[1].split(";")[0].split()[0]) d1 = lines[4].strip().split() conUniqueMappedReads = int(d1[0]) d2 = lines[8].strip().split() unconUniqueMappedReads = int(d2[0]) #mapRatio = float(lines[15].split("%")[0]) mapRatio = float(lines[-2].split("%")[0]) d = { "TotalRawReads": totalReads, #"ConcordantlyUniqueMapReads": conUniqueMappedReads, #"DisconcordantlyUniqueMapReads": unconUniqueMappedReads, "MappingRatio(%s)": mapRatio #"MultipleMapReads": multipleMappedReads, #"MultipleMapRatio": multipleMappedRatio, } return d, s def parseBowtielog(logs=None): if logs == None: logs = glob("*.log") data = {} for log in logs: lines = open(log).read().split("FLAG_A\n") lines = [line for line in lines if "FLAG_A" in line] for line in lines: t = line.split("FLAG_A:")[1] d, s = sParseBowtie(t) data[s] = d data = pd.DataFrame(data).T return data def main(): """ Batch converting from bam to bedpe. """ #prepare everything op = help() for t in ["bowtie2", "samtools", "bamToBed"]: if not isTool(t): logger.error("%s not exits! Please install through conda." % t) return if not os.path.exists(op.fqd): logger.error("Input %s not exists! Return." % op.fqd) return if len(glob(op.ref + "*.bt2")) == 0: logger.error("Bowtie2 reference not exists for prefix of %s! Return." % op.ref) return if not os.path.exists(op.output): os.makedirs(op.output, exist_ok=True) else: fs = glob(os.path.join(op.output, "*")) if len(fs) > 0: logger.info( "Target output directory %s is not empty, may over-write some files." % op.output) data = preFqs(op.fqd) if len(data) == 0: logger.error( "No matched _R1.fastq.gz and _R2.fastq.gz in %s. Return." % (op.fqd)) return #prepare output dir dirs = {} for sample in data.keys(): od = os.path.join(op.output, sample) dirs[sample] = od if not os.path.exists(od): os.makedirs(od, exist_ok=True) #step 1, filter linkers logger.info("Step1: Trim linkers and remove short sequences.") ds = Parallel(n_jobs=op.number)( delayed(cutLinker)(fqs[0], fqs[1], os.path.join(dirs[sample], sample)) for sample, fqs in data.items()) data = {} for d in ds: if d is not None: data[d[0]] = { "totalRaw": d[1], "filterLinkers": d[2], "f1": d[3], "f2": d[4], } #step2, mapping logger.info("Step2: Map processed reads to genome.") ref = op.ref ds = Parallel(n_jobs=op.number, backend="multiprocessing")( delayed(tracMapping)( sample, [vs["f1"], vs["f2"]], ref, op.output, cpus=op.cpu) for sample, vs in data.items()) for d in ds: if d is not None: data[d[0]]["sam"] = d[1] #step3, convert to bam and bedpe files #sam to bam and bedpe logger.info("Step3: File type conversion. ") cpus = op.number * op.cpu ncpus = int(min(len(data), cpus / 2)) ds = Parallel(n_jobs=ncpus, backend="multiprocessing")( delayed(sam2bamBedpe)(sample, vs["sam"], op.mapq) for sample, vs in data.items()) allBedpes = [] uniBedpes = [] for d in ds: if d is not None: data[d[0]]["allBedpe"] = d[1] data[d[0]]["uniNonbgBedpe"] = d[2] allBedpes.append(d[1]) uniBedpes.append(d[2]) data =
pd.DataFrame(data)
pandas.DataFrame
import copy import logging import pandas as pd import numpy as np from collections import Counter from sklearn import preprocessing, utils import sklearn.model_selection as ms from scipy.sparse import isspmatrix from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler import os import seaborn as sns from abc import ABC, abstractmethod # TODO: Move this to a common lib? OUTPUT_DIRECTORY = './output' if not os.path.exists(OUTPUT_DIRECTORY): os.makedirs(OUTPUT_DIRECTORY) if not os.path.exists('{}/images'.format(OUTPUT_DIRECTORY)): os.makedirs('{}/images'.format(OUTPUT_DIRECTORY)) # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) def plot_pairplot(title, df, class_column_name=None): plt = sns.pairplot(df, hue=class_column_name) return plt # Adapted from https://stats.stackexchange.com/questions/239973/a-general-measure-of-data-set-imbalance def is_balanced(seq): n = len(seq) classes = [(clas, float(count)) for clas, count in Counter(seq).items()] k = len(classes) H = -sum([(count/n) * np.log((count/n)) for clas, count in classes]) return H/np.log(k) > 0.75 class DataLoader(ABC): def __init__(self, path, verbose, seed): self._path = path self._verbose = verbose self._seed = seed self.features = None self.classes = None self.testing_x = None self.testing_y = None self.training_x = None self.training_y = None self.binary = False self.balanced = False self._data = pd.DataFrame() def load_and_process(self, data=None, preprocess=True): """ Load data from the given path and perform any initial processing required. This will populate the features and classes and should be called before any processing is done. :return: Nothing """ if data is not None: self._data = data self.features = None self.classes = None self.testing_x = None self.testing_y = None self.training_x = None self.training_y = None else: self._load_data() self.log("Processing {} Path: {}, Dimensions: {}", self.data_name(), self._path, self._data.shape) if self._verbose: old_max_rows = pd.options.display.max_rows pd.options.display.max_rows = 10 self.log("Data Sample:\n{}", self._data) pd.options.display.max_rows = old_max_rows if preprocess: self.log("Will pre-process data") self._preprocess_data() self.get_features() self.get_classes() self.log("Feature dimensions: {}", self.features.shape) self.log("Classes dimensions: {}", self.classes.shape) self.log("Class values: {}", np.unique(self.classes)) class_dist = np.histogram(self.classes)[0] class_dist = class_dist[np.nonzero(class_dist)] self.log("Class distribution: {}", class_dist) self.log("Class distribution (%): {}", (class_dist / self.classes.shape[0]) * 100) self.log("Sparse? {}", isspmatrix(self.features)) if len(class_dist) == 2: self.binary = True self.balanced = is_balanced(self.classes) self.log("Binary? {}", self.binary) self.log("Balanced? {}", self.balanced) def scale_standard(self): self.features = StandardScaler().fit_transform(self.features) if self.training_x is not None: self.training_x = StandardScaler().fit_transform(self.training_x) if self.testing_x is not None: self.testing_x = StandardScaler().fit_transform(self.testing_x) def build_train_test_split(self, test_size=0.3): if not self.training_x and not self.training_y and not self.testing_x and not self.testing_y: self.training_x, self.testing_x, self.training_y, self.testing_y = ms.train_test_split( self.features, self.classes, test_size=test_size, random_state=self._seed, stratify=self.classes ) def get_features(self, force=False): if self.features is None or force: self.log("Pulling features") self.features = np.array(self._data.iloc[:, 0:-1]) return self.features def get_classes(self, force=False): if self.classes is None or force: self.log("Pulling classes") self.classes = np.array(self._data.iloc[:, -1]) return self.classes def dump_test_train_val(self, test_size=0.2, random_state=123): ds_train_x, ds_test_x, ds_train_y, ds_test_y = ms.train_test_split(self.features, self.classes, test_size=test_size, random_state=random_state, stratify=self.classes) pipe = Pipeline([('Scale', preprocessing.StandardScaler())]) train_x = pipe.fit_transform(ds_train_x, ds_train_y) train_y = np.atleast_2d(ds_train_y).T test_x = pipe.transform(ds_test_x) test_y = np.atleast_2d(ds_test_y).T train_x, validate_x, train_y, validate_y = ms.train_test_split(train_x, train_y, test_size=test_size, random_state=random_state, stratify=train_y) test_y = pd.DataFrame(np.where(test_y == 0, -1, 1)) train_y = pd.DataFrame(np.where(train_y == 0, -1, 1)) validate_y = pd.DataFrame(np.where(validate_y == 0, -1, 1)) tst = pd.concat([pd.DataFrame(test_x), test_y], axis=1) trg = pd.concat([pd.DataFrame(train_x), train_y], axis=1) val = pd.concat([
pd.DataFrame(validate_x)
pandas.DataFrame
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from tqdm import tqdm from IPython.core.display import HTML from fbprophet import Prophet from fbprophet.plot import plot_plotly import plotly.offline as py import plotly.graph_objs as go import plotly.express as px class SalesForecaster: """This class creates 'easy to handle' forecaster objects It will gather all the required variables to make the code more readable - sales_clusters_df (pandas dataframe): The original sales dataframe The columns are : - product_code : string values such as CLA0 (CLA is the client and 0 is the product number) - date : datetime64 (ns) the date of the sale such as pd.to_datetime("2018-01-02") : YYYY-MM-DD - quantity : int64 an integer value: the number of products for this sale - cluster : int64 an integer value The cluster the product is part of - test_date (string : "2019-03-01" : YYYY-MM-DD): the training data is automatically all sales prior to this date - max_waiting_time (string such as '7 days') : The maximum time a client is willing to wait : required for grouping orders into batches) - calendar_length (string such as '7 days'): The calendar length you want to zoom in """ def __init__(self, sales_clusters_df, test_date, max_waiting_time, detailed_view=False, calendar_length='7 days' ): self.sales_clusters_df = sales_clusters_df self.test_date = test_date self.max_waiting_time = max_waiting_time self.detailed_view = detailed_view self.calendar_length = calendar_length self.optimal_batches = [] self.predicted_batches = [] self.predictions = [] def get_predicted_batches(self): """This function takes the original sales df, computes the dates and quantities models at a product level using the test_date to split the dataset into a training dataset and a testing dataset, generates the predicted sales, computes the associated "predicted" batches using the max waiting time value, computes the optimal batches using the actual data using the max waiting time value, outputs the optimal batches df and the predicted batches df, and 2 graphs to visualize it: - Input: All the inputs are encapsulated in the SalesForecaster instance: - sales_clusters_df - test_date - max_waiting_time - calendar_length - Output: - Main graph with optimal batches vs predicted batches for the test data - The same graph zoomed in the week following the test date - 1 optimal batches df - 1 predicted batches df """ clusters_list = self.sales_clusters_df['Cluster'].unique() optimal_batches = [] predicted_batches = [] predictions = [] for cluster in clusters_list: local_optimal_batches, local_predicted_batches, local_predictions = self.\ get_cluster_level_predicted_batches(cluster) local_optimal_batches['Cluster'] = cluster local_predicted_batches['Cluster'] = cluster optimal_batches.append(local_optimal_batches) predicted_batches.append(local_predicted_batches) predictions.append(local_predictions) optimal_batches = pd.concat(optimal_batches) optimal_batches.reset_index(drop=True, inplace=True) optimal_batches['batch_date'] = optimal_batches.batch_date.str.split(' ').apply(lambda x: x[0]) predicted_batches = pd.concat(predicted_batches) predicted_batches.reset_index(drop=True, inplace=True) predicted_batches['batch_date'] = predicted_batches.batch_date.str.split(' ').apply(lambda x: x[0]) predictions = pd.concat(predictions) predictions.reset_index(drop=True, inplace=True) dark_map = px.colors.qualitative.Dark2 pastel_map = px.colors.qualitative.Pastel2 fig = go.Figure() for (cluster, dark_color, pastel_color) in zip(clusters_list, dark_map, pastel_map): local_optimal = optimal_batches[optimal_batches['Cluster'] == cluster] local_predicted = predicted_batches[predicted_batches['Cluster'] == cluster] fig.add_trace(go.Bar(x=pd.to_datetime(local_optimal[local_optimal['batch_date'] > self.test_date] \ ['batch_date']) - pd.Timedelta('12 hours'), y=local_optimal[local_optimal['batch_date'] > self.test_date] \ ['quantities'], name='Cluster #{}\nOptimized batches - actual values'.format(cluster), width=1e3 * pd.Timedelta('6 hours').total_seconds(), marker_color=dark_color)) fig.add_trace(go.Bar(x=pd.to_datetime(local_predicted[local_predicted['batch_date'] > self.test_date] \ ['batch_date']) - pd.Timedelta('12 hours'), y=local_predicted[local_predicted['batch_date'] > self.test_date] \ ['predicted_quantities'], name='Cluster #{}\nPredicted batches'.format(cluster), width=1e3 * pd.Timedelta('6 hours').total_seconds(), marker_color=pastel_color)) # Edit the layout fig.update_layout(title='Optimal batches vs predicted batches for the test period', xaxis_title='Date', yaxis_title='Quantities') fig.show() fig = go.Figure() for (cluster, dark_color, pastel_color) in zip(clusters_list, dark_map, pastel_map): local_optimal = optimal_batches[optimal_batches['Cluster'] == cluster] local_predicted = predicted_batches[predicted_batches['Cluster'] == cluster] fig.add_trace(go.Bar(x=pd.to_datetime(local_optimal[(local_optimal['batch_date'] > self.test_date) & \ (local_optimal['batch_date'] < str((pd.Timestamp( self.test_date) + pd.Timedelta(self.calendar_length))))] \ ['batch_date']) - pd.Timedelta('0 hours'), y=local_optimal[(local_optimal['batch_date'] > self.test_date) & \ (local_optimal['batch_date'] < str( (pd.Timestamp(self.test_date) + pd.Timedelta(self.calendar_length))))] \ ['quantities'], name='Cluster #{}\nOptimized batches - actual values'.format(cluster), width=1e3 * pd.Timedelta('6 hours').total_seconds(), marker_color=dark_color, marker_line_color='black', marker_line_width=1.5, opacity=0.6)) fig.add_trace(go.Bar(x=pd.to_datetime(local_predicted[(local_predicted['batch_date'] > self.test_date) & \ (local_predicted['batch_date'] < str((pd.Timestamp( self.test_date) + pd.Timedelta(self.calendar_length))))] \ ['batch_date']) - pd.Timedelta('0 hours'), y=local_predicted[(local_predicted['batch_date'] > self.test_date) & \ (local_predicted['batch_date'] < str( (pd.Timestamp(self.test_date) + pd.Timedelta(self.calendar_length))))] \ ['predicted_quantities'], name='Cluster #{}\nPredicted batches'.format(cluster), width=1e3 * pd.Timedelta('6 hours').total_seconds(), marker_color=pastel_color, marker_line_color='black', marker_line_width=1.5, opacity=0.6)) # Edit the layout fig.update_layout(barmode='stack', xaxis_tickangle=-45, title='Optimal batches vs predicted batches for the following week', xaxis_title='Date', yaxis_title='Quantities') fig.show() fig = go.Figure() for (cluster, dark_color, pastel_color) in zip(clusters_list, dark_map, pastel_map): local_optimal = optimal_batches[optimal_batches['Cluster'] == cluster] local_predicted = predicted_batches[predicted_batches['Cluster'] == cluster] local_predictions = predictions[predictions['Cluster'] == cluster] if local_predictions[(local_predictions.ds > self.test_date) & ( local_predictions.ds <= str((pd.Timestamp(self.test_date) + pd.Timedelta(self.calendar_length))))].shape[ 0] > 0: display(HTML(local_predictions[(local_predictions.ds > self.test_date) & ( local_predictions.ds <= str((pd.Timestamp(self.test_date) + pd.Timedelta(self.calendar_length))))][ ['ds', 'y', 'product_code', 'Cluster']].to_html())) if local_predictions[(local_predictions.yhat_date > self.test_date) & ( local_predictions.yhat_date <= str( (pd.Timestamp(self.test_date) + pd.Timedelta(self.calendar_length))))].shape[ 0] > 0: display(HTML(local_predictions[(local_predictions.yhat_date > self.test_date) & ( local_predictions.yhat_date <= str((
pd.Timestamp(self.test_date)
pandas.Timestamp
# -*- coding: utf-8 -*- # pylint: disable=E1101,E1103,W0232 import os import sys from datetime import datetime from distutils.version import LooseVersion import numpy as np import pandas as pd import pandas.compat as compat import pandas.core.common as com import pandas.util.testing as tm from pandas import (Categorical, Index, Series, DataFrame, PeriodIndex, Timestamp, CategoricalIndex) from pandas.compat import range, lrange, u, PY3 from pandas.core.config import option_context # GH 12066 # flake8: noqa class TestCategorical(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) def test_getitem(self): self.assertEqual(self.factor[0], 'a') self.assertEqual(self.factor[-1], 'c') subf = self.factor[[0, 1, 2]] tm.assert_almost_equal(subf._codes, [0, 1, 1]) subf = self.factor[np.asarray(self.factor) == 'c'] tm.assert_almost_equal(subf._codes, [2, 2, 2]) def test_getitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype(np.int8)) result = c.codes[np.array([100000]).astype(np.int64)] expected = c[np.array([100000]).astype(np.int64)].codes self.assert_numpy_array_equal(result, expected) def test_setitem(self): # int/positional c = self.factor.copy() c[0] = 'b' self.assertEqual(c[0], 'b') c[-1] = 'a' self.assertEqual(c[-1], 'a') # boolean c = self.factor.copy() indexer = np.zeros(len(c), dtype='bool') indexer[0] = True indexer[-1] = True c[indexer] = 'c' expected = Categorical.from_array(['c', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assert_categorical_equal(c, expected) def test_setitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype( np.int8)).add_categories([-1000]) indexer = np.array([100000]).astype(np.int64) c[indexer] = -1000 # we are asserting the code result here # which maps to the -1000 category result = c.codes[np.array([100000]).astype(np.int64)] self.assertEqual(result, np.array([5], dtype='int8')) def test_constructor_unsortable(self): # it works! arr = np.array([1, 2, 3, datetime.now()], dtype='O') factor = Categorical.from_array(arr, ordered=False) self.assertFalse(factor.ordered) if compat.PY3: self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: # this however will raise as cannot be sorted (on PY3 or older # numpies) if LooseVersion(np.__version__) < "1.10": self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: Categorical.from_array(arr, ordered=True) def test_is_equal_dtype(self): # test dtype comparisons between cats c1 = Categorical(list('aabca'), categories=list('abc'), ordered=False) c2 = Categorical(list('aabca'), categories=list('cab'), ordered=False) c3 = Categorical(list('aabca'), categories=list('cab'), ordered=True) self.assertTrue(c1.is_dtype_equal(c1)) self.assertTrue(c2.is_dtype_equal(c2)) self.assertTrue(c3.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(c2)) self.assertFalse(c1.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(Index(list('aabca')))) self.assertFalse(c1.is_dtype_equal(c1.astype(object))) self.assertTrue(c1.is_dtype_equal(CategoricalIndex(c1))) self.assertFalse(c1.is_dtype_equal( CategoricalIndex(c1, categories=list('cab')))) self.assertFalse(c1.is_dtype_equal(CategoricalIndex(c1, ordered=True))) def test_constructor(self): exp_arr = np.array(["a", "b", "c", "a", "b", "c"]) c1 = Categorical(exp_arr) self.assert_numpy_array_equal(c1.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["c", "b", "a"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) # categories must be unique def f(): Categorical([1, 2], [1, 2, 2]) self.assertRaises(ValueError, f) def f(): Categorical(["a", "b"], ["a", "b", "b"]) self.assertRaises(ValueError, f) def f(): with tm.assert_produces_warning(FutureWarning): Categorical([1, 2], [1, 2, np.nan, np.nan]) self.assertRaises(ValueError, f) # The default should be unordered c1 = Categorical(["a", "b", "c", "a"]) self.assertFalse(c1.ordered) # Categorical as input c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c1.__array__(), c2.__array__()) self.assert_numpy_array_equal(c2.categories, np.array(["a", "b", "c"])) # Series of dtype category c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) # Series c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(Series(["a", "b", "c", "a"])) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical( Series(["a", "b", "c", "a"]), categories=["a", "b", "c", "d"]) self.assertTrue(c1.equals(c2)) # This should result in integer categories, not float! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # https://github.com/pydata/pandas/issues/3678 cat = pd.Categorical([np.nan, 1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # this should result in floats cat = pd.Categorical([np.nan, 1, 2., 3]) self.assertTrue(
com.is_float_dtype(cat.categories)
pandas.core.common.is_float_dtype
from __future__ import print_function import csv import os import copy import numpy as np import os, sys from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv()) sys.path.append(os.environ.get("PROJECT_ROOT")) sys.path.append(os.path.join(os.environ.get("PROJECT_ROOT"), 'test')) import GPy_1_0_5 import scipy.io import zipfile import tarfile import datetime import json import re import sys from .config import * ipython_available=True try: import IPython except ImportError: ipython_available=False try: #In Python 2, cPickle is faster. It does not exist in Python 3 but the underlying code is always used #if available import cPickle as pickle except ImportError: import pickle #A Python2/3 import handler - urllib2 changed its name in Py3 and was also reorganised try: from urllib2 import urlopen from urllib2 import URLError except ImportError: from urllib.request import urlopen from urllib.error import URLError def reporthook(a,b,c): # ',' at the end of the line is important! #print "% 3.1f%% of %d bytes\r" % (min(100, float(a * b) / c * 100), c), #you can also use sys.stdout.write sys.stdout.write("\r% 3.1f%% of %d bytes" % (min(100, float(a * b) / c * 100), c)) sys.stdout.flush() # Global variables data_path = os.path.expandvars(config.get('datasets', 'dir')) #data_path = os.path.join(os.path.dirname(__file__), 'datasets') default_seed = 10000 overide_manual_authorize=False neil_url = 'http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/dataset_mirror/' # Read data resources from json file. # Don't do this when ReadTheDocs is scanning as it breaks things on_rtd = os.environ.get('READTHEDOCS', None) == 'True' #Checks if RTD is scanning if not (on_rtd): path = os.path.join(os.path.dirname(__file__), 'data_resources.json') json_data=open(path).read() data_resources = json.loads(json_data) if not (on_rtd): path = os.path.join(os.path.dirname(__file__), 'football_teams.json') json_data=open(path).read() football_dict = json.loads(json_data) def prompt_user(prompt): """Ask user for agreeing to data set licenses.""" # raw_input returns the empty string for "enter" yes = set(['yes', 'y']) no = set(['no','n']) try: print(prompt) choice = raw_input().lower() # would like to test for exception here, but not sure if we can do that without importing IPython except: print('Stdin is not implemented.') print('You need to set') print('overide_manual_authorize=True') print('to proceed with the download. Please set that variable and continue.') raise if choice in yes: return True elif choice in no: return False else: print(("Your response was a " + choice)) print("Please respond with 'yes', 'y' or 'no', 'n'") #return prompt_user() def data_available(dataset_name=None): """Check if the data set is available on the local machine already.""" try: from itertools import izip_longest except ImportError: from itertools import zip_longest as izip_longest dr = data_resources[dataset_name] zip_urls = (dr['files'], ) if 'save_names' in dr: zip_urls += (dr['save_names'], ) else: zip_urls += ([],) for file_list, save_list in izip_longest(*zip_urls, fillvalue=[]): for f, s in izip_longest(file_list, save_list, fillvalue=None): if s is not None: f=s # If there is a save_name given, use that one if not os.path.exists(os.path.join(data_path, dataset_name, f)): return False return True def download_url(url, store_directory, save_name=None, messages=True, suffix=''): """Download a file from a url and save it to disk.""" i = url.rfind('/') file = url[i+1:] print(file) dir_name = os.path.join(data_path, store_directory) if save_name is None: save_name = os.path.join(dir_name, file) else: save_name = os.path.join(dir_name, save_name) if suffix is None: suffix='' print("Downloading ", url, "->", save_name) if not os.path.exists(dir_name): os.makedirs(dir_name) try: response = urlopen(url+suffix) except URLError as e: if not hasattr(e, "code"): raise response = e if response.code > 399 and response.code<500: raise ValueError('Tried url ' + url + suffix + ' and received client error ' + str(response.code)) elif response.code > 499: raise ValueError('Tried url ' + url + suffix + ' and received server error ' + str(response.code)) with open(save_name, 'wb') as f: meta = response.info() content_length_str = meta.getheaders("Content-Length") if content_length_str: file_size = int(content_length_str[0]) else: file_size = None status = "" file_size_dl = 0 block_sz = 8192 line_length=30 while True: buff = response.read(block_sz) if not buff: break file_size_dl += len(buff) f.write(buff) sys.stdout.write(" "*(len(status)) + "\r") if file_size: status = r"[{perc: <{ll}}] {dl:7.3f}/{full:.3f}MB".format(dl=file_size_dl/(1048576.), full=file_size/(1048576.), ll=line_length, perc="="*int(line_length*float(file_size_dl)/file_size)) else: status = r"[{perc: <{ll}}] {dl:7.3f}MB".format(dl=file_size_dl/(1048576.), ll=line_length, perc="."*int(line_length*float(file_size_dl/(10*1048576.)))) sys.stdout.write(status) sys.stdout.flush() sys.stdout.write(" "*(len(status)) + "\r") print(status) # if we wanted to get more sophisticated maybe we should check the response code here again even for successes. #with open(save_name, 'wb') as f: # f.write(response.read()) #urllib.urlretrieve(url+suffix, save_name, reporthook) def authorize_download(dataset_name=None): """Check with the user that the are happy with terms and conditions for the data set.""" print(('Acquiring resource: ' + dataset_name)) # TODO, check resource is in dictionary! print('') dr = data_resources[dataset_name] print('Details of data: ') print((dr['details'])) print('') if dr['citation']: print('Please cite:') print((dr['citation'])) print('') if dr['size']: print(('After downloading the data will take up ' + str(dr['size']) + ' bytes of space.')) print('') print(('Data will be stored in ' + os.path.join(data_path, dataset_name) + '.')) print('') if overide_manual_authorize: if dr['license']: print('You have agreed to the following license:') print((dr['license'])) print('') return True else: if dr['license']: print('You must also agree to the following license:') print((dr['license'])) print('') return prompt_user('Do you wish to proceed with the download? [yes/no]') def download_data(dataset_name=None): """Check with the user that the are happy with terms and conditions for the data set, then download it.""" import itertools dr = data_resources[dataset_name] if not authorize_download(dataset_name): raise Exception("Permission to download data set denied.") zip_urls = (dr['urls'], dr['files']) if dr.has_key('save_names'): zip_urls += (dr['save_names'], ) else: zip_urls += ([],) if dr.has_key('suffices'): zip_urls += (dr['suffices'], ) else: zip_urls += ([],) for url, files, save_names, suffices in itertools.izip_longest(*zip_urls, fillvalue=[]): for f, save_name, suffix in itertools.izip_longest(files, save_names, suffices, fillvalue=None): download_url(os.path.join(url,f), dataset_name, save_name, suffix=suffix) return True def data_details_return(data, data_set): """Update the data component of the data dictionary with details drawn from the data_resources.""" data.update(data_resources[data_set]) return data def cmu_urls_files(subj_motions, messages = True): ''' Find which resources are missing on the local disk for the requested CMU motion capture motions. ''' dr = data_resources['cmu_mocap_full'] cmu_url = dr['urls'][0] subjects_num = subj_motions[0] motions_num = subj_motions[1] resource = {'urls' : [], 'files' : []} # Convert numbers to strings subjects = [] motions = [list() for _ in range(len(subjects_num))] for i in range(len(subjects_num)): curSubj = str(int(subjects_num[i])) if int(subjects_num[i]) < 10: curSubj = '0' + curSubj subjects.append(curSubj) for j in range(len(motions_num[i])): curMot = str(int(motions_num[i][j])) if int(motions_num[i][j]) < 10: curMot = '0' + curMot motions[i].append(curMot) all_skels = [] assert len(subjects) == len(motions) all_motions = [] for i in range(len(subjects)): skel_dir = os.path.join(data_path, 'cmu_mocap') cur_skel_file = os.path.join(skel_dir, subjects[i] + '.asf') url_required = False file_download = [] if not os.path.exists(cur_skel_file): # Current skel file doesn't exist. if not os.path.isdir(skel_dir): os.makedirs(skel_dir) # Add skel file to list. url_required = True file_download.append(subjects[i] + '.asf') for j in range(len(motions[i])): file_name = subjects[i] + '_' + motions[i][j] + '.amc' cur_motion_file = os.path.join(skel_dir, file_name) if not os.path.exists(cur_motion_file): url_required = True file_download.append(subjects[i] + '_' + motions[i][j] + '.amc') if url_required: resource['urls'].append(cmu_url + '/' + subjects[i] + '/') resource['files'].append(file_download) return resource try: import gpxpy import gpxpy.gpx gpxpy_available = True except ImportError: gpxpy_available = False if gpxpy_available: def epomeo_gpx(data_set='epomeo_gpx', sample_every=4): if not data_available(data_set): download_data(data_set) files = ['endomondo_1', 'endomondo_2', 'garmin_watch_via_endomondo','viewranger_phone', 'viewranger_tablet'] X = [] for file in files: gpx_file = open(os.path.join(data_path, 'epomeo_gpx', file + '.gpx'), 'r') gpx = gpxpy.parse(gpx_file) segment = gpx.tracks[0].segments[0] points = [point for track in gpx.tracks for segment in track.segments for point in segment.points] data = [[(point.time-datetime.datetime(2013,8,21)).total_seconds(), point.latitude, point.longitude, point.elevation] for point in points] X.append(np.asarray(data)[::sample_every, :]) gpx_file.close() return data_details_return({'X' : X, 'info' : 'Data is an array containing time in seconds, latitude, longitude and elevation in that order.'}, data_set) #del gpxpy_available # Some general utilities. def sample_class(f): p = 1. / (1. + np.exp(-f)) c = np.random.binomial(1, p) c = np.where(c, 1, -1) return c def boston_housing(data_set='boston_housing'): if not data_available(data_set): download_data(data_set) all_data = np.genfromtxt(os.path.join(data_path, data_set, 'housing.data')) X = all_data[:, 0:13] Y = all_data[:, 13:14] return data_details_return({'X' : X, 'Y': Y}, data_set) def brendan_faces(data_set='brendan_faces'): if not data_available(data_set): download_data(data_set) mat_data = scipy.io.loadmat(os.path.join(data_path, data_set, 'frey_rawface.mat')) Y = mat_data['ff'].T return data_details_return({'Y': Y}, data_set) def della_gatta_TRP63_gene_expression(data_set='della_gatta', gene_number=None): if not data_available(data_set): download_data(data_set) mat_data = scipy.io.loadmat(os.path.join(data_path, data_set, 'DellaGattadata.mat')) X = np.double(mat_data['timepoints']) if gene_number == None: Y = mat_data['exprs_tp53_RMA'] else: Y = mat_data['exprs_tp53_RMA'][:, gene_number] if len(Y.shape) == 1: Y = Y[:, None] return data_details_return({'X': X, 'Y': Y, 'gene_number' : gene_number}, data_set) def football_data(season='1314', data_set='football_data'): """Football data from English games since 1993. This downloads data from football-data.co.uk for the given season. """ def league2num(string): league_dict = {'E0':0, 'E1':1, 'E2': 2, 'E3': 3, 'EC':4} return league_dict[string] def football2num(string): if football_dict.has_key(string): return football_dict[string] else: football_dict[string] = len(football_dict)+1 return len(football_dict)+1 data_set_season = data_set + '_' + season data_resources[data_set_season] = copy.deepcopy(data_resources[data_set]) data_resources[data_set_season]['urls'][0]+=season + '/' start_year = int(season[0:2]) end_year = int(season[2:4]) files = ['E0.csv', 'E1.csv', 'E2.csv', 'E3.csv'] if start_year>4 and start_year < 93: files += ['EC.csv'] data_resources[data_set_season]['files'] = [files] if not data_available(data_set_season): download_data(data_set_season) from matplotlib import pyplot as pb for file in reversed(files): filename = os.path.join(data_path, data_set_season, file) # rewrite files removing blank rows. writename = os.path.join(data_path, data_set_season, 'temp.csv') input = open(filename, 'rb') output = open(writename, 'wb') writer = csv.writer(output) for row in csv.reader(input): if any(field.strip() for field in row): writer.writerow(row) input.close() output.close() table = np.loadtxt(writename,skiprows=1, usecols=(0, 1, 2, 3, 4, 5), converters = {0: league2num, 1: pb.datestr2num, 2:football2num, 3:football2num}, delimiter=',') X = table[:, :4] Y = table[:, 4:] return data_details_return({'X': X, 'Y': Y}, data_set) def sod1_mouse(data_set='sod1_mouse'): if not data_available(data_set): download_data(data_set) from pandas import read_csv dir_path = os.path.join(data_path, data_set) filename = os.path.join(dir_path, 'sod1_C57_129_exprs.csv') Y = read_csv(filename, header=0, index_col=0) num_repeats=4 num_time=4 num_cond=4 X = 1 return data_details_return({'X': X, 'Y': Y}, data_set) def spellman_yeast(data_set='spellman_yeast'): if not data_available(data_set): download_data(data_set) from pandas import read_csv dir_path = os.path.join(data_path, data_set) filename = os.path.join(dir_path, 'combined.txt') Y = read_csv(filename, header=0, index_col=0, sep='\t') return data_details_return({'Y': Y}, data_set) def spellman_yeast_cdc15(data_set='spellman_yeast'): if not data_available(data_set): download_data(data_set) from pandas import read_csv dir_path = os.path.join(data_path, data_set) filename = os.path.join(dir_path, 'combined.txt') Y = read_csv(filename, header=0, index_col=0, sep='\t') t = np.asarray([10, 30, 50, 70, 80, 90, 100, 110, 120, 130, 140, 150, 170, 180, 190, 200, 210, 220, 230, 240, 250, 270, 290]) times = ['cdc15_'+str(time) for time in t] Y = Y[times].T t = t[:, None] return data_details_return({'Y' : Y, 't': t, 'info': 'Time series of synchronized yeast cells from the CDC-15 experiment of Spellman et al (1998).'}, data_set) def lee_yeast_ChIP(data_set='lee_yeast_ChIP'): if not data_available(data_set): download_data(data_set) from pandas import read_csv import zipfile dir_path = os.path.join(data_path, data_set) filename = os.path.join(dir_path, 'binding_by_gene.tsv') S = read_csv(filename, header=1, index_col=0, sep='\t') transcription_factors = [col for col in S.columns if col[:7] != 'Unnamed'] annotations = S[['Unnamed: 1', 'Unnamed: 2', 'Unnamed: 3']] S = S[transcription_factors] return data_details_return({'annotations' : annotations, 'Y' : S, 'transcription_factors': transcription_factors}, data_set) def fruitfly_tomancak(data_set='fruitfly_tomancak', gene_number=None): if not data_available(data_set): download_data(data_set) from pandas import read_csv dir_path = os.path.join(data_path, data_set) filename = os.path.join(dir_path, 'tomancak_exprs.csv') Y = read_csv(filename, header=0, index_col=0).T num_repeats = 3 num_time = 12 xt = np.linspace(0, num_time-1, num_time) xr = np.linspace(0, num_repeats-1, num_repeats) xtime, xrepeat = np.meshgrid(xt, xr) X = np.vstack((xtime.flatten(), xrepeat.flatten())).T return data_details_return({'X': X, 'Y': Y, 'gene_number' : gene_number}, data_set) def drosophila_protein(data_set='drosophila_protein'): if not data_available(data_set): download_data(data_set) from pandas import read_csv dir_path = os.path.join(data_path, data_set) filename = os.path.join(dir_path, 'becker_et_al.csv') Y = read_csv(filename, header=0) return data_details_return({'Y': Y}, data_set) def drosophila_knirps(data_set='drosophila_protein'): if not data_available(data_set): download_data(data_set) from pandas import read_csv dir_path = os.path.join(data_path, data_set) filename = os.path.join(dir_path, 'becker_et_al.csv') # in the csv file we have facts_kni and ext_kni. We treat facts_kni as protein and ext_kni as mRNA df = read_csv(filename, header=0) t = df['t'][:,None] x = df['x'][:,None] g = df['expression1'][:,None] p = df['expression2'][:,None] leng = x.shape[0] T = np.vstack([t,t]) S = np.vstack([x,x]) inx = np.zeros(leng*2)[:,None] inx[leng*2/2:leng*2]=1 X = np.hstack([T,S,inx]) Y = np.vstack([g,p]) return data_details_return({'Y': Y, 'X': X}, data_set) # This will be for downloading google trends data. def google_trends(query_terms=['big data', 'machine learning', 'data science'], data_set='google_trends', refresh_data=False): """Data downloaded from Google trends for given query terms. Warning, if you use this function multiple times in a row you get blocked due to terms of service violations. The function will cache the result of your query, if you wish to refresh an old query set refresh_data to True. The function is inspired by this notebook: http://nbviewer.ipython.org/github/sahuguet/notebooks/blob/master/GoogleTrends%20meet%20Notebook.ipynb""" query_terms.sort() import pandas # Create directory name for data dir_path = os.path.join(data_path,'google_trends') if not os.path.isdir(dir_path): os.makedirs(dir_path) dir_name = '-'.join(query_terms) dir_name = dir_name.replace(' ', '_') dir_path = os.path.join(dir_path,dir_name) file = 'data.csv' file_name = os.path.join(dir_path,file) if not os.path.exists(file_name) or refresh_data: print("Accessing Google trends to acquire the data. Note that repeated accesses will result in a block due to a google terms of service violation. Failure at this point may be due to such blocks.") # quote the query terms. quoted_terms = [] for term in query_terms: quoted_terms.append(urllib2.quote(term)) print("Query terms: ", ', '.join(query_terms)) print("Fetching query:") query = 'http://www.google.com/trends/fetchComponent?q=%s&cid=TIMESERIES_GRAPH_0&export=3' % ",".join(quoted_terms) data = urlopen(query).read() print("Done.") # In the notebook they did some data cleaning: remove Javascript header+footer, and translate new Date(....,..,..) into YYYY-MM-DD. header = """// Data table response\ngoogle.visualization.Query.setResponse(""" data = data[len(header):-2] data = re.sub('new Date\((\d+),(\d+),(\d+)\)', (lambda m: '"%s-%02d-%02d"' % (m.group(1).strip(), 1+int(m.group(2)), int(m.group(3)))), data) timeseries = json.loads(data) columns = [k['label'] for k in timeseries['table']['cols']] rows = map(lambda x: [k['v'] for k in x['c']], timeseries['table']['rows']) df = pandas.DataFrame(rows, columns=columns) if not os.path.isdir(dir_path): os.makedirs(dir_path) df.to_csv(file_name) else: print("Reading cached data for google trends. To refresh the cache set 'refresh_data=True' when calling this function.") print("Query terms: ", ', '.join(query_terms)) df = pandas.read_csv(file_name, parse_dates=[0]) columns = df.columns terms = len(query_terms) import datetime X = np.asarray([(row, i) for i in range(terms) for row in df.index]) Y = np.asarray([[df.ix[row][query_terms[i]]] for i in range(terms) for row in df.index ]) output_info = columns[1:] return data_details_return({'data frame' : df, 'X': X, 'Y': Y, 'query_terms': output_info, 'info': "Data downloaded from google trends with query terms: " + ', '.join(output_info) + '.'}, data_set) # The data sets def oil(data_set='three_phase_oil_flow'): """The three phase oil data from Bishop and James (1993).""" if not data_available(data_set): download_data(data_set) oil_train_file = os.path.join(data_path, data_set, 'DataTrn.txt') oil_trainlbls_file = os.path.join(data_path, data_set, 'DataTrnLbls.txt') oil_test_file = os.path.join(data_path, data_set, 'DataTst.txt') oil_testlbls_file = os.path.join(data_path, data_set, 'DataTstLbls.txt') oil_valid_file = os.path.join(data_path, data_set, 'DataVdn.txt') oil_validlbls_file = os.path.join(data_path, data_set, 'DataVdnLbls.txt') fid = open(oil_train_file) X = np.fromfile(fid, sep='\t').reshape((-1, 12)) fid.close() fid = open(oil_test_file) Xtest = np.fromfile(fid, sep='\t').reshape((-1, 12)) fid.close() fid = open(oil_valid_file) Xvalid = np.fromfile(fid, sep='\t').reshape((-1, 12)) fid.close() fid = open(oil_trainlbls_file) Y = np.fromfile(fid, sep='\t').reshape((-1, 3)) * 2. - 1. fid.close() fid = open(oil_testlbls_file) Ytest = np.fromfile(fid, sep='\t').reshape((-1, 3)) * 2. - 1. fid.close() fid = open(oil_validlbls_file) Yvalid = np.fromfile(fid, sep='\t').reshape((-1, 3)) * 2. - 1. fid.close() return data_details_return({'X': X, 'Y': Y, 'Xtest': Xtest, 'Ytest': Ytest, 'Xtest' : Xtest, 'Xvalid': Xvalid, 'Yvalid': Yvalid}, data_set) #else: # throw an error def oil_100(seed=default_seed, data_set = 'three_phase_oil_flow'): np.random.seed(seed=seed) data = oil() indices = np.random.permutation(1000) indices = indices[0:100] X = data['X'][indices, :] Y = data['Y'][indices, :] return data_details_return({'X': X, 'Y': Y, 'info': "Subsample of the full oil data extracting 100 values randomly without replacement, here seed was " + str(seed)}, data_set) def pumadyn(seed=default_seed, data_set='pumadyn-32nm'): if not data_available(data_set): download_data(data_set) path = os.path.join(data_path, data_set) tar = tarfile.open(os.path.join(path, 'pumadyn-32nm.tar.gz')) print('Extracting file.') tar.extractall(path=path) tar.close() # Data is variance 1, no need to normalize. data = np.loadtxt(os.path.join(data_path, data_set, 'pumadyn-32nm', 'Dataset.data.gz')) indices = np.random.permutation(data.shape[0]) indicesTrain = indices[0:7168] indicesTest = indices[7168:-1] indicesTrain.sort(axis=0) indicesTest.sort(axis=0) X = data[indicesTrain, 0:-2] Y = data[indicesTrain, -1][:, None] Xtest = data[indicesTest, 0:-2] Ytest = data[indicesTest, -1][:, None] return data_details_return({'X': X, 'Y': Y, 'Xtest': Xtest, 'Ytest': Ytest, 'seed': seed}, data_set) def robot_wireless(data_set='robot_wireless'): # WiFi access point strengths on a tour around UW Paul Allen building. if not data_available(data_set): download_data(data_set) file_name = os.path.join(data_path, data_set, 'uw-floor.txt') all_time = np.genfromtxt(file_name, usecols=(0)) macaddress = np.genfromtxt(file_name, usecols=(1), dtype='string') x = np.genfromtxt(file_name, usecols=(2)) y = np.genfromtxt(file_name, usecols=(3)) strength = np.genfromtxt(file_name, usecols=(4)) addresses = np.unique(macaddress) times = np.unique(all_time) addresses.sort() times.sort() allY = np.zeros((len(times), len(addresses))) allX = np.zeros((len(times), 2)) allY[:]=-92. strengths={} for address, j in zip(addresses, range(len(addresses))): ind = np.nonzero(address==macaddress) temp_strengths=strength[ind] temp_x=x[ind] temp_y=y[ind] temp_times = all_time[ind] for time in temp_times: vals = time==temp_times if any(vals): ind2 = np.nonzero(vals) i = np.nonzero(time==times) allY[i, j] = temp_strengths[ind2] allX[i, 0] = temp_x[ind2] allX[i, 1] = temp_y[ind2] allY = (allY + 85.)/15. X = allX[0:215, :] Y = allY[0:215, :] Xtest = allX[215:, :] Ytest = allY[215:, :] return data_details_return({'X': X, 'Y': Y, 'Xtest': Xtest, 'Ytest': Ytest, 'addresses' : addresses, 'times' : times}, data_set) def silhouette(data_set='ankur_pose_data'): # <NAME> and <NAME>'s silhoutte data. if not data_available(data_set): download_data(data_set) mat_data = scipy.io.loadmat(os.path.join(data_path, data_set, 'ankurDataPoseSilhouette.mat')) inMean = np.mean(mat_data['Y']) inScales = np.sqrt(np.var(mat_data['Y'])) X = mat_data['Y'] - inMean X = X / inScales Xtest = mat_data['Y_test'] - inMean Xtest = Xtest / inScales Y = mat_data['Z'] Ytest = mat_data['Z_test'] return data_details_return({'X': X, 'Y': Y, 'Xtest': Xtest, 'Ytest': Ytest}, data_set) def decampos_digits(data_set='decampos_characters', which_digits=[0,1,2,3,4,5,6,7,8,9]): if not data_available(data_set): download_data(data_set) path = os.path.join(data_path, data_set) digits = np.load(os.path.join(path, 'digits.npy')) digits = digits[which_digits,:,:,:] num_classes, num_samples, height, width = digits.shape Y = digits.reshape((digits.shape[0]*digits.shape[1],digits.shape[2]*digits.shape[3])) lbls = np.array([[l]*num_samples for l in which_digits]).reshape(Y.shape[0], 1) str_lbls = np.array([[str(l)]*num_samples for l in which_digits]) return data_details_return({'Y': Y, 'lbls': lbls, 'str_lbls' : str_lbls, 'info': 'Digits data set from the de Campos characters data'}, data_set) def ripley_synth(data_set='ripley_prnn_data'): if not data_available(data_set): download_data(data_set) train = np.genfromtxt(os.path.join(data_path, data_set, 'synth.tr'), skip_header=1) X = train[:, 0:2] y = train[:, 2:3] test = np.genfromtxt(os.path.join(data_path, data_set, 'synth.te'), skip_header=1) Xtest = test[:, 0:2] ytest = test[:, 2:3] return data_details_return({'X': X, 'Y': y, 'Xtest': Xtest, 'Ytest': ytest, 'info': 'Synthetic data generated by Ripley for a two class classification problem.'}, data_set) def global_average_temperature(data_set='global_temperature', num_train=1000, refresh_data=False): path = os.path.join(data_path, data_set) if data_available(data_set) and not refresh_data: print('Using cached version of the data set, to use latest version set refresh_data to True') else: download_data(data_set) data = np.loadtxt(os.path.join(data_path, data_set, 'GLBTS.long.data')) print('Most recent data observation from month ', data[-1, 1], ' in year ', data[-1, 0]) allX = data[data[:, 3]!=-99.99, 2:3] allY = data[data[:, 3]!=-99.99, 3:4] X = allX[:num_train, 0:1] Xtest = allX[num_train:, 0:1] Y = allY[:num_train, 0:1] Ytest = allY[num_train:, 0:1] return data_details_return({'X': X, 'Y': Y, 'Xtest': Xtest, 'Ytest': Ytest, 'info': "Mauna Loa data with " + str(num_train) + " values used as training points."}, data_set) def mauna_loa(data_set='mauna_loa', num_train=545, refresh_data=False): path = os.path.join(data_path, data_set) if data_available(data_set) and not refresh_data: print('Using cached version of the data set, to use latest version set refresh_data to True') else: download_data(data_set) data = np.loadtxt(os.path.join(data_path, data_set, 'co2_mm_mlo.txt')) print('Most recent data observation from month ', data[-1, 1], ' in year ', data[-1, 0]) allX = data[data[:, 3]!=-99.99, 2:3] allY = data[data[:, 3]!=-99.99, 3:4] X = allX[:num_train, 0:1] Xtest = allX[num_train:, 0:1] Y = allY[:num_train, 0:1] Ytest = allY[num_train:, 0:1] return data_details_return({'X': X, 'Y': Y, 'Xtest': Xtest, 'Ytest': Ytest, 'info': "Mauna Loa data with " + str(num_train) + " values used as training points."}, data_set) def boxjenkins_airline(data_set='boxjenkins_airline', num_train=96): path = os.path.join(data_path, data_set) if not data_available(data_set): download_data(data_set) data = np.loadtxt(os.path.join(data_path, data_set, 'boxjenkins_airline.csv'), delimiter=',') Y = data[:num_train, 1:2] X = data[:num_train, 0:1] Xtest = data[num_train:, 0:1] Ytest = data[num_train:, 1:2] return data_details_return({'X': X, 'Y': Y, 'Xtest': Xtest, 'Ytest': Ytest, 'info': "Montly airline passenger data from Box & Jenkins 1976."}, data_set) def osu_run1(data_set='osu_run1', sample_every=4): path = os.path.join(data_path, data_set) if not data_available(data_set): download_data(data_set) zip = zipfile.ZipFile(os.path.join(data_path, data_set, 'run1TXT.ZIP'), 'r') for name in zip.namelist(): zip.extract(name, path) Y, connect = GPy.util.mocap.load_text_data('Aug210106', path) Y = Y[0:-1:sample_every, :] return data_details_return({'Y': Y, 'connect' : connect}, data_set) def swiss_roll_generated(num_samples=1000, sigma=0.0): with open(os.path.join(os.path.dirname(__file__), 'datasets', 'swiss_roll.pickle')) as f: data = pickle.load(f) Na = data['Y'].shape[0] perm = np.random.permutation(np.r_[:Na])[:num_samples] Y = data['Y'][perm, :] t = data['t'][perm] c = data['colors'][perm, :] so = np.argsort(t) Y = Y[so, :] t = t[so] c = c[so, :] return {'Y':Y, 't':t, 'colors':c} def hapmap3(data_set='hapmap3'): """ The HapMap phase three SNP dataset - 1184 samples out of 11 populations. SNP_matrix (A) encoding [see Paschou et all. 2007 (PCA-Correlated SNPs...)]: Let (B1,B2) be the alphabetically sorted bases, which occur in the j-th SNP, then / 1, iff SNPij==(B1,B1) Aij = | 0, iff SNPij==(B1,B2) \ -1, iff SNPij==(B2,B2) The SNP data and the meta information (such as iid, sex and phenotype) are stored in the dataframe datadf, index is the Individual ID, with following columns for metainfo: * family_id -> Family ID * paternal_id -> Paternal ID * maternal_id -> Maternal ID * sex -> Sex (1=male; 2=female; other=unknown) * phenotype -> Phenotype (-9, or 0 for unknown) * population -> Population string (e.g. 'ASW' - 'YRI') * rest are SNP rs (ids) More information is given in infodf: * Chromosome: - autosomal chromosemes -> 1-22 - X X chromosome -> 23 - Y Y chromosome -> 24 - XY Pseudo-autosomal region of X -> 25 - MT Mitochondrial -> 26 * Relative Positon (to Chromosome) [base pairs] """ try: from pandas import read_pickle, DataFrame from sys import stdout import bz2 except ImportError as i: raise i("Need pandas for hapmap dataset, make sure to install pandas (http://pandas.pydata.org/) before loading the hapmap dataset") dir_path = os.path.join(data_path,'hapmap3') hapmap_file_name = 'hapmap3_r2_b36_fwd.consensus.qc.poly' unpacked_files = [os.path.join(dir_path, hapmap_file_name+ending) for ending in ['.ped', '.map']] unpacked_files_exist = reduce(lambda a, b:a and b, map(os.path.exists, unpacked_files)) if not unpacked_files_exist and not data_available(data_set): download_data(data_set) preprocessed_data_paths = [os.path.join(dir_path,hapmap_file_name + file_name) for file_name in \ ['.snps.pickle', '.info.pickle', '.nan.pickle']] if not reduce(lambda a,b: a and b, map(os.path.exists, preprocessed_data_paths)): if not overide_manual_authorize and not prompt_user("Preprocessing requires ~25GB " "of memory and can take a (very) long time, continue? [Y/n]"): print("Preprocessing required for further usage.") return status = "Preprocessing data, please be patient..." print(status) def write_status(message, progress, status): stdout.write(" "*len(status)); stdout.write("\r"); stdout.flush() status = r"[{perc: <{ll}}] {message: <13s}".format(message=message, ll=20, perc="="*int(20.*progress/100.)) stdout.write(status); stdout.flush() return status if not unpacked_files_exist: status=write_status('unpacking...', 0, '') curr = 0 for newfilepath in unpacked_files: if not os.path.exists(newfilepath): filepath = newfilepath + '.bz2' file_size = os.path.getsize(filepath) with open(newfilepath, 'wb') as new_file, open(filepath, 'rb') as f: decomp = bz2.BZ2Decompressor() file_processed = 0 buffsize = 100 * 1024 for data in iter(lambda : f.read(buffsize), b''): new_file.write(decomp.decompress(data)) file_processed += len(data) status=write_status('unpacking...', curr+12.*file_processed/(file_size), status) curr += 12 status=write_status('unpacking...', curr, status) os.remove(filepath) status=write_status('reading .ped...', 25, status) # Preprocess data: snpstrnp = np.loadtxt(unpacked_files[0], dtype=str) status=write_status('reading .map...', 33, status) mapnp = np.loadtxt(unpacked_files[1], dtype=str) status=write_status('reading relationships.txt...', 42, status) # and metainfo: infodf = DataFrame.from_csv(os.path.join(dir_path,'./relationships_w_pops_121708.txt'), header=0, sep='\t') infodf.set_index('IID', inplace=1) status=write_status('filtering nan...', 45, status) snpstr = snpstrnp[:,6:].astype('S1').reshape(snpstrnp.shape[0], -1, 2) inan = snpstr[:,:,0] == '0' status=write_status('filtering reference alleles...', 55, status) ref = np.array(map(lambda x: np.unique(x)[-2:], snpstr.swapaxes(0,1)[:,:,:])) status=write_status('encoding snps...', 70, status) # Encode the information for each gene in {-1,0,1}: status=write_status('encoding snps...', 73, status) snps = (snpstr==ref[None,:,:]) status=write_status('encoding snps...', 76, status) snps = (snps*np.array([1,-1])[None,None,:]) status=write_status('encoding snps...', 78, status) snps = snps.sum(-1) status=write_status('encoding snps...', 81, status) snps = snps.astype('i8') status=write_status('marking nan values...', 88, status) # put in nan values (masked as -128): snps[inan] = -128 status=write_status('setting up meta...', 94, status) # get meta information: metaheader = np.r_[['family_id', 'iid', 'paternal_id', 'maternal_id', 'sex', 'phenotype']] metadf = DataFrame(columns=metaheader, data=snpstrnp[:,:6]) metadf.set_index('iid', inplace=1) metadf = metadf.join(infodf.population) metadf.to_pickle(preprocessed_data_paths[1]) # put everything together: status=write_status('setting up snps...', 96, status) snpsdf = DataFrame(index=metadf.index, data=snps, columns=mapnp[:,1]) with open(preprocessed_data_paths[0], 'wb') as f: pickle.dump(f, snpsdf, protocoll=-1) status=write_status('setting up snps...', 98, status) inandf = DataFrame(index=metadf.index, data=inan, columns=mapnp[:,1]) inandf.to_pickle(preprocessed_data_paths[2]) status=write_status('done :)', 100, status) print('') else: print("loading snps...") snpsdf = read_pickle(preprocessed_data_paths[0]) print("loading metainfo...") metadf = read_pickle(preprocessed_data_paths[1]) print("loading nan entries...") inandf = read_pickle(preprocessed_data_paths[2]) snps = snpsdf.values populations = metadf.population.values.astype('S3') hapmap = dict(name=data_set, description='The HapMap phase three SNP dataset - ' '1184 samples out of 11 populations. inan is a ' 'boolean array, containing wheather or not the ' 'given entry is nan (nans are masked as ' '-128 in snps).', snpsdf=snpsdf, metadf=metadf, snps=snps, inan=inandf.values, inandf=inandf, populations=populations) return hapmap def singlecell(data_set='singlecell'): if not data_available(data_set): download_data(data_set) from pandas import read_csv dir_path = os.path.join(data_path, data_set) filename = os.path.join(dir_path, 'singlecell.csv') Y = read_csv(filename, header=0, index_col=0) genes = Y.columns labels = Y.index # data = np.loadtxt(os.path.join(dir_path, 'singlecell.csv'), delimiter=",", dtype=str) return data_details_return({'Y': Y, 'info' : "qPCR singlecell experiment in Mouse, measuring 48 gene expressions in 1-64 cell states. The labels have been created as in Guo et al. [2010]", 'genes': genes, 'labels':labels, }, data_set) def singlecell_rna_seq_islam(dataset='singlecell_islam'): if not data_available(dataset): download_data(dataset) from pandas import read_csv, DataFrame, concat dir_path = os.path.join(data_path, dataset) filename = os.path.join(dir_path, 'GSE29087_L139_expression_tab.txt.gz') data = read_csv(filename, sep='\t', skiprows=6, compression='gzip', header=None) header1 = read_csv(filename, sep='\t', header=None, skiprows=5, nrows=1, compression='gzip') header2 = read_csv(filename, sep='\t', header=None, skiprows=3, nrows=1, compression='gzip') data.columns = np.concatenate((header1.ix[0, :], header2.ix[0, 7:])) Y = data.set_index("Feature").ix[8:, 6:-4].T.astype(float) # read the info .soft filename = os.path.join(dir_path, 'GSE29087_family.soft.gz') info = read_csv(filename, sep='\t', skiprows=0, compression='gzip', header=None) # split at ' = ' info = DataFrame(info.ix[:,0].str.split(' = ').tolist()) # only take samples: info = info[info[0].str.contains("!Sample")] info[0] = info[0].apply(lambda row: row[len("!Sample_"):]) groups = info.groupby(0).groups # remove 'GGG' from barcodes barcode = info[1][groups['barcode']].apply(lambda row: row[:-3]) title = info[1][groups['title']] title.index = barcode title.name = 'title' geo_accession = info[1][groups['geo_accession']] geo_accession.index = barcode geo_accession.name = 'geo_accession' case_id = info[1][groups['source_name_ch1']] case_id.index = barcode case_id.name = 'source_name_ch1' info = concat([title, geo_accession, case_id], axis=1) labels = info.join(Y).source_name_ch1[:-4] labels[labels=='Embryonic stem cell'] = "ES" labels[labels=='Embryonic fibroblast'] = "MEF" return data_details_return({'Y': Y, 'info': '92 single cells (48 mouse ES cells, 44 mouse embryonic fibroblasts and 4 negative controls) were analyzed by single-cell tagged reverse transcription (STRT)', 'genes': Y.columns, 'labels': labels, 'datadf': data, 'infodf': info}, dataset) def singlecell_rna_seq_deng(dataset='singlecell_deng'): if not data_available(dataset): download_data(dataset) from pandas import read_csv, isnull dir_path = os.path.join(data_path, dataset) # read the info .soft filename = os.path.join(dir_path, 'GSE45719_series_matrix.txt.gz') info = read_csv(filename, sep='\t', skiprows=0, compression='gzip', header=None, nrows=29, index_col=0) summary = info.loc['!Series_summary'][1] design = info.loc['!Series_overall_design'] # only take samples: sample_info = read_csv(filename, sep='\t', skiprows=30, compression='gzip', header=0, index_col=0).T sample_info.columns = sample_info.columns.to_series().apply(lambda row: row[len("!Sample_"):]) sample_info.columns.name = sample_info.columns.name[len("!Sample_"):] sample_info = sample_info[['geo_accession', 'characteristics_ch1', 'description']] sample_info = sample_info.iloc[:, np.r_[0:4, 5:sample_info.shape[1]]] c = sample_info.columns.to_series() c[1:4] = ['strain', 'cross', 'developmental_stage'] sample_info.columns = c # get the labels right: rep = re.compile('\(.*\)') def filter_dev_stage(row): if isnull(row): row = "2-cell stage embryo" if row.startswith("developmental stage: "): row = row[len("developmental stage: "):] if row == 'adult': row += " liver" row = row.replace(' stage ', ' ') row = rep.sub(' ', row) row = row.strip(' ') return row labels = sample_info.developmental_stage.apply(filter_dev_stage) # Extract the tar file filename = os.path.join(dir_path, 'GSE45719_Raw.tar') with tarfile.open(filename, 'r') as files: print("Extracting Archive {}...".format(files.name)) data = None gene_info = None message = '' members = files.getmembers() overall = len(members) for i, file_info in enumerate(members): f = files.extractfile(file_info) inner =
