hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
4a26bc021925afcec77a9c60b07998b318cfc32d
2,948
py
Python
dev/Tools/lmbr_aws/cli.py
jeikabu/lumberyard
07228c605ce16cbf5aaa209a94a3cb9d6c1a4115
[ "AML" ]
8
2019-10-07T16:33:47.000Z
2020-12-07T03:59:58.000Z
dev/Tools/lmbr_aws/cli.py
jeikabu/lumberyard
07228c605ce16cbf5aaa209a94a3cb9d6c1a4115
[ "AML" ]
null
null
null
dev/Tools/lmbr_aws/cli.py
jeikabu/lumberyard
07228c605ce16cbf5aaa209a94a3cb9d6c1a4115
[ "AML" ]
5
2020-08-27T20:44:18.000Z
2021-08-21T22:54:11.000Z
# # All or portions of this file Copyright (c) Amazon.com, Inc. or its affiliates or # its licensors. # # For complete copyright and license terms please see the LICENSE at the root of this # distribution (the "License"). All use of this software is governed by the License, # or, if provided, by the license below or the license accompanying this file. Do not # remove or modify any license notices. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # $Revision: #1 $ from __future__ import print_function import argparse import os import sys import bootstrap def main(): try: framework_directory_path = get_framework_directory_path() cli = bootstrap.load_resource_manager_module(framework_directory_path, 'resource_manager.cli') return cli.main() except RuntimeError as e: print('\nERROR: ' + e.message); def get_framework_directory_path(): '''Determines the CloudGemFramework directory to use based on select command line arguments and the game project's gems.json file.''' parser = argparse.ArgumentParser(add_help=False) parser.add_argument('--root-directory', default=os.getcwd(), help='Lumberyard install directory and location of bootstrap.cfg file. Default is the current working directory.') parser.add_argument('--game-directory', help='Location of the game project directory. The default is {root-directory}\{game} where {game} is determined by the sys_game_folder setting in the {root-directory}\bootstrap.cfg file.') parser.add_argument('--framework-directory', help='Specify the CloudGemFramework version used to execute the command. The default is determined by examining the gems.json file for the project identified by the bootstrap.cfg file.') args, unknown_args = parser.parse_known_args() if args.framework_directory: i = sys.argv.index('--framework-directory') sys.argv[i:i+2] = [] # remove arg because cli in resource manager doesn't know about it. return args.framework_directory else: if args.game_directory: game_directory_path = os.path.abspath(args.game_directory) if not os.path.isdir(game_directory_path): raise RuntimeError('The specified game directory does not exist: {}.'.format(game_directory_path)) else: game_directory_path = bootstrap.get_game_directory_path(args.root_directory) framework_directory_path = bootstrap.get_framework_directory_path(args.root_directory, game_directory_path) if framework_directory_path is None: raise RuntimeError('The gems.json file at {} does not contain an entry for the CloudGemFramework gem. You must enable this gem for your project.'.format(game_directory_path)) return framework_directory_path if __name__ == "__main__": sys.exit(main())
45.353846
235
0.72863
4a26beeccdc06ef480105e99edcb3feed89192df
4,655
py
Python
sdk/python/pulumi_aws/codestarconnections/get_connection.py
aamir-locus/pulumi-aws
3e234b050129bde35d8e072a88bd608562f02142
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/codestarconnections/get_connection.py
aamir-locus/pulumi-aws
3e234b050129bde35d8e072a88bd608562f02142
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/codestarconnections/get_connection.py
aamir-locus/pulumi-aws
3e234b050129bde35d8e072a88bd608562f02142
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'GetConnectionResult', 'AwaitableGetConnectionResult', 'get_connection', ] @pulumi.output_type class GetConnectionResult: """ A collection of values returned by getConnection. """ def __init__(__self__, arn=None, connection_status=None, id=None, name=None, provider_type=None, tags=None): if arn and not isinstance(arn, str): raise TypeError("Expected argument 'arn' to be a str") pulumi.set(__self__, "arn", arn) if connection_status and not isinstance(connection_status, str): raise TypeError("Expected argument 'connection_status' to be a str") pulumi.set(__self__, "connection_status", connection_status) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if provider_type and not isinstance(provider_type, str): raise TypeError("Expected argument 'provider_type' to be a str") pulumi.set(__self__, "provider_type", provider_type) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) @property @pulumi.getter def arn(self) -> str: return pulumi.get(self, "arn") @property @pulumi.getter(name="connectionStatus") def connection_status(self) -> str: """ The CodeStar Connection status. Possible values are `PENDING`, `AVAILABLE` and `ERROR`. """ return pulumi.get(self, "connection_status") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> str: """ The name of the CodeStar Connection. The name is unique in the calling AWS account. """ return pulumi.get(self, "name") @property @pulumi.getter(name="providerType") def provider_type(self) -> str: """ The name of the external provider where your third-party code repository is configured. Possible values are `Bitbucket`, `GitHub`, or `GitHubEnterpriseServer`. """ return pulumi.get(self, "provider_type") @property @pulumi.getter def tags(self) -> Mapping[str, str]: """ Map of key-value resource tags to associate with the resource. """ return pulumi.get(self, "tags") class AwaitableGetConnectionResult(GetConnectionResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetConnectionResult( arn=self.arn, connection_status=self.connection_status, id=self.id, name=self.name, provider_type=self.provider_type, tags=self.tags) def get_connection(arn: Optional[str] = None, tags: Optional[Mapping[str, str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetConnectionResult: """ Provides details about CodeStar Connection. ## Example Usage ```python import pulumi import pulumi_aws as aws example = aws.codestarconnections.get_connection(arn=aws_codestarconnections_connection["example"]["arn"]) ``` :param str arn: The CodeStar Connection ARN. :param Mapping[str, str] tags: Map of key-value resource tags to associate with the resource. """ __args__ = dict() __args__['arn'] = arn __args__['tags'] = tags if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws:codestarconnections/getConnection:getConnection', __args__, opts=opts, typ=GetConnectionResult).value return AwaitableGetConnectionResult( arn=__ret__.arn, connection_status=__ret__.connection_status, id=__ret__.id, name=__ret__.name, provider_type=__ret__.provider_type, tags=__ret__.tags)
33.978102
167
0.64812
4a26c0a268f444c831bd9f5f8d1897f593fe7994
1,914
py
Python
contrib/devtools/check-doc.py
SicNull/tiercoin
f5f52da02c1d23ffb571123582c6049359a9d4d0
[ "MIT" ]
null
null
null
contrib/devtools/check-doc.py
SicNull/tiercoin
f5f52da02c1d23ffb571123582c6049359a9d4d0
[ "MIT" ]
null
null
null
contrib/devtools/check-doc.py
SicNull/tiercoin
f5f52da02c1d23ffb571123582c6049359a9d4d0
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Copyright (c) 2015-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' This checks if all command line args are documented. Return value is 0 to indicate no error. Author: @MarcoFalke ''' from subprocess import check_output import re FOLDER_GREP = 'src' FOLDER_TEST = 'src/test/' CMD_ROOT_DIR = '`git rev-parse --show-toplevel`/%s' % FOLDER_GREP CMD_GREP_ARGS = r"egrep -r -I '(map(Multi)?Args(\.count\(|\[)|Get(Bool)?Arg\()\"\-[^\"]+?\"' %s | grep -v '%s'" % (CMD_ROOT_DIR, FOLDER_TEST) CMD_GREP_DOCS = r"egrep -r -I 'HelpMessageOpt\(\"\-[^\"=]+?(=|\")' %s" % (CMD_ROOT_DIR) REGEX_ARG = re.compile(r'(?:map(?:Multi)?Args(?:\.count\(|\[)|Get(?:Bool)?Arg\()\"(\-[^\"]+?)\"') REGEX_DOC = re.compile(r'HelpMessageOpt\(\"(\-[^\"=]+?)(?:=|\")') # list unsupported, deprecated and duplicate args as they need no documentation SET_DOC_OPTIONAL = set(['-rpcssl', '-benchmark', '-h', '-help', '-socks', '-tor', '-debugnet', '-whitelistalwaysrelay', '-prematurewitness', '-walletprematurewitness', '-promiscuousmempoolflags', '-blockminsize', '-sendfreetransactions', '-checklevel', '-liquidityprovider', '-anonymizetiercoinamount']) def main(): used = check_output(CMD_GREP_ARGS, shell=True) docd = check_output(CMD_GREP_DOCS, shell=True) args_used = set(re.findall(REGEX_ARG,used)) args_docd = set(re.findall(REGEX_DOC,docd)).union(SET_DOC_OPTIONAL) args_need_doc = args_used.difference(args_docd) args_unknown = args_docd.difference(args_used) print "Args used : %s" % len(args_used) print "Args documented : %s" % len(args_docd) print "Args undocumented: %s" % len(args_need_doc) print args_need_doc print "Args unknown : %s" % len(args_unknown) print args_unknown exit(len(args_need_doc)) if __name__ == "__main__": main()
42.533333
303
0.6907
4a26c1776b8bc89ea333624f090f331d1d755c7c
2,210
py
Python
migration/rack/commits/commit643839e7d8036731ba1da767942c8e74c2876e2e.py
tuxji/RACK
74b59b9a89b48cf2da91d7d9ac23ab3408e32bcf
[ "BSD-3-Clause" ]
4
2021-07-02T08:58:05.000Z
2022-02-02T03:02:32.000Z
migration/rack/commits/commit643839e7d8036731ba1da767942c8e74c2876e2e.py
tuxji/RACK
74b59b9a89b48cf2da91d7d9ac23ab3408e32bcf
[ "BSD-3-Clause" ]
309
2020-11-02T19:46:14.000Z
2022-03-24T21:35:28.000Z
migration/rack/commits/commit643839e7d8036731ba1da767942c8e74c2876e2e.py
tuxji/RACK
74b59b9a89b48cf2da91d7d9ac23ab3408e32bcf
[ "BSD-3-Clause" ]
7
2020-11-30T22:22:06.000Z
2022-02-02T03:09:12.000Z
# Copyright (c) 2021, Galois, Inc. # # All Rights Reserved # # This material is based upon work supported by the Defense Advanced Research # Projects Agency (DARPA) under Contract No. FA8750-20-C-0203. # # Any opinions, findings and conclusions or recommendations expressed in this # material are those of the author(s) and do not necessarily reflect the views # of the Defense Advanced Research Projects Agency (DARPA). from migration_helpers.name_space import rack from ontology_changes import ( AtMost, ChangeCardinality, ChangePropertyIsATypeOf, ChangePropertyRange, Commit, RenameProperty, SingleValue, ) FILE = rack("FILE") PROV_S = rack("PROV-S") SOFTWARE = rack("SOFTWARE") commit = Commit( number="643839e7d8036731ba1da767942c8e74c2876e2e", changes=[ # FILE.sadl ChangeCardinality( name_space=FILE, class_id="FILE", property_id="filename", to_cardinality=SingleValue(), ), RenameProperty( from_name_space=FILE, from_class="FILE", from_name="fileParent", to_name_space=FILE, to_class="FILE", to_name="definedIn", ), ChangePropertyIsATypeOf( name_space=FILE, class_id="FILE", property_id="satisfies", from_name_space=PROV_S, from_property_id="wasDerivedFrom", to_name_space=PROV_S, to_property_id="wasImpactedBy", ), ChangeCardinality( name_space=FILE, class_id="FILE", property_id="createBy", to_cardinality=AtMost(1), ), # FILE.sadl / SOFTWARE.sadl RenameProperty( from_name_space=SOFTWARE, from_class="FILE", from_name="definedIn", to_name_space=FILE, to_class="FILE", to_name="definedIn", ), ChangePropertyRange( prop_name_space=FILE, prop_name="definedIn", from_name_space=PROV_S, from_range="ENTITY", to_name_space=FILE, to_range="FILE", ), ], )
27.974684
78
0.593213
4a26c230f7a21cc6dd4a3cdb52e32730b1ce73ca
12,731
py
Python
v1_api_demo/gan/gan_trainer.py
shenchaohua/Paddle
9c5942db13308d53cc115708058c1e885f4b57a3
[ "Apache-2.0" ]
5
2017-06-20T06:13:01.000Z
2021-04-21T03:54:08.000Z
v1_api_demo/gan/gan_trainer.py
shenchaohua/Paddle
9c5942db13308d53cc115708058c1e885f4b57a3
[ "Apache-2.0" ]
9
2017-09-13T07:39:31.000Z
2017-10-18T05:58:23.000Z
v1_api_demo/gan/gan_trainer.py
shenchaohua/Paddle
9c5942db13308d53cc115708058c1e885f4b57a3
[ "Apache-2.0" ]
2
2017-07-16T03:19:48.000Z
2019-01-16T05:33:20.000Z
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import random import numpy import cPickle import sys, os from PIL import Image from paddle.trainer.config_parser import parse_config from paddle.trainer.config_parser import logger import py_paddle.swig_paddle as api import matplotlib.pyplot as plt def plot2DScatter(data, outputfile): ''' Plot the data as a 2D scatter plot and save to outputfile data needs to be two dimensinoal ''' x = data[:, 0] y = data[:, 1] logger.info("The mean vector is %s" % numpy.mean(data, 0)) logger.info("The std vector is %s" % numpy.std(data, 0)) heatmap, xedges, yedges = numpy.histogram2d(x, y, bins=50) extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]] plt.clf() plt.scatter(x, y) plt.savefig(outputfile, bbox_inches='tight') def CHECK_EQ(a, b): assert a == b, "a=%s, b=%s" % (a, b) def copy_shared_parameters(src, dst): ''' copy the parameters from src to dst :param src: the source of the parameters :type src: GradientMachine :param dst: the destination of the parameters :type dst: GradientMachine ''' src_params = [src.getParameter(i) for i in xrange(src.getParameterSize())] src_params = dict([(p.getName(), p) for p in src_params]) for i in xrange(dst.getParameterSize()): dst_param = dst.getParameter(i) src_param = src_params.get(dst_param.getName(), None) if src_param is None: continue src_value = src_param.getBuf(api.PARAMETER_VALUE) dst_value = dst_param.getBuf(api.PARAMETER_VALUE) CHECK_EQ(len(src_value), len(dst_value)) dst_value.copyFrom(src_value) dst_param.setValueUpdated() def print_parameters(src): src_params = [src.getParameter(i) for i in xrange(src.getParameterSize())] print "***************" for p in src_params: print "Name is %s" % p.getName() print "value is %s \n" % p.getBuf(api.PARAMETER_VALUE).copyToNumpyArray( ) def load_mnist_data(imageFile): f = open(imageFile, "rb") f.read(16) # Define number of samples for train/test if "train" in imageFile: n = 60000 else: n = 10000 data = numpy.fromfile(f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28)) data = data / 255.0 * 2.0 - 1.0 f.close() return data.astype('float32') def load_cifar_data(cifar_path): batch_size = 10000 data = numpy.zeros((5 * batch_size, 32 * 32 * 3), dtype="float32") for i in range(1, 6): file = cifar_path + "/data_batch_" + str(i) fo = open(file, 'rb') dict = cPickle.load(fo) fo.close() data[(i - 1) * batch_size:(i * batch_size), :] = dict["data"] data = data / 255.0 * 2.0 - 1.0 return data # synthesize 2-D uniform data def load_uniform_data(): data = numpy.random.rand(1000000, 2).astype('float32') return data def merge(images, size): if images.shape[1] == 28 * 28: h, w, c = 28, 28, 1 else: h, w, c = 32, 32, 3 img = numpy.zeros((h * size[0], w * size[1], c)) for idx in xrange(size[0] * size[1]): i = idx % size[1] j = idx // size[1] img[j*h:j*h+h, i*w:i*w+w, :] = \ ((images[idx, :].reshape((h, w, c), order="F").transpose(1, 0, 2) + 1.0) / 2.0 * 255.0) return img.astype('uint8') def save_images(images, path): merged_img = merge(images, [8, 8]) if merged_img.shape[2] == 1: im = Image.fromarray(numpy.squeeze(merged_img)).convert('RGB') else: im = Image.fromarray(merged_img, mode="RGB") im.save(path) def get_real_samples(batch_size, data_np): return data_np[numpy.random.choice( data_np.shape[0], batch_size, replace=False), :] def get_noise(batch_size, noise_dim): return numpy.random.normal(size=(batch_size, noise_dim)).astype('float32') def get_fake_samples(generator_machine, batch_size, noise): gen_inputs = api.Arguments.createArguments(1) gen_inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise)) gen_outputs = api.Arguments.createArguments(0) generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST) fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat() return fake_samples def get_training_loss(training_machine, inputs): outputs = api.Arguments.createArguments(0) training_machine.forward(inputs, outputs, api.PASS_TEST) loss = outputs.getSlotValue(0).copyToNumpyMat() return numpy.mean(loss) def prepare_discriminator_data_batch_pos(batch_size, data_np): real_samples = get_real_samples(batch_size, data_np) labels = numpy.ones(batch_size, dtype='int32') inputs = api.Arguments.createArguments(2) inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(real_samples)) inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels)) return inputs def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise): fake_samples = get_fake_samples(generator_machine, batch_size, noise) labels = numpy.zeros(batch_size, dtype='int32') inputs = api.Arguments.createArguments(2) inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(fake_samples)) inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels)) return inputs def prepare_generator_data_batch(batch_size, noise): label = numpy.ones(batch_size, dtype='int32') inputs = api.Arguments.createArguments(2) inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise)) inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(label)) return inputs def find(iterable, cond): for item in iterable: if cond(item): return item return None def get_layer_size(model_conf, layer_name): layer_conf = find(model_conf.layers, lambda x: x.name == layer_name) assert layer_conf is not None, "Cannot find '%s' layer" % layer_name return layer_conf.size def main(): parser = argparse.ArgumentParser() parser.add_argument("-d", "--data_source", help="mnist or cifar or uniform") parser.add_argument( "--use_gpu", default="1", help="1 means use gpu for training") parser.add_argument("--gpu_id", default="0", help="the gpu_id parameter") args = parser.parse_args() data_source = args.data_source use_gpu = args.use_gpu assert data_source in ["mnist", "cifar", "uniform"] assert use_gpu in ["0", "1"] if not os.path.exists("./%s_samples/" % data_source): os.makedirs("./%s_samples/" % data_source) if not os.path.exists("./%s_params/" % data_source): os.makedirs("./%s_params/" % data_source) api.initPaddle('--use_gpu=' + use_gpu, '--dot_period=10', '--log_period=100', '--gpu_id=' + args.gpu_id, '--save_dir=' + "./%s_params/" % data_source) if data_source == "uniform": conf = "gan_conf.py" num_iter = 10000 else: conf = "gan_conf_image.py" num_iter = 1000 gen_conf = parse_config(conf, "mode=generator_training,data=" + data_source) dis_conf = parse_config(conf, "mode=discriminator_training,data=" + data_source) generator_conf = parse_config(conf, "mode=generator,data=" + data_source) batch_size = dis_conf.opt_config.batch_size noise_dim = get_layer_size(gen_conf.model_config, "noise") if data_source == "mnist": data_np = load_mnist_data("./data/mnist_data/train-images-idx3-ubyte") elif data_source == "cifar": data_np = load_cifar_data("./data/cifar-10-batches-py/") else: data_np = load_uniform_data() # this creates a gradient machine for discriminator dis_training_machine = api.GradientMachine.createFromConfigProto( dis_conf.model_config) # this create a gradient machine for generator gen_training_machine = api.GradientMachine.createFromConfigProto( gen_conf.model_config) # generator_machine is used to generate data only, which is used for # training discriminator logger.info(str(generator_conf.model_config)) generator_machine = api.GradientMachine.createFromConfigProto( generator_conf.model_config) dis_trainer = api.Trainer.create(dis_conf, dis_training_machine) gen_trainer = api.Trainer.create(gen_conf, gen_training_machine) dis_trainer.startTrain() gen_trainer.startTrain() # Sync parameters between networks (GradientMachine) at the beginning copy_shared_parameters(gen_training_machine, dis_training_machine) copy_shared_parameters(gen_training_machine, generator_machine) # constrain that either discriminator or generator can not be trained # consecutively more than MAX_strike times curr_train = "dis" curr_strike = 0 MAX_strike = 5 for train_pass in xrange(100): dis_trainer.startTrainPass() gen_trainer.startTrainPass() for i in xrange(num_iter): # Do forward pass in discriminator to get the dis_loss noise = get_noise(batch_size, noise_dim) data_batch_dis_pos = prepare_discriminator_data_batch_pos( batch_size, data_np) dis_loss_pos = get_training_loss(dis_training_machine, data_batch_dis_pos) data_batch_dis_neg = prepare_discriminator_data_batch_neg( generator_machine, batch_size, noise) dis_loss_neg = get_training_loss(dis_training_machine, data_batch_dis_neg) dis_loss = (dis_loss_pos + dis_loss_neg) / 2.0 # Do forward pass in generator to get the gen_loss data_batch_gen = prepare_generator_data_batch(batch_size, noise) gen_loss = get_training_loss(gen_training_machine, data_batch_gen) if i % 100 == 0: print "d_pos_loss is %s d_neg_loss is %s" % (dis_loss_pos, dis_loss_neg) print "d_loss is %s g_loss is %s" % (dis_loss, gen_loss) # Decide which network to train based on the training history # And the relative size of the loss if (not (curr_train == "dis" and curr_strike == MAX_strike)) and \ ((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss > gen_loss): if curr_train == "dis": curr_strike += 1 else: curr_train = "dis" curr_strike = 1 dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_neg) dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_pos) copy_shared_parameters(dis_training_machine, gen_training_machine) else: if curr_train == "gen": curr_strike += 1 else: curr_train = "gen" curr_strike = 1 gen_trainer.trainOneDataBatch(batch_size, data_batch_gen) # TODO: add API for paddle to allow true parameter sharing between different GradientMachines # so that we do not need to copy shared parameters. copy_shared_parameters(gen_training_machine, dis_training_machine) copy_shared_parameters(gen_training_machine, generator_machine) dis_trainer.finishTrainPass() gen_trainer.finishTrainPass() # At the end of each pass, save the generated samples/images fake_samples = get_fake_samples(generator_machine, batch_size, noise) if data_source == "uniform": plot2DScatter(fake_samples, "./%s_samples/train_pass%s.png" % (data_source, train_pass)) else: save_images(fake_samples, "./%s_samples/train_pass%s.png" % (data_source, train_pass)) dis_trainer.finishTrain() gen_trainer.finishTrain() if __name__ == '__main__': main()
36.374286
110
0.650774
4a26c2c4a2f686ef8a4a8e0511fec3385309d1e4
37,034
py
Python
google/ads/google_ads/v2/services/shared_set_service_client.py
jiulongw/google-ads-python
6f5256eb1eeb5a9a95c8cdb9b97988d3a676282e
[ "Apache-2.0" ]
1
2019-11-30T23:42:39.000Z
2019-11-30T23:42:39.000Z
google/ads/google_ads/v2/services/shared_set_service_client.py
jiulongw/google-ads-python
6f5256eb1eeb5a9a95c8cdb9b97988d3a676282e
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v2/services/shared_set_service_client.py
jiulongw/google-ads-python
6f5256eb1eeb5a9a95c8cdb9b97988d3a676282e
[ "Apache-2.0" ]
1
2020-03-13T00:14:31.000Z
2020-03-13T00:14:31.000Z
# -*- coding: utf-8 -*- # # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Accesses the google.ads.googleads.v2.services SharedSetService API.""" import pkg_resources import warnings from google.oauth2 import service_account import google.api_core.gapic_v1.client_info import google.api_core.gapic_v1.config import google.api_core.gapic_v1.method import google.api_core.gapic_v1.routing_header import google.api_core.grpc_helpers import google.api_core.path_template import grpc from google.ads.google_ads.v2.services import enums from google.ads.google_ads.v2.services import shared_set_service_client_config from google.ads.google_ads.v2.services.transports import shared_set_service_grpc_transport from google.ads.google_ads.v2.proto.resources import account_budget_pb2 from google.ads.google_ads.v2.proto.resources import account_budget_proposal_pb2 from google.ads.google_ads.v2.proto.resources import ad_group_ad_asset_view_pb2 from google.ads.google_ads.v2.proto.resources import ad_group_ad_label_pb2 from google.ads.google_ads.v2.proto.resources import ad_group_ad_pb2 from google.ads.google_ads.v2.proto.resources import ad_group_audience_view_pb2 from google.ads.google_ads.v2.proto.resources import ad_group_bid_modifier_pb2 from google.ads.google_ads.v2.proto.resources import ad_group_criterion_label_pb2 from google.ads.google_ads.v2.proto.resources import ad_group_criterion_pb2 from google.ads.google_ads.v2.proto.resources import ad_group_criterion_simulation_pb2 from google.ads.google_ads.v2.proto.resources import ad_group_extension_setting_pb2 from google.ads.google_ads.v2.proto.resources import ad_group_feed_pb2 from google.ads.google_ads.v2.proto.resources import ad_group_label_pb2 from google.ads.google_ads.v2.proto.resources import ad_group_pb2 from google.ads.google_ads.v2.proto.resources import ad_group_simulation_pb2 from google.ads.google_ads.v2.proto.resources import ad_parameter_pb2 from google.ads.google_ads.v2.proto.resources import ad_pb2 from google.ads.google_ads.v2.proto.resources import ad_schedule_view_pb2 from google.ads.google_ads.v2.proto.resources import age_range_view_pb2 from google.ads.google_ads.v2.proto.resources import asset_pb2 from google.ads.google_ads.v2.proto.resources import bidding_strategy_pb2 from google.ads.google_ads.v2.proto.resources import billing_setup_pb2 from google.ads.google_ads.v2.proto.resources import campaign_audience_view_pb2 from google.ads.google_ads.v2.proto.resources import campaign_bid_modifier_pb2 from google.ads.google_ads.v2.proto.resources import campaign_budget_pb2 from google.ads.google_ads.v2.proto.resources import campaign_criterion_pb2 from google.ads.google_ads.v2.proto.resources import campaign_criterion_simulation_pb2 from google.ads.google_ads.v2.proto.resources import campaign_draft_pb2 from google.ads.google_ads.v2.proto.resources import campaign_experiment_pb2 from google.ads.google_ads.v2.proto.resources import campaign_extension_setting_pb2 from google.ads.google_ads.v2.proto.resources import campaign_feed_pb2 from google.ads.google_ads.v2.proto.resources import campaign_label_pb2 from google.ads.google_ads.v2.proto.resources import campaign_pb2 from google.ads.google_ads.v2.proto.resources import campaign_shared_set_pb2 from google.ads.google_ads.v2.proto.resources import carrier_constant_pb2 from google.ads.google_ads.v2.proto.resources import change_status_pb2 from google.ads.google_ads.v2.proto.resources import click_view_pb2 from google.ads.google_ads.v2.proto.resources import conversion_action_pb2 from google.ads.google_ads.v2.proto.resources import custom_interest_pb2 from google.ads.google_ads.v2.proto.resources import customer_client_link_pb2 from google.ads.google_ads.v2.proto.resources import customer_client_pb2 from google.ads.google_ads.v2.proto.resources import customer_extension_setting_pb2 from google.ads.google_ads.v2.proto.resources import customer_feed_pb2 from google.ads.google_ads.v2.proto.resources import customer_label_pb2 from google.ads.google_ads.v2.proto.resources import customer_manager_link_pb2 from google.ads.google_ads.v2.proto.resources import customer_negative_criterion_pb2 from google.ads.google_ads.v2.proto.resources import customer_pb2 from google.ads.google_ads.v2.proto.resources import detail_placement_view_pb2 from google.ads.google_ads.v2.proto.resources import display_keyword_view_pb2 from google.ads.google_ads.v2.proto.resources import distance_view_pb2 from google.ads.google_ads.v2.proto.resources import domain_category_pb2 from google.ads.google_ads.v2.proto.resources import dynamic_search_ads_search_term_view_pb2 from google.ads.google_ads.v2.proto.resources import expanded_landing_page_view_pb2 from google.ads.google_ads.v2.proto.resources import extension_feed_item_pb2 from google.ads.google_ads.v2.proto.resources import feed_item_pb2 from google.ads.google_ads.v2.proto.resources import feed_item_target_pb2 from google.ads.google_ads.v2.proto.resources import feed_mapping_pb2 from google.ads.google_ads.v2.proto.resources import feed_pb2 from google.ads.google_ads.v2.proto.resources import feed_placeholder_view_pb2 from google.ads.google_ads.v2.proto.resources import gender_view_pb2 from google.ads.google_ads.v2.proto.resources import geo_target_constant_pb2 from google.ads.google_ads.v2.proto.resources import geographic_view_pb2 from google.ads.google_ads.v2.proto.resources import google_ads_field_pb2 from google.ads.google_ads.v2.proto.resources import group_placement_view_pb2 from google.ads.google_ads.v2.proto.resources import hotel_group_view_pb2 from google.ads.google_ads.v2.proto.resources import hotel_performance_view_pb2 from google.ads.google_ads.v2.proto.resources import keyword_plan_ad_group_pb2 from google.ads.google_ads.v2.proto.resources import keyword_plan_campaign_pb2 from google.ads.google_ads.v2.proto.resources import keyword_plan_keyword_pb2 from google.ads.google_ads.v2.proto.resources import keyword_plan_negative_keyword_pb2 from google.ads.google_ads.v2.proto.resources import keyword_plan_pb2 from google.ads.google_ads.v2.proto.resources import keyword_view_pb2 from google.ads.google_ads.v2.proto.resources import label_pb2 from google.ads.google_ads.v2.proto.resources import landing_page_view_pb2 from google.ads.google_ads.v2.proto.resources import language_constant_pb2 from google.ads.google_ads.v2.proto.resources import location_view_pb2 from google.ads.google_ads.v2.proto.resources import managed_placement_view_pb2 from google.ads.google_ads.v2.proto.resources import media_file_pb2 from google.ads.google_ads.v2.proto.resources import merchant_center_link_pb2 from google.ads.google_ads.v2.proto.resources import mobile_app_category_constant_pb2 from google.ads.google_ads.v2.proto.resources import mobile_device_constant_pb2 from google.ads.google_ads.v2.proto.resources import mutate_job_pb2 from google.ads.google_ads.v2.proto.resources import operating_system_version_constant_pb2 from google.ads.google_ads.v2.proto.resources import paid_organic_search_term_view_pb2 from google.ads.google_ads.v2.proto.resources import parental_status_view_pb2 from google.ads.google_ads.v2.proto.resources import product_bidding_category_constant_pb2 from google.ads.google_ads.v2.proto.resources import product_group_view_pb2 from google.ads.google_ads.v2.proto.resources import recommendation_pb2 from google.ads.google_ads.v2.proto.resources import remarketing_action_pb2 from google.ads.google_ads.v2.proto.resources import search_term_view_pb2 from google.ads.google_ads.v2.proto.resources import shared_criterion_pb2 from google.ads.google_ads.v2.proto.resources import shared_set_pb2 from google.ads.google_ads.v2.proto.services import account_budget_proposal_service_pb2 from google.ads.google_ads.v2.proto.services import account_budget_proposal_service_pb2_grpc from google.ads.google_ads.v2.proto.services import account_budget_service_pb2 from google.ads.google_ads.v2.proto.services import account_budget_service_pb2_grpc from google.ads.google_ads.v2.proto.services import ad_group_ad_asset_view_service_pb2 from google.ads.google_ads.v2.proto.services import ad_group_ad_asset_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import ad_group_ad_label_service_pb2 from google.ads.google_ads.v2.proto.services import ad_group_ad_label_service_pb2_grpc from google.ads.google_ads.v2.proto.services import ad_group_ad_service_pb2 from google.ads.google_ads.v2.proto.services import ad_group_ad_service_pb2_grpc from google.ads.google_ads.v2.proto.services import ad_group_audience_view_service_pb2 from google.ads.google_ads.v2.proto.services import ad_group_audience_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import ad_group_bid_modifier_service_pb2 from google.ads.google_ads.v2.proto.services import ad_group_bid_modifier_service_pb2_grpc from google.ads.google_ads.v2.proto.services import ad_group_criterion_label_service_pb2 from google.ads.google_ads.v2.proto.services import ad_group_criterion_label_service_pb2_grpc from google.ads.google_ads.v2.proto.services import ad_group_criterion_service_pb2 from google.ads.google_ads.v2.proto.services import ad_group_criterion_service_pb2_grpc from google.ads.google_ads.v2.proto.services import ad_group_criterion_simulation_service_pb2 from google.ads.google_ads.v2.proto.services import ad_group_criterion_simulation_service_pb2_grpc from google.ads.google_ads.v2.proto.services import ad_group_extension_setting_service_pb2 from google.ads.google_ads.v2.proto.services import ad_group_extension_setting_service_pb2_grpc from google.ads.google_ads.v2.proto.services import ad_group_feed_service_pb2 from google.ads.google_ads.v2.proto.services import ad_group_feed_service_pb2_grpc from google.ads.google_ads.v2.proto.services import ad_group_label_service_pb2 from google.ads.google_ads.v2.proto.services import ad_group_label_service_pb2_grpc from google.ads.google_ads.v2.proto.services import ad_group_service_pb2 from google.ads.google_ads.v2.proto.services import ad_group_service_pb2_grpc from google.ads.google_ads.v2.proto.services import ad_group_simulation_service_pb2 from google.ads.google_ads.v2.proto.services import ad_group_simulation_service_pb2_grpc from google.ads.google_ads.v2.proto.services import ad_parameter_service_pb2 from google.ads.google_ads.v2.proto.services import ad_parameter_service_pb2_grpc from google.ads.google_ads.v2.proto.services import ad_schedule_view_service_pb2 from google.ads.google_ads.v2.proto.services import ad_schedule_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import ad_service_pb2 from google.ads.google_ads.v2.proto.services import ad_service_pb2_grpc from google.ads.google_ads.v2.proto.services import age_range_view_service_pb2 from google.ads.google_ads.v2.proto.services import age_range_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import asset_service_pb2 from google.ads.google_ads.v2.proto.services import asset_service_pb2_grpc from google.ads.google_ads.v2.proto.services import bidding_strategy_service_pb2 from google.ads.google_ads.v2.proto.services import bidding_strategy_service_pb2_grpc from google.ads.google_ads.v2.proto.services import billing_setup_service_pb2 from google.ads.google_ads.v2.proto.services import billing_setup_service_pb2_grpc from google.ads.google_ads.v2.proto.services import campaign_audience_view_service_pb2 from google.ads.google_ads.v2.proto.services import campaign_audience_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import campaign_bid_modifier_service_pb2 from google.ads.google_ads.v2.proto.services import campaign_bid_modifier_service_pb2_grpc from google.ads.google_ads.v2.proto.services import campaign_budget_service_pb2 from google.ads.google_ads.v2.proto.services import campaign_budget_service_pb2_grpc from google.ads.google_ads.v2.proto.services import campaign_criterion_service_pb2 from google.ads.google_ads.v2.proto.services import campaign_criterion_service_pb2_grpc from google.ads.google_ads.v2.proto.services import campaign_criterion_simulation_service_pb2 from google.ads.google_ads.v2.proto.services import campaign_criterion_simulation_service_pb2_grpc from google.ads.google_ads.v2.proto.services import campaign_draft_service_pb2 from google.ads.google_ads.v2.proto.services import campaign_draft_service_pb2_grpc from google.ads.google_ads.v2.proto.services import campaign_experiment_service_pb2 from google.ads.google_ads.v2.proto.services import campaign_experiment_service_pb2_grpc from google.ads.google_ads.v2.proto.services import campaign_extension_setting_service_pb2 from google.ads.google_ads.v2.proto.services import campaign_extension_setting_service_pb2_grpc from google.ads.google_ads.v2.proto.services import campaign_feed_service_pb2 from google.ads.google_ads.v2.proto.services import campaign_feed_service_pb2_grpc from google.ads.google_ads.v2.proto.services import campaign_label_service_pb2 from google.ads.google_ads.v2.proto.services import campaign_label_service_pb2_grpc from google.ads.google_ads.v2.proto.services import campaign_service_pb2 from google.ads.google_ads.v2.proto.services import campaign_service_pb2_grpc from google.ads.google_ads.v2.proto.services import campaign_shared_set_service_pb2 from google.ads.google_ads.v2.proto.services import campaign_shared_set_service_pb2_grpc from google.ads.google_ads.v2.proto.services import carrier_constant_service_pb2 from google.ads.google_ads.v2.proto.services import carrier_constant_service_pb2_grpc from google.ads.google_ads.v2.proto.services import change_status_service_pb2 from google.ads.google_ads.v2.proto.services import change_status_service_pb2_grpc from google.ads.google_ads.v2.proto.services import click_view_service_pb2 from google.ads.google_ads.v2.proto.services import click_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import conversion_action_service_pb2 from google.ads.google_ads.v2.proto.services import conversion_action_service_pb2_grpc from google.ads.google_ads.v2.proto.services import conversion_adjustment_upload_service_pb2 from google.ads.google_ads.v2.proto.services import conversion_adjustment_upload_service_pb2_grpc from google.ads.google_ads.v2.proto.services import conversion_upload_service_pb2 from google.ads.google_ads.v2.proto.services import conversion_upload_service_pb2_grpc from google.ads.google_ads.v2.proto.services import custom_interest_service_pb2 from google.ads.google_ads.v2.proto.services import custom_interest_service_pb2_grpc from google.ads.google_ads.v2.proto.services import customer_client_link_service_pb2 from google.ads.google_ads.v2.proto.services import customer_client_link_service_pb2_grpc from google.ads.google_ads.v2.proto.services import customer_client_service_pb2 from google.ads.google_ads.v2.proto.services import customer_client_service_pb2_grpc from google.ads.google_ads.v2.proto.services import customer_extension_setting_service_pb2 from google.ads.google_ads.v2.proto.services import customer_extension_setting_service_pb2_grpc from google.ads.google_ads.v2.proto.services import customer_feed_service_pb2 from google.ads.google_ads.v2.proto.services import customer_feed_service_pb2_grpc from google.ads.google_ads.v2.proto.services import customer_label_service_pb2 from google.ads.google_ads.v2.proto.services import customer_label_service_pb2_grpc from google.ads.google_ads.v2.proto.services import customer_manager_link_service_pb2 from google.ads.google_ads.v2.proto.services import customer_manager_link_service_pb2_grpc from google.ads.google_ads.v2.proto.services import customer_negative_criterion_service_pb2 from google.ads.google_ads.v2.proto.services import customer_negative_criterion_service_pb2_grpc from google.ads.google_ads.v2.proto.services import customer_service_pb2 from google.ads.google_ads.v2.proto.services import customer_service_pb2_grpc from google.ads.google_ads.v2.proto.services import detail_placement_view_service_pb2 from google.ads.google_ads.v2.proto.services import detail_placement_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import display_keyword_view_service_pb2 from google.ads.google_ads.v2.proto.services import display_keyword_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import distance_view_service_pb2 from google.ads.google_ads.v2.proto.services import distance_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import domain_category_service_pb2 from google.ads.google_ads.v2.proto.services import domain_category_service_pb2_grpc from google.ads.google_ads.v2.proto.services import dynamic_search_ads_search_term_view_service_pb2 from google.ads.google_ads.v2.proto.services import dynamic_search_ads_search_term_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import expanded_landing_page_view_service_pb2 from google.ads.google_ads.v2.proto.services import expanded_landing_page_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import extension_feed_item_service_pb2 from google.ads.google_ads.v2.proto.services import extension_feed_item_service_pb2_grpc from google.ads.google_ads.v2.proto.services import feed_item_service_pb2 from google.ads.google_ads.v2.proto.services import feed_item_service_pb2_grpc from google.ads.google_ads.v2.proto.services import feed_item_target_service_pb2 from google.ads.google_ads.v2.proto.services import feed_item_target_service_pb2_grpc from google.ads.google_ads.v2.proto.services import feed_mapping_service_pb2 from google.ads.google_ads.v2.proto.services import feed_mapping_service_pb2_grpc from google.ads.google_ads.v2.proto.services import feed_placeholder_view_service_pb2 from google.ads.google_ads.v2.proto.services import feed_placeholder_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import feed_service_pb2 from google.ads.google_ads.v2.proto.services import feed_service_pb2_grpc from google.ads.google_ads.v2.proto.services import gender_view_service_pb2 from google.ads.google_ads.v2.proto.services import gender_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import geo_target_constant_service_pb2 from google.ads.google_ads.v2.proto.services import geo_target_constant_service_pb2_grpc from google.ads.google_ads.v2.proto.services import geographic_view_service_pb2 from google.ads.google_ads.v2.proto.services import geographic_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import google_ads_field_service_pb2 from google.ads.google_ads.v2.proto.services import google_ads_field_service_pb2_grpc from google.ads.google_ads.v2.proto.services import google_ads_service_pb2 from google.ads.google_ads.v2.proto.services import google_ads_service_pb2_grpc from google.ads.google_ads.v2.proto.services import group_placement_view_service_pb2 from google.ads.google_ads.v2.proto.services import