read_csv(f, sep='\t', header=0, compression='gzip', index_col=0)
pandas.read_csv
#!python3 """Module for working with student records and making Students tab""" import numpy as np import pandas as pd from reports_modules.excel_base import safe_write, write_array from reports_modules.excel_base import make_excel_indices DEFAULT_FROM_TARGET = 0.2 # default prediction below target grad rate MINUS1_CUT = 0.2 # minimum odds required to "toss" a college in minus1 pred def _get_act_translation(x, lookup_df): """Apply function for calculating equivalent SAT for ACT scores. Lookup table has index of ACT with value of SAT""" act = x if np.isreal(act): if act in lookup_df.index: # it's an ACT value in the table return lookup_df.loc[act, "SAT"] return np.nan # default if not in table or not a number def _get_sat_guess(x): """Returns a GPA guess based on regression constants from the prior year. nan if GPA isn't a number""" gpa = x if np.isreal(gpa): guess = 427.913068576 + 185.298880075 * gpa return np.round(guess / 10.0) * 10.0 else: return np.nan def _pick_sat_for_use(x): """ Returns the SAT we'll use in practice""" sat_guess, interim, actual_sat = x if np.isreal(actual_sat): return actual_sat elif np.isreal(interim): return interim elif np.isreal(sat_guess): return sat_guess else: return np.nan def _get_sat_max(x): """Returns the max of two values if both are numbers, otherwise returns the numeric one or nan if neither is numeric""" sat, act_in_sat = x if np.isreal(sat): if np.isreal(act_in_sat): return max(sat, act_in_sat) else: return sat else: if np.isreal(act_in_sat): return act_in_sat else: return np.nan def reduce_roster(campus, cfg, dfs, counselor, advisor, debug, do_nonseminar): """Uses campus info and config file to reduce the active student list""" df = dfs["full_roster"].copy() if debug: print("Starting roster of {} students".format(len(df)), flush=True, end="") if campus == "All": if "all_campuses" in cfg: df = df[df["Campus"].isin(cfg["all_campuses"])] else: pass # we're using the entire dataframe elif campus == "PAS": # special code for -1 EFC students df = df[df["EFC"] == -1] elif campus.startswith("list"): # special code for a list from a csv df = df[df.index.isin(dfs["roster_list"].index)] else: df = df[df["Campus"] == campus] if counselor != "All": df = df.dropna(subset=["Counselor"]) df = df[df["Counselor"].str.contains(counselor)] if advisor != "All": df = df.dropna(subset=["Advisor"]) df = df[df["Advisor"].str.contains(advisor)] if do_nonseminar: df = df[df["SpEd"].str.endswith("NonS")] else: df = df[~df["SpEd"].str.endswith("NonS")] if debug: print("..ending at {} students.".format(len(df)), flush=True) # Two calculated columns need to be added for the application # analyses df["local_act_in_sat"] = df["ACT"].apply( _get_act_translation, args=(dfs["ACTtoSAT"],) ) df["local_sat_guess"] = df["GPA"].apply(_get_sat_guess) df["local_sat_used"] = df[["local_sat_guess", "InterimSAT", "SAT"]].apply( _pick_sat_for_use, axis=1 ) df["local_sat_max"] = df[["local_sat_used", "local_act_in_sat"]].apply( _get_sat_max, axis=1 ) dfs["roster"] = df def _get_subgroup(x): """Apply function to return one of eight unique subgroups""" race, gender = x if race == "B": subgroup = "Black" elif race == "H": subgroup = "Latinx" elif race == "A" or race == "P": subgroup = "Asian" else: subgroup = "Other" if gender == "M": return subgroup + " Male" elif gender == "F": return subgroup + " Female" else: return subgroup + " Other" def _get_strategies(x, lookup_df): """Apply function for calculating strategies based on gpa and sat using the lookup table (mirrors Excel equation for looking up strategy""" gpa, sat = x if np.isreal(gpa) and np.isreal(sat): lookup = "{:.1f}:{:.0f}".format( max(np.floor(gpa * 10) / 10, 1.5), max(sat, 710) ) return lookup_df["Strategy"].get(lookup, np.nan) else: return np.nan def _get_bucket(x, use_EFC=False): """Apply function to create a text field to "bucket" students""" strat, gpa, efc, race = x special_strats = [5, 6] # these are the ones split by 3.0 GPA if pd.isnull(gpa) or
pd.isnull(strat)
pandas.isnull
import pytest import pandas as pd from opendc_eemm.preprocess import aggregate_predictions from opendc_eemm.visualization import plot_power_draw @pytest.mark.parametrize('value, expected', [(1, 1)]) def test_test(value, expected): assert value == expected def test_aggregate_predictions(): with pytest.raises(ValueError): aggregate_predictions(
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """Generate data for examples""" # author: <NAME>, <NAME>, Duke University; <NAME>, <NAME> # Copyright Duke University 2020 # License: MIT import pandas as pd import numpy as np def generate_uniform_given_importance(num_control=1000, num_treated=1000, num_cov=4, min_val=0, max_val=3, covar_importance=[4, 3, 2, 1], bi_mean=2, bi_stdev=1): """ This generates data according to the discrete uniform distribution """ x_c = np.random.randint(min_val, max_val, size=(num_control, num_cov)) x_t = np.random.randint(min_val, max_val, size=(num_treated, num_cov)) y_c = np.dot(x_c, np.array(covar_importance)) # y for control group # this is beta treatment_eff_coef = np.random.normal(bi_mean, bi_stdev, size=num_cov) treatment_effect = np.dot(x_t, treatment_eff_coef) # this is beta*x # yc is just the 1st term of the below summation. Thus, CATT is the 2nd term y_t = np.dot(x_t, np.array(covar_importance)) + treatment_effect true_catt = treatment_effect df1 = pd.DataFrame(x_c, columns=range(num_cov)) df1['outcome'] = y_c df1['treated'] = 0 df2 = pd.DataFrame(x_t, columns=range(num_cov)) df2['outcome'] = y_t df2['treated'] = 1 data_frame = pd.concat([df2, df1]) data_frame = data_frame.reset_index() data_frame = data_frame.drop(['index'], axis=1) return data_frame, true_catt def generate_binomial_given_importance(num_control=1000, num_treated=1000, num_cov=5, bernoulli_param=0.5, bi_mean=2, bi_stdev=1, covar_importance=[4, 3, 2, 1, 0.01]): ''' This function generates data where the covariates exponentially decay with importance. The x's are all binary. ''' # data for control group x_c = np.random.binomial(1, bernoulli_param, size=(num_control, num_cov)) # data for treated group x_t = np.random.binomial(1, bernoulli_param, size=(num_treated, num_cov)) y_c = np.dot(x_c, np.array(covar_importance)) # y for control group # this is beta treatment_eff_coef = np.random.normal(bi_mean, bi_stdev, size=num_cov) treatment_effect = np.dot(x_t, treatment_eff_coef) # this is beta*x # yc is just the 1st term of the below summation. Thus, CATT is the 2nd term y_t = np.dot(x_t, np.array(covar_importance)) + treatment_effect true_catt = treatment_effect df1 = pd.DataFrame(x_c, columns=range(num_cov)) df1['outcome'] = y_c df1['treated'] = 0 df2 = pd.DataFrame(x_t, columns=range(num_cov)) df2['outcome'] = y_t df2['treated'] = 1 data_frame =
pd.concat([df2, df1])
pandas.concat
import numpy as np import pandas as pd from woodwork.column_schema import ColumnSchema from woodwork.logical_types import Datetime, Double from featuretools.primitives.base.transform_primitive_base import ( TransformPrimitive ) from featuretools.primitives.utils import ( _apply_roll_with_offset_gap, _roll_series_with_gap ) class RollingMax(TransformPrimitive): """Determines the maximum of entries over a given window. Description: Given a list of numbers and a corresponding list of datetimes, return a rolling maximum of the numeric values, starting at the row `gap` rows away from the current row and looking backward over the specified window (by `window_length` and `gap`). Input datetimes should be monotonic. Args: window_length (int, string, optional): Specifies the amount of data included in each window. If an integer is provided, will correspond to a number of rows. For data with a uniform sampling frequency, for example of one day, the window_length will correspond to a period of time, in this case, 7 days for a window_length of 7. If a string is provided, it must be one of pandas' offset alias strings ('1D', '1H', etc), and it will indicate a length of time that each window should span. The list of available offset aliases, can be found at https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases. Defaults to 3. gap (int, string, optional): Specifies a gap backwards from each instance before the window of usable data begins. If an integer is provided, will correspond to a number of rows. If a string is provided, it must be one of pandas' offset alias strings ('1D', '1H', etc), and it will indicate a length of time between a target instance and the beginning of its window. Defaults to 0, which will include the target instance in the window. min_periods (int, optional): Minimum number of observations required for performing calculations over the window. Can only be as large as window_length when window_length is an integer. When window_length is an offset alias string, this limitation does not exist, but care should be taken to not choose a min_periods that will always be larger than the number of observations in a window. Defaults to 1. Note: Only offset aliases with fixed frequencies can be used when defining gap and window_length. This means that aliases such as `M` or `W` cannot be used, as they can indicate different numbers of days. ('M', because different months are different numbers of days; 'W' because week will indicate a certain day of the week, like W-Wed, so that will indicate a different number of days depending on the anchoring date.) Note: When using an offset alias to define `gap`, an offset alias must also be used to define `window_length`. This limitation does not exist when using an offset alias to define `window_length`. In fact, if the data has a uniform sampling frequency, it is preferable to use a numeric `gap` as it is more efficient. Examples: >>> import pandas as pd >>> rolling_max = RollingMax(window_length=3) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> rolling_max(times, [4, 3, 2, 1, 0]).tolist() [4.0, 4.0, 4.0, 3.0, 2.0] We can also control the gap before the rolling calculation. >>> import pandas as pd >>> rolling_max = RollingMax(window_length=3, gap=1) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> rolling_max(times, [4, 3, 2, 1, 0]).tolist() [nan, 4.0, 4.0, 4.0, 3.0] We can also control the minimum number of periods required for the rolling calculation. >>> import pandas as pd >>> rolling_max = RollingMax(window_length=3, min_periods=3) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> rolling_max(times, [4, 3, 2, 1, 0]).tolist() [nan, nan, 4.0, 3.0, 2.0] We can also set the window_length and gap using offset alias strings. >>> import pandas as pd >>> rolling_max = RollingMax(window_length='3min', gap='1min') >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> rolling_max(times, [4, 3, 2, 1, 0]).tolist() [nan, 4.0, 4.0, 4.0, 3.0] """ name = "rolling_max" input_types = [ColumnSchema(logical_type=Datetime, semantic_tags={'time_index'}), ColumnSchema(semantic_tags={'numeric'})] return_type = ColumnSchema(logical_type=Double, semantic_tags={'numeric'}) def __init__(self, window_length=3, gap=0, min_periods=1): self.window_length = window_length self.gap = gap self.min_periods = min_periods def get_function(self): def rolling_max(datetime, numeric): x = pd.Series(numeric.values, index=datetime.values) rolled_series = _roll_series_with_gap(x, self.window_length, gap=self.gap, min_periods=self.min_periods) if isinstance(self.gap, str): additional_args = (self.gap, max, self.min_periods) return rolled_series.apply(_apply_roll_with_offset_gap, args=additional_args).values return rolled_series.max().values return rolling_max class RollingMin(TransformPrimitive): """Determines the minimum of entries over a given window. Description: Given a list of numbers and a corresponding list of datetimes, return a rolling minimum of the numeric values, starting at the row `gap` rows away from the current row and looking backward over the specified window (by `window_length` and `gap`). Input datetimes should be monotonic. Args: window_length (int, string, optional): Specifies the amount of data included in each window. If an integer is provided, will correspond to a number of rows. For data with a uniform sampling frequency, for example of one day, the window_length will correspond to a period of time, in this case, 7 days for a window_length of 7. If a string is provided, it must be one of pandas' offset alias strings ('1D', '1H', etc), and it will indicate a length of time that each window should span. The list of available offset aliases, can be found at https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases. Defaults to 3. gap (int, string, optional): Specifies a gap backwards from each instance before the window of usable data begins. If an integer is provided, will correspond to a number of rows. If a string is provided, it must be one of pandas' offset alias strings ('1D', '1H', etc), and it will indicate a length of time between a target instance and the beginning of its window. Defaults to 0, which will include the target instance in the window. min_periods (int, optional): Minimum number of observations required for performing calculations over the window. Can only be as large as window_length when window_length is an integer. When window_length is an offset alias string, this limitation does not exist, but care should be taken to not choose a min_periods that will always be larger than the number of observations in a window. Defaults to 1. Note: Only offset aliases with fixed frequencies can be used when defining gap and window_length. This means that aliases such as `M` or `W` cannot be used, as they can indicate different numbers of days. ('M', because different months are different numbers of days; 'W' because week will indicate a certain day of the week, like W-Wed, so that will indicate a different number of days depending on the anchoring date.) Note: When using an offset alias to define `gap`, an offset alias must also be used to define `window_length`. This limitation does not exist when using an offset alias to define `window_length`. In fact, if the data has a uniform sampling frequency, it is preferable to use a numeric `gap` as it is more efficient. Examples: >>> import pandas as pd >>> rolling_min = RollingMin(window_length=3) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> rolling_min(times, [4, 3, 2, 1, 0]).tolist() [4.0, 3.0, 2.0, 1.0, 0.0] We can also control the gap before the rolling calculation. >>> import pandas as pd >>> rolling_min = RollingMin(window_length=3, gap=1) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> rolling_min(times, [4, 3, 2, 1, 0]).tolist() [nan, 4.0, 3.0, 2.0, 1.0] We can also control the minimum number of periods required for the rolling calculation. >>> import pandas as pd >>> rolling_min = RollingMin(window_length=3, min_periods=3) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> rolling_min(times, [4, 3, 2, 1, 0]).tolist() [nan, nan, 2.0, 1.0, 0.0] We can also set the window_length and gap using offset alias strings. >>> import pandas as pd >>> rolling_min = RollingMin(window_length='3min', gap='1min') >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> rolling_min(times, [4, 3, 2, 1, 0]).tolist() [nan, 4.0, 3.0, 2.0, 1.0] """ name = "rolling_min" input_types = [ColumnSchema(logical_type=Datetime, semantic_tags={'time_index'}), ColumnSchema(semantic_tags={'numeric'})] return_type = ColumnSchema(logical_type=Double, semantic_tags={'numeric'}) def __init__(self, window_length=3, gap=0, min_periods=1): self.window_length = window_length self.gap = gap self.min_periods = min_periods def get_function(self): def rolling_min(datetime, numeric): x = pd.Series(numeric.values, index=datetime.values) rolled_series = _roll_series_with_gap(x, self.window_length, gap=self.gap, min_periods=self.min_periods) if isinstance(self.gap, str): additional_args = (self.gap, min, self.min_periods) return rolled_series.apply(_apply_roll_with_offset_gap, args=additional_args).values return rolled_series.min().values return rolling_min class RollingMean(TransformPrimitive): """Calculates the mean of entries over a given window. Description: Given a list of numbers and a corresponding list of datetimes, return a rolling mean of the numeric values, starting at the row `gap` rows away from the current row and looking backward over the specified time window (by `window_length` and `gap`). Input datetimes should be monotonic. Args: window_length (int, string, optional): Specifies the amount of data included in each window. If an integer is provided, will correspond to a number of rows. For data with a uniform sampling frequency, for example of one day, the window_length will correspond to a period of time, in this case, 7 days for a window_length of 7. If a string is provided, it must be one of pandas' offset alias strings ('1D', '1H', etc), and it will indicate a length of time that each window should span. The list of available offset aliases, can be found at https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases. Defaults to 3. gap (int, string, optional): Specifies a gap backwards from each instance before the window of usable data begins. If an integer is provided, will correspond to a number of rows. If a string is provided, it must be one of pandas' offset alias strings ('1D', '1H', etc), and it will indicate a length of time between a target instance and the beginning of its window. Defaults to 0, which will include the target instance in the window. min_periods (int, optional): Minimum number of observations required for performing calculations over the window. Can only be as large as window_length when window_length is an integer. When window_length is an offset alias string, this limitation does not exist, but care should be taken to not choose a min_periods that will always be larger than the number of observations in a window. Defaults to 1. Note: Only offset aliases with fixed frequencies can be used when defining gap and window_length. This means that aliases such as `M` or `W` cannot be used, as they can indicate different numbers of days. ('M', because different months are different numbers of days; 'W' because week will indicate a certain day of the week, like W-Wed, so that will indicate a different number of days depending on the anchoring date.) Note: When using an offset alias to define `gap`, an offset alias must also be used to define `window_length`. This limitation does not exist when using an offset alias to define `window_length`. In fact, if the data has a uniform sampling frequency, it is preferable to use a numeric `gap` as it is more efficient. Examples: >>> import pandas as pd >>> rolling_mean = RollingMean(window_length=3) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> rolling_mean(times, [4, 3, 2, 1, 0]).tolist() [4.0, 3.5, 3.0, 2.0, 1.0] We can also control the gap before the rolling calculation. >>> import pandas as pd >>> rolling_mean = RollingMean(window_length=3, gap=1) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> rolling_mean(times, [4, 3, 2, 1, 0]).tolist() [nan, 4.0, 3.5, 3.0, 2.0] We can also control the minimum number of periods required for the rolling calculation. >>> import pandas as pd >>> rolling_mean = RollingMean(window_length=3, min_periods=3) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> rolling_mean(times, [4, 3, 2, 1, 0]).tolist() [nan, nan, 3.0, 2.0, 1.0] """ name = "rolling_mean" input_types = [ColumnSchema(logical_type=Datetime, semantic_tags={'time_index'}), ColumnSchema(semantic_tags={'numeric'})] return_type = ColumnSchema(logical_type=Double, semantic_tags={'numeric'}) def __init__(self, window_length=3, gap=0, min_periods=0): self.window_length = window_length self.gap = gap self.min_periods = min_periods def get_function(self): def rolling_mean(datetime, numeric): x = pd.Series(numeric.values, index=datetime.values) rolled_series = _roll_series_with_gap(x, self.window_length, gap=self.gap, min_periods=self.min_periods) if isinstance(self.gap, str): additional_args = (self.gap, np.mean, self.min_periods) return rolled_series.apply(_apply_roll_with_offset_gap, args=additional_args).values return rolled_series.mean().values return rolling_mean class RollingSTD(TransformPrimitive): """Calculates the standard deviation of entries over a given window. Description: Given a list of numbers and a corresponding list of datetimes, return a rolling standard deviation of the numeric values, starting at the row `gap` rows away from the current row and looking backward over the specified time window (by `window_length` and `gap`). Input datetimes should be monotonic. Args: window_length (int, string, optional): Specifies the amount of data included in each window. If an integer is provided, will correspond to a number of rows. For data with a uniform sampling frequency, for example of one day, the window_length will correspond to a period of time, in this case, 7 days for a window_length of 7. If a string is provided, it must be one of pandas' offset alias strings ('1D', '1H', etc), and it will indicate a length of time that each window should span. The list of available offset aliases, can be found at https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases. Defaults to 3. gap (int, string, optional): Specifies a gap backwards from each instance before the window of usable data begins. If an integer is provided, will correspond to a number of rows. If a string is provided, it must be one of pandas' offset alias strings ('1D', '1H', etc), and it will indicate a length of time between a target instance and the beginning of its window. Defaults to 0, which will include the target instance in the window. min_periods (int, optional): Minimum number of observations required for performing calculations over the window. Can only be as large as window_length when window_length is an integer. When window_length is an offset alias string, this limitation does not exist, but care should be taken to not choose a min_periods that will always be larger than the number of observations in a window. Defaults to 1. Note: Only offset aliases with fixed frequencies can be used when defining gap and window_length. This means that aliases such as `M` or `W` cannot be used, as they can indicate different numbers of days. ('M', because different months are different numbers of days; 'W' because week will indicate a certain day of the week, like W-Wed, so that will indicate a different number of days depending on the anchoring date.) Note: When using an offset alias to define `gap`, an offset alias must also be used to define `window_length`. This limitation does not exist when using an offset alias to define `window_length`. In fact, if the data has a uniform sampling frequency, it is preferable to use a numeric `gap` as it is more efficient. Examples: >>> import pandas as pd >>> rolling_std = RollingSTD(window_length=4) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> rolling_std(times, [4, 3, 2, 1, 0]).tolist() [nan, 0.7071067811865476, 1.0, 1.2909944487358056, 1.2909944487358056] We can also control the gap before the rolling calculation. >>> import pandas as pd >>> rolling_std = RollingSTD(window_length=4, gap=1) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> rolling_std(times, [4, 3, 2, 1, 0]).tolist() [nan, nan, 0.7071067811865476, 1.0, 1.2909944487358056] We can also control the minimum number of periods required for the rolling calculation. >>> import pandas as pd >>> rolling_std = RollingSTD(window_length=4, min_periods=4) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> rolling_std(times, [4, 3, 2, 1, 0]).tolist() [nan, nan, nan, 1.2909944487358056, 1.2909944487358056] We can also set the window_length and gap using offset alias strings. >>> import pandas as pd >>> rolling_std = RollingSTD(window_length='4min', gap='1min') >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> rolling_std(times, [4, 3, 2, 1, 0]).tolist() [nan, nan, 0.7071067811865476, 1.0, 1.2909944487358056] """ name = "rolling_std" input_types = [ColumnSchema(logical_type=Datetime, semantic_tags={'time_index'}), ColumnSchema(semantic_tags={'numeric'})] return_type = ColumnSchema(logical_type=Double, semantic_tags={'numeric'}) def __init__(self, window_length=3, gap=0, min_periods=1): self.window_length = window_length self.gap = gap self.min_periods = min_periods def get_function(self): def rolling_std(datetime, numeric): x = pd.Series(numeric.values, index=datetime.values) rolled_series = _roll_series_with_gap(x, self.window_length, gap=self.gap, min_periods=self.min_periods) if isinstance(self.gap, str): def _pandas_std(series): return series.std() additional_args = (self.gap, _pandas_std, self.min_periods) return rolled_series.apply(_apply_roll_with_offset_gap, args=additional_args).values return rolled_series.std().values return rolling_std class RollingCount(TransformPrimitive): """Determines a rolling count of events over a given window. Description: Given a list of datetimes, return a rolling count starting at the row `gap` rows away from the current row and looking backward over the specified time window (by `window_length` and `gap`). Input datetimes should be monotonic. Args: window_length (int, string, optional): Specifies the amount of data included in each window. If an integer is provided, will correspond to a number of rows. For data with a uniform sampling frequency, for example of one day, the window_length will correspond to a period of time, in this case, 7 days for a window_length of 7. If a string is provided, it must be one of pandas' offset alias strings ('1D', '1H', etc), and it will indicate a length of time that each window should span. The list of available offset aliases, can be found at https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases. Defaults to 3. gap (int, string, optional): Specifies a gap backwards from each instance before the window of usable data begins. If an integer is provided, will correspond to a number of rows. If a string is provided, it must be one of pandas' offset alias strings ('1D', '1H', etc), and it will indicate a length of time between a target instance and the beginning of its window. Defaults to 0, which will include the target instance in the window. min_periods (int, optional): Minimum number of observations required for performing calculations over the window. Can only be as large as window_length when window_length is an integer. When window_length is an offset alias string, this limitation does not exist, but care should be taken to not choose a min_periods that will always be larger than the number of observations in a window. Defaults to 1. Note: Only offset aliases with fixed frequencies can be used when defining gap and h. This means that aliases such as `M` or `W` cannot be used, as they can indicate different numbers of days. ('M', because different months are different numbers of days; 'W' because week will indicate a certain day of the week, like W-Wed, so that will indicate a different number of days depending on the anchoring date.) Note: When using an offset alias to define `gap`, an offset alias must also be used to define `window_length`. This limitation does not exist when using an offset alias to define `window_length`. In fact, if the data has a uniform sampling frequency, it is preferable to use a numeric `gap` as it is more efficient. Examples: >>> import pandas as pd >>> rolling_count = RollingCount(window_length=3) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> rolling_count(times).tolist() [1.0, 2.0, 3.0, 3.0, 3.0] We can also control the gap before the rolling calculation. >>> import pandas as pd >>> rolling_count = RollingCount(window_length=3, gap=1) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> rolling_count(times).tolist() [nan, 1.0, 2.0, 3.0, 3.0] We can also control the minimum number of periods required for the rolling calculation. >>> import pandas as pd >>> rolling_count = RollingCount(window_length=3, min_periods=3) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> rolling_count(times).tolist() [nan, nan, 3.0, 3.0, 3.0] We can also set the window_length and gap using offset alias strings. >>> import pandas as pd >>> rolling_count = RollingCount(window_length='3min', gap='1min') >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> rolling_count(times).tolist() [nan, 1.0, 2.0, 3.0, 3.0] """ name = "rolling_count" input_types = [ColumnSchema(logical_type=Datetime, semantic_tags={'time_index'})] return_type = ColumnSchema(logical_type=Double, semantic_tags={'numeric'}) def __init__(self, window_length=3, gap=0, min_periods=0): self.window_length = window_length self.gap = gap self.min_periods = min_periods def get_function(self): def rolling_count(datetime): x =
pd.Series(1, index=datetime)
pandas.Series
#Download and clean nest label series from Zooniverse import pandas as pd import geopandas as gpd from panoptes_client import Panoptes from shapely.geometry import box, Point import json import numpy as np import os from datetime import datetime import utils def species_from_label(value): label_dict = {} label_dict[0] = "Great Egret" label_dict[1] = "Snowy Egret" label_dict[2] = "White Ibis" label_dict[3] = "Great Blue Heron" label_dict[4] = "Wood Stork" label_dict[5] = "Roseate Spoonbill" label_dict[6] = "Anhinga" label_dict[7] = "Other" label_dict[8] = "Unknown" return label_dict[value] def download_data(everglades_watch, min_version, generate=False): #see https://panoptes-python-client.readthedocs.io/en/v1.1/panoptes_client.html#module-panoptes_client.classification classification_export = everglades_watch.get_export('classifications', generate=generate) rows = [] for row in classification_export.csv_dictreader(): rows.append(row) df = pd.DataFrame(rows) df = df[df.workflow_name =="Nests"] df["workflow_version"] = df.workflow_version.astype(float) df = df[df.workflow_version > min_version] return df def download_subject_data(everglades_watch, savedir, generate=False): #see https://panoptes-python-client.readthedocs.io/en/v1.1/panoptes_client.html#module-panoptes_client.classification classification_export = everglades_watch.get_export('subjects', generate=generate) rows = [] for row in classification_export.csv_dictreader(): rows.append(row) df =
pd.DataFrame(rows)
pandas.DataFrame
#%% from pathlib import Path import graspy import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from graspy.embed import * from graspy.plot import gridplot, heatmap, pairplot from graspy.utils import * import pickle data_dir = Path(".") data_dir = data_dir / "Cook et al revised Supplementary Information" matdir = data_dir / "SI 5 Connectome adjacency matrices Pedigo.xlsx" celldir = "./nice_data/master_cells.csv" n_verify = 1000 save_me = True run_homologs = True plot = True def verify(n, cells, adj, original, error="error"): for i in range(n): rand_ind_out = np.random.randint(0, len(cells)) rand_ind_in = np.random.randint(0, len(cells)) in_cell = cells[rand_ind_in] out_cell = cells[rand_ind_out] saved_weight = adj[rand_ind_in, rand_ind_out] try: original_weight = original.loc[in_cell, out_cell] if saved_weight != original_weight: print(error) print("edge") print(out_cell) print(in_cell) print(saved_weight) print(original_weight) except: pass def verify_undirected(n, cells, adj, original, error="error"): for i in range(n): rand_ind_out = np.random.randint(0, len(cells)) rand_ind_in = np.random.randint(0, len(cells)) in_cell = cells[rand_ind_in] out_cell = cells[rand_ind_out] saved_weight = adj[rand_ind_in, rand_ind_out] try: original_weight1 = original.loc[in_cell, out_cell] original_weight2 = original.loc[out_cell, in_cell] if saved_weight != original_weight1 and save_weight != original_weight2: print(error) print("edge") print(out_cell) print(in_cell) print(saved_weight) print(original_weight) except: pass def load_df(matdir, sheet_name): df = pd.read_excel(matdir, sheet_name=sheet_name).fillna(0) outs = df.index.values ins = df.columns.values outs = upper_array(outs) ins = upper_array(ins) df.columns = ins df.index = outs return df def upper_array(arr): upper = [u.upper() for u in arr] return np.array(upper) def emmons_excel_to_df(matdir, sheet_name): df = load_df(matdir, sheet_name) # get the in / out cells # have to append some 0s to make into a square matrix outs = df.index.values ins = df.columns.values not_outs = np.setdiff1d(ins, outs) not_outs_df =
pd.DataFrame(columns=df.columns)
pandas.DataFrame
import numpy as nmp import numpy.random as rnd import pandas as pnd import clonosGP.aux as aux import clonosGP.stats as sts ## def get_1sample(sampleid = 'S0', weights=(0.65, 0.25, 0.10), z=None, phi=(1.0, 0.5, 0.25), nmuts=100, rho=0.9, mean_depth=1000): CNm = nmp.ones(nmuts, dtype='int') CNt = nmp.repeat(2, nmuts) CNn = nmp.repeat(2, nmuts) R = rnd.poisson(mean_depth, size=nmuts) z = rnd.choice(len(weights), size=nmuts, replace=True, p=weights) if z is None else z phi = nmp.asarray(phi)[z] weights = nmp.asarray(weights)[z] VAF0 = aux.calculate_vaf0(rho, CNm, CNt, CNn) theta = VAF0 * phi r = rnd.binomial(R, theta) mutid = [f'M{i+1}' for i in range(nmuts)] return pnd.DataFrame({ 'SAMPLEID': sampleid, 'PURITY': rho, 'MUTID': mutid, 'r': r, 'R': R, 'CNn': CNn, 'CNt': CNt, 'CNm': CNm, 'theta': theta, 'VAF0': VAF0, 'phi': phi, 'w': weights }) # def get_Nsamples(nclusters=3, nmuts=100, nsamples=10, h2=None, tau=None, weights=None, rho=(0.8, 0.9), mean_depth=(40, 40), depths=None): weights = nmp.ones(nclusters) / nclusters if weights is None else weights tau = rnd.gamma(1, 1) if tau is None else tau h2 = rnd.gamma(1, 1) if h2 is None else h2 times = nmp.linspace(0, 1, nsamples) + rnd.uniform(-1/nsamples, 1/nsamples, nsamples); times[0] = 0; times[-1] = 1 sids = [f'S{_+1}' for _ in range(nsamples)] mids = [f'M{_+1}' for _ in range(nmuts)] cov = h2 * sts.cov_mat32(times[:, None], times, tau).eval() y = rnd.multivariate_normal(nmp.zeros(nsamples), cov, size=nclusters) y = 1 / (1 + nmp.exp(-y)) z = rnd.choice(nclusters, size=nmuts, p=weights) phi = y[z, :] lam = rnd.uniform(mean_depth[0], mean_depth[1], size=nsamples) rho = rnd.uniform(rho[0], rho[1], size=nsamples) R = rnd.poisson(lam, size=(nmuts, nsamples)) if depths is None else rnd.choice(depths, size=(nmuts, nsamples)) r = rnd.binomial(R, 0.5 * rho * phi) r = pnd.DataFrame(r, index=pnd.Index(mids, name='MUTID'), columns=pnd.MultiIndex.from_arrays([sids, times], names=['SAMPLEID', 'TIME'])) R = pnd.DataFrame(R, index=pnd.Index(mids, name='MUTID'), columns=pnd.MultiIndex.from_arrays([sids, times], names=['SAMPLEID', 'TIME'])) phi = pnd.DataFrame(phi, index=pnd.Index(mids, name='MUTID'), columns=pnd.MultiIndex.from_arrays([sids, times], names=['SAMPLEID', 'TIME'])) cid = pnd.DataFrame({'CLUSTERID': z+1}, index=pnd.Index(mids, name='MUTID')).reset_index() return pnd.merge(
pnd.concat({'r': r, 'R': R, 'PHI': phi}, axis=1)
pandas.concat
# -*- coding: utf-8 -*- import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR from sklearn.metrics import r2_score import statsmodels.api as sm from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression xtr =
pd.read_csv('xtr.csv')
pandas.read_csv
import pandas as pd import requests import os import beis_indicators from beis_indicators.utils.dir_file_management import make_indicator,save_indicator PROJECT_DIR = beis_indicators.project_dir TARGET_PATH = f"{PROJECT_DIR}/data/processed/housing" INTERIM_PATH = f"{PROJECT_DIR}/data/interim/ashe_mean_salary" # Get the LAD to NUTS lookup lad_nuts_lu =
pd.read_csv( "https://opendata.arcgis.com/datasets/9b4c94e915c844adb11e15a4b1e1294d_0.csv")
pandas.read_csv
# load dependencies import requests import pandas as pd import matplotlib.pyplot as plt from bs4 import BeautifulSoup from datetime import date, datetime, timedelta headers = {"User-Agent": "<NAME>. <<EMAIL>>"} def fetch_ags() -> pd.DataFrame: """ Fetch Amtliche Gemeindeschlüssel for Thüringen and return the table as a pandas' DataFrame. :return: DataFrame including the Amtliche Gemeindeschlüssel for Thüringen :rtype: pd.DataFrame """ # define URL url = "https://statistik.thueringen.de/datenbank/gemauswahl.asp" # GET request with pre-defined URL response = requests.get(url=url, headers=headers) # parse HTML using BeautifulSoup soup = BeautifulSoup(markup=response.text, features="html.parser") # parse table headers by identifying th-tag table_headers = [th.text for th in soup.find(name="thead").find_all("th")] # initialize empty array rows = [] # loop over rows and extract values for row in soup.find(name="tbody").find_all(name="tr"): element = {} for i, col in enumerate(row.find_all(name="td")): element[table_headers[i]] = col.text rows.append(element) # return data as data frame return pd.DataFrame.from_records(data=rows) def fetch_incidence(ags: str) -> pd.DataFrame: """ Fetch the Corona incidences for a given region identified by AGS. :param ags: Amtlicher Gemeindeschlüssel :type ags: str :return: DataFrame with the historical incidences :rtype: pd.DataFrame """ # build url url = f"https://api.corona-zahlen.org/districts/{ags}/history/incidence" # GET request response = requests.get(url=url, headers=headers) # parse and extract data data = response.json()["data"] # reformat data: parse date and rename fields incidences = [{"date": date.fromisoformat(e["date"][:10]), "incidence": e["weekIncidence"]} for e in data[ags]["history"]] # transform data into a data frame df_incidences =
pd.DataFrame.from_records(data=incidences)
pandas.DataFrame.from_records
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 9 17:02:59 2018 @author: bruce """ # last version = plot_corr_mx_concate_time_linux_v1.6.0.py import pandas as pd import numpy as np from scipy import fftpack from scipy import signal import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap import librosa def correlation_matrix(corr_mx, cm_title): from matplotlib import pyplot as plt from matplotlib import cm as cm fig = plt.figure() ax1 = fig.add_subplot(111) #cmap = cm.get_cmap('jet', 30) cax = ax1.matshow(corr_mx, cmap='gray') #cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cax) ax1.grid(False) plt.title(cm_title) #plt.title('cross correlation of test and retest') ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) # Add colorbar, make sure to specify tick locations to match desired ticklabels #fig.colorbar(cax, ticks=[.75,.8,.85,.90,.95,1]) # show digit in matrix corr_mx_array = np.asarray(corr_mx) for i in range(22): for j in range(22): c = corr_mx_array[j,i] ax1.text(i, j, round(c,2), va='center', ha='center') plt.show() def correlation_matrix_01(corr_mx, cm_title): # find the maximum in each row # input corr_mx is a dataframe # need to convert it into a array first #otherwise it is not working temp = np.asarray(corr_mx) output = (temp == temp.max(axis=1)[:,None]) # along rows fig = plt.figure() ax1 = fig.add_subplot(111) #cmap = cm.get_cmap('jet', 30) cs = ax1.matshow(output, cmap='gray') #cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cs) ax1.grid(False) plt.title(cm_title) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) plt.show() def correlation_matrix_rank(corr_mx, cm_title): temp = corr_mx #output = (temp == temp.max(axis=1)[:,None]) # along row output = temp.rank(axis=1, ascending=False) fig, ax1 = plt.subplots() im1 = ax1.matshow(output, cmap=plt.cm.Wistia) #cs = ax1.matshow(output) fig.colorbar(im1) ax1.grid(False) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) plt.title(cm_title) # show digit in matrix output = np.asarray(output) for i in range(22): for j in range(22): c = output[j,i] ax1.text(i, j, int(c), va='center', ha='center') plt.show() def correlation_matrix_comb(corr_mx, cm_title): fig, (ax2, ax3) = plt.subplots(1, 2) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ''' # graph 1 grayscale im1 = ax1.matshow(corr_mx, cmap='gray') # colorbar need numpy version 1.13.1 #fig.colorbar(im1, ax=ax1) ax1.grid(False) ax1.set_title(cm_title) ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) # show digit in matrix corr_mx_array = np.asarray(corr_mx) for i in range(22): for j in range(22): c = corr_mx_array[j,i] ax1.text(i, j, round(c,2), va='center', ha='center') ''' # graph 2 yellowscale corr_mx_rank = corr_mx.rank(axis=1, ascending=False) cmap_grey = LinearSegmentedColormap.from_list('mycmap', ['white', 'black']) im2 = ax2.matshow(corr_mx, cmap='viridis') # colorbar need numpy version 1.13.1 fig.colorbar(im2, ax=ax2) ax2.grid(False) ax2.set_title(cm_title) ax2.set_xticks(np.arange(len(xlabels))) ax2.set_yticks(np.arange(len(ylabels))) ax2.set_xticklabels(xlabels,fontsize=6) ax2.set_yticklabels(ylabels,fontsize=6) # Add colorbar, make sure to specify tick locations to match desired ticklabels # show digit in matrix corr_mx_rank = np.asarray(corr_mx_rank) for i in range(22): for j in range(22): c = corr_mx_rank[j,i] ax2.text(i, j, int(c), va='center', ha='center') # graph 3 # find the maximum in each row # input corr_mx is a dataframe # need to convert it into a array first #otherwise it is not working temp = np.asarray(corr_mx) output = (temp == temp.max(axis=1)[:,None]) # along rows im3 = ax3.matshow(output, cmap='gray') # colorbar need numpy version 1.13.1 #fig.colorbar(im3, ax=ax3) ax3.grid(False) ax3.set_title(cm_title) ax3.set_xticks(np.arange(len(xlabels))) ax3.set_yticks(np.arange(len(ylabels))) ax3.set_xticklabels(xlabels,fontsize=6) ax3.set_yticklabels(ylabels,fontsize=6) plt.show() def correlation_matrix_tt_01(corr_mx, cm_title): # find the maximum in each row # input corr_mx is a dataframe # need to convert it into a array first #otherwise it is not working temp = np.asarray(corr_mx) output = (temp == temp.max(axis=1)[:,None]) # along rows fig = plt.figure() ax1 = fig.add_subplot(111) #cmap = cm.get_cmap('jet', 30) cax = ax1.matshow(output, cmap='gray') #cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cax) ax1.grid(False) plt.title(cm_title) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) plt.show() def correlation_matrix_rr_01(corr_mx, cm_title): # find the maximum in each row # input corr_mx is a dataframe # need to convert it into a array first #otherwise it is not working temp = np.asarray(corr_mx) output = (temp == temp.max(axis=1)[:,None]) # along rows fig = plt.figure() ax1 = fig.add_subplot(111) #cmap = cm.get_cmap('jet', 30) cax = ax1.matshow(output, cmap='gray') #cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cax) ax1.grid(False) plt.title(cm_title) ylabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) plt.show() # shrink value for correlation matrix # in order to use colormap -> 10 scale def shrink_value_03_1(corr_in1): corr_out1 = corr_in1.copy() # here dataframe.copy() must be used, otherwise input can also be changed when changing output for i in range (22): for j in range(22): if corr_in1.iloc[i, j] < 0.3: corr_out1.iloc[i, j] = 0.3 return corr_out1 def shrink_value_05_1(corr_in2): corr_out2 = corr_in2.copy() # here dataframe.copy() must be used, otherwise input can also be changed when changing output for i2 in range (22): for j2 in range(22): if corr_in2.iloc[i2, j2] < 0.5: corr_out2.iloc[i2, j2] = 0.5 return corr_out2 # not used!!!!!!!!!!!! # normalize the complex signal series def normalize_complex_arr(a): a_oo = a - a.real.min() - 1j*a.imag.min() # origin offsetted return a_oo/np.abs(a_oo).max() ################################# f_dB = lambda x : 20 * np.log10(np.abs(x)) # import the pkl file #pkl_file=pd.read_pickle('/Users/bruce/Documents/uOttawa/Project/audio_brainstem_response/Data_BruceSunMaster_Studies/study2/study2DataFrame.pkl') df_EFR=pd.read_pickle('/home/bruce/Dropbox/Project/4.Code for Linux/df_EFR.pkl') # remove DC offset df_EFR_detrend = pd.DataFrame() for i in range(1408): # combine next two rows later df_EFR_detrend_data = pd.DataFrame(signal.detrend(df_EFR.iloc[i: i+1, 0:1024], type='constant').reshape(1,1024)) df_EFR_label = pd.DataFrame(df_EFR.iloc[i, 1024:1031].values.reshape(1,7)) df_EFR_detrend = df_EFR_detrend.append(pd.concat([df_EFR_detrend_data, df_EFR_label], axis=1, ignore_index=True)) # set the title of columns df_EFR_detrend.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) df_EFR_detrend = df_EFR_detrend.reset_index(drop=True) df_EFR = df_EFR_detrend # Time domain # Define window function win_kaiser = signal.kaiser(1024, beta=14) win_hamming = signal.hamming(1024) # average the df_EFR df_EFR_win = pd.DataFrame() # implement the window function for i in range(1408): temp_EFR_window = pd.DataFrame((df_EFR.iloc[i,:1024] * win_hamming).values.reshape(1,1024)) temp_EFR_label = pd.DataFrame(df_EFR.iloc[i, 1024:1031].values.reshape(1,7)) df_EFR_win = df_EFR_win.append(pd.concat([temp_EFR_window, temp_EFR_label], axis=1, ignore_index=True)) # set the title of columns # df_EFR_avg.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) # df_EFR_avg = df_EFR_avg.sort_values(by=["Condition", "Subject"]) # df_EFR_avg = df_EFR_avg.reset_index(drop=True) df_EFR_win.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) df_EFR_win = df_EFR_win.sort_values(by=["Condition", "Subject"]) df_EFR_win = df_EFR_win.reset_index(drop=True) # average all the subjects , test and retest and keep one sound levels # filter by 'a vowel and 85Db' df_EFR_sorted = df_EFR.sort_values(by=["Sound Level", "Vowel","Condition", "Subject"]) df_EFR_sorted = df_EFR_sorted.reset_index(drop=True) df_EFR_win_sorted = df_EFR_win.sort_values(by=["Sound Level", "Vowel","Condition", "Subject"]) df_EFR_win_sorted = df_EFR_win_sorted.reset_index(drop=True) # filter55 65 75 sound levels and keep 85dB # keep vowel condition and subject df_EFR_85 =
pd.DataFrame(df_EFR_sorted.iloc[1056:, :])
pandas.DataFrame
import numpy as np import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import Categorical, DataFrame, Index, Series import pandas._testing as tm class TestDataFrameIndexingCategorical: def test_assignment(self): # assignment df = DataFrame( {"value": np.array(np.random.randint(0, 10000, 100), dtype="int32")} ) labels = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)]) df = df.sort_values(by=["value"], ascending=True) s = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels) d = s.values df["D"] = d str(df) result = df.dtypes expected = Series( [np.dtype("int32"), CategoricalDtype(categories=labels, ordered=False)], index=["value", "D"], ) tm.assert_series_equal(result, expected) df["E"] = s str(df) result = df.dtypes expected = Series( [ np.dtype("int32"), CategoricalDtype(categories=labels, ordered=False), CategoricalDtype(categories=labels, ordered=False), ], index=["value", "D", "E"], ) tm.assert_series_equal(result, expected) result1 = df["D"] result2 = df["E"] tm.assert_categorical_equal(result1._mgr._block.values, d) # sorting s.name = "E" tm.assert_series_equal(result2.sort_index(), s.sort_index()) cat = Categorical([1, 2, 3, 10], categories=[1, 2, 3, 4, 10]) df = DataFrame(Series(cat)) def test_assigning_ops(self): # systematically test the assigning operations: # for all slicing ops: # for value in categories and value not in categories: # - assign a single value -> exp_single_cats_value # - assign a complete row (mixed values) -> exp_single_row # assign multiple rows (mixed values) (-> array) -> exp_multi_row # assign a part of a column with dtype == categorical -> # exp_parts_cats_col # assign a part of a column with dtype != categorical -> # exp_parts_cats_col cats = Categorical(["a", "a", "a", "a", "a", "a", "a"], categories=["a", "b"]) idx = Index(["h", "i", "j", "k", "l", "m", "n"]) values = [1, 1, 1, 1, 1, 1, 1] orig = DataFrame({"cats": cats, "values": values}, index=idx) # the expected values # changed single row cats1 = Categorical(["a", "a", "b", "a", "a", "a", "a"], categories=["a", "b"]) idx1 = Index(["h", "i", "j", "k", "l", "m", "n"]) values1 = [1, 1, 2, 1, 1, 1, 1] exp_single_row = DataFrame({"cats": cats1, "values": values1}, index=idx1) # changed multiple rows cats2 = Categorical(["a", "a", "b", "b", "a", "a", "a"], categories=["a", "b"]) idx2 = Index(["h", "i", "j", "k", "l", "m", "n"]) values2 = [1, 1, 2, 2, 1, 1, 1] exp_multi_row = DataFrame({"cats": cats2, "values": values2}, index=idx2) # changed part of the cats column cats3 = Categorical(["a", "a", "b", "b", "a", "a", "a"], categories=["a", "b"]) idx3 = Index(["h", "i", "j", "k", "l", "m", "n"]) values3 = [1, 1, 1, 1, 1, 1, 1] exp_parts_cats_col = DataFrame({"cats": cats3, "values": values3}, index=idx3) # changed single value in cats col cats4 = Categorical(["a", "a", "b", "a", "a", "a", "a"], categories=["a", "b"]) idx4 = Index(["h", "i", "j", "k", "l", "m", "n"]) values4 = [1, 1, 1, 1, 1, 1, 1] exp_single_cats_value = DataFrame( {"cats": cats4, "values": values4}, index=idx4 ) # iloc # ############### # - assign a single value -> exp_single_cats_value df = orig.copy() df.iloc[2, 0] = "b" tm.assert_frame_equal(df, exp_single_cats_value) df = orig.copy() df.iloc[df.index == "j", 0] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set msg1 = ( "Cannot setitem on a Categorical with a new category, " "set the categories first" ) msg2 = "Cannot set a Categorical with another, without identical categories" with pytest.raises(ValueError, match=msg1): df = orig.copy() df.iloc[2, 0] = "c" # - assign a complete row (mixed values) -> exp_single_row df = orig.copy() df.iloc[2, :] = ["b", 2] tm.assert_frame_equal(df, exp_single_row) # - assign a complete row (mixed values) not in categories set with pytest.raises(ValueError, match=msg1): df = orig.copy() df.iloc[2, :] = ["c", 2] # - assign multiple rows (mixed values) -> exp_multi_row df = orig.copy() df.iloc[2:4, :] = [["b", 2], ["b", 2]] tm.assert_frame_equal(df, exp_multi_row) with pytest.raises(ValueError, match=msg1): df = orig.copy() df.iloc[2:4, :] = [["c", 2], ["c", 2]] # assign a part of a column with dtype == categorical -> # exp_parts_cats_col df = orig.copy() df.iloc[2:4, 0] = Categorical(["b", "b"], categories=["a", "b"]) tm.assert_frame_equal(df, exp_parts_cats_col) with pytest.raises(ValueError, match=msg2): # different categories -> not sure if this should fail or pass df = orig.copy() df.iloc[2:4, 0] = Categorical(list("bb"), categories=list("abc")) with pytest.raises(ValueError, match=msg2): # different values df = orig.copy() df.iloc[2:4, 0] = Categorical(list("cc"), categories=list("abc")) # assign a part of a column with dtype != categorical -> # exp_parts_cats_col df = orig.copy() df.iloc[2:4, 0] = ["b", "b"] tm.assert_frame_equal(df, exp_parts_cats_col) with pytest.raises(ValueError, match=msg1): df.iloc[2:4, 0] = ["c", "c"] # loc # ############## # - assign a single value -> exp_single_cats_value df = orig.copy() df.loc["j", "cats"] = "b" tm.assert_frame_equal(df, exp_single_cats_value) df = orig.copy() df.loc[df.index == "j", "cats"] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set with pytest.raises(ValueError, match=msg1): df = orig.copy() df.loc["j", "cats"] = "c" # - assign a complete row (mixed values) -> exp_single_row df = orig.copy() df.loc["j", :] = ["b", 2] tm.assert_frame_equal(df, exp_single_row) # - assign a complete row (mixed values) not in categories set with pytest.raises(ValueError, match=msg1): df = orig.copy() df.loc["j", :] = ["c", 2] # - assign multiple rows (mixed values) -> exp_multi_row df = orig.copy() df.loc["j":"k", :] = [["b", 2], ["b", 2]] tm.assert_frame_equal(df, exp_multi_row) with pytest.raises(ValueError, match=msg1): df = orig.copy() df.loc["j":"k", :] = [["c", 2], ["c", 2]] # assign a part of a column with dtype == categorical -> # exp_parts_cats_col df = orig.copy() df.loc["j":"k", "cats"] = Categorical(["b", "b"], categories=["a", "b"]) tm.assert_frame_equal(df, exp_parts_cats_col) with pytest.raises(ValueError, match=msg2): # different categories -> not sure if this should fail or pass df = orig.copy() df.loc["j":"k", "cats"] = Categorical( ["b", "b"], categories=["a", "b", "c"] ) with pytest.raises(ValueError, match=msg2): # different values df = orig.copy() df.loc["j":"k", "cats"] = Categorical( ["c", "c"], categories=["a", "b", "c"] ) # assign a part of a column with dtype != categorical -> # exp_parts_cats_col df = orig.copy() df.loc["j":"k", "cats"] = ["b", "b"] tm.assert_frame_equal(df, exp_parts_cats_col) with pytest.raises(ValueError, match=msg1): df.loc["j":"k", "cats"] = ["c", "c"] # loc # ############## # - assign a single value -> exp_single_cats_value df = orig.copy() df.loc["j", df.columns[0]] = "b" tm.assert_frame_equal(df, exp_single_cats_value) df = orig.copy() df.loc[df.index == "j", df.columns[0]] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set with pytest.raises(ValueError, match=msg1): df = orig.copy() df.loc["j", df.columns[0]] = "c" # - assign a complete row (mixed values) -> exp_single_row df = orig.copy() df.loc["j", :] = ["b", 2] tm.assert_frame_equal(df, exp_single_row) # - assign a complete row (mixed values) not in categories set with pytest.raises(ValueError, match=msg1): df = orig.copy() df.loc["j", :] = ["c", 2] # - assign multiple rows (mixed values) -> exp_multi_row df = orig.copy() df.loc["j":"k", :] = [["b", 2], ["b", 2]] tm.assert_frame_equal(df, exp_multi_row) with pytest.raises(ValueError, match=msg1): df = orig.copy() df.loc["j":"k", :] = [["c", 2], ["c", 2]] # assign a part of a column with dtype == categorical -> # exp_parts_cats_col df = orig.copy() df.loc["j":"k", df.columns[0]] = Categorical(["b", "b"], categories=["a", "b"])
tm.assert_frame_equal(df, exp_parts_cats_col)
pandas._testing.assert_frame_equal
# Copyright (c) 2019-2020, NVIDIA CORPORATION. import datetime as dt import re import cupy as cp import numpy as np import pandas as pd import pyarrow as pa import pytest from pandas.util.testing import ( assert_frame_equal, assert_index_equal, assert_series_equal, ) import cudf from cudf.core import DataFrame, Series from cudf.core.index import DatetimeIndex from cudf.tests.utils import NUMERIC_TYPES, assert_eq def data1(): return pd.date_range("20010101", "20020215", freq="400h", name="times") def data2(): return pd.date_range("20010101", "20020215", freq="400h", name="times") def timeseries_us_data(): return pd.date_range( "2019-07-16 00:00:00", "2019-07-16 00:00:01", freq="5555us", name="times", ) def timestamp_ms_data(): return pd.Series( [ "2019-07-16 00:00:00.333", "2019-07-16 00:00:00.666", "2019-07-16 00:00:00.888", ] ) def timestamp_us_data(): return pd.Series( [ "2019-07-16 00:00:00.333333", "2019-07-16 00:00:00.666666", "2019-07-16 00:00:00.888888", ] ) def timestamp_ns_data(): return pd.Series( [ "2019-07-16 00:00:00.333333333", "2019-07-16 00:00:00.666666666", "2019-07-16 00:00:00.888888888", ] ) def numerical_data(): return np.arange(1, 10) fields = ["year", "month", "day", "hour", "minute", "second", "weekday"] @pytest.mark.parametrize("data", [data1(), data2()]) def test_series(data): pd_data = pd.Series(data.copy()) gdf_data = Series(pd_data) assert_eq(pd_data, gdf_data) @pytest.mark.parametrize( "lhs_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) @pytest.mark.parametrize( "rhs_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_datetime_series_binops_pandas(lhs_dtype, rhs_dtype): pd_data_1 = pd.Series( pd.date_range("20010101", "20020215", freq="400h", name="times") ) pd_data_2 = pd.Series( pd.date_range("20010101", "20020215", freq="401h", name="times") ) gdf_data_1 = Series(pd_data_1).astype(lhs_dtype) gdf_data_2 = Series(pd_data_2).astype(rhs_dtype) assert_eq(pd_data_1, gdf_data_1.astype("datetime64[ns]")) assert_eq(pd_data_2, gdf_data_2.astype("datetime64[ns]")) assert_eq(pd_data_1 < pd_data_2, gdf_data_1 < gdf_data_2) assert_eq(pd_data_1 > pd_data_2, gdf_data_1 > gdf_data_2) assert_eq(pd_data_1 == pd_data_2, gdf_data_1 == gdf_data_2) assert_eq(pd_data_1 <= pd_data_2, gdf_data_1 <= gdf_data_2) assert_eq(pd_data_1 >= pd_data_2, gdf_data_1 >= gdf_data_2) @pytest.mark.parametrize( "lhs_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) @pytest.mark.parametrize( "rhs_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_datetime_series_binops_numpy(lhs_dtype, rhs_dtype): pd_data_1 = pd.Series( pd.date_range("20010101", "20020215", freq="400h", name="times") ) pd_data_2 = pd.Series( pd.date_range("20010101", "20020215", freq="401h", name="times") ) gdf_data_1 = Series(pd_data_1).astype(lhs_dtype) gdf_data_2 = Series(pd_data_2).astype(rhs_dtype) np_data_1 = np.array(pd_data_1).astype(lhs_dtype) np_data_2 = np.array(pd_data_2).astype(rhs_dtype) np.testing.assert_equal(np_data_1, gdf_data_1.to_array()) np.testing.assert_equal(np_data_2, gdf_data_2.to_array()) np.testing.assert_equal( np.less(np_data_1, np_data_2), (gdf_data_1 < gdf_data_2).to_array() ) np.testing.assert_equal( np.greater(np_data_1, np_data_2), (gdf_data_1 > gdf_data_2).to_array() ) np.testing.assert_equal( np.equal(np_data_1, np_data_2), (gdf_data_1 == gdf_data_2).to_array() ) np.testing.assert_equal( np.less_equal(np_data_1, np_data_2), (gdf_data_1 <= gdf_data_2).to_array(), ) np.testing.assert_equal( np.greater_equal(np_data_1, np_data_2), (gdf_data_1 >= gdf_data_2).to_array(), ) @pytest.mark.parametrize("data", [data1(), data2()]) def test_dt_ops(data): pd_data = pd.Series(data.copy()) gdf_data = Series(data.copy()) assert_eq(pd_data == pd_data, gdf_data == gdf_data) assert_eq(pd_data < pd_data, gdf_data < gdf_data) assert_eq(pd_data > pd_data, gdf_data > gdf_data) # libgdf doesn't respect timezones @pytest.mark.parametrize("data", [data1()]) @pytest.mark.parametrize("field", fields) def test_dt_series(data, field): pd_data = pd.Series(data.copy()) gdf_data = Series(pd_data) base = getattr(pd_data.dt, field) test = getattr(gdf_data.dt, field).to_pandas().astype("int64") assert_series_equal(base, test) @pytest.mark.parametrize("data", [data1()]) @pytest.mark.parametrize("field", fields) def test_dt_index(data, field): pd_data = data.copy() gdf_data = DatetimeIndex(pd_data) assert_index_equal( getattr(gdf_data, field).to_pandas(), getattr(pd_data, field) ) def test_setitem_datetime(): df = DataFrame() df["date"] = pd.date_range("20010101", "20010105").values assert np.issubdtype(df.date.dtype, np.datetime64) def test_sort_datetime(): df = pd.DataFrame() df["date"] = np.array( [ np.datetime64("2016-11-20"), np.datetime64("2020-11-20"), np.datetime64("2019-11-20"), np.datetime64("1918-11-20"), np.datetime64("2118-11-20"), ] ) df["vals"] = np.random.sample(len(df["date"])) gdf = cudf.from_pandas(df) s_df = df.sort_values(by="date") s_gdf = gdf.sort_values(by="date") assert_eq(s_df, s_gdf) def test_issue_165(): df_pandas = pd.DataFrame() start_date = dt.datetime.strptime("2000-10-21", "%Y-%m-%d") data = [(start_date + dt.timedelta(days=x)) for x in range(6)] df_pandas["dates"] = data df_pandas["num"] = [1, 2, 3, 4, 5, 6] df_cudf = DataFrame.from_pandas(df_pandas) base = df_pandas.query("dates==@start_date") test = df_cudf.query("dates==@start_date") assert_frame_equal(base, test.to_pandas()) assert len(test) > 0 mask = df_cudf.dates == start_date base_mask = df_pandas.dates == start_date assert_series_equal(mask.to_pandas(), base_mask, check_names=False) assert mask.to_pandas().sum() > 0 start_date_ts = pd.Timestamp(start_date) test = df_cudf.query("dates==@start_date_ts") base = df_pandas.query("dates==@start_date_ts") assert_frame_equal(base, test.to_pandas()) assert len(test) > 0 mask = df_cudf.dates == start_date_ts base_mask = df_pandas.dates == start_date_ts assert_series_equal(mask.to_pandas(), base_mask, check_names=False) assert mask.to_pandas().sum() > 0 start_date_np = np.datetime64(start_date_ts, "ns") test = df_cudf.query("dates==@start_date_np") base = df_pandas.query("dates==@start_date_np") assert_frame_equal(base, test.to_pandas()) assert len(test) > 0 mask = df_cudf.dates == start_date_np base_mask = df_pandas.dates == start_date_np assert_series_equal(mask.to_pandas(), base_mask, check_names=False) assert mask.to_pandas().sum() > 0 @pytest.mark.parametrize("data", [data1(), data2()]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) def test_typecast_from_datetime(data, dtype): pd_data = pd.Series(data.copy()) np_data = np.array(pd_data) gdf_data = Series(pd_data) np_casted = np_data.astype(dtype) gdf_casted = gdf_data.astype(dtype) np.testing.assert_equal(np_casted, gdf_casted.to_array()) @pytest.mark.parametrize("data", [data1(), data2()]) @pytest.mark.parametrize( "dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_typecast_from_datetime_to_int64_to_datetime(data, dtype): pd_data = pd.Series(data.copy()) np_data = np.array(pd_data) gdf_data = Series(pd_data) np_casted = np_data.astype(np.int64).astype(dtype) gdf_casted = gdf_data.astype(np.int64).astype(dtype) np.testing.assert_equal(np_casted, gdf_casted.to_array()) @pytest.mark.parametrize("data", [timeseries_us_data()]) @pytest.mark.parametrize( "dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_typecast_to_different_datetime_resolutions(data, dtype): pd_data = pd.Series(data.copy()) np_data = np.array(pd_data).astype(dtype) gdf_series = Series(pd_data).astype(dtype) np.testing.assert_equal(np_data, gdf_series.to_array()) @pytest.mark.parametrize( "data", [timestamp_ms_data(), timestamp_us_data(), timestamp_ns_data()] ) @pytest.mark.parametrize( "dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_string_timstamp_typecast_to_different_datetime_resolutions( data, dtype ): pd_sr = data gdf_sr = cudf.Series.from_pandas(pd_sr) expect = pd_sr.values.astype(dtype) got = gdf_sr.astype(dtype).values_host np.testing.assert_equal(expect, got) @pytest.mark.parametrize("data", [numerical_data()]) @pytest.mark.parametrize("from_dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "to_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_typecast_to_datetime(data, from_dtype, to_dtype): np_data = data.astype(from_dtype) gdf_data = Series(np_data) np_casted = np_data.astype(to_dtype) gdf_casted = gdf_data.astype(to_dtype) np.testing.assert_equal(np_casted, gdf_casted.to_array()) @pytest.mark.parametrize("data", [numerical_data()]) @pytest.mark.parametrize("from_dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "to_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_typecast_to_from_datetime(data, from_dtype, to_dtype): np_data = data.astype(from_dtype) gdf_data = Series(np_data) np_casted = np_data.astype(to_dtype).astype(from_dtype) gdf_casted = gdf_data.astype(to_dtype).astype(from_dtype) np.testing.assert_equal(np_casted, gdf_casted.to_array()) @pytest.mark.parametrize("data", [numerical_data()]) @pytest.mark.parametrize( "from_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) @pytest.mark.parametrize( "to_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_typecast_from_datetime_to_datetime(data, from_dtype, to_dtype): np_data = data.astype(from_dtype) gdf_col = Series(np_data)._column np_casted = np_data.astype(to_dtype) gdf_casted = gdf_col.astype(to_dtype) np.testing.assert_equal(np_casted, gdf_casted.to_array()) @pytest.mark.parametrize("data", [numerical_data()]) @pytest.mark.parametrize("nulls", ["some", "all"]) def test_to_from_pandas_nulls(data, nulls): pd_data = pd.Series(data.copy().astype("datetime64[ns]")) if nulls == "some": # Fill half the values with NaT pd_data[list(range(0, len(pd_data), 2))] = np.datetime64("nat", "ns") elif nulls == "all": # Fill all the values with NaT pd_data[:] = np.datetime64("nat", "ns") gdf_data = Series.from_pandas(pd_data) expect = pd_data got = gdf_data.to_pandas() assert_eq(expect, got) @pytest.mark.parametrize( "dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_datetime_to_arrow(dtype): timestamp = ( cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={} ) .reset_index()["timestamp"] .reset_index(drop=True) ) gdf = DataFrame({"timestamp": timestamp.astype(dtype)}) assert_eq(gdf, DataFrame.from_arrow(gdf.to_arrow(preserve_index=False))) @pytest.mark.parametrize( "data", [ [], pd.Series(pd.date_range("2010-01-01", "2010-02-01")), pd.Series([None, None], dtype="datetime64[ns]"), ], ) @pytest.mark.parametrize( "nulls", ["none", pytest.param("some", marks=pytest.mark.xfail)] ) def test_datetime_unique(data, nulls): psr = pd.Series(data) print(data) print(nulls) if len(data) > 0: if nulls == "some": p = np.random.randint(0, len(data), 2) psr[p] = None gsr = cudf.from_pandas(psr) expected = psr.unique() got = gsr.unique() assert_eq(pd.Series(expected), got.to_pandas()) @pytest.mark.parametrize( "data", [ [], pd.Series(
pd.date_range("2010-01-01", "2010-02-01")
pandas.date_range
import h5py import typing import datetime import pandas as pd import numpy as np import tensorflow as tf from sklearn.preprocessing import OneHotEncoder from numpy.core._multiarray_umath import ndarray from model_logging import get_logger import glob class DataLoader(): def __init__( self, dataframe: pd.DataFrame, target_datetimes: typing.List[datetime.datetime], stations: typing.Dict[typing.AnyStr, typing.Tuple[float, float, float]], target_time_offsets: typing.List[datetime.timedelta], config: typing.Dict[typing.AnyStr, typing.Any], data_folder: typing.AnyStr ): """ Copy-paste from evaluator.py: Args: dataframe: a pandas dataframe that provides the netCDF file path (or HDF5 file path and offset) for all relevant timestamp values over the test period. target_datetimes: a list of timestamps that your data loader should use to provide imagery for your model. The ordering of this list is important, as each element corresponds to a sequence of GHI values to predict. By definition, the GHI values must be provided for the offsets given by ``target_time_offsets`` which are added to each timestamp (T=0) in this datetimes list. stations: a map of station names of interest paired with their coordinates (latitude, longitude, elevation) target_time_offsets: the list of time-deltas to predict GHIs for (by definition: [T=0, T+1h, T+3h, T+6h]). config: configuration dictionary holding extra parameters """ self.dataframe = dataframe self.target_datetimes = target_datetimes self.stations = list(stations.keys()) self.config = config self.target_time_offsets = target_time_offsets self.data_folder = data_folder self.initialize() def initialize(self): self.logger = get_logger() self.logger.debug("Initialize start") self.test_station = self.stations[0] self.output_seq_len = len(self.target_time_offsets) self.data_files_list = glob.glob(self.data_folder + "/*.hdf5") # sort required for evaluator script self.data_files_list.sort() stations = np.array([b"BND", b"TBL", b"DRA", b"FPK", b"GWN", b"PSU", b"SXF"]) self.encoder = OneHotEncoder(sparse=False) stations = stations.reshape(len(stations), 1) self.encoder.fit(stations) self.data_loader = tf.data.Dataset.from_generator( self.data_generator_fn, output_types=(tf.float32, tf.float32, tf.float32, tf.bool, tf.float32, tf.float32, tf.float32) ).prefetch(tf.data.experimental.AUTOTUNE) def to_cyclical_secondofday(self, date): SECONDS_PER_DAY = 24 * 60 * 60 second_of_day = (date.hour * 60 + date.minute) * 60 + date.second day_cycle_rad = second_of_day / SECONDS_PER_DAY * 2.0 * np.pi day_cycle_x = np.sin(day_cycle_rad) day_cycle_y = np.cos(day_cycle_rad) return pd.DataFrame(day_cycle_x), pd.DataFrame(day_cycle_y) def to_cyclical_dayofyear(self, date): DAYS_PER_YEAR = 365 year_cycle_rad = date.dayofyear / DAYS_PER_YEAR year_cycle_x = np.sin(year_cycle_rad) year_cycle_y = np.cos(year_cycle_rad) return pd.DataFrame(year_cycle_x),
pd.DataFrame(year_cycle_y)
pandas.DataFrame
# Copyright 2020 trueto # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import json import chardet import pandas as pd from pathlib import Path str_type = { "疾病和诊断": "Dis", "解剖部位": "Body", "实验室检验": "Test", "影像检查": "CT", "药物": "Drug", "手术": "Sur" } def C_trans_to_E(string): E_pun = u',.!?[]()<>"\'"\':;' C_pun = u',。!?【】()《》“‘”’:;' table= {ord(f): ord(t) for f, t in zip(C_pun, E_pun)} string = string.translate(table) return re.sub("[ |\t|\r|\n|\\\]", "_", string) def strQ2B(ustr): "全角转半角" rstr = "" for uchar in ustr: inside_code = ord(uchar) # 全角空格直接转换 if inside_code == 12288: inside_code = 32 # 全角字符(除空格)根据关系转化 elif (inside_code >= 65281 and inside_code <= 65374): inside_code -= 65248 rstr += chr(inside_code) return rstr def get_X_y(in_file, out_file, max_len=500): X = [] y = [] entity_data = [] with open(in_file, 'r', encoding='utf8') as f: for line in f: tempObj = json.loads(line) originalText = tempObj['originalText'] text = C_trans_to_E(strQ2B(originalText)) entities = tempObj['entities'] print("Processing text:{}".format(text)) if len(text) <= max_len: X_ = list(text) y_ = ["O"] * len(X_) for entity in entities: start_pos = entity["start_pos"] end_pos = entity["end_pos"] label_type = entity["label_type"] if "clinical" in in_file: tag = str_type[label_type] else: tag = label_type # for i in range(start_pos, end_pos): # y_[i] = tag entity_data.append([text[start_pos : end_pos], tag]) y_[start_pos] = 'B-'+tag for i in range(start_pos+1, end_pos): y_[i] = 'I-' + tag assert len(X_) == len(y_) X.append(X_) y.append(y_) else: # 分句 dot_index_list = [] text_ = text flag = 0 while(len(text_) > max_len): text_ = text_[:max_len] index_list = [] for match in re.finditer(',', text_): index = match.span()[0] index_list.append(index) # last_dot = index_list.pop() if len(index_list) > 1: last_dot = index_list.pop() else: index_list_ = [] for match in re.finditer('.', text_): index = match.span()[0] index_list_.append(index) if len(index_list_) > 1: last_dot = index_list_.pop() else: last_dot = len(text_) dot_index_list.append(last_dot + flag) text_ = text[last_dot+flag:] flag += last_dot print(dot_index_list) flag = 0 dot_index_list.append(len(text)) for i, dot_index in enumerate(dot_index_list): short_text = text[flag: dot_index+1] X_ = list(short_text) print("Short text:{}".format(short_text)) y_ = ["O"] * len(X_) for entity in entities: start_pos = entity["start_pos"] end_pos = entity["end_pos"] label_type = entity["label_type"] if "clinical" in in_file: tag = str_type[label_type] else: tag = label_type #for j in range(start_pos, end_pos): # j = j - flag # if j >= 0 and j < len(y_): # y_[j] = tag en_list = [] k = start_pos - flag if k >= 0 and k < len(y_): y_[k] = 'B-' + tag en_list.append(X_[k]) for j in range(start_pos+1, end_pos): j = j - flag if j >= 0 and j < len(y_): y_[j] = 'I-' + tag en_list.append(X_[j]) if len(en_list) > 0: entity_data.append(["".join(en_list), tag]) # if start_pos - flag > 0: # print(short_text[start_pos - flag : end_pos - flag]) assert len(X_) == len(y_) X.append(X_) y.append(y_) flag = dot_index + 1 assert len(X) == len(y) data_obj = (X, y, entity_data) pd.to_pickle(data_obj, out_file) def get_X(in_file, out_file, max_len=500): X = [] cut_his = {} originalTexts = [] texts = [] with open(in_file, 'rb') as f: encoding = chardet.detect(f.read())['encoding'] with open(in_file, 'r', encoding="utf8") as f: for text_id, line in enumerate(f): tempObj = json.loads(line, encoding=encoding) originalText = tempObj['originalText'] originalTexts.append(originalText) text = C_trans_to_E(strQ2B(originalText)) texts.append(text) print("Processing text:{}".format(text)) if len(text) <= max_len: X_ = list(text) X.append(X_) cut_his[text_id] = len(X) - 1 else: # 分句 dot_index_list = [] text_ = text flag = 0 while(len(text_) > max_len): text_ = text_[:max_len] index_list = [] for match in re.finditer(',', text_): index = match.span()[0] index_list.append(index) # last_dot = index_list.pop() if len(index_list) > 1: last_dot = index_list.pop() else: index_list_ = [] for match in re.finditer('.', text_): index = match.span()[0] index_list_.append(index) if len(index_list_) > 1: last_dot = index_list_.pop() else: last_dot = len(text_) dot_index_list.append(last_dot + flag) text_ = text[last_dot+flag:] flag += last_dot print(dot_index_list) flag = 0 dot_index_list.append(len(text)) text_id_list = [] for i, dot_index in enumerate(dot_index_list): short_text = text[flag: dot_index+1] X_ = list(short_text) X.append(X_) text_id_list.append(len(X)-1) flag = dot_index + 1 cut_his[text_id] = text_id_list # assert len(X) == len(ids) data_obj = (X, cut_his, originalTexts, texts) pd.to_pickle(data_obj, out_file) def get_vocab_csv(input_file, name): _, _, entity_data = pd.read_pickle(input_file) tmp_df =
pd.DataFrame(data=entity_data, columns=['entity', 'label_type'])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[ ]: # %load ./imports.py # %load /Users/bartev/dev/github-bv/sporty/notebooks/imports.py ## Where am I get_ipython().system('echo $VIRTUAL_ENV') from IPython.core.display import display, HTML display(HTML("<style>.container { width:95% !important; }</style>")) # magics get_ipython().run_line_magic('load_ext', 'blackcellmagic') # start cell with `%%black` to format using `black` get_ipython().run_line_magic('load_ext', 'autoreload') # start cell with `%autoreload` to reload module # https://ipython.org/ipython-doc/stable/config/extensions/autoreload.html # reload all modules when running get_ipython().run_line_magic('autoreload', '2') # In[29]: # imports import pandas as pd import numpy as np import statsmodels.formula.api as smf import seaborn as sns from importlib import reload from pathlib import Path import matplotlib as mpl import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') # https://plotnine.readthedocs.io/en/stable/ import plotnine as p9 from plotnine import ggplot, aes, facet_wrap from src.utils import lower_case_col_names, drop_suffix import src.data.load_data as ld from src.data.load_data import get_nba_game_team_points, load_nba, load_nba_games_dataset # In[100]: nba_games = load_nba_games_dataset() nba_games.head() # # Explore the dataset # ## Qualitative vs Quantitative Data # * object: qualitative variable # * int64: quantitative and discrete (integer) (-2^63) - (2^63 - 1) # * float64: quantitative and continuous - real numbers (64 bit) # In[81]: nba_games.dtypes # ## Convert a categorical variable to a dummy variable # `pd.get_dummies` creates new columns, and drops the original columns. # In[84]: nba_games.head() # In[88]: dummy = pd.get_dummies(nba_games, columns=['wl']) dummy.columns # ### 3 ways to merge `wl_W` # In[91]: pd.concat([nba_games, dummy['wl_W']], axis=1).rename(columns={'wl_W': 'win'}).head() # In[93]: nba_games.pipe(lambda x: pd.concat([x, dummy['wl_W']], axis=1)) # In[101]: nba_games_w = nba_games.merge(dummy).drop(columns='wl_L').rename(columns={'wl_W':'win'}) nba_games_w # In[102]: nba_games['game_date_est'].dtype # Currently, the dates are stored as objects (so treated equally(???) w/o any ordering) # Use `pd.to_datetime()` to convert to a date variable # In[104]: import datetime nba_games_d = (nba_games_w .assign(game_date=lambda x:
pd.to_datetime(x['game_date_est'])
pandas.to_datetime
''' Run using python from terminal. Doesn't read from scripts directory (L13) when run from poetry shell. ''' import pandas as pd import pandas.testing as pd_testing import typing as tp import os import unittest from unittest import mock import datetime from scripts import influx_metrics_univ3 as imetrics class TestInfluxMetrics(unittest.TestCase): def get_price_cumulatives_df(self, path) -> pd.DataFrame: ''' Helper to return dataframe used to mock out `query_data_frame` in the `get_price_cumulatives` function in `scripts/influx_metrics_univ3.py` ''' base = os.path.dirname(os.path.abspath(__file__)) base = os.path.abspath(os.path.join(base, os.pardir)) base = os.path.join(base, 'helpers') base = os.path.join(base, path) base = os.path.join(base, 'get-price-cumulatives.csv') df = pd.read_csv(base, sep=',') df._start = pd.to_datetime(df._start) df._stop = pd.to_datetime(df._stop) df._time =
pd.to_datetime(df._time)
pandas.to_datetime
""" Copyright 2020 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import pandas as pd def compute_running_avg(trace, period=100): """Computes the running average of a single data trace. Attributes: trace: The Python list data trace to compute averages for. period: The size of the window of previous data points that are used in the moving average computation. Returns: Python list containing the running average at each point. """ n = len(trace) if period > n: period = n avgs =
pd.Series(trace)
pandas.Series
import pandas as pd from ismore import brainamp_channel_lists from ismore.common_state_lists import * from utils.constants import * #### BrainAmp-related settings #### VERIFY_BRAINAMP_DATA_ARRIVAL = True # print warning if EMG data doesn't arrive or stops arriving for this long VERIFY_BRAINAMP_DATA_ARRIVAL_TIME = 1 # secs # to verify if the names of the channel names being streamed from brainvision and the selected ones match VERIFY_BRAINAMP_CHANNEL_LIST = False # the channels that the Python code will receive, make available to the task, # and save into the HDF file # (received data on other BrainAmp channels will simply be discarded) # !! THIS IS A DEFAULT VALUE, BUT IF THERE IS A TRAIT IN THE ISMORETASKS FUNCTION, THE CHANNEL LIST WILL BE SELECTED FROM THE TASK SERVER INTERFACE # AND THIS VARIABLE WILL BE MODIFIED ACCORDING TO THAT SELECTION BRAINAMP_CHANNELS = brainamp_channel_lists.eeg32_raw_filt #BRAINAMP_CHANNELS = brainamp_channel_lists.emg14_raw_filt #BRAINAMP_CHANNELS = ismoretasks.BRAINAMP_CHANNELS #nerea ################################### # send SetSpeed commands to server addresses # receive feedback data on client addresses ARMASSIST_UDP_SERVER_ADDR = ('127.0.0.1', 5001) ARMASSIST_UDP_CLIENT_ADDR = ('127.0.0.1', 5002) REHAND_UDP_SERVER_ADDR = ('127.0.0.1', 5000) REHAND_UDP_CLIENT_ADDR = ('127.0.0.1', 5003) VERIFY_PLANT_DATA_ARRIVAL = True # print warning if plant data doesn't arrive or stops arriving for this long VERIFY_PLANT_DATA_ARRIVAL_TIME = 1 # secs DONNING_SAME_AS_STARTING_POSITION = True WATCHDOG_ENABLED = False WATCHDOG_TIMEOUT = 1000 # ms MAT_SIZE = [85, 95] # cm #################################### ##### Starting position of exo ##### #################################### starting_pos =
pd.Series(0.0, ismore_pos_states)
pandas.Series
#!/usr/bin/env python # coding: utf-8 # ## Problem 2 - Plotting temperatures # # In this problem we will plot monthly mean temperatures from the Helsinki-Vantaa airpot for the past 30 years. # # ## Input data # # File `data/helsinki-vantaa.csv` monthly average temperatures from Helsinki Vantaa airport. Column descriptions: # # ### Part 1 # # Load the Helsinki temperature data (`data/helsinki-vantaa.csv`) # # - Read the data into variable called `data` using pandas # - Parse dates from the column `'DATE'` and set the dates as index in the dataframe # YOUR CODE HERE 1 to read the data into data and parse dates import numpy as np import pandas as pd import matplotlib.pyplot as plt #read a data and parese dates from the column `'DATE'` and set the dates as index in the dataframe data = pd.read_csv("data/helsinki-vantaa.csv",parse_dates=['DATE'],index_col = 'DATE' ) # This test print should print first five rows print(data.head()) # Check the number of rows in the data frame print(len(data)) # ### Part 2 # # Select data for a 30 year period (January 1988 - December 2018) # # - Store the selection in a new variable `selection` # YOUR CODE HERE 2 # change index of data to type of datetime and make colum "date_time" data["date_time"] = pd.to_datetime(data.index) # Select data for a 30 year period (January 1988 - December 2018) selection = data.loc[(data.index >= '1988-01-01' )& (data.index <='2018-12-31' )] # Check that the data was read in correctly: selection.head() # Check how many rows of data you selected: print("Number of rows:", len(selection)) # ### Part 3 # # #### Part 3.1 # # Create a line plot that displays the temperatures (`TEMP_C`) for yeach month in the 30 year time period: # # #### Part 3.2 # # Save your figure as PNG file called `temp_line_plot.png`. # # YOUR CODE HERE 3 # Create an empty DataFrame for the aggregated values monthly_data =
pd.DataFrame()
pandas.DataFrame
import cv2 from datetime import datetime import pandas #First frame first_frame = None status_list = [None, None] times=[] df=
pandas.DataFrame(columns= ["Start","End"])
pandas.DataFrame
import pdb import glob import copy import os import pickle import joblib import numpy as np import pandas as pd import matplotlib.pyplot as plt import scipy.stats import sklearn.feature_selection from random import choices class FeatureColumn: def __init__(self, category, field, preprocessors, args=None, cost=None): self.category = category self.field = field self.preprocessors = preprocessors self.args = args self.data = None self.cost = cost class NHANES: def __init__(self, db_path=None, columns=None): self.db_path = db_path self.columns = columns # Depricated self.dataset = None # Depricated self.column_data = None self.column_info = None self.df_features = None self.df_targets = None self.costs = None def process(self): df = None cache = {} # collect relevant data df = [] for fe_col in self.columns: sheet = fe_col.category field = fe_col.field data_files = glob.glob(self.db_path+sheet+'/*.XPT') df_col = [] for dfile in data_files: print(80*' ', end='\r') print('\rProcessing: ' + dfile.split('/')[-1], end='') # read the file if dfile in cache: df_tmp = cache[dfile] else: df_tmp = pd.read_sas(dfile) cache[dfile] = df_tmp # skip of there is no SEQN if 'SEQN' not in df_tmp.columns: continue #df_tmp.set_index('SEQN') # skip if there is nothing interseting there sel_cols = set(df_tmp.columns).intersection([field]) if not sel_cols: continue else: df_tmp = df_tmp[['SEQN'] + list(sel_cols)] df_tmp.set_index('SEQN', inplace=True) df_col.append(df_tmp) try: df_col = pd.concat(df_col) except: #raise Error('Failed to process' + field) raise Exception('Failed to process' + field) df.append(df_col) df = pd.concat(df, axis=1) #df = pd.merge(df, df_sel, how='outer') # do preprocessing steps df_proc = []#[df['SEQN']] for fe_col in self.columns: field = fe_col.field fe_col.data = df[field].copy() # do preprocessing if fe_col.preprocessors is not None: prepr_col = df[field] for x in range(len(fe_col.preprocessors)): prepr_col = fe_col.preprocessors[x](prepr_col, fe_col.args[x]) else: prepr_col = df[field] # handle the 1 to many if (len(prepr_col.shape) > 1): fe_col.cost = [fe_col.cost] * prepr_col.shape[1] else: fe_col.cost = [fe_col.cost] df_proc.append(prepr_col) self.dataset =
pd.concat(df_proc, axis=1)
pandas.concat
import os import sys import inspect from copy import deepcopy import numpy as np import pandas as pd from ucimlr.helpers import (download_file, download_unzip, one_hot_encode_df_, xy_split, normalize_df_, split_normalize_sequence, split_df, get_split, split_df_on_column) from ucimlr.dataset import Dataset from ucimlr.constants import TRAIN from ucimlr.constants import REGRESSION def all_datasets(): """ Returns a list of all RegressionDataset classes. """ return [cls for _, cls in inspect.getmembers(sys.modules[__name__]) if inspect.isclass(cls) and issubclass(cls, RegressionDataset) and cls != RegressionDataset] class RegressionDataset(Dataset): type_ = REGRESSION # Is this necessary? @property def num_targets(self): return self.y.shape[1] class Abalone(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Abalone). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'data.csv' file_path = os.path.join(dataset_path, filename) url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data' download_file(url, dataset_path, filename) df = pd.read_csv(file_path, header=None) y_columns = df.columns[-1:] one_hot_encode_df_(df) df_test, df_train, df_valid = split_df(df, [0.2, 0.8 - 0.8 * validation_size, 0.8 * validation_size]) normalize_df_(df_train, other_dfs=[df_valid, df_test]) df_res = get_split(df_train, df_valid, df_test, split) self.x, self.y = xy_split(df_res, y_columns) class AirFoil(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'airfoil_self_noise.dat' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00291/airfoil_self_noise.dat' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path, sep='\t', names =["Frequency(Hz)", "Angle of attacks(Deg)", "Chord length(m)", "Free-stream velocity(m/s)", "Suction side displacement thickness(m)", " Scaled sound pressure level(Db)"]) y_columns = ['Scaled sound pressure level(Db)'] self.x, self.y = split_normalize_sequence(df, y_columns, validation_size, split, self.type_) class AirQuality(RegressionDataset): """ # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'AirQualityUCI.csv' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00360/AirQualityUCI.zip' download_unzip(url, dataset_path) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path, sep=';', parse_dates=[0, 1]) df.dropna(axis=0, how='all', inplace=True) df.dropna(axis=1, how='all', inplace=True) df.Date = (df.Date - df.Date.min()).astype('timedelta64[D]') # Days as int df.Time = df.Time.apply(lambda x: int(x.split('.')[0])) # Hours as int df['C6H6(GT)'] = df['C6H6(GT)'].apply(lambda x: float(x.replace(',', '.'))) # Target as float # Some floats are given with ',' instead of '.' df = df.applymap(lambda x: float(x.replace(',', '.')) if type(x) is str else x) # Target as float df = df[df['C6H6(GT)'] != -200] # Drop all rows with missing target values df.loc[df['CO(GT)'] == -200, 'CO(GT)'] = -10 # -200 means missing value, shifting this to be closer to # the other values for this column y_columns = ['C6H6(GT)'] self.x, self.y = split_normalize_sequence(df, y_columns, validation_size, split, self.type_) class Appliances_energy_prediction(RegressionDataset): """ Link to the dataset [description](https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'energydata_complete.csv' url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/00374/energydata_complete.csv' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path, parse_dates=[0, 1]) df.date = (df.date - df.date.min()).astype('timedelta64[D]') y_columns = ['Appliances'] self.x, self.y = split_normalize_sequence(df, y_columns, validation_size, split, self.type_) self.problem_type = REGRESSION class AutoMPG(RegressionDataset): """ Link to the dataset [description](https://archive.ics.uci.edu/ml/datasets/Automobile). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'auto-mpg.data' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path, sep='\s+', names =["mpg", "cylinders", "displacements", "horsepower", "weight", "acceleration", "model year", "origin", "car name"]) y_columns = ['mpg'] self.x, self.y = split_normalize_sequence(df, y_columns, validation_size, split, self.type_) sel.problem_type=REGRESSION class Automobile(RegressionDataset): """ Link to the dataset [description](https://archive.ics.uci.edu/ml/datasets/Automobile). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'imports-85.data' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path, names = ["symboling", "normalized-losses", "make", "fuel-type", " aspiration", "num-of-doors", "body-style", "drive-wheels", "engine-location", "wheel-base", " length", "width", " height", "curb-weight", "engine-type", "num-of-cylinders", "engine-size", " fuel-system", " bore", "stroke", " compression-ratio", "horsepower", "peak-rpm", "city-mpg", "highway-mpg", "price"]) y_columns = [''] self.x, self.y = split_normalize_sequence(df, y_columns, validation_size, split, self.type_) class BeijingAirQuality(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00501/PRSA2017_Data_20130301-20170228.zip' download_unzip(url, dataset_path) df = [] for fn in os.listdir(dataset_path): if 'PRSA_Data' not in fn: continue file_path = os.path.join(dataset_path, fn) df.append(pd.read_csv(file_path)) class BeijingPM(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'PRSA_data_2010.1.1-2014.12.31.csv' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00381/PRSA_data_2010.1.1-2014.12.31.csv' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path) y_columns=['pm2.5'] self.x, self.y = split_normalize_sequence(df, y_columns, validation_size, split, self.type) self.problem_type = REGRESSION class BiasCorrection(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Bias+correction+of+numerical+prediction+model+temperature+forecast). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'Bias_correction_ucl.csv' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00514/Bias_correction_ucl.csv' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path, index_col = 'Date', parse_dates= True) class BikeSharing(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00275/Bike-Sharing-Dataset.zip' download_unzip(url, dataset_path) df = [] for fn in os.listdir(dataset_path): file_path = os.path.join(dataset_path, fn) df.append(pd.read_csv(file_path)) class CarbonNanotubes(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Carbon+Nanotubes). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'carbon_nanotubes.csv' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00448/carbon_nanotubes.csv' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path,sep=';') class ChallengerShuttleORing(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Challenger+USA+Space+Shuttle+O-Ring). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'o-ring-erosion-only.data' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/space-shuttle/o-ring-erosion-only.data' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path,sep='\s+') class BlogFeedback(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/BlogFeedback). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): file_name = 'blogData_train.csv' dataset_path = os.path.join(root, self.name) url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00304/BlogFeedback.zip' download_unzip(url, dataset_path) # Iterate all test csv and concatenate to one DataFrame test_dfs = [] for fn in os.listdir(dataset_path): if 'blogData_test' not in fn: continue file_path = os.path.join(dataset_path, fn) test_dfs.append(pd.read_csv(file_path, header=None)) df_test = pd.concat(test_dfs) file_path = os.path.join(dataset_path, file_name) df_train_valid = pd.read_csv(file_path, header=None) y_columns = [280] df_train_valid[y_columns[0]] = np.log(df_train_valid[y_columns[0]] + 0.01) df_test[y_columns[0]] = np.log(df_test[y_columns[0]] + 0.01) page_columns = list(range(50)) for i, (_, df_group) in enumerate(df_train_valid.groupby(page_columns)): df_train_valid.loc[df_group.index, 'page_id'] = i df_train, df_valid = split_df_on_column(df_train_valid, [1 - validation_size, validation_size], 'page_id') df_train.drop(columns='page_id', inplace=True) df_valid.drop(columns='page_id', inplace=True) normalize_df_(df_train, other_dfs=[df_valid, df_test]) df_res = get_split(df_train, df_valid, df_test, split) self.x, self.y = xy_split(df_res, y_columns) class CommunitiesCrime(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'communities.data' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/communities/communities.data' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path,header=None) class ConcreteSlumpTest(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'slump_test.data' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/concrete/slump/slump_test.data' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path,sep='\s+') class PropulsionPlants (RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Condition+Based+Maintenance+of+Naval+Propulsion+Plants). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00316/UCI CBM Dataset.zip' download_unzip(url, dataset_path) filename = 'data.txt' file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path, index_col='dteday', parse_dates=True) class ConcreteCompressiveStrength (RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'Concrete_Data.xls' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/concrete/compressive/Concrete_Data.xls' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_excel(file_path) class ComputerHardware (RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Computer+Hardware). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'machine.data' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/cpu-performance/machine.data' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path, names=["vendor name", "Model Name", "MYCT", "MMIN", "MMAX", "CACH", "CHMIN", "CHMAX", "PRP", "ERP"]) class CommunitiesCrimeUnnormalized (RegressionDataset): """ Link to the dataset [description]http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'CommViolPredUnnormalizedData.txt' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00211/CommViolPredUnnormalizedData.txt' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df =
pd.read_csv(file_path, keep_default_na=False, header=None)
pandas.read_csv
#!/usr/bin/env python3 import os import sys import pandas as pd import numpy as np import argparse import matplotlib.pyplot as plt import seaborn as sns from functools import reduce from multiprocessing import Pool from os.path import isfile, join import shutil import warnings from pathlib import Path import time warnings.simplefilter(action='ignore', category=FutureWarning) """ Plot Rating Curves and Compare to USGS Gages Parameters ---------- fim_dir : str Directory containing FIM output folders. output_dir : str Directory containing rating curve plots and tables. usgs_gages_filename : str File name of USGS rating curves. nwm_flow_dir : str Directory containing NWM recurrence flows files. number_of_jobs : str Number of jobs. stat_groups : str string of columns to group eval metrics. """ def check_file_age(file): ''' Checks if file exists, determines the file age, and recommends updating if older than 1 month. Returns ------- None. ''' file = Path(file) if file.is_file(): modification_time = file.stat().st_mtime current_time = time.time() file_age_days = (current_time - modification_time)/86400 if file_age_days > 30: check = f'{file.name} is {int(file_age_days)} days old, consider updating.\nUpdate with rating_curve_get_usgs_curves.py' else: check = f'{file.name} is {int(file_age_days)} days old.' return check # recurr_intervals = ['recurr_1_5_cms.csv','recurr_5_0_cms.csv','recurr_10_0_cms.csv'] def generate_rating_curve_metrics(args): elev_table_filename = args[0] hydrotable_filename = args[1] usgs_gages_filename = args[2] usgs_recurr_stats_filename = args[3] nwm_recurr_data_filename = args[4] rc_comparison_plot_filename = args[5] nwm_flow_dir = args[6] catfim_flows_filename = args[7] huc = args[8] elev_table = pd.read_csv(elev_table_filename,dtype={'location_id': str}) hydrotable = pd.read_csv(hydrotable_filename,dtype={'HUC': str,'feature_id': str}) usgs_gages = pd.read_csv(usgs_gages_filename,dtype={'location_id': str}) # Join rating curves with elevation data hydrotable = hydrotable.merge(elev_table, on="HydroID") relevant_gages = list(hydrotable.location_id.unique()) usgs_gages = usgs_gages[usgs_gages['location_id'].isin(relevant_gages)] usgs_gages = usgs_gages.reset_index(drop=True) if len(usgs_gages) > 0: # Adjust rating curve to elevation hydrotable['elevation_ft'] = (hydrotable.stage + hydrotable.dem_adj_elevation) * 3.28084 # convert from m to ft # hydrotable['raw_elevation_ft'] = (hydrotable.stage + hydrotable.dem_elevation) * 3.28084 # convert from m to ft hydrotable['discharge_cfs'] = hydrotable.discharge_cms * 35.3147 usgs_gages = usgs_gages.rename(columns={"flow": "discharge_cfs", "elevation_navd88": "elevation_ft"}) hydrotable['source'] = "FIM" usgs_gages['source'] = "USGS" limited_hydrotable = hydrotable.filter(items=['location_id','elevation_ft','discharge_cfs','source']) select_usgs_gages = usgs_gages.filter(items=['location_id', 'elevation_ft', 'discharge_cfs','source']) rating_curves = limited_hydrotable.append(select_usgs_gages) # Add stream order stream_orders = hydrotable.filter(items=['location_id','str_order']).drop_duplicates() rating_curves = rating_curves.merge(stream_orders, on='location_id') rating_curves['str_order'] = rating_curves['str_order'].astype('int') # plot rating curves generate_facet_plot(rating_curves, rc_comparison_plot_filename) # NWM recurr intervals recurr_1_5_yr_filename = join(nwm_flow_dir,'recurr_1_5_cms.csv') recurr_5_yr_filename = join(nwm_flow_dir,'recurr_5_0_cms.csv') recurr_10_yr_filename = join(nwm_flow_dir,'recurr_10_0_cms.csv') # Update column names recurr_1_5_yr = pd.read_csv(recurr_1_5_yr_filename,dtype={'feature_id': str}) recurr_1_5_yr = recurr_1_5_yr.rename(columns={"discharge": "1.5"}) recurr_5_yr =
pd.read_csv(recurr_5_yr_filename,dtype={'feature_id': str})
pandas.read_csv
"""Tests for the sdv.constraints.tabular module.""" import uuid from datetime import datetime from unittest.mock import Mock import numpy as np import pandas as pd import pytest from sdv.constraints.errors import MissingConstraintColumnError from sdv.constraints.tabular import ( Between, ColumnFormula, CustomConstraint, GreaterThan, Negative, OneHotEncoding, Positive, Rounding, Unique, UniqueCombinations) def dummy_transform_table(table_data): return table_data def dummy_reverse_transform_table(table_data): return table_data def dummy_is_valid_table(table_data): return [True] * len(table_data) def dummy_transform_table_column(table_data, column): return table_data def dummy_reverse_transform_table_column(table_data, column): return table_data def dummy_is_valid_table_column(table_data, column): return [True] * len(table_data[column]) def dummy_transform_column(column_data): return column_data def dummy_reverse_transform_column(column_data): return column_data def dummy_is_valid_column(column_data): return [True] * len(column_data) class TestCustomConstraint(): def test___init__(self): """Test the ``CustomConstraint.__init__`` method. The ``transform``, ``reverse_transform`` and ``is_valid`` methods should be replaced by the given ones, importing them if necessary. Setup: - Create dummy functions (created above this class). Input: - dummy transform and revert_transform + is_valid FQN Output: - Instance with all the methods replaced by the dummy versions. """ is_valid_fqn = __name__ + '.dummy_is_valid_table' # Run instance = CustomConstraint( transform=dummy_transform_table, reverse_transform=dummy_reverse_transform_table, is_valid=is_valid_fqn ) # Assert assert instance._transform == dummy_transform_table assert instance._reverse_transform == dummy_reverse_transform_table assert instance._is_valid == dummy_is_valid_table def test__run_transform_table(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy transform function with ``table_data`` argument. Side Effects: - Run transform function once with ``table_data`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_table, return_value=table_data) # Run instance = CustomConstraint(transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args dummy_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_reverse_transform_table(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy reverse transform function with ``table_data`` argument. Side Effects: - Run reverse transform function once with ``table_data`` as input. Output: - applied identity transformation "table_data = reverse_transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_table, return_value=table_data) # Run instance = CustomConstraint(reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args dummy_reverse_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_table(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy is valid function with ``table_data`` argument. Side Effects: - Run is valid function once with ``table_data`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_table) # Run instance = CustomConstraint(is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args dummy_is_valid_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) np.testing.assert_array_equal(is_valid, expected_out) def test__run_transform_table_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy transform function with ``table_data`` and ``column`` arguments. Side Effects: - Run transform function once with ``table_data`` and ``column`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_table_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args assert called[0][1] == 'a' dummy_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_reverse_transform_table_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy reverse transform function with ``table_data`` and ``column`` arguments. Side Effects: - Run reverse transform function once with ``table_data`` and ``column`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_table_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args assert called[0][1] == 'a' dummy_reverse_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_table_column(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy is valid function with ``table_data`` and ``column`` argument. Side Effects: - Run is valid function once with ``table_data`` and ``column`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_table_column) # Run instance = CustomConstraint(columns='a', is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args assert called[0][1] == 'a' dummy_is_valid_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) np.testing.assert_array_equal(is_valid, expected_out) def test__run_transform_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy transform function with ``column_data`` argument. Side Effects: - Run transform function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_reverse_transform_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy reverse transform function with ``column_data`` argument. Side Effects: - Run reverse transform function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - Applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_column(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy is valid function with ``column_data`` argument. Side Effects: - Run is valid function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_column) # Run instance = CustomConstraint(columns='a', is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) np.testing.assert_array_equal(is_valid, expected_out) class TestUniqueCombinations(): def test___init__(self): """Test the ``UniqueCombinations.__init__`` method. It is expected to create a new Constraint instance and receiving the names of the columns that need to produce unique combinations. Side effects: - instance._colums == columns """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns) # Assert assert instance._columns == columns def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``UniqueCombinations.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns, handling_strategy='transform') # Assert assert instance.rebuild_columns == tuple(columns) def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``UniqueCombinations.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns, handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test___init__with_one_column(self): """Test the ``UniqueCombinations.__init__`` method with only one constraint column. Expect a ``ValueError`` because UniqueCombinations requires at least two constraint columns. Side effects: - A ValueError is raised """ # Setup columns = ['c'] # Run and assert with pytest.raises(ValueError): UniqueCombinations(columns=columns) def test_fit(self): """Test the ``UniqueCombinations.fit`` method. The ``UniqueCombinations.fit`` method is expected to: - Call ``UniqueCombinations._valid_separator``. - Find a valid separator for the data and generate the joint column name. Input: - Table data (pandas.DataFrame) """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) instance.fit(table_data) # Asserts expected_combinations = pd.DataFrame({ 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) assert instance._separator == '#' assert instance._joint_column == 'b#c' pd.testing.assert_frame_equal(instance._combinations, expected_combinations) def test_is_valid_true(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['D', 'E', 'F'], 'c': ['g', 'h', 'i'] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_true(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_false(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [6, 7, 8], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``UniqueCombinations.transform`` method. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns concatenated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a') pd.testing.assert_series_equal(expected_out_a, out['a']) try: [uuid.UUID(u) for c, u in out['b#c'].items()] except ValueError: assert False def test_transform_non_string(self): """Test the ``UniqueCombinations.transform`` method with non strings. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns as UUIDs. Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a') pd.testing.assert_series_equal(expected_out_a, out['a']) try: [uuid.UUID(u) for c, u in out['b#c#d'].items()] except ValueError: assert False def test_transform_not_all_columns_provided(self): """Test the ``UniqueCombinations.transform`` method. If some of the columns needed for the transform are missing, and ``fit_columns_model`` is False, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns, fit_columns_model=False) instance.fit(table_data) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def test_reverse_transform(self): """Test the ``UniqueCombinations.reverse_transform`` method. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run transformed_data = instance.transform(table_data) out = instance.reverse_transform(transformed_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_non_string(self): """Test the ``UniqueCombinations.reverse_transform`` method with a non string column. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run transformed_data = instance.transform(table_data) out = instance.reverse_transform(transformed_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) pd.testing.assert_frame_equal(expected_out, out) class TestGreaterThan(): def test__validate_scalar(self): """Test the ``_validate_scalar`` method. This method validates the inputs if and transforms them into the correct format. Input: - scalar_column = 0 - column_names = 'b' Output: - column_names == ['b'] """ # Setup scalar_column = 0 column_names = 'b' scalar = 'high' # Run out = GreaterThan._validate_scalar(scalar_column, column_names, scalar) # Assert out == ['b'] def test__validate_scalar_list(self): """Test the ``_validate_scalar`` method. This method validates the inputs if and transforms them into the correct format. Input: - scalar_column = 0 - column_names = ['b'] Output: - column_names == ['b'] """ # Setup scalar_column = 0 column_names = ['b'] scalar = 'low' # Run out = GreaterThan._validate_scalar(scalar_column, column_names, scalar) # Assert out == ['b'] def test__validate_scalar_error(self): """Test the ``_validate_scalar`` method. This method raises an error when the the scalar column is a list. Input: - scalar_column = 0 - column_names = 'b' Side effect: - Raise error since the scalar is a list """ # Setup scalar_column = [0] column_names = 'b' scalar = 'high' # Run / Assert with pytest.raises(TypeError): GreaterThan._validate_scalar(scalar_column, column_names, scalar) def test__validate_inputs_high_is_scalar(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 3 - scalar = 'high' Output: - low == ['a'] - high == 3 - constraint_columns = ('a') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=3, scalar='high', drop=None) # Assert low == ['a'] high == 3 constraint_columns == ('a',) def test__validate_inputs_low_is_scalar(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 3 - high = 'b' - scalar = 'low' - drop = None Output: - low == 3 - high == ['b'] - constraint_columns = ('b') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low=3, high='b', scalar='low', drop=None) # Assert low == 3 high == ['b'] constraint_columns == ('b',) def test__validate_inputs_scalar_none(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 3 # where 3 is a column name - scalar = None - drop = None Output: - low == ['a'] - high == [3] - constraint_columns = ('a', 3) """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=3, scalar=None, drop=None) # Assert low == ['a'] high == [3] constraint_columns == ('a', 3) def test__validate_inputs_scalar_none_lists(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = ['a'] - high = ['b', 'c'] - scalar = None - drop = None Output: - low == ['a'] - high == ['b', 'c'] - constraint_columns = ('a', 'b', 'c') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low=['a'], high=['b', 'c'], scalar=None, drop=None) # Assert low == ['a'] high == ['b', 'c'] constraint_columns == ('a', 'b', 'c') def test__validate_inputs_scalar_none_two_lists(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = ['a', 0] - high = ['b', 'c'] - scalar = None - drop = None Side effect: - Raise error because both high and low are more than one column """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low=['a', 0], high=['b', 'c'], scalar=None, drop=None) def test__validate_inputs_scalar_unknown(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 'b' - scalar = 'unknown' - drop = None Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low='a', high='b', scalar='unknown', drop=None) def test__validate_inputs_drop_error_low(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 2 - high = 'b' - scalar = 'low' - drop = 'low' Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low=2, high='b', scalar='low', drop='low') def test__validate_inputs_drop_error_high(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 'a' - high = 3 - scalar = 'high' - drop = 'high' Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low='a', high=3, scalar='high', drop='high') def test__validate_inputs_drop_success(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 'a' - high = 'b' - scalar = 'high' - drop = 'low' Output: - low = ['a'] - high = 0 - constraint_columns == ('a') """ # Run / Assert low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=0, scalar='high', drop='low') assert low == ['a'] assert high == 0 assert constraint_columns == ('a',) def test___init___(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Input: - low = 'a' - high = 'b' Side effects: - instance._low == 'a' - instance._high == 'b' - instance._strict == False """ # Run instance = GreaterThan(low='a', high='b') # Asserts assert instance._low == ['a'] assert instance._high == ['b'] assert instance._strict is False assert instance._scalar is None assert instance._drop is None assert instance.constraint_columns == ('a', 'b') def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``GreaterThan.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Run instance = GreaterThan(low='a', high='b', handling_strategy='transform') # Assert assert instance.rebuild_columns == ['b'] def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``GreaterThan.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Run instance = GreaterThan(low='a', high='b', handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test___init___high_is_scalar(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Make sure ``scalar`` is set to ``'high'``. Input: - low = 'a' - high = 0 - strict = True - drop = 'low' - scalar = 'high' Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._drop = 'low' - instance._scalar == 'high' """ # Run instance = GreaterThan(low='a', high=0, strict=True, drop='low', scalar='high') # Asserts assert instance._low == ['a'] assert instance._high == 0 assert instance._strict is True assert instance._scalar == 'high' assert instance._drop == 'low' assert instance.constraint_columns == ('a',) def test___init___low_is_scalar(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Make sure ``scalar`` is set to ``'high'``. Input: - low = 0 - high = 'a' - strict = True - drop = 'high' - scalar = 'low' Side effects: - instance._low == 0 - instance._high == 'a' - instance._stric == True - instance._drop = 'high' - instance._scalar == 'low' """ # Run instance = GreaterThan(low=0, high='a', strict=True, drop='high', scalar='low') # Asserts assert instance._low == 0 assert instance._high == ['a'] assert instance._strict is True assert instance._scalar == 'low' assert instance._drop == 'high' assert instance.constraint_columns == ('a',) def test___init___strict_is_false(self): """Test the ``GreaterThan.__init__`` method. Ensure that ``operator`` is set to ``np.greater_equal`` when ``strict`` is set to ``False``. Input: - low = 'a' - high = 'b' - strict = False """ # Run instance = GreaterThan(low='a', high='b', strict=False) # Assert assert instance.operator == np.greater_equal def test___init___strict_is_true(self): """Test the ``GreaterThan.__init__`` method. Ensure that ``operator`` is set to ``np.greater`` when ``strict`` is set to ``True``. Input: - low = 'a' - high = 'b' - strict = True """ # Run instance = GreaterThan(low='a', high='b', strict=True) # Assert assert instance.operator == np.greater def test__init__get_columns_to_reconstruct_default(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' Side effects: - self._columns_to_reconstruct == ['b'] """ # Setup instance = GreaterThan(low='a', high='b') instance._columns_to_reconstruct == ['b'] def test__init__get_columns_to_reconstruct_drop_high(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' - drop = 'high' Side effects: - self._columns_to_reconstruct == ['b'] """ # Setup instance = GreaterThan(low='a', high='b', drop='high') instance._columns_to_reconstruct == ['b'] def test__init__get_columns_to_reconstruct_drop_low(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' - drop = 'low' Side effects: - self._columns_to_reconstruct == ['a'] """ # Setup instance = GreaterThan(low='a', high='b', drop='low') instance._columns_to_reconstruct == ['a'] def test__init__get_columns_to_reconstruct_scalar_high(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 0 - scalar = 'high' Side effects: - self._columns_to_reconstruct == ['a'] """ # Setup instance = GreaterThan(low='a', high=0, scalar='high') instance._columns_to_reconstruct == ['a'] def test__get_value_column_list(self): """Test the ``GreaterThan._get_value`` method. This method returns a scalar or a ndarray of values depending on the type of the ``field``. Input: - Table with given data. - field = 'low' """ # Setup instance = GreaterThan(low='a', high='b') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9] }) out = instance._get_value(table_data, 'low') # Assert expected = table_data[['a']].values np.testing.assert_array_equal(out, expected) def test__get_value_scalar(self): """Test the ``GreaterThan._get_value`` method. This method returns a scalar or a ndarray of values depending on the type of the ``field``. Input: - Table with given data. - field = 'low' - scalar = 'low' """ # Setup instance = GreaterThan(low=3, high='b', scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9] }) out = instance._get_value(table_data, 'low') # Assert expected = 3 assert out == expected def test__get_diff_columns_name_low_is_scalar(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal to the given columns plus tokenized with '#'. Input: - Table with given data. """ # Setup instance = GreaterThan(low=0, high=['a', 'b#'], scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b#': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a#', 'b##'] assert out == expected def test__get_diff_columns_name_high_is_scalar(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal to the given columns plus tokenized with '#'. Input: - Table with given data. """ # Setup instance = GreaterThan(low=['a', 'b'], high=0, scalar='high') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a#', 'b#'] assert out == expected def test__get_diff_columns_name_scalar_is_none(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='b#', scalar=None) table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b#': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['b##a'] assert out == expected def test__get_diff_columns_name_scalar_is_none_multi_column_low(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low=['a#', 'c'], high='b', scalar=None) table_data = pd.DataFrame({ 'a#': [1, 2, 4], 'b': [4, 5, 6], 'c#': [7, 8, 9] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a##b', 'c#b'] assert out == expected def test__get_diff_columns_name_scalar_is_none_multi_column_high(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low=0, high=['b', 'c'], scalar=None) table_data = pd.DataFrame({ 0: [1, 2, 4], 'b': [4, 5, 6], 'c#': [7, 8, 9] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['b#0', 'c#0'] assert out == expected def test__check_columns_exist_success(self): """Test the ``GreaterThan._check_columns_exist`` method. This method raises an error if the specified columns in ``low`` or ``high`` do not exist. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='b') # Run / Assert table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) instance._check_columns_exist(table_data, 'low') instance._check_columns_exist(table_data, 'high') def test__check_columns_exist_error(self): """Test the ``GreaterThan._check_columns_exist`` method. This method raises an error if the specified columns in ``low`` or ``high`` do not exist. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='c') # Run / Assert table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) instance._check_columns_exist(table_data, 'low') with pytest.raises(KeyError): instance._check_columns_exist(table_data, 'high') def test__fit_only_one_datetime_arg(self): """Test the ``Between._fit`` method by passing in only one arg as datetime. If only one of the high / low args is a datetime type, expect a ValueError. Input: - low is an int column - high is a datetime Output: - n/a Side Effects: - ValueError """ # Setup instance = GreaterThan(low='a', high=pd.to_datetime('2021-01-01'), scalar='high') # Run and assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(ValueError): instance._fit(table_data) def test__fit__low_is_not_found_and_scalar_is_none(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``low`` is set to a value not seen in ``table_data``. Input: - Table without ``low`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low=3, high='b') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__high_is_not_found_and_scalar_is_none(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``high`` is set to a value not seen in ``table_data``. Input: - Table without ``high`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low='a', high=3) # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__low_is_not_found_scalar_is_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``low`` is set to a value not seen in ``table_data``. Input: - Table without ``low`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low='c', high=3, scalar='high') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__high_is_not_found_scalar_is_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``high`` is set to a value not seen in ``table_data``. Input: - Table without ``high`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low=3, high='c', scalar='low') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__columns_to_reconstruct_drop_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to ``instance._high`` if ``instance_drop`` is `high`. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b', drop='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__columns_to_reconstruct_drop_low(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to ``instance._low`` if ``instance_drop`` is `low`. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b', drop='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['a'] def test__fit__columns_to_reconstruct_default(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `high` by default. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__columns_to_reconstruct_high_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `low` if ``instance._scalar`` is ``'high'``. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b', scalar='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['a'] def test__fit__columns_to_reconstruct_low_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `high` if ``instance._scalar`` is ``'low'``. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b', scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__diff_columns_one_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_diff_columns`` to the one column in ``instance.constraint_columns`` plus a token if there is only one column in that set. Input: - Table with one column. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high=3, scalar='high') # Run table_data = pd.DataFrame({'a': [1, 2, 3]}) instance._fit(table_data) # Asserts assert instance._diff_columns == ['a#'] def test__fit__diff_columns_multiple_columns(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_diff_columns`` to the two columns in ``instance.constraint_columns`` separated by a token if there both columns are in that set. Input: - Table with two column. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._diff_columns == ['b#a'] def test__fit_int(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns with the high one being made of integers. Side Effect: - The _dtype attribute gets `int` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'i' for dtype in instance._dtype]) def test__fit_float(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns with the high one being made of float values. Side Effect: - The _dtype attribute gets `float` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_datetime(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns of datetimes. Side Effect: - The _dtype attribute gets `datetime` as the value. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01']), 'b': pd.to_datetime(['2020-01-02']) }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'M' for dtype in instance._dtype]) def test__fit_type__high_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``low`` column as the ``_dtype`` attribute if ``_scalar`` is ``'high'``. Input: - Table that contains two constrained columns with the low one being made of floats. Side Effect: - The _dtype attribute gets `float` as the value. """ # Setup instance = GreaterThan(low='a', high=3, scalar='high') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_type__low_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_scalar`` is ``'low'``. Input: - Table that contains two constrained columns with the high one being made of floats. Side Effect: - The _dtype attribute gets `float` as the value. """ # Setup instance = GreaterThan(low=3, high='b', scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_high_is_scalar_multi_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns with different dtype. """ # Setup instance = GreaterThan(low=['a', 'b'], high=0, scalar='high') dtype_int = pd.Series([1]).dtype dtype_float = np.dtype('float') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4., 5., 6.] }) instance._fit(table_data) # Assert expected_diff_columns = ['a#', 'b#'] expected_dtype = pd.Series([dtype_int, dtype_float], index=table_data.columns) assert instance._diff_columns == expected_diff_columns pd.testing.assert_series_equal(instance._dtype, expected_dtype) def test__fit_low_is_scalar_multi_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns with different dtype. """ # Setup instance = GreaterThan(low=0, high=['a', 'b'], scalar='low') dtype_int = pd.Series([1]).dtype dtype_float = np.dtype('float') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4., 5., 6.] }) instance._fit(table_data) # Assert expected_diff_columns = ['a#', 'b#'] expected_dtype = pd.Series([dtype_int, dtype_float], index=table_data.columns) assert instance._diff_columns == expected_diff_columns pd.testing.assert_series_equal(instance._dtype, expected_dtype) def test_is_valid_strict_false(self): """Test the ``GreaterThan.is_valid`` method with strict False. If strict is False, equal values should count as valid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - False should be returned for the strictly invalid row and True for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=False) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_strict_true(self): """Test the ``GreaterThan.is_valid`` method with strict True. If strict is True, equal values should count as invalid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - True should be returned for the strictly valid row and False for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, False, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_scalar_high_is_column(self): """Test the ``GreaterThan.is_valid`` method. If low is a scalar, and high is a column name, then the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low=3, high='b', strict=False, scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, False, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_scalar_low_is_column(self): """Test the ``GreaterThan.is_valid`` method. If high is a scalar, and low is a column name, then the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below high. Output: - True should be returned for the rows where the low column is below high. """ # Setup instance = GreaterThan(low='a', high=2, strict=False, scalar='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_scalar_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If high is a scalar, and low is multi column, then the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below high. Output: - True should be returned for the rows where the low column is below high. """ # Setup instance = GreaterThan(low=['a', 'b'], high=2, strict=False, scalar='high') table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [False, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_scalar_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If low is a scalar, and high is multi column, then the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low=2, high=['a', 'b'], strict=False, scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [False, True, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_scalar_is_none_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If scalar is none, and high is multi column, then the values in that column should all be higher than in the low column. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low='b', high=['a', 'c'], strict=False) table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) # Run out = instance.is_valid(table_data) # Assert expected_out = [False, True, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_datetime(self): """Test the ``GreaterThan.is_valid`` method. If high is a datetime and low is a column, the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below `high`. Output: - True should be returned for the rows where the low column is below `high`. """ # Setup high_dt = pd.to_datetime('8/31/2021') instance = GreaterThan(low='a', high=high_dt, strict=False, scalar='high') table_data = pd.DataFrame({ 'a': [datetime(2020, 5, 17), datetime(2020, 2, 1), datetime(2021, 9, 1)], 'b': [4, 2, 2], }) # Run out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_datetime(self): """Test the ``GreaterThan.is_valid`` method. If low is a datetime and high is a column, the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below `low`. Output: - True should be returned for the rows where the high column is above `low`. """ # Setup low_dt = pd.to_datetime('8/31/2021') instance = GreaterThan(low=low_dt, high='a', strict=False, scalar='low') table_data = pd.DataFrame({ 'a': [datetime(2021, 9, 17), datetime(2021, 7, 1), datetime(2021, 9, 1)], 'b': [4, 2, 2], }) # Run out = instance.is_valid(table_data) # Assert expected_out = [True, False, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_two_cols_with_nans(self): """Test the ``GreaterThan.is_valid`` method with nan values. If there is a NaN row, expect that `is_valid` returns True. Input: - Table with a NaN row Output: - True should be returned for the NaN row. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, None, 3], 'b': [4, None, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_two_cols_with_one_nan(self): """Test the ``GreaterThan.is_valid`` method with nan values. If there is a row in which we compare one NaN value with one non-NaN value, expect that `is_valid` returns True. Input: - Table with a row that contains only one NaN value. Output: - True should be returned for the row with the NaN value. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, None, 3], 'b': [4, 5, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test__transform_int_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_int_drop_high(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the high column. Setup: - ``_drop`` is set to ``high``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the high column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_int_drop_low(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the low column. Setup: - ``_drop`` is set to ``low``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the low column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_float_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type float. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_datetime_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type datetime. If the columns are of type datetime, ``_transform`` is expected to convert the timedelta distance into numeric before applying the +1 and logarithm. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with values at a distance of exactly 1 second. Output: - Same table with a diff column of the logarithms of the dinstance in nanoseconds + 1, which is np.log(1_000_000_001). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] instance._is_datetime = True # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_not_all_columns_provided(self): """Test the ``GreaterThan.transform`` method. If some of the columns needed for the transform are missing, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, fit_columns_model=False) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def test__transform_high_is_scalar(self): """Test the ``GreaterThan._transform`` method with high as scalar. The ``GreaterThan._transform`` method is expected to compute the distance between the high scalar value and the low column and create a diff column with the logarithm of the distance + 1. Setup: - ``_high`` is set to 5 and ``_scalar`` is ``'high'``. Input: - Table with one low column and two dummy columns. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high=5, strict=True, scalar='high') instance._diff_columns = ['a#b'] instance.constraint_columns = ['a'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(5), np.log(4), np.log(3)], }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_low_is_scalar(self): """Test the ``GreaterThan._transform`` method with high as scalar. The ``GreaterThan._transform`` method is expected to compute the distance between the high scalar value and the low column and create a diff column with the logarithm of the distance + 1. Setup: - ``_high`` is set to 5 and ``_scalar`` is ``'low'``. Input: - Table with one low column and two dummy columns. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low=2, high='b', strict=True, scalar='low') instance._diff_columns = ['a#b'] instance.constraint_columns = ['b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(3), np.log(4), np.log(5)], }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_high_is_scalar_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=['a', 'b'], high=3, strict=True, scalar='high') instance._diff_columns = ['a#', 'b#'] instance.constraint_columns = ['a', 'b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(3), np.log(2), np.log(1)], 'b#': [np.log(0), np.log(-1), np.log(-2)], }) pd.testing.assert_frame_equal(out, expected) def test__transform_low_is_scalar_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=3, high=['a', 'b'], strict=True, scalar='low') instance._diff_columns = ['a#', 'b#'] instance.constraint_columns = ['a', 'b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(-1), np.log(0), np.log(1)], 'b#': [np.log(2), np.log(3), np.log(4)], }) pd.testing.assert_frame_equal(out, expected) def test__transform_scalar_is_none_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=['a', 'c'], high='b', strict=True) instance._diff_columns = ['a#', 'c#'] instance.constraint_columns = ['a', 'c'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(4)] * 3, 'c#': [np.log(-2)] * 3, }) pd.testing.assert_frame_equal(out, expected) def test_reverse_transform_int_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column - convert the output to integers - add back the dropped column Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the high column replaced by the low one + 3, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'b': [4, 5, 6], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_float_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype float. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column - convert the output to float values - add back the dropped column Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the high column replaced by the low one + 3, as float values and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [np.dtype('float')] instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1.1, 2.2, 3.3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1.1, 2.2, 3.3], 'c': [7, 8, 9], 'b': [4.1, 5.2, 6.3], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - add the low column - convert the output to datetimes Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). Output: - Same table with the high column replaced by the low one + one second and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [np.dtype('<M8[ns]')] instance._diff_columns = ['a#b'] instance._is_datetime = True instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a':
pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00'])
pandas.to_datetime
from typing import List import plotly.graph_objects as go from fhir.resources.resource import Resource import pandas as pd def plot_resource_field(resources: List[Resource], field: str, title: str = None, plot_type: str = "bar", show: bool = True) -> go.Figure: """ Plot a field of a resource. :param resources: Resources for which to plot the field :param field: Field to plot :param title: Title of the plot :param plot_type: Type of plot to use. Options are: bar, histogram, pie :param show: Show the plot :return: Plotly figure """ if title is None: title = f"{field} for {resources[0].resource_type}" figure = go.Figure() figure.update_layout(title_text=title, title_x=0.5) values = [resource.dict().get(field) for resource in resources] # convert to series and get value counts val_counts =
pd.Series(values)
pandas.Series
from django.shortcuts import render from django.http import HttpResponse from django.views import View import pytz import numpy as np from datetime import datetime, time import pandas as pd import os, subprocess, psutil from django.conf.urls.static import static from . forms import SubmitTickerSymbolForm BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) #points to static folder class CommandCenterView(View): def __init__(self): self.the_form = SubmitTickerSymbolForm() self.month_year = datetime.now().strftime('%d | %B | %Y') def contextRender(self, request,*args,**kwargs): '''Common context renderer for the CommandCenterView''' context = { "title": "Command center", "form": self.the_form, "month_year": self.month_year, "twsRunning": kwargs['msg'], } return render(request, "ib/commandCenter.html", context) def get(self, request, *args, **kwargs): t_msg = "Keep up the good work :)" return self.contextRender(request\ ,msg=t_msg) def post(self, request, *args, **kwargs): form = SubmitTickerSymbolForm(request.POST) # launch trader work station(TWS) if request.method == 'POST' and 'launchTws' in request.POST.keys(): if "tws.exe" in (p.name() for p in psutil.process_iter()): t_msg = "TWS is running..." return self.contextRender(request\ ,msg=t_msg) else: subprocess.Popen(['C:\\Jts\\tws.exe']) t_msg = "Launching TWS..." return self.contextRender(request\ ,msg=t_msg) #add a ticker to forex list elif request.method == 'POST' and 'forexQuote0' in request.POST.keys(): fName = "static\\csv\\forexWatchList.csv" csvPathForex = os.path.join(BASE_DIR, fName ) forex_ticker = form.data['tickerSymbol'].upper() columns = ['ticker', 'pid', 'clientid'] emptydf = pd.DataFrame(columns=columns) try: df = pd.read_csv(csvPathForex) except: emptydf.to_csv(csvPathForex, sep=',', index=False) df = pd.read_csv(csvPathForex) client_id = [i for i in range(20, 25) if i not in df['clientid'].values ][0] if forex_ticker in df['ticker'].values: t_msg = "FAILED! "+forex_ticker+ " is already in the STOCK list" return self.contextRender(request\ ,msg=t_msg) else: insertPoint = len(df['ticker'].values) df.loc[insertPoint, 'ticker'] = forex_ticker # df.loc is the trick to add to eend of row df.loc[insertPoint, 'clientid'] = client_id df.to_csv(csvPathForex, sep=',', index=False) t_msg = " Added " + forex_ticker+ " to FOREX list" return self.contextRender(request\ ,msg=t_msg) #add a ticker to stock list elif request.method == 'POST' and 'stockQuote0' in request.POST.keys(): fName = "static\\csv\\stockWatchList.csv" csvPathStock = os.path.join(BASE_DIR, fName ) stock_ticker = form.data['tickerSymbol'].upper() columns = ['ticker', 'pid', 'clientid'] emptydf = pd.DataFrame(columns=columns) try: df = pd.read_csv(csvPathStock) except: emptydf.to_csv(csvPathStock, sep=',', index=False) df = pd.read_csv(csvPathStock) # insertPoint = len([i for i in df['ticker'].values if isinstance(i, str)]) client_id = [i for i in range(5, 20) if i not in df['clientid'].values ][0] if stock_ticker in df['ticker'].values: t_msg = "FAILED! "+stock_ticker+ " is already in the STOCK list" return self.contextRender(request\ ,msg=t_msg) else: #create emty csv to deal with file not found error fName = "static\\csv\\realtimeData\\" + stock_ticker + "_raw_realtime_ib.csv" csvPath = os.path.join(BASE_DIR, fName ) # original data columns = ['Time', 'Open', 'High', 'Low', 'Close'] try: if datetime.fromtimestamp(os.path.getmtime(csvPath)).date() < \ datetime.now(tz=pytz.timezone('US/Eastern')).date(): emptyDf = pd.DataFrame(columns=columns) emptyDf.to_csv(csvPath, sep=',', index=False) except: emptyDf = pd.DataFrame(columns=columns) emptyDf.to_csv(csvPath, sep=',', index=False) insertPoint = len(df['ticker'].values) df.loc[insertPoint, 'ticker'] = stock_ticker # df.loc is the trick to add to eend of row df.loc[insertPoint, 'clientid'] = client_id df.to_csv(csvPathStock, sep=',', index=False) t_msg = " Added " + stock_ticker+ " to STOCK list" return self.contextRender(request\ ,msg=t_msg) #remove a ticker from the forex list elif request.method == 'POST' and 'forexRow' in request.POST.keys(): fName = "static\\csv\\forexWatchList.csv" csvPathForex = os.path.join(BASE_DIR, fName ) row_number = int(request.POST['forexRow']) f_ticker = request.POST['forexTicker'] df = pd.read_csv(csvPathForex) pid_insert_point = df['ticker'].values.tolist().index(f_ticker) pid = df['pid'].iloc[pid_insert_point].astype(int) try: p = psutil.Process(pid) p.terminate() try: fName_rt_raw = "static\\csv\\realtimeData\\"+f_ticker+"_raw_realtime_ib.csv" fName_rt = "static\\csv\\realtimeData\\"+f_ticker+"_realtime_ib.csv" csvPathForex_rt_raw = os.path.join(BASE_DIR, fName_rt) csvPathForex_rt = os.path.join(BASE_DIR, fName_rt_raw) os.remove(csvPathForex_rt_raw) os.remove(csvPathForex_rt) except: pass df.drop(df.index[row_number], inplace=True) df.to_csv(csvPathForex, sep=',', index=False) t_msg = "Process terminated! \n Successfully removed CSV and "\ + f_ticker+" from FOREX list" return self.contextRender(request\ ,msg=t_msg) except: try: fName_rt_raw = "static\\csv\\realtimeData\\"+f_ticker+"_raw_realtime_ib.csv" fName_rt = "static\\csv\\realtimeData\\"+f_ticker+"_realtime_ib.csv" csvPathForex_rt_raw = os.path.join(BASE_DIR, fName_rt) csvPathForex_rt = os.path.join(BASE_DIR, fName_rt_raw) os.remove(csvPathForex_rt_raw) os.remove(csvPathForex_rt) except: pass df.drop(df.index[row_number], inplace=True) df.to_csv(csvPathForex, sep=',', index=False) t_msg = "Successfully removed "\ + f_ticker+" from FOREX list! \n No active "+ f_ticker+" downloads!" return self.contextRender(request\ ,msg=t_msg) #remove a ticker from the stock list elif request.method == 'POST' and 'stockRow' in request.POST.keys(): fName = "static\\csv\\stockWatchList.csv" csvPathStock = os.path.join(BASE_DIR, fName ) row_number = int(request.POST['stockRow']) s_ticker = request.POST['stockTicker'] df = pd.read_csv(csvPathStock) pid_insert_point = df['ticker'].values.tolist().index(s_ticker) pid = df['pid'].iloc[pid_insert_point].astype(int) try: # terminate quote downloads p = psutil.Process(pid) p.terminate() #remove csv files try: fName_rt_raw = "static\\csv\\realtimeData\\"+s_ticker+"_raw_realtime_ib.csv" fName_rt = "static\\csv\\realtimeData\\"+s_ticker+"_realtime_ib.csv" csvPathForex_rt_raw = os.path.join(BASE_DIR, fName_rt) csvPathForex_rt = os.path.join(BASE_DIR, fName_rt_raw) os.remove(csvPathForex_rt_raw) os.remove(csvPathForex_rt) except: pass # remove from list df.drop(df.index[row_number], inplace=True) df.to_csv(csvPathStock, sep=',', index=False) t_msg = "Process terminated! \n Successfully removed "\ + s_ticker+" from STOCK list" return self.contextRender(request\ ,msg=t_msg) except: try: fName_rt_raw = "static\\csv\\realtimeData\\"+s_ticker+"_raw_realtime_ib.csv" fName_rt = "static\\csv\\realtimeData\\"+s_ticker+"_realtime_ib.csv" csvPathForex_rt_raw = os.path.join(BASE_DIR, fName_rt) csvPathForex_rt = os.path.join(BASE_DIR, fName_rt_raw) os.remove(csvPathForex_rt_raw) os.remove(csvPathForex_rt) except: pass df.drop(df.index[row_number], inplace=True) df.to_csv(csvPathStock, sep=',', index=False) t_msg = " Successfully removed "\ + s_ticker+" from STOCK list! \n No active "+ s_ticker+" downloads!" return self.contextRender(request\ ,msg=t_msg) # get forex quote for a clicked ticker elif request.method == 'POST' and 'forexQuote' in request.POST.keys(): fName = "static\\csv\\forexWatchList.csv" csvPathForex = os.path.join(BASE_DIR, fName ) f_ticker = request.POST['forexQuote'] df =
pd.read_csv(csvPathForex)
pandas.read_csv
# -*- coding: utf-8 -*- import click import json import shutil import logging from pathlib import Path from functools import partial from dotenv import find_dotenv, load_dotenv import pandas as pd @click.group() def main(): pass @main.command() @click.argument('input_filepath', type=click.Path(exists=True, dir_okay=False), default='data/raw/iris.data') @click.argument('output_filepath', type=click.Path(dir_okay=False), default='data/processed/iris.csv') def iris(input_filepath, output_filepath): """ Runs data processing scripts to turn raw data from (../raw) into cleaned data ready to be analyzed (saved in ../processed). """ columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class'] logger = logging.getLogger(__name__) logger.info('making final data set from raw iris data') logger.info(f'reading source file from {input_filepath}') df =
pd.read_csv(input_filepath, header=None, names=columns)
pandas.read_csv
import Bio.SeqIO, os import pandas as pd import sys, time, regex from tqdm import tqdm start = time.time() def main(): sAnalysis_Tag = '63_GS_PE off-target_283T_2_1rxn_220118' BaseDIR = r'C:\Users\home\Desktop\220128_miniseq' FASTQ_file = r'%s\%s\%s.fastq' % (BaseDIR, sAnalysis_Tag, sAnalysis_Tag.split('_')[0]) Barcode_file = r'%s\C_PECV6K_with_refseq_211112.csv' % BaseDIR OutDIR = r'%s\%s\output_PECV6K' % (BaseDIR, sAnalysis_Tag) sRE = '[T]{4}[ACGT]{16}' ## for PECV6K = 16 / for off-target = 20 sError = 'ErrorFree' dict_brcd = make_bc_list_dictionary(Barcode_file) os.makedirs(OutDIR, exist_ok=True) dict_brcd_count, dict_read_type_count = find_barcode_in_NGSread(FASTQ_file, sRE, dict_brcd, sError) dict_to_csv(dict_brcd_count, OutDIR, 'bc_count_%s' % sAnalysis_Tag, 1) dict_to_csv(dict_read_type_count, OutDIR, 'read_count_%s' % sAnalysis_Tag) def find_barcode_in_NGSread(FASTQ_file, sRE, dict_brcd, sError): fastq_info = Bio.SeqIO.parse(FASTQ_file, 'fastq') dict_sOutput = {brcd: [] for brcd in dict_brcd.keys()} dict_sOutput2 = {brcd: 0 for brcd in dict_brcd.keys()} dict_sOutput3 = {'conv': {'WT': 0, 'ED': 0, 'Other': 0}, 'opti': {'WT': 0, 'ED': 0, 'Other': 0}, 'Error_prone': {'WT': 0, 'ED': 0, 'Other': 0}} for sSeqData in tqdm(fastq_info, desc='Sorting from FASTQ data', ncols=100, total=len(FASTQ_file)/4): sReadID = str(sSeqData.id) sNGSSeq = str(sSeqData.seq) for sReIndex in regex.finditer(sRE, sNGSSeq, overlapped=True): nIndexStart = sReIndex.start() nIndexEnd = sReIndex.end() sBarcodeMatch = sNGSSeq[nIndexStart:nIndexEnd] sRefSeqCheck = sNGSSeq[:nIndexStart+24] sTargetSeq = sNGSSeq[nIndexEnd-2:-40] ### Skip Non-barcodes ### try: dict_refSeq = dict_brcd[sBarcodeMatch] except KeyError: continue ######################### ## Skip error in Refseq ## if sError == 'ErrorFree': if dict_refSeq['convRef'] in sRefSeqCheck: read_type = 'conv' elif dict_refSeq['optiRef'] in sRefSeqCheck: read_type = 'opti' else: read_type = 'Error_prone' ########################## if dict_brcd[sBarcodeMatch]['WTSeq'] in reverse_complement(sTargetSeq): product_type = 'WT' elif dict_brcd[sBarcodeMatch]['EDSeq'] in reverse_complement(sTargetSeq): product_type = 'ED' else: product_type = 'Other' dict_sOutput2[sBarcodeMatch] += 1 dict_sOutput3[read_type][product_type] += 1 # loop END: i, sReadLine # loop END: sSeqData return dict_sOutput2, dict_sOutput3 def reverse_complement(sSeq): dict_sBases = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A', 'N': 'N', '.': '.', '*': '*', 'a': 't', 'c': 'g', 'g': 'c', 't': 'a'} list_sSeq = list(sSeq) # Turns the sequence in to a gigantic list list_sSeq = [dict_sBases[sBase] for sBase in list_sSeq] return ''.join(list_sSeq)[::-1] def make_bc_list_dictionary(Barcode_file): df_bc_list = pd.read_csv(Barcode_file) df_bc_list.columns = ['Barcode', 'convRef', 'optiRef', 'WTSeq', 'EDSeq'] dict_brcd = {} for idx in df_bc_list.index: data = df_bc_list.loc[idx] barcode = data['Barcode'].upper() convRef = data['convRef'].upper() optiRef = data['optiRef'].upper() WT_Seq = data['WTSeq'].upper() ED_Seq = data['EDSeq'].upper() dict_brcd[barcode] = {'convRef': convRef, 'optiRef': optiRef, 'WTSeq': WT_Seq, 'EDSeq': ED_Seq} return dict_brcd def dict_to_csv(dictionary, OutDIR, Output_Tag, T=0): df = pd.DataFrame(dict([(key,
pd.Series(val)
pandas.Series
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random from collections import OrderedDict import numpy as np import pandas as pd import pytest try: import pyarrow as pa except ImportError: # pragma: no cover pa = None from ....config import options, option_context from ....dataframe import DataFrame from ....tensor import arange, tensor from ....tensor.random import rand from ....tests.core import require_cudf from ....utils import lazy_import from ... import eval as mars_eval, cut, qcut from ...datasource.dataframe import from_pandas as from_pandas_df from ...datasource.series import from_pandas as from_pandas_series from ...datasource.index import from_pandas as from_pandas_index from .. import to_gpu, to_cpu from ..to_numeric import to_numeric from ..rebalance import DataFrameRebalance cudf = lazy_import('cudf', globals=globals()) @require_cudf def test_to_gpu_execution(setup_gpu): pdf = pd.DataFrame(np.random.rand(20, 30), index=np.arange(20, 0, -1)) df = from_pandas_df(pdf, chunk_size=(13, 21)) cdf = to_gpu(df) res = cdf.execute().fetch() assert isinstance(res, cudf.DataFrame) pd.testing.assert_frame_equal(res.to_pandas(), pdf) pseries = pdf.iloc[:, 0] series = from_pandas_series(pseries) cseries = series.to_gpu() res = cseries.execute().fetch() assert isinstance(res, cudf.Series) pd.testing.assert_series_equal(res.to_pandas(), pseries) @require_cudf def test_to_cpu_execution(setup_gpu): pdf = pd.DataFrame(np.random.rand(20, 30), index=np.arange(20, 0, -1)) df = from_pandas_df(pdf, chunk_size=(13, 21)) cdf = to_gpu(df) df2 = to_cpu(cdf) res = df2.execute().fetch() assert isinstance(res, pd.DataFrame) pd.testing.assert_frame_equal(res, pdf) pseries = pdf.iloc[:, 0] series = from_pandas_series(pseries, chunk_size=(13, 21)) cseries = to_gpu(series) series2 = to_cpu(cseries) res = series2.execute().fetch() assert isinstance(res, pd.Series) pd.testing.assert_series_equal(res, pseries) def test_rechunk_execution(setup): data = pd.DataFrame(np.random.rand(8, 10)) df = from_pandas_df(pd.DataFrame(data), chunk_size=3) df2 = df.rechunk((3, 4)) res = df2.execute().fetch() pd.testing.assert_frame_equal(data, res) data = pd.DataFrame(np.random.rand(10, 10), index=np.random.randint(-100, 100, size=(10,)), columns=[np.random.bytes(10) for _ in range(10)]) df = from_pandas_df(data) df2 = df.rechunk(5) res = df2.execute().fetch() pd.testing.assert_frame_equal(data, res) # test Series rechunk execution. data = pd.Series(np.random.rand(10,)) series = from_pandas_series(data) series2 = series.rechunk(3) res = series2.execute().fetch() pd.testing.assert_series_equal(data, res) series2 = series.rechunk(1) res = series2.execute().fetch() pd.testing.assert_series_equal(data, res) # test index rechunk execution data = pd.Index(np.random.rand(10,)) index = from_pandas_index(data) index2 = index.rechunk(3) res = index2.execute().fetch() pd.testing.assert_index_equal(data, res) index2 = index.rechunk(1) res = index2.execute().fetch() pd.testing.assert_index_equal(data, res) # test rechunk on mixed typed columns data = pd.DataFrame({0: [1, 2], 1: [3, 4], 'a': [5, 6]}) df = from_pandas_df(data) df = df.rechunk((2, 2)).rechunk({1: 3}) res = df.execute().fetch() pd.testing.assert_frame_equal(data, res) def test_series_map_execution(setup): raw = pd.Series(np.arange(10)) s = from_pandas_series(raw, chunk_size=7) with pytest.raises(ValueError): # cannot infer dtype, the inferred is int, # but actually it is float # just due to nan s.map({5: 10}) r = s.map({5: 10}, dtype=float) result = r.execute().fetch() expected = raw.map({5: 10}) pd.testing.assert_series_equal(result, expected) r = s.map({i: 10 + i for i in range(7)}, dtype=float) result = r.execute().fetch() expected = raw.map({i: 10 + i for i in range(7)}) pd.testing.assert_series_equal(result, expected) r = s.map({5: 10}, dtype=float, na_action='ignore') result = r.execute().fetch() expected = raw.map({5: 10}, na_action='ignore') pd.testing.assert_series_equal(result, expected) # dtype can be inferred r = s.map({5: 10.}) result = r.execute().fetch() expected = raw.map({5: 10.}) pd.testing.assert_series_equal(result, expected) r = s.map(lambda x: x + 1, dtype=int) result = r.execute().fetch() expected = raw.map(lambda x: x + 1) pd.testing.assert_series_equal(result, expected) def f(x: int) -> float: return x + 1. # dtype can be inferred for function r = s.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_series_equal(result, expected) def f(x: int): return x + 1. # dtype can be inferred for function r = s.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_series_equal(result, expected) # test arg is a md.Series raw2 = pd.Series([10], index=[5]) s2 = from_pandas_series(raw2) r = s.map(s2, dtype=float) result = r.execute().fetch() expected = raw.map(raw2) pd.testing.assert_series_equal(result, expected) # test arg is a md.Series, and dtype can be inferred raw2 = pd.Series([10.], index=[5]) s2 = from_pandas_series(raw2) r = s.map(s2) result = r.execute().fetch() expected = raw.map(raw2) pd.testing.assert_series_equal(result, expected) # test str raw = pd.Series(['a', 'b', 'c', 'd']) s = from_pandas_series(raw, chunk_size=2) r = s.map({'c': 'e'}) result = r.execute().fetch() expected = raw.map({'c': 'e'}) pd.testing.assert_series_equal(result, expected) # test map index raw = pd.Index(np.random.rand(7)) idx = from_pandas_index(pd.Index(raw), chunk_size=2) r = idx.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_index_equal(result, expected) def test_describe_execution(setup): s_raw = pd.Series(np.random.rand(10)) # test one chunk series = from_pandas_series(s_raw, chunk_size=10) r = series.describe() result = r.execute().fetch() expected = s_raw.describe() pd.testing.assert_series_equal(result, expected) r = series.describe(percentiles=[]) result = r.execute().fetch() expected = s_raw.describe(percentiles=[]) pd.testing.assert_series_equal(result, expected) # test multi chunks series = from_pandas_series(s_raw, chunk_size=3) r = series.describe() result = r.execute().fetch() expected = s_raw.describe() pd.testing.assert_series_equal(result, expected) r = series.describe(percentiles=[]) result = r.execute().fetch() expected = s_raw.describe(percentiles=[]) pd.testing.assert_series_equal(result, expected) rs = np.random.RandomState(5) df_raw = pd.DataFrame(rs.rand(10, 4), columns=list('abcd')) df_raw['e'] = rs.randint(100, size=10) # test one chunk df = from_pandas_df(df_raw, chunk_size=10) r = df.describe() result = r.execute().fetch() expected = df_raw.describe() pd.testing.assert_frame_equal(result, expected) r = series.describe(percentiles=[], include=np.float64) result = r.execute().fetch() expected = s_raw.describe(percentiles=[], include=np.float64) pd.testing.assert_series_equal(result, expected) # test multi chunks df = from_pandas_df(df_raw, chunk_size=3) r = df.describe() result = r.execute().fetch() expected = df_raw.describe() pd.testing.assert_frame_equal(result, expected) r = df.describe(percentiles=[], include=np.float64) result = r.execute().fetch() expected = df_raw.describe(percentiles=[], include=np.float64) pd.testing.assert_frame_equal(result, expected) # test skip percentiles r = df.describe(percentiles=False, include=np.float64) result = r.execute().fetch() expected = df_raw.describe(percentiles=[], include=np.float64) expected.drop(['50%'], axis=0, inplace=True) pd.testing.assert_frame_equal(result, expected) with pytest.raises(ValueError): df.describe(percentiles=[1.1]) with pytest.raises(ValueError): # duplicated values df.describe(percentiles=[0.3, 0.5, 0.3]) # test input dataframe which has unknown shape df = from_pandas_df(df_raw, chunk_size=3) df2 = df[df['a'] < 0.5] r = df2.describe() result = r.execute().fetch() expected = df_raw[df_raw['a'] < 0.5].describe() pd.testing.assert_frame_equal(result, expected) def test_data_frame_apply_execute(setup): cols = [chr(ord('A') + i) for i in range(10)] df_raw = pd.DataFrame(dict((c, [i ** 2 for i in range(20)]) for c in cols)) old_chunk_store_limit = options.chunk_store_limit try: options.chunk_store_limit = 20 df = from_pandas_df(df_raw, chunk_size=5) r = df.apply('ffill') result = r.execute().fetch() expected = df_raw.apply('ffill') pd.testing.assert_frame_equal(result, expected) r = df.apply(['sum', 'max']) result = r.execute().fetch() expected = df_raw.apply(['sum', 'max']) pd.testing.assert_frame_equal(result, expected) r = df.apply(np.sqrt) result = r.execute().fetch() expected = df_raw.apply(np.sqrt) pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: pd.Series([1, 2])) result = r.execute().fetch() expected = df_raw.apply(lambda x: pd.Series([1, 2])) pd.testing.assert_frame_equal(result, expected) r = df.apply(np.sum, axis='index') result = r.execute().fetch() expected = df_raw.apply(np.sum, axis='index') pd.testing.assert_series_equal(result, expected) r = df.apply(np.sum, axis='columns') result = r.execute().fetch() expected = df_raw.apply(np.sum, axis='columns') pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: [1, 2], axis=1) result = r.execute().fetch() expected = df_raw.apply(lambda x: [1, 2], axis=1) pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) result = r.execute().fetch() expected = df_raw.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: [1, 2], axis=1, result_type='expand') result = r.execute().fetch() expected = df_raw.apply(lambda x: [1, 2], axis=1, result_type='expand') pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: list(range(10)), axis=1, result_type='reduce') result = r.execute().fetch() expected = df_raw.apply(lambda x: list(range(10)), axis=1, result_type='reduce') pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: list(range(10)), axis=1, result_type='broadcast') result = r.execute().fetch() expected = df_raw.apply(lambda x: list(range(10)), axis=1, result_type='broadcast') pd.testing.assert_frame_equal(result, expected) finally: options.chunk_store_limit = old_chunk_store_limit def test_series_apply_execute(setup): idxes = [chr(ord('A') + i) for i in range(20)] s_raw = pd.Series([i ** 2 for i in range(20)], index=idxes) series = from_pandas_series(s_raw, chunk_size=5) r = series.apply('add', args=(1,)) result = r.execute().fetch() expected = s_raw.apply('add', args=(1,)) pd.testing.assert_series_equal(result, expected) r = series.apply(['sum', 'max']) result = r.execute().fetch() expected = s_raw.apply(['sum', 'max']) pd.testing.assert_series_equal(result, expected) r = series.apply(np.sqrt) result = r.execute().fetch() expected = s_raw.apply(np.sqrt) pd.testing.assert_series_equal(result, expected) r = series.apply('sqrt') result = r.execute().fetch() expected = s_raw.apply('sqrt')
pd.testing.assert_series_equal(result, expected)
pandas.testing.assert_series_equal
""" This script is for exploring the implementation of DeepAR in GluonTS """ import json, itertools, os import streamlit as st import mxnet as mx from mxnet import gluon import numpy as np import pandas as pd import matplotlib.pyplot as plt from gluonts.transform import FieldName from gluonts.dataset.common import ListDataset from gluonts.trainer import Trainer from gluonts.model.deepar import DeepAREstimator from sklearn import preprocessing from pathlib import Path @st.cache def get_data(path='../../data/input/full_dataset_4_seasons.csv'): data = pd.read_csv(path) return data @st.cache def get_roster(path='../../data/input/full_roster_4_seasons.csv'): data = pd.read_csv(path) return data @st.cache def clean_duplicates(data, streamlit=False): unique = data.loc[:, 'name'].unique() clean = pd.DataFrame() for player in unique: player_df = data.loc[data.loc[:, 'name'] == player] player_df = player_df.drop_duplicates(subset='date') clean = pd.concat([clean, player_df]) return clean @st.cache def clean_rookies_retirees(data, split_from='2018-10-03'): unique = data.loc[:, 'name'].unique() clean =
pd.DataFrame()
pandas.DataFrame