group_placement_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import hotel_group_view_service_pb2 from google.ads.google_ads.v2.proto.services import hotel_group_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import hotel_performance_view_service_pb2 from google.ads.google_ads.v2.proto.services import hotel_performance_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import invoice_service_pb2 from google.ads.google_ads.v2.proto.services import invoice_service_pb2_grpc from google.ads.google_ads.v2.proto.services import keyword_plan_ad_group_service_pb2 from google.ads.google_ads.v2.proto.services import keyword_plan_ad_group_service_pb2_grpc from google.ads.google_ads.v2.proto.services import keyword_plan_campaign_service_pb2 from google.ads.google_ads.v2.proto.services import keyword_plan_campaign_service_pb2_grpc from google.ads.google_ads.v2.proto.services import keyword_plan_idea_service_pb2 from google.ads.google_ads.v2.proto.services import keyword_plan_idea_service_pb2_grpc from google.ads.google_ads.v2.proto.services import keyword_plan_keyword_service_pb2 from google.ads.google_ads.v2.proto.services import keyword_plan_keyword_service_pb2_grpc from google.ads.google_ads.v2.proto.services import keyword_plan_negative_keyword_service_pb2 from google.ads.google_ads.v2.proto.services import keyword_plan_negative_keyword_service_pb2_grpc from google.ads.google_ads.v2.proto.services import keyword_plan_service_pb2 from google.ads.google_ads.v2.proto.services import keyword_plan_service_pb2_grpc from google.ads.google_ads.v2.proto.services import keyword_view_service_pb2 from google.ads.google_ads.v2.proto.services import keyword_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import label_service_pb2 from google.ads.google_ads.v2.proto.services import label_service_pb2_grpc from google.ads.google_ads.v2.proto.services import landing_page_view_service_pb2 from google.ads.google_ads.v2.proto.services import landing_page_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import language_constant_service_pb2 from google.ads.google_ads.v2.proto.services import language_constant_service_pb2_grpc from google.ads.google_ads.v2.proto.services import location_view_service_pb2 from google.ads.google_ads.v2.proto.services import location_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import managed_placement_view_service_pb2 from google.ads.google_ads.v2.proto.services import managed_placement_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import media_file_service_pb2 from google.ads.google_ads.v2.proto.services import media_file_service_pb2_grpc from google.ads.google_ads.v2.proto.services import merchant_center_link_service_pb2 from google.ads.google_ads.v2.proto.services import merchant_center_link_service_pb2_grpc from google.ads.google_ads.v2.proto.services import mobile_app_category_constant_service_pb2 from google.ads.google_ads.v2.proto.services import mobile_app_category_constant_service_pb2_grpc from google.ads.google_ads.v2.proto.services import mobile_device_constant_service_pb2 from google.ads.google_ads.v2.proto.services import mobile_device_constant_service_pb2_grpc from google.ads.google_ads.v2.proto.services import mutate_job_service_pb2 from google.ads.google_ads.v2.proto.services import mutate_job_service_pb2_grpc from google.ads.google_ads.v2.proto.services import operating_system_version_constant_service_pb2 from google.ads.google_ads.v2.proto.services import operating_system_version_constant_service_pb2_grpc from google.ads.google_ads.v2.proto.services import paid_organic_search_term_view_service_pb2 from google.ads.google_ads.v2.proto.services import paid_organic_search_term_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import parental_status_view_service_pb2 from google.ads.google_ads.v2.proto.services import parental_status_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import payments_account_service_pb2 from google.ads.google_ads.v2.proto.services import payments_account_service_pb2_grpc from google.ads.google_ads.v2.proto.services import product_bidding_category_constant_service_pb2 from google.ads.google_ads.v2.proto.services import product_bidding_category_constant_service_pb2_grpc from google.ads.google_ads.v2.proto.services import product_group_view_service_pb2 from google.ads.google_ads.v2.proto.services import product_group_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import reach_plan_service_pb2 from google.ads.google_ads.v2.proto.services import reach_plan_service_pb2_grpc from google.ads.google_ads.v2.proto.services import recommendation_service_pb2 from google.ads.google_ads.v2.proto.services import recommendation_service_pb2_grpc from google.ads.google_ads.v2.proto.services import remarketing_action_service_pb2 from google.ads.google_ads.v2.proto.services import remarketing_action_service_pb2_grpc from google.ads.google_ads.v2.proto.services import search_term_view_service_pb2 from google.ads.google_ads.v2.proto.services import search_term_view_service_pb2_grpc from google.ads.google_ads.v2.proto.services import shared_criterion_service_pb2 from google.ads.google_ads.v2.proto.services import shared_criterion_service_pb2_grpc from google.ads.google_ads.v2.proto.services import shared_set_service_pb2 from google.ads.google_ads.v2.proto.services import shared_set_service_pb2_grpc from google.longrunning import operations_pb2 from google.protobuf import empty_pb2 from google.protobuf import wrappers_pb2 _GAPIC_LIBRARY_VERSION = pkg_resources.get_distribution( 'google-ads', ).version class SharedSetServiceClient(object): """Service to manage shared sets.""" SERVICE_ADDRESS = 'googleads.googleapis.com:443' """The default address of the service.""" # The name of the interface for this client. This is the key used to # find the method configuration in the client_config dictionary. _INTERFACE_NAME = 'google.ads.googleads.v2.services.SharedSetService' @classmethod def from_service_account_file(cls, filename, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: SharedSetServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_file( filename) kwargs['credentials'] = credentials return cls(*args, **kwargs) from_service_account_json = from_service_account_file @classmethod def shared_set_path(cls, customer, shared_set): """Return a fully-qualified shared_set string.""" return google.api_core.path_template.expand( 'customers/{customer}/sharedSets/{shared_set}', customer=customer, shared_set=shared_set, ) def __init__(self, transport=None, channel=None, credentials=None, client_config=None, client_info=None): """Constructor. Args: transport (Union[~.SharedSetServiceGrpcTransport, Callable[[~.Credentials, type], ~.SharedSetServiceGrpcTransport]): A transport instance, responsible for actually making the API calls. The default transport uses the gRPC protocol. This argument may also be a callable which returns a transport instance. Callables will be sent the credentials as the first argument and the default transport class as the second argument. channel (grpc.Channel): DEPRECATED. A ``Channel`` instance through which to make calls. This argument is mutually exclusive with ``credentials``; providing both will raise an exception. credentials (google.auth.credentials.Credentials): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. This argument is mutually exclusive with providing a transport instance to ``transport``; doing so will raise an exception. client_config (dict): DEPRECATED. A dictionary of call options for each method. If not specified, the default configuration is used. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. """ # Raise deprecation warnings for things we want to go away. if client_config is not None: warnings.warn('The `client_config` argument is deprecated.', PendingDeprecationWarning, stacklevel=2) else: client_config = shared_set_service_client_config.config if channel: warnings.warn('The `channel` argument is deprecated; use ' '`transport` instead.', PendingDeprecationWarning, stacklevel=2) # Instantiate the transport. # The transport is responsible for handling serialization and # deserialization and actually sending data to the service. if transport: if callable(transport): self.transport = transport( credentials=credentials, default_class=shared_set_service_grpc_transport.SharedSetServiceGrpcTransport, ) else: if credentials: raise ValueError( 'Received both a transport instance and ' 'credentials; these are mutually exclusive.' ) self.transport = transport else: self.transport = shared_set_service_grpc_transport.SharedSetServiceGrpcTransport( address=self.SERVICE_ADDRESS, channel=channel, credentials=credentials, ) if client_info is None: client_info = google.api_core.gapic_v1.client_info.ClientInfo( gapic_version=_GAPIC_LIBRARY_VERSION, ) else: client_info.gapic_version = _GAPIC_LIBRARY_VERSION self._client_info = client_info # Parse out the default settings for retry and timeout for each RPC # from the client configuration. # (Ordinarily, these are the defaults specified in the `*_config.py` # file next to this one.) self._method_configs = google.api_core.gapic_v1.config.parse_method_configs( client_config['interfaces'][self._INTERFACE_NAME], ) # Save a dictionary of cached API call functions. # These are the actual callables which invoke the proper # transport methods, wrapped with `wrap_method` to add retry, # timeout, and the like. self._inner_api_calls = {} # Service calls def get_shared_set( self, resource_name, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None): """ Returns the requested shared set in full detail. Args: resource_name (str): The resource name of the shared set to fetch. retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.ads.googleads_v2.types.SharedSet` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if 'get_shared_set' not in self._inner_api_calls: self._inner_api_calls['get_shared_set'] = google.api_core.gapic_v1.method.wrap_method( self.transport.get_shared_set, default_retry=self._method_configs['GetSharedSet'].retry, default_timeout=self._method_configs['GetSharedSet'].timeout, client_info=self._client_info, ) request = shared_set_service_pb2.GetSharedSetRequest( resource_name=resource_name, ) if metadata is None: metadata = [] metadata = list(metadata) try: routing_header = [('resource_name', resource_name)] except AttributeError: pass else: routing_metadata = google.api_core.gapic_v1.routing_header.to_grpc_metadata(routing_header) metadata.append(routing_metadata) return self._inner_api_calls['get_shared_set'](request, retry=retry, timeout=timeout, metadata=metadata) def mutate_shared_sets( self, customer_id, operations, partial_failure=None, validate_only=None, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None): """ Creates, updates, or removes shared sets. Operation statuses are returned. Args: customer_id (str): The ID of the customer whose shared sets are being modified. operations (list[Union[dict, ~google.ads.googleads_v2.types.SharedSetOperation]]): The list of operations to perform on individual shared sets. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.ads.googleads_v2.types.SharedSetOperation` partial_failure (bool): If true, successful operations will be carried out and invalid operations will return errors. If false, all operations will be carried out in one transaction if and only if they are all valid. Default is false. validate_only (bool): If true, the request is validated but not executed. Only errors are returned, not results. retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.ads.googleads_v2.types.MutateSharedSetsResponse` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if 'mutate_shared_sets' not in self._inner_api_calls: self._inner_api_calls['mutate_shared_sets'] = google.api_core.gapic_v1.method.wrap_method( self.transport.mutate_shared_sets, default_retry=self._method_configs['MutateSharedSets'].retry, default_timeout=self._method_configs['MutateSharedSets'].timeout, client_info=self._client_info, ) request = shared_set_service_pb2.MutateSharedSetsRequest( customer_id=customer_id, operations=operations, partial_failure=partial_failure, validate_only=validate_only, ) if metadata is None: metadata = [] metadata = list(metadata) try: routing_header = [('customer_id', customer_id)] except AttributeError: pass else: routing_metadata = google.api_core.gapic_v1.routing_header.to_grpc_metadata(routing_header) metadata.append(routing_metadata) return self._inner_api_calls['mutate_shared_sets'](request, retry=retry, timeout=timeout, metadata=metadata)
62.557432
155
0.802398
4a26c2d979cb66afd8b6c37b60af9c3d88eb7ab2
1,672
py
Python
srcs/testset.py
huy-ha/PIXOR
9ad2b451470aa30c7dd40be23b526f6fbedb6bc1
[ "MIT" ]
259
2019-02-19T07:38:55.000Z
2022-03-28T05:58:42.000Z
srcs/testset.py
huy-ha/PIXOR
9ad2b451470aa30c7dd40be23b526f6fbedb6bc1
[ "MIT" ]
30
2019-02-18T08:43:27.000Z
2021-02-05T15:51:36.000Z
srcs/testset.py
huy-ha/PIXOR
9ad2b451470aa30c7dd40be23b526f6fbedb6bc1
[ "MIT" ]
59
2018-10-28T17:42:03.000Z
2022-02-15T11:59:32.000Z
import glob import pandas as pd import numpy as np import os.path from PIL import Image class TestSet(object): def __init__(self, basedir, bagname): self.basedir = basedir self.bagname = bagname self.data_path = os.path.join(basedir, bagname) self.imtype = 'png' self._get_file_lists() def _get_file_lists(self): """Find and list data files for each sensor.""" self.cam_files = sorted(glob.glob( os.path.join(self.data_path, 'img', '*.{}'.format(self.imtype)))) self.velo_files = sorted(glob.glob( os.path.join(self.data_path, 'pc_data', '*.bin'))) self.cam_stamps = pd.read_csv(os.path.join(self.data_path, 'img', 'imgtimestamps.csv')) self.velo_stamps = pd.read_csv(os.path.join(self.data_path, 'velo', 'velotimestamps.csv')) def get_cam2(self, idx): """Load an image from file.""" mode = "RGB" return Image.open(self.cam_files[idx]).convert('RGB') def get_velo(self, idx): """Read velodyne [x,y,z,reflectance] scan at the specified index.""" scan = np.fromfile(self.velo_files[idx], dtype=np.float32) return scan.reshape((-1, 4)) def test(): basedir = '/mnt/ssd2/od/testset' date = '_2018-10-30-15-25-07' dataset = TestSet(basedir, date) print(dataset.velo_files) im = dataset.get_cam2(0) print(im.width) print(im.height) scan = dataset.get_velo(0) np.set_printoptions(precision=3) print(scan.mean(axis=0)) print(scan.max(axis=0)) print(scan.min(axis=0)) if __name__=="__main__": test()
31.54717
98
0.610048
4a26c309499eeb68c48f7e886174b0e5cd38e061
28,031
py
Python
remofile/cli.py
Sonkun/remofile
918adf1bfb3f21356848834457ec043afe53b6f1
[ "MIT" ]
1
2018-10-17T14:22:05.000Z
2018-10-17T14:22:05.000Z
remofile/cli.py
intjelic/remofile
918adf1bfb3f21356848834457ec043afe53b6f1
[ "MIT" ]
null
null
null
remofile/cli.py
intjelic/remofile
918adf1bfb3f21356848834457ec043afe53b6f1
[ "MIT" ]
1
2019-01-09T19:46:45.000Z
2019-01-09T19:46:45.000Z
# Remofile - Quick and easy-to-use alternative to FTP # # This file is distributed under the MIT License. See the LICENSE file # in the root of this project for more information. # # Written by Jonathan De Wachter <[email protected]>, March 2018 import os import sys from datetime import datetime from pathlib import PurePosixPath, PosixPath import click from remofile.server import Server from remofile.server import FILE_SIZE_LIMIT, MINIMUM_CHUNK_SIZE, MAXIMUM_CHUNK_SIZE from remofile.client import Client from remofile.exceptions import * from remofile.token import generate_token from remofile.keys import generate_keys from remofile.daemon import Daemon DEFAULT_TIMEOUT_VALUE = 3600 MISCONFIGURED_ENVIRONMENT_MESSAGE = """The environment must be \ configured with the following variables in order for Remofile to \ locate and connect to the server. REMOFILE_HOSTNAME - The ip address to use (can be 'localhost' or a domain name) REMOFILE_PORT - The port to use (optional, use 6768 by default) REMOFILE_TOKEN - The token to use during the authentication process Configure your environment and try again. """ TIMEOUT_ERROR_MESSAGE = """Timeout error; couldn't access the server \ within the expected time. Check if the server is accessible or try to increase the timeout value \ for slow connection. """ GENERATED_TOKEN_MESSAGE = """The generated token is {0}, keep it \ secret because it acts as a password! A token was generated because no token was specified in command-line \ parameters. """ INVALID_ROOT_DIRECTORY_MESSAGE = """The root directory isn't valid; \ either it doesn't exist or the server doesn't have the permissions to \ read it. The root directory is the directory that is served across the network, \ therefore it must exist and be accessible. """ INCORRECT_CONFIG_VALUE_MESSAGE = """One of the following values is \ incorrect. * file size limit * minimum chunk size * maximum chunk size Read the documentation to understand their possible value. """ LIST_ALL_FLAG_DESCRIPTION = "Display additional file information." LIST_RECURSIVE_FLAG_DESCRIPTION = "List directories and their contents recursively." FILE_UPDATE_FLAG_DESCRIPTION = "Ignore (and don't fail) if files already exist." FOLDER_UPDATE_FLAG_DESCRIPTION = "Ignore (and don't fail) if directories already exist." UPLOAD_RECURSIVE_FLAG_DESCRIPTION = "Upload directories and their content recursively." DOWNLOAD_RECURSIVE_FLAG_DESCRIPTION = "Download directories and their content recursively." PROGRESS_FLAG_DESCRIPTION = "Display a progress indicator." TIMEOUT_FLAG_DESCRIPTION = "Adjust the timeout value in milliseconds." FILE_SIZE_LIMIT_FLAG_DESCRIPTION = "Foobar" MIN_CHUNK_SIZE_FLAG_DESCRIPTION = "Foobar" MAX_CHUNK_SIZE_FLAG_DESCRIPTION = "Foobar" PIDFILE_FLAG_DESCRIPTION = "Foobar" def get_info_from_environment(): hostname = os.environ.get("REMOFILE_HOSTNAME") port = os.environ.get("REMOFILE_PORT", 6768) token = os.environ.get("REMOFILE_TOKEN") if hostname == 'localhost': hostname = '127.0.0.1' return hostname, port, token def create_client(): # read environment variable for server information and print # misconfigured environment error if some variables are missing hostname, port, token = get_info_from_environment() if not hostname or not port or not token: print(MISCONFIGURED_ENVIRONMENT_MESSAGE) exit(1) return Client(hostname, port, token) def adjust_timeout(timeout): # if not specified, adjust timeout to the default global timeout if not timeout: timeout = DEFAULT_TIMEOUT_VALUE return timeout def display_generated_token(token): print(GENERATED_TOKEN_MESSAGE.format(token)) @click.group() def cli(): pass @cli.command('list') @click.argument('directory', default='/') @click.option('--all', '-a', 'with_metadata', is_flag=True, help=LIST_ALL_FLAG_DESCRIPTION) @click.option('--recursive', '-r', is_flag=True, help=LIST_RECURSIVE_FLAG_DESCRIPTION) @click.option('--timeout', '-t', type=click.INT, help=TIMEOUT_FLAG_DESCRIPTION) def list_files(directory, with_metadata, recursive, timeout): """ List files in the remote directory. This is a client-related command that lists files of a given directory located in the remote directory. This command is akin to the POSIX **ls** command found in Unix-like OSes. It takes only one **optional** parameter which is the remote directory to list files for, and must be an absolute path of an **existing** directory. By default, it lists the root directory. By default, it only displays file names and doesn't list the directory recursively. If the **-l** flag is set, it also lists the file metadata (file or directory indicator, file size and last modification time), and if the **-r** flag is set, the sub-directories are listed as well. Additionally, the **--timeout** flag allows you to adjust the number of milliseconds to wait before giving up on the server response. """ client = create_client() timeout = adjust_timeout(timeout) def display_directory_files(root, directory, with_metadata, recursive): try: files = client.list_files(os.path.join(root, directory), timeout) except ValueError: print("Unable to list files for '{0}' directory; it must be an absolute path.".format(directory)) exit(1) except NotADirectoryError: print("Cannot access '{0}' directory; no such directory exists.".format(directory)) exit(1) except TimeoutError: print(TIMEOUT_ERROR_MESSAGE) exit(1) subdirectories = [] if not with_metadata: for name, (is_directory, _, _) in files.items(): print(os.path.join(directory, name)) if is_directory and recursive: subdirectories.append(os.path.join(directory, name)) else: # it requires double pass to compute columns width file_size_column_width = 0 file_time_column_width = 0 file_lines = [] for name, (is_directory, file_size, file_time) in files.items(): file_time = datetime.fromtimestamp(file_time) file_time_string = file_time.strftime('%Y-%m-%d %H:%M:%S') if not is_directory: file_lines.append((os.path.join(directory, name), '[F]', str(file_size), file_time_string)) else: file_lines.append((os.path.join(directory, name), '[D]', str(file_size), file_time_string)) file_size_column_width = max(file_size_column_width, len(str(file_size))) file_time_column_width = max(file_time_column_width, len(file_time_string)) if is_directory and recursive: subdirectories.append(os.path.join(directory, name)) # add padding to column width file_size_column_width += 2 for name, file_type, file_size, file_time in file_lines: print('{0} {1} {2} {3}'.format(file_type, file_size.ljust(file_size_column_width), file_time.ljust(file_time_column_width), name)) for subdirectory in subdirectories: display_directory_files(root, subdirectory, with_metadata, recursive) display_directory_files(directory, '', with_metadata, recursive) del client # debug code, for some reason the socket wown't be disconnected @cli.command('file') @click.argument('name') @click.argument('directory', default='/') @click.option('--update', '-u', is_flag=True, help=FILE_UPDATE_FLAG_DESCRIPTION) @click.option('--timeout', '-t', type=click.INT, help=TIMEOUT_FLAG_DESCRIPTION) def create_file(name, directory, update, timeout): """ Create a file in the remote directory. This is a client-related command that creates an empty file in the a given directory located in the remote directory. This command is akin to the POSIX **touch** command found in Unix-like OSes. It takes the name of the file and an optional remote directory (in which to create the file) in parameters. The directory parameter must be an absolute path of an **existing** directory. By default, it creates the file in the root directory. If the file already exists in the given directory, the command fails unless the **--update** flag is set. Note that unlike the `touch` command, it doesn't update the file timestamp. Additionally, the **--timeout** flag allows you to adjust the number of milliseconds to wait before giving up on the server response. """ client = create_client() timeout = adjust_timeout(timeout) try: client.create_file(name, directory, timeout) except ValueError: print("Unable to create file in '{0}' directory; it must be an absolute path.".format(directory)) exit(1) except FileNameError: print("Unable to create file with name '{0}'; it must be a valid file name.".format(name)) exit(1) except NotADirectoryError: print("Cannot access '{0}' directory; no such directory exists.".format(directory)) exit(1) except FileExistsError: if not update: print("Unable to create file with name '{0}'; it's conflicting with an existing file.".format(name)) exit(1) except TimeoutError: print(TIMEOUT_ERROR_MESSAGE) exit(1) if directory == '/': print("File '{0}' successfuly created in root directory.".format(name)) else: print("File '{0}' successfuly created in '{1}' directory.".format(name, directory)) @cli.command('folder') @click.argument('name') @click.argument('directory', default='/') @click.option('--update', '-u', is_flag=True, help=FOLDER_UPDATE_FLAG_DESCRIPTION) @click.option('--timeout', '-t', type=click.INT, help=TIMEOUT_FLAG_DESCRIPTION) def make_directory(name, directory, update, timeout): """ Create a folder in the remote directory. This is a client-related command that creates an empty folder in the a given directory located in the remote directory. This command is akin to the POSIX **mkdir** command found in Unix-like OSes. It takes the name of the folder and an optional remote directory (in which to create the folder) in parameters. The directory parameter must be an absolute path of an **existing** directory. By default, it creates the folder in the root directory. If the folder already exists in the given directory, the command fails unless the **--update** flag is set. Note that it leaves the existing directory unchanged. Additionally, the **--timeout** flag allows you to adjust the number of milliseconds to wait before giving up on the server response. """ client = create_client() timeout = adjust_timeout(timeout) try: client.make_directory(name, directory, timeout) except ValueError: print("Unable to create folder in '{0}' directory; it must be an absolute path.".format(directory)) exit(1) except FileNameError: print("Unable to create folder with name '{0}'; it must be a valid file name.".format(name)) exit(1) except NotADirectoryError: print("Cannot access '{0}' directory; no such directory exists.".format(directory)) exit(1) except FileExistsError: if not update: print("Unable to create folder with name '{0}'; it's conflicting with an existing file.".format(name)) exit(1) except TimeoutError: print(TIMEOUT_ERROR_MESSAGE) exit(1) if directory == '/': print("Folder '{0}' successfuly created in root directory.".format(name)) else: print("Folder '{0}' successfuly created in '{1}' directory.".format(name, directory)) #@click.option('--update', '-u') ##-u, --update copy only when the SOURCE file is newer than the destination file or when the destination file is missing #@click.option('--resume') #@click.option('--min-size', help="don't transfer any file smaller than SIZE") #@click.option('--max-size', help="don't transfer any file larger than SIZE") #--list-only list the files instead of copying them #--exclude=PATTERN exclude files matching PATTERN #--exclude-from=FILE read exclude patterns from FILE #--include=PATTERN don't exclude files matching PATTERN #--include-from=FILE read include patterns from FILE #@click.option('--out-format', help="output updates using the specified FORMAT") #@click.option('--log-file', help="log what we're doing to the specified FILE") #@click.option('--log-file-format', help="log updates using the specified FMT") #@click.option('--chunk-size', default=512, type=click.INT) @cli.command('upload') @click.argument('source', nargs=-1) @click.argument('destination', nargs=1) @click.option('--recursive', '-r', is_flag=True, help=UPLOAD_RECURSIVE_FLAG_DESCRIPTION) @click.option('--progress', '-p', is_flag=True, help=PROGRESS_FLAG_DESCRIPTION) @click.option('--timeout', '-t', type=click.INT, help=TIMEOUT_FLAG_DESCRIPTION) def upload_files(source, destination, recursive, progress, timeout): """ Upload files to the remote directory. This is a client-related command that uploads files to the remote directory. The source must be files or directories located on the local filesystem and the destination must be an **existing** directory located in the remote directory. Unlike the source, the destination must be an absolute path. If source refers to one or more directories, the recursive flag must be set otherwise they'll be skipped. The progress flag allows to display the progression of the transfer which is useful for large files. Examples. :: rmf upload -r -p src/my-file.txt src/my-directory/ /dst Additionally, the **--timeout** flag allows you to adjust the number of milliseconds to wait before giving up on the server response. """ client = create_client() timeout = adjust_timeout(timeout) # ensure we work with pure posix paths source = (PosixPath(path) for path in source) destination = PosixPath(destination) def display_progress(chunk_data, remaining_bytes, file_size, file_name): chunk_size = 512 progress = (file_size - (remaining_bytes - len(chunk_data))) / file_size * 100 sys.stdout.write("\r{0:0.2f}% | {1}".format(progress, file_name)) sys.stdout.flush() if remaining_bytes <= chunk_size: sys.stdout.write('\n') return True def upload_file(path): try: if progress: client.upload_file(path, destination, None, 512, display_progress, None) else: client.upload_file(path, destination, timeout=timeout) except ValueError: print("Unable to upload files to '{0}'; destination must be an absolute path.".format(destination)) exit(1) except SourceNotFound: print("Unable to upload file '{0}'; no such file exists.".format(path)) exit(1) except DestinationNotFound: print("Unable to upload files to '{0}'; no such directory exists.".format(destination)) exit(1) except FileExistsError: print("Unable to upload file '{0}'; it's conflicting with an existing file.".format(path)) exit(1) except FileNameError: raise NotImplementedError except TimeoutError: print(TIMEOUT_ERROR_MESSAGE) exit(1) def upload_directory(path): try: if progress: client.upload_directory(path, destination, None, 512, display_progress, None) else: client.upload_directory(path, destination, timeout=timeout) except ValueError: print("Unable to upload files to '{0}'; destination must be an absolute path.".format(destination)) exit(1) except SourceNotFound: print("Unable to upload folder '{0}'; no such directory exists.".format(path)) exit(1) except DestinationNotFound: print("Unable to upload files to '{0}'; no such directory exists.".format(destination)) exit(1) except FileExistsError: print("Unable to upload folder '{0}'; it's conflicting with an existing file.".format(path)) exit(1) except FileNameError: raise NotImplementedError except TimeoutError: print(TIMEOUT_ERROR_MESSAGE) exit(1) for path in source: if not path.exists(): print("Unable to upload file '{0}'; no such file or directory exists.".format(path)) exit(1) if path.is_file(): upload_file(path) elif path.is_dir(): if recursive: upload_directory(path) else: print("Skip uploading folder '{0}'; the recursive flag must be set.".format(path)) else: raise NotImplementedError("Uploading symbolic links isn't supported yet.") del client # debug code, for some reason the socket wown't be disconnected @cli.command('download') @click.argument('source', nargs=-1) @click.argument('destination', nargs=1) @click.option('--recursive', '-r', is_flag=True, help=DOWNLOAD_RECURSIVE_FLAG_DESCRIPTION) @click.option('--progress', '-p', is_flag=True, help=PROGRESS_FLAG_DESCRIPTION) @click.option('--timeout', '-t', type=click.INT, help=TIMEOUT_FLAG_DESCRIPTION) def download_files(source, destination, recursive, progress, timeout): """ Download files from the remote directory. This is a client-related command that downloads files from the remote directory. The source must be files or directories located on the remote directory and the destination must be an **existing** directory located on the local filesystem. Unlike the destination, the source must be absolute paths. If source refers to one or more directories, the recursive flag must be set otherwise they'll be skipped. The progress flag allows to display the progression of the transfer which is useful for large files. Examples. :: rmf download -r -p /src/my-file.txt /src/my-directory/ dst/ Additionally, the **--timeout** flag allows you to adjust the number of milliseconds to wait before giving up on the server response. """ client = create_client() timeout = adjust_timeout(timeout) # ensure we work with pure posix paths source = (PurePosixPath(path) for path in source) destination = PosixPath(destination) def display_progress(chunk_data, remaining_bytes, file_size, file_name): chunk_size = 512 progress = (file_size - (remaining_bytes - len(chunk_data))) / file_size * 100 sys.stdout.write("\r{0:0.2f}% | {1}".format(progress, file_name)) sys.stdout.flush() if remaining_bytes <= chunk_size: sys.stdout.write('\n') return True def download_file(path): try: if progress: client.download_file(path, destination, None, 512, display_progress, None) else: client.download_file(path, destination, timeout=timeout) except Exception as error: print(error) exit(1) #except ValueError: #print("Unable to upload files to '{0}'; destination must be an absolute path.".format(destination)) #exit(1) #except SourceNotFound: #print("Unable to upload file '{0}'; no such file exists.".format(path)) #exit(1) #except DestinationNotFound: #print("Unable to upload files to '{0}'; no such directory exists.".format(destination)) #exit(1) #except FileExistsError: #print("Unable to upload file '{0}'; it's conflicting with an existing file.".format(path)) #exit(1) #except FileNameError: #raise NotImplementedError #except TimeoutError: #print(TIMEOUT_ERROR_MESSAGE) #exit(1) def download_directory(path): try: if progress: client.download_directory(path, destination, None, 512, display_progress, None) else: client.download_directory(path, destination, timeout=timeout) except Exception as error: print(error) exit(1) #except ValueError: #print("Unable to upload files to '{0}'; destination must be an absolute path.".format(destination)) #exit(1) #except SourceNotFound: #print("Unable to upload folder '{0}'; no such directory exists.".format(path)) #exit(1) #except DestinationNotFound: #print("Unable to upload files to '{0}'; no such directory exists.".format(destination)) #exit(1) #except FileExistsError: #print("Unable to upload folder '{0}'; it's conflicting with an existing file.".format(path)) #exit(1) #except FileNameError: #raise NotImplementedError #except TimeoutError: #print(TIMEOUT_ERROR_MESSAGE) #exit(1) for path in source: is_directory = True if path != '/': files = client.list_files(path.parent) if path.name not in files: print("Unable to download file '{0}'; no such file or directory exists.".format(path)) exit(1) is_directory = files[path.name][0] if not is_directory: download_file(path) else: if recursive: download_directory(path) else: print("Skip downloading folder '{0}'; the recursive flag must be set.".format(path)) del client # debug code, for some reason the socket won't be disconnected @cli.command('remove') @click.argument('name') @click.argument('directory', default='/') @click.option('--timeout', '-t', type=click.INT, help=TIMEOUT_FLAG_DESCRIPTION) def remove_files(name, directory, timeout): """ Remove files in the remote directory. This is a client-related command that removes a file or a folder located in the remote directory. This command is akin to the POSIX **rm** command found in Unix-like OSes. Rest of the description here. """ client = create_client() timeout = adjust_timeout(timeout) pass @cli.command('run') @click.argument('directory') @click.argument('port', default=6768) @click.argument('token', required=False) @click.option('--file-size-limit', default=FILE_SIZE_LIMIT, type=click.INT, help=FILE_SIZE_LIMIT_FLAG_DESCRIPTION) @click.option('--min-chunk-size', default=MINIMUM_CHUNK_SIZE, type=click.INT, help=MIN_CHUNK_SIZE_FLAG_DESCRIPTION) @click.option('--max-chunk-size', default=MAXIMUM_CHUNK_SIZE, type=click.INT, help=MAX_CHUNK_SIZE_FLAG_DESCRIPTION) def run_server(directory, port, token, file_size_limit, min_chunk_size, max_chunk_size): """ Start a (non-daemonized) server. This is a server-related command that start a non-daemonized server (not detached from the shell). The directory parameter is the root directory which will be served and therefore must be an existing directory. The server listens on port 6768 by default but it can be changed with the port parameter. If the token is not specified, it's generated and printed out to the console before the server starts running. Additionally, the file size limit and the chunk size range can be altered. The file size limit and minimum chunk size must be both be greater than 0, and maximum chunk size must be greater or equal to minimum chunk size. """ if not token: token = generate_token() display_generated_token(token) try: server = Server(directory, token, file_size_limit=file_size_limit, chunk_size_range=(min_chunk_size, max_chunk_size)) except NotADirectoryError: print(INVALID_ROOT_DIRECTORY_MESSAGE) exit(1) except ValueError: print(INCORRECT_CONFIG_VALUE_MESSAGE) exit(1) server.run(port) @cli.command('start') @click.argument('directory') @click.argument('port', default=6768) @click.argument('token', required=False) @click.option('--pidfile', default=os.path.join(os.getcwd(), 'daemon.pid'), help=PIDFILE_FLAG_DESCRIPTION) @click.option('--file-size-limit', default=FILE_SIZE_LIMIT, type=click.INT, help=FILE_SIZE_LIMIT_FLAG_DESCRIPTION) @click.option('--min-chunk-size', default=MINIMUM_CHUNK_SIZE, type=click.INT, help=MIN_CHUNK_SIZE_FLAG_DESCRIPTION) @click.option('--max-chunk-size', default=MAXIMUM_CHUNK_SIZE, type=click.INT, help=MAX_CHUNK_SIZE_FLAG_DESCRIPTION) def start_server(directory, port, token, pidfile, file_size_limit, min_chunk_size, max_chunk_size): """ Start a daemonized server. This is a server-related command that start a daemonized server (detached from the shell). Unlike the run command, it accepts the --pidfile flag which tells the pidfile location. By default, the pidfile is created in the current working directory and named 'daemon.pid'. Refer to the run command for more information. """ if not token: token = generate_token() display_generated_token(token) try: server = Server(directory, token, file_size_limit=file_size_limit, chunk_size_range=(min_chunk_size, max_chunk_size)) except NotADirectoryError: print(INVALID_ROOT_DIRECTORY_MESSAGE) exit(1) except ValueError: print(INCORRECT_CONFIG_VALUE_MESSAGE) exit(1) def loop(): server.run(port) daemon = Daemon(loop, pidfile) daemon.start() @cli.command('stop') @click.option('--pidfile', default=os.path.join(os.getcwd(), 'daemon.pid'), help=PIDFILE_FLAG_DESCRIPTION) def stop_server(pidfile): """ Stop a daemonized server. This is a server-related command that stop a daemonized server from its pidfile. By default, it expects the pidfile in the current working directory with the name 'daemon.pid' but it can be altered with the --pidfile flag. """ Daemon.stop(pidfile) @cli.command('generate-token') def generate_token(): """ Generate a token. This is an utility command that generates a valid token needed to configure both the client and the server. Note that by default, the server will generate a token if none was explicitly set. """ from remofile.token import generate_token print(generate_token()) @cli.command('generate-keys') def generate_keys(): """ Generate a pair of keys. This is an utility command that generates a valid pair of keys to encrypt communication with clients. The first key is a public key that must be shared across clients connecting to the Remofile server and the second key is the private key that must be kept secret. Both :py:class:`Client` and :py:class:`Server` instances must be configured with their respective keys. """ from remofile.keys import generate_keys public_key, private_key = generate_keys() print("public key: {0}".format(str(public_key, 'utf-8'))) print("private key: {0}".format(str(private_key, 'utf-8'))) cli.add_command(list_files) cli.add_command(create_file) cli.add_command(make_directory) cli.add_command(upload_files) cli.add_command(download_files) cli.add_command(remove_files) cli.add_command(run_server) cli.add_command(start_server) cli.add_command(stop_server) cli.add_command(generate_token) cli.add_command(generate_keys)
39.204196
146
0.680711
4a26c31eece135515456c19395f35833176ce67d
1,004
py
Python
userbot/modules/direct_message.py
vckyou/XBot-Remix
ec19357fe7de1ce5f8ad7a7c3cc5fc37553dd955
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
userbot/modules/direct_message.py
vckyou/XBot-Remix
ec19357fe7de1ce5f8ad7a7c3cc5fc37553dd955
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
userbot/modules/direct_message.py
vckyou/XBot-Remix
ec19357fe7de1ce5f8ad7a7c3cc5fc37553dd955
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
from userbot.events import register from userbot import CMD_HELP # Ported By @VckyouuBitch From GeezProject # Devoted To GeezProject @register(outgoing=True, pattern=r"^\.(?:dm)\s?(.*)?") async def remoteaccess(event): p = event.pattern_match.group(1) m = p.split(" ") chat_id = m[0] try: chat_id = int(chat_id) except BaseException: pass msg = "" mssg = await event.get_reply_message() if event.reply_to_msg_id: await event.client.send_message(chat_id, mssg) await event.edit("`Success Mengirim Pesan Anda.`") for i in m[1:]: msg += i + " " if msg == "": return try: await event.client.send_message(chat_id, msg) await event.edit("`Success Mengirim Pesan Anda.`") except BaseException: await event.edit("**Terjadi Error. Gagal Mengirim Pesan.**") CMD_HELP.update( { "message": "`.dm`\ \nMengirim Pesan Dengan Jarak Jauh Dengan .dm <username> <pesan>." })
24.487805
70
0.619522
4a26c3bb8c9fc0048af75e918c7aa4ce31ca0d37
3,452
py
Python
examples/xgb_master.py
rmill040/ptuner
bf76ca75ad79a0def7965dd29f3e44056b1d8f09
[ "MIT" ]
1
2020-06-24T16:04:44.000Z
2020-06-24T16:04:44.000Z
examples/xgb_master.py
rmill040/ptuner
bf76ca75ad79a0def7965dd29f3e44056b1d8f09
[ "MIT" ]
null
null
null
examples/xgb_master.py
rmill040/ptuner
bf76ca75ad79a0def7965dd29f3e44056b1d8f09
[ "MIT" ]
null
null
null