""" a light-weight aligner""" import os import sys from pathlib import Path import tkinter as tk from tkinter import messagebox # pylint: disable=unused-import _ = """ from jinja2 import ( # type: ignore # noqa: F401 PackageLoader, Environment, ChoiceLoader, FileSystemLoader, ) # """ # pyinstaller packing difficulties # pylint: enable=unused-import # import torch import numpy as np import pandas as pd from absl import app, flags # type: ignore from prompt_toolkit import HTML, print_formatted_text, prompt # import warnings # warnings.filterwarnings("ignore") # warnings.filterwarnings('ignore', category=torch.serialization.SourceChangeWarning) import logzero from logzero import logger from light_aligner import __version__ from light_aligner.light_aligner import light_aligner # from light_aligner.color_table_applymap import color_table_applymap from light_aligner.save_xlsx import save_xlsx from light_aligner.common_prefix import common_prefix from light_aligner.gen_filename import gen_filename from light_aligner.browse_filename import browse_filename from light_aligner.single_or_dual import single_or_dual from light_aligner.text_to_plist import text_to_plist from light_aligner.load_paras import load_paras from light_aligner.load_xlsx import load_xlsx from light_aligner.check_anchors import check_anchors # from light_aligner.align_sents import align_sents from light_aligner.plist_to_slist import plist_to_slist # tkroot = tk.Tk() # pylint: disable=invalid-name FLAGS = flags.FLAGS flags.DEFINE_string( "src_file", "", "source file, browse to file location if left empty", ) flags.DEFINE_string( "tgt_file", "", "target file, browse to file location if left empty", ) flags.DEFINE_boolean( "version", False, f"light-aligner v.{__version__}", ) flags.DEFINE_float( "thr", None, "a threhold (0. to 1.0), default to auto-adjust", ) flags.DEFINE_boolean("debug", False, "display annoying debug messages.") # pylint: disable=too-many-branches, too-many-statements, too-many-locals def main(argv): """ __main__ main """ del argv # root = tk.Tk() # root.withdraw() if FLAGS.debug: logzero.loglevel(10) # logging.DEBUG else: logzero.loglevel(20) # logging.INFO _ = [ "src_file", "tgt_file", "thr", "version", "debug", ] # args = CIMultiDict((elm, getattr(FLAGS, elm)) for elm in _) # multidict._multidict.CIMultiDict # noqa=E501 args = dict((elm, getattr(FLAGS, elm)) for elm in _) logger.debug("\n\t args: %s", args) # noqa=E501 if args.get("version"): print( f"\t bumblebee-aligner v.{__version__} brought to you by mu@qq41947782, join qq-group 316287378 to be kept updated." ) sys.exit(0) while 1: # try to load src_file 2 times _ = 0 while not args.get("src_file").strip() and _ < 3: if _ > 0: title = f" retry {_}: select a file" else: title = "Select a file" logger.info("%s", "Select a file...") args["src_file"] = browse_filename(title=title) _ += 1 if not args.get("src_file").strip(): logger.warning(" Tried %s times, giving up", _) break # load src_text and detect dual-lang, if yes skip tgt_text src_file = args["src_file"] src_text = load_paras(src_file) logger.info("file 1: %s, ..., %s", src_text[0][:100], src_text[-1][:100]) s_or_d = single_or_dual(src_text) if "en" in s_or_d and "zh" in s_or_d: root = tk.Tk() root.withdraw() ans = messagebox.askyesnocancel( "Dual-lang %s detected" % s_or_d, "Light-aligner thinks this is a dual-language %s file. Do you want to treat it as such?" % s_or_d, ) else: # normal single lang ans = False if ans: # branch to process dual-lang file ... # gen src_text and tgt_text p_list = text_to_plist(src_text) parent = Path(src_file).absolute().parent # src_stem = Path(src_file).stem stem = Path(src_file).stem suffix = ".xlsx" # tgt_stem = Path(tgt_file).stem # stem = common_prefix([stem, tgt_stem]) # out_file = f'{parent / stem}-thr{thr}-tol{tol}{suffix}' out_file = f"{parent / stem}{suffix}" out_file = gen_filename(out_file) logger.debug(" out_file: %s", out_file) # color_table_applymap(p_list, file=out_file) save_xlsx(p_list, file=out_file) logger.info("\n\tFile written to **[%s]**", Path(out_file).absolute()) logger.info("\n\t Opening **[%s]**", Path(out_file).absolute()) # if args.get('startfile'): if sys.platform == "win32": os.startfile(out_file) # end of align and save # need to reset src_file tgt_file? # +++++++++++++++ # align sents for dual ... get user input (out_file->out_file_s) root = tk.Tk() root.withdraw() ans = messagebox.askyesno( " Align sents ", "We now proceed to aligning sentences. You may wish to edit %s and save before the next step. Continue?", ) logger.info("messagebox.askyesno ans: %s", ans) if ans: try: anchors = 0 res = load_xlsx(out_file, anchors=anchors) except Exception as exc: logger.error(" load_xlsx: %s", exc) res = None if not (isinstance(res, int) or res is None): anchors = check_anchors(res) ans = True if anchors < 1: root = tk.Tk() root.withdraw() ans = messagebox.askyesno( " No anchors found!", "This is likely invalid data. We can proceed. But the result may not be that good for long texts. Continue?", ) if ans: # continue if anchors > 0 or anchors == 0 and ans == True try: # sents = align_sents(res) slist = plist_to_slist(res) except Exception as exc: logger.error("align_sents: %s", exc) slist = "" if slist: out_file_s = f"{Path(out_file).parent / stem}-s{suffix}" out_file_s = gen_filename(out_file_s) try: writer = pd.ExcelWriter(out_file_s)
pd.DataFrame(slist)
pandas.DataFrame
import time import random import numpy as np import pandas as pd import hdbscan import sklearn.datasets from sklearn import metrics from classix import CLASSIX from sklearn.cluster import KMeans from sklearn.cluster import DBSCAN from sklearn import preprocessing from tqdm import tqdm from sklearn.cluster import MeanShift from quickshift.QuickshiftPP import * import matplotlib.pyplot as plt from tqdm import tqdm import seaborn as sns plt.style.use('bmh') seed = 0 np.random.seed(seed) random.seed(seed) def test_kmeanspp_labels(X=None, y=None, _range=np.arange(2, 21, 1)): ar = list() am = list() for i in _range: kmeans = KMeans(n_clusters=i, init='k-means++', random_state=1) kmeans.fit(X) ri = metrics.adjusted_rand_score(y, kmeans.labels_) mi = metrics.adjusted_mutual_info_score(y, kmeans.labels_) ar.append(ri) am.append(mi) return ar, am def test_meanshift_labels(X=None, y=None, _range=np.arange(2, 21, 1)): ar = list() am = list() for i in _range: meanshift = MeanShift(bandwidth=i) meanshift.fit(X) ri = metrics.adjusted_rand_score(y, meanshift.labels_) mi = metrics.adjusted_mutual_info_score(y, meanshift.labels_) ar.append(ri) am.append(mi) return ar, am def test_dbscan_labels(X=None, y=None, _range=np.arange(0.05, 0.505, 0.005), minPts=5): ar = list() am = list() for i in _range: dbscan = DBSCAN(eps=i, n_jobs=1, min_samples=minPts) dbscan.fit(X) ri = metrics.adjusted_rand_score(y, dbscan.labels_) mi = metrics.adjusted_mutual_info_score(y, dbscan.labels_) ar.append(ri) am.append(mi) return ar, am def test_hdbscan_labels(X=None, y=None, _range=np.arange(2, 21, 1)): ar = list() am = list() for i in _range: _hdbscan = hdbscan.HDBSCAN(min_cluster_size=int(i), algorithm='best') _hdbscan.fit(X) ri = metrics.adjusted_rand_score(y, _hdbscan.labels_) mi = metrics.adjusted_mutual_info_score(y, _hdbscan.labels_) ar.append(ri) am.append(mi) return ar, am def test_quickshiftpp_labels(X=None, y=None, _range=np.arange(2, 17, 1), beta=0.3): ar = list() am = list() for i in _range: quicks = QuickshiftPP(k=i, beta=beta) quicks.fit(X.copy(order='C')) ri = metrics.adjusted_rand_score(y, quicks.memberships) mi = metrics.adjusted_mutual_info_score(y, quicks.memberships) ar.append(ri) am.append(mi) return ar, am def test_classix_radius_labels(X=None, y=None, method=None, minPts=1, sorting='pca', _range=np.arange(0.05, 0.3, 0.005)): ar = list() am = list() for i in _range: classix = CLASSIX(radius=i, minPts=minPts, post_alloc=True, sorting=sorting, group_merging=method, verbose=0) classix.fit(X) ri = metrics.adjusted_rand_score(y, classix.labels_) mi = metrics.adjusted_mutual_info_score(y, classix.labels_) ar.append(ri) am.append(mi) return ar, am def run_sensitivity_test(datasets, _range, clustering='CLASSIX (Density)', fix_k=1, sorting='pca', label_files=None): np.random.seed(1) X, y = datasets[0], datasets[1] nonans = np.isnan(X).sum(1) == 0 X = X[nonans,:] y = y[nonans] X = (X - X.mean(axis=0)) / X.std(axis=0) if clustering == 'CLASSIX (density)': ari, ami = test_classix_radius_labels(X=X, y=y, method='density', minPts=fix_k, sorting=sorting, _range=_range) elif clustering == 'CLASSIX (distance)': ari, ami = test_classix_radius_labels(X=X, y=y, method='distance', minPts=fix_k, sorting=sorting, _range=_range) elif clustering == 'HDBSCAN': ari, ami = test_hdbscan_labels(X=X, y=y, _range=_range) elif clustering == 'DBSCAN': ari, ami = test_dbscan_labels(X=X, y=y, _range=_range, minPts=fix_k) elif clustering == 'Quickshift++': ari, ami = test_quickshiftpp_labels(X=X, y=y, _range=_range, beta=fix_k) elif clustering == 'k-means++': ari, ami = test_kmeanspp_labels(X=X, y=y, _range=_range) elif clustering == 'Meanshift': ari, ami = test_meanshift_labels(X=X, y=y, _range=_range) else: raise ValueError('Specify a concrete clustering algorithms.') store_df = pd.DataFrame() store_df['Range'] = _range store_df['ARI'] = ari store_df['AMI'] = ami store_df.to_csv('results/exp5/{}'.format(label_files)+clustering+'.csv', index=False) def visualize_params_global(): plt.style.use('default') datasets = ['Banknote', 'Dermatology', 'Ecoli', 'Glass', 'Iris', 'Phoneme', 'WheatSeeds', 'Wine'] algorithms = ['Meanshift', 'DBSCAN', 'HDBSCAN', 'Quickshift++', 'CLASSIX (distance)', 'CLASSIX (density)'] plot_num = 1 fontsize = 60 band = [0.5, 0.01, 0.5, 0.5, 0.015, 0.015] plt.figure(figsize=(8.5*len(datasets), 9*len(algorithms))) for data in datasets: i = 0 for algorithm in algorithms: store_df = pd.read_csv('results/exp5/{}'.format(data)+algorithm+'.csv') _range = store_df['Range'].values ars = store_df['ARI'].values ami = store_df['AMI'].values plt.rcParams['axes.facecolor'] = 'white' plt.subplot(len(datasets), len(algorithms), plot_num) plt.plot(_range, ars, label='ARI', marker='o', markersize=20, c='red') plt.plot(_range, ami, label='AMI', marker='*', markersize=18, c='darkorange') plt.ylim(-.05, 1.05) plt.xticks([min(_range), max(_range)]) plt.yticks([0.5, 1]) plt.xlim(-band[i]+min(_range), band[i]+max(_range)) if plot_num == len(algorithms): plt.legend(fontsize=fontsize, ncol=2, bbox_to_anchor=(1, 1.5)) plt.tick_params(axis='both', labelsize=fontsize) plt.grid(True) plt.subplots_adjust(bottom=0.01, left=0.01, right=0.99, top=0.99, wspace=0.15, hspace=0.15) plot_num = plot_num + 1 i = i + 1 plt.tight_layout() plt.savefig('results/exp5/ARI_AMI_PARAMS.pdf', bbox_inches='tight') def visualize_params(_range, clustering='CLASSIX (Density)', label_files=None, band=0.01, fig_interval=1): # sns.set(font_scale=5) store_df = pd.read_csv('results/exp5/{}'.format(label_files)+clustering+'.csv') _range = store_df['Range'].values ami = store_df['AMI'].values ari = store_df['ARI'].values plt.figure(figsize=(6, 3.6)) plt.rcParams['axes.facecolor'] = 'white' # plt.rc('font', family='serif') plt.plot(_range, ari, label='ARI', marker='o', markersize=10, c='red') plt.plot(_range, ami, label='AMI', marker='*', markersize=8, c='darkorange') plt.legend(fontsize=32, fancybox=True, loc='best') plt.ylim(-.05, 1.05) # plt.xticks(np.arange(min(_range), max(_range)+1, fig_interval)) plt.xticks([min(_range), max(_range)]) plt.yticks([0, 0.5, 1]) plt.xlim(-band+min(_range), band+max(_range)) plt.tick_params(axis='both', labelsize=32) plt.savefig('results/exp5/{}'.format(label_files)+clustering+'.pdf', bbox_inches='tight') # plt.show() def params_search(): datasets = [] data = pd.read_csv('data/Real_data/Banknote_authentication.csv') X_banknote = data.drop(['4'],axis=1).values y_banknote = data['4'].values # print("Shape of banknote data: ", data.shape, ", labels: ", len(set(y_banknote))) datasets.append((X_banknote, y_banknote)) data = pd.read_csv("data/Real_data/Dermatology.csv").values X_dermatology = data[:, :data.shape[1]-1] y_dermatology = data[:, data.shape[1]-1] # print("Shape of Dermatology data: ", data.shape, ", labels: ", len(set(y_dermatology))) datasets.append((X_dermatology, y_dermatology)) data = pd.read_csv("data/Real_data/Ecoli.csv").values X_ecoli = data[:, range(data.shape[1] - 1)] y_ecoli = data[:, data.shape[1] - 1] # print("Shape of Ecoli data: ", data.shape, ", labels: ", len(set(y_ecoli))) datasets.append((X_ecoli,y_ecoli)) data = pd.read_csv("data/Real_data/Glass.csv") le = preprocessing.LabelEncoder() data['Glass'] = le.fit_transform(data['Glass']) X_glass = data.drop(['Glass', 'Id'],axis=1).values y_glass = data['Glass'].values # print("Shape of Glass data: ", data.shape, ", labels: ", len(set(y_glass))) datasets.append((X_glass, y_glass)) data = pd.read_csv("data/Real_data/Iris.csv") le = preprocessing.LabelEncoder() data['Species'] = le.fit_transform(data['Species']) X_irirs = data.drop(['Species','Id'],axis=1).values y_irirs = data['Species'].values # print("Shape of Iris data: ", data.shape, ", labels: ", len(set(y_irirs))) datasets.append((X_irirs,y_irirs)) data = pd.read_csv("data/Real_data/Phoneme.csv") le = preprocessing.LabelEncoder() data['g'] = le.fit_transform(data['g']) X_phoneme = data.drop(['speaker', 'g'],axis=1).values y_phoneme = data['g'].values # print("Shape of Phoneme data: ", data.shape, ", labels: ", len(set(y_phoneme))) datasets.append((X_phoneme, y_phoneme)) data = pd.read_csv('data/Real_data/Seeds.csv') X_seeds = data.drop(['7'],axis=1).values y_seeds = data['7'].values # print("Shape of seeds data: ", data.shape, ", labels: ", len(set(y_seeds))) datasets.append((X_seeds, y_seeds)) data = pd.read_csv("data/Real_data/Wine.csv") X_wine = data.drop(['14'],axis=1).values y_wine = data['14'].values # print("Shape of Wine data: ", data.shape, ", labels: ", len(set(y_wine))) datasets.append((X_wine, y_wine)) # ========================================================================== # ****************************************************************Mean shift fig_interval = 2 band = 0.5 _range = np.arange(1, 16, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[0], _range=_range, clustering='Meanshift', label_files='Banknote') _range = np.arange(1, 16, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[1], _range=_range, clustering='Meanshift', label_files='Dermatology') _range = np.arange(1, 16, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[2], _range=_range, clustering='Meanshift', label_files='Ecoli') _range = np.arange(1, 16, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[3], _range=_range, clustering='Meanshift', label_files='Glass') _range = np.arange(1, 16, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[4], _range=_range, clustering='Meanshift', label_files='Iris') _range = np.arange(5, 20, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[5], _range=_range, clustering='Meanshift', label_files='Phoneme') _range = np.arange(1, 16, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[6], _range=_range, clustering='Meanshift', label_files='WheatSeeds') _range = np.arange(1, 16, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[7], _range=_range, clustering='Meanshift', label_files='Wine') # ========================================================================== # ****************************************************************DBSCAN fig_interval = 0.1 band = 0.01 _range = np.arange(0.15, 0.525, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[0], _range=_range, clustering='DBSCAN', fix_k=5, label_files='Banknote') _range = np.arange(5.15, 5.525, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[1], _range=_range, clustering='DBSCAN', fix_k=5, label_files='Dermatology') _range = np.arange(0.55, 0.925, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[2], _range=_range, clustering='DBSCAN', fix_k=5, label_files='Ecoli') _range = np.arange(1.55, 1.925, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[3], _range=_range, clustering='DBSCAN', fix_k=5, label_files='Glass') _range = np.arange(0.55, 0.925, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[4], _range=_range, clustering='DBSCAN', fix_k=5, label_files='Iris') _range = np.arange(9, 9.375, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[5], _range=_range, clustering='DBSCAN', fix_k=10, label_files='Phoneme') _range = np.arange(0.55, 0.925, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[6], _range=_range, clustering='DBSCAN', fix_k=5, label_files='WheatSeeds') _range = np.arange(2.2, 2.575, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[7], _range=_range, clustering='DBSCAN', fix_k=5, label_files='Wine') # ========================================================================== # ****************************************************************HDBSCAN fig_interval = 2 band = 0.5 _range = np.arange(5, 20, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[0], _range=_range, clustering='HDBSCAN', label_files='Banknote') _range = np.arange(2, 17, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[1], _range=_range, clustering='HDBSCAN', label_files='Dermatology') _range = np.arange(2, 17, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[2], _range=_range, clustering='HDBSCAN', label_files='Ecoli') _range = np.arange(2, 17, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[3], _range=_range, clustering='HDBSCAN', label_files='Glass') _range = np.arange(2, 17, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[4], _range=_range, clustering='HDBSCAN', label_files='Iris') _range = np.arange(2, 17, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[5], _range=_range, clustering='HDBSCAN', label_files='Phoneme') _range = np.arange(2, 17, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[6], _range=_range, clustering='HDBSCAN', label_files='WheatSeeds') _range = np.arange(2, 17, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[7], _range=_range, clustering='HDBSCAN', label_files='Wine') # ========================================================================== # ****************************************************************Quickshift++ fig_interval = 2 band = 0.5 _range = np.arange(10, 25, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[0], _range=_range, clustering='Quickshift++', fix_k=0.7, label_files='Banknote') _range = np.arange(7, 22, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[1], _range=_range, clustering='Quickshift++', fix_k=0.3, label_files='Dermatology') _range = np.arange(5, 20, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[2], _range=_range, clustering='Quickshift++', fix_k=0.3, label_files='Ecoli') _range = np.arange(5, 20, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[3], _range=_range, clustering='Quickshift++', fix_k=0.3, label_files='Glass') _range = np.arange(10, 25, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[4], _range=_range, clustering='Quickshift++', fix_k=0.3, label_files='Iris') _range = np.arange(235, 250, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[5], _range=_range, clustering='Quickshift++', fix_k=0.3, label_files='Phoneme') _range = np.arange(10, 25, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[6], _range=_range, clustering='Quickshift++', fix_k=0.3, label_files='WheatSeeds') _range = np.arange(5, 20, 1) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[7], _range=_range, clustering='Quickshift++', fix_k=0.3, label_files='Wine') # ========================================================================== # ****************************************************************CLASSIX distance fig_interval = 0.1 band = 0.015 _range = np.arange(0.01, 0.375, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[0], _range=_range, clustering='CLASSIX (distance)', fix_k=6, sorting='pca', label_files='Banknote') _range = np.arange(0.325, 0.676, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[1], _range=_range, clustering='CLASSIX (distance)', fix_k=4, sorting='pca', label_files='Dermatology') _range = np.arange(0.1, 0.475, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[2], _range=_range, clustering='CLASSIX (distance)', fix_k=3, sorting='pca', label_files='Ecoli') _range = np.arange(0.375, 0.75, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[3], _range=_range, clustering='CLASSIX (distance)', fix_k=0, sorting='pca', label_files='Glass') _range = np.arange(0.15, 0.525, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[4], _range=_range, clustering='CLASSIX (distance)', fix_k=6, sorting='pca', label_files='Iris') _range = np.arange(0.27, 0.625, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[5], _range=_range, clustering='CLASSIX (distance)', fix_k=9, sorting='pca', label_files='Phoneme') _range = np.arange(0.05, 0.425, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[6], _range=_range, clustering='CLASSIX (distance)', fix_k=7, sorting='pca', label_files='WheatSeeds') _range = np.arange(0.2, 0.575, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[7], _range=_range, clustering='CLASSIX (distance)', fix_k=7, sorting='pca', label_files='Wine') # ========================================================================== # ****************************************************************CLASSIX density fig_interval = 0.1 band = 0.015 _range = np.arange(0.05, 0.425, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[0], _range=_range, clustering='CLASSIX (density)', fix_k=6, sorting='pca', label_files='Banknote') _range = np.arange(0.5, 0.875, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[1], _range=_range, clustering='CLASSIX (density)', fix_k=4, sorting='pca', label_files='Dermatology') _range = np.arange(0.1, 0.475, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[2], _range=_range, clustering='CLASSIX (density)', fix_k=3, sorting='pca', label_files='Ecoli') _range = np.arange(0.475, 0.85, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[3], _range=_range, clustering='CLASSIX (density)', fix_k=0, sorting='pca', label_files='Glass') _range = np.arange(0.15, 0.525, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[4], _range=_range, clustering='CLASSIX (density)', fix_k=6, sorting='pca', label_files='Iris') _range = np.arange(1.3, 1.675, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[5], _range=_range, clustering='CLASSIX (density)', fix_k=9, sorting='pca', label_files='Phoneme') _range = np.arange(0.1, 0.475, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[6], _range=_range, clustering='CLASSIX (density)', fix_k=7, sorting='pca', label_files='WheatSeeds') _range = np.arange(0.4, 0.775, 0.025) # print("Parameter range: ", len(_range)) run_sensitivity_test(datasets=datasets[7], _range=_range, clustering='CLASSIX (density)', fix_k=7, sorting='pca', label_files='Wine') def visualize_params_search(): # ========================================================================== # ****************************************************************Mean shift fig_interval = 2 band = 0.5 _range = np.arange(1, 16, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='Meanshift', label_files='Banknote', band=band, fig_interval=fig_interval) _range = np.arange(1, 16, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='Meanshift', label_files='Dermatology', band=band, fig_interval=fig_interval) _range = np.arange(1, 16, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='Meanshift', label_files='Ecoli', band=band, fig_interval=fig_interval) _range = np.arange(1, 16, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='Meanshift', label_files='Glass', band=band, fig_interval=fig_interval) _range = np.arange(1, 16, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='Meanshift', label_files='Iris', band=band, fig_interval=fig_interval) _range = np.arange(5, 20, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='Meanshift', label_files='Phoneme', band=band, fig_interval=fig_interval) _range = np.arange(1, 16, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='Meanshift', label_files='WheatSeeds', band=band, fig_interval=fig_interval) _range = np.arange(1, 16, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='Meanshift', label_files='Wine', band=band, fig_interval=fig_interval) # ========================================================================== # ****************************************************************DBSCAN fig_interval = 0.1 band = 0.01 _range = np.arange(0.15, 0.525, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='DBSCAN', label_files='Banknote', band=band, fig_interval=fig_interval) _range = np.arange(5.15, 5.525, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='DBSCAN', label_files='Dermatology', band=band, fig_interval=fig_interval) _range = np.arange(0.55, 0.925, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='DBSCAN', label_files='Ecoli', band=band, fig_interval=fig_interval) _range = np.arange(1.55, 1.925, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='DBSCAN', label_files='Glass', band=band, fig_interval=fig_interval) _range = np.arange(0.55, 0.925, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='DBSCAN', label_files='Iris', band=band, fig_interval=fig_interval) _range = np.arange(9, 9.375, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='DBSCAN', label_files='Phoneme', band=band, fig_interval=fig_interval) _range = np.arange(0.55, 0.925, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='DBSCAN', label_files='WheatSeeds', band=band, fig_interval=fig_interval) _range = np.arange(2.2, 2.575, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='DBSCAN', label_files='Wine', band=band, fig_interval=fig_interval) # ========================================================================== # ****************************************************************HDBSCAN fig_interval = 2 band = 0.5 _range = np.arange(5, 20, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='HDBSCAN', label_files='Banknote', band=band, fig_interval=fig_interval) _range = np.arange(2, 17, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='HDBSCAN', label_files='Dermatology', band=band, fig_interval=fig_interval) _range = np.arange(2, 17, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='HDBSCAN', label_files='Ecoli', band=band, fig_interval=fig_interval) _range = np.arange(2, 17, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='HDBSCAN', label_files='Glass', band=band, fig_interval=fig_interval) _range = np.arange(2, 17, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='HDBSCAN', label_files='Iris', band=band, fig_interval=fig_interval) _range = np.arange(2, 17, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='HDBSCAN', label_files='Phoneme', band=band, fig_interval=fig_interval) _range = np.arange(2, 17, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='HDBSCAN', label_files='WheatSeeds', band=band, fig_interval=fig_interval) _range = np.arange(2, 17, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='HDBSCAN', label_files='Wine', band=band, fig_interval=fig_interval) # ========================================================================== # ****************************************************************Quickshift++ fig_interval = 2 band = 0.5 _range = np.arange(10, 25, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='Quickshift++', label_files='Banknote', band=band, fig_interval=fig_interval) _range = np.arange(7, 22, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='Quickshift++', label_files='Dermatology', band=band, fig_interval=fig_interval) _range = np.arange(5, 20, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='Quickshift++', label_files='Ecoli', band=band, fig_interval=fig_interval) _range = np.arange(5, 20, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='Quickshift++', label_files='Glass', band=band, fig_interval=fig_interval) _range = np.arange(10, 25, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='Quickshift++', label_files='Iris', band=band, fig_interval=fig_interval) _range = np.arange(235, 250, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='Quickshift++', label_files='Phoneme', band=band, fig_interval=fig_interval+5) _range = np.arange(10, 25, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='Quickshift++', label_files='WheatSeeds', band=band, fig_interval=fig_interval) _range = np.arange(5, 20, 1) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='Quickshift++', label_files='Wine', band=band, fig_interval=fig_interval) # ========================================================================== # ****************************************************************CLASSIX distance fig_interval = 0.1 band = 0.015 _range = np.arange(0.01, 0.375, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='CLASSIX (distance)', label_files='Banknote', band=band, fig_interval=fig_interval) _range = np.arange(0.325, 0.676, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='CLASSIX (distance)', label_files='Dermatology', band=band, fig_interval=fig_interval) _range = np.arange(0.1, 0.475, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='CLASSIX (distance)', label_files='Ecoli', band=band, fig_interval=fig_interval) _range = np.arange(0.375, 0.75, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='CLASSIX (distance)', label_files='Glass', band=band, fig_interval=fig_interval) _range = np.arange(0.15, 0.525, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='CLASSIX (distance)', label_files='Iris', band=band, fig_interval=fig_interval) _range = np.arange(0.27, 0.625, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='CLASSIX (distance)', label_files='Phoneme', band=band, fig_interval=fig_interval) _range = np.arange(0.05, 0.425, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='CLASSIX (distance)', label_files='WheatSeeds', band=band, fig_interval=fig_interval) _range = np.arange(0.2, 0.575, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='CLASSIX (distance)', label_files='Wine', band=band, fig_interval=fig_interval) # ========================================================================== # ****************************************************************CLASSIX density fig_interval = 0.1 band = 0.015 _range = np.arange(0.05, 0.425, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='CLASSIX (density)', label_files='Banknote', band=band, fig_interval=fig_interval) _range = np.arange(0.5, 0.875, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='CLASSIX (density)', label_files='Dermatology', band=band, fig_interval=fig_interval) _range = np.arange(0.1, 0.475, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='CLASSIX (density)', label_files='Ecoli', band=band, fig_interval=fig_interval) _range = np.arange(0.475, 0.85, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='CLASSIX (density)', label_files='Glass', band=band, fig_interval=fig_interval) _range = np.arange(0.15, 0.525, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='CLASSIX (density)', label_files='Iris', band=band, fig_interval=fig_interval) _range = np.arange(1.3, 1.675, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='CLASSIX (density)', label_files='Phoneme', band=band, fig_interval=fig_interval) _range = np.arange(0.1, 0.475, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='CLASSIX (density)', label_files='WheatSeeds', band=band, fig_interval=fig_interval) _range = np.arange(0.4, 0.775, 0.025) # print("Parameter range: ", len(_range)) visualize_params(_range=_range, clustering='CLASSIX (density)', label_files='Wine', band=band, fig_interval=fig_interval) def compare_best_params(): datasets = [] data = pd.read_csv("data/Real_data/Iris.csv") le = preprocessing.LabelEncoder() data['Species'] = le.fit_transform(data['Species']) X_irirs = data.drop(['Species','Id'],axis=1).values y_irirs = data['Species'].values datasets.append((X_irirs, y_irirs)) data = pd.read_csv("data/Real_data/Dermatology.csv").values X_dermatology = data[:, :data.shape[1]-1] y_dermatology = data[:, data.shape[1]-1] datasets.append((X_dermatology, y_dermatology)) data = pd.read_csv("data/Real_data/Ecoli.csv").values X_ecoli = data[:, range(data.shape[1] - 1)] y_ecoli = data[:, data.shape[1] - 1] datasets.append((X_ecoli, y_ecoli)) data = pd.read_csv("data/Real_data/Glass.csv") le = preprocessing.LabelEncoder() data['Glass'] = le.fit_transform(data['Glass']) X_glass = data.drop(['Glass', 'Id'],axis=1).values y_glass = data['Glass'].values datasets.append((X_glass, y_glass)) data = pd.read_csv("data/Real_data/Banknote_authentication.csv") X_banknote = data.drop(['4'],axis=1).values y_banknote = data['4'].values datasets.append((X_banknote, y_banknote)) data = pd.read_csv("data/Real_data/Seeds.csv") X_seeds = data.drop(['7'],axis=1).values y_seeds = data['7'].values datasets.append((X_seeds, y_seeds)) data = pd.read_csv("data/Real_data/Phoneme.csv") le = preprocessing.LabelEncoder() data['g'] = le.fit_transform(data['g']) X_phoneme = data.drop(['speaker', 'g'],axis=1).values y_phoneme = data['g'].values datasets.append((X_phoneme, y_phoneme)) data = pd.read_csv("data/Real_data/Wine.csv") X_wine = data.drop(['14'],axis=1).values y_wine = data['14'].values datasets.append((X_wine, y_wine)) clean_datasets = [] x_Banknote, y_Banknote = datasets[4][0], datasets[4][1] # Banknote nonans = np.isnan(x_Banknote).sum(1) == 0 x_Banknote = x_Banknote[nonans,:] y_Banknote = y_Banknote[nonans] x_Banknote = (x_Banknote - x_Banknote.mean(axis=0)) / x_Banknote.std(axis=0) clean_datasets.append((x_Banknote, y_Banknote)) x_Dermatology, y_Dermatology = datasets[1][0], datasets[1][1] # Dermatology nonans = np.isnan(x_Dermatology).sum(1) == 0 x_Dermatology = x_Dermatology[nonans,:] y_Dermatology = y_Dermatology[nonans] x_Dermatology = (x_Dermatology - x_Dermatology.mean(axis=0)) / x_Dermatology.std(axis=0) clean_datasets.append((x_Dermatology, y_Dermatology)) x_Ecoli, y_Ecoli = datasets[2][0], datasets[2][1] # Ecoli nonans = np.isnan(x_Ecoli).sum(1) == 0 x_Ecoli = x_Ecoli[nonans,:] y_Ecoli = y_Ecoli[nonans] x_Ecoli = (x_Ecoli - x_Ecoli.mean(axis=0)) / x_Ecoli.std(axis=0) clean_datasets.append((x_Ecoli, y_Ecoli)) x_Glass, y_Glass = datasets[3][0], datasets[3][1] # Glass nonans = np.isnan(x_Glass).sum(1) == 0 x_Glass = x_Glass[nonans,:] y_Glass = y_Glass[nonans] x_Glass = (x_Glass - x_Glass.mean(axis=0)) / x_Glass.std(axis=0) clean_datasets.append((x_Glass, y_Glass)) x_Iris, y_Iris = datasets[0][0], datasets[0][1] # Iris nonans = np.isnan(x_Iris).sum(1) == 0 x_Iris = x_Iris[nonans,:] y_Iris = y_Iris[nonans] x_Iris = (x_Iris - x_Iris.mean(axis=0)) / x_Iris.std(axis=0) clean_datasets.append((x_Iris, y_Iris)) x_Phoneme, y_Phoneme = datasets[6][0], datasets[6][1] # Seeds nonans = np.isnan(x_Phoneme).sum(1) == 0 x_Phoneme = x_Phoneme[nonans,:] y_Phoneme = y_Phoneme[nonans] x_Phoneme = (x_Phoneme - x_Phoneme.mean(axis=0)) / x_Phoneme.std(axis=0) clean_datasets.append((x_Phoneme, y_Phoneme)) x_Seeds, y_Seeds = datasets[5][0], datasets[5][1] # Seeds nonans = np.isnan(x_Seeds).sum(1) == 0 x_Seeds = x_Seeds[nonans,:] y_Seeds = y_Seeds[nonans] x_Seeds = (x_Seeds - x_Seeds.mean(axis=0)) / x_Seeds.std(axis=0) clean_datasets.append((x_Seeds, y_Seeds)) x_Wine, y_Wine = datasets[7][0], datasets[7][1] # Seeds nonans = np.isnan(x_Wine).sum(1) == 0 x_Wine = x_Wine[nonans,:] y_Wine = y_Wine[nonans] x_Wine = (x_Wine - x_Wine.mean(axis=0)) / x_Wine.std(axis=0) clean_datasets.append((x_Wine, y_Wine)) meanshift_params = {"Banknote":{'bandwidth':1}, "Dermatology":{'bandwidth':5}, "Ecoli":{'bandwidth':2}, "Glass":{'bandwidth':2}, "Iris":{'bandwidth':2}, "Phoneme":{'bandwidth':12}, "Seeds":{'bandwidth':2}, "Wine":{'bandwidth':3} } dname = list(meanshift_params.keys()) meanshift_mi = list() meanshift_ri = list() for i, dataset in enumerate(clean_datasets): X, y = dataset[0], dataset[1] np.random.seed(1) meanshift = MeanShift(**meanshift_params[dname[i]]) st = time.time() meanshift.fit(X) ami = metrics.adjusted_mutual_info_score(y.astype(int), meanshift.labels_.astype(int)) ari = metrics.adjusted_rand_score(y.astype(int), meanshift.labels_.astype(int)) meanshift_mi.append(ami) meanshift_ri.append(ari) dbscan_params = {"Banknote":{'eps':0.475, 'min_samples':5}, "Dermatology":{'eps':5.275, 'min_samples':5}, "Ecoli":{'eps':0.875, 'min_samples':5}, "Glass":{'eps':1.7, 'min_samples':5}, "Iris":{'eps':0.8, 'min_samples':5}, "Phoneme":{'eps':9.175, 'min_samples':10}, "Seeds":{'eps':0.875, 'min_samples':5}, "Wine":{'eps':2.425, 'min_samples':5}, } dname = list(dbscan_params.keys()) dbscan_mi = list() dbscan_ri = list() for i, dataset in enumerate(clean_datasets): X, y = dataset[0], dataset[1] np.random.seed(1) dbscan = DBSCAN(**dbscan_params[dname[i]]) st = time.time() dbscan.fit(X) ami = metrics.adjusted_mutual_info_score(y.astype(int), dbscan.labels_.astype(int)) ari = metrics.adjusted_rand_score(y.astype(int), dbscan.labels_.astype(int)) dbscan_mi.append(ami) dbscan_ri.append(ari) hdbscan_params = {"Banknote":{'min_cluster_size':16}, "Dermatology":{'min_cluster_size':5}, "Ecoli":{'min_cluster_size':9}, "Glass":{'min_cluster_size':8}, "Iris":{'min_cluster_size':9}, "Phoneme":{'min_cluster_size':3}, "Seeds":{'min_cluster_size':3}, "Wine":{'min_cluster_size':3}, } dname = list(hdbscan_params.keys()) hdbscan_mi = list() hdbscan_ri = list() for i, dataset in enumerate(clean_datasets): X, y = dataset[0], dataset[1] np.random.seed(1) _hdbscan = hdbscan.HDBSCAN(**hdbscan_params[dname[i]]) st = time.time() _hdbscan.fit(X) ami = metrics.adjusted_mutual_info_score(y.astype(int), _hdbscan.labels_.astype(int)) ari = metrics.adjusted_rand_score(y.astype(int), _hdbscan.labels_.astype(int)) hdbscan_mi.append(ami) hdbscan_ri.append(ari) quickshiftpp_params = {"Banknote":{'k':20, 'beta':0.7}, "Dermatology":{'k':20, 'beta':0.3}, "Ecoli":{'k':14, 'beta':0.3}, "Glass":{'k':17, 'beta':0.3}, "Iris":{'k':18, 'beta':0.3}, "Phoneme":{'k':245, 'beta':0.3}, "Seeds":{'k':21, 'beta':0.3}, "Wine":{'k':16, 'beta':0.3}, } dname = list(quickshiftpp_params.keys()) quicks_mi = list() quicks_ri = list() for i, dataset in enumerate(clean_datasets): X, y = dataset[0], dataset[1] np.random.seed(1) quicks = QuickshiftPP(**quickshiftpp_params[dname[i]]) st = time.time() quicks.fit(X.copy(order='C')) ami = metrics.adjusted_mutual_info_score(y.astype(int), quicks.memberships.astype(int)) ari = metrics.adjusted_rand_score(y.astype(int), quicks.memberships.astype(int)) quicks_mi.append(ami) quicks_ri.append(ari) clx_dist_params = {"Banknote":{'radius':0.21, 'group_merging':'distance', 'minPts':41, 'verbose':0}, "Dermatology":{'radius':0.4, 'group_merging':'distance','minPts':4, 'verbose':0}, "Ecoli":{'radius':0.3, 'group_merging':'distance', 'minPts':4, 'verbose':0}, "Glass":{'radius':0.725, 'group_merging':'distance', 'minPts':0, 'verbose':0}, "Iris":{'radius':0.225, 'group_merging':'distance', 'minPts':4, 'verbose':0}, "Phoneme":{'radius':0.445, 'group_merging':'distance', 'minPts':8, 'verbose':0}, "Seeds":{'radius':0.15, 'group_merging':'distance', 'minPts':9, 'verbose':0}, "Wine":{'radius':0.425, 'group_merging':'distance', 'minPts':4, 'verbose':0} } dname = list(clx_dist_params.keys()) clx_dis_mi = list() clx_dis_ri = list() for i, dataset in enumerate(clean_datasets): X, y = dataset[0], dataset[1] np.random.seed(1) clx = CLASSIX(**clx_dist_params[dname[i]]) st = time.time() clx.fit(X) ari = metrics.adjusted_rand_score(y.astype(int), clx.labels_.astype(int)) ami = metrics.adjusted_mutual_info_score(y.astype(int), clx.labels_.astype(int)) clx_dis_ri.append(ari) clx_dis_mi.append(ami) clx_den_params = {"Banknote":{'radius':0.28, 'group_merging':'density', 'minPts':40, 'verbose':0}, "Dermatology":{'radius':0.6, 'group_merging':'density','minPts':4, 'verbose':0}, "Ecoli":{'radius':0.375, 'group_merging':'density', 'minPts':4, 'verbose':0}, "Glass":{'radius':0.62, 'group_merging':'density', 'minPts':0, 'verbose':0}, "Iris":{'radius':0.275, 'group_merging':'density', 'minPts':7, 'verbose':0}, "Phoneme":{'radius':1.425, 'group_merging':'density', 'minPts':460, 'verbose':0}, "Seeds":{'radius':0.25, 'group_merging':'density', 'minPts':7, 'verbose':0}, "Wine":{'radius':0.58, 'group_merging':'density', 'minPts':7, 'verbose':0} } dname = list(clx_den_params.keys()) clx_den_mi = list() clx_den_ri = list() for i, dataset in enumerate(clean_datasets): X, y = dataset[0], dataset[1] np.random.seed(1) clx = CLASSIX(**clx_den_params[dname[i]]) st = time.time() clx.fit(X) ari = metrics.adjusted_rand_score(y.astype(int), clx.labels_.astype(int)) ami = metrics.adjusted_mutual_info_score(y.astype(int), clx.labels_.astype(int)) clx_den_ri.append(ari) clx_den_mi.append(ami) ri_df = pd.DataFrame() mi_df = pd.DataFrame() ri_df['dataset'] = dname ri_df['meanshift'] = meanshift_ri ri_df['dbscan'] = dbscan_ri ri_df['hdbscan'] = hdbscan_ri ri_df['quickshift++'] = quicks_ri ri_df['classix (dis)'] = clx_dis_ri ri_df['classix (den)'] = clx_den_ri mi_df['dataset'] = dname mi_df['meanshift'] = meanshift_mi mi_df['dbscan'] = dbscan_mi mi_df['hdbscan'] = hdbscan_mi mi_df['quickshift++'] = quicks_mi mi_df['classix (dis)'] = clx_dis_mi mi_df['classix (den)'] = clx_den_mi mi_df.to_csv("results/exp5/mi_real_cluster_quality.csv", index=False) ri_df.to_csv("results/exp5/ri_real_cluster_quality.csv", index=False) def kamil_industry_test(): X_pca = pd.read_csv("data/Kamil/PCA_clustering.csv").values # preprocess data final_len = 100000 outliers_position = np.where(X_pca[:,0] > 7.5)[0] no_outliers_position = np.delete(np.arange(0, len(X_pca[:,0])), outliers_position, axis=0) outlier_len = len(outliers_position) data_no_outliers_length = int(final_len - outlier_len) data_outliers = X_pca[outliers_position, :] data_no_outliers = np.delete(X_pca, outliers_position, axis=0) random_integers = np.arange(0, len(no_outliers_position)) np.random.shuffle(random_integers) data_no_outliers_out = data_no_outliers[random_integers[data_no_outliers_length:],:] data_no_outliers = data_no_outliers[random_integers[:data_no_outliers_length],:] X = np.concatenate((data_no_outliers, data_outliers)) sample_size = 10 kamil_timing = [] sum_time = 0 for i in range(sample_size): st = time.time() dbscan = DBSCAN(eps=0.7, min_samples=6) dbscan.fit(X) et = time.time() sum_time = sum_time + et - st kamil_timing.append(sum_time/sample_size) # print("Average consume time: ", sum_time/sample_size) plt.figure(figsize=(24,10)) plt.scatter(X[:,0], X[:,1], c=dbscan.labels_, cmap='jet') # cbar = plt.colorbar() # cbar.ax.tick_params(labelsize=15) plt.tick_params(axis='both', labelsize=28) plt.savefig('results/exp5/DBSCAN_kamil.png', bbox_inches='tight') # plt.show() sum_time = 0 for i in range(sample_size): st = time.time() _hdbscan = hdbscan.HDBSCAN(min_cluster_size=1000, core_dist_n_jobs=1) hdbscan_labels = _hdbscan.fit_predict(X) et = time.time() sum_time = sum_time + et - st kamil_timing.append(sum_time/sample_size) # print("Average consume time: ", sum_time/sample_size) plt.figure(figsize=(24,10)) plt.scatter(X[:,0], X[:,1], c=hdbscan_labels, cmap='jet') # cbar = plt.colorbar() # cbar.ax.tick_params(labelsize=15) plt.tick_params(axis='both', labelsize=28) plt.savefig('results/exp5/HDBSCAN_kamil.png', bbox_inches='tight') # plt.show() sum_time = 0 for i in range(sample_size): st = time.time() quicks = QuickshiftPP(k=800, beta=0.7) quicks.fit(X.copy(order='C')) quicks_labels = quicks.memberships et = time.time() sum_time = sum_time + et - st kamil_timing.append(sum_time/sample_size) # print("Average consume time: ", sum_time/sample_size) plt.figure(figsize=(24,10)) plt.scatter(X[:,0], X[:,1], c=quicks_labels, cmap='jet') # cbar = plt.colorbar() # cbar.ax.tick_params(labelsize=15) plt.tick_params(axis='both', labelsize=28) plt.savefig('results/exp5/Quickshiftpp_kamil.png', bbox_inches='tight') # plt.show() sum_time = 0 for i in range(sample_size): st = time.time() clx = CLASSIX(sorting='pca', radius=0.3, verbose=0, group_merging='distance') clx.fit_transform(X) et = time.time() sum_time = sum_time + et - st kamil_timing.append(sum_time/sample_size) # print("Average consume time: ", sum_time/sample_size) plt.figure(figsize=(24,10)) plt.scatter(X[:,0], X[:,1], c=clx.labels_, cmap='jet') # cbar = plt.colorbar() # cbar.ax.tick_params(labelsize=15) plt.tick_params(axis='both', labelsize=28) plt.savefig('results/exp5/CLASSIX_kamil.png', bbox_inches='tight') # plt.show() kamil_timing =
pd.DataFrame(kamil_timing)
pandas.DataFrame
# Robust Bayesian Binary logistic regression in 1d for iris flowers # Code is based on # https://github.com/aloctavodia/BAP/blob/master/code/Chp4/04_Generalizing_linear_models.ipynb import superimport import pymc3 as pm import numpy as np import pandas as pd import theano.tensor as tt #import seaborn as sns import scipy.stats as stats from scipy.special import expit as logistic import matplotlib.pyplot as plt import arviz as az from sklearn.datasets import load_iris import pyprobml_utils as pml iris = load_iris() X = iris.data y = iris.target # Convert to pandas dataframe df_iris = pd.DataFrame(data=iris.data, columns=['sepal_length', 'sepal_width', 'petal_length', 'petal_width']) df_iris['species'] = pd.Series(iris.target_names[y], dtype='category') df = df_iris.query("species == ('setosa', 'versicolor')") y_0 =
pd.Categorical(df['species'])
pandas.Categorical
import pandas as pd import numpy as np import requests import random import urllib import json import time import sys import datetime from datetime import date from bs4 import BeautifulSoup from selenium import webdriver from discourse_ordering import DiscourseOrderingClass from twitter_api import TwitterClass import os class HelperClassTempo: """ Classe de métodos auxiliares """ def __init__(self): # mapeamento de meses self.dict_map_mes = {1: 'janeiro', 2: 'fevereiro', 3: 'março', 4: 'abril', 5: 'maio', 6: 'junho', 7: 'julho', 8: 'agosto', 9: 'setembro', 10: 'outubro', 11: 'novembro', 12: 'dezembro' } # dia atual print (self.get_dia_atual()) # path atual self.current_path = str(os.getcwd()) # path do chromedriver self.path_to_chromedriver = os.path.join(self.current_path, 'chromedriver') # API do Twitter self.twitter_api = TwitterClass() # arquivos auxiliares self.path_infos_cidades = os.path.join(self.current_path, "cidades.csv") self.path_bd = os.path.join(self.current_path, "cidades_bd.csv") path_credenciais_user_agent = os.path.join(self.current_path, "credenciais_user_agent.json") path_intents = os.path.join(self.current_path, "intents.json") path_analisador_lexico = os.path.join(self.current_path, "analisador_lexico.json") self.discourse_ordering_object = DiscourseOrderingClass() # leitura do arquivo json com as credenciais try: f = open(path_credenciais_user_agent, mode="r") infos_login = json.load(f) self.user_agent = infos_login['user_agent'] f.close() except: self.user_agent = "temporary_agent" # leitura do arquivo json com os intents f = open(path_intents, encoding='utf-8', mode="r") self.dict_intents = json.load(f) f.close() # leitura do arquivo json com o analisador léxico f = open(path_analisador_lexico, mode="r") dict_json_lexico = json.load(f) f.close() self.dict_analisador_lexico = {} self.lista_palavras_analisador_lexico = set() for chave, valor in dict_json_lexico.items(): palavra = chave.split(']')[1].strip() numero = chave.split('numero=')[1].split(',')[0].strip() genero = chave.split('genero=')[1].split(']')[0].strip() chave = f"{palavra}|{numero}|{genero}" self.dict_analisador_lexico[chave] = valor.strip() self.lista_palavras_analisador_lexico.add(palavra) self.lista_palavras_analisador_lexico = list(self.lista_palavras_analisador_lexico) # parametros do webdriver self.chromeOptions = webdriver.ChromeOptions() self.chromeOptions.add_argument('--no-sandbox') self.chromeOptions.add_argument("--headless") self.chromeOptions.add_argument(f"user-agent={self.user_agent}") # parâmetros self.url_tabua_mares = "https://www.tideschart.com" self.tempo_espera_tweet_segundos = 60 self.qtd_cidades_selecionadas = 15 self.qtd_min_dias_consecutivos = 10 self.multiplicador_std = 1.3 self.altura_mare_ruim = 1.6 self.filler_tempo = 'céu nublado' self.modulo = 'tempo' # temperaturas max e min possíveis (validação conceitual) self.maior_temperatura_possivel = 55 self.menor_temperatura_possivel = -10 # icones self.icone_up = '▲' self.icone_down = '▼' # df cidades self.df_cidades = pd.read_csv(self.path_infos_cidades, encoding='latin-1', sep=';') # colunas para atribuir valor self.lista_colunas_tempo = ['cidade', 'uf', 'tempo', 'temperatura', 'temperatura_max', 'temperatura_min', 'nebulosidade', 'umidade', 'vento', 'horario_por_sol', 'pesca', 'melhor_horario_pesca', 'altura_maior_onda', 'texto_onda', 'url_imagem'] # colunas para atribuir valor self.lista_colunas_salvar = ['cidade', 'uf', 'tempo', 'temperatura', 'temperatura_max', 'temperatura_min', 'nebulosidade', 'umidade', 'vento', 'horario_por_sol', 'pesca', 'melhor_horario_pesca', 'altura_maior_onda', 'data'] # se não existe arquivo de bd, cria if not os.path.exists(self.path_bd): pd.DataFrame(columns=self.lista_colunas_salvar).to_csv(self.path_bd, sep=';', index=False) # colunas de clima f = open("mapeamento_climas.json", mode="r", encoding="utf-8") self.dict_map_clima = json.load(f) f.close() # colunas de pesca self.dict_map_pesca = {'Today is an excellent fishing day': 'Excelente', 'Today is a good fishing day': 'Bom', 'Today is an average fishing day': 'Mediano'} # cidades self.lista_cidades_em = ['Rio de Janeiro'] # path dos conteúdos do site self.path_url_imagem = '//*[@id="map"]' self.path_tempo1 = '//*[@id="main-content"]/div/div/div/div[1]/div[7]/div[1]/div/div[1]' self.path_temperatura1 = '//*[@id="main-content"]/div/div/div/div[1]/div[7]/div[2]/div/div[1]' self.path_temperatura_max_min1 = '//*[@id="main-content"]/div/div/div/div[1]/div[7]/div[2]/div/div[2]' self.path_nebulosidade1 = '//*[@id="main-content"]/div/div/div/div[1]/div[7]/div[1]/div/div[2]' self.path_umidade1 = '//*[@id="main-content"]/div/div/div/div[1]/div[7]/div[4]/div/div[1]' self.path_vento1 = '//*[@id="main-content"]/div/div/div/div[1]/div[7]/div[3]/div/div[1]' self.path_tempo2 = '//*[@id="main-content"]/div/div/div/div[1]/div[4]/div[1]/div/div[1]' self.path_temperatura2 = '//*[@id="main-content"]/div/div/div/div[1]/div[4]/div[2]/div/div[1]' self.path_temperatura_max_min2 = '//*[@id="main-content"]/div/div/div/div[1]/div[4]/div[2]/div/div[2]' self.path_nebulosidade2 = '//*[@id="main-content"]/div/div/div/div[1]/div[4]/div[1]/div/div[2]' self.path_umidade2 = '//*[@id="main-content"]/div/div/div/div[1]/div[4]/div[4]/div/div[1]' self.path_vento2 = '//*[@id="main-content"]/div/div/div/div[1]/div[4]/div[3]/div/div[1]' self.path_situacao_pesca1 = '//*[@id="main-content"]/div/div/div/div[1]/div[5]/div/h2/span' self.path_situacao_pesca2 = '//*[@id="main-content"]/div/div/div/div[1]/div[3]/div/h2/span' self.path_horario_por_sol = '//*[@id="main-content"]/div/div/div/div[1]/div[3]/div/div/table/tbody/tr[1]/td[7]' self.path_melhor_horario_pesca1 = '//*[@id="main-content"]/div/div/div/div[1]/div[5]/div/div/div[1]/div/h4' self.path_melhor_horario_pesca2 = '//*[@id="main-content"]/div/div/div/div[1]/div[5]/div/div/div[1]/div/h4[2]' self.path_por_sol = '//*[@id="main-content"]/div/div/div/div[1]/div[3]/div/div/table/tbody/tr[1]/td[7]' self.path_mare1 = '//*[@id="main-content"]/div/div/div/div[1]/div[3]/div/div/table/tbody/tr[1]/td[2]' self.path_mare2 = '//*[@id="main-content"]/div/div/div/div[1]/div[3]/div/div/table/tbody/tr[2]/td[3]' self.path_mare3 = '//*[@id="main-content"]/div/div/div/div[1]/div[3]/div/div/table/tbody/tr[1]/td[4]' self.path_mare4 = '//*[@id="main-content"]/div/div/div/div[1]/div[3]/div/div/table/tbody/tr[1]/td[5]' def get_dia_atual(self): ''' data de hoje ''' # data de hoje dia = date.today().strftime("%d") mes = self.dict_map_mes[int(date.today().strftime("%m"))] ano = date.today().strftime("%Y") return f"{dia} de {mes} de {ano}" def trata_mare(self, elemento): ''' trata maré ''' horario = (elemento.split('m')[0] + 'm').strip() altura = float(elemento.split(' ')[1].strip()) simbolo = elemento.split(' ')[0][-1].strip() if simbolo == self.icone_up: simbolo = 'up' else: simbolo = 'down' return (horario, altura, simbolo) def get_analisador_lexico(self, palavra, numero, genero): ''' Retorna início do texto para publicação ''' return (self.dict_analisador_lexico[f"{palavra}|{numero}|{genero}"]) def count_dias(self, data_hoje, lista_datas): ''' retorna qtd de dias consecutivos ''' qtd_dias = 0 data = data_hoje while (True): data = data - datetime.timedelta(1) if data.strftime("%d/%m/%Y") in lista_datas: qtd_dias+=1 else: break return qtd_dias def count_valor(self, valor_hoje, lista_valores, tipo_operacao): ''' retorna qtd de dias onde o valor satisfaz determinada condição ''' qtd_dias = 0 if tipo_operacao == 'maior': for valor in lista_valores: if (valor_hoje > valor): qtd_dias +=1 else: break elif tipo_operacao == 'menor': for valor in lista_valores: if (valor_hoje < valor): qtd_dias +=1 else: break else: return 0 # compara com mínimo if (qtd_dias < self.qtd_min_dias_consecutivos): return 0 # retorna qtd de dias return qtd_dias def gera_df_tabua_mares(self): ''' Gera resultados dos climas ''' lista_infos = [] # itera cidades for index, row in self.df_cidades.iterrows(): try: cidade = row['Cidade'] uf = row['UF'] valor = row['Tabua_mares'] # cria urls url_dia = f"{self.url_tabua_mares}/{valor}" # entra na url driver = webdriver.Chrome(self.path_to_chromedriver, options=self.chromeOptions) driver.get(url_dia) time.sleep(2) # leitura do conteúdo try: tempo = driver.find_element_by_xpath(self.path_tempo1).text except: try: tempo = driver.find_element_by_xpath(self.path_tempo2).text except Exception as e: print (f'Erro na cidade {cidade}! {e}') continue try: temperatura = int((driver.find_element_by_xpath(self.path_temperatura1).text).split('°C')[0]) except: try: temperatura = int((driver.find_element_by_xpath(self.path_temperatura2).text).split('°C')[0]) except Exception as e: print (f'Erro na cidade {cidade}! {e}') continue try: temperatura_max_min = driver.find_element_by_xpath(self.path_temperatura_max_min1).text except: try: temperatura_max_min = driver.find_element_by_xpath(self.path_temperatura_max_min2).text except Exception as e: print (f'Erro na cidade {cidade}! {e}') continue try: nebulosidade = int(driver.find_element_by_xpath(self.path_nebulosidade1).text.split('Cloud cover ')[1].split('%')[0]) except: try: nebulosidade = int(driver.find_element_by_xpath(self.path_nebulosidade2).text.split('Cloud cover ')[1].split('%')[0]) except Exception as e: print (f'Erro na cidade {cidade}! {e}') continue try: umidade = int(driver.find_element_by_xpath(self.path_umidade1).text.split('%')[0]) except: try: umidade = int(driver.find_element_by_xpath(self.path_umidade2).text.split('%')[0]) except Exception as e: print (f'Erro na cidade {cidade}! {e}') continue try: vento = int(driver.find_element_by_xpath(self.path_vento1).text.split(' ')[0]) except: try: vento = int(driver.find_element_by_xpath(self.path_vento2).text.split(' ')[0]) except Exception as e: print (f'Erro na cidade {cidade}! {e}') continue try: pesca = driver.find_element_by_xpath(self.path_situacao_pesca1).text except: try: pesca = driver.find_element_by_xpath(self.path_situacao_pesca2).text except Exception as e: print (f'Erro na cidade {cidade}! {e}') continue # melhor horário de pesca try: melhor_horario_pesca = driver.find_element_by_xpath(self.path_melhor_horario_pesca2).text.split('From ')[1].replace(' to ', ' - ') except: try: melhor_horario_pesca = driver.find_element_by_xpath(self.path_melhor_horario_pesca1).text.split('From ')[1].replace(' to ', ' - ') except Exception as e: melhor_horario_pesca = '' # trata melhor horário para pescar if melhor_horario_pesca != '': try: horario1, horario2 = melhor_horario_pesca.split("-") horario1 = horario1.strip() horario2 = horario2.strip() # horario1 if "am" in horario1: horario1 = horario1.split("am")[0] elif "pm" in horario1: horario1 = horario1.split("pm")[0] hora, minuto = horario1.split(":") hora = str(int(hora) + 12) if int(hora) == 12: hora = "0" horario1 = f"{hora}:{minuto}" # horario2 if "am" in horario2: horario2 = horario2.split("am")[0] elif "pm" in horario2: horario2 = horario2.split("pm")[0] hora, minuto = horario2.split(":") hora = str(int(hora) + 12) if int(hora) == 12: hora = "0" horario2 = f"{hora}:{minuto}" melhor_horario_pesca = f"{horario1} - {horario2}" except: pass # por do sol horario_por_sol = str(driver.find_element_by_xpath(self.path_horario_por_sol).text).split(' ')[1].strip() if "am" in horario_por_sol: horario_por_sol = horario_por_sol.split("am")[0] elif "pm" in horario_por_sol: horario_por_sol = horario_por_sol.split("pm")[0] hora, minuto = horario_por_sol.split(":") hora = str(int(hora) + 12) horario_por_sol = f"{hora}:{minuto}" # marés try: horario_mare_1, altura_mare_1, simbolo_mare_1 = self.trata_mare(driver.find_element_by_xpath(self.path_mare1).text) except: horario_mare_1 = "" altura_mare_1 = -1 simbolo_mare_1 = "" try: horario_mare_2, altura_mare_2, simbolo_mare_2 = self.trata_mare(driver.find_element_by_xpath(self.path_mare2).text) except: horario_mare_2 = "" altura_mare_2 = -1 simbolo_mare_2 = "" try: horario_mare_3, altura_mare_3, simbolo_mare_3 = self.trata_mare(driver.find_element_by_xpath(self.path_mare3).text) except: horario_mare_3 = "" altura_mare_3 = -1 simbolo_mare_3 = "" try: horario_mare_4, altura_mare_4, simbolo_mare_4 = self.trata_mare(driver.find_element_by_xpath(self.path_mare4).text) except: horario_mare_4 = "" altura_mare_4 = -1 simbolo_mare_4 = "" # altura da maior onda altura_maior_onda = str(max(altura_mare_1, altura_mare_2, altura_mare_3, altura_mare_4)) # tratamento dos campos altura_maior_onda = str(altura_maior_onda).replace('.',',') altura_mare_1 = str(altura_mare_1).replace('.',',') altura_mare_2 = str(altura_mare_2).replace('.',',') altura_mare_3 = str(altura_mare_3).replace('.',',') altura_mare_4 = str(altura_mare_4).replace('.',',') # texto onda if (simbolo_mare_1 == ""): continue elif (simbolo_mare_1 == "up" and simbolo_mare_2 == ""): texto_onda = f"Horário de maré alta: {horario_mare_1} ({altura_mare_1}m)" elif (simbolo_mare_1 == "down" and simbolo_mare_2 == ""): texto_onda = f"Horário de maré baixa: {horario_mare_1} ({altura_mare_1}m)" elif (simbolo_mare_1 == 'up' and simbolo_mare_4 != ""): texto_onda = f"Horários de maré alta: {horario_mare_1} ({altura_mare_1}m) e {horario_mare_3} ({altura_mare_3}m).\nHorários de maré baixa: {horario_mare_2} ({altura_mare_2}m) e {horario_mare_4} ({altura_mare_4}m)" elif (simbolo_mare_1 == 'up' and simbolo_mare_4 == ""): texto_onda = f"Horários de maré alta: {horario_mare_1} ({altura_mare_1}m) e {horario_mare_3} ({altura_mare_3}m).\nHorário de maré baixa: {horario_mare_2} ({altura_mare_2}m)" elif (simbolo_mare_1 == 'down' and simbolo_mare_4 != ""): texto_onda = f"Horário de maré alta: {horario_mare_2} ({altura_mare_2}m) e {horario_mare_4} ({altura_mare_4}m).\nHorários de maré baixa: {horario_mare_1} ({altura_mare_1}m) e {horario_mare_3} ({altura_mare_3}m)" elif (simbolo_mare_1 == 'down' and simbolo_mare_4 == ""): texto_onda = f"Horário de maré alta: {horario_mare_2} ({altura_mare_2}m).\nHorários de maré baixa: {horario_mare_1} ({altura_mare_1}m) e {horario_mare_3} ({altura_mare_3}m)" else: continue # temperatura max temperatura_max = int(temperatura_max_min.split('Min ')[1].split('°')[0]) # temperatura min temperatura_min = int(temperatura_max_min.split('Max ')[1].split('°')[0]) # validação conceitual de temperaturas maior_valor_temperatura = max([temperatura, temperatura_max, temperatura_min]) menor_valor_temperatura = min([temperatura, temperatura_max, temperatura_min]) # se estiver fora da range, ignora a cidade e continua o processo if (maior_valor_temperatura > self.maior_temperatura_possivel or menor_valor_temperatura < self.menor_temperatura_possivel): continue # mapeia tempo if tempo in self.dict_map_clima.keys(): try: tempo = self.dict_map_clima[tempo] except: tempo = self.filler_tempo else: tempo = self.filler_tempo # mapeia pesca if pesca in self.dict_map_pesca.keys(): try: pesca = self.dict_map_pesca[pesca] except: pesca = '' else: pesca = '' # imagem adicional do litoral da cidade url_imagem = driver.find_element_by_xpath(self.path_url_imagem).get_attribute("src") # salva lista lista_infos.append([cidade, uf, tempo, temperatura, temperatura_max, temperatura_min, nebulosidade, umidade, vento, horario_por_sol, pesca, melhor_horario_pesca, altura_maior_onda, texto_onda, url_imagem]) # erro de execução except Exception as e: print (f'Erro na cidade {cidade}! {e}') continue # fecha o driver driver.close() # cria o dataframe try: df_infos = pd.DataFrame(lista_infos, columns=self.lista_colunas_tempo) # tratamentos adicionais df_infos['temperatura_max'] = df_infos[["temperatura", "temperatura_max", "temperatura_min"]].max(axis=1) df_infos['temperatura_min'] = df_infos[["temperatura", "temperatura_max", "temperatura_min"]].min(axis=1) # transforma tudo em string for column in df_infos.columns.tolist(): df_infos[column] = df_infos[column].astype(str) # inclui data de hoje df_infos['data'] = date.today().strftime("%d/%m/%Y") # retorna resultados return df_infos # erro de execução except Exception as e: print (f'Erro no fim do processo! {e}') sys.exit(0) def seleciona_conteudo_publicar(self, df_resultados): ''' Seleciona conteúdo para publicar, de acordo com a estratégia implementada ''' try: # estratéga de seleção de conteúdo max_observacoes = min(len(df_resultados), self.qtd_cidades_selecionadas) df_selecionados = df_resultados.sample(max_observacoes) # retorna resultados selecionados return df_selecionados except: sys.exit(0) def atribui_intent(self, df_linha): ''' retorna intent com base no conteúdo ''' try: # campos principais cidade = df_linha['cidade'] uf = df_linha['uf'] tempo = df_linha['tempo'] temperatura = int(df_linha['temperatura']) temperatura_max = int(df_linha['temperatura_max']) temperatura_min = int(df_linha['temperatura_min']) nebulosidade = int(df_linha['nebulosidade']) umidade = int(df_linha['umidade']) vento = int(df_linha['vento']) pesca = df_linha['pesca'] altura_maior_onda = df_linha['altura_maior_onda'] # flag qtd_dias_temperatura_max = int(df_linha["qtd_dias_temperatura_max"]) qtd_dias_temperatura_min = int(df_linha["qtd_dias_temperatura_min"]) qtd_dias_nebulosidade_max = int(df_linha["qtd_dias_nebulosidade_max"]) qtd_dias_umidade_max = int(df_linha["qtd_dias_umidade_max"]) qtd_dias_vento_max = int(df_linha["qtd_dias_vento_max"]) qtd_dias_onda_max = int(df_linha["qtd_dias_onda_max"]) flag_outlier_temperatura = int(df_linha["flag_outlier_temperatura"]) ################## # Valores outlier ################## # temperatura maxima if qtd_dias_temperatura_max > 0: return "TEMPERATURA_MAXIMA" # temperatura minima if qtd_dias_temperatura_min > 0: return "TEMPERATURA_MINIMA" # nebulosidade maxima if qtd_dias_nebulosidade_max > 0: return "NEBULOSIDADE_MAXIMA" # umidade maxima if qtd_dias_umidade_max > 0: return "UMIDADE_MAXIMA" # vento maxima if qtd_dias_vento_max > 0: return "VENTO_MAXIMA" if qtd_dias_onda_max > 0: return "ONDA_MAXIMA" # muito bom para pescar if pesca == "Excelente" and melhor_horario_pesca != '': return "BOM_PESCAR" # mar não está para peixes if (pesca not in ["Excelente", "Bom"] and float(altura_maior_onda.replace(",",".")) > self.altura_mare_ruim): return "MAR_NAO_ESTA_PARA_PEIXES" # sol ultravioleta if temperatura > 32: return "SOL_ULTRAVIOLETA" if flag_outlier_temperatura == 1: return "TEMPERATURA_ALTA_OUTLIER" if flag_outlier_temperatura == -1: return "TEMPERATURA_BAIXA_OUTLIER" ################## # Valores altos ################## # umidade alta if umidade >= 95: return "UMIDADE_ALTA" # nebulosidade alta if nebulosidade >= 90: return "NEBULOSIDADE_ALTA" # vento alto if vento >= 32: return "VENTO_ALTO" if (temperatura == temperatura_max and temperatura_max == temperatura_min): return "TEMP_IGUAIS" # pesca incorreta if melhor_horario_pesca == '': return 'NORMAL_PESCA_INCORRETA' # se não caiu em nenhum caso, retorna comportamento usual return 'NORMAL' except Exception as e: print (f'Erro! {e}') return "" def atribui_template(self, df_linha, intent): ''' Retorna template ''' print (f'Intent: {intent}') try: # campos principais cidade = df_linha['cidade'] uf = df_linha['uf'] tempo = df_linha['tempo'] temperatura = df_linha['temperatura'] temperatura_max = df_linha['temperatura_max'] temperatura_min = df_linha['temperatura_min'] nebulosidade = df_linha['nebulosidade'] umidade = df_linha['umidade'] vento = df_linha['vento'] pesca = df_linha['pesca'] melhor_horario_pesca = df_linha['melhor_horario_pesca'] horario_por_sol = df_linha['horario_por_sol'] altura_maior_onda = df_linha['altura_maior_onda'] texto_onda = df_linha['texto_onda'] # flags qtd_dias_consecutivos = df_linha['qtd_dias_consecutivos'] qtd_dias_temperatura_max = df_linha['qtd_dias_temperatura_max'] qtd_dias_temperatura_min = df_linha['qtd_dias_temperatura_min'] qtd_dias_nebulosidade_max = df_linha['qtd_dias_nebulosidade_max'] qtd_dias_umidade_max = df_linha['qtd_dias_umidade_max'] qtd_dias_vento_max = df_linha['qtd_dias_vento_max'] qtd_dias_onda_max = df_linha['qtd_dias_onda_max'] # início do texto if cidade in self.lista_cidades_em: numero = "singular" genero = "masculino" else: numero = "singular" genero = "neutro" # lista de textos possíveis para cada intent lista_possibilidades = self.dict_intents[intent] # seleciona texto texto_selecionado = random.choice(lista_possibilidades).strip() # dicionário para substituição de campos dicionario_map = { "[cidade]":cidade, "[uf]":uf, "[tempo]":tempo, "[temperatura]":temperatura, "[temperatura_max]":temperatura_max, "[temperatura_min]":temperatura_min, "[nebulosidade]":nebulosidade, "[umidade]":umidade, "[vento]":vento, "[pesca]":pesca, "[melhor_horario_pesca]":melhor_horario_pesca, "[horario_por_sol]":horario_por_sol, "[texto_onda]":texto_onda, "[altura_maior_onda]":altura_maior_onda, "[qtd_dias_temperatura_max]":qtd_dias_temperatura_max, "[qtd_dias_temperatura_min]":qtd_dias_temperatura_min, "[qtd_dias_nebulosidade_max]":qtd_dias_nebulosidade_max, "[qtd_dias_umidade_max]":qtd_dias_umidade_max, "[qtd_dias_vento_max]":qtd_dias_vento_max, "[qtd_dias_onda_max]":qtd_dias_onda_max } # aplica substituições no template for key, value in dicionario_map.items(): texto_selecionado = texto_selecionado.replace(key, value) # aplica analisador léxico for palavra in self.lista_palavras_analisador_lexico: valor = self.get_analisador_lexico(palavra, numero, genero) texto_selecionado = texto_selecionado.replace(f"[{palavra}]", valor) # atribui ordenação do discurso (discourse ordering) texto_selecionado = self.discourse_ordering_object.discourse_ordering(intent, texto_selecionado) # adiciona pós-processamentos ao tweet tweet = f"{self.twitter_api.get_inicio_post()}{texto_selecionado.strip()}{self.twitter_api.get_fim_post()}" return tweet except Exception as e: print (f'Erro! {e}') return "" def popula_estatisticas(self, df_selecionados, df_atual): ''' popula df selecionado com estatísticas envolendo df atual ''' data_hoje = date.today() lista_cidades = list(set(df_selecionados['cidade'])) lista_retorno = [] # se df estiver vazio... if (len(df_atual) == 0): # itera cidades for cidade in lista_cidades: lista_valores = [cidade, 0, 0, 0, 0, 0, 0, 0, 0] lista_retorno.append(lista_valores) # se não estiver vazio... else: df_atual['data_formatada'] = pd.to_datetime(df_atual['data']) df_passado = df_atual.loc[(df_atual['data_formatada'] < pd.to_datetime(data_hoje))] # itera cidades for cidade in lista_cidades: df_cidade = df_passado.loc[(df_passado['cidade'] == cidade)] lista_datas = set(df_cidade['data']) qtd_dias = self.count_dias(data_hoje, lista_datas) df_valores_cidade = df_selecionados.loc[(df_selecionados['cidade'] == cidade)] # se poucos dias, retorna 0 if (qtd_dias < self.qtd_min_dias_consecutivos): lista_valores = [cidade, 0, 0, 0, 0, 0, 0, 0, 0] lista_retorno.append(lista_valores) continue # filtra datas consecutivas data_ultima = data_hoje - datetime.timedelta(qtd_dias) data_ultima = data_ultima.strftime("%d/%m/%Y") df_cidade = df_cidade.loc[df_cidade['data_formatada'] >= data_ultima].sort_values(by=['data_formatada'], ascending=False) # valores computados qtd_dias_temperatura_max = self.count_valor(float(df_valores_cidade['temperatura']), df_cidade['temperatura'].values.tolist(), 'maior') qtd_dias_temperatura_min = self.count_valor(float(df_valores_cidade['temperatura']), df_cidade['temperatura'].values.tolist(), 'menor') qtd_dias_nebulosidade_max = self.count_valor(float(df_valores_cidade['nebulosidade']), df_cidade['nebulosidade'].values.tolist(), 'maior') qtd_dias_umidade_max = self.count_valor(float(df_valores_cidade['umidade']), df_cidade['umidade'].values.tolist(), 'maior') qtd_dias_vento_max = self.count_valor(float(df_valores_cidade['vento']), df_cidade['vento'].values.tolist(), 'maior') qtd_dias_onda_max = self.count_valor(float(df_valores_cidade['altura_maior_onda']), df_cidade['altura_maior_onda'].values.tolist(), 'maior') # outliers temperatura_media = df_cidade['temperatura'].mean() temperatura_std = df_cidade['temperatura'].std() temp_max = temperatura_media + (temperatura_std * self.multiplicador_std) temp_min = temperatura_media - (temperatura_std * self.multiplicador_std) if (df_valores_cidade['temperatura'] > temp_max): flag_outlier_temperatura = 1 elif (df_valores_cidade['temperatura'] < temp_min): flag_outlier_temperatura = -1 else: flag_outlier_temperatura = 0 lista_valores = [cidade, qtd_dias, qtd_dias_temperatura_max, qtd_dias_temperatura_min, qtd_dias_nebulosidade_max, qtd_dias_umidade_max, qtd_dias_vento_max, qtd_dias_onda_max, flag_outlier_temperatura] lista_retorno.append(lista_valores) # estatísticas df_estatisticas = pd.DataFrame(lista_retorno, columns=['cidade', 'qtd_dias_consecutivos', 'qtd_dias_temperatura_max', 'qtd_dias_temperatura_min', 'qtd_dias_nebulosidade_max', 'qtd_dias_umidade_max', 'qtd_dias_vento_max', 'qtd_dias_onda_max', 'flag_outlier_temperatura']) # transforma dados em string df_estatisticas['qtd_dias_consecutivos'] = df_estatisticas['qtd_dias_consecutivos'].astype(str) df_estatisticas['qtd_dias_temperatura_max'] = df_estatisticas['qtd_dias_temperatura_max'].astype(str) df_estatisticas['qtd_dias_temperatura_min'] = df_estatisticas['qtd_dias_temperatura_min'].astype(str) df_estatisticas['qtd_dias_nebulosidade_max'] = df_estatisticas['qtd_dias_nebulosidade_max'].astype(str) df_estatisticas['qtd_dias_umidade_max'] = df_estatisticas['qtd_dias_umidade_max'].astype(str) df_estatisticas['qtd_dias_vento_max'] = df_estatisticas['qtd_dias_vento_max'].astype(str) df_estatisticas['qtd_dias_onda_max'] = df_estatisticas['qtd_dias_onda_max'].astype(str) df_estatisticas['flag_outlier_temperatura'] = df_estatisticas['flag_outlier_temperatura'].astype(str) return df_estatisticas def publica_conteudo(self): ''' Publica previsão do tempo (tábua de marés) ''' # data de hoje data_hoje = date.today().strftime("%d_%m_%Y") try: # gera resultados df_resultados = self.gera_df_tabua_mares() # salva resultados na pasta df_resultados[self.lista_colunas_salvar].to_csv(f"resultados_cidades/{data_hoje}.csv", index=False, sep=';') # adiciona dados da rodada ao BD df_atual = pd.read_csv(self.path_bd, sep=';') df_atual = df_atual.loc[(df_atual['data'] != date.today().strftime("%d/%m/%Y")) & (~df_atual['cidade'].isnull())] df_novo = df_atual.append(df_resultados[self.lista_colunas_salvar]) df_novo.to_csv(self.path_bd, index=False, sep=';') # filtra dados para publicação df_selecionados = self.seleciona_conteudo_publicar(df_resultados) except: sys.exit(0) # se não encontrar nada para publicar, encerra execução try: if (len(df_selecionados) == 0): sys.exit(0) except: sys.exit(0) # popula resultados com estatísticas df_estatisticas = self.popula_estatisticas(df_selecionados, df_atual) # junta tabelas df_selecionados =
pd.merge(df_selecionados, df_estatisticas, how='left', on='cidade')
pandas.merge
import glob import os import re import pandas as pd import numpy as np from collections import Counter path = "files/" files = glob.glob(path+"*.txt") # first we need a list of all words in all files. finalDataframe = pd.DataFrame() for file in files: with open(file, mode="r") as f: data = f.read() # Split data into array of words, non case sensitive word = re.split(r"\W+", data, flags=re.IGNORECASE) # Remove withe spaces and empty strings cleanWords = [line for line in [l.strip() for l in word] if line] # Remove duplicates, we don't want them words = list(set(cleanWords)) # Add data into dictionary dictionary = {"filename":file, "values":pd.Series(words)} finalDataframe = finalDataframe.append(pd.DataFrame(dictionary)) # list of words in total wordstmp = finalDataframe['values'] dic2 = { "words" : wordstmp } df1 = pd.DataFrame(dic2) df1 = df1.set_index("words") sss2 = [finalDataframe['filename']=='files/file2.txt'] sss1 = [finalDataframe['filename']=='files/file1.txt'] sss1[0] dd1=list(sss1[0]) df1['file1']= dd1 dd2=list(sss2[0]) df1['file2']=dd2 finalDataframe['file1']=dd1 finalDataframe['file2']=dd2 test1=pd.pivot_table(finalDataframe, values=['file1','file2'],index=['values']) test3 =
pd.crosstab(finalDataframe['values'], finalDataframe['filename'], margins=True)
pandas.crosstab
# --------------------------------------------------------------------------------------------- # MIT License # Copyright (c) 2020, Solace Corporation, <NAME> (<EMAIL>) # --------------------------------------------------------------------------------------------- import array as arr import json from .broker_series import BrokerSeries from .common_base import CommonBase from .constants import * from ._constants import * from .latency_broker_latency_series import LatencyBrokerLatencySeries from .latency_node_latency_series import LatencyNodeLatencySeries from .ping_series import PingSeries from .run_meta import RunMeta from .run import Run import numpy as np import pandas as pd CHECK_PASSING_MD="**<span style='color:green'>passing</span>**" CHECK_FAILING_MD="**<span style='color:red'>failing</span>**" d_latency_percentile = { # k_latency_00_05th : 0.005, # k_latency_01_th : 0.01, # k_latency_00_5th : 0.05, # k_latency_10th : 0.10, # k_latency_25th : 0.25, # k_latency_50th : 0.5, # k_latency_75th : 0.75, k_latency_90th : 0.90, k_latency_95th : 0.95, k_latency_99th : 0.99, k_latency_99_5th : 0.995, k_latency_99_9th : 0.999, # k_latency_99_95th : 0.9995, # k_latency_99_99th : 0.9999, # k_latency_99_995th : 0.99995, # k_latency_99_999th : 0.99999, } class RunAnalytics(): def __init__(self, run): self.run = run def _export_broker_metric_by_consumer_as_dataframe(self, broker_metric, conversion_function=None): client_connection_details_series = self.run.broker_series.getSeriesOfListOfClientConnectionDetails() client_list=self.run.run_meta.getConsumerNamesAsDict() for client_connection_details_sample in client_connection_details_series: for client_connection_detail in client_connection_details_sample["client_connection_details"]: client_name = self.run.run_meta.composeDisplayClientName(client_connection_detail['clientName']) if client_name in client_list: if conversion_function: value = conversion_function(client_connection_detail[broker_metric]) else: value = client_connection_detail[broker_metric] client_list[client_name].append(value) return pd.DataFrame( data=client_list ) def export_broker_txQueueByteCount_by_consumer_as_dataframe(self): return self._export_broker_metric_by_consumer_as_dataframe('txQueueByteCount') def export_broker_smoothedRoundTripTime_by_consumer_as_dataframe(self): def convert2Micros(value): return value / 1000 return self._export_broker_metric_by_consumer_as_dataframe('smoothedRoundTripTime', convert2Micros) def export_broker_timedRetransmitCount_by_consumer_as_dataframe(self): return self._export_broker_metric_by_consumer_as_dataframe('timedRetransmitCount') def export_broker_uptime_by_consumer_as_dataframe(self): return self._export_broker_metric_by_consumer_as_dataframe('uptime') def export_broker_node_distinct_latencies_as_dataframe(self, col_name:str ="run"): return pd.DataFrame(data={col_name: self.run.export_broker_node_distinct_latencies()}) def export_latency_node_distinct_latencies_as_dataframe(self, col_name:str ="run"): return pd.DataFrame(data={col_name: self.run.export_latency_node_distinct_latencies()}) def export_latency_node_series_latencies_metrics_as_dataframe(self): return pd.DataFrame(data=self.export_latency_node_series_latencies_metrics()) def export_broker_node_series_latencies_metrics_as_dataframe(self): return pd.DataFrame(data=self.export_broker_node_series_latencies_metrics()) def export_broker_node_series_latencies_metrics(self): result = dict() #quantiles percentiles = list(d_latency_percentile.values()) lat_dict =self.run.export_broker_node_distinct_latencies_per_sample() for key, value in lat_dict.items(): tmp_df = pd.DataFrame(data={"sample":value}) tmp_quantiles = tmp_df['sample'].quantile(q=percentiles) #self.add_to_dict(result,k_latency_minimum, tmp_df['sample'].min()) #self.add_to_dict(result,k_latency_maximum, tmp_df['sample'].max()) self.add_to_dict(result,k_latency_average, tmp_df['sample'].mean()) for map_key,map_percentile in d_latency_percentile.items(): self.add_to_dict(result,map_key, tmp_quantiles[map_percentile]) return result def export_latency_node_series_latencies_metrics(self): result = dict() #quantiles percentiles = list(d_latency_percentile.values()) lat_dict =self.run.export_latency_node_distinct_latencies_per_sample() for key, value in lat_dict.items(): tmp_df =
pd.DataFrame(data={"sample":value})
pandas.DataFrame
import json import numpy as np import os import pandas as pd import urllib2 def collectData(): # connect to poloniex's API url = 'https://poloniex.com/public?command=returnChartData&currencyPair=USDT_BTC&start=1518393227&end=9999999999&resolution=auto' # parse json returned from the API to Pandas DF openUrl = urllib2.urlopen(url) r = openUrl.read() openUrl.close() d = json.loads(r.decode()) df =
pd.DataFrame(d)
pandas.DataFrame
from __future__ import division import pytest import numpy as np from datetime import timedelta from pandas import ( Interval, IntervalIndex, Index, isna, notna, interval_range, Timestamp, Timedelta, compat, date_range, timedelta_range, DateOffset) from pandas.compat import lzip from pandas.tseries.offsets import Day from pandas._libs.interval import IntervalTree from pandas.tests.indexes.common import Base import pandas.util.testing as tm import pandas as pd @pytest.fixture(scope='class', params=['left', 'right', 'both', 'neither']) def closed(request): return request.param @pytest.fixture(scope='class', params=[None, 'foo']) def name(request): return request.param class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index = IntervalIndex.from_arrays([0, 1], [1, 2]) self.index_with_nan = IntervalIndex.from_tuples( [(0, 1), np.nan, (1, 2)]) self.indices = dict(intervalIndex=tm.makeIntervalIndex(10)) def create_index(self, closed='right'): return IntervalIndex.from_breaks(range(11), closed=closed) def create_index_with_nan(self, closed='right'): mask = [True, False] + [True] * 8 return IntervalIndex.from_arrays( np.where(mask, np.arange(10), np.nan), np.where(mask, np.arange(1, 11), np.nan), closed=closed) def test_constructors(self, closed, name): left, right = Index([0, 1, 2, 3]), Index([1, 2, 3, 4]) ivs = [Interval(l, r, closed=closed) for l, r in lzip(left, right)] expected = IntervalIndex._simple_new( left=left, right=right, closed=closed, name=name) result = IntervalIndex(ivs, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_intervals(ivs, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_breaks( np.arange(5), closed=closed, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_arrays( left.values, right.values, closed=closed, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_tuples( lzip(left, right), closed=closed, name=name) tm.assert_index_equal(result, expected) result = Index(ivs, name=name) assert isinstance(result, IntervalIndex) tm.assert_index_equal(result, expected) # idempotent tm.assert_index_equal(Index(expected), expected) tm.assert_index_equal(IntervalIndex(expected), expected) result = IntervalIndex.from_intervals(expected) tm.assert_index_equal(result, expected) result = IntervalIndex.from_intervals( expected.values, name=expected.name) tm.assert_index_equal(result, expected) left, right = expected.left, expected.right result = IntervalIndex.from_arrays( left, right, closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_tuples( expected.to_tuples(), closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) breaks = expected.left.tolist() + [expected.right[-1]] result = IntervalIndex.from_breaks( breaks, closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('data', [[np.nan], [np.nan] * 2, [np.nan] * 50]) def test_constructors_nan(self, closed, data): # GH 18421 expected_values = np.array(data, dtype=object) expected_idx = IntervalIndex(data, closed=closed) # validate the expected index assert expected_idx.closed == closed tm.assert_numpy_array_equal(expected_idx.values, expected_values) result = IntervalIndex.from_tuples(data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_breaks([np.nan] + data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_arrays(data, data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) if closed == 'right': # Can't specify closed for IntervalIndex.from_intervals result = IntervalIndex.from_intervals(data) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) @pytest.mark.parametrize('data', [ [], np.array([], dtype='int64'), np.array([], dtype='float64'), np.array([], dtype=object)]) def test_constructors_empty(self, data, closed): # GH 18421 expected_dtype = data.dtype if isinstance(data, np.ndarray) else object expected_values = np.array([], dtype=object) expected_index = IntervalIndex(data, closed=closed) # validate the expected index assert expected_index.empty assert expected_index.closed == closed assert expected_index.dtype.subtype == expected_dtype tm.assert_numpy_array_equal(expected_index.values, expected_values) result = IntervalIndex.from_tuples(data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_breaks(data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_arrays(data, data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) if closed == 'right': # Can't specify closed for IntervalIndex.from_intervals result = IntervalIndex.from_intervals(data) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) def test_constructors_errors(self): # scalar msg = ('IntervalIndex\(...\) must be called with a collection of ' 'some kind, 5 was passed') with tm.assert_raises_regex(TypeError, msg): IntervalIndex(5) # not an interval msg = ("type <(class|type) 'numpy.int64'> with value 0 " "is not an interval") with tm.assert_raises_regex(TypeError, msg): IntervalIndex([0, 1]) with tm.assert_raises_regex(TypeError, msg): IntervalIndex.from_intervals([0, 1]) # invalid closed msg = "invalid options for 'closed': invalid" with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_arrays([0, 1], [1, 2], closed='invalid') # mismatched closed within intervals msg = 'intervals must all be closed on the same side' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2, closed='left')]) with tm.assert_raises_regex(ValueError, msg): Index([Interval(0, 1), Interval(2, 3, closed='left')]) # mismatched closed inferred from intervals vs constructor. msg = 'conflicting values for closed' with tm.assert_raises_regex(ValueError, msg): iv = [Interval(0, 1, closed='both'), Interval(1, 2, closed='both')] IntervalIndex(iv, closed='neither') # no point in nesting periods in an IntervalIndex msg = 'Period dtypes are not supported, use a PeriodIndex instead' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_breaks( pd.period_range('2000-01-01', periods=3)) # decreasing breaks/arrays msg = 'left side of interval must be <= right side' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_breaks(range(10, -1, -1)) with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_arrays(range(10, -1, -1), range(9, -2, -1)) def test_constructors_datetimelike(self, closed): # DTI / TDI for idx in [pd.date_range('20130101', periods=5), pd.timedelta_range('1 day', periods=5)]: result = IntervalIndex.from_breaks(idx, closed=closed) expected = IntervalIndex.from_breaks(idx.values, closed=closed) tm.assert_index_equal(result, expected) expected_scalar_type = type(idx[0]) i = result[0] assert isinstance(i.left, expected_scalar_type) assert isinstance(i.right, expected_scalar_type) def test_constructors_error(self): # non-intervals def f(): IntervalIndex.from_intervals([0.997, 4.0]) pytest.raises(TypeError, f) def test_properties(self, closed): index = self.create_index(closed=closed) assert len(index) == 10 assert index.size == 10 assert index.shape == (10, ) tm.assert_index_equal(index.left, Index(np.arange(10))) tm.assert_index_equal(index.right, Index(np.arange(1, 11))) tm.assert_index_equal(index.mid, Index(np.arange(0.5, 10.5))) assert index.closed == closed ivs = [Interval(l, r, closed) for l, r in zip(range(10), range(1, 11))] expected = np.array(ivs, dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) # with nans index = self.create_index_with_nan(closed=closed) assert len(index) == 10 assert index.size == 10 assert index.shape == (10, ) expected_left = Index([0, np.nan, 2, 3, 4, 5, 6, 7, 8, 9]) expected_right = expected_left + 1 expected_mid = expected_left + 0.5 tm.assert_index_equal(index.left, expected_left) tm.assert_index_equal(index.right, expected_right) tm.assert_index_equal(index.mid, expected_mid) assert index.closed == closed ivs = [Interval(l, r, closed) if notna(l) else np.nan for l, r in zip(expected_left, expected_right)] expected = np.array(ivs, dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) def test_with_nans(self, closed): index = self.create_index(closed=closed) assert not index.hasnans result = index.isna() expected = np.repeat(False, len(index)) tm.assert_numpy_array_equal(result, expected) result = index.notna() expected = np.repeat(True, len(index)) tm.assert_numpy_array_equal(result, expected) index = self.create_index_with_nan(closed=closed) assert index.hasnans result = index.isna() expected = np.array([False, True] + [False] * (len(index) - 2)) tm.assert_numpy_array_equal(result, expected) result = index.notna() expected = np.array([True, False] + [True] * (len(index) - 2)) tm.assert_numpy_array_equal(result, expected) def test_copy(self, closed): expected = self.create_index(closed=closed) result = expected.copy() assert result.equals(expected) result = expected.copy(deep=True) assert result.equals(expected) assert result.left is not expected.left def test_ensure_copied_data(self, closed): # exercise the copy flag in the constructor # not copying index = self.create_index(closed=closed) result = IntervalIndex(index, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='same') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='same') # by-definition make a copy result = IntervalIndex.from_intervals(index.values, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='copy') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='copy') def test_equals(self, closed): expected = IntervalIndex.from_breaks(np.arange(5), closed=closed) assert expected.equals(expected) assert expected.equals(expected.copy()) assert not expected.equals(expected.astype(object)) assert not expected.equals(np.array(expected)) assert not expected.equals(list(expected)) assert not expected.equals([1, 2]) assert not expected.equals(np.array([1, 2])) assert not expected.equals(pd.date_range('20130101', periods=2)) expected_name1 = IntervalIndex.from_breaks( np.arange(5), closed=closed, name='foo') expected_name2 = IntervalIndex.from_breaks( np.arange(5), closed=closed, name='bar') assert expected.equals(expected_name1) assert expected_name1.equals(expected_name2) for other_closed in {'left', 'right', 'both', 'neither'} - {closed}: expected_other_closed = IntervalIndex.from_breaks( np.arange(5), closed=other_closed) assert not expected.equals(expected_other_closed) def test_astype(self, closed): idx = self.create_index(closed=closed) for dtype in [np.int64, np.float64, 'datetime64[ns]', 'datetime64[ns, US/Eastern]', 'timedelta64', 'period[M]']: pytest.raises(ValueError, idx.astype, dtype) result = idx.astype(object) tm.assert_index_equal(result, Index(idx.values, dtype='object')) assert not idx.equals(result) assert idx.equals(IntervalIndex.from_intervals(result)) result = idx.astype('interval') tm.assert_index_equal(result, idx) assert result.equals(idx) result = idx.astype('category') expected = pd.Categorical(idx, ordered=True) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize('klass', [list, tuple, np.array, pd.Series]) def test_where(self, closed, klass): idx = self.create_index(closed=closed) cond = [True] * len(idx) expected = idx result = expected.where(klass(cond)) tm.assert_index_equal(result, expected) cond = [False] + [True] * len(idx[1:]) expected = IntervalIndex([np.nan] + idx[1:].tolist()) result = idx.where(klass(cond)) tm.assert_index_equal(result, expected) def test_delete(self, closed): expected = IntervalIndex.from_breaks(np.arange(1, 11), closed=closed) result = self.create_index(closed=closed).delete(0) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('data', [ interval_range(0, periods=10, closed='neither'), interval_range(1.7, periods=8, freq=2.5, closed='both'), interval_range(Timestamp('20170101'), periods=12, closed='left'), interval_range(Timedelta('1 day'), periods=6, closed='right'), IntervalIndex.from_tuples([('a', 'd'), ('e', 'j'), ('w', 'z')]), IntervalIndex.from_tuples([(1, 2), ('a', 'z'), (3.14, 6.28)])]) def test_insert(self, data): item = data[0] idx_item = IntervalIndex([item]) # start expected = idx_item.append(data) result = data.insert(0, item) tm.assert_index_equal(result, expected) # end expected = data.append(idx_item) result = data.insert(len(data), item) tm.assert_index_equal(result, expected) # mid expected = data[:3].append(idx_item).append(data[3:]) result = data.insert(3, item) tm.assert_index_equal(result, expected) # invalid type msg = 'can only insert Interval objects and NA into an IntervalIndex' with tm.assert_raises_regex(ValueError, msg): data.insert(1, 'foo') # invalid closed msg = 'inserted item must be closed on the same side as the index' for closed in {'left', 'right', 'both', 'neither'} - {item.closed}: with tm.assert_raises_regex(ValueError, msg): bad_item = Interval(item.left, item.right, closed=closed) data.insert(1, bad_item) # GH 18295 (test missing) na_idx = IntervalIndex([np.nan], closed=data.closed) for na in (np.nan, pd.NaT, None): expected = data[:1].append(na_idx).append(data[1:]) result = data.insert(1, na) tm.assert_index_equal(result, expected) def test_take(self, closed): index = self.create_index(closed=closed) result = index.take(range(10)) tm.assert_index_equal(result, index) result = index.take([0, 0, 1]) expected = IntervalIndex.from_arrays( [0, 0, 1], [1, 1, 2], closed=closed) tm.assert_index_equal(result, expected) def test_unique(self, closed): # unique non-overlapping idx = IntervalIndex.from_tuples( [(0, 1), (2, 3), (4, 5)], closed=closed) assert idx.is_unique # unique overlapping - distinct endpoints idx = IntervalIndex.from_tuples([(0, 1), (0.5, 1.5)], closed=closed) assert idx.is_unique # unique overlapping - shared endpoints idx = pd.IntervalIndex.from_tuples( [(1, 2), (1, 3), (2, 3)], closed=closed) assert idx.is_unique # unique nested idx = IntervalIndex.from_tuples([(-1, 1), (-2, 2)], closed=closed) assert idx.is_unique # duplicate idx = IntervalIndex.from_tuples( [(0, 1), (0, 1), (2, 3)], closed=closed) assert not idx.is_unique # unique mixed idx = IntervalIndex.from_tuples([(0, 1), ('a', 'b')], closed=closed) assert idx.is_unique # duplicate mixed idx = IntervalIndex.from_tuples( [(0, 1), ('a', 'b'), (0, 1)], closed=closed) assert not idx.is_unique # empty idx = IntervalIndex([], closed=closed) assert idx.is_unique def test_monotonic(self, closed): # increasing non-overlapping idx = IntervalIndex.from_tuples( [(0, 1), (2, 3), (4, 5)], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # decreasing non-overlapping idx = IntervalIndex.from_tuples( [(4, 5), (2, 3), (1, 2)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing # unordered non-overlapping idx = IntervalIndex.from_tuples( [(0, 1), (4, 5), (2, 3)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # increasing overlapping idx = IntervalIndex.from_tuples( [(0, 2), (0.5, 2.5), (1, 3)], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # decreasing overlapping idx = IntervalIndex.from_tuples( [(1, 3), (0.5, 2.5), (0, 2)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing # unordered overlapping idx = IntervalIndex.from_tuples( [(0.5, 2.5), (0, 2), (1, 3)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # increasing overlapping shared endpoints idx = pd.IntervalIndex.from_tuples( [(1, 2), (1, 3), (2, 3)], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # decreasing overlapping shared endpoints idx = pd.IntervalIndex.from_tuples( [(2, 3), (1, 3), (1, 2)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing # stationary idx = IntervalIndex.from_tuples([(0, 1), (0, 1)], closed=closed) assert idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # empty idx = IntervalIndex([], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr(self): i = IntervalIndex.from_tuples([(0, 1), (1, 2)], closed='right') expected = ("IntervalIndex(left=[0, 1]," "\n right=[1, 2]," "\n closed='right'," "\n dtype='interval[int64]')") assert repr(i) == expected i = IntervalIndex.from_tuples((Timestamp('20130101'), Timestamp('20130102')), (Timestamp('20130102'), Timestamp('20130103')), closed='right') expected = ("IntervalIndex(left=['2013-01-01', '2013-01-02']," "\n right=['2013-01-02', '2013-01-03']," "\n closed='right'," "\n dtype='interval[datetime64[ns]]')") assert repr(i) == expected @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr_max_seq_item_setting(self): super(TestIntervalIndex, self).test_repr_max_seq_item_setting() @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr_roundtrip(self): super(TestIntervalIndex, self).test_repr_roundtrip() def test_get_item(self, closed): i = IntervalIndex.from_arrays((0, 1, np.nan), (1, 2, np.nan), closed=closed) assert i[0] == Interval(0.0, 1.0, closed=closed) assert i[1] == Interval(1.0, 2.0, closed=closed) assert isna(i[2]) result = i[0:1] expected = IntervalIndex.from_arrays((0.,), (1.,), closed=closed) tm.assert_index_equal(result, expected) result = i[0:2] expected = IntervalIndex.from_arrays((0., 1), (1., 2.), closed=closed) tm.assert_index_equal(result, expected) result = i[1:3] expected = IntervalIndex.from_arrays((1., np.nan), (2., np.nan), closed=closed) tm.assert_index_equal(result, expected) def test_get_loc_value(self): pytest.raises(KeyError, self.index.get_loc, 0) assert self.index.get_loc(0.5) == 0 assert self.index.get_loc(1) == 0 assert self.index.get_loc(1.5) == 1 assert self.index.get_loc(2) == 1 pytest.raises(KeyError, self.index.get_loc, -1) pytest.raises(KeyError, self.index.get_loc, 3) idx = IntervalIndex.from_tuples([(0, 2), (1, 3)]) assert idx.get_loc(0.5) == 0 assert idx.get_loc(1) == 0 tm.assert_numpy_array_equal(idx.get_loc(1.5), np.array([0, 1], dtype='int64')) tm.assert_numpy_array_equal(np.sort(idx.get_loc(2)), np.array([0, 1], dtype='int64')) assert idx.get_loc(3) == 1 pytest.raises(KeyError, idx.get_loc, 3.5) idx = IntervalIndex.from_arrays([0, 2], [1, 3]) pytest.raises(KeyError, idx.get_loc, 1.5) def slice_locs_cases(self, breaks): # TODO: same tests for more index types index = IntervalIndex.from_breaks([0, 1, 2], closed='right') assert index.slice_locs() == (0, 2) assert index.slice_locs(0, 1) == (0, 1) assert index.slice_locs(1, 1) == (0, 1) assert index.slice_locs(0, 2) == (0, 2) assert index.slice_locs(0.5, 1.5) == (0, 2) assert index.slice_locs(0, 0.5) == (0, 1) assert index.slice_locs(start=1) == (0, 2) assert index.slice_locs(start=1.2) == (1, 2) assert index.slice_locs(end=1) == (0, 1) assert index.slice_locs(end=1.1) == (0, 2) assert index.slice_locs(end=1.0) == (0, 1) assert index.slice_locs(-1, -1) == (0, 0) index = IntervalIndex.from_breaks([0, 1, 2], closed='neither') assert index.slice_locs(0, 1) == (0, 1) assert index.slice_locs(0, 2) == (0, 2) assert index.slice_locs(0.5, 1.5) == (0, 2) assert index.slice_locs(1, 1) == (1, 1) assert index.slice_locs(1, 2) == (1, 2) index = IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)], closed='both') assert index.slice_locs(1, 1) == (0, 1) assert index.slice_locs(1, 2) == (0, 2) def test_slice_locs_int64(self): self.slice_locs_cases([0, 1, 2]) def test_slice_locs_float64(self): self.slice_locs_cases([0.0, 1.0, 2.0]) def slice_locs_decreasing_cases(self, tuples): index = IntervalIndex.from_tuples(tuples) assert index.slice_locs(1.5, 0.5) == (1, 3) assert index.slice_locs(2, 0) == (1, 3) assert index.slice_locs(2, 1) == (1, 3) assert index.slice_locs(3, 1.1) == (0, 3) assert index.slice_locs(3, 3) == (0, 2) assert index.slice_locs(3.5, 3.3) == (0, 1) assert index.slice_locs(1, -3) == (2, 3) slice_locs = index.slice_locs(-1, -1) assert slice_locs[0] == slice_locs[1] def test_slice_locs_decreasing_int64(self): self.slice_locs_cases([(2, 4), (1, 3), (0, 2)]) def test_slice_locs_decreasing_float64(self): self.slice_locs_cases([(2., 4.), (1., 3.), (0., 2.)]) def test_slice_locs_fails(self): index = IntervalIndex.from_tuples([(1, 2), (0, 1), (2, 3)]) with pytest.raises(KeyError): index.slice_locs(1, 2) def test_get_loc_interval(self): assert self.index.get_loc(Interval(0, 1)) == 0 assert self.index.get_loc(Interval(0, 0.5)) == 0 assert self.index.get_loc(Interval(0, 1, 'left')) == 0 pytest.raises(KeyError, self.index.get_loc, Interval(2, 3)) pytest.raises(KeyError, self.index.get_loc, Interval(-1, 0, 'left')) def test_get_indexer(self): actual = self.index.get_indexer([-1, 0, 0.5, 1, 1.5, 2, 3]) expected = np.array([-1, -1, 0, 0, 1, 1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(self.index) expected = np.array([0, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) index = IntervalIndex.from_breaks([0, 1, 2], closed='left') actual = index.get_indexer([-1, 0, 0.5, 1, 1.5, 2, 3]) expected = np.array([-1, 0, 0, 1, 1, -1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(index[:1]) expected = np.array([0], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(index) expected = np.array([-1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) def test_get_indexer_subintervals(self): # TODO: is this right? # return indexers for wholly contained subintervals target = IntervalIndex.from_breaks(np.linspace(0, 2, 5)) actual = self.index.get_indexer(target) expected = np.array([0, 0, 1, 1], dtype='p') tm.assert_numpy_array_equal(actual, expected) target = IntervalIndex.from_breaks([0, 0.67, 1.33, 2]) actual = self.index.get_indexer(target) expected = np.array([0, 0, 1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(target[[0, -1]]) expected = np.array([0, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) target = IntervalIndex.from_breaks([0, 0.33, 0.67, 1], closed='left') actual = self.index.get_indexer(target) expected = np.array([0, 0, 0], dtype='intp') tm.assert_numpy_array_equal(actual, expected) def test_contains(self): # Only endpoints are valid. i = IntervalIndex.from_arrays([0, 1], [1, 2]) # Invalid assert 0 not in i assert 1 not in i assert 2 not in i # Valid assert Interval(0, 1) in i assert Interval(0, 2) in i assert Interval(0, 0.5) in i assert Interval(3, 5) not in i assert Interval(-1, 0, closed='left') not in i def testcontains(self): # can select values that are IN the range of a value i = IntervalIndex.from_arrays([0, 1], [1, 2]) assert i.contains(0.1) assert i.contains(0.5) assert i.contains(1) assert i.contains(Interval(0, 1)) assert i.contains(Interval(0, 2)) # these overlaps completely assert i.contains(Interval(0, 3)) assert i.contains(Interval(1, 3)) assert not i.contains(20) assert not i.contains(-20) def test_dropna(self, closed): expected = IntervalIndex.from_tuples( [(0.0, 1.0), (1.0, 2.0)], closed=closed) ii = IntervalIndex.from_tuples([(0, 1), (1, 2), np.nan], closed=closed) result = ii.dropna() tm.assert_index_equal(result, expected) ii = IntervalIndex.from_arrays( [0, 1, np.nan], [1, 2, np.nan], closed=closed) result = ii.dropna() tm.assert_index_equal(result, expected) def test_non_contiguous(self, closed): index = IntervalIndex.from_tuples([(0, 1), (2, 3)], closed=closed) target = [0.5, 1.5, 2.5] actual = index.get_indexer(target) expected = np.array([0, -1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) assert 1.5 not in index def test_union(self, closed): index = self.create_index(closed=closed) other = IntervalIndex.from_breaks(range(5, 13), closed=closed) expected = IntervalIndex.from_breaks(range(13), closed=closed) result = index.union(other) tm.assert_index_equal(result, expected) result = other.union(index) tm.assert_index_equal(result, expected) tm.assert_index_equal(index.union(index), index) tm.assert_index_equal(index.union(index[:1]), index) def test_intersection(self, closed): index = self.create_index(closed=closed) other = IntervalIndex.from_breaks(range(5, 13), closed=closed) expected = IntervalIndex.from_breaks(range(5, 11), closed=closed) result = index.intersection(other) tm.assert_index_equal(result, expected) result = other.intersection(index) tm.assert_index_equal(result, expected) tm.assert_index_equal(index.intersection(index), index) def test_difference(self, closed): index = self.create_index(closed=closed) tm.assert_index_equal(index.difference(index[:1]), index[1:]) def test_symmetric_difference(self, closed): idx = self.create_index(closed=closed) result = idx[1:].symmetric_difference(idx[:-1]) expected = IntervalIndex([idx[0], idx[-1]]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('op_name', [ 'union', 'intersection', 'difference', 'symmetric_difference']) def test_set_operation_errors(self, closed, op_name): index = self.create_index(closed=closed) set_op = getattr(index, op_name) # test errors msg = ('can only do set operations between two IntervalIndex objects ' 'that are closed on the same side') with tm.assert_raises_regex(ValueError, msg): set_op(Index([1, 2, 3])) for other_closed in {'right', 'left', 'both', 'neither'} - {closed}: other = self.create_index(closed=other_closed) with tm.assert_raises_regex(ValueError, msg): set_op(other) def test_isin(self, closed): index = self.create_index(closed=closed) expected = np.array([True] + [False] * (len(index) - 1)) result = index.isin(index[:1]) tm.assert_numpy_array_equal(result, expected) result = index.isin([index[0]]) tm.assert_numpy_array_equal(result, expected) other = IntervalIndex.from_breaks(np.arange(-2, 10), closed=closed) expected = np.array([True] * (len(index) - 1) + [False]) result = index.isin(other) tm.assert_numpy_array_equal(result, expected) result = index.isin(other.tolist()) tm.assert_numpy_array_equal(result, expected) for other_closed in {'right', 'left', 'both', 'neither'}: other = self.create_index(closed=other_closed) expected = np.repeat(closed == other_closed, len(index)) result = index.isin(other) tm.assert_numpy_array_equal(result, expected) result = index.isin(other.tolist()) tm.assert_numpy_array_equal(result, expected) def test_comparison(self): actual = Interval(0, 1) < self.index expected = np.array([False, True]) tm.assert_numpy_array_equal(actual, expected) actual = Interval(0.5, 1.5) < self.index expected = np.array([False, True]) tm.assert_numpy_array_equal(actual, expected) actual = self.index > Interval(0.5, 1.5) tm.assert_numpy_array_equal(actual, expected) actual = self.index == self.index expected = np.array([True, True]) tm.assert_numpy_array_equal(actual, expected) actual = self.index <= self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index >= self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index < self.index expected = np.array([False, False]) tm.assert_numpy_array_equal(actual, expected) actual = self.index > self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index == IntervalIndex.from_breaks([0, 1, 2], 'left') tm.assert_numpy_array_equal(actual, expected) actual = self.index == self.index.values tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index.values == self.index tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index <= self.index.values tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index != self.index.values tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index > self.index.values tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index.values > self.index tm.assert_numpy_array_equal(actual, np.array([False, False])) # invalid comparisons actual = self.index == 0 tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index == self.index.left tm.assert_numpy_array_equal(actual, np.array([False, False])) with tm.assert_raises_regex(TypeError, 'unorderable types'): self.index > 0 with tm.assert_raises_regex(TypeError, 'unorderable types'): self.index <= 0 with pytest.raises(TypeError): self.index > np.arange(2) with pytest.raises(ValueError): self.index > np.arange(3) def test_missing_values(self, closed): idx = Index([np.nan, Interval(0, 1, closed=closed), Interval(1, 2, closed=closed)]) idx2 = IntervalIndex.from_arrays( [np.nan, 0, 1], [np.nan, 1, 2], closed=closed) assert idx.equals(idx2) with pytest.raises(ValueError): IntervalIndex.from_arrays( [np.nan, 0, 1], np.array([0, 1, 2]), closed=closed) tm.assert_numpy_array_equal(isna(idx), np.array([True, False, False])) def test_sort_values(self, closed): index = self.create_index(closed=closed) result = index.sort_values() tm.assert_index_equal(result, index) result = index.sort_values(ascending=False) tm.assert_index_equal(result, index[::-1]) # with nan index = IntervalIndex([Interval(1, 2), np.nan, Interval(0, 1)]) result = index.sort_values() expected = IntervalIndex([Interval(0, 1), Interval(1, 2), np.nan]) tm.assert_index_equal(result, expected) result = index.sort_values(ascending=False) expected = IntervalIndex([np.nan, Interval(1, 2), Interval(0, 1)]) tm.assert_index_equal(result, expected) def test_datetime(self): dates = date_range('2000', periods=3) idx = IntervalIndex.from_breaks(dates) tm.assert_index_equal(idx.left, dates[:2]) tm.assert_index_equal(idx.right, dates[-2:]) expected = date_range('2000-01-01T12:00', periods=2) tm.assert_index_equal(idx.mid, expected) assert Timestamp('2000-01-01T12') not in idx assert Timestamp('2000-01-01T12') not in idx target = date_range('1999-12-31T12:00', periods=7, freq='12H') actual = idx.get_indexer(target) expected = np.array([-1, -1, 0, 0, 1, 1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) def test_append(self, closed): index1 = IntervalIndex.from_arrays([0, 1], [1, 2], closed=closed) index2 = IntervalIndex.from_arrays([1, 2], [2, 3], closed=closed) result = index1.append(index2) expected = IntervalIndex.from_arrays( [0, 1, 1, 2], [1, 2, 2, 3], closed=closed) tm.assert_index_equal(result, expected) result = index1.append([index1, index2]) expected = IntervalIndex.from_arrays( [0, 1, 0, 1, 1, 2], [1, 2, 1, 2, 2, 3], closed=closed) tm.assert_index_equal(result, expected) msg = ('can only append two IntervalIndex objects that are closed ' 'on the same side') for other_closed in {'left', 'right', 'both', 'neither'} - {closed}: index_other_closed = IntervalIndex.from_arrays( [0, 1], [1, 2], closed=other_closed) with tm.assert_raises_regex(ValueError, msg): index1.append(index_other_closed) def test_is_non_overlapping_monotonic(self, closed): # Should be True in all cases tpls = [(0, 1), (2, 3), (4, 5), (6, 7)] idx = IntervalIndex.from_tuples(tpls, closed=closed) assert idx.is_non_overlapping_monotonic is True idx = IntervalIndex.from_tuples(tpls[::-1], closed=closed) assert idx.is_non_overlapping_monotonic is True # Should be False in all cases (overlapping) tpls = [(0, 2), (1, 3), (4, 5), (6, 7)] idx = IntervalIndex.from_tuples(tpls, closed=closed) assert idx.is_non_overlapping_monotonic is False idx = IntervalIndex.from_tuples(tpls[::-1], closed=closed) assert idx.is_non_overlapping_monotonic is False # Should be False in all cases (non-monotonic) tpls = [(0, 1), (2, 3), (6, 7), (4, 5)] idx = IntervalIndex.from_tuples(tpls, closed=closed) assert idx.is_non_overlapping_monotonic is False idx = IntervalIndex.from_tuples(tpls[::-1], closed=closed) assert idx.is_non_overlapping_monotonic is False # Should be False for closed='both', overwise True (GH16560) if closed == 'both': idx = IntervalIndex.from_breaks(range(4), closed=closed) assert idx.is_non_overlapping_monotonic is False else: idx = IntervalIndex.from_breaks(range(4), closed=closed) assert idx.is_non_overlapping_monotonic is True class TestIntervalRange(object): def test_construction_from_numeric(self, closed, name): # combinations of start/end/periods without freq expected = IntervalIndex.from_breaks( np.arange(0, 6), name=name, closed=closed) result = interval_range(start=0, end=5, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=0, periods=5, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=5, periods=5, name=name, closed=closed) tm.assert_index_equal(result, expected) # combinations of start/end/periods with freq expected = IntervalIndex.from_tuples([(0, 2), (2, 4), (4, 6)], name=name, closed=closed) result = interval_range(start=0, end=6, freq=2, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=0, periods=3, freq=2, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=6, periods=3, freq=2, name=name, closed=closed) tm.assert_index_equal(result, expected) # output truncates early if freq causes end to be skipped. expected = IntervalIndex.from_tuples([(0.0, 1.5), (1.5, 3.0)], name=name, closed=closed) result = interval_range(start=0, end=4, freq=1.5, name=name, closed=closed) tm.assert_index_equal(result, expected) def test_construction_from_timestamp(self, closed, name): # combinations of start/end/periods without freq start, end = Timestamp('2017-01-01'), Timestamp('2017-01-06') breaks = date_range(start=start, end=end) expected = IntervalIndex.from_breaks(breaks, name=name, closed=closed) result = interval_range(start=start, end=end, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=start, periods=5, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=end, periods=5, name=name, closed=closed) tm.assert_index_equal(result, expected) # combinations of start/end/periods with fixed freq freq = '2D' start, end = Timestamp('2017-01-01'), Timestamp('2017-01-07') breaks = date_range(start=start, end=end, freq=freq) expected = IntervalIndex.from_breaks(breaks, name=name, closed=closed) result = interval_range(start=start, end=end, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=start, periods=3, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=end, periods=3, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) # output truncates early if freq causes end to be skipped. end = Timestamp('2017-01-08') result = interval_range(start=start, end=end, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) # combinations of start/end/periods with non-fixed freq freq = 'M' start, end = Timestamp('2017-01-01'),