import numpy as np import os from sklearn.model_selection import train_test_split from xgboost import XGBClassifier # Custom imports from ptuner import ParallelPipelineTuner, STATUS_FAIL, STATUS_OK from ptuner.spaces import NaiveFeatureSampler, SpaceSampler, XGBClassifierSampler DATA_DIR = os.path.dirname(os.path.abspath(__file__)) SEED = 1718 def make_data(N, p): """Generate toy data.""" X = np.random.normal(0, 1, (N, p)) y = 2 + .59*X[:, 0] + .39*X[:, 1] + .39*X[:, 2] y = 1 / (1 + np.exp(-y)) y = np.random.binomial(1, y, N) np.savetxt(os.path.join(DATA_DIR, 'toy_xgb.csv'), np.column_stack([X, y]), delimiter=',') if __name__ == "__main__": np.random.seed(SEED) ############# # Make data # ############# N, p = 500, 100 make_data(N, p) # Load into memory and split into train/test df = np.loadtxt(os.path.join(DATA_DIR, 'toy_xgb.csv'), delimiter=',') X, y = df[:, :-1], df[:, -1] X_train, X_test, y_train, y_test = train_test_split( X, y, stratify=y, test_size=.33, random_state=SEED ) ################## # Define sampler # ################## sampler = SpaceSampler() sampler.add_feature_sampler( name='features', sampler=NaiveFeatureSampler(p=p) ) sampler.add_hyperparameter_sampler( name='xgboost', sampler=XGBClassifierSampler(early_stopping=True) ) ############################# # Define objective function # ############################# def objective(params, current_round): """Objective function to be optimized""" # Extra params to best updated on different rounds fit_params = { 'eval_set' : None, 'eval_metric' : 'auc', 'early_stopping_rounds' : None, 'verbose' : False } early_stopping_rounds = [10, 50, 100, 250, 500] try: # Unpack parameters features = params['features'] hps = params['xgboost'] # Update fit params fit_params['eval_set'] = [(X_test[:, features], y_test)] fit_params['early_stopping_rounds'] = early_stopping_rounds[current_round] # Train/evaluate model clf = XGBClassifier(**hps).fit( X_train[:, features], y_train, **fit_params ) # Update n_estimators because of early stopping params['xgboost']['n_estimators'] = clf.best_iteration+1 # Return information, at least containing metric return { 'status' : STATUS_OK, 'message' : None, 'metric' : clf.best_score } except Exception as e: return { 'status' : STATUS_FAIL, 'message' : e, 'metric' : 0.0 } ################ # Define tuner # ################ tuner = ParallelPipelineTuner( db_host='localhost', db_port=27017, lower_is_better=False, experiment_name='ptuner', role='master', n_jobs=-1, backend='threading' ) tuner.search( objective=objective, sampler=sampler, max_configs_per_round=[500, 400, 300, 200, 100] )
27.616
93
0.519699
4a26c432d3ca46baaa9603e334480ab69d6a58df
8,128
py
Python
.waf.rej/.waf-1.6.11-30618c54883417962c38f5d395f83584/waflib/Tools/tex.py
acstanton515/Tree-Based-Routing
90742ec5908061e77b473fd2feb6733ad6592da9
[ "MIT" ]
null
null
null
.waf.rej/.waf-1.6.11-30618c54883417962c38f5d395f83584/waflib/Tools/tex.py
acstanton515/Tree-Based-Routing
90742ec5908061e77b473fd2feb6733ad6592da9
[ "MIT" ]
null
null
null
.waf.rej/.waf-1.6.11-30618c54883417962c38f5d395f83584/waflib/Tools/tex.py
acstanton515/Tree-Based-Routing
90742ec5908061e77b473fd2feb6733ad6592da9
[ "MIT" ]
null
null
null
#! /usr/bin/env python # encoding: utf-8 # WARNING! Do not edit! http://waf.googlecode.com/git/docs/wafbook/single.html#_obtaining_the_waf_file import os,re from waflib import Utils,Task,Errors from waflib.TaskGen import feature,before_method from waflib.Logs import error,warn,debug re_bibunit=re.compile(r'\\(?P<type>putbib)\[(?P<file>[^\[\]]*)\]',re.M) def bibunitscan(self): node=self.inputs[0] nodes=[] if not node:return nodes code=Utils.readf(node.abspath()) for match in re_bibunit.finditer(code): path=match.group('file') if path: for k in['','.bib']: debug('tex: trying %s%s'%(path,k)) fi=node.parent.find_resource(path+k) if fi: nodes.append(fi) else: debug('tex: could not find %s'%path) debug("tex: found the following bibunit files: %s"%nodes) return nodes exts_deps_tex=['','.ltx','.tex','.bib','.pdf','.png','.eps','.ps'] exts_tex=['.ltx','.tex'] re_tex=re.compile(r'\\(?P<type>include|bibliography|putbib|includegraphics|input|import|bringin|lstinputlisting)(\[[^\[\]]*\])?{(?P<file>[^{}]*)}',re.M) g_bibtex_re=re.compile('bibdata',re.M) class tex(Task.Task): bibtex_fun,_=Task.compile_fun('${BIBTEX} ${BIBTEXFLAGS} ${SRCFILE}',shell=False) bibtex_fun.__doc__=""" Execute the program **bibtex** """ makeindex_fun,_=Task.compile_fun('${MAKEINDEX} ${MAKEINDEXFLAGS} ${SRCFILE}',shell=False) makeindex_fun.__doc__=""" Execute the program **makeindex** """ def scan_aux(self,node): nodes=[node] re_aux=re.compile(r'\\@input{(?P<file>[^{}]*)}',re.M) def parse_node(node): code=node.read() for match in re_aux.finditer(code): path=match.group('file') found=node.parent.find_or_declare(path) if found and found not in nodes: debug('tex: found aux node '+found.abspath()) nodes.append(found) parse_node(found) parse_node(node) return nodes def scan(self): node=self.inputs[0] nodes=[] names=[] seen=[] if not node:return(nodes,names) def parse_node(node): if node in seen: return seen.append(node) code=node.read() global re_tex for match in re_tex.finditer(code): for path in match.group('file').split(','): if path: add_name=True found=None for k in exts_deps_tex: debug('tex: trying %s%s'%(path,k)) found=node.parent.find_resource(path+k) if found and not found in self.outputs: nodes.append(found) add_name=False for ext in exts_tex: if found.name.endswith(ext): parse_node(found) break if add_name: names.append(path) parse_node(node) for x in nodes: x.parent.get_bld().mkdir() debug("tex: found the following : %s and names %s"%(nodes,names)) return(nodes,names) def check_status(self,msg,retcode): if retcode!=0: raise Errors.WafError("%r command exit status %r"%(msg,retcode)) def bibfile(self): need_bibtex=False try: for aux_node in self.aux_nodes: ct=aux_node.read() if g_bibtex_re.findall(ct): need_bibtex=True break except(OSError,IOError): error('error bibtex scan') else: if need_bibtex: warn('calling bibtex') self.env.env={} self.env.env.update(os.environ) self.env.env.update({'BIBINPUTS':self.TEXINPUTS,'BSTINPUTS':self.TEXINPUTS}) self.env.SRCFILE=self.aux_nodes[0].name[:-4] self.check_status('error when calling bibtex',self.bibtex_fun()) def bibunits(self): try: bibunits=bibunitscan(self) except FSError: error('error bibunitscan') else: if bibunits: fn=['bu'+str(i)for i in xrange(1,len(bibunits)+1)] if fn: warn('calling bibtex on bibunits') for f in fn: self.env.env={'BIBINPUTS':self.TEXINPUTS,'BSTINPUTS':self.TEXINPUTS} self.env.SRCFILE=f self.check_status('error when calling bibtex',self.bibtex_fun()) def makeindex(self): try: idx_path=self.idx_node.abspath() os.stat(idx_path) except OSError: warn('index file %s absent, not calling makeindex'%idx_path) else: warn('calling makeindex') self.env.SRCFILE=self.idx_node.name self.env.env={} self.check_status('error when calling makeindex %s'%idx_path,self.makeindex_fun()) def run(self): env=self.env if not env['PROMPT_LATEX']: env.append_value('LATEXFLAGS','-interaction=batchmode') env.append_value('PDFLATEXFLAGS','-interaction=batchmode') env.append_value('XELATEXFLAGS','-interaction=batchmode') fun=self.texfun node=self.inputs[0] srcfile=node.abspath() texinputs=self.env.TEXINPUTS or'' self.TEXINPUTS=node.parent.get_bld().abspath()+os.pathsep+node.parent.get_src().abspath()+os.pathsep+texinputs+os.pathsep self.aux_node=node.change_ext('.aux') self.cwd=self.inputs[0].parent.get_bld().abspath() warn('first pass on %s'%self.__class__.__name__) self.env.env={} self.env.env.update(os.environ) self.env.env.update({'TEXINPUTS':self.TEXINPUTS}) self.env.SRCFILE=srcfile self.check_status('error when calling latex',fun()) self.aux_nodes=self.scan_aux(node.change_ext('.aux')) self.idx_node=node.change_ext('.idx') self.bibfile() self.bibunits() self.makeindex() hash='' for i in range(10): prev_hash=hash try: hashes=[Utils.h_file(x.abspath())for x in self.aux_nodes] hash=Utils.h_list(hashes) except(OSError,IOError): error('could not read aux.h') pass if hash and hash==prev_hash: break warn('calling %s'%self.__class__.__name__) self.env.env={} self.env.env.update(os.environ) self.env.env.update({'TEXINPUTS':self.TEXINPUTS}) self.env.SRCFILE=srcfile self.check_status('error when calling %s'%self.__class__.__name__,fun()) class latex(tex): texfun,vars=Task.compile_fun('${LATEX} ${LATEXFLAGS} ${SRCFILE}',shell=False) class pdflatex(tex): texfun,vars=Task.compile_fun('${PDFLATEX} ${PDFLATEXFLAGS} ${SRCFILE}',shell=False) class xelatex(tex): texfun,vars=Task.compile_fun('${XELATEX} ${XELATEXFLAGS} ${SRCFILE}',shell=False) class dvips(Task.Task): run_str='${DVIPS} ${DVIPSFLAGS} ${SRC} -o ${TGT}' color='BLUE' after=['latex','pdflatex','xelatex'] class dvipdf(Task.Task): run_str='${DVIPDF} ${DVIPDFFLAGS} ${SRC} ${TGT}' color='BLUE' after=['latex','pdflatex','xelatex'] class pdf2ps(Task.Task): run_str='${PDF2PS} ${PDF2PSFLAGS} ${SRC} ${TGT}' color='BLUE' after=['latex','pdflatex','xelatex'] def apply_tex(self): if not getattr(self,'type',None)in['latex','pdflatex','xelatex']: self.type='pdflatex' tree=self.bld outs=Utils.to_list(getattr(self,'outs',[])) self.env['PROMPT_LATEX']=getattr(self,'prompt',1) deps_lst=[] if getattr(self,'deps',None): deps=self.to_list(self.deps) for filename in deps: n=self.path.find_resource(filename) if not n in deps_lst:deps_lst.append(n) for node in self.to_nodes(self.source): if self.type=='latex': task=self.create_task('latex',node,node.change_ext('.dvi')) elif self.type=='pdflatex': task=self.create_task('pdflatex',node,node.change_ext('.pdf')) elif self.type=='xelatex': task=self.create_task('xelatex',node,node.change_ext('.pdf')) task.env=self.env if deps_lst: try: lst=tree.node_deps[task.uid()] for n in deps_lst: if not n in lst: lst.append(n) except KeyError: tree.node_deps[task.uid()]=deps_lst if self.type=='latex': if'ps'in outs: tsk=self.create_task('dvips',task.outputs,node.change_ext('.ps')) tsk.env.env={'TEXINPUTS':node.parent.abspath()+os.pathsep+self.path.abspath()+os.pathsep+self.path.get_bld().abspath()} if'pdf'in outs: tsk=self.create_task('dvipdf',task.outputs,node.change_ext('.pdf')) tsk.env.env={'TEXINPUTS':node.parent.abspath()+os.pathsep+self.path.abspath()+os.pathsep+self.path.get_bld().abspath()} elif self.type=='pdflatex': if'ps'in outs: self.create_task('pdf2ps',task.outputs,node.change_ext('.ps')) self.source=[] def configure(self): v=self.env for p in'tex latex pdflatex xelatex bibtex dvips dvipdf ps2pdf makeindex pdf2ps'.split(): try: self.find_program(p,var=p.upper()) except self.errors.ConfigurationError: pass v['DVIPSFLAGS']='-Ppdf' feature('tex')(apply_tex) before_method('process_source')(apply_tex)
33.586777
152
0.687131
4a26c4e4466394f0d221797f83ca00d6ca6ae12e
2,608
py
Python
talentmap_api/fsbid/tests/test_fsbid_bidlist.py
burgwyn/State-TalentMAP-API
1f4f3659c5743ebfd558cd87af381f5460f284b3
[ "CC0-1.0" ]
5
2018-08-09T18:51:12.000Z
2021-11-08T10:28:17.000Z
talentmap_api/fsbid/tests/test_fsbid_bidlist.py
burgwyn/State-TalentMAP-API
1f4f3659c5743ebfd558cd87af381f5460f284b3
[ "CC0-1.0" ]
13
2019-01-11T18:19:33.000Z
2021-03-22T17:15:17.000Z
talentmap_api/fsbid/tests/test_fsbid_bidlist.py
burgwyn/State-TalentMAP-API
1f4f3659c5743ebfd558cd87af381f5460f284b3
[ "CC0-1.0" ]
4
2018-06-13T14:49:27.000Z
2021-06-30T22:29:15.000Z
import pytest import datetime from dateutil.relativedelta import relativedelta from model_mommy import mommy from unittest.mock import Mock, patch from rest_framework import status from django.utils import timezone import talentmap_api.fsbid.services as services bid = { "submittedDate": "2019/01/01", "statusCode": "A", "handshakeCode": "N", "cycle": { "description" : "", "status": "A", }, "employee": { "perdet_seq_num" : "1" }, "cyclePosition": { "cp_id": 1, "status": "A", "pos_seq_num": "1", "totalBidders": 0, "atGradeBidders": 0, "inConeBidders": 0, "inBothBidders": 0, } } @pytest.fixture def test_bidder_fixture(authorized_user): group = mommy.make('auth.Group', name='bidder') group.user_set.add(authorized_user) @pytest.mark.django_db(transaction=True) @pytest.mark.usefixtures("test_bidder_fixture") def test_bidlist_actions(authorized_client, authorized_user): with patch('talentmap_api.fsbid.services.requests.get') as mock_get: mock_get.return_value = Mock(ok=True) mock_get.return_value.json.return_value = [bid] response = authorized_client.get(f'/api/v1/fsbid/bidlist/') assert response.json()[0]['emp_id'] == [bid][0]['employee']['perdet_seq_num'] @pytest.mark.django_db(transaction=True) @pytest.mark.usefixtures("test_bidder_fixture") def test_bidlist_position_actions(authorized_client, authorized_user): with patch('talentmap_api.fsbid.services.requests.get') as mock_get: # returns 404 when no position is found mock_get.return_value = Mock(ok=True) mock_get.return_value.json.return_value = [] response = authorized_client.get(f'/api/v1/fsbid/bidlist/position/1/') assert response.status_code == status.HTTP_404_NOT_FOUND # returns 204 when position is found mock_get.return_value = Mock(ok=True) mock_get.return_value.json.return_value = [bid] response = authorized_client.get(f'/api/v1/fsbid/bidlist/position/1/') assert response.status_code == status.HTTP_204_NO_CONTENT with patch('talentmap_api.fsbid.services.requests.post') as mock_post: mock_post.return_value = Mock(ok=True) response = authorized_client.put(f'/api/v1/fsbid/bidlist/position/1/') assert response.status_code == status.HTTP_204_NO_CONTENT with patch('talentmap_api.fsbid.services.requests.delete') as mock_del: mock_del.return_value = Mock(ok=True) response = authorized_client.delete(f'/api/v1/fsbid/bidlist/position/1/') assert response.status_code == status.HTTP_204_NO_CONTENT
36.732394
83
0.717408
4a26c586498b6c8bde6f47a2e0d479b19c7f03ad
873
py
Python
rsa/src/crypto/cipher_test.py
rafaelcn/cryptography
38de104b4a264a9f71d40f6306bfe96e24e6985b
[ "MIT" ]
null
null
null
rsa/src/crypto/cipher_test.py
rafaelcn/cryptography
38de104b4a264a9f71d40f6306bfe96e24e6985b
[ "MIT" ]
null
null
null
rsa/src/crypto/cipher_test.py
rafaelcn/cryptography
38de104b4a264a9f71d40f6306bfe96e24e6985b
[ "MIT" ]
null
null
null
import unittest from crypto import key from crypto import primes from crypto import cipher # PYTHONPATH=. python3 src/cipher_test.py (on src) # PYTHONPATH=../ python3 cipher_test.py (on crypto) class TestKeyAlgorithms(unittest.TestCase): def test_key_gen(self): p = primes.get_random_bits(1024) q = primes.get_random_bits(1024) msg = 'Rafael e Rafael fazem um trabalho com cara de pastel' public_key, private_key = key.generate(p, q) self.assertEqual(public_key['n'], p * q) self.assertEqual(private_key['n'], p * q) encrypted_message, t, x, y = cipher.encrypt(msg, public_key) decrypted_message = cipher.decrypt(encrypted_message, private_key, t, x, y) self.assertEqual(decrypted_message, msg) if __name__ == "__main__": unittest.main()
26.454545
74
0.654066
4a26c5d77ab0fee9d615d30d3a46fa6648183122
148
py
Python
paperjam/codes.py
MineRobber9000/paperjam
f91d8d349f92268afc19414c5b5e27fe37488143
[ "MIT" ]
null
null
null
paperjam/codes.py
MineRobber9000/paperjam
f91d8d349f92268afc19414c5b5e27fe37488143
[ "MIT" ]
null
null
null
paperjam/codes.py
MineRobber9000/paperjam
f91d8d349f92268afc19414c5b5e27fe37488143
[ "MIT" ]
null
null
null
from enum import Enum class Codes(Enum): HELLO_POSTING = 200 HELLO_NOPOST = 201 GOODBYE = 205 TEMP_UNAVAILABLE = 400 PERM_UNAVAILABLE = 502
14.8
23
0.75
4a26c60d9fe0a6b4323489911c9aa7674c735b8d
306
py
Python
setup.py
jpmfribeiro/PyCharts
e1b52ba11adbb8fa884116019e2321bc769adfba
[ "MIT" ]
null
null
null
setup.py
jpmfribeiro/PyCharts
e1b52ba11adbb8fa884116019e2321bc769adfba
[ "MIT" ]
null
null
null
setup.py
jpmfribeiro/PyCharts
e1b52ba11adbb8fa884116019e2321bc769adfba
[ "MIT" ]
null
null
null
from distutils.core import setup setup( name='PyCharts', version='', packages=['pycharts', 'pycharts.charts', 'pycharts.fields', 'pycharts.fields.series', 'pycharts.fields.plot_options'], url='', license='', author='jpedro', author_email='', description='' )
21.857143
91
0.611111
4a26c6f8f858cbaadcc9f82323fc7e8743a4dfd5
3,786
py
Python
vlapy/core/field.py
kyleniemeyer/VlaPy
efbd38f0d53fb4a5ffa61ecbfbc14d3383eb0f48
[ "MIT" ]
22
2020-03-02T10:46:59.000Z
2022-03-29T12:04:55.000Z
vlapy/core/field.py
kyleniemeyer/VlaPy
efbd38f0d53fb4a5ffa61ecbfbc14d3383eb0f48
[ "MIT" ]
68
2020-03-13T01:16:07.000Z
2020-09-17T05:18:06.000Z
vlapy/core/field.py
kyleniemeyer/VlaPy
efbd38f0d53fb4a5ffa61ecbfbc14d3383eb0f48
[ "MIT" ]
10
2020-02-24T18:55:41.000Z
2021-10-01T12:16:23.000Z
# MIT License # # Copyright (c) 2020 Archis Joglekar # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import numpy as np from scipy import fft def compute_charges(f, dv): """ Computes a simple moment of the distribution function along the velocity axis using the trapezoidal rule :param f: (2D float array) (nx, nv) the distribution function :param dv: (float) velocity-axis spacing :return: """ return np.trapz(f, dx=dv, axis=1) def __fft_solve__(net_charge_density, one_over_kx): """ del^2 phi = -rho del e = - integral[rho] = - integral[fdv] :param net_charge_density: (1D float array (nx,)) charge-density :param one_over_kx: (1D float array (nx,)) one over real-space wavenumber axis (numpy array of shape (nx,)) :return: """ return np.real(fft.ifft(1j * one_over_kx * fft.fft(net_charge_density))) def solve_for_field(charge_density, one_over_kx): """ Solves for the net electric field after subtracting ion charge :param charge_density: (1D float array (nx,)) charge-density :param one_over_kx: (1D float array (nx,)) one over real-space wavenumber axis :return: """ return __fft_solve__( net_charge_density=1.0 - charge_density, one_over_kx=one_over_kx ) def get_spectral_solver(dv, one_over_kx): """ This function gets the spectral field solver that uses Fourier transforms to solve the periodic system :param dv: (float) grid spacing in v :param one_over_kx: (1D float array (nx,)) one over real-space wavenumber axis :return: the function with the above arguments initialized as static variables """ def solve_total_electric_field(driver_field, f): """ Allows adding a driver field :param driver_field: an electric field (numpy array of shape (nx,)) :param f: distribution function. (numpy array of shape (nx, nv)) :return: The solver function """ return driver_field + solve_for_field( charge_density=compute_charges(f, dv), one_over_kx=one_over_kx ) return solve_total_electric_field def get_field_solver(stuff_for_time_loop, field_solver_implementation="spectral"): """ This method gets the field solver based on the choice in the input parameters. :param stuff_for_time_loop: dictionary of parameters for the simulation :param field_solver_implementation: (string) the name of the field solver chosen in the input parameters :return: """ if field_solver_implementation == "spectral": field_solver = get_spectral_solver( dv=stuff_for_time_loop["dv"], one_over_kx=stuff_for_time_loop["one_over_kx"] ) else: raise NotImplementedError return field_solver
35.055556
111
0.717644
4a26c704afa1a27eb9993c040d00f727b45f776e
292
py
Python
dim/nn/modules/mseLoss.py
xhqing/dim
ea776d05568641565358213ea402422102dc53d8
[ "MIT" ]
null
null
null
dim/nn/modules/mseLoss.py
xhqing/dim
ea776d05568641565358213ea402422102dc53d8
[ "MIT" ]
null
null
null
dim/nn/modules/mseLoss.py
xhqing/dim
ea776d05568641565358213ea402422102dc53d8
[ "MIT" ]
null
null
null
import dim from .module import Module class MSELoss(Module): def __init__(self): super(MSELoss,self).__init__() self.moduleList.append({"name":None,"module":self}) def forward(self,x,y): return dim.nn.functional.mseLoss(x,y) def __str__(self): return "MSELoss()"
22.461538
56
0.681507
4a26c8a5b240e964460cff33c7238a4d033c2d92
1,245
py
Python
201-250/209.py
yshshadow/Leetcode
5097f69bb0050d963c784d6bc0e88a7e871568ed
[ "MIT" ]
null
null
null
201-250/209.py
yshshadow/Leetcode
5097f69bb0050d963c784d6bc0e88a7e871568ed
[ "MIT" ]
null
null
null
201-250/209.py
yshshadow/Leetcode
5097f69bb0050d963c784d6bc0e88a7e871568ed
[ "MIT" ]
null
null
null
# Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead. # # Example: # # Input: s = 7, nums = [2,3,1,2,4,3] # Output: 2 # Explanation: the subarray [4,3] has the minimal length under the problem constraint. # Follow up: # If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n). class Solution(object): def minSubArrayLen(self, s, nums): """ :type s: int :type nums: List[int] :rtype: int """ if not nums or len(nums) == 0: return 0 if len(nums) == 1: return 1 if nums[0] >= s else 0 fast, slow = 0, 0 subsum, res = nums[0], len(nums) + 1 while slow <= fast < len(nums): if subsum >= s: res = min(fast - slow + 1, res) subsum -= nums[slow] slow += 1 else: fast += 1 if fast >= len(nums): break subsum += nums[fast] return res if res <= len(nums) else 0 s=Solution() print(s.minSubArrayLen(100,[2,3,1,2,4,3]))
31.923077
174
0.533333
4a26c8d1c7e68ea2366f00c6869f1d0e1b77976c
107
py
Python
mkdocs/utils/filters.py
davidhrbac/mkdocs
3c8a1fccca29272ce327e89c398a55771a7f5635
[ "BSD-2-Clause" ]
57
2016-09-28T01:19:35.000Z
2022-01-07T13:59:21.000Z
mkdocs/utils/filters.py
hufyhang/mkdocs
4c4ef7fa7224713e17d479742c2df1b2fc78edcb
[ "BSD-2-Clause" ]
16
2017-02-06T15:48:03.000Z
2018-02-28T21:40:10.000Z
mkdocs/utils/filters.py
hufyhang/mkdocs
4c4ef7fa7224713e17d479742c2df1b2fc78edcb
[ "BSD-2-Clause" ]
81
2016-09-06T04:21:06.000Z
2022-03-10T06:32:45.000Z
import json import jinja2 def tojson(obj, **kwargs): return jinja2.Markup(json.dumps(obj, **kwargs))
15.285714
51
0.71028
4a26c9bd57bfe5b46598f4f2f47063acc1f2eb86
10,579
py
Python
altimeter/core/graph/link/links.py
AmOr1984v02/altimeter
4adcf8d759b1f3f615b00521cc1756c8007e04f3
[ "MIT" ]
null
null
null
altimeter/core/graph/link/links.py
AmOr1984v02/altimeter
4adcf8d759b1f3f615b00521cc1756c8007e04f3
[ "MIT" ]
null
null
null
altimeter/core/graph/link/links.py
AmOr1984v02/altimeter
4adcf8d759b1f3f615b00521cc1756c8007e04f3
[ "MIT" ]
null
null
null
"""A Link represents the predicate-object portion of a triple.""" import uuid from typing import Any, Dict, Type, List, Union from rdflib import BNode, Graph, Literal, Namespace, RDF, URIRef, XSD from altimeter.core.graph.exceptions import LinkParseException from altimeter.core.graph.link.base import Link from altimeter.core.graph.node_cache import NodeCache class SimpleLink(Link): """A SimpleLink represents a scalar value. In RDF terms a SimpleLink creates a Literal in the graph.""" field_type = "simple" def to_rdf( self, subj: Union[BNode, URIRef], namespace: Namespace, graph: Graph, node_cache: NodeCache ) -> None: """Graph this link on a BNode/URIRef in a Graph using a given Namespace to create the full predicate. Args: subj: subject portion of triple - graph this link's pred, obj against it. namespace: RDF namespace to use for this triple's predicate graph: RDF graph node_cache: NodeCache to use to find cached nodes. """ datatype = None if isinstance(self.obj, int): if self.obj > 2147483647: datatype = XSD.nonNegativeInteger literal = Literal(self.obj, datatype=datatype) graph.add((subj, getattr(namespace, self.pred), literal)) def to_lpg( self, parent: Dict, vertices: List[Dict], edges: List[Dict], prefix: str = "" ) -> None: """Convert this link to the appropriate vertices, edges, and properties Args: :parent: the parent dictionary vertex :param vertices: the list of all vertex dictionaries :param edges: the list of all edge dictionaries :param prefix: the prefix assigned to the key :type parent: Dict """ if isinstance(self.obj, int): # Need to handle numbers that are bigger than a Long in Java, for now we stringify it if self.obj > 9223372036854775807 or self.obj < -9223372036854775807: self.obj = str(self.obj) elif isinstance(self.obj, SimpleLink): print("ERROR ERROR") parent[prefix + self.pred] = self.obj class MultiLink(Link): """Represents a named set of sublinks. For example an 'EBSVolumeAttachemnt' MultiLink could exist which specifies sublinks Volume, AttachTime""" field_type = "multi" def to_dict(self) -> Dict[str, Any]: """Return a dictionary representation of this Link Returns: Dict representation of this Link """ return { "pred": self.pred, "obj": [field.to_dict() for field in self.obj], "type": self.field_type, } def to_rdf( self, subj: Union[BNode, URIRef], namespace: Namespace, graph: Graph, node_cache: NodeCache ) -> None: """Graph this link on a BNode/URIRef in a Graph using a given Namespace to create the full predicate. Args: subj: subject portion of triple - graph this link's pred, obj against it. namespace: RDF namespace to use for this triple's predicate graph: RDF graph node_cache: NodeCache to use to find cached nodes. """ map_node = BNode() graph.add((map_node, RDF.type, getattr(namespace, f"{self.pred}"))) for field in self.obj: field.to_rdf(map_node, namespace, graph, node_cache) graph.add((subj, getattr(namespace, self.pred), map_node)) def to_lpg( self, parent: Dict, vertices: List[Dict], edges: List[Dict], prefix: str = "" ) -> None: """Convert this link to the appropriate vertices, edges, and properties Args: :parent: the parent dictionary vertex vertices: the list of all vertex dictionaries edges: the list of all edge dictionaries prefix: A string to prefix the property name with """ for field in self.obj: field.to_lpg(parent, vertices, edges, prefix=self.pred + ".") @classmethod def from_dict(cls: Type["MultiLink"], pred: str, obj: Any) -> "MultiLink": """Create a MultiLink object from a dict Args: pred: Link predicate obj: Link object, in the case of a MultiLink this is a list of Fields Returns: Link subclass object """ fields = [link_from_dict(field) for field in obj] return cls(pred=pred, obj=fields) class ResourceLinkLink(Link): """Represents a link to another resource which must exist in the graph.""" field_type = "resource_link" def to_rdf( self, subj: Union[BNode, URIRef], namespace: Namespace, graph: Graph, node_cache: NodeCache ) -> None: """Graph this link on a BNode/URIRef in a Graph using a given Namespace to create the full predicate. Args: subj: subject portion of triple - graph this link's pred, obj against it. namespace: RDF namespace to use for this triple's predicate graph: RDF graph node_cache: NodeCache to use to find cached nodes. """ link_node = node_cache.setdefault(self.obj, URIRef(self.obj)) graph.add((subj, getattr(namespace, self.pred), link_node)) def to_lpg( self, parent: Dict, vertices: List[Dict], edges: List[Dict], prefix: str = "" ) -> None: """Convert this link to the appropriate vertices, edges, and properties Args: :parent: the parent dictionary vertex vertices: the list of all vertex dictionaries edges: the list of all edge dictionaries prefix: string to prefix the property name with """ edge = { "~id": uuid.uuid1(), "~label": self.field_type, "~from": parent["~id"], "~to": self.obj, } edges.append(edge) class TransientResourceLinkLink(Link): """Represents a link to another resource which may or may not exist in the graph.""" field_type = "transient_resource_link" def to_rdf( self, subj: Union[BNode, URIRef], namespace: Namespace, graph: Graph, node_cache: NodeCache ) -> None: """Graph this link on a BNode/URIRef in a Graph using a given Namespace to create the full predicate. Args: subj: subject portion of triple - graph this link's pred, obj against it. namespace: RDF namespace to use for this triple's predicate graph: RDF graph node_cache: NodeCache to use to find cached nodes. """ link_node = node_cache.setdefault(self.obj, URIRef(self.obj)) graph.add((subj, getattr(namespace, self.pred), link_node)) def to_lpg( self, parent: Dict, vertices: List[Dict], edges: List[Dict], prefix: str = "" ) -> None: """Convert this link to the appropriate vertices, edges, and properties Args: :parent: the parent dictionary vertex vertices: the list of all vertex dictionaries edges: the list of all edge dictionaries prefix: string to prefix the property name with """ edge = { "~id": uuid.uuid1(), "~label": self.field_type, "~from": parent["~id"], "~to": self.obj, } edges.append(edge) class TagLink(Link): """Represents a AWS-style Tag attached to a node.""" field_type = "tag" def to_rdf( self, subj: URIRef, namespace: Namespace, graph: Graph, node_cache: NodeCache ) -> None: """Graph this link on a URIRef in a Graph using a given Namespace to create the full predicate. Args: subj: subject portion of triple - graph this link's pred, obj against it. namespace: RDF namespace to use for this triple's predicate graph: RDF graph node_cache: NodeCache to use to find cached nodes. """ tag_id = f"{self.pred}:{self.obj}" tag_node = node_cache.get(tag_id) if tag_node is None: tag_node = BNode() graph.add((tag_node, namespace.key, Literal(self.pred))) graph.add((tag_node, namespace.value, Literal(self.obj))) graph.add((tag_node, RDF.type, getattr(namespace, "tag"))) node_cache[tag_id] = tag_node graph.add((subj, getattr(namespace, "tag"), tag_node)) def to_lpg( self, parent: Dict, vertices: List[Dict], edges: List[Dict], prefix: str = "" ) -> None: """Convert this link to the appropriate vertices, edges, and properties Args: :parent:git the parent dictionary vertex vertices: the list of all vertex dictionaries edges: the list of all edge dictionaries prefix: string to prefix the property name with """ if not any(x["~id"] == f"{self.pred}:{self.obj}" for x in vertices): vertex = {} vertex["~id"] = f"{self.pred}:{self.obj}" vertex["~label"] = self.field_type vertex[self.pred] = self.obj vertices.append(vertex) edge = { "~id": uuid.uuid1(), "~label": "tagged", "~from": parent["~id"], "~to": f"{self.pred}:{self.obj}", } edges.append(edge) def link_from_dict(data: Dict[str, Any]) -> Link: """Create and return a Link subclass object from dict data. Args: data: data to generate a Link from Returns: object of the appropriate Link subclass """ field_type = data.get("type") if field_type is None: raise LinkParseException(f"key 'type' not found in {data}") pred = data.get("pred") if pred is None: raise LinkParseException(f"key 'pred' not found in {data}") obj = data.get("obj") if field_type == "transient_resource_link": return TransientResourceLinkLink.from_dict(pred, obj) if obj is None: raise LinkParseException(f"key 'obj' not found in {data}") if field_type == "simple": return SimpleLink.from_dict(pred, obj) if field_type == "multi": return MultiLink.from_dict(pred, obj) if field_type == "resource_link": return ResourceLinkLink.from_dict(pred, obj) if field_type == "tag": return TagLink.from_dict(pred, obj) raise LinkParseException(f"Unknown field type '{field_type}")
36.98951
99
0.604594
4a26c9d857b1b26486895b298c840056c3b26b9e
250
py
Python
tests/atgtasks_test.py
seba-1511/atg
8f0b135d1a32c613f6726c7b28d165b8fd63c94c
[ "MIT" ]
null
null
null
tests/atgtasks_test.py
seba-1511/atg
8f0b135d1a32c613f6726c7b28d165b8fd63c94c
[ "MIT" ]
null
null
null
tests/atgtasks_test.py
seba-1511/atg
8f0b135d1a32c613f6726c7b28d165b8fd63c94c
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import unittest class UtilTests(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_myfunctionality(self): pass if __name__ == '__main__': unittest.main()
12.5
35
0.624
4a26ca796ab709e4845e05b9e1f57252efb98bbd
468
py
Python
codewars/7kyu/evenOrOdd.py
jglez/code-solutions
92e9f8f249e238f94e01db71663eac4c82b1a0ef
[ "MIT" ]
null
null
null
codewars/7kyu/evenOrOdd.py
jglez/code-solutions
92e9f8f249e238f94e01db71663eac4c82b1a0ef
[ "MIT" ]
null
null
null
codewars/7kyu/evenOrOdd.py
jglez/code-solutions
92e9f8f249e238f94e01db71663eac4c82b1a0ef
[ "MIT" ]
null
null
null
""" Task: Given a list of integers, determine whether the sum of its elements is odd or even. Give your answer as a string matching "odd" or "even". If the input array is empty consider it as: [0] (array with a zero). Examples: Input: [0] Output: "even" Input: [0, 1, 4] Output: "odd" Input: [0, -1, -5] Output: "even" Have fun! """ def odd_or_even(arr): if sum(arr) % 2 == 0: return "even" return "odd"
18.72
87
0.57906
4a26cb5b4f29be2ed89f6009b7b32310da4aa22a
19,985
py
Python
pysnmp-with-texts/SNMPEXT-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
8
2019-05-09T17:04:00.000Z
2021-06-09T06:50:51.000Z
pysnmp-with-texts/SNMPEXT-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
4
2019-05-31T16:42:59.000Z
2020-01-31T21:57:17.000Z
pysnmp-with-texts/SNMPEXT-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module SNMPEXT-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/SNMPEXT-MIB # Produced by pysmi-0.3.4 at Wed May 1 15:08:41 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # snmpExt, = mibBuilder.importSymbols("APENT-MIB", "snmpExt") Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, ValueRangeConstraint, SingleValueConstraint, ValueSizeConstraint, ConstraintsIntersection = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "ValueRangeConstraint", "SingleValueConstraint", "ValueSizeConstraint", "ConstraintsIntersection") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") NotificationType, MibIdentifier, ModuleIdentity, Unsigned32, ObjectIdentity, NotificationType, TimeTicks, IpAddress, iso, Bits, Integer32, Counter32, Counter64, Gauge32, MibScalar, MibTable, MibTableRow, MibTableColumn = mibBuilder.importSymbols("SNMPv2-SMI", "NotificationType", "MibIdentifier", "ModuleIdentity", "Unsigned32", "ObjectIdentity", "NotificationType", "TimeTicks", "IpAddress", "iso", "Bits", "Integer32", "Counter32", "Counter64", "Gauge32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn") RowStatus, DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "RowStatus", "DisplayString", "TextualConvention") apSnmpExtMib = ModuleIdentity((1, 3, 6, 1, 4, 1, 2467, 1, 22, 1)) if mibBuilder.loadTexts: apSnmpExtMib.setLastUpdated('9707202000Z') if mibBuilder.loadTexts: apSnmpExtMib.setOrganization('ArrowPoint Communications Inc.') if mibBuilder.loadTexts: apSnmpExtMib.setContactInfo(' Steven Colby Postal: ArrowPoint Communications Inc. 50 Nagog Park Acton, Massachusetts 01720 Tel: +1 978-206-3000 option 1 E-Mail: [email protected]') if mibBuilder.loadTexts: apSnmpExtMib.setDescription('') apSnmpExtTrapGeneric = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 0))).clone(namedValues=NamedValues(("enable", 1), ("disable", 0)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtTrapGeneric.setStatus('current') if mibBuilder.loadTexts: apSnmpExtTrapGeneric.setDescription('This object controls the state of Generic trap generation. ArrowPoint supports the following generic traps: 1) Cold start, 2) Warm start, 3) Link down, 4) Link up, 5) SNMP authentication failure. SNMP authentication failure traps can be individually disallowed using the snmpEnableAuthenTraps object.') apSnmpExtTrapEnterprise = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 0))).clone(namedValues=NamedValues(("enable", 1), ("disable", 0)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtTrapEnterprise.setStatus('current') if mibBuilder.loadTexts: apSnmpExtTrapEnterprise.setDescription('This object controls the state of Enterprise trap generation. RMON event traps are treated as enterprise traps.') apSnmpExtCommunityTable = MibTable((1, 3, 6, 1, 4, 1, 2467, 1, 22, 4), ) if mibBuilder.loadTexts: apSnmpExtCommunityTable.setStatus('current') if mibBuilder.loadTexts: apSnmpExtCommunityTable.setDescription('A table of SNMP community information used to determine whether read or write access is permitted to the MIBs. A maximum of 5 concurrent communities are supported.') apSnmpExtCommunityEntry = MibTableRow((1, 3, 6, 1, 4, 1, 2467, 1, 22, 4, 1), ).setIndexNames((0, "SNMPEXT-MIB", "apSnmpExtCommunityName")) if mibBuilder.loadTexts: apSnmpExtCommunityEntry.setStatus('current') if mibBuilder.loadTexts: apSnmpExtCommunityEntry.setDescription('An SNMP community entry describing one community name') apSnmpExtCommunityName = MibTableColumn((1, 3, 6, 1, 4, 1, 2467, 1, 22, 4, 1, 1), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 12))).setMaxAccess("readcreate") if mibBuilder.loadTexts: apSnmpExtCommunityName.setStatus('current') if mibBuilder.loadTexts: apSnmpExtCommunityName.setDescription('A community name used for SNMP access to this system') apSnmpExtCommunityType = MibTableColumn((1, 3, 6, 1, 4, 1, 2467, 1, 22, 4, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("ro", 0), ("rw", 1)))).setMaxAccess("readcreate") if mibBuilder.loadTexts: apSnmpExtCommunityType.setStatus('current') if mibBuilder.loadTexts: apSnmpExtCommunityType.setDescription('The privilge level of the associated community name when accessing this system. A community level of <ro> allows read-only access, a community level of <rw> allows read and write access.') apSnmpExtCommunityStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 2467, 1, 22, 4, 1, 3), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: apSnmpExtCommunityStatus.setStatus('current') if mibBuilder.loadTexts: apSnmpExtCommunityStatus.setDescription('Status entry for this row ') apSnmpExtTrapTable = MibTable((1, 3, 6, 1, 4, 1, 2467, 1, 22, 5), ) if mibBuilder.loadTexts: apSnmpExtTrapTable.setStatus('current') if mibBuilder.loadTexts: apSnmpExtTrapTable.setDescription('') apSnmpExtTrapEntry = MibTableRow((1, 3, 6, 1, 4, 1, 2467, 1, 22, 5, 1), ).setIndexNames((0, "SNMPEXT-MIB", "apSnmpExtTrapIp")) if mibBuilder.loadTexts: apSnmpExtTrapEntry.setStatus('current') if mibBuilder.loadTexts: apSnmpExtTrapEntry.setDescription('This table contains the configured trap hosts. All entries in this table will receive SNMP traps when generated. A maximum of 5 concurrent trap hosts are supported.') apSnmpExtTrapIp = MibTableColumn((1, 3, 6, 1, 4, 1, 2467, 1, 22, 5, 1, 1), IpAddress()).setMaxAccess("readcreate") if mibBuilder.loadTexts: apSnmpExtTrapIp.setStatus('current') if mibBuilder.loadTexts: apSnmpExtTrapIp.setDescription('An IP Address of a host configured to receive traps') apSnmpExtTrapCommunity = MibTableColumn((1, 3, 6, 1, 4, 1, 2467, 1, 22, 5, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 12))).setMaxAccess("readcreate") if mibBuilder.loadTexts: apSnmpExtTrapCommunity.setStatus('current') if mibBuilder.loadTexts: apSnmpExtTrapCommunity.setDescription('The community name to use when sending traps to this device') apSnmpExtTrapStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 2467, 1, 22, 5, 1, 3), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: apSnmpExtTrapStatus.setStatus('current') if mibBuilder.loadTexts: apSnmpExtTrapStatus.setDescription('Status entry for this row ') apSnmpExtReloadConfigVal = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 6), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtReloadConfigVal.setStatus('current') if mibBuilder.loadTexts: apSnmpExtReloadConfigVal.setDescription('This object is used to control apSnmpExtReloadSet, which provides a SNMP based reboot capability. When this object is set to 0, SNMP based reboot is not allowed. When this object is set between 1 - (2^32) - 2, the equivalent value must be written to apSnmpExtReloadSet to cause a reboot. When this object is set to (2^32) -1, a reboot may be caused with any write value to apSnmpExtReloadSet. For security purposes this object always returns 0 on read') apSnmpExtReloadSet = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 7), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtReloadSet.setStatus('current') if mibBuilder.loadTexts: apSnmpExtReloadSet.setDescription('This object provides SNMP based reboot capabilities. The required set value to effect a reboot is explained in apSnmpExtReloadConfigVal.') apSnmpExtServiceTraps = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("disable", 0), ("enable", 1)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtServiceTraps.setStatus('current') if mibBuilder.loadTexts: apSnmpExtServiceTraps.setDescription('This object controls the generation of ArrowPoint enterprise traps conincident with service transition. See the trap definition in the svcExt.mib name apSvcTransitionTrap.') apSnmpExtLoginFailTraps = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 9), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("disable", 0), ("enable", 1)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtLoginFailTraps.setStatus('current') if mibBuilder.loadTexts: apSnmpExtLoginFailTraps.setDescription('This object controls the generation of ArrowPoint enterprise traps conincident with FTP/Console/Telnet authentication failure.') apSnmpExtReloadTraps = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 10), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("disable", 0), ("enable", 1)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtReloadTraps.setStatus('current') if mibBuilder.loadTexts: apSnmpExtReloadTraps.setDescription('This object controls the generation of ArrowPoint enterprise traps conincident a system reload') apSnmpExtLastTrap = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 11), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: apSnmpExtLastTrap.setStatus('current') if mibBuilder.loadTexts: apSnmpExtLastTrap.setDescription('This object contains a string which details the last trap which was generated in the system') apSnmpExtRedundancyTraps = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 12), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("disable", 0), ("enable", 1)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtRedundancyTraps.setStatus('current') if mibBuilder.loadTexts: apSnmpExtRedundancyTraps.setDescription('This object controls the generation of ArrowPoint enterprise traps on Redundancy state changes.') apSnmpExtForceDumpConfigVal = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 13), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtForceDumpConfigVal.setStatus('current') if mibBuilder.loadTexts: apSnmpExtForceDumpConfigVal.setDescription('This object is used to control apSnmpExtForceDump, which provides a SNMP based dump capability. When this object is set to 0, SNMP based dumping is not allowed. When this object is set between 1 - (2^32) - 2, the equivalent value must be written to apSnmpExtForceDump to cause a dump. When this object is set to (2^32) -1, a dump may be caused with any write value to apSnmpExtReloadSet. For security purposes this object always returns 0 on read.') apSnmpExtForceDumpSlot = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 14), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtForceDumpSlot.setStatus('current') if mibBuilder.loadTexts: apSnmpExtForceDumpSlot.setDescription('This object provides SNMP based dumping capabilities on the CS800. This is the slot number of the module to force to dump and then reload. On the cs100 this object is not used. For security purposes this object always returns a 0.') apSnmpExtForceDumpSubSlot = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 15), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtForceDumpSubSlot.setStatus('current') if mibBuilder.loadTexts: apSnmpExtForceDumpSubSlot.setDescription('This object provides SNMP based dumping capabilities on the CS800. This is the sub-slot number of the module to force to dump and then reload. On the cs100 this object is not used. For security purposes this object always returns a 0.') apSnmpExtForceDump = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 16), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtForceDump.setStatus('current') if mibBuilder.loadTexts: apSnmpExtForceDump.setDescription('This object provides SNMP based dumping capabilities. Setting this value to non-zero will force a dump and reload the unit. On a cs800 the apSnmpExtForceDumpSlot and apSnmapExtForceDumpSubSlot objects must be set to valid values or the setting of this object is ignored. For security purposes this object always returns a 0. The required set value to effect a reboot is explained in apSnmpExtForceDumpConfigVal.') apSnmpExtDosSynTraps = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 17), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("disable", 0), ("enable", 1))).clone('disable')).