Timestamp('2017-12-31')
pandas.Timestamp
""" Code for the optimization and gaming component of the Baselining work. @author: <NAME>, <NAME> @date Mar 2, 2016 """ import numpy as np import pandas as pd import logging from gurobipy import GRB, Model, quicksum, LinExpr from pandas.tseries.holiday import USFederalHolidayCalendar from datetime import datetime from .utils import (get_energy_charges, get_demand_charge, dem_charges, dem_charges_yearly, get_pdp_demand_credit, get_DR_rewards, powerset, E19, carbon_costs) # define some string formatters psform = '%Y-%m-%d %H:%M' dsform = '%Y-%m-%d' class BLModel(object): """ Abstract base class for Baselining models. """ def __init__(self, name): """ Construct an abstract dynamical system object based on the gurobipy Model object 'model'. """ self._name = name self._model = Model() def get_model(self): """ Returns the underlying gurobiy Model object. """ return self._model def set_dynsys(self, dynsys): """ Initialize dynamical system for underlying dynamics. """ self._dynsys = dynsys def set_window(self, index): """ Set the window for the optimization. Here index is a pandas DatetimeIndex. """ self._index = index self._dynsys.set_window(index) def energy_charges(self, tariff, isRT=False, LMP=None, isPDP=False, twindow=None, carbon=False): """ Return total enery consumption charges (as determined by the tariff's energy charge) as a gurobipy LinExpr. """ locidx = self._index.tz_convert('US/Pacific') year = locidx[0].year if isRT and isPDP: raise Exception('Cannot combine RTP and PDP.') nrg_charges = get_energy_charges( self._index, tariff, isRT=isRT, LMP=LMP, isPDP=isPDP, carbon=carbon, year=year)['EnergyCharge'] cons = self._dynsys.get_consumption()['energy'] if twindow is None: # echrg_= quicksum([ec * con for ec, con in # zip(nrg_charges.values, cons.values)]) echrg_ = [ec * con for ec, con in zip(nrg_charges.values, cons.values)] echrg = pd.Series(echrg_, index=locidx) else: nrg_charges_ = nrg_charges.loc[twindow[0]:twindow[1]] cons_ = cons.loc[twindow[0]:twindow[1]] # echrg = quicksum([ec * con for ec, con in # zip(nrg_charges_.values, cons_.values)]) echrg_ = [ec * con for ec, con in zip(nrg_charges_.values, cons_.values)] indx = locidx[locidx.get_loc(twindow[0]): locidx.get_loc(twindow[1])+1] echrg = pd.Series(echrg_, index=indx) return echrg def demand_charges(self, tariff, isPDP=False): """ Return the total demand charges under the tariff as a gurobipy LinExpr. """ # determine which year/month combinations there is a demand charge, # and create a variable for each of them if hasattr(self, '_maxcon'): for maxcon in self._maxcon.values(): self._model.remove(maxcon) del self._maxcon if hasattr(self, '_maxconbnd'): for maxconbnd in self._maxconbnd.values(): self._model.remove(maxconbnd) del self._maxconbnd if hasattr(self, '_maxconppk'): for maxconppk in self._maxconppk.values(): self._model.remove(maxconppk) del self._maxconppk if hasattr(self, '_maxconppkbnd'): for maxconppkbnd in self._maxconppkbnd.values(): self._model.remove(maxconppkbnd) del self._maxconppkbnd if hasattr(self, '_maxconpk'): for maxconpk in self._maxconpk.values(): self._model.remove(maxconpk) del self._maxconpk if hasattr(self, '_maxconpkbnd'): for maxconpkbnd in self._maxconpkbnd.values(): self._model.remove(maxconpkbnd) del self._maxconpkbnd if hasattr(self, '_maxconpks'): for maxconpks in self._maxconpks.values(): self._model.remove(maxconpks) del self._maxconpks if hasattr(self, '_maxconppkw'): for maxconppkw in self._maxconppkw.values(): self._model.remove(maxconppkw) del self._maxconppkw if hasattr(self, '_maxconppkbndw'): for maxconppkbndw in self._maxconppkbndw.values(): self._model.remove(maxconppkbndw) del self._maxconppkbndw if hasattr(self, '_maxconppks'): for maxconppks in self._maxconppks.values(): self._model.remove(maxconppks) del self._maxconppks if hasattr(self, '_maxconppkbnds'): for maxconppkbnds in self._maxconppkbnds.values(): self._model.remove(maxconppkbnds) del self._maxconppkbnds self._model.update() locidx = self._index.tz_convert('US/Pacific') ym_dict = {year: np.unique(locidx[locidx.year == year].month) for year in np.unique(locidx.year)} indx = [] for year, months in ym_dict.items(): for month in months: indx.append(pd.Timestamp(datetime(year, month, 1), tz='US/Pacific')) if tariff in dem_charges: if not(tariff in E19): self._maxcon, self._maxconbnd = {}, {} # locidx = self._index.tz_convert('US/Pacific') # print locidx # the following creates a dictionary with all years in the data # as keys, and for each year the value is an array of (unique) # months that appear during that year. This is used for keeping # track of the peak consumpiton for the demand charge # ym_dict = {year: np.unique(locidx[locidx.year == year].month) # for year in np.unique(locidx.year)} # indx=[] for year, months in ym_dict.items(): for month in months: # declare variable for max consumption self._maxcon[year, month] = self._model.addVar( vtype=GRB.CONTINUOUS, name='maxcon[{},{}]'.format(year, month)) # indx.append(pd.Timestamp(datetime(year,month,1),tz='US/Pacific')) self._model.update() # now add in the necessary constraints and update objective dcharges = [] cons = self._dynsys.get_consumption()['power'] for year, months in ym_dict.items(): for month in months: relcons = cons[(locidx.year == year) & (locidx.month == month)].values for i, con in enumerate(relcons): self._maxconbnd[year, month, i] = self._model.addConstr( lhs=self._maxcon[year, month], sense=GRB.GREATER_EQUAL, rhs=con, name='maxconbnd[{},{},{}]'.format( year, month, i)) # dcharges += (get_demand_charge(tariff, month, isPDP)* # self._maxcon[year, month]) dcharges.append( (get_demand_charge(tariff, month, isPDP, year=year) * self._maxcon[year, month])) dcharges =
pd.Series(dcharges, index=indx)
pandas.Series
# -*- coding: utf-8 -*- """ Created on Fri Feb 22 15:36:17 2019 @author: fgw """ import pandas as pd from collections import deque from sklearn.preprocessing import MinMaxScaler class Data_Process(object): def __init__(self, data_path): data =
pd.read_csv(data_path, sep=',')
pandas.read_csv
from sklearn.naive_bayes import GaussianNB from sklearn import svm from sklearn.neighbors import KNeighborsClassifier from .naive_bayes import NaiveBayes import pandas as pd import numpy as np from scipy.stats import mode from matplotlib import pyplot from mpl_toolkits.mplot3d import Axes3D import random np.seterr(divide='ignore', invalid='ignore') classifier = 'our' use_all = True class Model: def __init__(self): #Create a Gaussian Classifier self.our = NaiveBayes() self.gnb = GaussianNB() self.knc = KNeighborsClassifier(n_neighbors=3) # self.clf = svm.SVC(gamma='scale') # NOT WORKING print("model initiallized") self.gen = 0 def train(self, data): df =
pd.DataFrame(data)
pandas.DataFrame
from collections import OrderedDict import datetime as dt import itertools import matplotlib.pyplot as plt import numpy as np import pandas as pd import sys import xarray as xr def _raiseException(prefix, msg): sys.tracebacklimit = None raise(Exception('[OSMPythonTools.' + prefix + '] ' + msg)) def dictRange(start, end, step=1): return OrderedDict([(x, x) for x in range(start, end, step)]) def dictRangeYears(start, end, step=1): def yearToString(year): y = int(year) f = year - y timespanYear = (dt.datetime(y + 1, 1, 1) - dt.datetime(y, 1, 1)) return (dt.datetime(y, 1, 1) + f * timespanYear).isoformat() + 'Z' return OrderedDict([(year, yearToString(year)) for year in np.arange(start, end, step)]) class All: def __repr__(self): return 'ALL' ALL = All() class Data: def __init__(self, arg1, arg2): self._dataset = None self._dataFrame = None if callable(arg1) and isinstance(arg2, OrderedDict): fetch = arg1 dimensions = arg2 self._dimensions = dimensions data = list(map(lambda params: fetch(*params), itertools.product(*[[v for v in dimension.values()] for dimension in dimensions.values()]))) for dim, v in reversed(dimensions.items()): data = [data[i:i+len(v)] for i in range(0, len(data), len(v))] self._dataset = xr.DataArray(data=data[0], dims=list(dimensions.keys()), coords=[list(v.keys()) for v in dimensions.values()]).to_dataset(name='value') elif isinstance(arg1, Data) and isinstance(arg2, xr.Dataset): self._dimensions = arg1._dimensions self._dataset = arg2 elif isinstance(arg1, Data) and isinstance(arg2, list) and all(isinstance(df, xr.Dataset) for df in arg2): self._dimensions = arg1._dimensions self._dataset = xr.merge(map(lambda d: d.getDataset(), arg2)) elif isinstance(arg1, Data) and isinstance(arg2, pd.DataFrame): self._dimensions = arg1._dimensions self._dataFrame = arg2 elif isinstance(arg1, Data) and isinstance(arg2, list) and all(isinstance(df, pd.DataFrame) for df in arg2): self._dimensions = arg1._dimensions self._dataFrame =
pd.concat(arg2, axis=1)
pandas.concat
from __future__ import annotations import copy import itertools from typing import ( TYPE_CHECKING, Sequence, cast, ) import numpy as np from pandas._libs import ( NaT, internals as libinternals, ) from pandas._libs.missing import NA from pandas._typing import ( ArrayLike, DtypeObj, Manager, Shape, ) from pandas.util._decorators import cache_readonly from pandas.core.dtypes.cast import ( ensure_dtype_can_hold_na, find_common_type, ) from pandas.core.dtypes.common import ( is_1d_only_ea_dtype, is_1d_only_ea_obj, is_datetime64tz_dtype, is_dtype_equal, needs_i8_conversion, ) from pandas.core.dtypes.concat import ( cast_to_common_type, concat_compat, ) from pandas.core.dtypes.dtypes import ExtensionDtype from pandas.core.dtypes.missing import ( is_valid_na_for_dtype, isna_all, ) import pandas.core.algorithms as algos from pandas.core.arrays import ( DatetimeArray, ExtensionArray, ) from pandas.core.arrays.sparse import SparseDtype from pandas.core.construction import ensure_wrapped_if_datetimelike from pandas.core.internals.array_manager import ( ArrayManager, NullArrayProxy, ) from pandas.core.internals.blocks import ( ensure_block_shape, new_block, ) from pandas.core.internals.managers import BlockManager if TYPE_CHECKING: from pandas import Index def _concatenate_array_managers( mgrs_indexers, axes: list[Index], concat_axis: int, copy: bool ) -> Manager: """ Concatenate array managers into one. Parameters ---------- mgrs_indexers : list of (ArrayManager, {axis: indexer,...}) tuples axes : list of Index concat_axis : int copy : bool Returns ------- ArrayManager """ # reindex all arrays mgrs = [] for mgr, indexers in mgrs_indexers: for ax, indexer in indexers.items(): mgr = mgr.reindex_indexer( axes[ax], indexer, axis=ax, allow_dups=True, use_na_proxy=True ) mgrs.append(mgr) if concat_axis == 1: # concatting along the rows -> concat the reindexed arrays # TODO(ArrayManager) doesn't yet preserve the correct dtype arrays = [ concat_arrays([mgrs[i].arrays[j] for i in range(len(mgrs))]) for j in range(len(mgrs[0].arrays)) ] else: # concatting along the columns -> combine reindexed arrays in a single manager assert concat_axis == 0 arrays = list(itertools.chain.from_iterable([mgr.arrays for mgr in mgrs])) if copy: arrays = [x.copy() for x in arrays] new_mgr = ArrayManager(arrays, [axes[1], axes[0]], verify_integrity=False) return new_mgr def concat_arrays(to_concat: list) -> ArrayLike: """ Alternative for concat_compat but specialized for use in the ArrayManager. Differences: only deals with 1D arrays (no axis keyword), assumes ensure_wrapped_if_datetimelike and does not skip empty arrays to determine the dtype. In addition ensures that all NullArrayProxies get replaced with actual arrays. Parameters ---------- to_concat : list of arrays Returns ------- np.ndarray or ExtensionArray """ # ignore the all-NA proxies to determine the resulting dtype to_concat_no_proxy = [x for x in to_concat if not isinstance(x, NullArrayProxy)] dtypes = {x.dtype for x in to_concat_no_proxy} single_dtype = len(dtypes) == 1 if single_dtype: target_dtype = to_concat_no_proxy[0].dtype elif all(x.kind in ["i", "u", "b"] and isinstance(x, np.dtype) for x in dtypes): # GH#42092 target_dtype = np.find_common_type(list(dtypes), []) else: target_dtype = find_common_type([arr.dtype for arr in to_concat_no_proxy]) if target_dtype.kind in ["m", "M"]: # for datetimelike use DatetimeArray/TimedeltaArray concatenation # don't use arr.astype(target_dtype, copy=False), because that doesn't # work for DatetimeArray/TimedeltaArray (returns ndarray) to_concat = [ arr.to_array(target_dtype) if isinstance(arr, NullArrayProxy) else arr for arr in to_concat ] return type(to_concat_no_proxy[0])._concat_same_type(to_concat, axis=0) to_concat = [ arr.to_array(target_dtype) if isinstance(arr, NullArrayProxy) else cast_to_common_type(arr, target_dtype) for arr in to_concat ] if isinstance(to_concat[0], ExtensionArray): cls = type(to_concat[0]) return cls._concat_same_type(to_concat) result = np.concatenate(to_concat) # TODO decide on exact behaviour (we shouldn't do this only for empty result) # see https://github.com/pandas-dev/pandas/issues/39817 if len(result) == 0: # all empties -> check for bool to not coerce to float kinds = {obj.dtype.kind for obj in to_concat_no_proxy} if len(kinds) != 1: if "b" in kinds: result = result.astype(object) return result def concatenate_managers( mgrs_indexers, axes: list[Index], concat_axis: int, copy: bool ) -> Manager: """ Concatenate block managers into one. Parameters ---------- mgrs_indexers : list of (BlockManager, {axis: indexer,...}) tuples axes : list of Index concat_axis : int copy : bool Returns ------- BlockManager """ # TODO(ArrayManager) this assumes that all managers are of the same type if isinstance(mgrs_indexers[0][0], ArrayManager): return _concatenate_array_managers(mgrs_indexers, axes, concat_axis, copy) concat_plans = [ _get_mgr_concatenation_plan(mgr, indexers) for mgr, indexers in mgrs_indexers ] concat_plan = _combine_concat_plans(concat_plans, concat_axis) blocks = [] for placement, join_units in concat_plan: unit = join_units[0] blk = unit.block if len(join_units) == 1 and not join_units[0].indexers: values = blk.values if copy: values = values.copy() else: values = values.view() fastpath = True elif _is_uniform_join_units(join_units): vals = [ju.block.values for ju in join_units] if not blk.is_extension: # _is_uniform_join_units ensures a single dtype, so # we can use np.concatenate, which is more performant # than concat_compat values = np.concatenate(vals, axis=blk.ndim - 1) else: # TODO(EA2D): special-casing not needed with 2D EAs values = concat_compat(vals, axis=1) values = ensure_block_shape(values, blk.ndim) values = ensure_wrapped_if_datetimelike(values) fastpath = blk.values.dtype == values.dtype else: values = _concatenate_join_units(join_units, concat_axis, copy=copy) fastpath = False if fastpath: b = blk.make_block_same_class(values, placement=placement) else: b = new_block(values, placement=placement, ndim=len(axes)) blocks.append(b) return BlockManager(tuple(blocks), axes) def _get_mgr_concatenation_plan(mgr: BlockManager, indexers: dict[int, np.ndarray]): """ Construct concatenation plan for given block manager and indexers. Parameters ---------- mgr : BlockManager indexers : dict of {axis: indexer} Returns ------- plan : list of (BlockPlacement, JoinUnit) tuples """ # Calculate post-reindex shape , save for item axis which will be separate # for each block anyway. mgr_shape_list = list(mgr.shape) for ax, indexer in indexers.items(): mgr_shape_list[ax] = len(indexer) mgr_shape = tuple(mgr_shape_list) has_column_indexer = False if 0 in indexers: has_column_indexer = True ax0_indexer = indexers.pop(0) blknos = algos.take_nd(mgr.blknos, ax0_indexer, fill_value=-1) blklocs = algos.take_nd(mgr.blklocs, ax0_indexer, fill_value=-1) else: if mgr.is_single_block: blk = mgr.blocks[0] return [(blk.mgr_locs, JoinUnit(blk, mgr_shape, indexers))] blknos = mgr.blknos blklocs = mgr.blklocs plan = [] for blkno, placements in libinternals.get_blkno_placements(blknos, group=False): assert placements.is_slice_like join_unit_indexers = indexers.copy() shape_list = list(mgr_shape) shape_list[0] = len(placements) shape = tuple(shape_list) if blkno == -1: # only reachable in the `0 in indexers` case unit = JoinUnit(None, shape) else: blk = mgr.blocks[blkno] ax0_blk_indexer = blklocs[placements.indexer] unit_no_ax0_reindexing = ( len(placements) == len(blk.mgr_locs) and # Fastpath detection of join unit not # needing to reindex its block: no ax0 # reindexing took place and block # placement was sequential before. ( ( not has_column_indexer and blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice.step == 1 ) or # Slow-ish detection: all indexer locs # are sequential (and length match is # checked above). (np.diff(ax0_blk_indexer) == 1).all() ) ) # Omit indexer if no item reindexing is required. if unit_no_ax0_reindexing: join_unit_indexers.pop(0, None) else: join_unit_indexers[0] = ax0_blk_indexer unit = JoinUnit(blk, shape, join_unit_indexers) plan.append((placements, unit)) return plan class JoinUnit: def __init__(self, block, shape: Shape, indexers=None): # Passing shape explicitly is required for cases when block is None. # Note: block is None implies indexers is None, but not vice-versa if indexers is None: indexers = {} self.block = block self.indexers = indexers self.shape = shape def __repr__(self) -> str: return f"{type(self).__name__}({repr(self.block)}, {self.indexers})" @cache_readonly def needs_filling(self) -> bool: for indexer in self.indexers.values(): # FIXME: cache results of indexer == -1 checks. if (indexer == -1).any(): return True return False @cache_readonly def dtype(self): blk = self.block if blk is None: raise AssertionError("Block is None, no dtype") if not self.needs_filling: return blk.dtype return ensure_dtype_can_hold_na(blk.dtype) def _is_valid_na_for(self, dtype: DtypeObj) -> bool: """ Check that we are all-NA of a type/dtype that is compatible with this dtype. Augments `self.is_na` with an additional check of the type of NA values. """ if not self.is_na: return False if self.block is None: return True if self.dtype == object: values = self.block.values return all(is_valid_na_for_dtype(x, dtype) for x in values.ravel(order="K")) na_value = self.block.fill_value if na_value is NaT and not is_dtype_equal(self.dtype, dtype): # e.g. we are dt64 and other is td64 # fill_values match but we should not cast self.block.values to dtype # TODO: this will need updating if we ever have non-nano dt64/td64 return False if na_value is NA and needs_i8_conversion(dtype): # FIXME: kludge; test_append_empty_frame_with_timedelta64ns_nat # e.g. self.dtype == "Int64" and dtype is td64, we dont want # to consider these as matching return False # TODO: better to use can_hold_element? return is_valid_na_for_dtype(na_value, dtype) @cache_readonly def is_na(self) -> bool: if self.block is None: return True if not self.block._can_hold_na: return False values = self.block.values if isinstance(self.block.values.dtype, SparseDtype): return False elif self.block.is_extension: # TODO(EA2D): no need for special case with 2D EAs values_flat = values else: values_flat = values.ravel(order="K") return isna_all(values_flat) def get_reindexed_values(self, empty_dtype: DtypeObj, upcasted_na) -> ArrayLike: if upcasted_na is None: # No upcasting is necessary fill_value = self.block.fill_value values = self.block.get_values() else: fill_value = upcasted_na if self._is_valid_na_for(empty_dtype): # note: always holds when self.block is None blk_dtype = getattr(self.block, "dtype", None) if blk_dtype == np.dtype("object"): # we want to avoid filling with np.nan if we are # using None; we already know that we are all # nulls values = self.block.values.ravel(order="K") if len(values) and values[0] is None: fill_value = None if is_datetime64tz_dtype(empty_dtype): i8values = np.full(self.shape, fill_value.value) return DatetimeArray(i8values, dtype=empty_dtype) elif
is_1d_only_ea_dtype(empty_dtype)
pandas.core.dtypes.common.is_1d_only_ea_dtype
import vectorbt as vbt import numpy as np import pandas as pd from numba import njit from datetime import datetime import pytest from vectorbt.signals import nb seed = 42 day_dt = np.timedelta64(86400000000000) index = pd.Index([ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5) ]) columns = ['a', 'b', 'c'] sig = pd.DataFrame([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ], index=index, columns=columns) # ############# accessors.py ############# # class TestAccessors: def test_freq(self): assert sig.vbt.signals.freq == day_dt assert sig['a'].vbt.signals.freq == day_dt assert sig.vbt.signals(freq='2D').freq == day_dt * 2 assert sig['a'].vbt.signals(freq='2D').freq == day_dt * 2 assert pd.Series([False, True]).vbt.signals.freq is None assert pd.Series([False, True]).vbt.signals(freq='3D').freq == day_dt * 3 assert pd.Series([False, True]).vbt.signals(freq=np.timedelta64(4, 'D')).freq == day_dt * 4 def test_shuffle(self): pd.testing.assert_series_equal( sig['a'].vbt.signals.shuffle(seed=seed), pd.Series( np.array([False, False, False, True, True]), index=sig['a'].index, name=sig['a'].name ) ) np.testing.assert_array_equal( sig['a'].vbt.signals.shuffle(seed=seed).values, nb.shuffle_1d_nb(sig['a'].values, seed=seed) ) pd.testing.assert_frame_equal( sig.vbt.signals.shuffle(seed=seed), pd.DataFrame( np.array([ [False, False, False], [False, True, False], [False, False, False], [True, False, False], [True, True, True] ]), index=sig.index, columns=sig.columns ) ) @pytest.mark.parametrize( "test_n", [1, 2, 3, 4, 5], ) def test_fshift(self, test_n): pd.testing.assert_series_equal(sig['a'].vbt.signals.fshift(test_n), sig['a'].shift(test_n, fill_value=False)) np.testing.assert_array_equal( sig['a'].vbt.signals.fshift(test_n).values, nb.fshift_1d_nb(sig['a'].values, test_n) ) pd.testing.assert_frame_equal(sig.vbt.signals.fshift(test_n), sig.shift(test_n, fill_value=False)) def test_empty(self): pd.testing.assert_series_equal( pd.Series.vbt.signals.empty(5, index=np.arange(10, 15), name='a'), pd.Series(np.full(5, False), index=np.arange(10, 15), name='a') ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.empty((5, 3), index=np.arange(10, 15), columns=['a', 'b', 'c']), pd.DataFrame(np.full((5, 3), False), index=np.arange(10, 15), columns=['a', 'b', 'c']) ) pd.testing.assert_series_equal( pd.Series.vbt.signals.empty_like(sig['a']), pd.Series(np.full(sig['a'].shape, False), index=sig['a'].index, name=sig['a'].name) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.empty_like(sig), pd.DataFrame(np.full(sig.shape, False), index=sig.index, columns=sig.columns) ) def test_generate(self): @njit def choice_func_nb(col, from_i, to_i, n): if col == 0: return np.arange(from_i, to_i) elif col == 1: return np.full(1, from_i) else: return np.full(1, to_i-n) pd.testing.assert_series_equal( pd.Series.vbt.signals.generate(5, choice_func_nb, 1, index=sig['a'].index, name=sig['a'].name), pd.Series( np.array([True, True, True, True, True]), index=sig['a'].index, name=sig['a'].name ) ) pd.testing.assert_series_equal( pd.Series.vbt.signals.generate((5,), choice_func_nb, 1, index=sig['a'].index, name=sig['a'].name), pd.Series( np.array([True, True, True, True, True]), index=sig['a'].index, name=sig['a'].name ) ) with pytest.raises(Exception) as e_info: _ =
pd.Series.vbt.signals.generate((5, 2), choice_func_nb, 1)
pandas.Series.vbt.signals.generate
from Bio import Entrez import numpy import pandas from urllib.error import HTTPError import os import re import lxml.etree import datetime import time def check_config_dir(args): files = os.listdir(args.config_dir) asserted_files = [ 'group_attribute.config', 'group_tissue.config', 'give_value.config', 'replace_value.config', 'exclude_keyword.config', 'control_term.config', 'rescue_id.config', 'search_term_exclusion.config', 'search_term_other.config', 'search_term_species.config', 'search_term_keyword.config', 'orthographical_variant.config', ] for af in asserted_files: assert (af in files), 'config file not found: '+af def get_search_term(species_name="", bioprojects=[], biosamples=[], keywords=[], publication_date='', other_conditions=pandas.DataFrame(), excluded_conditions=pandas.DataFrame()): assert ((len(bioprojects)>0)+(len(biosamples)>0))!=2, "bioprojects and biosamples cannot be specified simultaneously." if species_name == '': species_term = '' else: species_term = '"'+species_name+'"'+"[Organism]" keyword_term = "(" + " OR ".join(keywords) + ")" other_terms = list() for i in numpy.arange(other_conditions.shape[0]): other_terms.append('\"'+other_conditions.loc[i,1]+'\"['+other_conditions.loc[i,0]+']') other_term = " AND ".join(other_terms) excluded_terms = list() for i in numpy.arange(excluded_conditions.shape[0]): excluded_terms.append('\"'+excluded_conditions.loc[i,1]+'\"['+excluded_conditions.loc[i,0]+']') excluded_term = '('+" OR ".join(excluded_terms)+')' date_term = publication_date+'[Publication Date]' if len(bioprojects): bioproject_term = "(" + " OR ".join(bioprojects) + ")" search_term = species_term + " AND " + bioproject_term + " AND " + other_term + " NOT " + excluded_term elif len(biosamples): biosample_term = "(" + " OR ".join(biosamples) + ")" search_term = biosample_term else: search_term = species_term + " AND " + keyword_term + " AND " + other_term + " AND " + date_term + " NOT " + excluded_term # search_term = species_term + " AND " + other_term + " AND " + date_term + " NOT " + excluded_term return search_term def fetch_sra_xml(species_name, search_term, save_xml=True, read_from_existing_file=False, retmax=100): file_xml = "SRA_"+species_name.replace(" ", "_")+".xml" flag = True if (read_from_existing_file)&(os.path.exists(file_xml)): with open(file_xml) as f: if '<Error>' in f.read(): print(species_name, ': <Error> found in the saved file. Deleting...') os.remove(file_xml) else: print(species_name, ': reading xml from file') root = lxml.etree.parse(file_xml, parser=lxml.etree.XMLParser()) flag = False if flag: try: sra_handle = Entrez.esearch(db="sra", term=search_term, retmax=10000000) except HTTPError as e: print(e, '- Trying Entrez.esearch() again...') sra_handle = Entrez.esearch(db="sra", term=search_term, retmax=10000000) sra_record = Entrez.read(sra_handle) record_ids = sra_record["IdList"] num_record = len(record_ids) print('Number of SRA records:', num_record) start_time = time.time() query_search_time = datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S') root = None for i in numpy.arange(numpy.ceil(num_record//retmax)+1): start = int(i*retmax) end = int(((i+1)*retmax)-1) if num_record >= int(((i+1)*retmax)-1) else num_record print('processing SRA records:', start, '-', end, flush=True) max_retry = 10 for i in range(max_retry): try: handle = Entrez.efetch(db="sra", id=record_ids[start:end], rettype="full", retmode="xml", retmax=retmax) except HTTPError as e: sleep_second = 60 print('{} - Trying Entrez.efetch() again after {} seconds...'.format(e, sleep_second), flush=True) time.sleep(sleep_second) continue try: chunk = lxml.etree.parse(handle).getroot() except: print('XML may be truncated. Retrying...', flush=True) continue break if root is None: root = chunk else: root.append(chunk) elapsed_time = int(time.time() - start_time) xml_string = lxml.etree.tostring(root, pretty_print=True) for line in str(xml_string).split('\n'): if '<Error>' in line: print(line) if os.path.exists(file_xml): os.remove(file_xml) raise Exception(species_name, ': <Error> found in the xml.') if save_xml: with open(file_xml, 'wb') as f: f.write(xml_string) return root def create_run_dir(run_path, run_no=1): if not os.path.exists(os.path.join(run_path + '_' + str(run_no))): os.makedirs(os.path.join(run_path + '_' + str(run_no))) return(os.path.join(run_path + '_' + str(run_no))) else: run_no = run_no + 1 return create_run_dir(run_path, run_no) class Metadata: column_names = ['scientific_name','tissue','curate_group','tissue_original','genotype','sex','age','treatment','source_name', 'is_sampled','is_qualified','exclusion','protocol','bioproject','biosample', 'experiment','run','sra_primary','sra_sample','sra_study','study_title','exp_title','design', 'sample_title','sample_description','lib_name','lib_layout','lib_strategy','lib_source', 'lib_selection','instrument','total_spots','total_bases','size','nominal_length','nominal_sdev', 'spot_length','read_index','read_class','read_type','base_coord','lab','center','submitter_id', 'pubmed_id','taxid','published_date','biomaterial_provider','cell','location','antibody','batch', 'misc','NCBI_Link','AWS_Link','GCP_Link',] id_cols = ['bioproject','biosample','experiment','run','sra_primary','sra_sample','sra_study'] def __init__(self, column_names=column_names): self.config_dir = '' self.df = pandas.DataFrame(index=[], columns=column_names) def reorder(self, omit_misc=False, column_names=column_names): if (self.df.shape[0]==0): return None for col in column_names: if not col in self.df.columns: self.df.loc[:,col] = '' if omit_misc: self.df = self.df.loc[:,column_names] else: misc_columns = [ col for col in self.df.columns if col not in column_names ] self.df = self.df.loc[:,column_names+misc_columns] self.df.loc[:,'exclusion'] = self.df.loc[:,'exclusion'].replace('', 'no') # reorder curate_group to the front if 'curate_group' in self.df.columns: cols = list(self.df) cols.insert(1, cols.pop(cols.index('curate_group'))) self.df = self.df.loc[:, cols] def from_DataFrame(df): metadata = Metadata() metadata.df = df metadata.reorder(omit_misc=False) return metadata def from_xml(xml_root): if isinstance(xml_root, lxml.etree._Element): xml_root = lxml.etree.ElementTree(xml_root) root = xml_root assert isinstance(root, lxml.etree._ElementTree), "Unknown input type." df = pandas.DataFrame() for entry in root.iter(tag="EXPERIMENT_PACKAGE"): items = [] bioproject = entry.findall('.//EXTERNAL_ID[@namespace="BioProject"]') if not len(bioproject): labels = entry.findall('.//LABEL') for label in labels: text = label.text if text.startswith("PRJ"): bioproject = [label] break is_single = len(entry.findall('.//LIBRARY_LAYOUT/SINGLE')) is_paired = len(entry.findall('.//LIBRARY_LAYOUT/PAIRED')) if is_single: library_layout = ["single"] elif is_paired: library_layout = ["paired"] else: library_layout = [""] values = entry.findall('.//VALUE') is_protected = ["No"] if len(values): for value in values: text = value.text if not text is None: if text.endswith("PROTECTED"): is_protected = ["Yes"] break items.append(["bioproject", bioproject]) items.append(["scientific_name", entry.xpath('./SAMPLE/SAMPLE_NAME/SCIENTIFIC_NAME')]) items.append(["biosample", entry.findall('.//EXTERNAL_ID[@namespace="BioSample"]')]) items.append(["experiment", entry.xpath('./EXPERIMENT/IDENTIFIERS/PRIMARY_ID')]) items.append(["run", entry.xpath('./RUN_SET/RUN/IDENTIFIERS/PRIMARY_ID')]) items.append(["sra_primary", entry.xpath('./SUBMISSION/IDENTIFIERS/PRIMARY_ID')]) items.append(["sra_sample", entry.xpath('./SAMPLE/IDENTIFIERS/PRIMARY_ID')]) items.append(["sra_study", entry.xpath('./EXPERIMENT/STUDY_REF/IDENTIFIERS/PRIMARY_ID')]) items.append(["published_date", entry.xpath('./RUN_SET/RUN/@published')]) items.append(["exp_title", entry.xpath('./EXPERIMENT/TITLE')]) items.append(["design", entry.xpath('./EXPERIMENT/DESIGN/DESIGN_DESCRIPTION')]) items.append(["lib_name", entry.xpath('./EXPERIMENT/DESIGN/LIBRARY_DESCRIPTOR/LIBRARY_NAME')]) items.append(["lib_strategy", entry.xpath('./EXPERIMENT/DESIGN/LIBRARY_DESCRIPTOR/LIBRARY_STRATEGY')]) items.append(["lib_source", entry.xpath('./EXPERIMENT/DESIGN/LIBRARY_DESCRIPTOR/LIBRARY_SOURCE')]) items.append(["lib_selection", entry.xpath('./EXPERIMENT/DESIGN/LIBRARY_DESCRIPTOR/LIBRARY_SELECTION')]) items.append(["lib_layout", library_layout]) items.append(["nominal_length", entry.xpath('./EXPERIMENT/DESIGN/LIBRARY_DESCRIPTOR/LIBRARY_LAYOUT/PAIRED/@NOMINAL_LENGTH')]) items.append(["nominal_sdev", entry.xpath('./EXPERIMENT/DESIGN/LIBRARY_DESCRIPTOR/LIBRARY_LAYOUT/PAIRED/@NOMINAL_SDEV')]) items.append(["spot_length", entry.xpath('./EXPERIMENT/DESIGN/SPOT_DESCRIPTOR/SPOT_DECODE_SPEC/SPOT_LENGTH')]) items.append(["read_index", entry.xpath('./EXPERIMENT/DESIGN/SPOT_DESCRIPTOR/SPOT_DECODE_SPEC/READ_SPEC/READ_INDEX')]) items.append(["read_class", entry.xpath('./EXPERIMENT/DESIGN/SPOT_DESCRIPTOR/SPOT_DECODE_SPEC/READ_SPEC/READ_CLASS')]) items.append(["read_type", entry.xpath('./EXPERIMENT/DESIGN/SPOT_DESCRIPTOR/SPOT_DECODE_SPEC/READ_SPEC/READ_TYPE')]) items.append(["base_coord", entry.xpath('./EXPERIMENT/DESIGN/SPOT_DESCRIPTOR/SPOT_DECODE_SPEC/READ_SPEC/BASE_COORD')]) items.append(["instrument", entry.xpath('./EXPERIMENT/PLATFORM/ILLUMINA/INSTRUMENT_MODEL')]) items.append(["lab", entry.xpath('./SUBMISSION/@lab_name')]) items.append(["center", entry.xpath('./SUBMISSION/@center_name')]) items.append(["submitter_id", entry.xpath('./SUBMISSION/IDENTIFIERS/SUBMITTER_ID')]) items.append(["study_title", entry.xpath('./STUDY/DESCRIPTOR/STUDY_TITLE')]) items.append(["pubmed_id", entry.xpath('./STUDY/STUDY_LINKS/STUDY_LINK/XREF_LINK/ID')]) items.append(["sample_title", entry.xpath('./SAMPLE/TITLE')]) items.append(["taxid", entry.xpath('./SAMPLE/SAMPLE_NAME/TAXON_ID')]) items.append(["sample_description", entry.xpath('./SAMPLE/DESCRIPTION')]) items.append(["total_spots", entry.xpath('./RUN_SET/RUN/@total_spots')]) items.append(["total_bases", entry.xpath('./RUN_SET/RUN/@total_bases')]) items.append(["size", entry.xpath('./RUN_SET/RUN/@size')]) items.append(["NCBI_Link", entry.xpath('./RUN_SET/RUN/SRAFiles/SRAFile[@supertype="Primary ETL"]/Alternatives[@org="NCBI"]/@url')]) items.append(["AWS_Link", entry.xpath('./RUN_SET/RUN/SRAFiles/SRAFile[@supertype="Primary ETL"]/Alternatives[@org="AWS"]/@url')]) items.append(["GCP_Link", entry.xpath('./RUN_SET/RUN/SRAFiles/SRAFile[@supertype="Primary ETL"]/Alternatives[@org="GCP"]/@url')]) row = [] for item in items: try: if isinstance(item[1][0], (lxml.etree._ElementUnicodeResult, int, str)): row.append(str(item[1][0])) else: row.append(item[1][0].text) except: row.append("") colnames = [] for item in items: colnames.append(item[0]) row_df = pandas.DataFrame(row).T row_df.columns = colnames sas = entry.xpath('./SAMPLE/SAMPLE_ATTRIBUTES/SAMPLE_ATTRIBUTE') for sa in sas: tag = sa.xpath('./TAG') if not tag[0].text == None: tag = tag[0].text.lower() tag = re.sub(" \(.*", "", tag) tag = re.sub(" ", "_", tag) if not tag in row_df.columns: value = sa.xpath('./VALUE') if len(value): value = value[0].text if tag in colnames: tag = tag+"_2" sa_df = pandas.DataFrame([value]) sa_df.columns = [tag] row_df = pandas.concat([row_df,sa_df], axis=1) df = pandas.concat([df, row_df], ignore_index=True, sort=False) if "scientific_name" in df.columns and len(df.loc[(df.loc[:,"scientific_name"]==""), "scientific_name"]): species_name = df.loc[~(df.loc[:,"scientific_name"]==""), "scientific_name"].iloc[0] df.loc[(df.loc[:,"scientific_name"]==""), "scientific_name"] = species_name metadata = Metadata() metadata.df = df metadata.reorder(omit_misc=False) return metadata def mark_exclude_ids(self, id_cols=id_cols): config = pandas.read_csv(os.path.join(self.config_dir, 'exclude_id.config'), parse_dates=False, infer_datetime_format=False, quotechar='"', sep='\t', header=None, index_col=None, skip_blank_lines=True, comment='#') config = config.replace(numpy.nan, '') for i in numpy.arange(config.shape[0]): reason = config.iloc[i,0] exclude_id = config.iloc[i,1] for col in id_cols: is_exclude_id = (self.df.loc[:,col]==exclude_id).fillna(False) if any(is_exclude_id): self.df.loc[is_exclude_id,'exclusion'] = reason def unmark_rescue_ids(self, id_cols=id_cols): try: config = pandas.read_csv(os.path.join(self.config_dir, 'rescue_id.config'), parse_dates=False, infer_datetime_format=False, quotechar='"', sep='\t', header=None, index_col=None, skip_blank_lines=True, comment='#') except: config =
pandas.DataFrame()
pandas.DataFrame
import igraph as Graph import pandas as pd import os import numpy as np import spacy from sklearn.cluster import KMeans from pylab import * import re import time import src.pickle_handler as ph import src.relation_creator as rc # the dataframe has been preprocessed by many other functions. However we only need a subset of this information to # create a graph representation of the relations. # distillDataframe() takes the dataframe given to it. It selects # a) character_A # b) character_B # formate_bible should transform all rows, that contain >= 2 characters into multiple rows between all characters # from [lukas, mark, maria] to [[lukas, mark],[lukas, maria], [maria, mark]] def formate_bible(df_bible): # Parameter # df_bible : expects a pandas dataframe that consists of "characters" and "emotion" column # Return # df_bible_formate : pandas dataframe, that consists of 3 columns "character_A", "character_B", "emotion" df_bible_formate = pd.DataFrame() for i, row in df_bible.iterrows(): names = row["characters"] emotion = row["emotion"] names = names.replace("[", "") names = names.replace("]", "") names = names.replace(",", "|") names = names.replace("'", "") names = names.strip() names = names.replace("\n", "") names = names.split("|") names_remove = names.copy() if len(names) >= 2: for name in names: for r_name in names_remove: if name != r_name: new_row = { "character_A": name.strip(), "character_B": r_name.strip(), "emotion": emotion, } df_bible_formate = df_bible_formate.append( new_row, ignore_index=True ) names_remove.remove(name) print(" - Pre-processed the dataframe to run the graph generation") return df_bible_formate # distillDataframe should turn the dataframe to distinct rows, which have been aggregated in terms of # their emotion. The dataframe needs to be aggregated because characters may occur at multiple verses # to not list those multiple times within an graph and to given an more "global" represenation of their # emotional state the emotion is aggregated. If the emotion_mean > 0.75, the relation is considered to be positive # if the emotion_mean < -0.75 the relation is considered to be negative. # else wise it is neutral. The relation will later be used to project an color to the graph. def distillDataframe(df_bible, load, threshold, save): # Parameter # df_bible : pandas dataframe of the bible # load : determines if a csv should be loaded or if one has to be produced by the function, bool # threshold : counts how often relations should occur before being considered reasonable # save : if file should be saved at the end, bool # i.e. one time mentions may not be displayed, integer # Return # df_distilled : pandas dataframe consistent of distinct relations # label : unique list of all characters # create a list of labels (names) which have been detected in both rows character_A and #character_B file = os.path.join("src", "csv", "bibleTA_distilled" + "_" + str(threshold) + ".csv") if load == True: try: df_distilled =
pd.read_csv(file)
pandas.read_csv
# License: BSD_3_clause # # Copyright (c) 2015, <NAME>, <NAME>, <NAME> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # Neither the name of the Technical University of Denmark (DTU) # nor the names of its contributors may be used to endorse or # promote products derived from this software without specific # prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import sys import pandas as pd import numpy as np from datetime import datetime, time import gc import math import random class expando: pass #Function needed to define distances between nodes from longitudes and latitudes def distance_from_long_lat(lat1, long1, lat2, long2): # Convert latitude and longitude to spherical coordinates in radians. degrees_to_radians = math.pi/180.0 # phi = 90 - latitude phi1 = (90.0 - lat1)*degrees_to_radians phi2 = (90.0 - lat2)*degrees_to_radians # theta = longitude theta1 = long1*degrees_to_radians theta2 = long2*degrees_to_radians # Compute spherical distance from spherical coordinates. # For two locations in spherical coordinates (1, theta, phi) and (1, theta', phi') # cosine( arc length ) = sin phi sin phi' cos(theta-theta') + cos phi cos phi' # distance = rho * arc length cos = (math.sin(phi1)*math.sin(phi2)*math.cos(theta1 - theta2) + math.cos(phi1)*math.cos(phi2)) if cos>1:#numerical approximations can bring to a number slightly >1 cos=1 arc = math.acos( cos ) # Remember to multiply arc by the radius of the earth # in your favorite set of units to get length. R_earth = 6371 #km arc = arc * R_earth return arc class dataReader: def __init__(self, countries,max_number_loc,renewable_type,data_type,start_time, end_time,fore_start_time,fore_end_time,nbr_leadTimes,folder_location): self._set_attributes(countries,max_number_loc,renewable_type,data_type,start_time, end_time,fore_start_time,fore_end_time,nbr_leadTimes,folder_location) self._check_countries() self._load_observations() self._tod_observations() self._load_forecasts() self._get_distances() print('Data has been imported!') pass #Function that stores all inputs as attributes of the output def _set_attributes(self, countries,max_number_loc,renewable_type,data_type,start_time, end_time,fore_start_time,fore_end_time,nbr_leadTimes,folder_location): self.attributes = expando() self.attributes.renew_type = renewable_type self.attributes.data_type = data_type self.attributes.folder_loc = folder_location self.attributes.start_time = start_time self.attributes.end_time = end_time self.attributes.fore_start_time = fore_start_time self.attributes.fore_end_time = fore_end_time self.attributes.nbr_leadT = nbr_leadTimes self.attributes.countries = countries self.attributes.max_number_loc = max_number_loc self.metadata = expando() pass #Function that check input countries and display an error message if they #don't correspond. Returns the available countries and indices from nodes def _check_countries(self): self.metadata.network_nodes = pd.read_csv(self.attributes.folder_loc+'/Metadata/network_nodes.csv', sep=',') available_countries = set(self.metadata.network_nodes.country) countries = self.attributes.countries if bool(countries-available_countries.intersection(countries)): print(', '.join(countries-available_countries.intersection(countries)) + \ ' are not in the country list. ' + 'See in:' + ', '.join(available_countries)) self.attributes.countries = list(available_countries.intersection(countries)) ix_net_nodes_bool = np.in1d(self.metadata.network_nodes.country, self.attributes.countries) self.metadata.ix_nodes = np.where(ix_net_nodes_bool)[0]+1 if self.attributes.max_number_loc != None and len(self.metadata.ix_nodes)>self.attributes.max_number_loc: self.metadata.ix_nodes = np.sort(random.sample(list(self.metadata.ix_nodes), self.attributes.max_number_loc)) print('The number of nodes selected was higher than the maximum number of locations (' +\ str(self.attributes.max_number_loc) + ') and therefore reduced.') pass #Function that loads observations and stores them in the 'obs' attribute of output def _load_observations(self): filename = self.attributes.folder_loc + '/Nodal_TS/' + self.attributes.renew_type + \ '_signal_' + self.attributes.data_type + '.csv' data_observations_aux = pd.read_csv(filename, sep=',') #Getting observations of training period ix_time_bool = np.in1d(data_observations_aux.Time, [self.attributes.start_time,self.attributes.end_time]) ix_time = np.where(ix_time_bool)[0] if len(ix_time) == 1: sys.exit('Training period contains only one element.'+ \ 'There must be an error in the definition of starting/ending dates.'+\ 'Check day, month and year selected. Remember that data are available hourly only.') ix_net_nodes = np.append(0, self.metadata.ix_nodes) data_observations = data_observations_aux.ix[ix_time[0]:ix_time[len(ix_time)-1], ix_net_nodes] data_observations.Time = pd.to_datetime(data_observations.Time) del ix_time_bool, ix_time #Getting observations of testing period ix_time_bool = np.in1d(data_observations_aux.Time, [self.attributes.fore_start_time,self.attributes.fore_end_time]) ix_time = np.where(ix_time_bool)[0] data_observations_cf = data_observations_aux.ix[ix_time[0]:ix_time[len(ix_time)-1], ix_net_nodes] data_observations_cf.Time =
pd.to_datetime(data_observations_cf.Time)
pandas.to_datetime
# This code extract the features from the raw joined dataset (data.csv) # and save it in the LibSVM format. # Usage: python construct_features.py import pandas as pd import numpy as np from sklearn.datasets import dump_svmlight_file df = pd.read_csv("data.csv", low_memory=False) # NPU NPU = df.NPU.copy() NPU[NPU == ' '] = np.nan NPU = pd.get_dummies(NPU, prefix="NPU") # SiteZip SiteZip = df.SiteZip.copy() SiteZip = SiteZip.str.replace(',','') SiteZip = SiteZip.str.replace('\.00','') SiteZip = SiteZip.replace('0',np.nan) SiteZip = pd.get_dummies(SiteZip, prefix="SiteZip") # Submarket1 Submarket1 = df.Submarket1.copy() Submarket1 = pd.get_dummies(Submarket1, prefix="Submarket1") # TAX_DISTR TAX_DISTR = df.TAX_DISTR.copy() TAX_DISTR[TAX_DISTR == ' '] = np.nan TAX_DISTR = pd.get_dummies(TAX_DISTR, prefix="TAX_DISTR") # NBHD NBHD = df.NBHD.copy() NBHD[NBHD == ' '] = np.nan NBHD = pd.get_dummies(NBHD, prefix="NBHD") # ZONING_NUM ZONING_NUM = df.ZONING_NUM.copy() ZONING_NUM[ZONING_NUM == ' '] = np.nan ZONING_NUM = pd.get_dummies(ZONING_NUM, prefix="ZONING_NUM") # building_c building_c = df.building_c.copy() building_c[building_c == ' '] = np.nan building_c = pd.get_dummies(building_c, prefix="building_c") # PROP_CLASS PROP_CLASS = df.PROP_CLASS.copy() PROP_CLASS[PROP_CLASS == ' '] = np.nan PROP_CLASS = pd.get_dummies(PROP_CLASS, prefix="PROP_CLASS") # Existing_p Existing_p = df.Existing_p.copy() Existing_p[Existing_p == ' '] = np.nan Existing_p = pd.get_dummies(Existing_p, prefix="Existing_p") # PropertyTy PropertyTy = df.PropertyTy.copy() PropertyTy = pd.get_dummies(PropertyTy, prefix="PropertyTy") # secondaryT secondaryT = df.secondaryT.copy() secondaryT[secondaryT == ' '] = np.nan secondaryT = pd.get_dummies(secondaryT, prefix="secondaryT") # LUC LUC = df.LUC.copy() LUC[LUC == ' '] = np.nan LUC = pd.get_dummies(LUC, prefix="LUC") # Taxes_Per_ Taxes_Per_ = df.Taxes_Per_.copy() Taxes_Per_zero = (Taxes_Per_ == "0").apply(int) Taxes_Per_zero.name = 'Taxes_Per_zero' Taxes_Per_ = Taxes_Per_.str.replace(',','').astype(float) Taxes_Per_ = np.log1p(Taxes_Per_) Taxes_Per_ = Taxes_Per_ / Taxes_Per_.max() Taxes_Per_ = pd.concat([Taxes_Per_, Taxes_Per_zero], axis=1) # Taxes_Tota Taxes_Tota = df.Taxes_Tota.copy() Taxes_Tota_zero = (Taxes_Tota == "0").apply(int) Taxes_Tota_zero.name = 'Taxes_Tota_zero' Taxes_Tota = Taxes_Tota.str.replace(',','').astype(float) Taxes_Tota = np.log1p(Taxes_Tota) Taxes_Tota = Taxes_Tota / Taxes_Tota.max() Taxes_Tota = pd.concat([Taxes_Tota, Taxes_Tota_zero], axis=1) # TOT_APPR TOT_APPR = df.TOT_APPR.copy() TOT_APPR_zero = (TOT_APPR == "0").apply(int) TOT_APPR_zero.name = 'TOT_APPR_zero' TOT_APPR = TOT_APPR.str.replace(',','').astype(float) TOT_APPR = np.log1p(TOT_APPR) TOT_APPR = TOT_APPR / TOT_APPR.max() TOT_APPR = pd.concat([TOT_APPR, TOT_APPR_zero], axis=1) # VAL_ACRES VAL_ACRES = df.VAL_ACRES.copy() VAL_ACRES_zero = (VAL_ACRES == 0).apply(int) VAL_ACRES_zero.name = 'VAL_ACRES_zero' VAL_ACRES = np.log1p(VAL_ACRES) VAL_ACRES = VAL_ACRES / VAL_ACRES.max() VAL_ACRES = pd.concat([VAL_ACRES, VAL_ACRES_zero], axis=1) # For_Sale_P For_Sale_P = df.For_Sale_P.copy() For_Sale_P_notNA = (For_Sale_P != " ").apply(int) For_Sale_P_notNA.name = 'For_Sale_P_notNA' For_Sale_P[For_Sale_P == ' '] = 0 For_Sale_P = For_Sale_P.astype(float) For_Sale_P = np.log1p(For_Sale_P) For_Sale_P = For_Sale_P / For_Sale_P.max() For_Sale_P = pd.concat([For_Sale_P, For_Sale_P_notNA], axis=1) # Last_Sale1 Last_Sale1 = df.Last_Sale1.copy() Last_Sale1_zero = (Last_Sale1 == "0").apply(int) Last_Sale1_zero.name = "Last_Sale1_zero" Last_Sale1 = Last_Sale1.str.replace(',','').astype(float) Last_Sale1 = np.log1p(Last_Sale1) Last_Sale1 = (Last_Sale1 - Last_Sale1.min()) / (Last_Sale1.max() - Last_Sale1.min()) Last_Sale1 = pd.concat([Last_Sale1, Last_Sale1_zero], axis=1) # yearbuilt yearbuilt = df.yearbuilt.copy() yearbuilt_zero = (yearbuilt == "0").apply(int) yearbuilt_zero.name = "yearbuilt_zero" yearbuilt[yearbuilt == "0"] = np.nan yearbuilt = yearbuilt.str.replace(',','').astype(float) yearbuilt = (yearbuilt - yearbuilt.min()) / (yearbuilt.max() - yearbuilt.min()) yearbuilt = yearbuilt.fillna(0) yearbuilt = pd.concat([yearbuilt, yearbuilt_zero], axis=1) # year_reno year_reno = df.year_reno.copy() reno = (year_reno != "0").apply(int) reno.name = "reno" year_reno[year_reno == "0"] = np.nan year_reno = year_reno.str.replace(',','').astype(float) year_reno = (year_reno - year_reno.min()) / (year_reno.max() - year_reno.min()) year_reno = year_reno.fillna(0) year_reno = pd.concat([year_reno, reno], axis=1) # Lot_Condition Lot_Condition = df.Lot_Condition.copy() Lot_Condition[Lot_Condition == ' '] = np.nan Lot_Condition = pd.get_dummies(Lot_Condition, prefix="Lot_Condition") # Structure_Condition Structure_Condition = df.Structure_Condition.copy() Structure_Condition[Structure_Condition == ' '] = np.nan Structure_Condition = pd.get_dummies(Structure_Condition, prefix="Structure_Condition") # Sidewalks Sidewalks = df.Sidewalks.copy() Sidewalks[Sidewalks == "YES"] = "Yes" Sidewalks[Sidewalks == " "] = np.nan Sidewalks = pd.get_dummies(Sidewalks, prefix="Sidewalks") # Multiple_Violations Multiple_Violations = df.Multiple_Violations.copy() Multiple_Violations[Multiple_Violations == ' '] = np.nan Multiple_Violations = pd.get_dummies(Multiple_Violations, prefix="Multiple_Violations") # Vacancy_pc Vacancy_pc = df.Vacancy_pc.copy() Vacancy_pc_nonzero = (Vacancy_pc != 0).apply(int) Vacancy_pc_nonzero.name = "Vacancy_pc_nonzero" Vacancy_pc = Vacancy_pc / Vacancy_pc.max() Vacancy_pc = pd.concat([Vacancy_pc, Vacancy_pc_nonzero], axis=1) # Total_Avai Total_Avai = df.Total_Avai.copy() Total_Avai_nonzero = (Total_Avai != "0").apply(int) Total_Avai_nonzero.name = "Total_Avai_nonzero" Total_Avai = Total_Avai.str.replace(',','').astype(float) Total_Avai = np.log1p(Total_Avai) Total_Avai = (Total_Avai - Total_Avai.min()) / (Total_Avai.max() - Total_Avai.min()) Total_Avai = pd.concat([Total_Avai, Total_Avai_nonzero], axis=1) # Percent_Le Percent_Le = df.Percent_Le.copy() Percent_Le_bin = (Percent_Le == 100).apply(int) Percent_Le_bin[Percent_Le == 0] = -1 Percent_Le_bin.name = "Percent_Le_bin" Percent_Le = Percent_Le / Percent_Le.max() Percent_Le = pd.concat([Percent_Le, Percent_Le_bin], axis=1) # LandArea_a LandArea_a = df.LandArea_a.copy() LandArea_a_zero = (LandArea_a == "0").apply(int) LandArea_a_zero.name = "LandArea_a_zero" LandArea_a = LandArea_a.str.replace(',','').astype(float) LandArea_a = np.log1p(LandArea_a) LandArea_a = LandArea_a / LandArea_a.max() LandArea_a = pd.concat([LandArea_a, LandArea_a_zero], axis=1) # totalbuild totalbuild = df.totalbuild.copy() totalbuild_nonzero = (totalbuild != 0).apply(int) totalbuild_nonzero.name = "totalbuild_nonzero" totalbuild = np.log1p(totalbuild) totalbuild = totalbuild / totalbuild.max() totalbuild = pd.concat([totalbuild, totalbuild_nonzero], axis=1) # avg_sf avg_sf = df.avg_sf.copy() avg_sf_nonzero = (avg_sf != "0").apply(int) avg_sf_nonzero.name = "avg_sf_nonzero" avg_sf[avg_sf == "0"] = np.nan avg_sf = avg_sf.str.replace(',','').astype(float) avg_sf = (avg_sf - avg_sf.min()) / (avg_sf.max() - avg_sf.min()) avg_sf = avg_sf.fillna(0) avg_sf = pd.concat([avg_sf, avg_sf_nonzero], axis=1) # Floorsize Floorsize = df.Floorsize.copy() Floorsize[Floorsize == "0"] = np.nan Floorsize = Floorsize.str.replace(',','').astype(float) Floorsize = np.log1p(Floorsize) Floorsize = (Floorsize - Floorsize.min()) / (Floorsize.max() - Floorsize.min()) Floorsize = Floorsize.fillna(Floorsize.median()) # BldgSF BldgSF = df.BldgSF.copy() BldgSF_zero = (BldgSF == "0").apply(int) BldgSF_zero.name = "BldgSF_zero" BldgSF = BldgSF.str.replace(',','').astype(float) BldgSF = np.log1p(BldgSF) BldgSF = BldgSF / BldgSF.max() BldgSF = pd.concat([BldgSF, BldgSF_zero], axis=1) # LotSize LotSize = df.LotSize.copy() LotSize_zero = (LotSize == "0").apply(int) LotSize_zero.name = "LotSize_zero" LotSize = LotSize.str.replace(',','').astype(float) LotSize = np.log1p(LotSize) LotSize = LotSize / LotSize.max() LotSize =
pd.concat([LotSize, LotSize_zero], axis=1)
pandas.concat
import pandas as pd import numpy as np from pandas._testing import assert_frame_equal from NEMPRO import planner, units def test_start_off_with_initial_down_time_of_zero(): forward_data = pd.DataFrame({ 'interval': [0, 1, 2], 'nsw-energy': [200, 200, 200]}) p = planner.DispatchPlanner(dispatch_interval=60, planning_horizon=3) u = units.GenericUnit(p, initial_dispatch=0.0) u.set_service_region('energy', 'nsw') u.add_to_market_energy_flow(capacity=100.0) u.add_primary_energy_source(capacity=100.0) u.add_unit_minimum_operating_level(min_loading=50.0, shutdown_ramp_rate=100.0, start_up_ramp_rate=100.0, min_up_time=60, min_down_time=120, time_in_initial_state=0) p.add_regional_market('nsw', 'energy', forward_data) p.optimise() dispatch = u.get_dispatch() expect_dispatch = pd.DataFrame({ 'interval': [0, 1, 2], 'net_dispatch': [0.0, 0.0, 100.0] }) assert_frame_equal(expect_dispatch, dispatch) def test_start_off_with_initial_down_time_less_than_min_down_time(): forward_data = pd.DataFrame({ 'interval': [0, 1, 2], 'nsw-energy': [200, 200, 200]}) p = planner.DispatchPlanner(dispatch_interval=60, planning_horizon=3) u = units.GenericUnit(p, initial_dispatch=0.0) u.set_service_region('energy', 'nsw') u.add_to_market_energy_flow(100.0) u.add_primary_energy_source(100.0) u.add_unit_minimum_operating_level(min_loading=50.0, shutdown_ramp_rate=100.0, start_up_ramp_rate=100.0, min_up_time=60, min_down_time=120, time_in_initial_state=60) p.add_regional_market('nsw', 'energy', forward_data) p.optimise() dispatch = u.get_dispatch() expect_dispatch = pd.DataFrame({ 'interval': [0, 1, 2], 'net_dispatch': [0.0, 100.0, 100.0] })