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtDosSynTraps.setStatus('current') if mibBuilder.loadTexts: apSnmpExtDosSynTraps.setDescription('This object controls the generation of ArrowPoint enterprise traps conincident with Denial of Service (DOS) SYN attacks. See the trap definition in the flowMgrExt.mib name apFlowMgrExtDosSynTrap.') apSnmpExtDosLandTraps = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 18), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("disable", 0), ("enable", 1))).clone('disable')).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtDosLandTraps.setStatus('current') if mibBuilder.loadTexts: apSnmpExtDosLandTraps.setDescription('This object controls the generation of ArrowPoint enterprise traps conincident with Denial of Service (DOS) LAND attacks. See the trap definition in the flowMgrExt.mib name apFlowMgrExtDosLandTrap.') apSnmpExtDosIllegalTraps = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 19), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("disable", 0), ("enable", 1))).clone('disable')).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtDosIllegalTraps.setStatus('current') if mibBuilder.loadTexts: apSnmpExtDosIllegalTraps.setDescription('This object controls the generation of ArrowPoint enterprise traps conincident with Denial of Service (DOS) Illegal packet format attacks. See the trap definition in the flowMgrExt.mib name apFlowMgrExtDosIllegalTrap.') apSnmpExtDosPingTraps = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 20), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("disable", 0), ("enable", 1))).clone('disable')).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtDosPingTraps.setStatus('obsolete') if mibBuilder.loadTexts: apSnmpExtDosPingTraps.setDescription('This object controls the generation of ArrowPoint enterprise traps conincident with Denial of Service (DOS) Ping of Death attacks. See the trap definition in the flowMgrExt.mib name apFlowMgrExtDosPingTrap.') apSnmpExtDosSmurfTraps = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 21), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("disable", 0), ("enable", 1))).clone('disable')).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtDosSmurfTraps.setStatus('current') if mibBuilder.loadTexts: apSnmpExtDosSmurfTraps.setDescription('This object controls the generation of ArrowPoint enterprise traps conincident with Denial of Service (DOS) Smurf attacks. See the trap definition in the flowMgrExt.mib name apFlowMgrExtDosSmurfTrap.') apSnmpExtDosSynTrapThreshold = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 22), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535)).clone(10)).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtDosSynTrapThreshold.setStatus('current') if mibBuilder.loadTexts: apSnmpExtDosSynTrapThreshold.setDescription('This object controls the generation of ArrowPoint enterprise traps conincident with Denial of Service (DOS) SYN attacks. It is the threshold over which a trap will be generated.') apSnmpExtDosLandTrapThreshold = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 23), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535)).clone(1)).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtDosLandTrapThreshold.setStatus('current') if mibBuilder.loadTexts: apSnmpExtDosLandTrapThreshold.setDescription('This object controls the generation of ArrowPoint enterprise traps conincident with Denial of Service (DOS) LAND attacks. It is the threshold over which a trap will be generated.') apSnmpExtDosIllegalTrapThreshold = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 24), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535)).clone(1)).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtDosIllegalTrapThreshold.setStatus('current') if mibBuilder.loadTexts: apSnmpExtDosIllegalTrapThreshold.setDescription('This object controls the generation of ArrowPoint enterprise traps conincident with Denial of Service (DOS) attacks due to invalid packets. It is the threshold over which a trap will be generated.') apSnmpExtDosPingTrapThreshold = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 25), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535)).clone(30)).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtDosPingTrapThreshold.setStatus('obsolete') if mibBuilder.loadTexts: apSnmpExtDosPingTrapThreshold.setDescription('This object controls the generation of ArrowPoint enterprise traps conincident with Denial of Service (DOS) Ping of Death attacks. It is the threshold over which a trap will be generated.') apSnmpExtDosSmurfTrapThreshold = MibScalar((1, 3, 6, 1, 4, 1, 2467, 1, 22, 26), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535)).clone(1)).setMaxAccess("readwrite") if mibBuilder.loadTexts: apSnmpExtDosSmurfTrapThreshold.setStatus('current') if mibBuilder.loadTexts: apSnmpExtDosSmurfTrapThreshold.setDescription('This object controls the generation of ArrowPoint enterprise traps conincident with Denial of Service (DOS) Smurf attacks. It is the threshold over which a trap will be generated.') apSnmpExtReloadTrap = NotificationType((1, 3, 6, 1, 4, 1, 2467, 1, 22) + (0,1)) if mibBuilder.loadTexts: apSnmpExtReloadTrap.setDescription('This trap is generated when a reboot of the system is performed.') mibBuilder.exportSymbols("SNMPEXT-MIB", apSnmpExtLoginFailTraps=apSnmpExtLoginFailTraps, apSnmpExtTrapEntry=apSnmpExtTrapEntry, apSnmpExtDosSynTraps=apSnmpExtDosSynTraps, apSnmpExtForceDump=apSnmpExtForceDump, apSnmpExtDosSynTrapThreshold=apSnmpExtDosSynTrapThreshold, apSnmpExtDosLandTrapThreshold=apSnmpExtDosLandTrapThreshold, apSnmpExtReloadSet=apSnmpExtReloadSet, apSnmpExtTrapTable=apSnmpExtTrapTable, apSnmpExtReloadConfigVal=apSnmpExtReloadConfigVal, apSnmpExtForceDumpConfigVal=apSnmpExtForceDumpConfigVal, apSnmpExtForceDumpSubSlot=apSnmpExtForceDumpSubSlot, apSnmpExtDosPingTraps=apSnmpExtDosPingTraps, apSnmpExtReloadTrap=apSnmpExtReloadTrap, apSnmpExtDosSmurfTrapThreshold=apSnmpExtDosSmurfTrapThreshold, apSnmpExtCommunityType=apSnmpExtCommunityType, apSnmpExtDosPingTrapThreshold=apSnmpExtDosPingTrapThreshold, apSnmpExtMib=apSnmpExtMib, apSnmpExtCommunityEntry=apSnmpExtCommunityEntry, apSnmpExtLastTrap=apSnmpExtLastTrap, apSnmpExtDosIllegalTrapThreshold=apSnmpExtDosIllegalTrapThreshold, apSnmpExtDosLandTraps=apSnmpExtDosLandTraps, apSnmpExtTrapStatus=apSnmpExtTrapStatus, apSnmpExtReloadTraps=apSnmpExtReloadTraps, apSnmpExtDosIllegalTraps=apSnmpExtDosIllegalTraps, PYSNMP_MODULE_ID=apSnmpExtMib, apSnmpExtCommunityName=apSnmpExtCommunityName, apSnmpExtTrapCommunity=apSnmpExtTrapCommunity, apSnmpExtTrapGeneric=apSnmpExtTrapGeneric, apSnmpExtForceDumpSlot=apSnmpExtForceDumpSlot, apSnmpExtTrapEnterprise=apSnmpExtTrapEnterprise, apSnmpExtDosSmurfTraps=apSnmpExtDosSmurfTraps, apSnmpExtCommunityTable=apSnmpExtCommunityTable, apSnmpExtRedundancyTraps=apSnmpExtRedundancyTraps, apSnmpExtTrapIp=apSnmpExtTrapIp, apSnmpExtCommunityStatus=apSnmpExtCommunityStatus, apSnmpExtServiceTraps=apSnmpExtServiceTraps)
163.811475
1,725
0.805154
4a26cb76736439c5177b862367a683486d414ac1
3,425
py
Python
examples/submission/fleur_specific_tests/test_CuBulk_fleur.py
broeder-j/aiida_fleur_plugin
cca54b194f4b217abb69aaa1fca0db52c6c830c3
[ "MIT" ]
1
2017-02-07T12:31:38.000Z
2017-02-07T12:31:38.000Z
examples/submission/fleur_specific_tests/test_CuBulk_fleur.py
broeder-j/aiida_fleur_plugin
cca54b194f4b217abb69aaa1fca0db52c6c830c3
[ "MIT" ]
16
2017-04-03T11:42:50.000Z
2017-05-18T16:25:39.000Z
examples/submission/fleur_specific_tests/test_CuBulk_fleur.py
broeder-j/aiida_fleur_plugin
cca54b194f4b217abb69aaa1fca0db52c6c830c3
[ "MIT" ]
null
null
null
#!/usr/bin/env runaiida # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import print_function __copyright__ = (u'Copyright (c), 2016, Forschungszentrum Jülich GmbH, ' 'IAS-1/PGI-1, Germany. All rights reserved.') __license__ = 'MIT license, see LICENSE.txt file' __version__ = '0.27' __contributors__ = 'Jens Broeder' from aiida import load_dbenv, is_dbenv_loaded if not is_dbenv_loaded(): load_dbenv() import sys import os from aiida.common.example_helpers import test_and_get_code from aiida.plugins import DataFactory # If set to True, will ask AiiDA to run in serial mode (i.e., AiiDA will not # invoke the mpirun command in the submission script) run_in_serial_mode = True #False ################################################################ ParameterData = DataFactory('parameter') StructureData = DataFactory('structure') FleurinpData = DataFactory('fleur.fleurinp') try: dontsend = sys.argv[1] if dontsend == '--dont-send': submit_test = True elif dontsend == '--send': submit_test = False else: raise IndexError except IndexError: print(('The first parameter can only be either ' '--send or --dont-send'), file=sys.stderr) sys.exit(1) try: codename = sys.argv[2] except IndexError: codename = None queue = None # queue = "th1_small" settings = None ##### code = test_and_get_code(codename, expected_code_type='fleur_inp.fleur') #TODO: how to make smart path? # get where tests folder is, then relative path inpxmlfile = '/usr/users/iff_th1/broeder/aiida/github/aiida_fleur_plugin/tests/inp_xml_files/CuBulkXML/files/inp.xml' enpara = '/usr/users/iff_th1/broeder/aiida/github/aiida_fleur_plugin/tests/inp_xml_files/CuBulkXML/files/enpara' fleurinp = FleurinpData(files=[inpxmlfile, enpara]) print(fleurinp.files) ## For remote codes, it is not necessary to manually set the computer, ## since it is set automatically by new_calc #computer = code.get_remote_computer() #calc = code.new_calc(computer=computer) calc = code.new_calc() calc.label = 'Cu Bulk Fleur test' calc.description = ('Simple test of Fleur with XML input with one step:' '1.Generate a starting density and run 1 iteration ' 'and compare fermi-energy & total energy') calc.set_max_wallclock_seconds(5 * 60) # 5 min # Valid only for Slurm and PBS (using default values for the # number_cpus_per_machine), change for SGE-like schedulers calc.set_resources({'num_machines': 1}) if run_in_serial_mode: calc.set_withmpi(False) ## Otherwise, to specify a given # of cpus per machine, uncomment the following: # calc.set_resources({"num_machines": 1, "num_mpiprocs_per_machine": 8}) #calc.set_custom_scheduler_commands("#SBATCH --account=ch3") if queue is not None: calc.set_queue_name(queue) calc.use_fleurinpdata(fleurinp) #calc.use_code(code) if settings is not None: calc.use_settings(settings) if submit_test: subfolder, script_filename = calc.submit_test() print(f"Test_submit for calculation (uuid='{calc.uuid}')") print(f'Submit file in {os.path.join(os.path.relpath(subfolder.abspath), script_filename)}') else: calc.store_all() print(f"created calculation; calc=Calculation(uuid='{calc.uuid}') # ID={calc.dbnode.pk}") calc.submit() print(f"submitted calculation; calc=Calculation(uuid='{calc.uuid}') # ID={calc.dbnode.pk}")
33.252427
117
0.714161
4a26cbf032c98380663861230020455fdc8e0ad1
950
py
Python
server/app/utils/misc.py
SheetWithoutShit/sws-server
16b7154188f08b33f84d88caea217673cf989b2b
[ "MIT" ]
null
null
null
server/app/utils/misc.py
SheetWithoutShit/sws-server
16b7154188f08b33f84d88caea217673cf989b2b
[ "MIT" ]
57
2020-08-01T14:58:59.000Z
2020-09-20T13:27:16.000Z
server/app/utils/misc.py
SpentlessInc/spentless-server
16b7154188f08b33f84d88caea217673cf989b2b
[ "MIT" ]
null
null
null
"""This module provides misc functions.""" import asyncio import logging from app.utils.errors import RetryError LOGGER = logging.getLogger(__name__) def retry(times, retry_interval=2): """Decorator that provides backoff retries.""" def func_wrapper(func): """Function wrapper.""" async def wrapper(*args, **kwargs): """The main functionality of backoff retries leaves here.""" for time in range(times): try: return await func(*args, **kwargs) except RetryError: await asyncio.sleep(retry_interval ** time) LOGGER.error( "%s(args: %s, kwargs: %s) ... Retrying, attempt #%s.", func.__name__, args, kwargs, time + 1 ) return wrapper return func_wrapper
28.787879
78
0.510526
4a26cd0ed194730ea747f0ef6622227fe6c84ff9
2,354
py
Python
lnt/testing/profile/profilev1impl.py
llvm/lnt
77e0a25f996a5363e23f701c0d995525a5c6484a
[ "Apache-2.0" ]
null
null
null
lnt/testing/profile/profilev1impl.py
llvm/lnt
77e0a25f996a5363e23f701c0d995525a5c6484a
[ "Apache-2.0" ]
null
null
null
lnt/testing/profile/profilev1impl.py
llvm/lnt
77e0a25f996a5363e23f701c0d995525a5c6484a
[ "Apache-2.0" ]
null
null
null
from lnt.testing.profile.profile import ProfileImpl import pickle import zlib class ProfileV1(ProfileImpl): """ ProfileV1 files not clever in any way. They are simple Python objects with the profile data layed out in the most obvious way for production/consumption that are then pickled and compressed. They are expected to be created by simply storing into the ``self.data`` member. The ``self.data`` member has this format:: { counters: {'cycles': 12345.0, 'branch-misses': 200.0}, # absolute values. disassembly-format: 'raw', functions: { name: { counters: {'cycles': 45.0, ...}, # Note counters are now percentages. data: [ [463464, {'cycles': 23.0, ...}, '\tadd r0, r0, r1'}], ... ] } } } """ def __init__(self, data): """ Create from a raw data dict. data has the format given in the class docstring. """ self.data = data @staticmethod def upgrade(old): raise RuntimeError("Cannot upgrade to version 1!") @staticmethod def checkFile(fn): # "zlib compressed data" - 78 9C with open(fn, 'rb') as f: return f.read(2) == b'\x78\x9c' @staticmethod def deserialize(fobj): o = zlib.decompress(fobj.read()) data = pickle.loads(o) return ProfileV1(data) def serialize(self, fname=None): obj = pickle.dumps(self.data) compressed_obj = zlib.compress(obj) if fname is None: return bytes(compressed_obj) else: with open(fname, 'wb') as fd: fd.write(compressed_obj) def getVersion(self): return 1 def getTopLevelCounters(self): return self.data['counters'] def getDisassemblyFormat(self): if 'disassembly-format' in self.data: return self.data['disassembly-format'] return 'raw' def getFunctions(self): d = {} for fn in self.data['functions']: f = self.data['functions'][fn] d[fn] = dict(counters=f.get('counters', {}), length=len(f.get('data', []))) return d def getCodeForFunction(self, fname): for inst_info in self.data['functions'][fname].get('data', []): yield (inst_info[0], inst_info[1], inst_info[2])
27.057471
77
0.584537
4a26cd7230b52b52759159c2aeac729e2261aebf
2,674
py
Python
tohu/v4/set_special_methods.py
maxalbert/tohu
3adf0c58b13ef1e1d716d7d613484d2adc58fb60
[ "MIT" ]
1
2019-03-07T19:58:45.000Z
2019-03-07T19:58:45.000Z
tohu/v4/set_special_methods.py
maxalbert/tohu
3adf0c58b13ef1e1d716d7d613484d2adc58fb60
[ "MIT" ]
9
2017-10-04T15:08:53.000Z
2021-02-02T21:51:41.000Z
tohu/v4/set_special_methods.py
maxalbert/tohu
3adf0c58b13ef1e1d716d7d613484d2adc58fb60
[ "MIT" ]
null
null
null
""" This module is not meant to be imported directly. Its purpose is to patch the TohuBaseGenerator class so that its special methods __add__, __mul__ etc. support other generators as arguments. """ from operator import add, mul, gt, ge, lt, le, eq from .base import TohuBaseGenerator from .primitive_generators import GeoJSONGeolocation, SelectOnePrimitive, Timestamp, as_tohu_generator from .derived_generators import Apply, GetAttribute, SelectOneDerived from .utils import identity __all__ = [] def add_generators(self, other): return Apply(add, self, as_tohu_generator(other)) def radd_generators(self, other): return Apply(add, as_tohu_generator(other), self) def mul_generators(self, other): return Apply(mul, self, as_tohu_generator(other)) def rmul_generators(self, other): return Apply(mul, as_tohu_generator(other), self) def eq_generators(self, other): return Apply(eq, self, as_tohu_generator(other)) def lt_generators(self, other): return Apply(lt, self, as_tohu_generator(other)) def le_generators(self, other): return Apply(le, self, as_tohu_generator(other)) def gt_generators(self, other): return Apply(gt, self, as_tohu_generator(other)) def ge_generators(self, other): return Apply(ge, self, as_tohu_generator(other)) # Patch TohuBaseGenerator with the new methods TohuBaseGenerator.__add__ = add_generators TohuBaseGenerator.__radd__ = radd_generators TohuBaseGenerator.__mul__ = mul_generators TohuBaseGenerator.__rmul__ = rmul_generators TohuBaseGenerator.__eq__ = eq_generators TohuBaseGenerator.__lt__ = lt_generators TohuBaseGenerator.__le__ = le_generators TohuBaseGenerator.__gt__ = gt_generators TohuBaseGenerator.__ge__ = ge_generators def getattribute_generators(self, name): if name == '__isabstractmethod__': # Special case which is needed because TohuUltraBaseMeta is # derived from ABCMeta and it uses '__isabstractmethod__' # to check for abstract methods. # # TODO: This check should probably be moved to TohuUltraBaseGenerator somewhere. return if name == '_ipython_canary_method_should_not_exist_': # Special case which is needed because IPython uses this attribute internally. raise NotImplementedError("Special case needed for IPython") return GetAttribute(self, name) SelectOnePrimitive.__getattr__ = getattribute_generators SelectOneDerived.__getattr__ = getattribute_generators def split_geolocation(self): attributes = ['lon', 'lat'] + self.include_attributes return tuple(GetAttribute(self, attr_name) for attr_name in attributes) GeoJSONGeolocation.split = split_geolocation
29.384615
102
0.775243
4a26cf0eadec9d8cb44f64b3871c597d4ac9a175
15,865
py
Python
modules/flow0d/flow0d.py
marchirschvogel/ambit
9c21852d2c7c562b7accdd34025fc6b829eb1d3e
[ "BSD-4-Clause" ]
3
2021-03-22T14:17:09.000Z
2021-05-03T15:24:09.000Z
modules/flow0d/flow0d.py
marchirschvogel/ambit
9c21852d2c7c562b7accdd34025fc6b829eb1d3e
[ "BSD-4-Clause" ]
null
null
null
modules/flow0d/flow0d.py
marchirschvogel/ambit
9c21852d2c7c562b7accdd34025fc6b829eb1d3e
[ "BSD-4-Clause" ]
2
2021-03-29T10:52:09.000Z
2021-11-26T15:56:38.000Z
#!/usr/bin/env python3 # Copyright (c) 2019-2022, Dr.-Ing. Marc Hirschvogel # All rights reserved. # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import time, sys import numpy as np from petsc4py import PETSc import timeintegration import utilities import solver_nonlin from base import problem_base # framework of 0D flow models, relating pressure p (and its derivative) to fluxes q class Flow0DProblem(problem_base): def __init__(self, io_params, time_params, model_params, time_curves, coupling_params={}, comm=None): problem_base.__init__(self, io_params, time_params, comm) self.problem_physics = 'flow0d' self.simname = io_params['simname'] self.time_params = time_params # only relevant to syspul* models try: self.chamber_models = model_params['chamber_models'] if 'ao' not in self.chamber_models.keys(): self.chamber_models['ao'] = {'type' : '0D_rigid'} # add aortic root model except: self.chamber_models = {} try: self.coronary_model = model_params['coronary_model'] except: self.coronary_model = None try: self.excitation_curve = model_params['excitation_curve'] except: self.excitation_curve = None try: initial_file = time_params['initial_file'] except: initial_file = '' # could use extra write frequency setting for 0D model (i.e. for coupled problem) try: self.write_results_every_0D = io_params['write_results_every_0D'] except: self.write_results_every_0D = io_params['write_results_every'] # for restart try: self.write_restart_every = io_params['write_restart_every'] except: self.write_restart_every = -1 # could use extra output path setting for 0D model (i.e. for coupled problem) try: self.output_path_0D = io_params['output_path_0D'] except: self.output_path_0D = io_params['output_path'] try: valvelaws = model_params['valvelaws'] except: valvelaws = {'av' : ['pwlin_pres',0], 'mv' : ['pwlin_pres',0], 'pv' : ['pwlin_pres',0], 'tv' : ['pwlin_pres',0]} try: self.cq = coupling_params['coupling_quantity'] except: self.cq = ['volume'] try: self.vq = coupling_params['variable_quantity'] except: self.vq = ['pressure'] try: self.eps_periodic = time_params['eps_periodic'] except: self.eps_periodic = 1.0e-20 try: self.periodic_checktype = time_params['periodic_checktype'] except: self.periodic_checktype = 'allvar' try: self.prescribed_variables = model_params['prescribed_variables'] except: self.prescribed_variables = {} try: self.perturb_type = model_params['perturb_type'][0] except: self.perturb_type = None try: self.perturb_factor = model_params['perturb_type'][1] except: self.perturb_factor = 1. try: self.perturb_id = model_params['perturb_type'][2] except: self.perturb_id = -1 try: self.perturb_after_cylce = model_params['perturb_after_cylce'] except: self.perturb_after_cylce = -1 # definitely set to -1 if we don't have a perturb type if self.perturb_type is None: self.perturb_after_cylce = -1 self.have_induced_pert = False # initialize 0D model class if model_params['modeltype'] == '2elwindkessel': from cardiovascular0D_2elwindkessel import cardiovascular0D2elwindkessel self.cardvasc0D = cardiovascular0D2elwindkessel(model_params['parameters'], self.cq, self.vq, comm=self.comm) elif model_params['modeltype'] == '4elwindkesselLsZ': from cardiovascular0D_4elwindkesselLsZ import cardiovascular0D4elwindkesselLsZ self.cardvasc0D = cardiovascular0D4elwindkesselLsZ(model_params['parameters'], self.cq, self.vq, comm=self.comm) elif model_params['modeltype'] == '4elwindkesselLpZ': from cardiovascular0D_4elwindkesselLpZ import cardiovascular0D4elwindkesselLpZ self.cardvasc0D = cardiovascular0D4elwindkesselLpZ(model_params['parameters'], self.cq, self.vq, comm=self.comm) elif model_params['modeltype'] == 'syspul': from cardiovascular0D_syspul import cardiovascular0Dsyspul self.cardvasc0D = cardiovascular0Dsyspul(model_params['parameters'], self.chamber_models, self.coronary_model, self.cq, self.vq, valvelaws=valvelaws, comm=self.comm) elif model_params['modeltype'] == 'syspulcap': from cardiovascular0D_syspulcap import cardiovascular0Dsyspulcap self.cardvasc0D = cardiovascular0Dsyspulcap(model_params['parameters'], self.chamber_models, self.coronary_model, self.cq, self.vq, valvelaws=valvelaws, comm=self.comm) elif model_params['modeltype'] == 'syspulcapcor': from cardiovascular0D_syspulcap import cardiovascular0Dsyspulcapcor self.cardvasc0D = cardiovascular0Dsyspulcapcor(model_params['parameters'], self.chamber_models, self.coronary_model, self.cq, self.vq, valvelaws=valvelaws, comm=self.comm) elif model_params['modeltype'] == 'syspulcaprespir': from cardiovascular0D_syspulcaprespir import cardiovascular0Dsyspulcaprespir self.cardvasc0D = cardiovascular0Dsyspulcaprespir(model_params['parameters'], self.chamber_models, self.coronary_model, self.cq, self.vq, valvelaws=valvelaws, comm=self.comm) else: raise NameError("Unknown 0D modeltype!") # vectors and matrices self.dK = PETSc.Mat().createAIJ(size=(self.cardvasc0D.numdof,self.cardvasc0D.numdof), bsize=None, nnz=None, csr=None, comm=self.comm) self.dK.setUp() self.K = PETSc.Mat().createAIJ(size=(self.cardvasc0D.numdof,self.cardvasc0D.numdof), bsize=None, nnz=None, csr=None, comm=self.comm) self.K.setUp() self.s, self.s_old, self.s_mid = self.K.createVecLeft(), self.K.createVecLeft(), self.K.createVecLeft() self.sTc, self.sTc_old = self.K.createVecLeft(), self.K.createVecLeft() self.df, self.df_old = self.K.createVecLeft(), self.K.createVecLeft() self.f, self.f_old = self.K.createVecLeft(), self.K.createVecLeft() self.aux, self.aux_old, self.aux_mid = np.zeros(self.cardvasc0D.numdof), np.zeros(self.cardvasc0D.numdof), np.zeros(self.cardvasc0D.numdof) self.s_set = self.K.createVecLeft() # set point for multisale analysis self.c, self.y = [], [] # initialize flow0d time-integration class self.ti = timeintegration.timeintegration_flow0d(time_params, time_curves, self.t_init, comm=self.comm) if initial_file: initialconditions = self.cardvasc0D.set_initial_from_file(initial_file) else: initialconditions = time_params['initial_conditions'] self.cardvasc0D.initialize(self.s, initialconditions) self.cardvasc0D.initialize(self.s_old, initialconditions) self.cardvasc0D.initialize(self.sTc_old, initialconditions) self.theta_ost = time_params['theta_ost'] self.odemodel = self.cardvasc0D def assemble_residual_stiffness(self): K = PETSc.Mat().createAIJ(size=(self.cardvasc0D.numdof,self.cardvasc0D.numdof), bsize=None, nnz=None, csr=None, comm=self.comm) K.setUp() # 0D rhs vector: r = (df - df_old)/dt + theta * f + (1-theta) * f_old r = K.createVecLeft() r.axpy(1./self.dt, self.df) r.axpy(-1./self.dt, self.df_old) r.axpy(self.theta_ost, self.f) r.axpy(1.-self.theta_ost, self.f_old) self.dK.assemble() self.K.assemble() K.assemble() K.axpy(1./self.dt, self.dK) K.axpy(self.theta_ost, self.K) return r, K def writerestart(self, sname, N, ms=False): self.cardvasc0D.write_restart(self.output_path_0D, sname+'_s', N, self.s) self.cardvasc0D.write_restart(self.output_path_0D, sname+'_aux', N, self.aux) self.cardvasc0D.write_restart(self.output_path_0D, sname+'_sTc_old', N, self.sTc_old) if ms: self.cardvasc0D.write_restart(self.output_path_0D, sname+'_s_set', N, self.s_set) if self.cardvasc0D.T_cycl > 0: # write heart cycle info if self.comm.rank == 0: filename = self.output_path_0D+'/checkpoint_'+sname+'_cycledata_'+str(N)+'.txt' f = open(filename, 'wt') f.write('%i %.8f' % (self.ti.cycle[0],self.ti.cycleerror[0])) f.close() def readrestart(self, sname, rst, ms=False): self.cardvasc0D.read_restart(self.output_path_0D, sname+'_s', rst, self.s) self.cardvasc0D.read_restart(self.output_path_0D, sname+'_s', rst, self.s_old) self.cardvasc0D.read_restart(self.output_path_0D, sname+'_aux', rst, self.aux) self.cardvasc0D.read_restart(self.output_path_0D, sname+'_aux', rst, self.aux_old) self.cardvasc0D.read_restart(self.output_path_0D, sname+'_sTc_old', rst, self.sTc_old) if ms: self.cardvasc0D.read_restart(self.output_path_0D, sname+'_s_set', rst, self.s_set) if self.cardvasc0D.T_cycl > 0: # read heart cycle info self.ti.cycle[0] = np.loadtxt(self.output_path_0D+'/checkpoint_'+sname+'_cycledata_'+str(rst)+'.txt', usecols=(0), dtype=int) self.ti.cycleerror[0] = np.loadtxt(self.output_path_0D+'/checkpoint_'+sname+'_cycledata_'+str(rst)+'.txt', usecols=(1), dtype=float) self.t_init -= (self.ti.cycle[0]-1) * self.cardvasc0D.T_cycl def evaluate_activation(self, t): # activation curves if bool(self.chamber_models): ci=0 for ch in ['lv','rv','la','ra']: if self.chamber_models[ch]['type']=='0D_elast': self.y[ci] = self.ti.timecurves(self.chamber_models[ch]['activation_curve'])(t) ci+=1 if self.chamber_models[ch]['type']=='0D_elast_prescr': self.y[ci] = self.ti.timecurves(self.chamber_models[ch]['elastance_curve'])(t) ci+=1 def induce_perturbation(self): if self.perturb_after_cylce > 0: # at least run through one healthy cycle if self.ti.cycle[0] > self.perturb_after_cylce: if self.comm.rank == 0: print(">>> Induced cardiovascular disease type: %s" % (self.perturb_type)) sys.stdout.flush() self.cardvasc0D.induce_perturbation(self.perturb_type, self.perturb_factor) self.have_induced_pert = True class Flow0DSolver(): def __init__(self, problem, solver_params): self.pb = problem self.solver_params = solver_params # initialize nonlinear solver class self.solnln = solver_nonlin.solver_nonlinear_ode(self.pb, self.solver_params) def solve_problem(self): start = time.time() # print header utilities.print_problem(self.pb.problem_type, self.pb.comm, self.pb.cardvasc0D.numdof) # read restart information if self.pb.restart_step > 0: self.pb.readrestart(self.pb.simname, self.pb.restart_step) self.pb.simname += '_r'+str(self.pb.restart_step) # evaluate old state if self.pb.excitation_curve is not None: self.pb.c = [] self.pb.c.append(self.pb.ti.timecurves(self.pb.excitation_curve)(self.pb.t_init)) if bool(self.pb.chamber_models): self.pb.y = [] for ch in ['lv','rv','la','ra']: if self.pb.chamber_models[ch]['type']=='0D_elast': self.pb.y.append(self.pb.ti.timecurves(self.pb.chamber_models[ch]['activation_curve'])(self.pb.t_init)) if self.pb.chamber_models[ch]['type']=='0D_elast_prescr': self.pb.y.append(self.pb.ti.timecurves(self.pb.chamber_models[ch]['elastance_curve'])(self.pb.t_init)) if self.pb.chamber_models[ch]['type']=='0D_prescr': self.pb.c.append(self.pb.ti.timecurves(self.pb.chamber_models[ch]['prescribed_curve'])(self.pb.t_init)) self.pb.cardvasc0D.evaluate(self.pb.s_old, self.pb.t_init, self.pb.df_old, self.pb.f_old, None, None, self.pb.c, self.pb.y, self.pb.aux_old) # flow 0d main time loop for N in range(self.pb.restart_step+1, self.pb.numstep_stop+1): wts = time.time() # current time t = N * self.pb.dt # offset time for multiple cardiac cycles t_off = (self.pb.ti.cycle[0]-1) * self.pb.cardvasc0D.T_cycl # zero if T_cycl variable is not specified # external volume/flux from time curve if self.pb.excitation_curve is not None: self.pb.c[0] = self.pb.ti.timecurves(self.pb.excitation_curve)(t-t_off) # activation curves self.pb.evaluate_activation(t-t_off) # solve self.solnln.newton(self.pb.s, t-t_off) # get midpoint dof values for post-processing (has to be called before update!) self.pb.cardvasc0D.midpoint_avg(self.pb.s, self.pb.s_old, self.pb.s_mid, self.pb.theta_ost), self.pb.cardvasc0D.midpoint_avg(self.pb.aux, self.pb.aux_old, self.pb.aux_mid, self.pb.theta_ost) # raw txt file output of 0D model quantities if self.pb.write_results_every_0D > 0 and N % self.pb.write_results_every_0D == 0: self.pb.cardvasc0D.write_output(self.pb.output_path_0D, t, self.pb.s_mid, self.pb.aux_mid, self.pb.simname) # update timestep self.pb.cardvasc0D.update(self.pb.s, self.pb.df, self.pb.f, self.pb.s_old, self.pb.df_old, self.pb.f_old, self.pb.aux, self.pb.aux_old) # print to screen self.pb.cardvasc0D.print_to_screen(self.pb.s_mid,self.pb.aux_mid) # solve time for time step wte = time.time() wt = wte - wts # print time step info to screen self.pb.ti.print_timestep(N, t, self.solnln.sepstring, self.pb.numstep, wt=wt) # check for periodicity in cardiac cycle and stop if reached (only for syspul* models - cycle counter gets updated here) is_periodic = self.pb.cardvasc0D.cycle_check(self.pb.s, self.pb.sTc, self.pb.sTc_old, t-t_off, self.pb.ti.cycle, self.pb.ti.cycleerror, self.pb.eps_periodic, check=self.pb.periodic_checktype, inioutpath=self.pb.output_path_0D, nm=self.pb.simname, induce_pert_after_cycl=self.pb.perturb_after_cylce) # induce some disease/perturbation for cardiac cycle (i.e. valve stenosis or leakage) if self.pb.perturb_type is not None and not self.pb.have_induced_pert: self.pb.induce_perturbation() # write 0D restart info - old and new quantities are the same at this stage (except cycle values sTc) if self.pb.write_restart_every > 0 and N % self.pb.write_restart_every == 0: self.pb.writerestart(self.pb.simname, N) if is_periodic: if self.pb.comm.rank == 0: print("Periodicity reached after %i heart cycles with cycle error %.4f! Finished. :-)" % (self.pb.ti.cycle[0]-1,self.pb.ti.cycleerror[0])) sys.stdout.flush() break if self.pb.comm.rank == 0: # only proc 0 should print this print('Time for computation: %.4f s (= %.2f min)' % ( time.time()-start, (time.time()-start)/60. )) sys.stdout.flush()
47.642643
310
0.645194
4a26cf16f44476d5a82c2d4f0ea0f567b46e241d
13,427
py
Python
lib/python3.8/site-packages/ansible_collections/community/postgresql/plugins/modules/postgresql_copy.py
cjsteel/python3-venv-ansible-2.10.5
c95395c4cae844dc66fddde9b4343966f4b2ecd5
[ "Apache-1.1" ]
null
null
null
lib/python3.8/site-packages/ansible_collections/community/postgresql/plugins/modules/postgresql_copy.py
cjsteel/python3-venv-ansible-2.10.5
c95395c4cae844dc66fddde9b4343966f4b2ecd5
[ "Apache-1.1" ]
null
null
null
lib/python3.8/site-packages/ansible_collections/community/postgresql/plugins/modules/postgresql_copy.py
cjsteel/python3-venv-ansible-2.10.5
c95395c4cae844dc66fddde9b4343966f4b2ecd5
[ "Apache-1.1" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: (c) 2019, Andrew Klychkov (@Andersson007) <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type DOCUMENTATION = r''' --- module: postgresql_copy short_description: Copy data between a file/program and a PostgreSQL table description: - Copy data between a file/program and a PostgreSQL table. options: copy_to: description: - Copy the contents of a table to a file. - Can also copy the results of a SELECT query. - Mutually exclusive with I(copy_from) and I(dst). type: path aliases: [ to ] copy_from: description: - Copy data from a file to a table (appending the data to whatever is in the table already). - Mutually exclusive with I(copy_to) and I(src). type: path aliases: [ from ] src: description: - Copy data from I(copy_from) to I(src=tablename). - Used with I(copy_to) only. type: str aliases: [ source ] dst: description: - Copy data to I(dst=tablename) from I(copy_from=/path/to/data.file). - Used with I(copy_from) only. type: str aliases: [ destination ] columns: description: - List of column names for the src/dst table to COPY FROM/TO. type: list elements: str aliases: [ column ] program: description: - Mark I(src)/I(dst) as a program. Data will be copied to/from a program. - See block Examples and PROGRAM arg description U(https://www.postgresql.org/docs/current/sql-copy.html). type: bool default: no options: description: - Options of COPY command. - See the full list of available options U(https://www.postgresql.org/docs/current/sql-copy.html). type: dict db: description: - Name of database to connect to. type: str aliases: [ login_db ] session_role: description: - Switch to session_role after connecting. The specified session_role must be a role that the current login_user is a member of. - Permissions checking for SQL commands is carried out as though the session_role were the one that had logged in originally. type: str trust_input: description: - If C(no), check whether values of parameters are potentially dangerous. - It makes sense to use C(no) only when SQL injections are possible. type: bool default: yes version_added: '0.2.0' notes: - Supports PostgreSQL version 9.4+. - COPY command is only allowed to database superusers. - if I(check_mode=yes), we just check the src/dst table availability and return the COPY query that actually has not been executed. - If i(check_mode=yes) and the source has been passed as SQL, the module will execute it and rolled the transaction back but pay attention it can affect database performance (e.g., if SQL collects a lot of data). seealso: - name: COPY command reference description: Complete reference of the COPY command documentation. link: https://www.postgresql.org/docs/current/sql-copy.html author: - Andrew Klychkov (@Andersson007) extends_documentation_fragment: - community.postgresql.postgres ''' EXAMPLES = r''' - name: Copy text TAB-separated data from file /tmp/data.txt to acme table community.postgresql.postgresql_copy: copy_from: /tmp/data.txt dst: acme - name: Copy CSV (comma-separated) data from file /tmp/data.csv to columns id, name of table acme community.postgresql.postgresql_copy: copy_from: /tmp/data.csv dst: acme columns: id,name options: format: csv - name: > Copy text vertical-bar-separated data from file /tmp/data.txt to bar table. The NULL values are specified as N community.postgresql.postgresql_copy: copy_from: /tmp/data.csv dst: bar options: delimiter: '|' null: 'N' - name: Copy data from acme table to file /tmp/data.txt in text format, TAB-separated community.postgresql.postgresql_copy: src: acme copy_to: /tmp/data.txt - name: Copy data from SELECT query to/tmp/data.csv in CSV format community.postgresql.postgresql_copy: src: 'SELECT * FROM acme' copy_to: /tmp/data.csv options: format: csv - name: Copy CSV data from my_table to gzip community.postgresql.postgresql_copy: src: my_table copy_to: 'gzip > /tmp/data.csv.gz' program: yes options: format: csv - name: > Copy data from columns id, name of table bar to /tmp/data.txt. Output format is text, vertical-bar-separated, NULL as N community.postgresql.postgresql_copy: src: bar columns: - id - name copy_to: /tmp/data.csv options: delimiter: '|' null: 'N' ''' RETURN = r''' queries: description: List of executed queries. returned: always type: str sample: [ "COPY test_table FROM '/tmp/data_file.txt' (FORMAT csv, DELIMITER ',', NULL 'NULL')" ] src: description: Data source. returned: always type: str sample: "mytable" dst: description: Data destination. returned: always type: str sample: "/tmp/data.csv" ''' try: from psycopg2.extras import DictCursor except ImportError: # psycopg2 is checked by connect_to_db() # from ansible.module_utils.postgres pass from ansible.module_utils.basic import AnsibleModule from ansible_collections.community.postgresql.plugins.module_utils.database import ( check_input, pg_quote_identifier, ) from ansible_collections.community.postgresql.plugins.module_utils.postgres import ( connect_to_db, exec_sql, get_conn_params, postgres_common_argument_spec, ) from ansible.module_utils.six import iteritems class PgCopyData(object): """Implements behavior of COPY FROM, COPY TO PostgreSQL command. Arguments: module (AnsibleModule) -- object of AnsibleModule class cursor (cursor) -- cursor object of psycopg2 library Attributes: module (AnsibleModule) -- object of AnsibleModule class cursor (cursor) -- cursor object of psycopg2 library changed (bool) -- something was changed after execution or not executed_queries (list) -- executed queries dst (str) -- data destination table (when copy_from) src (str) -- data source table (when copy_to) opt_need_quotes (tuple) -- values of these options must be passed to SQL in quotes """ def __init__(self, module, cursor): self.module = module self.cursor = cursor self.executed_queries = [] self.changed = False self.dst = '' self.src = '' self.opt_need_quotes = ( 'DELIMITER', 'NULL', 'QUOTE', 'ESCAPE', 'ENCODING', ) def copy_from(self): """Implements COPY FROM command behavior.""" self.src = self.module.params['copy_from'] self.dst = self.module.params['dst'] query_fragments = ['COPY %s' % pg_quote_identifier(self.dst, 'table')] if self.module.params.get('columns'): query_fragments.append('(%s)' % ','.join(self.module.params['columns'])) query_fragments.append('FROM') if self.module.params.get('program'): query_fragments.append('PROGRAM') query_fragments.append("'%s'" % self.src) if self.module.params.get('options'): query_fragments.append(self.__transform_options()) # Note: check mode is implemented here: if self.module.check_mode: self.changed = self.__check_table(self.dst) if self.changed: self.executed_queries.append(' '.join(query_fragments)) else: if exec_sql(self, ' '.join(query_fragments), return_bool=True): self.changed = True def copy_to(self): """Implements COPY TO command behavior.""" self.src = self.module.params['src'] self.dst = self.module.params['copy_to'] if 'SELECT ' in self.src.upper(): # If src is SQL SELECT statement: query_fragments = ['COPY (%s)' % self.src] else: # If src is a table: query_fragments = ['COPY %s' % pg_quote_identifier(self.src, 'table')] if self.module.params.get('columns'): query_fragments.append('(%s)' % ','.join(self.module.params['columns'])) query_fragments.append('TO') if self.module.params.get('program'): query_fragments.append('PROGRAM') query_fragments.append("'%s'" % self.dst) if self.module.params.get('options'): query_fragments.append(self.__transform_options()) # Note: check mode is implemented here: if self.module.check_mode: self.changed = self.__check_table(self.src) if self.changed: self.executed_queries.append(' '.join(query_fragments)) else: if exec_sql(self, ' '.join(query_fragments), return_bool=True): self.changed = True def __transform_options(self): """Transform options dict into a suitable string.""" for (key, val) in iteritems(self.module.params['options']): if key.upper() in self.opt_need_quotes: self.module.params['options'][key] = "'%s'" % val opt = ['%s %s' % (key, val) for (key, val) in iteritems(self.module.params['options'])] return '(%s)' % ', '.join(opt) def __check_table(self, table): """Check table or SQL in transaction mode for check_mode. Return True if it is OK. Arguments: table (str) - Table name that needs to be checked. It can be SQL SELECT statement that was passed instead of the table name. """ if 'SELECT ' in table.upper(): # In this case table is actually SQL SELECT statement. # If SQL fails, it's handled by exec_sql(): exec_sql(self, table, add_to_executed=False) # If exec_sql was passed, it means all is OK: return True exec_sql(self, 'SELECT 1 FROM %s' % pg_quote_identifier(table, 'table'), add_to_executed=False) # If SQL was executed successfully: return True # =========================================== # Module execution. # def main(): argument_spec = postgres_common_argument_spec() argument_spec.update( copy_to=dict(type='path', aliases=['to']), copy_from=dict(type='path', aliases=['from']), src=dict(type='str', aliases=['source']), dst=dict(type='str', aliases=['destination']), columns=dict(type='list', elements='str', aliases=['column']), options=dict(type='dict'), program=dict(type='bool', default=False), db=dict(type='str', aliases=['login_db']), session_role=dict(type='str'), trust_input=dict(type='bool', default=True), ) module = AnsibleModule( argument_spec=argument_spec, supports_check_mode=True, mutually_exclusive=[ ['copy_from', 'copy_to'], ['copy_from', 'src'], ['copy_to', 'dst'], ] ) if not module.params['trust_input']: # Check input for potentially dangerous elements: opt_list = None if module.params['options']: opt_list = ['%s %s' % (key, val) for (key, val) in iteritems(module.params['options'])] check_input(module, module.params['copy_to'], module.params['copy_from'], module.params['src'], module.params['dst'], opt_list, module.params['columns'], module.params['session_role']) # Note: we don't need to check mutually exclusive params here, because they are # checked automatically by AnsibleModule (mutually_exclusive=[] list above). if module.params.get('copy_from') and not module.params.get('dst'): module.fail_json(msg='dst param is necessary with copy_from') elif module.params.get('copy_to') and not module.params.get('src'): module.fail_json(msg='src param is necessary with copy_to') # Connect to DB and make cursor object: conn_params = get_conn_params(module, module.params) db_connection = connect_to_db(module, conn_params, autocommit=False) cursor = db_connection.cursor(cursor_factory=DictCursor) ############## # Create the object and do main job: data = PgCopyData(module, cursor) # Note: parameters like dst, src, etc. are got # from module object into data object of PgCopyData class. # Therefore not need to pass args to the methods below. # Note: check mode is implemented inside the methods below # by checking passed module.check_mode arg. if module.params.get('copy_to'): data.copy_to() elif module.params.get('copy_from'): data.copy_from() # Finish: if module.check_mode: db_connection.rollback() else: db_connection.commit() cursor.close() db_connection.close() # Return some values: module.exit_json( changed=data.changed, queries=data.executed_queries, src=data.src, dst=data.dst, ) if __name__ == '__main__': main()
31.893112
110
0.639011
4a26d0c8a60ccadafa610a32e97a2d93b6bed596
2,918
py
Python
build_word2vec_model_v020.py
espoirMur/balobi_nini
b68b9af4c84ec0f5b38ae8ba52d5f0d32b41ead3
[ "Unlicense" ]
1
2020-09-30T08:03:10.000Z
2020-09-30T08:03:10.000Z
build_word2vec_model_v020.py
espoirMur/balobi_nini
b68b9af4c84ec0f5b38ae8ba52d5f0d32b41ead3
[ "Unlicense" ]
22
2020-09-23T14:05:33.000Z
2021-12-04T22:40:41.000Z
build_word2vec_model_v020.py
espoirMur/balobi_nini
b68b9af4c84ec0f5b38ae8ba52d5f0d32b41ead3
[ "Unlicense" ]
1
2021-07-29T10:38:13.000Z
2021-07-29T10:38:13.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Filename: my-word-to-vec.py # Author: #cf # Version 0.2.0 (2016-10-08) from pathlib import Path """ Function to build word2vec models from text files using gensim. https://rare-technologies.com/word2vec-tutorial/ """ ################## # Parameters ################## WorkDir = Path.cwd() TextDir = WorkDir.joinpath("data", "frwiki") ModelFile = WorkDir.joinpath("models", "frwiki.gensim") Size = 500 # dimensions of the model ################## # Imports ################## import os import re import gensim import logging print("gensim", gensim.__version__) ################## # Functions ################## def extract_sentences(TextPath): """ Turns a collection of plain text files into a list of lists of word tokens. """ print("--extract_sentences") Sentences = [] for File in os.listdir(TextDir): with open(File, "r") as InFile: Text = InFile.read() Text = re.sub("\n", " ", Text) Text = re.sub("--", "", Text) Text = re.sub("\.\.\.", ".", Text) Text = Text.lower() SentencesOne = [] Text = re.split("[.!?]", Text) for Sent in Text: Sent = re.split("\W", Sent) Sent = [Token for Token in Sent if Token] SentencesOne.append(Sent) Sentences.extend(SentencesOne) return Sentences def build_model(TextDir, ModelFile): """ Builds a word vector model of the text files given as input. This should be used for very large collections of text, as it is very memory-friendly. """ print("--build_model_new") class MySentences(object): def __init__(self, dirname): self.dirname = dirname def __iter__(self): for fname in os.listdir(self.dirname): for Para in open(os.path.join(self.dirname, fname)): if "<doc id" not in Para and "</doc>" not in Para: Sentences = re.split("[.!?]", Para) for Sent in Sentences: Sent = re.split("\W", Sent) Sent = [Token.lower() for Token in Sent if Token] Sent = [Token for Token in Sent if len(Token) > 2] if len(Sent) > 1: #print(Sent) yield Sent Sentences = MySentences(TextDir) # a memory-friendly iterator Model = gensim.models.Word2Vec(Sentences, min_count=10, size=Size, workers=2) Model.save(ModelFile) ################ # Main function ################ def main(TextDir, Size, ModelFile): print("Launched.") logging.basicConfig(filename="logging.txt", level=logging.INFO) build_model(TextDir, ModelFile) print("Done.") main(TextDir, Size, ModelFile)
27.790476
90
0.537012
4a26d0fcaeaa80b801a429881bc43214b194642e
2,555
py
Python
setup.py
MattTunny/SeleniumBase
d85071074137b1d6070ec3d73122a0de966c844b
[ "MIT" ]
null
null
null
setup.py
MattTunny/SeleniumBase
d85071074137b1d6070ec3d73122a0de966c844b
[ "MIT" ]
null
null
null
setup.py
MattTunny/SeleniumBase
d85071074137b1d6070ec3d73122a0de966c844b
[ "MIT" ]
null
null
null
""" The setup package to install SeleniumBase dependencies and plugins (Uses selenium 3.x and is compatible with Python 2.7+ and Python 3.6+) """ from setuptools import setup, find_packages # noqa setup( name='seleniumbase', version='1.12.3', description='Web Automation & Testing Framework - http://seleniumbase.com', long_description='Web Automation and Testing Framework - seleniumbase.com', platforms='Mac * Windows * Linux * Docker', url='http://seleniumbase.com', author='Michael Mintz', author_email='[email protected]', maintainer='Michael Mintz', license='The MIT License', install_requires=[ 'pip', 'setuptools', 'ipython==5.6.0', 'selenium==3.11.0', 'nose==1.3.7', 'pytest==3.6.3', 'pytest-html==1.19.0', 'pytest-xdist==1.22.2', 'six==1.11.0', 'flake8==3.5.0', 'requests==2.19.1', 'beautifulsoup4==4.6.0', 'unittest2==1.1.0', 'chardet==3.0.4', 'boto==2.48.0', 'ipdb==0.11', 'PyVirtualDisplay==0.2.1', ], packages=['seleniumbase', 'seleniumbase.common', 'seleniumbase.config', 'seleniumbase.core', 'seleniumbase.fixtures', 'seleniumbase.masterqa', 'seleniumbase.plugins', 'console_scripts', 'integrations', 'integrations.selenium_grid', 'integrations.selenium_ide', ], entry_points={ 'console_scripts': [ 'seleniumbase = console_scripts.run:main', ], 'nose.plugins': [ 'base_plugin = seleniumbase.plugins.base_plugin:Base', 'selenium = seleniumbase.plugins.selenium_plugin:SeleniumBrowser', 'page_source = seleniumbase.plugins.page_source:PageSource', 'screen_shots = seleniumbase.plugins.screen_shots:ScreenShots', 'test_info = seleniumbase.plugins.basic_test_info:BasicTestInfo', ('db_reporting = ' 'seleniumbase.plugins.db_reporting_plugin:DBReporting'), 's3_logging = seleniumbase.plugins.s3_logging_plugin:S3Logging', ('hipchat_reporting = seleniumbase.plugins' '.hipchat_reporting_plugin:HipchatReporting'), ], 'pytest11': ['seleniumbase = seleniumbase.plugins.pytest_plugin'] } ) # print(os.system("cat seleniumbase.egg-info/PKG-INFO")) print("\n*** SeleniumBase Installation Complete! ***\n")
35.486111
79
0.590607
4a26d13b953bbc6600e94ed9330b38d1a84174ab
4,612
py
Python
PythonAPI/carissma_project/lib/python3.5/site-packages/mpl_toolkits/mplot3d/proj3d.py
AbdulHoffmann/carla_carissma
8d382769ffa02a6c61a22c57160285505f5ff0a4
[ "MIT" ]
445
2019-01-26T13:50:26.000Z
2022-03-18T05:17:38.000Z
venv/lib/python3.7/site-packages/mpl_toolkits/mplot3d/proj3d.py
John1001Song/Big-Data-Robo-Adviser
9444dce96954c546333d5aecc92a06c3bfd19aa5
[ "MIT" ]
242
2019-01-29T15:48:27.000Z
2022-03-31T22:09:21.000Z
venv/lib/python3.7/site-packages/mpl_toolkits/mplot3d/proj3d.py
John1001Song/Big-Data-Robo-Adviser
9444dce96954c546333d5aecc92a06c3bfd19aa5
[ "MIT" ]
64
2018-04-25T08:51:57.000Z
2022-01-29T14:13:57.000Z
# 3dproj.py # """ Various transforms used for by the 3D code """ import numpy as np import numpy.linalg as linalg def line2d(p0, p1): """ Return 2D equation of line in the form ax+by+c = 0 """ # x + x1 = 0 x0, y0 = p0[:2] x1, y1 = p1[:2] # if x0 == x1: a = -1 b = 0 c = x1 elif y0 == y1: a = 0 b = 1 c = -y1 else: a = (y0-y1) b = (x0-x1) c = (x0*y1 - x1*y0) return a, b, c def line2d_dist(l, p): """ Distance from line to point line is a tuple of coefficients a,b,c """ a, b, c = l x0, y0 = p return abs((a*x0 + b*y0 + c)/np.sqrt(a**2+b**2)) def line2d_seg_dist(p1, p2, p0): """distance(s) from line defined by p1 - p2 to point(s) p0 p0[0] = x(s) p0[1] = y(s) intersection point p = p1 + u*(p2-p1) and intersection point lies within segment if u is between 0 and 1 """ x21 = p2[0] - p1[0] y21 = p2[1] - p1[1] x01 = np.asarray(p0[0]) - p1[0] y01 = np.asarray(p0[1]) - p1[1] u = (x01*x21 + y01*y21) / (x21**2 + y21**2) u = np.clip(u, 0, 1) d = np.sqrt((x01 - u*x21)**2 + (y01 - u*y21)**2) return d def mod(v): """3d vector length""" return np.sqrt(v[0]**2+v[1]**2+v[2]**2) def world_transformation(xmin, xmax, ymin, ymax, zmin, zmax): dx, dy, dz = (xmax-xmin), (ymax-ymin), (zmax-zmin) return np.array([ [1.0/dx,0,0,-xmin/dx], [0,1.0/dy,0,-ymin/dy], [0,0,1.0/dz,-zmin/dz], [0,0,0,1.0]]) def view_transformation(E, R, V): n = (E - R) ## new # n /= mod(n) # u = np.cross(V,n) # u /= mod(u) # v = np.cross(n,u) # Mr = np.diag([1.]*4) # Mt = np.diag([1.]*4) # Mr[:3,:3] = u,v,n # Mt[:3,-1] = -E ## end new ## old n = n / mod(n) u = np.cross(V, n) u = u / mod(u) v = np.cross(n, u) Mr = [[u[0],u[1],u[2],0], [v[0],v[1],v[2],0], [n[0],n[1],n[2],0], [0, 0, 0, 1], ] # Mt = [[1, 0, 0, -E[0]], [0, 1, 0, -E[1]], [0, 0, 1, -E[2]], [0, 0, 0, 1]] ## end old return np.dot(Mr, Mt) def persp_transformation(zfront, zback): a = (zfront+zback)/(zfront-zback) b = -2*(zfront*zback)/(zfront-zback) return np.array([[1,0,0,0], [0,1,0,0], [0,0,a,b], [0,0,-1,0] ]) def ortho_transformation(zfront, zback): # note: w component in the resulting vector will be (zback-zfront), not 1 a = -(zfront + zback) b = -(zfront - zback) return np.array([[2,0,0,0], [0,2,0,0], [0,0,-2,0], [0,0,a,b] ]) def proj_transform_vec(vec, M): vecw = np.dot(M, vec) w = vecw[3] # clip here.. txs, tys, tzs = vecw[0]/w, vecw[1]/w, vecw[2]/w return txs, tys, tzs def proj_transform_vec_clip(vec, M): vecw = np.dot(M, vec) w = vecw[3] # clip here. txs, tys, tzs = vecw[0] / w, vecw[1] / w, vecw[2] / w tis = (0 <= vecw[0]) & (vecw[0] <= 1) & (0 <= vecw[1]) & (vecw[1] <= 1) if np.any(tis): tis = vecw[1] < 1 return txs, tys, tzs, tis def inv_transform(xs, ys, zs, M): iM = linalg.inv(M) vec = vec_pad_ones(xs, ys, zs) vecr = np.dot(iM, vec) try: vecr = vecr/vecr[3] except OverflowError: pass return vecr[0], vecr[1], vecr[2] def vec_pad_ones(xs, ys, zs): return np.array([xs, ys, zs, np.ones_like(xs)]) def proj_transform(xs, ys, zs, M): """ Transform the points by the projection matrix """ vec = vec_pad_ones(xs, ys, zs) return proj_transform_vec(vec, M) def proj_transform_clip(xs, ys, zs, M): """ Transform the points by the projection matrix and return the clipping result returns txs,tys,tzs,tis """ vec = vec_pad_ones(xs, ys, zs) return proj_transform_vec_clip(vec, M) transform = proj_transform def proj_points(points, M): return np.column_stack(proj_trans_points(points, M)) def proj_trans_points(points, M): xs, ys, zs = zip(*points) return proj_transform(xs, ys, zs, M) def proj_trans_clip_points(points, M): xs, ys, zs = zip(*points) return proj_transform_clip(xs, ys, zs, M) def rot_x(V, alpha): cosa, sina = np.cos(alpha), np.sin(alpha) M1 = np.array([[1,0,0,0], [0,cosa,-sina,0], [0,sina,cosa,0], [0,0,0,1]]) return np.dot(M1, V)
23.292929
77
0.48634
4a26d24bd9839edbd3218a3722f24aa43333327e
16,518
py
Python
hityper/__main__.py
JohnnyPeng18/HiTyper
1e80e85e204dbaca522a0c06309479e29ce5d94c
[ "Apache-2.0" ]
2
2022-02-05T08:46:09.000Z
2022-02-06T06:03:16.000Z
hityper/__main__.py
JohnnyPeng18/HiTyper
1e80e85e204dbaca522a0c06309479e29ce5d94c
[ "Apache-2.0" ]
2
2022-03-24T12:36:45.000Z
2022-03-30T07:34:18.000Z
hityper/__main__.py
JohnnyPeng18/HiTyper
1e80e85e204dbaca522a0c06309479e29ce5d94c
[ "Apache-2.0" ]
null
null
null
import argparse import subprocess import ast import os import json import traceback from hityper.tdg_generator import TDGGenerator from hityper.usertype_finder import UsertypeFinder from hityper.utils import formatUserTypes, getRecommendations, test_multiplefile from hityper.config import config from hityper import logger from hityper.utils import detectChange, SimModel import logging from tqdm import tqdm logger.name = __name__ def setuplogs(repo): fh = logging.FileHandler(repo + '/hityper.log') fh.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s[%(levelname)s][%(filename)s:%(lineno)d] %(message)s') fh.setFormatter(formatter) logger.addHandler(fh) def findusertype(args): if args.repo: outputrepo = args.output_directory if args.output_directory else "." setuplogs(outputrepo) if args.source: try: source = open(args.source, "r", encoding = "utf-8").read() root = ast.parse(source) usertypefinder = UsertypeFinder(args.source, args.repo, args.validate) usertypes, _ = usertypefinder.run(root) with open(outputrepo + "/" + args.source.replace("/", "_").replace(".py", "_USERTYPES.json"), "w", encoding = "utf-8") as of: of.write(json.dumps(usertypes, sort_keys=True, indent=4, separators=(',', ': '))) logger.info("Saved results to {}".format(outputrepo + "/" + args.source.replace("/", "_").replace(".py", "_USERTYPES.json"))) except Exception as e: traceback.print_exc() logger.error("Failed to find the user-defined types in file {}, reason: {}".format(args.source, e)) else: files = bytes.decode(subprocess.check_output(["find", args.repo, "-name", "*.py"])).split("\n") results = {} for f in files: if os.path.isfile(f): try: source = open(f, "r", encoding = "utf-8").read() root = ast.parse(source) usertypefinder = UsertypeFinder(f, args.repo, args.validate) usertypes, _ = usertypefinder.run(root) results[f] = usertypes except Exception as e: traceback.print_exc() logger.error("Failed to find the user-defined types in file {}, reason: {}".format(f, e)) with open(outputrepo + "/" + args.repo.replace("/", "_") + "_USERTYPES.json", "w", encoding = "utf-8") as of: of.write(json.dumps(results, sort_keys=True, indent=4, separators=(',', ': '))) logger.info("Saved results to {}".format(outputrepo + "/" + args.repo.replace("/", "_") + "_USERTYPES.json")) def gentdg(args): if args.repo: if not os.path.isdir(args.repo): logger.error("Cannot find directory {}".format(args.repo)) return outputrepo = args.output_directory if args.output_directory else "." setuplogs(outputrepo) if args.source: if not os.path.isfile(args.source): logger.error("Cannot find source file {}".format(args.source)) try: source = open(args.source, "r", encoding = "utf-8").read() root = ast.parse(source) usertypefinder = UsertypeFinder(args.source, args.repo, True) usertypes, _ = usertypefinder.run(root) generator = TDGGenerator(args.source, args.optimize, args.location, usertypes, alias = 1 if args.alias_analysis else 0, repo = args.repo if args.call_analysis else None) global_tg = generator.run(root) if args.output_format == "json": with open(outputrepo + "/" + args.source.replace("/", "_").replace(".py", "_TDG.json"), "w", encoding = "utf-8") as of: of.write(json.dumps(global_tg.dump(), sort_keys=True, indent=4, separators=(',', ': '))) logger.info("Saved TDGs to {}".format(outputrepo + "/" + args.source.replace("/", "_").replace(".py", "_TDG.json"))) else: for tg in global_tg.tgs: tg.draw(filerepo = outputrepo) global_tg.draw(filerepo = outputrepo) logger.info("Saved TDGs to {}".format(outputrepo)) except Exception as e: traceback.print_exc() logger.error("Failed to generate TDG for file {}, reason: {}".format(args.source, e)) if not args.source: files = bytes.decode(subprocess.check_output(["find", args.repo, "-name", "*.py"])).split("\n") for f in tqdm(files): if os.path.isfile(f): try: source = open(f, "r", encoding = "utf-8").read() root = ast.parse(source) usertypefinder = UsertypeFinder(f, args.repo, True) usertypes, _ = usertypefinder.run(root) generator = TDGGenerator(f, args.optimize, args.location, usertypes, alias = 1 if args.alias_analysis else 0, repo = args.repo if args.call_analysis else None) global_tg = generator.run(root) except Exception as e: traceback.print_exc() logger.error("Failed to generate TDG for file {}, reason: {}".format(f, e)) if args.output_format == "json": with open(outputrepo + "/" + f.replace("/", "_").replace(".py", "_TDG.json"), "w", encoding = "utf-8") as of: of.write(json.dumps(global_tg.dump(), sort_keys=True, indent=4, separators=(',', ': '))) logger.info("Saved TDGs to {}".format(outputrepo + "/" + f.replace("/", "_").replace(".py", "_TDG.json"))) else: for tg in global_tg.tgs: tg.draw(filerepo = outputrepo) global_tg.draw(filerepo = outputrepo) logger.info("Saved TDGs to {}".format(outputrepo)) def infertypes(args): if args.repo: if not os.path.isdir(args.repo): logger.error("Cannot find directory {}".format(args.repo)) return outputrepo = args.output_directory if args.output_directory else "." setuplogs(outputrepo) if args.recommendations and os.path.isfile(args.recommendations): with open(args.recommendations, "r", encoding = "utf-8") as mf: recommendations = json.loads(mf.read()) else: recommendations = None if config["simmodel"] != None: simmodel = SimModel(config[config["simmodel"]], config["tokenizer"]) else: simmodel = None if args.source: if not os.path.isfile(args.source): logger.error("Cannot find source file {}".format(args.source)) try: source = open(args.source, "r", encoding = "utf-8").read() root = ast.parse(source) usertypefinder = UsertypeFinder(args.source, args.repo, True) usertypes, _ = usertypefinder.run(root) generator = TDGGenerator(args.source, True, args.location, usertypes, alias = 0, repo = None) global_tg = generator.run(root) str_results = {} global_tg.passTypes(debug = False) str_results["global@global"] = global_tg.dumptypes() if recommendations == None and args.type4py: recommendations = getRecommendations(source) elif isinstance(recommendations, dict) and f in recommendations: recommendations = recommendations[f] for tg in global_tg.tgs: if recommendations != None: changed = True iters = 0 while changed and iters < config["max_recommendation_iteration"]: iters += 1 tg.passTypes(debug = False) types = tg.findHotTypes() tg.recommendType(types, recommendations, formatUserTypes(usertypes), usertypes["module"], args.topn, simmodel = simmodel) tg.passTypes(debug = False) new_types = tg.findHotTypes() changed = detectChange(types, new_types) tg.simplifyTypes() else: tg.passTypes(debug = False) tg.simplifyTypes() str_results[tg.name] = tg.dumptypes() with open(outputrepo + "/" + args.source.replace("/", "_").replace(".py", "_INFERREDTYPES.json"), "w", encoding = "utf-8") as of: of.write(json.dumps(str_results, sort_keys=True, indent=4, separators=(',', ': '))) logger.info("Saved results to {}".format(outputrepo + "/" + args.source.replace("/", "_").replace(".py", "_INFERREDTYPES.json"))) except Exception as e: traceback.print_exc() logger.error("Type inference failed for file {}, reason: {}".format(args.source, e)) if not args.source: files = bytes.decode(subprocess.check_output(["find", args.repo, "-name", "*.py"])).split("\n") results = {} for f in tqdm(files): if os.path.isfile(f): try: source = open(f, "r", encoding = "utf-8").read() root = ast.parse(source) usertypefinder = UsertypeFinder(f, args.repo, True) usertypes, _ = usertypefinder.run(root) generator = TDGGenerator(f, True, args.location, usertypes, alias = 0, repo = None) global_tg = generator.run(root) str_results = {} global_tg.passTypes(debug = False) str_results["global@global"] = global_tg.dumptypes() if recommendations == None and args.type4py: recommendations = getRecommendations(source) elif isinstance(recommendations, dict) and f in recommendations: recommendations = recommendations[f] for tg in global_tg.tgs: if recommendations != None: changed = True iters = 0 while changed and iters < config["max_recommendation_iteration"]: iters += 1 tg.passTypes(debug = False) types = tg.findHotTypes() tg.recommendType(types, recommendations, formatUserTypes(usertypes), usertypes["module"], args.topn, simmodel = simmodel) tg.passTypes(debug = False) new_types = tg.findHotTypes() changed = detectChange(types, new_types) tg.simplifyTypes() else: tg.passTypes(debug = False) tg.simplifyTypes() str_results[tg.name] = tg.dumptypes() results[f] = str_results except Exception as e: traceback.print_exc() logger.error("Type inference failed for file {}, reason: {}".format(f, e)) with open(outputrepo + "/" + args.repo.replace("/", "_") + "_INFERREDTYPES.json", "w", encoding = "utf-8") as of: of.write(json.dumps(results, sort_keys=True, indent=4, separators=(',', ': '))) logger.info("Saved results to {}".format(outputrepo + "/" + args.repo.replace("/", "_") + "_INFERREDTYPES.json")) def evaluate(args): setuplogs(".") test_multiplefile(args.groundtruth, args.classified_groundtruth, args.usertype, recfile = args.recommendations if args.recommendations else None, recmodel = args.type4py, topn = args.topn) def main(): arg_parser = argparse.ArgumentParser() sub_parsers = arg_parser.add_subparsers(dest='cmd') usertype_parser = sub_parsers.add_parser('findusertype') usertype_parser.add_argument('-s', '--source', required = False, type=str, help = "Path to a Python source file") usertype_parser.add_argument('-p', '--repo', required = True, type=str, help = "Path to a Python project") usertype_parser.add_argument("-v", "--validate", default = True, action="store_true", help = "Validate the imported user-defined types by finding their implementations") usertype_parser.add_argument('-d', "--output_directory", required = False, type=str, help = "Path to the store the usertypes") usertype_parser.set_defaults(func = findusertype) tdg_parser = sub_parsers.add_parser('gentdg') tdg_parser.add_argument('-s', '--source', required = False, type=str, help = "Path to a Python source file") tdg_parser.add_argument('-p', '--repo', required = True, type=str, help = "Path to a Python project") tdg_parser.add_argument('-o', '--optimize', default = False, action="store_true", help = "Remove redundant nodes in TDG") tdg_parser.add_argument('-l', '--location', required = False, type=str, help = "Generate TDG for a specific function") tdg_parser.add_argument('-a', '--alias_analysis', default = False, action="store_true", help = "Generate alias graphs along with TDG") tdg_parser.add_argument('-c', '--call_analysis', default = False, action="store_true", help = "Generate call graphs along with TDG") tdg_parser.add_argument('-d', "--output_directory", required = False, type=str, help = "Path to the generated TDGs") tdg_parser.add_argument('-f', "--output_format", default = "json", choices=["json", "pdf"], type=str, help = "Formats of output TDGs") tdg_parser.set_defaults(func = gentdg) inference_parser = sub_parsers.add_parser('infer') inference_parser.add_argument('-s', '--source', required = False, type=str, help = "Path to a Python source file") inference_parser.add_argument('-p', '--repo', required = True, type=str, help = "Path to a Python project") inference_parser.add_argument('-l', '--location', required = False, type=str, help = "Type inference for a specific function") inference_parser.add_argument('-d', "--output_directory", required = False, type=str, help = "Path to the generated TDGs") inference_parser.add_argument('-m', "--recommendations", required = False, type=str, help = "Path to the recommendations generated by a DL model") inference_parser.add_argument('-t', "--type4py", default = False, action="store_true", help = "Use Type4Py as the recommendation model") inference_parser.add_argument('-n', "--topn", default = 1, type = int, help = "Indicate the top n predictions from DL models used by HiTyper") inference_parser.set_defaults(func = infertypes) eval_parser = sub_parsers.add_parser('eval') eval_parser.add_argument('-g', '--groundtruth', required = True, type=str, help = "Path to a ground truth dataset") eval_parser.add_argument('-c', '--classified_groundtruth', required = True, type=str, help = "Path to a classified ground truth dataset") eval_parser.add_argument('-u', '--usertype', required = True, type=str, help = "Path to a previously collected user-defined type set") eval_parser.add_argument('-m', "--recommendations", required = False, type=str, help = "Path to the recommendations generated by a DL model") eval_parser.add_argument('-t', "--type4py", default = False, action="store_true", help = "Use Type4Py as the recommendation model") eval_parser.add_argument('-n', "--topn", default = 1, type = int, help = "Indicate the top n predictions from DL models used by HiTyper") eval_parser.set_defaults(func = evaluate) args = arg_parser.parse_args() args.func(args) if __name__ == "__main__": main()
58.367491
192
0.568047
4a26d27f52a034694e96532fa1c97b8c9fe862a1
16,442
py
Python
nikola/plugins/compile/rest/__init__.py
asmeurer/nikola
ea1c651bfed0fd6337f1d22cf8dd99899722912c
[ "MIT" ]
null
null
null
nikola/plugins/compile/rest/__init__.py
asmeurer/nikola
ea1c651bfed0fd6337f1d22cf8dd99899722912c
[ "MIT" ]
null
null
null
nikola/plugins/compile/rest/__init__.py
asmeurer/nikola
ea1c651bfed0fd6337f1d22cf8dd99899722912c
[ "MIT" ]
1
2021-07-07T11:32:42.000Z
2021-07-07T11:32:42.000Z
# -*- coding: utf-8 -*- # Copyright © 2012-2020 Roberto Alsina and others. # Permission is hereby granted, free of charge, to any # person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the # Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the # Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice # shall be included in all copies or substantial portions of # the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR # PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS # OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """reStructuredText compiler for Nikola.""" import io import logging import os import docutils.core import docutils.nodes import docutils.transforms import docutils.utils import docutils.io import docutils.readers.standalone import docutils.writers.html5_polyglot import docutils.parsers.rst.directives from docutils.parsers.rst import roles from nikola.nikola import LEGAL_VALUES from nikola.metadata_extractors import MetaCondition from nikola.plugin_categories import PageCompiler from nikola.utils import ( makedirs, write_metadata, LocaleBorg, map_metadata ) class CompileRest(PageCompiler): """Compile reStructuredText into HTML.""" name = "rest" friendly_name = "reStructuredText" demote_headers = True logger = None supports_metadata = True metadata_conditions = [(MetaCondition.config_bool, "USE_REST_DOCINFO_METADATA")] def read_metadata(self, post, lang=None): """Read the metadata from a post, and return a metadata dict.""" if lang is None: lang = LocaleBorg().current_lang source_path = post.translated_source_path(lang) # Silence reST errors, some of which are due to a different # environment. Real issues will be reported while compiling. null_logger = logging.getLogger('NULL') null_logger.setLevel(1000) with io.open(source_path, 'r', encoding='utf-8') as inf: data = inf.read() _, _, _, document = rst2html(data, logger=null_logger, source_path=source_path, transforms=self.site.rst_transforms) meta = {} if 'title' in document: meta['title'] = document['title'] for docinfo in document.traverse(docutils.nodes.docinfo): for element in docinfo.children: if element.tagname == 'field': # custom fields (e.g. summary) name_elem, body_elem = element.children name = name_elem.astext() value = body_elem.astext() elif element.tagname == 'authors': # author list name = element.tagname value = [element.astext() for element in element.children] else: # standard fields (e.g. address) name = element.tagname value = element.astext() name = name.lower() meta[name] = value # Put 'authors' meta field contents in 'author', too if 'authors' in meta and 'author' not in meta: meta['author'] = '; '.join(meta['authors']) # Map metadata from other platforms to names Nikola expects (Issue #2817) map_metadata(meta, 'rest_docinfo', self.site.config) return meta def compile_string(self, data, source_path=None, is_two_file=True, post=None, lang=None): """Compile reST into HTML strings.""" # If errors occur, this will be added to the line number reported by # docutils so the line number matches the actual line number (off by # 7 with default metadata, could be more or less depending on the post). add_ln = 0 if not is_two_file: m_data, data = self.split_metadata(data, post, lang) add_ln = len(m_data.splitlines()) + 1 default_template_path = os.path.join(os.path.dirname(__file__), 'template.txt') settings_overrides = { 'initial_header_level': 1, 'record_dependencies': True, 'stylesheet_path': None, 'link_stylesheet': True, 'syntax_highlight': 'short', # This path is not used by Nikola, but we need something to silence # warnings about it from reST. 'math_output': 'mathjax /assets/js/mathjax.js', 'template': default_template_path, 'language_code': LEGAL_VALUES['DOCUTILS_LOCALES'].get(LocaleBorg().current_lang, 'en'), 'doctitle_xform': self.site.config.get('USE_REST_DOCINFO_METADATA'), 'file_insertion_enabled': self.site.config.get('REST_FILE_INSERTION_ENABLED'), } from nikola import shortcodes as sc new_data, shortcodes = sc.extract_shortcodes(data) if self.site.config.get('HIDE_REST_DOCINFO', False): self.site.rst_transforms.append(RemoveDocinfo) output, error_level, deps, _ = rst2html( new_data, settings_overrides=settings_overrides, logger=self.logger, source_path=source_path, l_add_ln=add_ln, transforms=self.site.rst_transforms) if not isinstance(output, str): # To prevent some weird bugs here or there. # Original issue: empty files. `output` became a bytestring. output = output.decode('utf-8') output, shortcode_deps = self.site.apply_shortcodes_uuid(output, shortcodes, filename=source_path, extra_context={'post': post}) return output, error_level, deps, shortcode_deps def compile(self, source, dest, is_two_file=True, post=None, lang=None): """Compile the source file into HTML and save as dest.""" makedirs(os.path.dirname(dest)) error_level = 100 with io.open(dest, "w+", encoding="utf8") as out_file: with io.open(source, "r", encoding="utf8") as in_file: data = in_file.read() output, error_level, deps, shortcode_deps = self.compile_string(data, source, is_two_file, post, lang) out_file.write(output) if post is None: if deps.list: self.logger.error( "Cannot save dependencies for post {0} (post unknown)", source) else: post._depfile[dest] += deps.list post._depfile[dest] += shortcode_deps if error_level < 3: return True else: return False def create_post(self, path, **kw): """Create a new post.""" content = kw.pop('content', None) onefile = kw.pop('onefile', False) # is_page is not used by create_post as of now. kw.pop('is_page', False) metadata = {} metadata.update(self.default_metadata) metadata.update(kw) makedirs(os.path.dirname(path)) if not content.endswith('\n'): content += '\n' with io.open(path, "w+", encoding="utf8") as fd: if onefile: fd.write(write_metadata(metadata, comment_wrap=False, site=self.site, compiler=self)) fd.write(content) def set_site(self, site): """Set Nikola site.""" super().set_site(site) self.config_dependencies = [] for plugin_info in self.get_compiler_extensions(): self.config_dependencies.append(plugin_info.name) plugin_info.plugin_object.short_help = plugin_info.description if not site.debug: self.logger.level = logging.WARNING def get_observer(settings): """Return an observer for the docutils Reporter.""" def observer(msg): """Report docutils/rest messages to a Nikola user. Error code mapping: +----------+----------+ | docutils | logging | +----------+----------+ | DEBUG | DEBUG | | INFO | INFO | | WARNING | WARNING | | ERROR | ERROR | | SEVERE | CRITICAL | +----------+----------+ """ errormap = { docutils.utils.Reporter.DEBUG_LEVEL: logging.DEBUG, docutils.utils.Reporter.INFO_LEVEL: logging.INFO, docutils.utils.Reporter.WARNING_LEVEL: logging.WARNING, docutils.utils.Reporter.ERROR_LEVEL: logging.ERROR, docutils.utils.Reporter.SEVERE_LEVEL: logging.CRITICAL } text = docutils.nodes.Element.astext(msg) line = msg['line'] + settings['add_ln'] if 'line' in msg else '' out = '[{source}{colon}{line}] {text}'.format( source=settings['source'], colon=(':' if line else ''), line=line, text=text) settings['logger'].log(errormap[msg['level']], out) return observer class NikolaReader(docutils.readers.standalone.Reader): """Nikola-specific docutils reader.""" config_section = 'nikola' def __init__(self, *args, **kwargs): """Initialize the reader.""" self.transforms = kwargs.pop('transforms', []) self.logging_settings = kwargs.pop('nikola_logging_settings', {}) docutils.readers.standalone.Reader.__init__(self, *args, **kwargs) def get_transforms(self): """Get docutils transforms.""" return docutils.readers.standalone.Reader(self).get_transforms() + self.transforms def new_document(self): """Create and return a new empty document tree (root node).""" document = docutils.utils.new_document(self.source.source_path, self.settings) document.reporter.stream = False document.reporter.attach_observer(get_observer(self.logging_settings)) return document def shortcode_role(name, rawtext, text, lineno, inliner, options={}, content=[]): """Return a shortcode role that passes through raw inline HTML.""" return [docutils.nodes.raw('', text, format='html')], [] roles.register_canonical_role('raw-html', shortcode_role) roles.register_canonical_role('html', shortcode_role) roles.register_canonical_role('sc', shortcode_role) def add_node(node, visit_function=None, depart_function=None): """Register a Docutils node class. This function is completely optional. It is a same concept as `Sphinx add_node function <http://sphinx-doc.org/extdev/appapi.html#sphinx.application.Sphinx.add_node>`_. For example:: class Plugin(RestExtension): name = "rest_math" def set_site(self, site): self.site = site directives.register_directive('math', MathDirective) add_node(MathBlock, visit_Math, depart_Math) return super().set_site(site) class MathDirective(Directive): def run(self): node = MathBlock() return [node] class Math(docutils.nodes.Element): pass def visit_Math(self, node): self.body.append(self.starttag(node, 'math')) def depart_Math(self, node): self.body.append('</math>') For full example, you can refer to `Microdata plugin <https://plugins.getnikola.com/#microdata>`_ """ docutils.nodes._add_node_class_names([node.__name__]) if visit_function: setattr(docutils.writers.html5_polyglot.HTMLTranslator, 'visit_' + node.__name__, visit_function) if depart_function: setattr(docutils.writers.html5_polyglot.HTMLTranslator, 'depart_' + node.__name__, depart_function) # Output <code> for ``double backticks``. (Code and extra logic based on html4css1 translator) def visit_literal(self, node): """Output <code> for double backticks.""" # special case: "code" role classes = node.get('classes', []) if 'code' in classes: # filter 'code' from class arguments node['classes'] = [cls for cls in classes if cls != 'code'] self.body.append(self.starttag(node, 'code', '')) return self.body.append( self.starttag(node, 'code', '', CLASS='docutils literal')) text = node.astext() for token in self.words_and_spaces.findall(text): if token.strip(): # Protect text like "--an-option" and the regular expression # ``[+]?(\d+(\.\d*)?|\.\d+)`` from bad line wrapping if self.in_word_wrap_point.search(token): self.body.append('<span class="pre">%s</span>' % self.encode(token)) else: self.body.append(self.encode(token)) elif token in ('\n', ' '): # Allow breaks at whitespace: self.body.append(token) else: # Protect runs of multiple spaces; the last space can wrap: self.body.append('&nbsp;' * (len(token) - 1) + ' ') self.body.append('</code>') # Content already processed: raise docutils.nodes.SkipNode setattr(docutils.writers.html5_polyglot.HTMLTranslator, 'visit_literal', visit_literal) def rst2html(source, source_path=None, source_class=docutils.io.StringInput, destination_path=None, reader=None, parser=None, parser_name='restructuredtext', writer=None, writer_name='html5_polyglot', settings=None, settings_spec=None, settings_overrides=None, config_section='nikola', enable_exit_status=None, logger=None, l_add_ln=0, transforms=None): """Set up & run a ``Publisher``, and return a dictionary of document parts. Dictionary keys are the names of parts, and values are Unicode strings; encoding is up to the client. For programmatic use with string I/O. For encoded string input, be sure to set the 'input_encoding' setting to the desired encoding. Set it to 'unicode' for unencoded Unicode string input. Here's how:: publish_parts(..., settings_overrides={'input_encoding': 'unicode'}) For a description of the parameters, see `publish_programmatically`. WARNING: `reader` should be None (or NikolaReader()) if you want Nikola to report reStructuredText syntax errors. """ if reader is None: # For our custom logging, we have special needs and special settings we # specify here. # logger a logger from Nikola # source source filename (docutils gets a string) # add_ln amount of metadata lines (see comment in CompileRest.compile above) reader = NikolaReader(transforms=transforms, nikola_logging_settings={ 'logger': logger, 'source': source_path, 'add_ln': l_add_ln }) pub = docutils.core.Publisher(reader, parser, writer, settings=settings, source_class=source_class, destination_class=docutils.io.StringOutput) pub.set_components(None, parser_name, writer_name) pub.process_programmatic_settings( settings_spec, settings_overrides, config_section) pub.set_source(source, None) pub.settings._nikola_source_path = source_path pub.set_destination(None, destination_path) pub.publish(enable_exit_status=enable_exit_status) return pub.writer.parts['docinfo'] + pub.writer.parts['fragment'], pub.document.reporter.max_level, pub.settings.record_dependencies, pub.document # Alignment helpers for extensions _align_options_base = ('left', 'center', 'right') def _align_choice(argument): return docutils.parsers.rst.directives.choice(argument, _align_options_base + ("none", "")) class RemoveDocinfo(docutils.transforms.Transform): """Remove docinfo nodes.""" default_priority = 870 def apply(self): """Remove docinfo nodes.""" for node in self.document.traverse(docutils.nodes.docinfo): node.parent.remove(node)
40.69802
159
0.637392
4a26d2a3d733de0106a6f42ca5f91b1e7d57a812
17
py
Python
hdltools/__init__.py
brunosmmm/hdltools
a98ca8c4d168740fa229c939a7b1f31ea73eec24
[ "MIT" ]
2
2020-02-28T13:02:39.000Z
2021-06-30T09:15:35.000Z
hdltools/__init__.py
brunosmmm/hdltools
a98ca8c4d168740fa229c939a7b1f31ea73eec24
[ "MIT" ]
1
2020-03-22T17:32:45.000Z
2020-03-23T15:43:39.000Z
hdltools/__init__.py
brunosmmm/hdltools
a98ca8c4d168740fa229c939a7b1f31ea73eec24
[ "MIT" ]
null
null
null
"""HDL Tools."""