assert_frame_equal(expect_dispatch, dispatch)
pandas._testing.assert_frame_equal
import warnings import numpy as np import pytest from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, Series, TimedeltaIndex, Timestamp, date_range, period_range, timedelta_range, ) import pandas._testing as tm from pandas.core.arrays import PeriodArray from pandas.core.arrays.categorical import CategoricalAccessor from pandas.core.indexes.accessors import Properties class TestCatAccessor: @pytest.mark.parametrize( "method", [ lambda x: x.cat.set_categories([1, 2, 3]), lambda x: x.cat.reorder_categories([2, 3, 1], ordered=True), lambda x: x.cat.rename_categories([1, 2, 3]), lambda x: x.cat.remove_unused_categories(), lambda x: x.cat.remove_categories([2]), lambda x: x.cat.add_categories([4]), lambda x: x.cat.as_ordered(), lambda x: x.cat.as_unordered(), ], ) def test_getname_categorical_accessor(self, method): # GH#17509 ser = Series([1, 2, 3], name="A").astype("category") expected = "A" result = method(ser).name assert result == expected def test_cat_accessor(self): ser = Series(Categorical(["a", "b", np.nan, "a"])) tm.assert_index_equal(ser.cat.categories, Index(["a", "b"])) assert not ser.cat.ordered, False exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) return_value = ser.cat.set_categories(["b", "a"], inplace=True) assert return_value is None tm.assert_categorical_equal(ser.values, exp) res = ser.cat.set_categories(["b", "a"]) tm.assert_categorical_equal(res.values, exp) ser[:] = "a" ser = ser.cat.remove_unused_categories() tm.assert_index_equal(ser.cat.categories, Index(["a"])) def test_cat_accessor_api(self): # GH#9322 assert Series.cat is CategoricalAccessor ser = Series(list("aabbcde")).astype("category") assert isinstance(ser.cat, CategoricalAccessor) invalid = Series([1]) with pytest.raises(AttributeError, match="only use .cat accessor"): invalid.cat assert not hasattr(invalid, "cat") def test_cat_accessor_no_new_attributes(self): # https://github.com/pandas-dev/pandas/issues/10673 cat = Series(list("aabbcde")).astype("category") with pytest.raises(AttributeError, match="You cannot add any new attribute"): cat.cat.xlabel = "a" def test_cat_accessor_updates_on_inplace(self): ser = Series(list("abc")).astype("category") return_value = ser.drop(0, inplace=True) assert return_value is None with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): return_value = ser.cat.remove_unused_categories(inplace=True) assert return_value is None assert len(ser.cat.categories) == 2 def test_categorical_delegations(self): # invalid accessor msg = r"Can only use \.cat accessor with a 'category' dtype" with pytest.raises(AttributeError, match=msg): Series([1, 2, 3]).cat with pytest.raises(AttributeError, match=msg): Series([1, 2, 3]).cat() with pytest.raises(AttributeError, match=msg): Series(["a", "b", "c"]).cat with pytest.raises(AttributeError, match=msg): Series(np.arange(5.0)).cat with pytest.raises(AttributeError, match=msg): Series([Timestamp("20130101")]).cat # Series should delegate calls to '.categories', '.codes', '.ordered' # and the methods '.set_categories()' 'drop_unused_categories()' to the # categorical ser = Series(Categorical(["a", "b", "c", "a"], ordered=True)) exp_categories = Index(["a", "b", "c"]) tm.assert_index_equal(ser.cat.categories, exp_categories) ser.cat.categories = [1, 2, 3] exp_categories = Index([1, 2, 3]) tm.assert_index_equal(ser.cat.categories, exp_categories) exp_codes = Series([0, 1, 2, 0], dtype="int8") tm.assert_series_equal(ser.cat.codes, exp_codes) assert ser.cat.ordered ser = ser.cat.as_unordered() assert not ser.cat.ordered return_value = ser.cat.as_ordered(inplace=True) assert return_value is None assert ser.cat.ordered # reorder ser = Series(Categorical(["a", "b", "c", "a"], ordered=True)) exp_categories = Index(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"], dtype=np.object_) ser = ser.cat.set_categories(["c", "b", "a"]) tm.assert_index_equal(ser.cat.categories, exp_categories) tm.assert_numpy_array_equal(ser.values.__array__(), exp_values) tm.assert_numpy_array_equal(ser.__array__(), exp_values) # remove unused categories ser = Series(Categorical(["a", "b", "b", "a"], categories=["a", "b", "c"])) exp_categories = Index(["a", "b"]) exp_values = np.array(["a", "b", "b", "a"], dtype=np.object_) ser = ser.cat.remove_unused_categories() tm.assert_index_equal(ser.cat.categories, exp_categories) tm.assert_numpy_array_equal(ser.values.__array__(), exp_values) tm.assert_numpy_array_equal(ser.__array__(), exp_values) # This method is likely to be confused, so test that it raises an error # on wrong inputs: msg = "'Series' object has no attribute 'set_categories'" with pytest.raises(AttributeError, match=msg): ser.set_categories([4, 3, 2, 1]) # right: ser.cat.set_categories([4,3,2,1]) # GH#18862 (let Series.cat.rename_categories take callables) ser = Series(Categorical(["a", "b", "c", "a"], ordered=True)) result = ser.cat.rename_categories(lambda x: x.upper()) expected = Series( Categorical(["A", "B", "C", "A"], categories=["A", "B", "C"], ordered=True) ) tm.assert_series_equal(result, expected) def test_dt_accessor_api_for_categorical(self): # https://github.com/pandas-dev/pandas/issues/10661 s_dr = Series(date_range("1/1/2015", periods=5, tz="MET")) c_dr = s_dr.astype("category") s_pr = Series(period_range("1/1/2015", freq="D", periods=5)) c_pr = s_pr.astype("category") s_tdr = Series(
timedelta_range("1 days", "10 days")
pandas.timedelta_range
# -*- coding: utf-8 -*- # pylint: disable=W0612,E1101 from datetime import datetime import operator import nose from functools import wraps import numpy as np import pandas as pd from pandas import Series, DataFrame, Index, isnull, notnull, pivot, MultiIndex from pandas.core.datetools import bday from pandas.core.nanops import nanall, nanany from pandas.core.panel import Panel from pandas.core.series import remove_na import pandas.core.common as com from pandas import compat from pandas.compat import range, lrange, StringIO, OrderedDict, signature from pandas import SparsePanel from pandas.util.testing import (assert_panel_equal, assert_frame_equal, assert_series_equal, assert_almost_equal, assert_produces_warning, ensure_clean, assertRaisesRegexp, makeCustomDataframe as mkdf, makeMixedDataFrame) import pandas.core.panel as panelm import pandas.util.testing as tm def ignore_sparse_panel_future_warning(func): """ decorator to ignore FutureWarning if we have a SparsePanel can be removed when SparsePanel is fully removed """ @wraps(func) def wrapper(self, *args, **kwargs): if isinstance(self.panel, SparsePanel): with assert_produces_warning(FutureWarning, check_stacklevel=False): return func(self, *args, **kwargs) else: return func(self, *args, **kwargs) return wrapper class PanelTests(object): panel = None def test_pickle(self): unpickled = self.round_trip_pickle(self.panel) assert_frame_equal(unpickled['ItemA'], self.panel['ItemA']) def test_rank(self): self.assertRaises(NotImplementedError, lambda: self.panel.rank()) def test_cumsum(self): cumsum = self.panel.cumsum() assert_frame_equal(cumsum['ItemA'], self.panel['ItemA'].cumsum()) def not_hashable(self): c_empty = Panel() c = Panel(Panel([[[1]]])) self.assertRaises(TypeError, hash, c_empty) self.assertRaises(TypeError, hash, c) class SafeForLongAndSparse(object): _multiprocess_can_split_ = True def test_repr(self): repr(self.panel) @ignore_sparse_panel_future_warning def test_copy_names(self): for attr in ('major_axis', 'minor_axis'): getattr(self.panel, attr).name = None cp = self.panel.copy() getattr(cp, attr).name = 'foo' self.assertIsNone(getattr(self.panel, attr).name) def test_iter(self): tm.equalContents(list(self.panel), self.panel.items) def test_count(self): f = lambda s: notnull(s).sum() self._check_stat_op('count', f, obj=self.panel, has_skipna=False) def test_sum(self): self._check_stat_op('sum', np.sum) def test_mean(self): self._check_stat_op('mean', np.mean) def test_prod(self): self._check_stat_op('prod', np.prod) def test_median(self): def wrapper(x): if isnull(x).any(): return np.nan return np.median(x) self._check_stat_op('median', wrapper) def test_min(self): self._check_stat_op('min', np.min) def test_max(self): self._check_stat_op('max', np.max) def test_skew(self): try: from scipy.stats import skew except ImportError: raise nose.SkipTest("no scipy.stats.skew") def this_skew(x): if len(x) < 3: return np.nan return skew(x, bias=False) self._check_stat_op('skew', this_skew) # def test_mad(self): # f = lambda x: np.abs(x - x.mean()).mean() # self._check_stat_op('mad', f) def test_var(self): def alt(x): if len(x) < 2: return np.nan return np.var(x, ddof=1) self._check_stat_op('var', alt) def test_std(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) self._check_stat_op('std', alt) def test_sem(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) / np.sqrt(len(x)) self._check_stat_op('sem', alt) # def test_skew(self): # from scipy.stats import skew # def alt(x): # if len(x) < 3: # return np.nan # return skew(x, bias=False) # self._check_stat_op('skew', alt) def _check_stat_op(self, name, alternative, obj=None, has_skipna=True): if obj is None: obj = self.panel # # set some NAs # obj.ix[5:10] = np.nan # obj.ix[15:20, -2:] = np.nan f = getattr(obj, name) if has_skipna: def skipna_wrapper(x): nona = remove_na(x) if len(nona) == 0: return np.nan return alternative(nona) def wrapper(x): return alternative(np.asarray(x)) for i in range(obj.ndim): result = f(axis=i, skipna=False) assert_frame_equal(result, obj.apply(wrapper, axis=i)) else: skipna_wrapper = alternative wrapper = alternative for i in range(obj.ndim): result = f(axis=i) if not tm._incompat_bottleneck_version(name): assert_frame_equal(result, obj.apply(skipna_wrapper, axis=i)) self.assertRaises(Exception, f, axis=obj.ndim) # Unimplemented numeric_only parameter. if 'numeric_only' in signature(f).args: self.assertRaisesRegexp(NotImplementedError, name, f, numeric_only=True) class SafeForSparse(object): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def test_get_axis(self): assert (self.panel._get_axis(0) is self.panel.items) assert (self.panel._get_axis(1) is self.panel.major_axis) assert (self.panel._get_axis(2) is self.panel.minor_axis) def test_set_axis(self): new_items = Index(np.arange(len(self.panel.items))) new_major = Index(np.arange(len(self.panel.major_axis))) new_minor = Index(np.arange(len(self.panel.minor_axis))) # ensure propagate to potentially prior-cached items too item = self.panel['ItemA'] self.panel.items = new_items if hasattr(self.panel, '_item_cache'): self.assertNotIn('ItemA', self.panel._item_cache) self.assertIs(self.panel.items, new_items) # TODO: unused? item = self.panel[0] # noqa self.panel.major_axis = new_major self.assertIs(self.panel[0].index, new_major) self.assertIs(self.panel.major_axis, new_major) # TODO: unused? item = self.panel[0] # noqa self.panel.minor_axis = new_minor self.assertIs(self.panel[0].columns, new_minor) self.assertIs(self.panel.minor_axis, new_minor) def test_get_axis_number(self): self.assertEqual(self.panel._get_axis_number('items'), 0) self.assertEqual(self.panel._get_axis_number('major'), 1) self.assertEqual(self.panel._get_axis_number('minor'), 2) def test_get_axis_name(self): self.assertEqual(self.panel._get_axis_name(0), 'items') self.assertEqual(self.panel._get_axis_name(1), 'major_axis') self.assertEqual(self.panel._get_axis_name(2), 'minor_axis') def test_get_plane_axes(self): # what to do here? index, columns = self.panel._get_plane_axes('items') index, columns = self.panel._get_plane_axes('major_axis') index, columns = self.panel._get_plane_axes('minor_axis') index, columns = self.panel._get_plane_axes(0) @ignore_sparse_panel_future_warning def test_truncate(self): dates = self.panel.major_axis start, end = dates[1], dates[5] trunced = self.panel.truncate(start, end, axis='major') expected = self.panel['ItemA'].truncate(start, end) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(before=start, axis='major') expected = self.panel['ItemA'].truncate(before=start) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(after=end, axis='major') expected = self.panel['ItemA'].truncate(after=end) assert_frame_equal(trunced['ItemA'], expected) # XXX test other axes def test_arith(self): self._test_op(self.panel, operator.add) self._test_op(self.panel, operator.sub) self._test_op(self.panel, operator.mul) self._test_op(self.panel, operator.truediv) self._test_op(self.panel, operator.floordiv) self._test_op(self.panel, operator.pow) self._test_op(self.panel, lambda x, y: y + x) self._test_op(self.panel, lambda x, y: y - x) self._test_op(self.panel, lambda x, y: y * x) self._test_op(self.panel, lambda x, y: y / x) self._test_op(self.panel, lambda x, y: y ** x) self._test_op(self.panel, lambda x, y: x + y) # panel + 1 self._test_op(self.panel, lambda x, y: x - y) # panel - 1 self._test_op(self.panel, lambda x, y: x * y) # panel * 1 self._test_op(self.panel, lambda x, y: x / y) # panel / 1 self._test_op(self.panel, lambda x, y: x ** y) # panel ** 1 self.assertRaises(Exception, self.panel.__add__, self.panel['ItemA']) @staticmethod def _test_op(panel, op): result = op(panel, 1) assert_frame_equal(result['ItemA'], op(panel['ItemA'], 1)) def test_keys(self): tm.equalContents(list(self.panel.keys()), self.panel.items) def test_iteritems(self): # Test panel.iteritems(), aka panel.iteritems() # just test that it works for k, v in self.panel.iteritems(): pass self.assertEqual(len(list(self.panel.iteritems())), len(self.panel.items)) @ignore_sparse_panel_future_warning def test_combineFrame(self): def check_op(op, name): # items df = self.panel['ItemA'] func = getattr(self.panel, name) result = func(df, axis='items') assert_frame_equal(result['ItemB'], op(self.panel['ItemB'], df)) # major xs = self.panel.major_xs(self.panel.major_axis[0]) result = func(xs, axis='major') idx = self.panel.major_axis[1] assert_frame_equal(result.major_xs(idx), op(self.panel.major_xs(idx), xs)) # minor xs = self.panel.minor_xs(self.panel.minor_axis[0]) result = func(xs, axis='minor') idx = self.panel.minor_axis[1] assert_frame_equal(result.minor_xs(idx), op(self.panel.minor_xs(idx), xs)) ops = ['add', 'sub', 'mul', 'truediv', 'floordiv'] if not compat.PY3: ops.append('div') # pow, mod not supported for SparsePanel as flex ops (for now) if not isinstance(self.panel, SparsePanel): ops.extend(['pow', 'mod']) else: idx = self.panel.minor_axis[1] with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.pow(self.panel.minor_xs(idx), axis='minor') with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.mod(self.panel.minor_xs(idx), axis='minor') for op in ops: try: check_op(getattr(operator, op), op) except: com.pprint_thing("Failing operation: %r" % op) raise if compat.PY3: try: check_op(operator.truediv, 'div') except: com.pprint_thing("Failing operation: %r" % 'div') raise @ignore_sparse_panel_future_warning def test_combinePanel(self): result = self.panel.add(self.panel) self.assert_panel_equal(result, self.panel * 2) @ignore_sparse_panel_future_warning def test_neg(self): self.assert_panel_equal(-self.panel, self.panel * -1) # issue 7692 def test_raise_when_not_implemented(self): p = Panel(np.arange(3 * 4 * 5).reshape(3, 4, 5), items=['ItemA', 'ItemB', 'ItemC'], major_axis=pd.date_range('20130101', periods=4), minor_axis=list('ABCDE')) d = p.sum(axis=1).ix[0] ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'div', 'mod', 'pow'] for op in ops: with self.assertRaises(NotImplementedError): getattr(p, op)(d, axis=0) @ignore_sparse_panel_future_warning def test_select(self): p = self.panel # select items result = p.select(lambda x: x in ('ItemA', 'ItemC'), axis='items') expected = p.reindex(items=['ItemA', 'ItemC']) self.assert_panel_equal(result, expected) # select major_axis result = p.select(lambda x: x >= datetime(2000, 1, 15), axis='major') new_major = p.major_axis[p.major_axis >= datetime(2000, 1, 15)] expected = p.reindex(major=new_major) self.assert_panel_equal(result, expected) # select minor_axis result = p.select(lambda x: x in ('D', 'A'), axis=2) expected = p.reindex(minor=['A', 'D']) self.assert_panel_equal(result, expected) # corner case, empty thing result = p.select(lambda x: x in ('foo', ), axis='items') self.assert_panel_equal(result, p.reindex(items=[])) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) @ignore_sparse_panel_future_warning def test_abs(self): result = self.panel.abs() result2 = abs(self.panel) expected = np.abs(self.panel) self.assert_panel_equal(result, expected) self.assert_panel_equal(result2, expected) df = self.panel['ItemA'] result = df.abs() result2 = abs(df) expected = np.abs(df) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) s = df['A'] result = s.abs() result2 = abs(s) expected = np.abs(s) assert_series_equal(result, expected) assert_series_equal(result2, expected) self.assertEqual(result.name, 'A') self.assertEqual(result2.name, 'A') class CheckIndexing(object): _multiprocess_can_split_ = True def test_getitem(self): self.assertRaises(Exception, self.panel.__getitem__, 'ItemQ') def test_delitem_and_pop(self): expected = self.panel['ItemA'] result = self.panel.pop('ItemA') assert_frame_equal(expected, result) self.assertNotIn('ItemA', self.panel.items) del self.panel['ItemB'] self.assertNotIn('ItemB', self.panel.items) self.assertRaises(Exception, self.panel.__delitem__, 'ItemB') values = np.empty((3, 3, 3)) values[0] = 0 values[1] = 1 values[2] = 2 panel = Panel(values, lrange(3), lrange(3), lrange(3)) # did we delete the right row? panelc = panel.copy() del panelc[0] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[1] assert_frame_equal(panelc[0], panel[0]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[2] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[0], panel[0]) def test_setitem(self): # LongPanel with one item lp = self.panel.filter(['ItemA', 'ItemB']).to_frame() with tm.assertRaises(ValueError): self.panel['ItemE'] = lp # DataFrame df = self.panel['ItemA'][2:].filter(items=['A', 'B']) self.panel['ItemF'] = df self.panel['ItemE'] = df df2 = self.panel['ItemF'] assert_frame_equal(df, df2.reindex(index=df.index, columns=df.columns)) # scalar self.panel['ItemG'] = 1 self.panel['ItemE'] = True self.assertEqual(self.panel['ItemG'].values.dtype, np.int64) self.assertEqual(self.panel['ItemE'].values.dtype, np.bool_) # object dtype self.panel['ItemQ'] = 'foo' self.assertEqual(self.panel['ItemQ'].values.dtype, np.object_) # boolean dtype self.panel['ItemP'] = self.panel['ItemA'] > 0 self.assertEqual(self.panel['ItemP'].values.dtype, np.bool_) self.assertRaises(TypeError, self.panel.__setitem__, 'foo', self.panel.ix[['ItemP']]) # bad shape p = Panel(np.random.randn(4, 3, 2)) with tm.assertRaisesRegexp(ValueError, "shape of value must be \(3, 2\), " "shape of given object was \(4, 2\)"): p[0] = np.random.randn(4, 2) def test_setitem_ndarray(self): from pandas import date_range, datetools timeidx = date_range(start=datetime(2009, 1, 1), end=datetime(2009, 12, 31), freq=datetools.MonthEnd()) lons_coarse = np.linspace(-177.5, 177.5, 72) lats_coarse = np.linspace(-87.5, 87.5, 36) P = Panel(items=timeidx, major_axis=lons_coarse, minor_axis=lats_coarse) data = np.random.randn(72 * 36).reshape((72, 36)) key = datetime(2009, 2, 28) P[key] = data assert_almost_equal(P[key].values, data) def test_set_minor_major(self): # GH 11014 df1 = DataFrame(['a', 'a', 'a', np.nan, 'a', np.nan]) df2 = DataFrame([1.0, np.nan, 1.0, np.nan, 1.0, 1.0]) panel = Panel({'Item1': df1, 'Item2': df2}) newminor = notnull(panel.iloc[:, :, 0]) panel.loc[:, :, 'NewMinor'] = newminor assert_frame_equal(panel.loc[:, :, 'NewMinor'], newminor.astype(object)) newmajor = notnull(panel.iloc[:, 0, :]) panel.loc[:, 'NewMajor', :] = newmajor assert_frame_equal(panel.loc[:, 'NewMajor', :], newmajor.astype(object)) def test_major_xs(self): ref = self.panel['ItemA'] idx = self.panel.major_axis[5] xs = self.panel.major_xs(idx) result = xs['ItemA'] assert_series_equal(result, ref.xs(idx), check_names=False) self.assertEqual(result.name, 'ItemA') # not contained idx = self.panel.major_axis[0] - bday self.assertRaises(Exception, self.panel.major_xs, idx) def test_major_xs_mixed(self): self.panel['ItemD'] = 'foo' xs = self.panel.major_xs(self.panel.major_axis[0]) self.assertEqual(xs['ItemA'].dtype, np.float64) self.assertEqual(xs['ItemD'].dtype, np.object_) def test_minor_xs(self): ref = self.panel['ItemA'] idx = self.panel.minor_axis[1] xs = self.panel.minor_xs(idx) assert_series_equal(xs['ItemA'], ref[idx], check_names=False) # not contained self.assertRaises(Exception, self.panel.minor_xs, 'E') def test_minor_xs_mixed(self): self.panel['ItemD'] = 'foo' xs = self.panel.minor_xs('D') self.assertEqual(xs['ItemA'].dtype, np.float64) self.assertEqual(xs['ItemD'].dtype, np.object_) def test_xs(self): itemA = self.panel.xs('ItemA', axis=0) expected = self.panel['ItemA'] assert_frame_equal(itemA, expected) # get a view by default itemA_view = self.panel.xs('ItemA', axis=0) itemA_view.values[:] = np.nan self.assertTrue(np.isnan(self.panel['ItemA'].values).all()) # mixed-type yields a copy self.panel['strings'] = 'foo' result = self.panel.xs('D', axis=2) self.assertIsNotNone(result.is_copy) def test_getitem_fancy_labels(self): p = self.panel items = p.items[[1, 0]] dates = p.major_axis[::2] cols = ['D', 'C', 'F'] # all 3 specified assert_panel_equal(p.ix[items, dates, cols], p.reindex(items=items, major=dates, minor=cols)) # 2 specified assert_panel_equal(p.ix[:, dates, cols], p.reindex(major=dates, minor=cols)) assert_panel_equal(p.ix[items, :, cols], p.reindex(items=items, minor=cols)) assert_panel_equal(p.ix[items, dates, :], p.reindex(items=items, major=dates)) # only 1 assert_panel_equal(p.ix[items, :, :], p.reindex(items=items)) assert_panel_equal(p.ix[:, dates, :], p.reindex(major=dates)) assert_panel_equal(p.ix[:, :, cols], p.reindex(minor=cols)) def test_getitem_fancy_slice(self): pass def test_getitem_fancy_ints(self): p = self.panel # #1603 result = p.ix[:, -1, :] expected = p.ix[:, p.major_axis[-1], :] assert_frame_equal(result, expected) def test_getitem_fancy_xs(self): p = self.panel item = 'ItemB' date = p.major_axis[5] col = 'C' # get DataFrame # item assert_frame_equal(p.ix[item], p[item]) assert_frame_equal(p.ix[item, :], p[item]) assert_frame_equal(p.ix[item, :, :], p[item]) # major axis, axis=1 assert_frame_equal(p.ix[:, date], p.major_xs(date)) assert_frame_equal(p.ix[:, date, :], p.major_xs(date)) # minor axis, axis=2 assert_frame_equal(p.ix[:, :, 'C'], p.minor_xs('C')) # get Series assert_series_equal(p.ix[item, date], p[item].ix[date]) assert_series_equal(p.ix[item, date, :], p[item].ix[date]) assert_series_equal(p.ix[item, :, col], p[item][col]) assert_series_equal(p.ix[:, date, col], p.major_xs(date).ix[col]) def test_getitem_fancy_xs_check_view(self): item = 'ItemB' date = self.panel.major_axis[5] # make sure it's always a view NS = slice(None, None) # DataFrames comp = assert_frame_equal self._check_view(item, comp) self._check_view((item, NS), comp) self._check_view((item, NS, NS), comp) self._check_view((NS, date), comp) self._check_view((NS, date, NS), comp) self._check_view((NS, NS, 'C'), comp) # Series comp = assert_series_equal self._check_view((item, date), comp) self._check_view((item, date, NS), comp) self._check_view((item, NS, 'C'), comp) self._check_view((NS, date, 'C'), comp) def test_ix_setitem_slice_dataframe(self): a = Panel(items=[1, 2, 3], major_axis=[11, 22, 33], minor_axis=[111, 222, 333]) b = DataFrame(np.random.randn(2, 3), index=[111, 333], columns=[1, 2, 3]) a.ix[:, 22, [111, 333]] = b assert_frame_equal(a.ix[:, 22, [111, 333]], b) def test_ix_align(self): from pandas import Series b = Series(np.random.randn(10), name=0) b.sort() df_orig = Panel(np.random.randn(3, 10, 2)) df = df_orig.copy() df.ix[0, :, 0] = b assert_series_equal(df.ix[0, :, 0].reindex(b.index), b) df = df_orig.swapaxes(0, 1) df.ix[:, 0, 0] = b assert_series_equal(df.ix[:, 0, 0].reindex(b.index), b) df = df_orig.swapaxes(1, 2) df.ix[0, 0, :] = b assert_series_equal(df.ix[0, 0, :].reindex(b.index), b) def test_ix_frame_align(self): p_orig = tm.makePanel() df = p_orig.ix[0].copy() assert_frame_equal(p_orig['ItemA'], df) p = p_orig.copy() p.ix[0, :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.ix[0] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.iloc[0, :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.iloc[0] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.loc['ItemA'] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.loc['ItemA', :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p['ItemA'] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.ix[0, [0, 1, 3, 5], -2:] = df out = p.ix[0, [0, 1, 3, 5], -2:] assert_frame_equal(out, df.iloc[[0, 1, 3, 5], [2, 3]]) # GH3830, panel assignent by values/frame for dtype in ['float64', 'int64']: panel = Panel(np.arange(40).reshape((2, 4, 5)), items=['a1', 'a2'], dtype=dtype) df1 = panel.iloc[0] df2 = panel.iloc[1] tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by Value Passes for 'a2' panel.loc['a2'] = df1.values tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df1) # Assignment by DataFrame Ok w/o loc 'a2' panel['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by DataFrame Fails for 'a2' panel.loc['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) def _check_view(self, indexer, comp): cp = self.panel.copy() obj = cp.ix[indexer] obj.values[:] = 0 self.assertTrue((obj.values == 0).all()) comp(cp.ix[indexer].reindex_like(obj), obj) def test_logical_with_nas(self): d = Panel({'ItemA': {'a': [np.nan, False]}, 'ItemB': {'a': [True, True]}}) result = d['ItemA'] | d['ItemB'] expected = DataFrame({'a': [np.nan, True]}) assert_frame_equal(result, expected) # this is autodowncasted here result = d['ItemA'].fillna(False) | d['ItemB'] expected = DataFrame({'a': [True, True]}) assert_frame_equal(result, expected) def test_neg(self): # what to do? assert_panel_equal(-self.panel, -1 * self.panel) def test_invert(self): assert_panel_equal(-(self.panel < 0), ~(self.panel < 0)) def test_comparisons(self): p1 = tm.makePanel() p2 = tm.makePanel() tp = p1.reindex(items=p1.items + ['foo']) df = p1[p1.items[0]] def test_comp(func): # versus same index result = func(p1, p2) self.assert_numpy_array_equal(result.values, func(p1.values, p2.values)) # versus non-indexed same objs self.assertRaises(Exception, func, p1, tp) # versus different objs self.assertRaises(Exception, func, p1, df) # versus scalar result3 = func(self.panel, 0) self.assert_numpy_array_equal(result3.values, func(self.panel.values, 0)) test_comp(operator.eq) test_comp(operator.ne) test_comp(operator.lt) test_comp(operator.gt) test_comp(operator.ge) test_comp(operator.le) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) with tm.assertRaisesRegexp(TypeError, "There must be an argument for each axis"): self.panel.get_value('a') def test_set_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: self.panel.set_value(item, mjr, mnr, 1.) assert_almost_equal(self.panel[item][mnr][mjr], 1.) # resize res = self.panel.set_value('ItemE', 'foo', 'bar', 1.5) tm.assertIsInstance(res, Panel) self.assertIsNot(res, self.panel) self.assertEqual(res.get_value('ItemE', 'foo', 'bar'), 1.5) res3 = self.panel.set_value('ItemE', 'foobar', 'baz', 5) self.assertTrue(com.is_float_dtype(res3['ItemE'].values)) with tm.assertRaisesRegexp(TypeError, "There must be an argument for each axis" " plus the value provided"): self.panel.set_value('a') _panel = tm.makePanel() tm.add_nans(_panel) class TestPanel(tm.TestCase, PanelTests, CheckIndexing, SafeForLongAndSparse, SafeForSparse): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def setUp(self): self.panel = _panel.copy() self.panel.major_axis.name = None self.panel.minor_axis.name = None self.panel.items.name = None def test_panel_warnings(self): with tm.assert_produces_warning(FutureWarning): shifted1 = self.panel.shift(lags=1) with tm.assert_produces_warning(False): shifted2 = self.panel.shift(periods=1) tm.assert_panel_equal(shifted1, shifted2) with tm.assert_produces_warning(False): shifted3 = self.panel.shift() tm.assert_panel_equal(shifted1, shifted3) def test_constructor(self): # with BlockManager wp = Panel(self.panel._data) self.assertIs(wp._data, self.panel._data) wp = Panel(self.panel._data, copy=True) self.assertIsNot(wp._data, self.panel._data) assert_panel_equal(wp, self.panel) # strings handled prop wp = Panel([[['foo', 'foo', 'foo', ], ['foo', 'foo', 'foo']]]) self.assertEqual(wp.values.dtype, np.object_) vals = self.panel.values # no copy wp = Panel(vals) self.assertIs(wp.values, vals) # copy wp = Panel(vals, copy=True) self.assertIsNot(wp.values, vals) # GH #8285, test when scalar data is used to construct a Panel # if dtype is not passed, it should be inferred value_and_dtype = [(1, 'int64'), (3.14, 'float64'), ('foo', np.object_)] for (val, dtype) in value_and_dtype: wp = Panel(val, items=range(2), major_axis=range(3), minor_axis=range(4)) vals = np.empty((2, 3, 4), dtype=dtype) vals.fill(val) assert_panel_equal(wp, Panel(vals, dtype=dtype)) # test the case when dtype is passed wp = Panel(1, items=range(2), major_axis=range(3), minor_axis=range(4), dtype='float32') vals = np.empty((2, 3, 4), dtype='float32') vals.fill(1) assert_panel_equal(wp, Panel(vals, dtype='float32')) def test_constructor_cast(self): zero_filled = self.panel.fillna(0) casted = Panel(zero_filled._data, dtype=int) casted2 = Panel(zero_filled.values, dtype=int) exp_values = zero_filled.values.astype(int) assert_almost_equal(casted.values, exp_values) assert_almost_equal(casted2.values, exp_values) casted = Panel(zero_filled._data, dtype=np.int32) casted2 = Panel(zero_filled.values, dtype=np.int32) exp_values = zero_filled.values.astype(np.int32) assert_almost_equal(casted.values, exp_values) assert_almost_equal(casted2.values, exp_values) # can't cast data = [[['foo', 'bar', 'baz']]] self.assertRaises(ValueError, Panel, data, dtype=float) def test_constructor_empty_panel(self): empty = Panel() self.assertEqual(len(empty.items), 0) self.assertEqual(len(empty.major_axis), 0) self.assertEqual(len(empty.minor_axis), 0) def test_constructor_observe_dtype(self): # GH #411 panel = Panel(items=lrange(3), major_axis=lrange(3), minor_axis=lrange(3), dtype='O') self.assertEqual(panel.values.dtype, np.object_) def test_constructor_dtypes(self): # GH #797 def _check_dtype(panel, dtype): for i in panel.items: self.assertEqual(panel[i].values.dtype.name, dtype) # only nan holding types allowed here for dtype in ['float64', 'float32', 'object']: panel = Panel(items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.array(np.random.randn(2, 10, 5), dtype=dtype), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.array(np.random.randn(2, 10, 5), dtype='O'), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.random.randn(2, 10, 5), items=lrange( 2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: df1 = DataFrame(np.random.randn(2, 5), index=lrange(2), columns=lrange(5)) df2 = DataFrame(np.random.randn(2, 5), index=lrange(2), columns=lrange(5)) panel = Panel.from_dict({'a': df1, 'b': df2}, dtype=dtype) _check_dtype(panel, dtype) def test_constructor_fails_with_not_3d_input(self): with tm.assertRaisesRegexp(ValueError, "The number of dimensions required is 3"): Panel(np.random.randn(10, 2)) def test_consolidate(self): self.assertTrue(self.panel._data.is_consolidated()) self.panel['foo'] = 1. self.assertFalse(self.panel._data.is_consolidated()) panel = self.panel.consolidate() self.assertTrue(panel._data.is_consolidated()) def test_ctor_dict(self): itema = self.panel['ItemA'] itemb = self.panel['ItemB'] d = {'A': itema, 'B': itemb[5:]} d2 = {'A': itema._series, 'B': itemb[5:]._series} d3 = {'A': None, 'B': DataFrame(itemb[5:]._series), 'C': DataFrame(itema._series)} wp = Panel.from_dict(d) wp2 = Panel.from_dict(d2) # nested Dict # TODO: unused? wp3 = Panel.from_dict(d3) # noqa self.assertTrue(wp.major_axis.equals(self.panel.major_axis)) assert_panel_equal(wp, wp2) # intersect wp = Panel.from_dict(d, intersect=True) self.assertTrue(wp.major_axis.equals(itemb.index[5:])) # use constructor assert_panel_equal(Panel(d), Panel.from_dict(d)) assert_panel_equal(Panel(d2), Panel.from_dict(d2)) assert_panel_equal(Panel(d3), Panel.from_dict(d3)) # a pathological case d4 = {'A': None, 'B': None} # TODO: unused? wp4 = Panel.from_dict(d4) # noqa assert_panel_equal(Panel(d4), Panel(items=['A', 'B'])) # cast dcasted = dict((k, v.reindex(wp.major_axis).fillna(0)) for k, v in compat.iteritems(d)) result = Panel(dcasted, dtype=int) expected = Panel(dict((k, v.astype(int)) for k, v in compat.iteritems(dcasted))) assert_panel_equal(result, expected) result = Panel(dcasted, dtype=np.int32) expected = Panel(dict((k, v.astype(np.int32)) for k, v in compat.iteritems(dcasted))) assert_panel_equal(result, expected) def test_constructor_dict_mixed(self): data = dict((k, v.values) for k, v in self.panel.iteritems()) result = Panel(data) exp_major = Index(np.arange(len(self.panel.major_axis))) self.assertTrue(result.major_axis.equals(exp_major)) result = Panel(data, items=self.panel.items, major_axis=self.panel.major_axis, minor_axis=self.panel.minor_axis) assert_panel_equal(result, self.panel) data['ItemC'] = self.panel['ItemC'] result = Panel(data) assert_panel_equal(result, self.panel) # corner, blow up data['ItemB'] = data['ItemB'][:-1] self.assertRaises(Exception, Panel, data) data['ItemB'] = self.panel['ItemB'].values[:, :-1] self.assertRaises(Exception, Panel, data) def test_ctor_orderedDict(self): keys = list(set(np.random.randint(0, 5000, 100)))[ :50] # unique random int keys d = OrderedDict([(k, mkdf(10, 5)) for k in keys]) p = Panel(d) self.assertTrue(list(p.items) == keys) p = Panel.from_dict(d) self.assertTrue(list(p.items) == keys) def test_constructor_resize(self): data = self.panel._data items = self.panel.items[:-1] major = self.panel.major_axis[:-1] minor = self.panel.minor_axis[:-1] result = Panel(data, items=items, major_axis=major, minor_axis=minor) expected = self.panel.reindex(items=items, major=major, minor=minor) assert_panel_equal(result, expected) result = Panel(data, items=items, major_axis=major) expected = self.panel.reindex(items=items, major=major) assert_panel_equal(result, expected) result = Panel(data, items=items) expected = self.panel.reindex(items=items) assert_panel_equal(result, expected) result = Panel(data, minor_axis=minor) expected = self.panel.reindex(minor=minor) assert_panel_equal(result, expected) def test_from_dict_mixed_orient(self): df = tm.makeDataFrame() df['foo'] = 'bar' data = {'k1': df, 'k2': df} panel = Panel.from_dict(data, orient='minor') self.assertEqual(panel['foo'].values.dtype, np.object_) self.assertEqual(panel['A'].values.dtype, np.float64) def test_constructor_error_msgs(self): def testit(): Panel(np.random.randn(3, 4, 5), lrange(4), lrange(5), lrange(5)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(4, 5, 5\)", testit) def testit(): Panel(np.random.randn(3, 4, 5), lrange(5), lrange(4), lrange(5)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(5, 4, 5\)", testit) def testit(): Panel(np.random.randn(3, 4, 5), lrange(5), lrange(5), lrange(4)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(5, 5, 4\)", testit) def test_conform(self): df = self.panel['ItemA'][:-5].filter(items=['A', 'B']) conformed = self.panel.conform(df) assert (conformed.index.equals(self.panel.major_axis)) assert (conformed.columns.equals(self.panel.minor_axis)) def test_convert_objects(self): # GH 4937 p = Panel(dict(A=dict(a=['1', '1.0']))) expected = Panel(dict(A=dict(a=[1, 1.0]))) result = p._convert(numeric=True, coerce=True) assert_panel_equal(result, expected) def test_dtypes(self): result = self.panel.dtypes expected = Series(np.dtype('float64'), index=self.panel.items) assert_series_equal(result, expected) def test_apply(self): # GH1148 # ufunc applied = self.panel.apply(np.sqrt) self.assertTrue(assert_almost_equal(applied.values, np.sqrt( self.panel.values))) # ufunc same shape result = self.panel.apply(lambda x: x * 2, axis='items') expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis='major_axis') expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis='minor_axis') expected = self.panel * 2 assert_panel_equal(result, expected) # reduction to DataFrame result = self.panel.apply(lambda x: x.dtype, axis='items') expected = DataFrame(np.dtype('float64'), index=self.panel.major_axis, columns=self.panel.minor_axis) assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.dtype, axis='major_axis') expected = DataFrame(np.dtype('float64'), index=self.panel.minor_axis, columns=self.panel.items) assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.dtype, axis='minor_axis') expected = DataFrame(np.dtype('float64'), index=self.panel.major_axis, columns=self.panel.items) assert_frame_equal(result, expected) # reductions via other dims expected = self.panel.sum(0) result = self.panel.apply(lambda x: x.sum(), axis='items') assert_frame_equal(result, expected) expected = self.panel.sum(1) result = self.panel.apply(lambda x: x.sum(), axis='major_axis') assert_frame_equal(result, expected) expected = self.panel.sum(2) result = self.panel.apply(lambda x: x.sum(), axis='minor_axis') assert_frame_equal(result, expected) # pass kwargs result = self.panel.apply(lambda x, y: x.sum() + y, axis='items', y=5) expected = self.panel.sum(0) + 5 assert_frame_equal(result, expected) def test_apply_slabs(self): # same shape as original result = self.panel.apply(lambda x: x * 2, axis=['items', 'major_axis']) expected = (self.panel * 2).transpose('minor_axis', 'major_axis', 'items') assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['major_axis', 'items']) assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['items', 'minor_axis']) expected = (self.panel * 2).transpose('major_axis', 'minor_axis', 'items') assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['minor_axis', 'items']) assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['major_axis', 'minor_axis']) expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['minor_axis', 'major_axis']) assert_panel_equal(result, expected) # reductions result = self.panel.apply(lambda x: x.sum(0), axis=[ 'items', 'major_axis' ]) expected = self.panel.sum(1).T assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.sum(1), axis=[ 'items', 'major_axis' ]) expected = self.panel.sum(0) assert_frame_equal(result, expected) # transforms f = lambda x: ((x.T - x.mean(1)) / x.std(1)).T # make sure that we don't trigger any warnings with tm.assert_produces_warning(False): result = self.panel.apply(f, axis=['items', 'major_axis']) expected = Panel(dict([(ax, f(self.panel.loc[:, :, ax])) for ax in self.panel.minor_axis])) assert_panel_equal(result, expected) result = self.panel.apply(f, axis=['major_axis', 'minor_axis']) expected = Panel(dict([(ax, f(self.panel.loc[ax])) for ax in self.panel.items])) assert_panel_equal(result, expected) result = self.panel.apply(f, axis=['minor_axis', 'items']) expected = Panel(dict([(ax, f(self.panel.loc[:, ax])) for ax in self.panel.major_axis])) assert_panel_equal(result, expected) # with multi-indexes # GH7469 index = MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ( 'two', 'a'), ('two', 'b')]) dfa = DataFrame(np.array(np.arange(12, dtype='int64')).reshape( 4, 3), columns=list("ABC"), index=index) dfb = DataFrame(np.array(np.arange(10, 22, dtype='int64')).reshape( 4, 3), columns=list("ABC"), index=index) p = Panel({'f': dfa, 'g': dfb}) result = p.apply(lambda x: x.sum(), axis=0) # on windows this will be in32 result = result.astype('int64') expected = p.sum(0) assert_frame_equal(result, expected) def test_apply_no_or_zero_ndim(self): # GH10332 self.panel = Panel(np.random.rand(5, 5, 5)) result_int = self.panel.apply(lambda df: 0, axis=[1, 2]) result_float = self.panel.apply(lambda df: 0.0, axis=[1, 2]) result_int64 = self.panel.apply(lambda df: np.int64(0), axis=[1, 2]) result_float64 = self.panel.apply(lambda df: np.float64(0.0), axis=[1, 2]) expected_int = expected_int64 = Series([0] * 5) expected_float = expected_float64 = Series([0.0] * 5) assert_series_equal(result_int, expected_int) assert_series_equal(result_int64, expected_int64) assert_series_equal(result_float, expected_float) assert_series_equal(result_float64, expected_float64) def test_reindex(self): ref = self.panel['ItemB'] # items result = self.panel.reindex(items=['ItemA', 'ItemB']) assert_frame_equal(result['ItemB'], ref) # major new_major = list(self.panel.major_axis[:10]) result = self.panel.reindex(major=new_major) assert_frame_equal(result['ItemB'], ref.reindex(index=new_major)) # raise exception put both major and major_axis self.assertRaises(Exception, self.panel.reindex, major_axis=new_major, major=new_major) # minor new_minor = list(self.panel.minor_axis[:2]) result = self.panel.reindex(minor=new_minor) assert_frame_equal(result['ItemB'], ref.reindex(columns=new_minor)) # this ok result = self.panel.reindex() assert_panel_equal(result, self.panel) self.assertFalse(result is self.panel) # with filling smaller_major = self.panel.major_axis[::5] smaller = self.panel.reindex(major=smaller_major) larger = smaller.reindex(major=self.panel.major_axis, method='pad') assert_frame_equal(larger.major_xs(self.panel.major_axis[1]), smaller.major_xs(smaller_major[0])) # don't necessarily copy result = self.panel.reindex(major=self.panel.major_axis, copy=False) assert_panel_equal(result, self.panel) self.assertTrue(result is self.panel) def test_reindex_multi(self): # with and without copy full reindexing result = self.panel.reindex(items=self.panel.items, major=self.panel.major_axis, minor=self.panel.minor_axis, copy=False) self.assertIs(result.items, self.panel.items) self.assertIs(result.major_axis, self.panel.major_axis) self.assertIs(result.minor_axis, self.panel.minor_axis) result = self.panel.reindex(items=self.panel.items, major=self.panel.major_axis, minor=self.panel.minor_axis, copy=False) assert_panel_equal(result, self.panel) # multi-axis indexing consistency # GH 5900 df = DataFrame(np.random.randn(4, 3)) p = Panel({'Item1': df}) expected = Panel({'Item1': df}) expected['Item2'] = np.nan items = ['Item1', 'Item2'] major_axis = np.arange(4) minor_axis = np.arange(3) results = [] results.append(p.reindex(items=items, major_axis=major_axis, copy=True)) results.append(p.reindex(items=items, major_axis=major_axis, copy=False)) results.append(p.reindex(items=items, minor_axis=minor_axis, copy=True)) results.append(p.reindex(items=items, minor_axis=minor_axis, copy=False)) results.append(p.reindex(items=items, major_axis=major_axis, minor_axis=minor_axis, copy=True)) results.append(p.reindex(items=items, major_axis=major_axis, minor_axis=minor_axis, copy=False)) for i, r in enumerate(results): assert_panel_equal(expected, r) def test_reindex_like(self): # reindex_like smaller = self.panel.reindex(items=self.panel.items[:-1], major=self.panel.major_axis[:-1], minor=self.panel.minor_axis[:-1]) smaller_like = self.panel.reindex_like(smaller) assert_panel_equal(smaller, smaller_like) def test_take(self): # axis == 0 result = self.panel.take([2, 0, 1], axis=0) expected = self.panel.reindex(items=['ItemC', 'ItemA', 'ItemB']) assert_panel_equal(result, expected) # axis >= 1 result = self.panel.take([3, 0, 1, 2], axis=2) expected = self.panel.reindex(minor=['D', 'A', 'B', 'C']) assert_panel_equal(result, expected) # neg indicies ok expected = self.panel.reindex(minor=['D', 'D', 'B', 'C']) result = self.panel.take([3, -1, 1, 2], axis=2) assert_panel_equal(result, expected) self.assertRaises(Exception, self.panel.take, [4, 0, 1, 2], axis=2) def test_sort_index(self): import random ritems = list(self.panel.items) rmajor = list(self.panel.major_axis) rminor = list(self.panel.minor_axis) random.shuffle(ritems) random.shuffle(rmajor) random.shuffle(rminor) random_order = self.panel.reindex(items=ritems) sorted_panel = random_order.sort_index(axis=0) assert_panel_equal(sorted_panel, self.panel) # descending random_order = self.panel.reindex(items=ritems) sorted_panel = random_order.sort_index(axis=0, ascending=False) assert_panel_equal(sorted_panel, self.panel.reindex(items=self.panel.items[::-1])) random_order = self.panel.reindex(major=rmajor) sorted_panel = random_order.sort_index(axis=1) assert_panel_equal(sorted_panel, self.panel) random_order = self.panel.reindex(minor=rminor) sorted_panel = random_order.sort_index(axis=2) assert_panel_equal(sorted_panel, self.panel) def test_fillna(self): filled = self.panel.fillna(0) self.assertTrue(np.isfinite(filled.values).all()) filled = self.panel.fillna(method='backfill') assert_frame_equal(filled['ItemA'], self.panel['ItemA'].fillna(method='backfill')) panel = self.panel.copy() panel['str'] = 'foo' filled = panel.fillna(method='backfill') assert_frame_equal(filled['ItemA'], panel['ItemA'].fillna(method='backfill')) empty = self.panel.reindex(items=[]) filled = empty.fillna(0) assert_panel_equal(filled, empty) self.assertRaises(ValueError, self.panel.fillna) self.assertRaises(ValueError, self.panel.fillna, 5, method='ffill') self.assertRaises(TypeError, self.panel.fillna, [1, 2]) self.assertRaises(TypeError, self.panel.fillna, (1, 2)) # limit not implemented when only value is specified p = Panel(np.random.randn(3, 4, 5)) p.iloc[0:2, 0:2, 0:2] = np.nan self.assertRaises(NotImplementedError, lambda: p.fillna(999, limit=1)) def test_ffill_bfill(self): assert_panel_equal(self.panel.ffill(), self.panel.fillna(method='ffill')) assert_panel_equal(self.panel.bfill(), self.panel.fillna(method='bfill')) def test_truncate_fillna_bug(self): # #1823 result = self.panel.truncate(before=None, after=None, axis='items') # it works! result.fillna(value=0.0) def test_swapaxes(self): result = self.panel.swapaxes('items', 'minor') self.assertIs(result.items, self.panel.minor_axis) result = self.panel.swapaxes('items', 'major') self.assertIs(result.items, self.panel.major_axis) result = self.panel.swapaxes('major', 'minor') self.assertIs(result.major_axis, self.panel.minor_axis) panel = self.panel.copy() result = panel.swapaxes('major', 'minor') panel.values[0, 0, 1] = np.nan expected = panel.swapaxes('major', 'minor') assert_panel_equal(result, expected) # this should also work result = self.panel.swapaxes(0, 1) self.assertIs(result.items, self.panel.major_axis) # this works, but return a copy result = self.panel.swapaxes('items', 'items') assert_panel_equal(self.panel, result) self.assertNotEqual(id(self.panel), id(result)) def test_transpose(self): result = self.panel.transpose('minor', 'major', 'items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) # test kwargs result = self.panel.transpose(items='minor', major='major', minor='items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) # text mixture of args result = self.panel.transpose('minor', major='major', minor='items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) result = self.panel.transpose('minor', 'major', minor='items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) # duplicate axes with tm.assertRaisesRegexp(TypeError, 'not enough/duplicate arguments'): self.panel.transpose('minor', maj='major', minor='items') with tm.assertRaisesRegexp(ValueError, 'repeated axis in transpose'): self.panel.transpose('minor', 'major', major='minor', minor='items') result = self.panel.transpose(2, 1, 0) assert_panel_equal(result, expected) result = self.panel.transpose('minor', 'items', 'major') expected = self.panel.swapaxes('items', 'minor') expected = expected.swapaxes('major', 'minor')
assert_panel_equal(result, expected)
pandas.util.testing.assert_panel_equal
from datetime import timedelta from functools import partial import itertools from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain from zipline.pipeline.loaders.earnings_estimates import ( NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import pytest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, "estimate", "knowledge_date"]) df = df.pivot_table( columns=SID_FIELD_NAME, values="estimate", index="knowledge_date", dropna=False ) df = df.reindex(pd.date_range(start_date, end_date)) # Index name is lost during reindex. df.index = df.index.rename("knowledge_date") df["at_date"] = end_date.tz_localize("utc") df = df.set_index(["at_date", df.index.tz_localize("utc")]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp("2014-12-28", tz="utc") END_DATE = pd.Timestamp("2015-02-04", tz="utc") @classmethod def make_loader(cls, events, columns): raise NotImplementedError("make_loader") @classmethod def make_events(cls): raise NotImplementedError("make_events") @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ "s" + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader( cls.events, {column.name: val for column, val in cls.columns.items()} ) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: "event_date", MultipleColumnsEstimates.fiscal_quarter: "fiscal_quarter", MultipleColumnsEstimates.fiscal_year: "fiscal_year", MultipleColumnsEstimates.estimate1: "estimate1", MultipleColumnsEstimates.estimate2: "estimate2", } @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate1": [1.0, 2.0], "estimate2": [3.0, 4.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def make_expected_out(cls): raise NotImplementedError("make_expected_out") @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp("2015-01-15", tz="utc"), end_date=pd.Timestamp("2015-01-15", tz="utc"), ) assert_frame_equal(results.sort_index(1), self.expected_out.sort_index(1)) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-10"), "estimate1": 1.0, "estimate2": 3.0, FISCAL_QUARTER_FIELD_NAME: 1.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-20"), "estimate1": 2.0, "estimate2": 4.0, FISCAL_QUARTER_FIELD_NAME: 2.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) dummy_df = pd.DataFrame( {SID_FIELD_NAME: 0}, columns=[ SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, "estimate", ], index=[0], ) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = { c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns } p = Pipeline(columns) err_msg = ( r"Passed invalid number of quarters -[0-9],-[0-9]; " r"must pass a number of quarters >= 0" ) with pytest.raises(ValueError, match=err_msg): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with pytest.raises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = [ "split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof", ] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand( itertools.product( ( NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, ), ) ) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } with pytest.raises(ValueError): loader( dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01"), ) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp("2015-01-28", tz="utc") q1_knowledge_dates = [ pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-04"), pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-11"), ] q2_knowledge_dates = [ pd.Timestamp("2015-01-14"), pd.Timestamp("2015-01-17"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-23"), ] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ] # One day late q2_release_dates = [ pd.Timestamp("2015-01-25"), # One day early pd.Timestamp("2015-01-26"), ] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if ( q1e1 < q1e2 and q2e1 < q2e2 # All estimates are < Q2's event, so just constrain Q1 # estimates. and q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0] ): sid_estimates.append( cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid) ) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26"), ], "estimate": [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid, } ) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, "estimate": [0.1, 0.2, 0.3, 0.4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, } ) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert sid_estimates.isnull().all().all() else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [ self.get_expected_estimate( q1_knowledge[ q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], q2_knowledge[ q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index ], axis=0, ) sid_estimates.index = all_expected.index.copy() assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q2_knowledge.iloc[-1:] elif ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate": [1.0, 2.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame( columns=[cls.columns[col] + "1" for col in cls.columns] + [cls.columns[col] + "2" for col in cls.columns], index=cls.trading_days, ) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ("1", "2") ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime(expected[expected_name]) else: expected[expected_name] = expected[expected_name].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge( [ {c.name + "1": c.latest for c in dataset1.columns}, {c.name + "2": c.latest for c in dataset2.columns}, ] ) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + "1" for col in self.columns] q2_columns = [col.name + "2" for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal( sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values) ) assert_equal( self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1), ) class NextEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp( "2015-01-11", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp("2015-01-11", tz="UTC") : pd.Timestamp( "2015-01-20", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ["estimate", "event_date"]: expected.loc[ pd.Timestamp("2015-01-06", tz="UTC") : pd.Timestamp( "2015-01-10", tz="UTC" ), col_name + "2", ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[
pd.Timestamp("2015-01-01", tz="UTC")
pandas.Timestamp