8.5
16
0.470588
4a26d2a5577efd7afb31f4525dcbd8683d74a5c1
7,755
py
Python
caseworker/core/services.py
django-doctor/lite-frontend
330ff9575fd22d7c4c42698ac2d653244e6180d6
[ "MIT" ]
1
2021-10-16T16:36:58.000Z
2021-10-16T16:36:58.000Z
caseworker/core/services.py
django-doctor/lite-frontend
330ff9575fd22d7c4c42698ac2d653244e6180d6
[ "MIT" ]
45
2020-08-11T14:37:46.000Z
2022-03-29T17:03:02.000Z
caseworker/core/services.py
django-doctor/lite-frontend
330ff9575fd22d7c4c42698ac2d653244e6180d6
[ "MIT" ]
3
2021-02-01T06:26:19.000Z
2022-02-21T23:02:46.000Z
from collections import defaultdict from caseworker.users.services import get_gov_user from core import client from core.helpers import convert_value_to_query_param from caseworker.cases.constants import CaseType, CaseStatusEnum from lite_forms.components import Option def get_denial_reasons(request, convert_to_options=False, group=False): data = client.get(request, "/static/denial-reasons/").json()["denial_reasons"] if convert_to_options: options = [Option(denial_reason["id"], denial_reason["id"]) for denial_reason in data] if group: return_dict = defaultdict(list) for item in options: return_dict[item.key[0]].append(item) return dict(return_dict) return options return data def get_countries(request, convert_to_options=False, exclude: list = None): """ Returns a list of GOV.UK countries and territories param exclude: Takes a list of country codes and excludes them """ data = client.get(request, "/static/countries/?" + convert_value_to_query_param("exclude", exclude)) if convert_to_options: converted_units = [] for country in data.json().get("countries"): converted_units.append(Option(country.get("id"), country.get("name"))) return converted_units return data.json(), data.status_code # CaseStatuesEnum def get_statuses(request, convert_to_options=False): """ Get static list of case statuses. """ data = client.get(request, "/static/statuses/") if convert_to_options: return [Option(key=item["id"], value=item["value"]) for item in data.json().get("statuses")] return data.json()["statuses"], data.status_code def get_permissible_statuses(request, case): """ Get a list of case statuses permissible for the user's role. """ user, _ = get_gov_user(request, str(request.session["lite_api_user_id"])) user_permissible_statuses = user["user"]["role"]["statuses"] statuses, _ = get_statuses(request) case_sub_type = case["case_type"]["sub_type"]["key"] case_type = case["case_type"]["type"]["key"] if case_type == CaseType.APPLICATION.value: case_type_applicable_statuses = [ status for status in statuses if status["key"] not in [ CaseStatusEnum.APPLICANT_EDITING, CaseStatusEnum.CLOSED, CaseStatusEnum.FINALISED, CaseStatusEnum.REGISTERED, CaseStatusEnum.CLC, CaseStatusEnum.PV, CaseStatusEnum.SURRENDERED, ] ] elif case_type == CaseType.QUERY.value: if case_sub_type == CaseType.END_USER_ADVISORY.value: case_type_applicable_statuses = [ status for status in statuses if status["key"] in CaseStatusEnum.base_query_statuses() ] else: # if the query is not an end user advisory, then check if CLC/PV statuses are required goods_query_status_keys = CaseStatusEnum.base_query_statuses().copy() if case.data["clc_responded"] is not None: goods_query_status_keys.insert(1, CaseStatusEnum.CLC) if case.data["pv_grading_responded"] is not None: # add PV status into the correct location if case.data["clc_responded"] is not None: goods_query_status_keys.insert(2, CaseStatusEnum.PV) else: goods_query_status_keys.insert(1, CaseStatusEnum.PV) case_type_applicable_statuses = [status for status in statuses if status["key"] in goods_query_status_keys] elif case_type == CaseType.COMPLIANCE.value: if case_sub_type == CaseType.COMPLIANCE_SITE.value: case_type_applicable_statuses = [ status for status in statuses if status["key"] in [CaseStatusEnum.OPEN, CaseStatusEnum.CLOSED,] ] elif case_sub_type == CaseType.COMPLIANCE_VISIT.value: case_type_applicable_statuses = [ status for status in statuses if status["key"] in [ CaseStatusEnum.OPEN, CaseStatusEnum.UNDER_INTERNAL_REVIEW, CaseStatusEnum.RETURN_TO_INSPECTOR, CaseStatusEnum.AWAITING_EXPORTER_RESPONSE, CaseStatusEnum.CLOSED, ] ] elif case_type == CaseType.REGISTRATION.value: case_type_applicable_statuses = [ status for status in statuses if status["key"] in [ CaseStatusEnum.REGISTERED, CaseStatusEnum.UNDER_ECJU_REVIEW, CaseStatusEnum.REVOKED, CaseStatusEnum.SUSPENDED, CaseStatusEnum.SURRENDERED, CaseStatusEnum.DEREGISTERED, ] ] return [status for status in case_type_applicable_statuses if status in user_permissible_statuses] def get_status_properties(request, status): data = client.get(request, f"/static/statuses/properties/{status}") return data.json(), data.status_code # Permissions def get_user_permissions(request, with_team=False): user, _ = get_gov_user(request) if with_team: return user["user"]["role"]["permissions"], user["user"]["team"] return user["user"]["role"]["permissions"] # Control List Entries def get_control_list_entries(request, convert_to_options=False, include_parent=False, clc_entries_cache=[]): # noqa """ Preliminary caching mechanism, requires service restart to repopulate control list entries """ if convert_to_options: if clc_entries_cache: return clc_entries_cache else: data = client.get(request, "/static/control-list-entries/") for control_list_entry in data.json().get("control_list_entries"): clc_entries_cache.append( Option( key=control_list_entry["rating"], value=control_list_entry["rating"], description=control_list_entry["text"], ) ) return clc_entries_cache if include_parent: response = client.get(request, "/static/control-list-entries/?include_parent=True") else: response = client.get(request, "/static/control-list-entries/?group=True") response.raise_for_status() return response.json().get("control_list_entries") def get_gov_pv_gradings(request, convert_to_options=False): pv_gradings = client.get(request, "/static/private-venture-gradings/gov/").json().get("pv_gradings") if convert_to_options: converted_units = [] for pv_grading_entry in pv_gradings: for key in pv_grading_entry: converted_units.append(Option(key=key, value=pv_grading_entry[key])) return converted_units return pv_gradings def get_pv_gradings(request, convert_to_options=False): pv_gradings = client.get(request, "/static/private-venture-gradings/").json().get("pv_gradings") if convert_to_options: converted_units = [] for pv_grading_entry in pv_gradings: for key in pv_grading_entry: converted_units.append(Option(key=key, value=pv_grading_entry[key])) return converted_units return pv_gradings def get_menu_notifications(request): if not hasattr(request, "cached_get_menu_notifications"): request.cached_get_menu_notifications = client.get(request, "/gov-users/notifications/") response = request.cached_get_menu_notifications return response.json()
37.283654
119
0.648485
4a26d2f94bca429c7f22505c371e0b6c3c9fc917
1,850
py
Python
build/lib/skedm/version.py
NickC1/sknla
4a33011537961d0aa08e6c4245684088a6f8f5c4
[ "MIT" ]
21
2017-03-04T00:55:57.000Z
2021-06-20T00:33:06.000Z
build/lib/skedm/version.py
NickC1/sknla
4a33011537961d0aa08e6c4245684088a6f8f5c4
[ "MIT" ]
3
2017-03-17T21:35:02.000Z
2019-01-11T16:59:08.000Z
build/lib/skedm/version.py
NickC1/sknla
4a33011537961d0aa08e6c4245684088a6f8f5c4
[ "MIT" ]
15
2017-06-06T08:17:08.000Z
2021-11-08T23:15:30.000Z
from os.path import join as pjoin # Format expected by setup.py and doc/source/conf.py: string of form "X.Y.Z" _version_major = 0 _version_minor = 2 _version_micro = '' # use '' for first of series, number for 1 and above _version_extra = 'dev' #_version_extra = '' # Uncomment this for full releases # Construct full version string from these. _ver = [_version_major, _version_minor] if _version_micro: _ver.append(_version_micro) if _version_extra: _ver.append(_version_extra) __version__ = '.'.join(map(str, _ver)) CLASSIFIERS = ["Development Status :: 3 - Alpha", "Environment :: Console", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", "Topic :: Scientific/Engineering"] # Description should be a one-liner: description = "skedm: Emperical Dynamic Modeling with a simple api" # Long description will go up on the pypi page long_description = """ skedm ======== Scikit Emperical Dynamic Modeling (sknla) can be used as a way to forecast time series, spatio-temporal 2D arrays, and even discrete spatial arrangements. More importantly, skedm can provide insight into the underlying dynamics of a system. """ NAME = "skedm" MAINTAINER = "Nick Cortale" MAINTAINER_EMAIL = "[email protected]" DESCRIPTION = description LONG_DESCRIPTION = long_description URL = "https://github.com/NickC1/skedm" DOWNLOAD_URL = "https://github.com/NickC1/skedm/tarball/0.1" LICENSE = "MIT" AUTHOR = "Nick Cortale" AUTHOR_EMAIL = "[email protected]" PLATFORMS = "OS Independent" MAJOR = _version_major MINOR = _version_minor MICRO = _version_micro VERSION = __version__ PACKAGES = ['skedm'] PACKAGE_DATA = "" REQUIRES = ["numpy", "scikitlearn"]
31.896552
87
0.712432
4a26d3411595c7bd2dfb4d9e5660b668e90fe5a1
21,151
py
Python
examples.py
bvilhjal/mixmogam
766b889d4f5e97f4c9a960e3a007b125137ba796
[ "MIT" ]
15
2015-08-02T05:39:06.000Z
2021-12-22T12:13:21.000Z
examples.py
bvilhjal/mixmogam
766b889d4f5e97f4c9a960e3a007b125137ba796
[ "MIT" ]
null
null
null
examples.py
bvilhjal/mixmogam
766b889d4f5e97f4c9a960e3a007b125137ba796
[ "MIT" ]
8
2017-02-16T07:35:59.000Z
2022-02-11T19:56:19.000Z
""" Examples for how to perform GWAS using mixed models, and stepwise mixed models. Author: Bjarni J. Vilhjalmsson Email: [email protected] """ def load_a_thaliana_genotypes(): """ Loads A. thaliana genotypes (Horton et al., 2012) and returns a snps_data object """ import dataParsers as dp sd = dp.parse_snp_data('at_data/all_chromosomes_binary.csv') return sd def load_a_thaliana_phenotypes(): """ Loads A. thaliana phenotypes (Atwell et al., 2010) and returns a phenotype_data object containing 107 different phenotypes. """ import phenotypeData as pd phend = pd.parse_phenotype_file('at_data/199_phenotypes.csv') return phend def linear_regression_gwas(phenotype_id=5, pvalue_file='lr_results.pvals', manhattan_plot_file='lr_manhattan.png', qq_plot_file_prefix='lr_qq'): """ Perform linear regression GWAS for flowering time (phenotype_id=5 in the phenotype file) in plants grown under 10C conditions. """ import linear_models as lm import gwaResults as gr # Load genotypes sd = load_a_thaliana_genotypes() # Load phenotypes phend = load_a_thaliana_phenotypes() # Coordinate phenotype of interest and genotypes. This filters the genotypes and # phenotypes, leaving only accessions (individuals) which overlap between both, # and SNPs that are polymorphic in the resulting subset. sd.coordinate_w_phenotype_data(phend, phenotype_id) # Perform linear regression GWAS lr_results = lm.linear_model(sd.get_snps(), phend.get_values(phenotype_id)) # Construct a results object res = gr.Result(scores=lr_results['ps'], snps_data=sd) # Save p-values to file res.write_to_file(pvalue_file) # Plot Manhattan plot res.plot_manhattan(png_file=manhattan_plot_file, percentile=90, plot_bonferroni=True, neg_log_transform=True) # Plot a QQ-plot res.plot_qq(qq_plot_file_prefix) def mixed_model_gwas(phenotype_id=5, pvalue_file='mm_results.pvals', manhattan_plot_file='mm_manhattan.png', qq_plot_file_prefix='mm_qq'): """ Perform mixed model (EMMAX) GWAS for flowering time (phenotype_id=5 in the phenotype file) in plants grown under 10C conditions. """ import linear_models as lm import kinship import gwaResults as gr # Load genotypes sd = load_a_thaliana_genotypes() # Load phenotypes phend = load_a_thaliana_phenotypes() # Coordinate phenotype of interest and genotypes. This filters the genotypes and # phenotypes, leaving only accessions (individuals) which overlap between both, # and SNPs that are polymorphic in the resulting subset. sd.coordinate_w_phenotype_data(phend, phenotype_id) # Calculate kinship (IBS) K = kinship.calc_ibs_kinship(sd.get_snps()) # Perform mixed model GWAS mm_results = lm.emmax(sd.get_snps(), phend.get_values(phenotype_id), K) # Construct a results object res = gr.Result(scores=mm_results['ps'], snps_data=sd) # Save p-values to file res.write_to_file(pvalue_file) # Plot Manhattan plot res.plot_manhattan(png_file=manhattan_plot_file, percentile=90, plot_bonferroni=True, neg_log_transform=True) # Plot a QQ-plot res.plot_qq(qq_plot_file_prefix) def multiple_loci_mixed_model_gwas(phenotype_id=5, pvalue_file_prefix='mlmm_results', result_files_prefix='mlmm_manhattan', max_num_steps=10, snp_priors=None): """ Perform multiple loci mixed model GWAS for flowering time (phenotype_id=5 in the phenotype file) in plants grown under 10C conditions. """ import linear_models as lm import kinship # Load genotypes sd = load_a_thaliana_genotypes() # Load phenotypes phend = load_a_thaliana_phenotypes() # Coordinate phenotype of interest and genotypes. This filters the genotypes and # phenotypes, leaving only accessions (individuals) which overlap between both, # and SNPs that are polymorphic in the resulting subset. sd.coordinate_w_phenotype_data(phend, phenotype_id) # Calculate kinship (IBS) K = kinship.calc_ibs_kinship(sd.get_snps()) # Perform multiple loci mixed model GWAS mlmm_results = lm.mlmm(phend.get_values(phenotype_id), K, sd=sd, num_steps=max_num_steps, file_prefix=result_files_prefix, save_pvals=True, pval_file_prefix=result_files_prefix, snp_priors=snp_priors) def perform_cegs_gwas(kinship_type='ibd', phen_type='medians'): """ Perform a simple MLM GWAS for the 8 traits """ import hdf5_data import kinship import linear_models as lm import time import scipy as sp from matplotlib import pyplot as plt import analyze_gwas_results as agr phen_dict = hdf5_data.parse_cegs_drosophila_phenotypes() phenotypes = ['Protein', 'Sugar', 'Triglyceride', 'weight'] envs = ['mated', 'virgin'] for phenotype in phenotypes: for env in envs: print phenotype, env s1 = time.time() d = hdf5_data.coordinate_cegs_genotype_phenotype( phen_dict, phenotype, env) print 'Calculating kinship' if kinship_type == 'ibs': K = kinship.calc_ibs_kinship(d['snps']) elif kinship_type == 'ibd': K = kinship.calc_ibd_kinship(d['snps']) else: raise NotImplementedError if phen_type == 'means': lmm = lm.LinearMixedModel(d['Y_means']) elif phen_type == 'medians': lmm = lm.LinearMixedModel(d['Y_medians']) else: raise NotImplementedError lmm.add_random_effect(K) print "Running EMMAX" res = lmm.emmax_f_test(d['snps'], emma_num=1000) print 'Mean p-value:', sp.mean(res['ps']) secs = time.time() - s1 if secs > 60: mins = int(secs) / 60 secs = secs - mins * 60 print 'Took %d mins and %f seconds.' % (mins, secs) else: print 'Took %f seconds.' % (secs) # Now generating QQ-plots label_str = '%s_%s_%s_%s' % ( kinship_type, phenotype, env, phen_type) agr.plot_simple_qqplots_pvals('/Users/bjarnivilhjalmsson/data/tmp/cegs_qq_%s' % (label_str), [res['ps']], result_labels=[ label_str], line_colors=['green'], num_dots=1000, title=None, max_neg_log_val=6) # Perform multiple loci mixed model GWAS chromosomes = d['positions'][:, 0] positions = sp.array(d['positions'][:, 1], 'int32') x_positions = [] y_log_pvals = [] colors = [] x_shift = 0 for i, chrom in enumerate(sp.unique(chromosomes)): if chrom in ['2L', '2LHet', '3L', '3LHet', '4', 'X', 'XHet']: colors.append('c') else: # chrom in ['2R', '2RHet', '3R', '3RHet', 'U', 'Uextra'] # Toss U and Hets colors.append('m') chrom_filter = sp.in1d(chromosomes, chrom) positions_slice = positions[chrom_filter] x_positions.append(positions_slice + x_shift) x_shift += positions_slice.max() log_ps_slice = -sp.log10(res['ps'][chrom_filter]) y_log_pvals.append(log_ps_slice) m = len(positions) log_bonf = -sp.log10(1 / (20.0 * m)) print m, log_bonf # Plot manhattan plots? plt.figure(figsize=(12, 4)) plt.axes([0.03, 0.1, 0.95, 0.8]) for i, chrom in enumerate(sp.unique(chromosomes)): plt.plot(x_positions[i], y_log_pvals[i], c=colors[i], ls='', marker='.') xmin, xmax = plt.xlim() plt.hlines(log_bonf, xmin, xmax, colors='k', linestyles='--', alpha=0.5) plt.title('%s, %s' % (phenotype, env)) plt.savefig('/Users/bjarnivilhjalmsson/data/tmp/cegs_gwas_%s_%s_%s_%s.png' % (kinship_type, phenotype, env, phen_type)) def leave_k_out_blup(num_repeats=20, num_cvs=5, genotype_file='/Users/bjarnivilhjalmsson/data/cegs_lehmann/', k_thres=0.5): """ """ import h5py import hdf5_data import kinship import linear_models as lm import time import scipy as sp from matplotlib import pyplot as plt import analyze_gwas_results as agr phen_dict = hdf5_data.parse_cegs_drosophila_phenotypes() phenotypes = ['Protein', 'Sugar', 'Triglyceride', 'weight'] envs = ['mated', 'virgin'] rep_dict = {} for rep_i in range(num_repeats): res_dict = {} for phenotype in phenotypes: env_dict = {} for env in envs: print phenotype, env s1 = time.time() # Load data.. d = hdf5_data.coordinate_cegs_genotype_phenotype( phen_dict, phenotype, env, k_thres=k_thres) Y_means = d['Y_means'] snps = d['snps'] assert sp.all(sp.negative(sp.isnan(snps))), 'WTF?' K = kinship.calc_ibd_kinship(snps) print '\nKinship calculated' assert sp.all(sp.negative(sp.isnan(K))), 'WTF?' n = len(Y_means) # partition genotypes in k parts. gt_ids = d['gt_ids'] num_ids = len(gt_ids) chunk_size = num_ids / num_cvs # Create k CV sets of prediction and validation data cv_chunk_size = int((n / num_cvs) + 1) ordering = sp.random.permutation(n) a = sp.arange(n) osb_ys = [] pred_ys = [] p_herits = [] for cv_i, i in enumerate(range(0, n, cv_chunk_size)): cv_str = 'cv_%d' % cv_i # print 'Working on CV %d' % cv_i end_i = min(n, i + cv_chunk_size) validation_filter = sp.in1d(a, ordering[i:end_i]) training_filter = sp.negative(validation_filter) train_snps = snps[:, training_filter] val_snps = snps[:, validation_filter] train_Y = Y_means[training_filter] val_Y = Y_means[validation_filter] #Calc. kinship K_train = K[training_filter, :][:, training_filter] K_cross = K[validation_filter, :][:, training_filter] # Do gBLUP lmm = lm.LinearMixedModel(train_Y) lmm.add_random_effect(K_train) r1 = lmm.get_REML() # Now the BLUP. y_mean = sp.mean(lmm.Y) Y = lmm.Y - y_mean p_herit = r1['pseudo_heritability'] p_herits.append(p_herit) #delta = (1 - p_herit) / p_herit # if K_inverse == None: # K_inverse = K.I # M = (sp.eye(K.shape[0]) + delta * K_inverse) # u_blup = M.I * Y M = sp.mat(p_herit * sp.mat(K_train) + (1 - p_herit) * sp.eye(K_train.shape[0])) u_mean_pred = sp.array(K_cross * (M.I * Y)).flatten() osb_ys.extend(val_Y) pred_ys.extend(u_mean_pred) corr = sp.corrcoef(osb_ys, pred_ys)[1, 0] print 'Correlation:', corr r2 = corr**2 print 'R2:', r2 mean_herit = sp.mean(p_herits) print 'Avg. heritability:', mean_herit env_dict[env] = {'R2': r2, 'obs_y': osb_ys, 'pred_y': pred_ys, 'corr': corr, 'avg_herit': mean_herit} res_dict[phenotype] = env_dict rep_dict[rep_i] = res_dict res_hdf5_file = '/Users/bjarnivilhjalmsson/data/tmp/leave_%d_BLUP_results_kthres_%0.1f.hdf5' % ( num_cvs, k_thres) h5f = h5py.File(res_hdf5_file) for rep_i in range(num_repeats): res_dict = rep_dict[rep_i] rep_g = h5f.create_group('repl_%d' % rep_i) for phenotype in phenotypes: phen_g = rep_g.create_group(phenotype) for env in envs: d = res_dict[phenotype][env] env_g = phen_g.create_group(env) env_g.create_dataset('R2', data=[d['R2']]) env_g.create_dataset('corr', data=[d['corr']]) env_g.create_dataset('obs_y', data=d['obs_y']) env_g.create_dataset('pred_y', data=d['pred_y']) env_g.create_dataset('avg_herit', data=[d['avg_herit']]) h5f.close() def _test_GxE_mixed_model_gwas(num_indivs=1000, num_snps=10000, num_trait_pairs=10, plot_prefix='/Users/bjarnivilhjalmsson/tmp/test'): """ Test for the multiple environment mixed model Simulates correlated trait pairs with exponentially distributed effects. """ import simulations import kinship import scipy as sp import linear_models as lm import gwaResults as gr num_trait_pairs = 10 num_indivs = 200 num_snps = 10000 # Number of causal SNPs per trait (in total there may be up to twice that, # depending on genetic correlation) num_causals = 10 # Simulating (unlinked) genotypes and phenotype pairs w. random positive # correlation d = simulations.get_simulated_data(num_indivs=num_indivs, num_snps=num_snps, num_trait_pairs=num_trait_pairs, num_causals=num_causals) for i in range(num_trait_pairs): # The two different phenotypes. phen1 = d['trait_pairs'][i][0] phen2 = d['trait_pairs'][i][1] # Stacking up the two phenotypes into one vector. Y = sp.hstack([phen1, phen2]) # The higher genetic correlation, the better the model fit (since we # assume genetic correlation is 1). print 'The genetic correlation between the two traits is %0.4f' % d['rho_est_list'][i][0, 1] # The genotypes sd = d['sd'] snps = sd.get_snps() # Doubling the genotype data as well. snps = sp.hstack([snps, snps]) # Calculating the kinship using the duplicated genotypes K = kinship.calc_ibd_kinship(snps) print '' # Calculating the environment vector E = sp.zeros((2 * num_indivs, 1)) E[num_indivs:, 0] = 1 print 'Here are the dimensions:' print 'Y.shape: ', Y.shape print 'snps.shape: ', snps.shape print 'E.shape: ', E.shape print 'K.shape: ', K.shape mm_results = lm.emmax_w_two_env(snps, Y, K, E) gtres = mm_results["gt_res"] gtgres = mm_results["gt_g_res"] gres = mm_results["g_res"] # Figuring out which loci are causal highlight_loci = sp.array(sd.get_chr_pos_list())[ d['causal_indices_list'][i]] highlight_loci = highlight_loci.tolist() highlight_loci.sort() # Plotting stuff res = gr.Result(scores=gtres['ps'], snps_data=sd) res.plot_manhattan(png_file='%s_%d_gtres_manhattan.png' % (plot_prefix, i), percentile=50, highlight_loci=highlight_loci, plot_bonferroni=True, neg_log_transform=True) res.plot_qq('%s_%d_gtres_qq.png' % (plot_prefix, i)) res = gr.Result(scores=gtgres['ps'], snps_data=sd) res.plot_manhattan(png_file='%s_%d_gtgres_manhattan.png' % (plot_prefix, i), percentile=50, highlight_loci=highlight_loci, plot_bonferroni=True, neg_log_transform=True) res.plot_qq('%s_%d_gtgres_qq.png' % (plot_prefix, i)) res = gr.Result(scores=gres['ps'], snps_data=sd) res.plot_manhattan(png_file='%s_%d_gres_manhattan.png' % (plot_prefix, i), percentile=50, highlight_loci=highlight_loci, plot_bonferroni=True, neg_log_transform=True) res.plot_qq('%s_%d_gres_qq.png' % (plot_prefix, i)) def lotus_data_analysis(phenotype_id=1, result_files_prefix='/Users/bjarnivilhjalmsson/Dropbox/Cloud_folder/tmp/lmm_results', manhattan_plot_file='/Users/bjarnivilhjalmsson/Dropbox/Cloud_folder/tmp/lmm_manhattan.png', qq_plot_file_prefix='/Users/bjarnivilhjalmsson/Dropbox/Cloud_folder/tmp/lmm_qq'): """ Lotus GWAS (data from Stig U Andersen) """ import linear_models as lm import kinship import gwaResults as gr import dataParsers as dp import phenotypeData as pd # Load genotypes print 'Parsing genotypes' sd = dp.parse_snp_data( '/Users/bjarnivilhjalmsson/Dropbox/Lotus_GWAS/20140603_NonRep.run2.vcf.matrix.ordered.csv') # Load phenotypes print 'Parsing phenotypes' phend = pd.parse_phenotype_file( '/Users/bjarnivilhjalmsson/Dropbox/Lotus_GWAS/141007_FT_portal_upd.csv') print 'Box-cox' phend.box_cox_transform(1) # Coordinate phenotype of interest and genotypes. This filters the genotypes and # phenotypes, leaving only accessions (individuals) which overlap between both, # and SNPs that are polymorphic in the resulting subset. print 'Coordinating data' sd.coordinate_w_phenotype_data(phend, phenotype_id) # Calculate kinship (IBS/IBD) # print 'Calculating kinship' # K = kinship.calc_ibd_kinship(sd.get_snps()) # print K # Perform mixed model GWAS print 'Performing mixed model GWAS' # mm_results = lm.emmax(sd.get_snps(), phend.get_values(phenotype_id), K) # mlmm_results = lm.mlmm(phend.get_values(phenotype_id), K, sd=sd, # num_steps=10, file_prefix=result_files_prefix, # save_pvals=True, pval_file_prefix=result_files_prefix) lg_results = lm.local_vs_global_mm_scan(phend.get_values(phenotype_id), sd, file_prefix='/Users/bjarnivilhjalmsson/Dropbox/Cloud_folder/tmp/lotus_FT_loc_glob_0.1Mb', window_size=100000, jump_size=50000, kinship_method='ibd', global_k=None) # # Construct a results object print 'Processing results' # res = gr.Result(scores=mm_results['ps'], snps_data=sd) # Save p-values to file # res.write_to_file(pvalue_file) # Plot Manhattan plot # res.plot_manhattan(png_file=manhattan_plot_file, percentile=90, plot_bonferroni=True, # neg_log_transform=True) # Plot a QQ-plot # res.plot_qq(qq_plot_file_prefix) # Local-global scan def lotus_mixed_model_gwas(phenotype_id=4, phen_file = '/home/bjarni/LotusGenome/cks/Lotus31012019/20181113_136LjAccessionData.csv', gt_file = '/home/bjarni/LotusGenome/cks/Lotus31012019/all_chromosomes_binary.csv', pvalue_file='mm_results.pvals', manhattan_plot_file='mm_manhattan.png', qq_plot_file_prefix='mm_qq'): """ Perform mixed model (EMMAX) GWAS for Lotus data """ import linear_models as lm import kinship import gwaResults as gr import dataParsers as dp # Load genotypes sd = dp.parse_snp_data(gt_file) # Load phenotypes import phenotypeData as pd phend = pd.parse_phenotype_file(phen_file, with_db_ids=False) # Coordinate phenotype of interest and genotypes. This filters the genotypes and # phenotypes, leaving only accessions (individuals) which overlap between both, # and SNPs that are polymorphic in the resulting subset. sd.coordinate_w_phenotype_data(phend, phenotype_id) # Calculate kinship (IBS) K = kinship.calc_ibs_kinship(sd.get_snps()) # Perform mixed model GWAS mm_results = lm.emmax(sd.get_snps(), phend.get_values(phenotype_id), K) # Construct a results object res = gr.Result(scores=mm_results['ps'], snps_data=sd) # Save p-values to file res.write_to_file(pvalue_file) # Plot Manhattan plot res.plot_manhattan(png_file=manhattan_plot_file, percentile=90, plot_bonferroni=True, neg_log_transform=True) # Plot a QQ-plot res.plot_qq(qq_plot_file_prefix) if __name__ == '__main__': # lotus_data_analysis() # _test_GxE_mixed_model_gwas() lotus_mixed_model_gwas() # linear_regression_gwas() # multiple_loci_mixed_model_gwas() pass
38.952118
133
0.603896
4a26d3711dc98b9abb95a6124380fd82743d7f67
99
py
Python
bb_django_library/models.py
openbox/bb-django-library
eb4db4308ecda82125fa1f99fe6aa8cdd9e13eb7
[ "MIT" ]
null
null
null
bb_django_library/models.py
openbox/bb-django-library
eb4db4308ecda82125fa1f99fe6aa8cdd9e13eb7
[ "MIT" ]
4
2019-10-02T21:46:28.000Z
2021-06-10T21:09:12.000Z
bb_django_library/models.py
openbox/bb-django-library
eb4db4308ecda82125fa1f99fe6aa8cdd9e13eb7
[ "MIT" ]
null
null
null
from django.db import models class Foo(models.Model): bar = models.CharField(max_length=255)
16.5
42
0.747475
4a26d5a6439a8fed7c57ca5d77fd57f95a4e2733
1,709
py
Python
test/test_styles.py
Inveracity/flynt
b975b6f61893d5db1114d68fbb5d212c4e11aeb8
[ "MIT" ]
487
2019-06-10T17:44:56.000Z
2022-03-26T01:28:19.000Z
test/test_styles.py
Inveracity/flynt
b975b6f61893d5db1114d68fbb5d212c4e11aeb8
[ "MIT" ]
118
2019-07-03T12:26:39.000Z
2022-03-06T22:40:17.000Z
test/test_styles.py
Inveracity/flynt
b975b6f61893d5db1114d68fbb5d212c4e11aeb8
[ "MIT" ]
25
2019-07-10T08:39:58.000Z
2022-03-03T14:44:15.000Z
import random import pytest from flynt.format import QuoteTypes, get_quote_type, set_quote_type from flynt.lexer.split import get_chunks @pytest.mark.parametrize( argnames=["code", "quote_type"], argvalues=[ ("'abra'", QuoteTypes.single), ('"bobro"', QuoteTypes.double), ("'''abra'''", QuoteTypes.triple_single), ('"""bobro"""', QuoteTypes.triple_double), ], ) def test_get_quote_type_token(code, quote_type): g = get_chunks(code) next(g) chunk = next(g) token = chunk.tokens[0] assert token.get_quote_type() == quote_type @pytest.mark.parametrize( argnames=["code", "quote_type"], argvalues=[ ("'abra'", QuoteTypes.single), ('"bobro"', QuoteTypes.double), ("'''abra'''", QuoteTypes.triple_single), ('"""bobro"""', QuoteTypes.triple_double), ], ) def test_get_quote_type(code, quote_type): assert get_quote_type(code) == quote_type @pytest.mark.parametrize( argnames="code", argvalues=["'abra'", '"bobro"', "'''abra'''", '"""bobro"""'] ) def test_cycle(code): assert set_quote_type(code, get_quote_type(code)) == code @pytest.mark.parametrize(argnames="quote_type", argvalues=QuoteTypes.all) def test_initial_doesnt_matter(quote_type): code = random.choice(["'abra'", '"bobro"', "'''abra'''", '"""bobro"""']) assert get_quote_type(set_quote_type(code, quote_type)) == quote_type def test_single(): code = '"alpha123"' expected = "'alpha123'" assert set_quote_type(code, QuoteTypes.single) == expected def test_single_from_triple(): code = '"""alpha123"""' expected = "'alpha123'" assert set_quote_type(code, QuoteTypes.single) == expected
25.893939
81
0.652428
4a26d5ed61d7b4693b755747cbdf583a47372e5d
80
py
Python
template/{{ cookiecutter.project_slug }}/{{ cookiecutter.project_module }}/__init__.py
seldonPlan/pyscript
562335b5f11c2bf1820577d143c973e58cb35f01
[ "MIT" ]
null
null
null
template/{{ cookiecutter.project_slug }}/{{ cookiecutter.project_module }}/__init__.py
seldonPlan/pyscript
562335b5f11c2bf1820577d143c973e58cb35f01
[ "MIT" ]
null
null
null
template/{{ cookiecutter.project_slug }}/{{ cookiecutter.project_module }}/__init__.py
seldonPlan/pyscript
562335b5f11c2bf1820577d143c973e58cb35f01
[ "MIT" ]
null
null
null
"""{{ cookiecutter.project_name }} project description""" __version__ = "0.0.1"
26.666667
57
0.7
4a26d62b6a1f60e7a9b3963ab4f92a435d8bebdd
403
py
Python
register/migrations/0019_auto_20190402_2028.py
LucasHiago/pede_ja
62609a32d045b167a96be79cc93113d32dcfe917
[ "MIT" ]
null
null
null
register/migrations/0019_auto_20190402_2028.py
LucasHiago/pede_ja
62609a32d045b167a96be79cc93113d32dcfe917
[ "MIT" ]
null
null
null
register/migrations/0019_auto_20190402_2028.py
LucasHiago/pede_ja
62609a32d045b167a96be79cc93113d32dcfe917
[ "MIT" ]
null
null
null
# Generated by Django 2.1.4 on 2019-04-02 20:28 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('register', '0018_auto_20190401_1338'), ] operations = [ migrations.AlterField( model_name='offlinecompensations', name='date', field=models.DateField(auto_now_add=True), ), ]
21.210526
54
0.615385
4a26d6d623b3f895bd16ef6cafd11e6c226bd62e
184
py
Python
packages/lib/python3.8/site-packages/corsheaders/models.py
sakthiRathinam/cuebook
7f9b13fe73ed366959fdbee3ee0e60dcf5efbffb
[ "MIT" ]
null
null
null
packages/lib/python3.8/site-packages/corsheaders/models.py
sakthiRathinam/cuebook
7f9b13fe73ed366959fdbee3ee0e60dcf5efbffb
[ "MIT" ]
3
2019-02-27T11:06:34.000Z
2021-06-10T21:11:45.000Z
env/lib/python3.6/site-packages/corsheaders/models.py
developeroka/blog_restapi
3a4dd782c2bb71562aa59919593a3ad984bd7a9b
[ "MIT" ]
null
null
null
from django.db import models # For signal registration from .signals import check_request_enabled # noqa class CorsModel(models.Model): cors = models.CharField(max_length=255)
20.444444
50
0.782609
4a26d7a9d1d0b0ec7f9fb39fe2e48b175e11ec8c
5,170
py
Python
utils/image1_gluoncv.py
jundeli/Scaled-YOLOv4-tensorflow2
dd2ce523258f9a5b851bd6f391a6c07a4999662e
[ "Apache-2.0" ]
30
2021-01-29T13:57:47.000Z
2022-02-09T13:17:57.000Z
utils/image1_gluoncv.py
jundeli/Scaled-YOLOv4-tensorflow2
dd2ce523258f9a5b851bd6f391a6c07a4999662e
[ "Apache-2.0" ]
13
2021-04-16T06:30:27.000Z
2022-03-16T18:42:23.000Z
utils/image1_gluoncv.py
jundeli/Scaled-YOLOv4-tensorflow2
dd2ce523258f9a5b851bd6f391a6c07a4999662e
[ "Apache-2.0" ]
16
2021-04-28T06:51:58.000Z
2022-03-23T23:47:52.000Z
"""Extended image transformations to `mxnet.image`.""" from __future__ import division import random import numpy as np import cv2 __all__ = ['imresize', 'random_pca_lighting', 'random_expand', 'random_flip'] def imresize(src, w, h, inter=1): """Resize image with OpenCV. This is a duplicate of mxnet.image.imresize for name space consistency. Parameters ---------- src : mxnet.nd.NDArray source image w : int, required Width of resized image. h : int, required Height of resized image. interp : int, optional, default='1' Interpolation method (default=cv2.INTER_LINEAR). out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. Examples -------- """ # oh, ow, _ = src.shape # return mx.image.imresize(src, w, h, interp=get_interp(interp, (oh, ow, h, w))) if inter == 0: inter_type = cv2.INTER_NEAREST elif inter == 1: inter_type = cv2.INTER_LINEAR elif inter == 2: inter_type = cv2.INTER_LINEAR_EXACT elif inter == 3: inter_type = cv2.INTER_AREA elif inter == 4: inter_type = cv2.INTER_CUBIC src = cv2.resize(src, (w,h), interpolation = inter_type) return src def random_pca_lighting(src, alphastd, eigval=None, eigvec=None): """Apply random pca lighting noise to input image. Parameters ---------- img : mxnet.nd.NDArray Input image with HWC format. alphastd : float Noise level [0, 1) for image with range [0, 255]. eigval : list of floats. Eigen values, defaults to [55.46, 4.794, 1.148]. eigvec : nested lists of floats Eigen vectors with shape (3, 3), defaults to [[-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203]]. Returns ------- mxnet.nd.NDArray Augmented image. """ if alphastd <= 0: return src if eigval is None: eigval = np.array([55.46, 4.794, 1.148]) if eigvec is None: eigvec = np.array([[-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203]]) alpha = np.random.normal(0, alphastd, size=(3,)) rgb = np.dot(eigvec * alpha, eigval) src += nd.array(rgb, ctx=src.context) return src def random_expand(src, max_ratio=4, fill=0, keep_ratio=True): """Random expand original image with borders, this is identical to placing the original image on a larger canvas. Parameters ---------- src : mxnet.nd.NDArray The original image with HWC format. max_ratio : int or float Maximum ratio of the output image on both direction(vertical and horizontal) fill : int or float or array-like The value(s) for padded borders. If `fill` is numerical type, RGB channels will be padded with single value. Otherwise `fill` must have same length as image channels, which resulted in padding with per-channel values. keep_ratio : bool If `True`, will keep output image the same aspect ratio as input. Returns ------- mxnet.nd.NDArray Augmented image. tuple Tuple of (offset_x, offset_y, new_width, new_height) """ if max_ratio <= 1: return src, (0, 0, src.shape[1], src.shape[0]) h, w, c = src.shape ratio_x = random.uniform(1, max_ratio) if keep_ratio: ratio_y = ratio_x else: ratio_y = random.uniform(1, max_ratio) oh, ow = int(h * ratio_y), int(w * ratio_x) off_y = random.randint(0, oh - h) off_x = random.randint(0, ow - w) dst = np.full(shape=(oh, ow, c), fill_value=fill, dtype=src.dtype) # make canvas # if isinstance(fill, np.numeric_types): # dst = np.full(shape=(oh, ow, c), val=fill, dtype=src.dtype) # else: # fill = np.array(fill, dtype=src.dtype) # if not c == fill.size: # raise ValueError("Channel and fill size mismatch, {} vs {}".format(c, fill.size)) # dst = np.tile(fill.reshape((1, c)), reps=(oh * ow, 1)).reshape((oh, ow, c)) dst[off_y:off_y+h, off_x:off_x+w, :] = src return dst, (off_x, off_y, ow, oh) def random_flip(src, px=0, py=0, copy=False): """Randomly flip image along horizontal and vertical with probabilities. Parameters ---------- src : mxnet.nd.NDArray Input image with HWC format. px : float Horizontal flip probability [0, 1]. py : float Vertical flip probability [0, 1]. copy : bool If `True`, return a copy of input Returns ------- mxnet.nd.NDArray Augmented image. tuple Tuple of (flip_x, flip_y), records of whether flips are applied. """ flip_y = np.random.choice([False, True], p=[1-py, py]) flip_x = np.random.choice([False, True], p=[1-px, px]) if flip_y: src = np.flip(src, axis=0) if flip_x: src = np.flip(src, axis=1) if copy: src = np.copy() return src, (flip_x, flip_y) #
31.717791
95
0.595938
4a26d91e30978b9d6e68c8810dadaa7060ec32a8
47
py
Python
girvi/__init__.py
rajeshr188/django-onex
f1086a4159b1d135e54327c77c93fcc6c446338f
[ "MIT" ]
2
2019-06-08T22:50:59.000Z
2020-07-12T14:13:18.000Z
girvi/__init__.py
rajeshr188/django-onex
f1086a4159b1d135e54327c77c93fcc6c446338f
[ "MIT" ]
13
2020-02-11T23:51:43.000Z
2021-06-05T13:10:49.000Z
girvi/__init__.py
rajeshr188/django-onex
f1086a4159b1d135e54327c77c93fcc6c446338f
[ "MIT" ]
null
null
null
default_app_config = 'girvi.apps.GirviConfig'#
23.5
46
0.808511
4a26d9883adda9b724e5bc544c38e43e2e27af1f
46,798
py
Python
lib/transient.py
apokhr/PumpProbe-analysis
18ddd4b5be37b48bed249d90baeabae941b72648
[ "MIT" ]
null
null
null
lib/transient.py
apokhr/PumpProbe-analysis
18ddd4b5be37b48bed249d90baeabae941b72648
[ "MIT" ]
null
null
null
lib/transient.py
apokhr/PumpProbe-analysis
18ddd4b5be37b48bed249d90baeabae941b72648
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon May 15 09:57:29 2017 @author: S.Y. Agustsson """ import os import re import numpy as np import pandas as pd import scipy.io as spio import scipy.signal as spsignal from matplotlib import cm, pyplot as plt from scipy.optimize import curve_fit from lib import utils def main(): path = 'E:/data/RuCl3/mat/kerr_rotation/fluence_3.8K/' series_name = 'Kerr - 4K fluence dependence' key_parameter = 'pump_power' files = os.listdir(path) filepaths = [] for name in files: filepaths.append(path + name) series = MultiTransients(transients_list=filepaths, series_name=series_name, key_parameter=key_parameter) print(series.key_parameter) series.quickplot() plt.show() class Transient(object): """ Creates an object(OBJ) that contains data and metadata of a single time resolved scan. The standard scan is that obtained from a single color pump probe setup, aka 'RedRed'. Data can be imported through use of OBJ.import_file(filepath), which imports either the raw .mat format outputted by RegaScope2012, or the .txt format outputted by this class (called csv here due to the csv format of contained data). To output such .txt use OBJ.export_csv(directory). Data is contained in: - raw_time: raw measured time scale - raw_trace: measured data points - time: time trace modified by analysis functions applied on this object - trace: data modified by analysis functions applied on this object. Metadata entries are described in __init__ """ def __init__(self, key_parameter=None, series_name=None, description=None): """ :param key_parameter: str, name of parameter iterated in the series this scan belongs to. :param description: description of the scan/series. """ ###################################### # Data # ###################################### self.raw_time = np.array([]) # time data self.raw_trace = np.array([]) # raw trace data self.time = np.array([]) # cleaned time axis self.trace = np.array([]) # cleaned and modified data trace ###################################### # Metadata # ###################################### self.name = None # String used as file name for saving data self.material = None # Material name self.date = None # Scan date in format YYYY-MM-DD hh.mm.ss self.original_filepath = None # Path to original raw file # parameters self.pump_power = None # Pump Power [mW] self.probe_power = None # Probe Power [mW] self.destruction_power = None # Destruction Power [mW] # Spot size represents the FWHM diameter from Gaussian fit of the beam profile self.pump_spot = None # Pump beam spot size [micrometers] self.probe_spot = None # Probe beam spot size [micrometers] self.destruction_spot = None # Destruction beam spot size [micrometers] # Excitation densities calculated from power, spot size and repetition rate self.pump_energy = None self.probe_energy = None self.destruction_energy = None # destruction pulse parameters: self.t12 = None # delay between pump and destruction pulses, [ps] # Polarization are measured clockwise in propagation direction of the beam, 0 = 12o'clock self.pump_polarization = None # Pump beam polarization [deg] self.probe_polarization = None # Probe beam polarization [deg] self.destruction_polarization = None # Destruction beam polariz. [deg] self.sample_orientation = None # Sample orientation [deg] self.temperature = None # Temperature [K] self.R0 = None # Static reflectivity ###################################### # Analysis # ###################################### self.analysis_log = {} # Keeps track of analysis changes performed self.fit_function = None self.fit_parameters = None ###################################### # input info # ###################################### self.description = description self.key_parameter = key_parameter if self.key_parameter is not None: self.key_parameter_value = getattr(self, self.key_parameter) else: self.key_parameter_value = None self.series_name = series_name # ignore list for metadata export. Add here any further non-metadata attributes created in this class. self.DATA_ATTRIBUTES = ('raw_time', 'raw_trace', 'time', 'trace', 'DATA_ATTRIBUTES') # %% metadata management def key_parameter_value(self): try: self.key_parameter_value = getattr(self, str(self.key_parameter)) return self.key_parameter_value except AttributeError: raise AttributeError('No key parameter detected.') def calc_energy_densities(self, rep_rate=283000): """ recalculate metadata depending on given parameters. it calculates energy densities """ beams = ['pump', 'probe', 'destruction'] for beam in beams: if getattr(self, (beam + '_spot')) is None: pass else: power = getattr(self, (beam + '_power')) spot = getattr(self, (beam + '_spot')) if beam == 'pump': rep_rate = rep_rate / 2 # pump has half reprate (darkcontrol) energy = round(utils.get_energy_density(spot, power, rep_rate), 3) print(energy) setattr(self, (beam + '_energy'), energy) def input_attribute(self, attribute_name, value): """ manually input values for metadata attributes :param attribute_name: name of parameter or attribute :param value: value to assign to parameter """ setattr(self, attribute_name, value) def get_metadata(self): """ Returns a dictionary containing all metadata information available keys are attribute names and values the corresponding value. :rtype: dict """ metadata = {'analysis_log': {}} # make dict for metadata. Also create analysis_log entry, used later attributes = self.__dict__ for key, value in attributes.items(): if key not in self.DATA_ATTRIBUTES and value is not None: # ignore time, trace and all other fields defined in data_attributes try: # if parameter is a number != 0 append to metadata metadata[key] = float(attributes[key]) except (TypeError, ValueError): metadata[key] = value return metadata def log_it(self, keyword, overwrite=False, *args, **kargs): """ Generate log entry for analysis_log. creates a key with given key in analysis_log, making it: - boolean if no other args or kargs are given, flips previous values written in log - list if *args are passed - dictionary if **kargs are passed if overwrite is False, it appends values on previous logs, if True, it obviously overwrites them. :param key: string with name of analysis function used :type overwrite: bool """ # key_string = 'analysis_log[' + key + ']' # make the right type of entry for the log if kargs or args: if kargs: # make a dictionary of parameters passed entry = {} for key in kargs: entry[key] = kargs[key] if args: # make a lsit of parameter passed entry = [] for arg in args: entry.append(arg) else: # make None to trigger boolean behaviour entry = None # Check if previous logs with this key and eventually overwrite/append # the new entry. try: # prev = getattr(self, key_string) previous_value = self.analysis_log[keyword] # if it finds such a key in this library, it overwrites/appends new information. if entry == None: # trigger boolean behaviour, flipping previous registered status if available self.analysis_log[keyword] = not previous_value elif entry is list: if overwrite: self.analysis_log[keyword] = entry # setattr(self, key_string, previous_value + entry) else: entry = previous_value.append(entry) self.analysis_log[keyword] = entry elif entry is dict: if overwrite: self.analysis_log[keyword] = entry else: new_entry = {} for key in entry: if key in previous_value: new_entry[key] = previous_value[key].append(entry[key]) else: new_entry[key] = entry[key] self.analysis_log[keyword] = new_entry except KeyError: # rises Key error when key was not previously assigned -> no previous record of this analysis if entry == None: # if boolean, its it's first usage, therefore set it to true self.analysis_log[keyword] = True else: # otherwise just append the list/dictionary. self.analysis_log[keyword] = entry def give_name(self): """Define name attribute as material_date.""" if self.key_parameter is None: self.key_parameter = input('What is the Key parameter for basename? ') if self.description is None: self.description = input('Add brief description for file name: ') self.name = (str(self.material) + '_' + str(self.description) + '_' + str(getattr(self, self.key_parameter)) + '_' + str(self.get_unit(self.key_parameter))) def get_unit(self, parameter): """ Returns the unit of the given parameter. works for - power - polarization - R0 - trace - time - energy - temperature parameter:type parameter: str """ splitpar = parameter.split('_') if splitpar[-1] == 'power': return ('mW') elif splitpar[-1] == 'polarization' or splitpar[-1] == 'orientation': return ('deg') elif splitpar[-1] == 'R0': return ('V') elif splitpar[-1] == 'trace': return ('') elif splitpar[-1] == 'time': return ('ps') elif splitpar[-1] == 'energy': return ('mJ/cm^2') elif splitpar[-1] == 'temperature': return ('K') else: return ('') # %% import export def import_file(self, filepath, cleanData=True, key_parameter=None, description=None, silent=True, **kwargs): """ Imports a file, .mat or .csv, using self.import_file_mat() and self.import_file_csv methods respectively. :param filepath path to file :param cleanData: run the cleanData method, including fltering, baseline removal, setting timezero and others. :param key_parameter sets the key parameter :param description brief description of this transient, for file naming :param silent if true, doesnt print anything, set to False for debugging :param **kwargs all keyord args passed are set as attributes of this class instance. (use to overwrite parameters. """ try: # if it finds the file requested... ext = os.path.splitext(filepath)[-1].lower() basename = os.path.basename(filepath) if ext == '.mat': try: self.import_file_mat(filepath) except TypeError: print('Ignored incorrect matlab file: {}'.format(filepath)) # # if basename.lower() != 't-cal.mat': # self.import_file_mat(filepath) # else: # print('Ignored t-cal.mat') elif ext == '.txt': self.import_file_csv(filepath) else: print("Invalid format. Couldn't import file: " + filepath) # self.importMetadata() if key_parameter is not None: self.key_parameter = key_parameter if description is not None: self.description = description self.give_name() for attr,val in kwargs: setattr(self,attr,val) if not silent: print('Imported {0} as {1}'.format(basename, self.name)) if cleanData and len(self.raw_time) != 0: self.clean_data() except TypeError as err: print(err) except FileNotFoundError: print('File ' + filepath + ' not found') def import_file_mat(self, filepath): """Import data from a raw .mat file generated by redred software. extracts data about raw_time raw_trace and R0. """ self.original_filepath = filepath data = spio.loadmat(filepath) try: # if it finds the right data structure self.raw_time = data['Daten'][2] self.raw_trace = data['Daten'][0] self.R0 = data['DC'][0][0] # get all metadata from name metadataDict = utils.get_metadata_from_name(filepath) # todo: add eventual non scripted parameters # write metadata to relative attributes for key in metadataDict: try: setattr(self, key, metadataDict[key]) except KeyError: print('invalid key: ' + key) except KeyError: raise TypeError(filepath + ' is not a valid matlab scan datafile. As created by redred setup.') def import_file_csv(self, filepath): """ Import data from a .txt file containing metadata in the header. Metadata should be coded as variable names from this class: material, date, pump_power, temperature, probe_polarization etc... Data expected is 4 couloms: raw_time, raw_trace, time, trace. filepath should full path to file as string. """ # ---------- get metadata ---------- # dictionary of attributes where to assign parameters attributes = self.__dict__ parameters = [] for attribute in attributes: # use only non-data attributes if attribute not in self.DATA_ATTRIBUTES: parameters.append(attribute) with open(filepath, 'r') as f: n = 0 for l in f: # search for the data coulomn header if 'raw_time' in l: dataOffset = n + 1 # used for offset of data fetching, data starts from next line -> +1 columnHeaders = l.replace('\n', '').replace(' ', '').split(',') else: n += 1 # split each line from file into a list word = l[:-1:].split(': ') # if the first word corresponds to an attribute name if word[0] in parameters: key = word[0] value_string = word[1].replace(' ', '') if self.get_unit(key): # if parameter expects units, get only numbers, value = float(re.findall("\d+\.\d+", value_string)[0]) else: # otherwise get the whole string value = value_string # create/assign attribute from imported parameter setattr(self, key, value) self.key_parameter_value = getattr(self, self.key_parameter) # ---------- get data ---------- using pandas! :) data = pd.read_csv(filepath, names=columnHeaders, skiprows=dataOffset) for col in data.columns: # make a list of float tipe data for each dataset found col_data = getattr(data, col).astype(float).tolist() data_list = [] for i in col_data: if i != 'nan': data_list.append(i) setattr(self, col, data_list) def export_file_csv(self, directory): """ save Transient() to a .txt file in csv format (data) Metadata header is in tab separated values, generated as 'name': 'value' 'unit' data is comma separated values, as raw_time, raw_trace, time, trace. Metadata is obtained from get_metadata(), resulting in all non0 parameters available. """ # ----------- metadata ----------- # self.give_name() # creates a name for the file print('Exporting {0}'.format(self.name)) metadata = self.get_metadata() logDict = metadata.pop('analysis_log', None) # separate log, will be printed later logDict.pop('', None) # remove the useless empty entry name = metadata.pop('name', None) original_filepath = metadata.pop('original_filepath', None) # open file with name self.name in overwrite mode file = open(directory + name + '.txt', 'w+') # make a title in the header file.write('RedRed Scan\n\nMetadata\n\n') # write metadata as: parameter: value unit for key in metadata: try: line = (key + ': ' + str(metadata[key]) + ' ' + self.get_unit(key) + '\n') file.write(line) except TypeError: print("Type error for " + key + 'when writing to file: ' + self.name) # write analysis log as function: values file.write('\nAnalysis\n') for key in logDict: line = key + ': ' + str(logDict[key]) + '\n' file.write(line) # ----------- Data ----------- # Data header followed by column heads: file.write('\n\nData\n\n') file.write('raw_time, raw_trace, time, trace\n') for i in range(len(self.raw_time)): line = str(self.raw_time[i]) + ',' + str(self.raw_trace[i]) try: # try appending analysied data, or skip if it is finished # this because of the deleting of initial and final data line += ',' + str(self.time[i]) + ',' + str(self.trace[i]) except IndexError: pass finally: line += '\n' file.write(line) file.close() # %% Data manipulation def clean_data(self, cropTimeScale=True, shiftTime=0, flipTime=True, removeDC=True, filterLowPass=True, flipTrace=False): """Perform a standard set of data cleaning, good for quick plotting and test purposes.""" if cropTimeScale: self.crop_time_scale() if shiftTime: self.shift_time(shiftTime) if filterLowPass: self.filter_low_pass() if flipTrace: self.flip_trace() if removeDC: self.remove_DC_offset() if flipTime: self.flip_time() def crop_time_scale(self): # todo: fix the overwriting issue """chops time scale to the monotonous central behaviour, deleting the wierd ends. ATTENTION: overwrites self.time and self.trace, deleting any previous changes""" # clear previous time and trace, and the analysis log since it goes lost self.analysis_log = {} # reset log self.time = [] # reset time and trace self.trace = [] # print('crop time scale, len: ' + str(len(self.raw_time))) maxT = max(self.raw_time) minT = min(self.raw_time) # pick the type of behaviour. redred scans will always be false in this statement if self.raw_time[0] < self.raw_time[1]: start = 0 while self.raw_time[start] < maxT: start += 1 end = start while self.raw_time[end] > minT: end += 1 i = 0 while i in range(end - start): self.time.append(self.raw_time[i + start]) self.trace.append(self.raw_trace[i + start]) i += 1 elif self.raw_time[0] > self.raw_time[1]: start = 0 while self.raw_time[start] > minT: start += 1 end = start while self.raw_time[end] < maxT: end += 1 i = 0 while i in range(end - start): self.time.append(self.raw_time[i + start]) self.trace.append(self.raw_trace[i + start]) i += 1 self.log_it('Crop Time Scale', maxtime=maxT, mintime=minT) def shift_time(self, tshift): """ Shift time scale by tshift. Changes time zero writes to analysis_log the shifted value, or increases it if already present""" self.time = np.array(self.time) - tshift self.log_it('Shift Time', tshift) def flip_time(self): """ Flip time scale: t = -t also reverts order in the array""" self.time = self.time[::-1] self.time = -np.array(self.time) self.trace = self.trace[::-1] self.log_it('Flip Time') def flip_trace(self): """ Flip the Y trace, usually not needed from matlab redred software""" self.trace = -self.trace self.log_it('Flip Trace') def remove_DC_offset(self, window=40): # todo: change range in case of flipped scan!!! """Remove DC offset. offset is caluclated with 40 points (~700fs) taken at negative time delays. such delay is at the end of the scan in raw data, or at the beginning if scan was reverted by flip_time """ try: reverted = self.analysis_log['Flip Time'] except KeyError: reverted = False if reverted: shift = np.average(self.trace[0:window:1]) else: tpoints = len(self.time) shift = np.average(self.trace[tpoints - window:tpoints:1]) self.trace = self.trace - shift self.log_it('Remove DC', window=window, shift=shift) def filter_low_pass(self, cutHigh=0.1, order=1, return_frequency=False): # todo: add different methods between which to choose """ apply simple low pass filter to data. if return_frequency is True, returns the filter frequency value in THz ( if time data is in ps) This function applies a linear filter twice, once forward and once backwards. The combined filter has linear phase. To avoid spikes at edges of the scan, Gustaffson's method is used: F. Gustaffson, “Determining the initial states in forward-backward filtering”, Transactions on Signal Processing, Vol. 46, pp. 988-992, 1996. """ b, a = spsignal.butter(order, cutHigh, 'low', analog=False) self.trace = spsignal.filtfilt(b, a, self.trace, method='gust') frequency = utils.get_nyquist_frequency(self.time) * cutHigh self.log_it('Low Pass Filter', frequency=frequency, nyq_factor=cutHigh, order=order) if return_frequency: return frequency def normalize_to_parameter(self, parameter): """ Normalize scan by dividing by its pump power value""" if getattr(self, parameter): if getattr(self, parameter) != 0: self.trace = self.trace / getattr(self, parameter) else: print('Normalization failed: invalid parameter name') logkey = 'Normalized by ' + parameter.replace('_', ' ') self.log_it(logkey) def quickplot(self, xlabel='Time [ps]', ylabel='Trace', fntsize=15, title='Transient', clear=False, raw=False): """Generates a quick simple plot with matplotlib """ if clear: plt.clf() quickplotfig = plt.figure(num=1) ax = quickplotfig.add_subplot(111) if raw: ax.plot(self.raw_time, self.raw_trace, 'o') else: ax.plot(self.time, self.trace, ) ax.set_xlabel(xlabel, fontsize=fntsize) ax.set_ylabel(ylabel, fontsize=fntsize) ax.set_title(title, fontsize=fntsize) ax.tick_params(axis='x', labelsize=fntsize) ax.tick_params(axis='y', labelsize=fntsize) plt.show() class MultiTransients(object): """ list of transients corresponding to a certain dependence series""" datadir = 'E:/DATA_temp' def __init__(self, transients_list=None, series_name=None, description=None, key_parameter=None): """ Initialize the transients_list can be a list of transient objects or of path strings pointing to data files :param transients_list: list can be a list of transient objects or of path strings pointing to data files or None if not given, will create an empty object, where to later load data. :param series_name: str title of the series, used for printing on graphs for example. :param description: str some description.. not really used. :param key_parameter: str the parameter which changes throughout each scan, making it a "key_parameter" dependence series. """ if transients_list is None: self.transients = [] self.key_parameter = None self.description = None self.series_name = None self.material = None self.key_parameter_list = None self.metadata = None else: if type(transients_list[0]) == Transient: self.transients = transients_list self.import_metadata_from_transients() elif type(transients_list[0]) in (str, dir): self.transients = [] self.import_files(transients_list) self.metadata = self.get_metadata() if key_parameter is None: self.key_parameter = self.transients[0].key_parameter if self.key_parameter is None: self.key_parameter = self.get_dependence_parameter() else: self.key_parameter = key_parameter if description is None: self.description = self.transients[0].description if self.description is None: self.description = None else: self.description = description if series_name is None: self.series_name = self.transients[0].series_name if self.series_name is None: self.series_name = None else: self.series_name = series_name self.key_parameter_list = [] self.sort_scan_list_by_parameter() self.update_key_parameter_list() # %% Metadata def give_name(self, name=None): if name is None: name = input('Choose a name for this series') self.series_name = name for scan in self.transients: self.series_name = name def get_dependence_parameter(self): # todo: fix it, doesnt work, unhashable dict in definition of valdic """find the variable parameter within the series of scans. :returns : str name of dependence parameter, list of str if multiple dependence parameters found, also prints message. """ dependence_parameter = [] for key in self.metadata: valdic = {i: self.metadata[key].count(i) for i in frozenset(self.metadata[key])} if len(valdic) != 1: dependence_parameter.append(key) if 'date' in dependence_parameter: dependence_parameter.remove('date') if 'originalfilename' in dependence_parameter: dependence_parameter.remove('originalfilename') if len(dependence_parameter) > 1: print("Warning: multiple variables change between scans") print('Please choose between:') for parameter in dependence_parameter: print(parameter) dependence_parameter = input('\nEnter chosen key parameter: ') if len(dependence_parameter) < len(self.transients): print('Warning: multiple scans with same key parameter') else: dependence_parameter = str(dependence_parameter) return dependence_parameter def get_metadata(self): """Create a Dictionary of all metadata from all single scans. Each entry of the dictionary represents a parameter. Its values are a list of the value corresponding to the scan.""" # get metadata from first scan, to initialize dictionary metadata = self.transients[0].get_metadata() for key in metadata: metadata[key] = [metadata[key]] # construct a dictionary containing all metadata skip = True # skip first entry, since it was already written during # initialization for transient in self.transients: if not skip: md = transient.get_metadata() for key in metadata: metadata[key].append(md[key]) else: skip = False return metadata def update_transients_metadata(self): """ assign metadata from multitransient object to each scan""" for scan in self.transients: scan.key_parameter = self.key_parameter scan.description = self.description scan.series_name = self.series_name scan.material = self.material # %% Import Export def import_metadata_from_transients(self): metadata = self.get_metadata() try: self.key_parameter = metadata['key_parameter'][0] except KeyError: pass try: self.material = metadata['material'][0] except KeyError: pass try: self.description = metadata['description'][0] except KeyError: pass try: self.series_name = metadata['series_name'][0] except KeyError: pass def import_files(self, files, append=False, key_parameter=None, description=None): """imports any series of data files. Files can be: - string of full path of a single scan - list of full paths of a single scan - folder from which all files will be imported - append : if true, appends new scans to object, if false overwrites. """ if not append: self.transients = [] # clear scans in memory # check if 'files' is single file (str), list of files ([str,str,...]) or folder containing files. if isinstance(files, str): self.transients.append(Transient(key_parameter=key_parameter, description=description)) self.transients[-1].import_file(files) print('Imported file ' + files) elif isinstance(files, list) or isinstance(files, tuple): for i in range(len(files)): self.transients.append(Transient(key_parameter=key_parameter, description=description)) self.transients[-1].import_file(files[i]) print('Imported files form list') elif os.path.isdir(files): folderlist = os.listdir(files) for i in range(len(folderlist)): fullpath = files + '//' + folderlist[i] self.transients.append(Transient(key_parameter=key_parameter, description=description)) self.transients[-1].import_file(fullpath) print('Imported files form folder') self.import_metadata_from_transients() # self.key_parameter = self.get_dependence_parameter() # self.sort_scan_list_by_parameter() # todo: uncomment when get dependence parmater is fixed # %% data analysis def saveas_csv(self, directory=None): # todo: implement dynamic paramter choosing option """ creates a directory inside the given directory where it will save all data in csv format.""" if directory is None: directory = utils.choose_folder('C:/Users/sagustss/py_code/DATA') save_dir = directory + '/' + self.series_name + '_' + self.key_parameter + '/' if os.path.exists(save_dir): n = 1 new_save_dir = save_dir + '_1' while True: if os.path.exists(new_save_dir): n += 1 new_save_dir = new_save_dir.split('_')[0] + '_' + str(n) else: save_dir = new_save_dir os.makedirs(save_dir) self.update_transients_metadata() for item in self.transients: item.export_file_csv(save_dir) def clean_data_all_scans(self, cropTimeScale=True, shiftTime=0, flipTime=True, removeDC=True, filterLowPass=True, flipTrace=False): """ :return: """ for transient in self.transients: transient.clean_data(cropTimeScale=cropTimeScale, shiftTime=shiftTime, flipTime=flipTime, removeDC=removeDC, filterLowPass=filterLowPass, flipTrace=flipTrace) def input_attribute(self, attribute_name, value): """ manually input values for metadata attributes :param attribute_name: name of parameter or attribute :param value: value to assign to parameter """ setattr(self, attribute_name, value) def sort_scan_list_by_parameter(self, reverse=False): transients_list = self.transients parameter = self.key_parameter # self.transients = sorted(self.transients, key=lambda transients: getattr(transients, parameter)) self.transients.sort(key=lambda x: getattr(x, parameter), reverse=reverse) self.update_key_parameter_list() # return sorted_list def update_key_parameter_list(self): self.key_parameter_list = [] for transient in self.transients: self.key_parameter_list.append(getattr(transient, self.key_parameter)) # %% analysis def filter_low_pass(self, cutHigh=0.1, order=2): for item in self.transients: item = item.filter_low_pass(cutHigh, order) def remove_DC_offset(self): for item in self.transients: item = item.remove_DC_offset() def flip_time(self): for item in self.transients: item = item.flip_time() def flip_trace(self): for item in self.transients: item = item.flip_trace def shift_time(self, tshift): for item in self.transients: item = item.shift_time(tshift) # %% plot functions # %% plot def quickplot(self, figure=1): """ simple plot of a list of transients """ # todo: move to transients.py -> under multitransients() fig = plt.figure(num=figure) plt.clf() ax = fig.add_subplot(111) ax.set_xlabel('Time [ps]', fontsize=18) ax.set_ylabel('Differential Reflectivity', fontsize=18) ax.set_title(self.series_name, fontsize=26) ax.tick_params(axis='x', labelsize=12) ax.tick_params(axis='y', labelsize=12) # todo: make nice color iteration, that follows parameter value colorlist_length = len(self.transients) colorlist = plt.cm.rainbow(np.linspace(0, 1, colorlist_length)) color = iter(colorlist) for curve in self.transients: xdata = curve.time ydata = curve.trace label = str(getattr(curve, self.key_parameter)) + str(curve.get_unit(self.key_parameter)) col = next(color) ax.plot(xdata, ydata, c=col, label=label, alpha=0.7) return fig def quickplot_OLD(self): """ simple plot of a list of transients """ fig = plt.figure(num=516542) plt.clf() # ax = fig.add_subplot(111) ax.set_xlabel('Time [ps]', fontsize=18) ax.set_ylabel('Differential Reflectivity', fontsize=18) ax.set_title(self.series_name, fontsize=26) ax.tick_params(axis='x', labelsize=12) ax.tick_params(axis='y', labelsize=12) key_parameter_values = [] for transient in self.transients: key_parameter_values.append(getattr(transient, self.key_parameter)) key_parameter_max = max(key_parameter_values) print(key_parameter_max) n = 1 # while key_parameter_range % 10 != 0: # n *=10 # key_parameter_range * n colorlist = cm.rainbow(np.linspace(0, 1, 1001)) # colorlist = cm.rainbow(np.logspace(0,3,1000)) / 100 for curve in self.transients: # l = str(scn[i].temperature) + 'K' xdata = curve.time ydata = curve.trace parameter = float(getattr(curve, self.key_parameter)) parameter_label = str('{0} {1}'.format(parameter, curve.get_unit(self.key_parameter))) color_number = (parameter / key_parameter_max) * 999 print(color_number, parameter) ax.plot(xdata, ydata, c=colorlist[color_number], label=str() + 'K', alpha=0.5) plt.draw() return fig def rrPlot3d(self, Yparameter='Sample Orientation', title='3dplot', Xlabel='Time, ps', Zlabel='Kerr rotation (mrad)', colormap='viridis'): # todo: correct to new TransientsSet() class system '''plot 3d graf with time on X trace on Z and selected parametr on Y ''' # create 3 lists of X Y Z data time = [] trace = [] ypar = [] # for every scan object takes values for item in self.transients: time.append(item.time) trace.append(item.trace) # on Y axis will be chosen parameter which exist in scan object ypar.append(item.parameters[Yparameter][0]) # Make proper arrays from lists with data Ypar = [] for item in range(len(self.transients[0].time)): Ypar.append(ypar) X = np.array(time) Y = np.transpose(np.array(Ypar)) Z = np.array(trace) fig = plt.figure(num=2) ax = fig.add_subplot(111, projection='3d') ax.plot_surface(X, Y, Z, rstride=1, cstride=100, cmap=colormap) ax.set_xlabel(Xlabel, fontsize=20, labelpad=20) ax.tick_params(axis='x', labelsize=20) ax.tick_params(axis='y', labelsize=20) ax.tick_params(axis='z', labelsize=20) ax.set_ylabel(Yparameter, fontsize=20, labelpad=20) ax.set_zlabel(Zlabel, fontsize=20, labelpad=20) ax.set_title(title, fontsize=40) plt.show() def fit_transients(self, fit_function, parameters, fit_from=0, fit_to=0, method='curve_fit', ext_plot=None, print_results=True, recursive_optimization=False, colorlist=None, saveDir=None): """ Fit given model to a series of Transients. :param fit_function: Model which will be fitted to the data :param parameters: list, (list of lists - no longer supported) Initial parameters for the given function :param fit_from: int Minimum from which to perform fit. :param fit_to: int Maximum data point (x axis) from which to perform fit. :param method: function Fitting method used: supports 'curve_fit' :param recursive_optimization: bool If true, it uses the optimized fit from previous cycle to initialize the next fitting :param ext_plot: bool if true, plots the results in a matplotlib figure :param print_results: bool if true prints fitting results in console while being obtained. :return all_popt: dict dictionary with transient label as key and fit optimized parameters as values :return all_pcov: dict """ if ext_plot is None: fig = plt.figure('Fit of transients') plt.clf() ax = fig.add_subplot(111) ax.set_xlabel('Time [ps]', fontsize=18) ax.set_ylabel('Differential Reflectivity', fontsize=18) ax.set_title(self.series_name, fontsize=26) ax.tick_params(axis='x', labelsize=12) ax.tick_params(axis='y', labelsize=12) if colorlist is None: colorlist_length = len(self.transients) colorlist = plt.cm.rainbow(np.linspace(0, 1, colorlist_length)) else: ax = ext_plot color = iter(colorlist) all_popt = {} # dict type output all_pcov = {} key_parameter_values = [] fit_parameters_data = {} # dict of Data type output try: if len(parameters[0]) > 1: pars = parameters[0] except TypeError: pars = parameters for i, fit_parameter in enumerate(pars): fit_parameters_data['par{}'.format(i)] = [] last_popt = parameters for i, transient in enumerate(self.transients): xdata = transient.time[fit_from:-fit_to] ydata = transient.trace[fit_from:-fit_to] key_parameter_values.append(transient.key_parameter_value) key_parameter = transient.key_parameter label = '{0} {1}'.format(transient.key_parameter_value, transient.get_unit(transient.key_parameter)) try: if len(parameters[0]) > 1: guess = parameters[i] except TypeError: if recursive_optimization: guess = last_popt else: guess = parameters all_popt[label] = [] all_pcov[label] = [] if method == 'curve_fit': try: popt, pcov = curve_fit(fit_function, xdata, ydata, p0=guess) if recursive_optimization: last_popt = popt if print_results: print('{0}: popt: {1}'.format(label, popt)) col = next(color) ax.plot(xdata, fit_function(xdata, *popt), '--', c=col) ax.plot(xdata, ydata, c=col, label=label, alpha=0.5) all_popt[label] = popt all_pcov[label] = pcov for i, item in enumerate(popt): fit_parameters_data['par{}'.format(i)].append(item) except RuntimeError: print('no fit parameters found for transient: {}'.format(label)) elif method == 'fmin': print('fmin not yet implemented') # todo: add support for fmin for key, value in fit_parameters_data.items(): fit_parameters_data[key] = Data(key_parameter_values, value, key_parameter, key) if ext_plot: pass # plt.show() if saveDir is not None: pass return all_popt, all_pcov, fit_parameters_data class Data(object): """ This object stores data obtained from a fit such as decay times, amplitudes etc and provides analysis tools""" def __init__(self, x, y, x_label, y_label): """ initialization""" self.x_data = x self.y_data = y self.x_data = np.array(self.x_data) self.y_data = np.array(self.y_data) self.x_label = x_label self.y_label = y_label def quickplot(self, title='Dependence', clear=False, plt_handle=None, show=True, *args, **kargs): """ :param title: str window title :param clear: if true clears the figure before replotting :param plt_handle: handle to which to add the plot, used to plot in a pre-existant figure :param show: if true, uses plt.show() :return: """ if plt_handle is None: fig = plt.figure(num=title) ax = fig.add_subplot(111) else: ax = plt_handle ax.scatter(self.x_data, self.y_data, *args, **kargs) ax.set_xlabel(self.x_label, fontsize=15) ax.set_ylabel(self.y_label, fontsize=15) ax.set_title(title, fontsize=15) ax.tick_params(axis='x', labelsize=15) ax.tick_params(axis='y', labelsize=15) if show: plt.show() def fit_data(self, fit_function, initial_parameters, x_range=(0, 0)): """ :param function: func function used for data fitting :param initial_parameters: list initial parameters for inizializing fitting procedure :param x_range: [int,int] limits to use for fitting [ start , stop ] :param ydata: lsit or np.array y_data, takes precedence over self.y_data :return popt: optimized parameters :return pcov: """ if x_range == (0, 0): x_range = (0, len(self.x_data)) x_data = self.x_data[x_range[0]:x_range[1]] y_data = self.y_data popt, pcov = curve_fit(fit_function, x_data, y_data, p0=initial_parameters) return popt, pcov class FitFunction(object): """ wrapper class for fit functions""" def __init__(self): """ """ @staticmethod def double_exponential_pos_neg(x, A1, t1, A2, t2, c, d): labels = ['A1', 't1', 'A2', 't2', 'c', 'd'] func = A1 * (1 - np.exp(- x / t1)) - A2 * (1 - np.exp(- x / t2)) + c * x + d return func, labels @staticmethod def expfunc_const(x, A, t0, c): labels = ['A', 't0', 'c'] func = A * (1 - np.exp(- x / t0)) + c return func, labels @staticmethod def expFunc_lin_const(x, A, t0, c, d): labels = ['A', 't0', 'c', 'd'] func = A * (1 - np.exp(- x / t0)) + c * x + d return func, labels if __name__ == "__main__": main()
39.625741
139
0.577952
4a26da5d16c3fdb6208d04675f9a5f5076f4a9ac
24,202
py
Python
resources/fixtures/scripts/fixtures-tool.py
janosvitok/qlcplus
0a2e9302de8349d74a54a1a78266d58084c6b818
[ "ECL-2.0", "Apache-2.0" ]
1
2017-05-11T06:20:08.000Z
2017-05-11T06:20:08.000Z
resources/fixtures/scripts/fixtures-tool.py
janosvitok/qlcplus
0a2e9302de8349d74a54a1a78266d58084c6b818
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
resources/fixtures/scripts/fixtures-tool.py
janosvitok/qlcplus
0a2e9302de8349d74a54a1a78266d58084c6b818
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import sys import os import re import argparse import lxml.etree as etree singleCapCount = 0 namespace = "http://www.qlcplus.org/FixtureDefinition" # please see https://github.com/mcallegari/qlcplus/wiki/Fixture-definition-presets when changing this list def getPresetsArray(): return [ "Custom", "IntensityMasterDimmer", "IntensityMasterDimmerFine", "IntensityDimmer", "IntensityDimmerFine", "IntensityRed", "IntensityRedFine", "IntensityGreen", "IntensityGreenFine", "IntensityBlue", "IntensityBlueFine", "IntensityCyan", "IntensityCyanFine", "IntensityMagenta", "IntensityMagentaFine", "IntensityYellow", "IntensityYellowFine", "IntensityAmber", "IntensityAmberFine", "IntensityWhite", "IntensityWhiteFine", "IntensityUV", "IntensityUVFine", "IntensityIndigo", "IntensityIndigoFine", "IntensityLime", "IntensityLimeFine", "IntensityHue", "IntensityHueFine", "IntensitySaturation", "IntensitySaturationFine", "IntensityLightness", "IntensityLightnessFine", "IntensityValue", "IntensityValueFine", "PositionPan", "PositionPanFine", "PositionTilt", "PositionTiltFine", "PositionXAxis", "PositionYAxis", "SpeedPanSlowFast", "SpeedPanFastSlow", "SpeedTiltSlowFast", "SpeedTiltFastSlow", "SpeedPanTiltSlowFast", "SpeedPanTiltFastSlow", "ColorMacro", "ColorWheel", "ColorWheelFine", "ColorRGBMixer", "ColorCTOMixer", "ColorCTCMixer", "ColorCTBMixer", "GoboWheel", "GoboWheelFine", "GoboIndex", "GoboIndexFine", "ShutterStrobeSlowFast", "ShutterStrobeFastSlow", "ShutterIrisMinToMax", "ShutterIrisMaxToMin", "ShutterIrisFine" "BeamFocusNearFar", "BeamFocusFarNear", "BeamFocusFine", "BeamZoomSmallBig", "BeamZoomBigSmall", "BeamZoomFine", "PrismRotationSlowFast", "PrismRotationFastSlow", "NoFunction" ] def printPresets(group): presets = getPresetsArray() pMin = 1 pMax = presets.index("NoFunction") if group == "Intensity": pMin = presets.index("IntensityMasterDimmer") pMax = presets.index("IntensityValueFine") elif group == "Pan": pMin = presets.index("PositionPan") pMax = presets.index("PositionPanFine") elif group == "Tilt": pMin = presets.index("PositionTilt") pMax = presets.index("PositionTiltFine") elif group == "Speed": pMin = presets.index("SpeedPanSlowFast") pMax = presets.index("SpeedPanTiltFastSlow") elif group == "Colour": pMin = presets.index("ColorMacro") pMax = presets.index("ColorCTBMixer") elif group == "Gobo": pMin = presets.index("GoboWheel") pMax = presets.index("GoboIndexFine") elif group == "Shutter": pMin = presets.index("ShutterStrobeSlowFast") pMax = presets.index("ShutterIrisFine") elif group == "Beam": pMin = presets.index("BeamFocusNearFar") pMax = presets.index("BeamZoomFine") elif group == "Prism": pMin = presets.index("PrismRotationSlowFast") pMax = presets.index("PrismRotationFastSlow") for i in range(pMin, pMax + 1): sys.stdout.write("[" + str(i) + "] " + presets[i] + " ") sys.stdout.flush() print "" ########################################################################################### # update_fixture # # Convert an 'old' syntax definition to the 'new' syntax, which includes: # - single capability channels # - global physical dimension # # path: the source path with the fixtures to convert # filename: the relative file name # destpath: the destination folder where to save the converted fixture ########################################################################################### def update_fixture(path, filename, destpath): absname = os.path.join(path, filename) parser = etree.XMLParser(ns_clean=True, recover=True) xmlObj = etree.parse(absname, parser=parser) root = xmlObj.getroot() fxSingleCapCount = 0 global namespace ################################## PHYSICAL PROCESSING ################################ global_phy = {} gphy_tag = etree.Element("Physical") for mode in root.findall('{' + namespace + '}Mode'): phy_dict = {} phy_tag = mode.find('{' + namespace + '}Physical') if not phy_tag: # Mode already processed. Skip continue bulb_tag = phy_tag.find('{' + namespace + '}Bulb') dim_tag = phy_tag.find('{' + namespace + '}Dimensions') lens_tag = phy_tag.find('{' + namespace + '}Lens') focus_tag = phy_tag.find('{' + namespace + '}Focus') tech_tag = phy_tag.find('{' + namespace + '}Technical') phy_dict.update(phy_tag.attrib) phy_dict.update(bulb_tag.attrib) phy_dict.update(dim_tag.attrib) phy_dict.update(lens_tag.attrib) phy_dict.update(focus_tag.attrib) if tech_tag: phy_dict.update(tech_tag.attrib) if not global_phy: global_phy = phy_dict gphy_tag = phy_tag mode.remove(phy_tag) print "Moving mode " + mode.attrib['Name'] + " to global" elif phy_dict == global_phy: mode.remove(phy_tag) print "Mode " + mode.attrib['Name'] + " is identical to global" root.append(gphy_tag) ##################################### CHANNELS PROCESSING ################################# for channel in root.findall('{' + namespace + '}Channel'): locCapCount = 0 if 'Preset' in channel.attrib: # Channel already converted. Skip continue for cap in channel.findall('{' + namespace + '}Capability'): locCapCount += 1 if locCapCount < 2: print "Single capability found in " + filename fxSingleCapCount += 1 preset = "" name = "" group = "" color = "" controlByte = 0 fineWord = "" # Modes have a <Channel> tag too, but they don't have a name if not 'Name' in channel.attrib: continue name = channel.attrib['Name'] grpNode = channel.find('{' + namespace + '}Group') if grpNode is not None: group = grpNode.text controlByte = int(grpNode.attrib['Byte']) if controlByte == 1: fineWord = "Fine" if group == "Intensity": colNode = channel.find('{' + namespace + '}Colour') if colNode is not None: color = colNode.text if color == "Red": preset = "IntensityRed" + fineWord elif color == "Green": preset = "IntensityGreen" + fineWord elif color == "Blue": preset = "IntensityBlue" + fineWord elif color == "Cyan": preset = "IntensityCyan" + fineWord elif color == "Magenta": preset = "IntensityMagenta" + fineWord elif color == "Yellow": preset = "IntensityYellow" + fineWord elif color == "Amber": preset = "IntensityAmber" + fineWord elif color == "White": preset = "IntensityWhite" + fineWord elif color == "UV": preset = "IntensityUV" + fineWord elif color == "Lime": preset = "IntensityLime" + fineWord elif color == "Indigo": preset = "IntensityIndigo" + fineWord elif color == "Hue": preset = "IntensityHue" + fineWord elif color == "Saturation": preset = "IntensitySaturation" + fineWord elif color == "Lightness": preset = "IntensityLightness" + fineWord elif color == "Value": preset = "IntensityValue" + fineWord elif group == "Pan": preset = "PositionPan" + fineWord elif group == "Tilt": preset = "PositionTilt" + fineWord #print "Found group " + group + ", control byte: " + str(controlByte) print chr(27) + "[2J" # clear screen print "File: " + filename print etree.tostring(channel) if not preset: printPresets(group) select = "" # wait for user input until a preset can be resolved while 1: select = raw_input("Replacement preset code (0 = keep) (enter = " + preset + "): ") if select == "": if preset == "": print "Select an option!" else: break else: presets = getPresetsArray() preset = presets[int(select)] break # perform the XML Channel node replacement if preset != "Custom": channel.clear() channel.set("Name", name) channel.set("Preset", preset) channel.tail = "\n " newfile = os.path.join(destpath, filename) xmlFile = open(newfile, "w") xmlFile.write(etree.tostring(root, pretty_print=True, xml_declaration=True, encoding="UTF-8", doctype="<!DOCTYPE FixtureDefinition>")) xmlFile.close() return fxSingleCapCount def check_physical(node, hasPan, hasTilt): errNum = 0 phy_tag = node.find('{' + namespace + '}Physical') if phy_tag is not None: dim_tag = phy_tag.find('{' + namespace + '}Dimensions') focus_tag = phy_tag.find('{' + namespace + '}Focus') tech_tag = phy_tag.find('{' + namespace + '}Technical') width = int(dim_tag.attrib.get('Width', 0)) height = int(dim_tag.attrib.get('Height', 0)) depth = int(dim_tag.attrib.get('Depth', 0)) panDeg = int(focus_tag.attrib.get('PanMax', 0)) tiltDeg = int(focus_tag.attrib.get('TiltMax', 0)) if width == 0 or height == 0 or depth == 0: print absname + ": Invalid physical dimensions detected" errNum += 1 if hasPan and panDeg == 0: print absname + ": Invalid PAN degrees" errNum += 1 if hasTilt and tiltDeg == 0: print absname + ": Invalid TILT degrees" errNum += 1 if tech_tag is not None: power = int(tech_tag.attrib.get('PowerConsumption', 0)) if power == 0: print absname + ": Invalid power consumption" errNum += 1 return errNum ########################################################################################### # validate_fixture # # Check the syntax of a definition and reports errors if found # # path: the source path with the fixtures to validate # filename: the relative file name ########################################################################################### def validate_fixture(path, filename): absname = os.path.join(path, filename) parser = etree.XMLParser(ns_clean=True, recover=True) xmlObj = etree.parse(absname, parser=parser) root = xmlObj.getroot() global namespace errNum = 0 hasPan = False hasTilt = False needSave = False ##################################### CHECK CREATOR ################################# creator_tag = root.find('{' + namespace + '}Creator') if creator_tag is None: print "Creator tag not found" else: author_tag = creator_tag.find('{' + namespace + '}Author') name_tag = creator_tag.find('{' + namespace + '}Name') version_tag = creator_tag.find('{' + namespace + '}Version') numversion_tok = re.findall('\d+', version_tag.text) #print "Definition version: " + version_tag.text # extract a unified number from the QLC version string if len(numversion_tok) == 3: qlc_version = (int(numversion_tok[0]) * 10000) + (int(numversion_tok[1]) * 100) + int(numversion_tok[2]) else: qlc_version = (int(numversion_tok[0]) * 10000) + (int(numversion_tok[1]) * 100) if author_tag is None: print absname + ": Author tag not found" errNum += 1 else: # pre QLC+ definition didn't have the Author tag. Let's do # the following check only for newer defs if name_tag.text == "Q Light Controller Plus": if not author_tag.text: print absname + ": Empty author name detected" errNum += 1 else: authName = author_tag.text if "@" in authName or "://" in authName or "www" in authName: print absname + ": URLs or emails not allowed in author tag" errNum += 1 ################################ CHECK FIXTURE GENERALS ############################## manuf_tag = root.find('{' + namespace + '}Manufacturer') model_tag = root.find('{' + namespace + '}Model') type_tag = root.find('{' + namespace + '}Type') if manuf_tag is None or not manuf_tag.text: print absname + ": Invalid manufacturer detected" errNum += 1 if model_tag is None or not model_tag.text: print absname + ": Invalid model detected" errNum += 1 if type_tag is None or not type_tag.text: print absname + ": Invalid type detected" errNum += 1 ##################################### CHECK CHANNELS ################################# chCount = 0 channelNames = [] for channel in root.findall('{' + namespace + '}Channel'): chName = "" chPreset = "" if not 'Name' in channel.attrib: print absname + ": Invalid channel. No name specified" errNum += 1 else: chName = channel.attrib['Name'] channelNames.append(chName) if 'Preset' in channel.attrib: chPreset = channel.attrib['Preset'] childrenCount = len(channel.getchildren()) group_tag = channel.find('{' + namespace + '}Group') groupByte = -1 if not chPreset and childrenCount == 0: print absname + "/" + chName + ": Invalid channel. Not a preset and no capabilities found" errNum += 1 if not chPreset and group_tag is None: print absname + "/" + chName + ": Invalid channel. Not a preset and no group tag found" errNum += 1 if group_tag is not None: if not group_tag.text: print absname + "/" + chName + ": Invalid channel. Empty group tag detected" errNum += 1 else: if group_tag.text == 'Pan': hasPan = True if group_tag.text == 'Tilt': hasTilt = True if not 'Byte' in group_tag.attrib: print absname + "/" + chName + ": Invalid channel. Group byte attribute not found" errNum += 1 else: groupByte = group_tag.attrib['Byte'] if chPreset: # no need to go further is this is a preset chCount += 1 continue # check the word 'fine' against control byte if groupByte == 0 and 'fine' in chName: print absname + "/" + chName + ": control byte should be set to Fine (LSB)" errNum += 1 ################################# CHECK CAPABILITIES ############################## rangeMin = 255 rangeMax = 0 lastMax = -1 capCount = 0 for capability in channel.findall('{' + namespace + '}Capability'): newResSyntax = False capName = capability.text if not capName: print absname + "/" + chName + ": Capability with no description detected" errNum += 1 # check capabilities overlapping currMin = int(capability.attrib['Min']) currMax = int(capability.attrib['Max']) #print "Min: " + str(currMin) + ", max: " + str(currMax) if currMin <= lastMax: print absname + "/" + chName + "/" + capName + ": Overlapping values detected " + str(currMin) + "/" + str(lastMax) errNum += 1 # disabled for now. 710 errors with this ! #if currMin != lastMax + 1: # print absname + "/" + chName + "/" + capName + ": Non contiguous range detected " + str(currMin) + "/" + str(lastMax) # errNum += 1 lastMax = currMax resource = capability.attrib.get('Res', "") # try and see if new sytax is on if not resource: resource = capability.attrib.get('Res1', "") newResSyntax = True if resource.startswith('/'): print absname + "/" + chName + "/" + capName + ": Absolute paths not allowed in resources" errNum += 1 # check the actual existence of a gobo. If possible, migrate to SVG if resource and '/' in resource: goboPath = os.getcwd() + "/../gobos/" + resource #print "GOBO path: " + goboPath if not os.path.isfile(goboPath): # check if a SVG version of the gobo exists resource = resource.replace('png', 'svg') goboPath = os.getcwd() + "/../gobos/" + resource if not os.path.isfile(goboPath): print absname + "/" + chName + "/" + capName + ": Non existing gobo file detected (" + resource + ")" errNum += 1 else: needSave = True if newResSyntax: capability.set('Res1', resource) else: capability.set('Res', resource) capCount += 1 if capCount == 0: print absname + "/" + chName + ": Channel has no capabilities" errNum += 1 chCount += 1 if chCount == 0: print absname + ": Invalid fixture. No channels found!" errNum += 1 ###################################### CHECK MODES ################################### modeCount = 0 for mode in root.findall('{' + namespace + '}Mode'): modeName = "" if not 'Name' in mode.attrib: print absname + ": mode name attribute not found" errNum += 1 else: modeName = mode.attrib['Name'] if not modeName: print absname + ": Empty mode name detected" errNum += 1 # better to skip this for now. Still too many errors #if qlc_version >= 41100 and 'mode' in modeName.lower(): # print absname + "/" + modeName + ": word 'mode' found in mode name" # errNum += 1 modeChanCount = 0 for mchan in mode.findall('{' + namespace + '}Channel'): if mchan.text is None: print absname + "/" + modeName + ": Empty channel name found. This definition won't work." errNum += 1 else: if not mchan.text in channelNames: print absname + "/" + modeName + ": Channel " + mchan.text + " doesn't exist. This definition won't work." errNum += 1 modeChanCount += 1 if modeChanCount == 0: print absname + "/" + modeName + ": No channel found in mode" errNum += 1 errNum += check_physical(mode, hasPan, hasTilt) modeCount += 1 if modeCount == 0: print absname + ": Invalid fixture. No modes found!" errNum += 1 ################################ CHECK GLOBAL PHYSICAL ################################ errNum += check_physical(root, hasPan, hasTilt) if needSave: print "Saving back " + filename + "..." xmlFile = open(absname, "w") xmlFile.write(etree.tostring(root, pretty_print=True, xml_declaration=True, encoding="UTF-8", doctype="<!DOCTYPE FixtureDefinition>")) xmlFile.close() return errNum ########################################################################################### # createFixtureMap # # Creates the Fixture definition map read by QLC+ at startup # ########################################################################################### def createFixtureMap(): global namespace count = 0 manufacturer = "" xmlFile = open("FixturesMap.xml", "w") root = etree.Element("FixturesMap") root.set('xmlns', 'http://www.qlcplus.org/FixturesMap') for dirname in sorted(os.listdir('.'), key=lambda s: s.lower()): if not os.path.isdir(dirname): continue if dirname != "scripts" and dirname != manufacturer: mfTag = etree.SubElement(root, "M") mfTag.set('n', dirname) manufacturer = dirname for filename in sorted(os.listdir(dirname), key=lambda s: s.lower()): if not filename.endswith('.qxf'): continue parser = etree.XMLParser(ns_clean=True, recover=True) xmlObj = etree.parse(os.path.join(dirname, filename), parser=parser) fxRoot = xmlObj.getroot() manufacturer = fxRoot.find('{' + namespace + '}Manufacturer') model = fxRoot.find('{' + namespace + '}Model') fxTag = etree.SubElement(mfTag, "F") fxTag.set('n', os.path.splitext(filename)[0]) #fxTag.set('m', manufacturer.text) fxTag.set('m', model.text) #print manufacturer.text + ", " + model.text count += 1 xmlFile.write(etree.tostring(root, pretty_print=True, xml_declaration=True, encoding="UTF-8", doctype="<!DOCTYPE FixturesMap>")) xmlFile.close() print "Fixtures in map: " + str(count) ########################################################################################### # # MAIN # ########################################################################################### parser = argparse.ArgumentParser(description='Unified Fixture tool.') parser.add_argument('--map', help='Create the Fixture map', action='store_true') parser.add_argument('--convert [source] [destination]', help='Convert an "old" syntax Fixture definition', nargs='*', dest='convert') parser.add_argument('--validate [path]', help='Validate fixtures in the specified path', nargs='*', dest='validate') args = parser.parse_args() print args if args.map: createFixtureMap() elif args.convert: if len(sys.argv) < 3: print "Usage " + sys.argv[0] + "--convert [source folder] [destination folder]" sys.exit() path = sys.argv[2] if len(sys.argv) > 3: destpath = sys.argv[3] else: destpath = "" print "Converting fixtures in " + path + "..." for filename in os.listdir(path): if not filename.endswith('.qxf'): continue print "Processing file " + filename singleCapCount += update_fixture(path, filename, destpath) print "Scan done. Single cap found: " + str(singleCapCount) elif args.validate: if len(sys.argv) < 2: print "Usage " + sys.argv[0] + "--validate [path]" sys.exit() path = sys.argv[2] fileCount = 0 errorCount = 0 for dirname in sorted(os.listdir(path), key=lambda s: s.lower()): if not os.path.isdir(dirname): continue for filename in sorted(os.listdir(dirname), key=lambda s: s.lower()): if not filename.endswith('.qxf'): continue #print "Processing file " + filename errorCount += validate_fixture(dirname, filename) fileCount += 1 print str(fileCount) + " definitions processed. " + str(errorCount) + " errors detected"
37.348765
142
0.530493
4a26db0070c53565e5ba657ff3ed6586084bbb6d
492
py
Python
pyscript/math/matplotlib_plot.py
airy-ict/learn_python
5a6c45c627208856bb04c2545fae8cba903519d3
[ "MIT" ]
1
2021-06-07T09:01:21.000Z
2021-06-07T09:01:21.000Z
pyscript/math/matplotlib_plot.py
airy-ict/learn_python
5a6c45c627208856bb04c2545fae8cba903519d3
[ "MIT" ]
null
null
null
pyscript/math/matplotlib_plot.py
airy-ict/learn_python
5a6c45c627208856bb04c2545fae8cba903519d3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['SimHei'] #指定默认字体 plt.rcParams['axes.unicode_minus'] = False #解决保存图像是负号'-'显示为方块的问题 x = np.linspace(0, 10, 1000) y = np.sin(x) z = np.cos(x**2) plt.figure(figsize=(8,4)) plt.plot(x,y,label="$sin(x)$",color="red",linewidth=4) plt.plot(x,z,"b--",label="$cos(x^2)$") plt.xlabel("Time(s)") plt.ylabel("Volt") plt.title("PyPlot 曲线 Demo") plt.ylim(-1.2,1.2) plt.legend() plt.show()
23.428571
66
0.648374
4a26db992214ad8f5de8744c67320c661eff22d0
4,122
py
Python
main/utils/dto.py
keshavbohra/movie-bookie
3ca4f855bfaad6b2fa859a6feed8f2d512513b69
[ "MIT" ]
null
null
null
main/utils/dto.py
keshavbohra/movie-bookie
3ca4f855bfaad6b2fa859a6feed8f2d512513b69
[ "MIT" ]
1
2021-09-06T11:49:05.000Z
2021-09-06T11:49:05.000Z
main/utils/dto.py
keshavbohra/movie_bookie
3ca4f855bfaad6b2fa859a6feed8f2d512513b69
[ "MIT" ]
null
null
null
from flask_restx import Namespace, fields screening_marshaller = { 'screening_start': fields.DateTime(required=True, description='Screening start time'), 'screening_end': fields.DateTime(required=True, description='Screening end time'), 'seats_remain': fields.Integer(required=True, description='Remaining Seats') } booking_marshaller = { 'booking_id': fields.Integer(attribute='id', required=True, description='Booking id'), 'movie_name': fields.String(required=True, description='Movie Name'), 'theatre_name': fields.String(required=True, description='Theatre Name'), 'theatre_city': fields.String(required=True, description='Theatre City'), 'screening_time': fields.DateTime(attribute='screening_start', required=True, description='Screening Start'), 'movie_duration': fields.Integer(required=True, description='Duration of the movie.'), 'total_seats': fields.Integer(required=True, description='Seats Booked') } screening_book_marshaller = { 'screening_id': fields.Integer(attribute='id', required=True, description='Screening id'), 'movie_id': fields.Integer(attribute='id', required=True, description='Movie id'), 'theatre_id': fields.Integer(attribute='id', required=True, description='Theatre id'), 'seats': fields.Integer(required=True, description='Seats Booked') } movie_marshaller = { 'movie_id': fields.Integer(attribute='id', required=False, description='Movie id'), 'movie_name': fields.String(required=True, description='Movie name'), 'movie_duration': fields.Integer(required=True, description='Movie duration'), 'poster_url': fields.String(required=True, description='Poster URL') } theatre_marshaller = { 'theatre_id': fields.Integer(attribute='id', required=False, description='Theatre id'), 'theatre_name': fields.String(required=True, description='Theatre name'), 'theatre_city': fields.String(required=True, description='Theatre duration'), 'seats_num': fields.Integer(attribute='seats_remain', required=True, description='Total Seats') } user_marshaller = { 'username': fields.String(attribute='user_name', required=True, description='user username'), 'email': fields.String(required=True, description='user email address'), 'password': fields.String(required=True, description='user passw, ord'), 'public_id': fields.String(required=False, description='user Identifier') } user_update_marshaller = { 'email': fields.String(required=True, description='user email address'), 'admin': fields.Boolean(required=True, description='User role flag') } auth_marshaller = { 'email': fields.String(required=True, description='The email address'), 'password': fields.String(required=True, description='The user password '), } class MovieDto: api = Namespace('movie', description='Movie related opertions') movie = api.model('movie_obj', movie_marshaller) class BookingDto: api = Namespace('booking', description='Ticket Booking related operations') screening_model = api.model('screening_book', screening_book_marshaller) booking_model = api.model('booking', booking_marshaller) class TheatreDto: api = Namespace('theatre', description='Theatre related opertions') theatre = api.model('theatre_obj', theatre_marshaller) class ScreeningDto: api = Namespace('screening', description='Screening related opertions') screening = api.model('screening', screening_marshaller) movie_screening_marshaller = {**screening_marshaller, **theatre_marshaller} movie_screening = api.model('movie_screening', movie_screening_marshaller) theatre_screening_marshaller = {**screening_marshaller, **movie_marshaller} theatre_screening = api.model('theatre_screening', theatre_screening_marshaller) class UserDto: api = Namespace('user', description='user related operations') user = api.model('user', user_marshaller) user_update = api.model('user_update', user_update_marshaller) class AuthDto: api = Namespace('auth', description='authentication related operations') user_auth = api.model('auth_details', auth_marshaller)
47.930233
113
0.74721
4a26dc9cb6d6e08e1f17afbcde876f2ea7c434f4
10,718
py
Python
src/ipycbm/utils/help_docs.py
VP-GEO/cbm
4ed229f6b6455435b6d032deb8a39dba4ecee7a2
[ "BSD-3-Clause" ]
null
null
null
src/ipycbm/utils/help_docs.py
VP-GEO/cbm
4ed229f6b6455435b6d032deb8a39dba4ecee7a2
[ "BSD-3-Clause" ]
null
null
null
src/ipycbm/utils/help_docs.py
VP-GEO/cbm
4ed229f6b6455435b6d032deb8a39dba4ecee7a2
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # This file is part of CbM (https://github.com/ec-jrc/cbm). # Author : Konstantinos Anastasakis # Credits : GTCAP Team # Copyright : 2021 European Commission, Joint Research Centre # License : 3-Clause BSD from ipywidgets import (HTML, HBox, VBox, Checkbox, Layout, widgets) def widget_box(): wbox = VBox(children=[ipycbm_help(), about()]) return wbox def ipycbm_help(): html = """ <H2>'Get' and 'View' functions.</H2> With the 'get' function you can download data from the server to your local jupyter environment.<br> The 'view' function is to load local files and display them with different methods, or provide example code for each selected dataset.<br> <H4>Available options:</H4> <b>Get data example:</b><br> <code>import src.ipycbm</code><br> <code>ipycbm.get()</code> <br> <b>View data example:</b><br> <code>import src.ipycbm</code><br> <code>ipycbm.view()</code><br> <br> '**tmp**' folder structure example for parcel with ID 12345:<br> <code>tmp/ cat2019/parcel_12345/12345_information.json cat2019/parcel_12345/12345_time_series.csv cat2019/parcel_12345/12345_chipimages/12345_images_list.csv cat2019/parcel_12345/12345_chipimages/S2A_MSIL2A_2019---.B04.tif cat2019/parcel_12345/12345_chipimages/...</code> """ wbox = widgets.HTML( value=html, placeholder="Documantation", description="") return wbox def about(): from src import __version__ html = f""" <H1>About</H1> <H3>JRC D5 Food security - GTCAP</H3> <H4>DIAS for CAP Checks by Monitoring, development platforms and services.</H4> Authors:<br> Guido Lemoine<br> Konstantinos Anastasakis<br> <br> Copyright 2021, Joint Research Centre (JRC) European Commission<br> License: 3-Clause BSD , Version: {__version__} """ wbox = HTML( value=html, placeholder='About', description='', ) return wbox def widget_box_foi(): wbox = VBox(children=[ipycbm_help_foi(), about()]) return wbox def ipycbm_help_foi(): html = """ <H2>FOI Assessment: Heterogeneity and Cardinality</H2> The FOI assessment notebook is based on the principle that inside of a homogenous FOI there should be only one type of pixels. In the same idea, a FOI which respects the 1-1 cardinalityshould not include clusters of pixels larger than a specified threshold (we can consider dispersed pixels different than the main class as “noise”).<br> The FOI Assessment performs a spatial analysis on a "thematic raster" produced in advance. The thematic raster can be the result of any image/raster processing method yielding a class label for each pixel - crop classification, behavior analysis of land phenomenon, gridded data on soil, slope, humidity, etc.<br> As an example, if the thematic raster is the result of a crop classification, a homogeneous FOI should have only one type of pixels that represent the respective crop, a cardinal FOI should not include any cluster of pixels from other class larger than a specified threshold. If the thematic raster is the result of a behavior analysis, all the pixels inside an FOI should behave in the same way during a period of time.<br> For both heterogeneity and cardinality, the notebook provides two methods for the analysis: one based area calculation (version 1) and one based on cluster size calculation (version 2). Both methods have similar results. <br> <H2>Version 1</H2> The first version requires the connection to a database server (PostgreSQL with PostGIS extension)<br> For the heterogeneity analysis the following steps are required (the steps correspond to the numbering on the interface):<br> 1. Connect to the database (at the moment only „Database connection settings” are required)<br> a) Upload the reference data shapefile to the server. It is provided a graphical interface for upload.<br> b) Import uploaded shapefile to the database, specifying the name for the table that will be created in the database.<br> 2. Upload the raster „thematic” image. A graphical interface is provided. The accepted files are tif or tiff files. The thematic raster should be a one band raster file, with the pixel values representing the classes (like crop type or type of behaviour)<br> 3. Prepare FOI procedure – Allows the user to create the database functions on the database server. This procedure creates the necessary function and stored procedures on the database server.<br> 4. Select the required files for analysis:<br> a) Vector file: the data on which the analysis will be applied. In case that we have more shapefiles uploaded on the server, this functionality allows us to select the one that we want to analyze.<br> b) Thematic raster: the thematic raster provided. In case that we have more rasters uploaded on the server, this functionality allows us to select the one that we want to use on the analysis.<br> c) YAML file that holds the classes form the thematic raster file: this file specifies the classes of pixels from the thematic raster and can also provide the meaning of those classes. It should have the following structure:<br> <code>example.yml</code><br> <code>category_map: 0: Unclasified 1: Class1 2: Class2 3: Class3 4: Class4 5: Class5 6: Class6 7: Class7 8: Class8 9: Class9 10: Class10</code><br> Class1, Class2 can be replaced by the meaning of the class (like Wheat, Maize, etc. or by behavior name or any other ….).<br> The YAML file should include all the classes that exist in the thematic raster. It is provided a graphical interface for upload.<br> 5. Analysis parameters:<br> Heterogeneity thresholds: in order to exclude the influence of „noise” pixels, the user can specify the heterogeneity thresholds (for example only the FOIs where one class of pixels have a percentage between 30 and 70 is considered heterogeneous).<br> Minimum area for clusters selection: the user can specify the minimum area of the cluster that are considered a cardinality issue, in square meters. Of example the clusters smaller than 2000 square meters can be considered as not influencing the FOI cardinality.<br> 6. Run FOI procedure.<br> Starts the FOI analysis. The result of the analysis is represented by three shapefiles that are stored on the “output_data” folder (/cbm/tmp/foi/output_data).<br> <b>name of the shapefile dataset (without extension) that needs to be tested + foih_v1.shp</b> – represents the initial shapefile and during the analysis the following attributes are added:<br> • foi_h – heterogeneity flag (0 for homogeneous FOIs and 1 for heterogeneous FOIs)<br> • number of pixels for each class (the name of the attribute is the name of the class)<br> • total number of pixel for the respective FOI<br> • percentage of pixels from each class (number of pixels for each class / total number of pixels inside the FOI)<br> <b>name of the shapefile dataset (without extension) that needs to be tested + foic_v1.shp</b> - represents the initial shapefile and during the analysis the following attributes are added:<br> • foi_c – cardinality flag (0 for FOIs respecting the 1-1 cardinality and 1 for FOIs not respecting the 1-1 cardinality). As a result of this analysis, the FOIs that include more than one cluster of pixel from different classes bigger than the threshold are considered non-cardinal. For example and FOI that includes two clusters of pixels from different classes (one arable land and non-agricultural area), each of the clusters bigger than the threshold (ex. 2000 square meters), is considered as not respecting the 1-1 cardinality.<br> <b>name of the shapefile dataset (without extension) that needs to be tested + foic_clusters_v1.shp</b> – represents only the clusters of pixels that are setting the FOI cardinality (for example if an FOI includes three clusters of pixels bigger that the threshold, only those clusters will be saved in this shapefile)<br> <H2>Version 2</H2> The second version does not require a database server. All the calculations are made at pixel level using Python function.<br> The interface and the steps are similar to the ones from the Version 1. The main difference is that it does not include the functionality for database connection and creating the functions on the database server.<br> The different options available:<br> Connectivity type: 8 or 4 connected pixels (4 indicating that diagonal pixels are not considered directly adjacent for polygon membership purposes or 8 indicating they are)<br> Negative buffer: user can apply a negative buffer on the FOI in order to reduce the influence of boundary influence on the analysis (roads, adjacent FOIs, etc.)<br> Cluster size (in pixels): the minimum number of pixels for which a cluster is taken into account.<br> The result of the analysis is represented by two shapefiles that are stored on the “output_data” folder (/cbm/tmp/foi/output_data).<br> <b>name of the shapefile dataset (without extension) that needs to be tested + foih_v2.shp</b> – represents the initial shapefile and during the analysis the following attributes are added:<br> • foi_h – heterogeneity flag (0 for homogeneous FOIs and 1 for heterogeneous FOIs)<br> • number of pixels for each class (the name of the attribute is the name of the class)<br> • total number of pixel for the respective FOI<br> • percentage of pixels from each class (number of pixels for each class / total number of pixels inside the FOI)<br> <b>name of the shapefile dataset (without extension) that needs to be tested + foic_v2.shp</b> - represents the initial shapefile and during the analysis the following attributes are added:<br> • foi_c – cardinality flag (0 for FOIs respecting the 1-1 cardinality and 1 for FOIs not respecting the 1-1 cardinality). As a result of this analysis, the FOIs that include more than one cluster of pixels from different classes bigger than the threshold are considered not respecting the 1-1 cardinality. For example and FOI that includes two clusters of pixels from different classes (one arable land and non-agricultural area), each of the clusters bigger than the threshold (ex. 20 pixels), is considered as not respecting the 1-1 cardinality.<br> • Clusters – the information about the clusters of pixels identified inside the FOI, as pair of pixel class and cluster size: for example (3, 25), (5, 120) means that inside the FOI we have identified two clusters: one of pixels from class 3 and the cluster size is 25 pixels and another one with pixels of class 5 and cluster size 120 pixels.<br> """ wbox = widgets.HTML( value=html, placeholder="Documentation", description="") return wbox
68.267516
551
0.764135
4a26dd29afca6397b575dc8afad7dac419ba1f61
4,880
py
Python
feature_engine/discretisation/arbitrary.py
david-cortes/feature_engine
702328d1a072d0911441e10b4eb98b3bfbf19215
[ "BSD-3-Clause" ]
1
2022-01-02T19:35:50.000Z
2022-01-02T19:35:50.000Z
feature_engine/discretisation/arbitrary.py
david-cortes/feature_engine
702328d1a072d0911441e10b4eb98b3bfbf19215
[ "BSD-3-Clause" ]
null
null
null
feature_engine/discretisation/arbitrary.py
david-cortes/feature_engine
702328d1a072d0911441e10b4eb98b3bfbf19215
[ "BSD-3-Clause" ]
null
null
null
# Authors: Soledad Galli <[email protected]> # License: BSD 3 clause from typing import Dict, List, Optional, Union import pandas as pd from feature_engine.base_transformers import BaseNumericalTransformer from feature_engine.validation import _return_tags class ArbitraryDiscretiser(BaseNumericalTransformer): """ The ArbitraryDiscretiser() divides numerical variables into intervals which limits are determined by the user. Thus, it works only with numerical variables. You need to enter a dictionary with variable names as keys, and a list with the limits of the intervals as values. For example `{'var1':[0, 10, 100, 1000], 'var2':[5, 10, 15, 20]}`. The ArbitraryDiscretiser() will then sort var1 values into the intervals 0-10, 10-100, 100-1000, and var2 into 5-10, 10-15 and 15-20. Similar to `pandas.cut`. More details in the :ref:`User Guide <arbitrary_discretiser>`. Parameters ---------- binning_dict: dict The dictionary with the variable to interval limits pairs. A valid dictionary looks like this: `binning_dict = {'var1':[0, 10, 100, 1000], 'var2':[5, 10, 15, 20]}` return_object: bool, default=False Whether the the discrete variable should be returned as numeric or as object. If you would like to proceed with the engineering of the variable as if it was categorical, use True. Alternatively, keep the default to False. return_boundaries: bool, default=False Whether the output, that is the bins, should be the interval boundaries. If True, it returns the interval boundaries. If False, it returns integers. Attributes ---------- binner_dict_: Dictionary with the interval limits per variable. variables_: The variables that will be discretised. n_features_in_: The number of features in the train set used in fit. Methods ------- fit: This transformer does not learn any parameter. transform: Sort variable values into the intervals. fit_transform: Fit to the data, then transform it. See Also -------- pandas.cut """ def __init__( self, binning_dict: Dict[Union[str, int], List[Union[str, int]]], return_object: bool = False, return_boundaries: bool = False, ) -> None: if not isinstance(binning_dict, dict): raise ValueError( "Please provide at a dictionary with the interval limits per variable" ) if not isinstance(return_object, bool): raise ValueError("return_object must be True or False") self.binning_dict = binning_dict self.return_object = return_object self.return_boundaries = return_boundaries def fit(self, X: pd.DataFrame, y: Optional[pd.Series] = None): """ This transformer does not learn any parameter. Parameters ---------- X: pandas dataframe of shape = [n_samples, n_features] The training dataset. Can be the entire dataframe, not just the variables to be transformed. y: None y is not needed in this transformer. You can pass y or None. """ # check input dataframe X = super()._select_variables_from_dict(X, self.binning_dict) # for consistency wit the rest of the discretisers, we add this attribute self.binner_dict_ = self.binning_dict self.n_features_in_ = X.shape[1] return self def transform(self, X: pd.DataFrame) -> pd.DataFrame: """Sort the variable values into the intervals. Parameters ---------- X: pandas dataframe of shape = [n_samples, n_features] The dataframe to be transformed. Returns ------- X_new: pandas dataframe of shape = [n_samples, n_features] The transformed data with the discrete variables. """ # check input dataframe and if class was fitted X = super().transform(X) # transform variables if self.return_boundaries: for feature in self.variables_: X[feature] = pd.cut(X[feature], self.binner_dict_[feature]) else: for feature in self.variables_: X[feature] = pd.cut( X[feature], self.binner_dict_[feature], labels=False ) # return object if self.return_object: X[self.variables_] = X[self.variables_].astype("O") return X def _more_tags(self): tags_dict = _return_tags() # add additional test that fails tags_dict["_xfail_checks"][ "check_parameters_default_constructible" ] = "transformer has 1 mandatory parameter" return tags_dict
32.533333
86
0.634016
4a26dd4b13fb0c5a6bb3c1597b5a9baaf436bd2c
4,836
py
Python
framework/Runners/InternalRunner.py
alptezbasaran/raven
fd6fe8fe90b59d6dd3615cfea929722f3e04b2ca
[ "Apache-2.0" ]
1
2018-07-02T21:12:48.000Z
2018-07-02T21:12:48.000Z
framework/Runners/InternalRunner.py
alptezbasaran/raven
fd6fe8fe90b59d6dd3615cfea929722f3e04b2ca
[ "Apache-2.0" ]
null
null
null
framework/Runners/InternalRunner.py
alptezbasaran/raven
fd6fe8fe90b59d6dd3615cfea929722f3e04b2ca
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 Battelle Energy Alliance, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Created on Mar 5, 2013 @author: alfoa, cogljj, crisr """ #for future compatibility with Python 3-------------------------------------------------------------- from __future__ import division, print_function, unicode_literals, absolute_import #End compatibility block for Python 3---------------------------------------------------------------- #External Modules------------------------------------------------------------------------------------ import os import signal import copy import sys import abc #External Modules End-------------------------------------------------------------------------------- #Internal Modules------------------------------------------------------------------------------------ from utils import utils from BaseClasses import BaseType import MessageHandler from .Runner import Runner from .Error import Error #Internal Modules End-------------------------------------------------------------------------------- class InternalRunner(Runner): """ Generic base Class for running internal objects """ def __init__(self, messageHandler, args, functionToRun, identifier=None, metadata=None, uniqueHandler = "any", profile = False): """ Init method @ In, messageHandler, MessageHandler object, the global RAVEN message handler object @ In, args, dict, this is a list of arguments that will be passed as function parameters into whatever method is stored in functionToRun. e.g., functionToRun(*args) @ In, functionToRun, method or function, function that needs to be run @ In, identifier, string, optional, id of this job @ In, metadata, dict, optional, dictionary of metadata associated with this run @ In, uniqueHandler, string, optional, it is a special keyword attached to this runner. For example, if present, to retrieve this runner using the method jobHandler.getFinished, the uniqueHandler needs to be provided. If uniqueHandler == 'any', every "client" can get this runner @ In, profile, bool, optional, if True then during deconstruction timing summaries will be printed. @ Out, None """ ## First, allow the base class to handle the commonalities ## We keep the command here, in order to have the hook for running exec ## code into internal models super(InternalRunner, self).__init__(messageHandler, identifier, metadata, uniqueHandler, profile) ## Other parameters passed at initialization self.args = copy.copy(args) self.functionToRun = functionToRun ## Other parameters manipulated internally self.thread = None self.runReturn = None self.hasBeenAdded = False self.returnCode = 0 ## These things cannot be deep copied self.skipOnCopy = ['functionToRun','thread','__queueLock'] def __deepcopy__(self,memo): """ This is the method called with copy.deepcopy. Overwritten to remove some keys. @ In, memo, dict, dictionary required by deepcopy method @ Out, newobj, object, deep copy of this object """ cls = self.__class__ newobj = cls.__new__(cls) memo[id(self)] = newobj for k,v in self.__dict__.items(): if k not in self.skipOnCopy: setattr(newobj,k,copy.deepcopy(v,memo)) return newobj def _collectRunnerResponse(self): """ Method to add the process response in the internal variable (pointer) self.runReturn @ In, None @ Out, None """ pass def getReturnCode(self): """ Returns the return code from running the code. @ In, None @ Out, returnCode, int, the return code of this evaluation """ return self.returnCode def getEvaluation(self): """ Method to return the results of the function evaluation associated with this Runner @ In, None @ Out, returnValue, object or Error, whatever the method that this instance is executing returns, or if the job failed, will return an Error """ if self.isDone(): self._collectRunnerResponse() if self.runReturn is None: self.returnCode = -1 return Error() return self.runReturn else: return Error()
37.2
130
0.627792
4a26dd8c2ae63cab2429ad5007aebe7d4ad952c2
1,865
py
Python
src/other_scripts/split_sentences.py
saranya132/classinsight-language
c62d43337f190261bd00f0878f7364daebab3b1e
[ "BSD-3-Clause" ]
null
null
null
src/other_scripts/split_sentences.py
saranya132/classinsight-language
c62d43337f190261bd00f0878f7364daebab3b1e
[ "BSD-3-Clause" ]
null
null
null
src/other_scripts/split_sentences.py
saranya132/classinsight-language
c62d43337f190261bd00f0878f7364daebab3b1e
[ "BSD-3-Clause" ]
1
2020-02-15T01:45:23.000Z
2020-02-15T01:45:23.000Z
''' Created on Oct 14, 2019 @author: jzc1104 Splits paragraphs into sentences ''' import csv,nltk,sys try: nltk.data.find('tokenizers/punkt') except LookupError: nltk.download('punkt') if __name__ == '__main__': if len(sys.argv)>1: input_filename=sys.argv[1] output_filename=sys.argv[2] else: #input_filename="transcripts/190423_Henry_Per2.csv" #output_filename="transcripts/19023_Henry_Per2_split.csv" input_filename="test.csv" output_filename="testcsv_split.csv" new_transcript_lines=[] line_index=1 timestamp_tag=1 speaker_tag=0 transcript_tag=2 with open(input_filename,encoding="utf-8") as csv_file: csvreader = csv.reader(csv_file, delimiter=",") for line in csvreader: if len(line)<4: print("LESS THAN 4 COLUMNS:",line_index,line) continue if line[timestamp_tag]=="" and line[speaker_tag]=="" and line[transcript_tag]=="":continue sents=nltk.tokenize.sent_tokenize(line[transcript_tag]) line[speaker_tag]=line[speaker_tag][:-1] #Speaker field always ends with ":", here we remove it new_sent=[line_index, line[timestamp_tag],line[speaker_tag],sents[0]] line_index+=1 new_transcript_lines.append(new_sent) for sent in sents[1:]: new_sent=[line_index,"","",sent] line_index+=1 new_transcript_lines.append(new_sent) headers=["Line","Time_Stamp","Speaker","Transcript"] with open(output_filename, 'w', encoding = 'utf-8') as output_file: writer = csv.writer(output_file, delimiter=",") writer.writerow(headers) writer.writerows(new_transcript_lines)
30.080645
107
0.609115
4a26de8dd41e87aca3e8f26f847b7887ee30d46e
9,269
py
Python
mlpug/pytorch/trainers/training.py
nuhame/mlpug
be9f7c55f7d6616af5303e9350cfd8092d55440b
[ "Apache-2.0" ]
4
2019-12-30T16:12:06.000Z
2022-03-25T15:25:49.000Z
mlpug/pytorch/trainers/training.py
nuhame/mlpug
be9f7c55f7d6616af5303e9350cfd8092d55440b
[ "Apache-2.0" ]
null
null
null
mlpug/pytorch/trainers/training.py
nuhame/mlpug
be9f7c55f7d6616af5303e9350cfd8092d55440b
[ "Apache-2.0" ]
null
null
null
import torch from torch.cuda.amp import autocast import torch.distributed as dist from functools import reduce import basics.base_utils as _ from mlpug.trainers.training import * from mlpug.trainers.training import TrainingManager as TrainingManagerBase from mlpug.mlpug_exceptions import TrainerInvalidException, BatchNotChunkableException, LossNotAvailableException from mlpug.pytorch.utils import is_chunkable, SlidingWindow from mlpug.pytorch.multi_processing import MultiProcessingMixin class TrainingManager(MultiProcessingMixin, TrainingManagerBase): def __init__(self, *args, sliding_window_factory=SlidingWindow, **kwargs): super().__init__(*args, sliding_window_factory=sliding_window_factory, **kwargs) def _training_ended(self): if self.is_distributed: # Wait for all processes to finish dist.barrier() class PTTrainerMixin(MultiProcessingMixin): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def _activate_inference_mode(self, inference_mode): if inference_mode: self.training_model.eval() else: self.training_model.train() def _get_model_state(self, model, model_name=None): return model.state_dict() def _get_optimizer_state(self, optimizer, optimizer_name=None): return optimizer.state_dict() def _set_model_state(self, model, state, model_name=None): model.load_state_dict(state) def _set_optimizer_state(self, optimizer, state, optimizer_name): optimizer.load_state_dict(state) class Trainer(PTTrainerMixin, TrainerBase): pass class DefaultTrainer(PTTrainerMixin, DefaultTrainerBase): def __init__(self, *args, scaler=None, name="DefaultTrainer", **kwargs): super(DefaultTrainer, self).__init__(*args, name=name, **kwargs) self._scaler = scaler if self.use_mixed_precision: if scaler is None: self._log.debug("Creating default scaler instance for automatic mixed precision ...") self._scaler = torch.cuda.amp.GradScaler() self._log.info(f"Using scaler instance for automatic mixed precision : {self._scaler}") def set_learning_rate_for(self, optimizer_name, lr): """ Set learning rate for specific optimizer `optimizer_name` to `lr` :param optimizer_name: :param lr: :return: True on success, else False """ optimizer = self.get_optimizer(optimizer_name) if not hasattr(optimizer, 'param_groups'): self._log.error(f"No valid optimizer available with name {optimizer_name}, unable to set learning rate") return False try: for group in optimizer.param_groups: group['lr'] = lr except Exception as e: _.log_exception(self._log, f"Unable to set learning rate for optimizer {optimizer_name}", e) return False self._log.debug(f"Learning rate of optimizer {optimizer_name} set to : {lr}") return True def evaluate_loss(self, batch_data, inference_mode, evaluate_settings=None): if self.use_mixed_precision: self._activate_inference_mode(inference_mode) with autocast(): results = self._evaluate_loss(batch_data, evaluate_settings, inference_mode) return normalize_evaluation(results) else: return super().evaluate_loss(batch_data, inference_mode, evaluate_settings) def train_on(self, batch_data, training_settings=None): """ Use batch_data to perform a training iteration. Optionally uses `batch_chunk_size` to evaluate the loss in chunks. If a `batch_chunk_size` was given during construction of the trainer, the gradients are updated by evaluating the batch in chunks. *Note* When using chunked batch processing, the default implementation assumes that the loss, calculated over a chunk, is the average of the sample losses. :param batch_data: batch_data object to train on (e.g. dict, list, tuple) When `batch_chunk_size` is given, `batch_data` must be an object that implements the `__len__` and `__getitem__` methods. Here the `__getitem__` method must be able to deal with slices. :param training_settings: optional training_settings object (usually dict) :return: loss, auxiliary_results loss : number (e.g. float) auxiliary_results : can be anything, e.g dict or list with values or data items """ if not self.instance_valid(): raise TrainerInvalidException() self._reset_gradients() loss, auxiliary_results = self._calc_gradients(batch_data, training_settings=training_settings) self._prepare_update_model_parameters() self._update_model_parameters() self._after_update_model_parameters() return loss, auxiliary_results def _reset_gradients(self): for optimizer in self.get_optimizers().values(): optimizer.zero_grad() def _calc_gradients(self, batch_data, training_settings=None): """ :param batch_data: :type batch_data: :param training_settings: :type training_settings: :return: :rtype: :raises LossNotAvailableException """ if not self.batch_chunk_size: results = self.evaluate_loss(batch_data, inference_mode=False, evaluate_settings=training_settings) if 'loss' not in results: raise LossNotAvailableException() loss = results['loss'] auxiliary_results = get_value_at('auxiliary_results', results, warn_on_failure=False) self._back_propagate_from(loss) else: chunk_losses, chunk_aux_results, chunk_lengths = self._calc_gradients_chunked(batch_data, training_settings) loss, auxiliary_results = self._combine_chunk_results(chunk_losses, chunk_aux_results, chunk_lengths) return loss, auxiliary_results def _calc_gradients_chunked(self, batch_data, training_settings=None): """ See `train_on` method. This method slices the `batch_data` in slices of size `self.batch_chunk_size`. For each slice the loss is calculated and the gradients are updated through back prop. return: chunk_losses, chunk_aux_results, chunk_lengths All three outputs are lists """ if not is_chunkable(batch_data): raise BatchNotChunkableException() chunk_losses = [] chunk_aux_results = BatchChunkingResults() chunk_lengths = [] batch_size = len(batch_data) num_chunks = math.ceil(batch_size / self.batch_chunk_size) for chunk_idx in range(num_chunks): chunk_start = chunk_idx*self.batch_chunk_size chunk_end = min((chunk_idx+1)*self.batch_chunk_size, batch_size) chunk_len = chunk_end-chunk_start chunk = batch_data[chunk_start:chunk_end] results = self.evaluate_loss(chunk, inference_mode=False, evaluate_settings=training_settings) if 'loss' not in results: raise LossNotAvailableException() loss = results['loss'] aux_results = get_value_at('auxiliary_results', results, warn_on_failure=False) # loss is assumed to be the average over the sample loss for the chunk # Divide through batch size to factor in that this loss is part of a larger batch. last_chunk = chunk_idx == (num_chunks-1) self._back_propagate_from(chunk_len*loss/batch_size, last_chunk=last_chunk) chunk_losses += [loss] chunk_aux_results += [aux_results] chunk_lengths += [chunk_len] return chunk_losses, chunk_aux_results, chunk_lengths def _combine_chunk_results(self, chunk_losses, chunk_aux_results, chunk_lengths): """ This default implementation assumes that the loss for a chunk is the average loss of all samples in the chunk. There is no specific combination logic to combine the chunk auxiliary results """ loss = reduce(lambda tot, c: tot+(c[1]*c[0]), zip(chunk_losses, chunk_lengths), 0) num_samples = reduce(lambda tot, l: tot+l, chunk_lengths, 0) loss /= num_samples return loss, chunk_aux_results def _back_propagate_from(self, loss, last_chunk=False): if self.use_mixed_precision: self._scaler.scale(loss).backward() else: loss.backward() def _prepare_update_model_parameters(self): pass def _update_model_parameters(self): for optimizer in self.get_optimizers().values(): if self.use_mixed_precision: self._scaler.step(optimizer) else: optimizer.step() def _after_update_model_parameters(self): if self.use_mixed_precision: self._scaler.update()
35.51341
120
0.665012
4a26deae6f4741a708b08b3138844c9085fae5bf
168
py
Python
todo/urls.py
zhy0216-collection/django-todo
9e91d5a0c800d461d5027300f76a0090769752b9
[ "MIT" ]
null
null
null
todo/urls.py
zhy0216-collection/django-todo
9e91d5a0c800d461d5027300f76a0090769752b9
[ "MIT" ]
null
null
null
todo/urls.py
zhy0216-collection/django-todo
9e91d5a0c800d461d5027300f76a0090769752b9
[ "MIT" ]
null
null
null
from django.conf.urls import patterns, url from todo import views urlpatterns = patterns('', url(r'^$', views.TodoListView.as_view(), name="index") )
8.4
58
0.654762
4a26dff8cc94b3371ec2f755637fb8a1597a16c9
3,232
py
Python
voltha/adapters/loader.py
Balaji-P/voltha_docker_compose-rsk_tech_CKAD
3cf9b2e2bbbaeed4744ff9f33a3e91e60c8020b7
[ "Apache-2.0" ]
null
null
null
voltha/adapters/loader.py
Balaji-P/voltha_docker_compose-rsk_tech_CKAD
3cf9b2e2bbbaeed4744ff9f33a3e91e60c8020b7
[ "Apache-2.0" ]
null
null
null
voltha/adapters/loader.py
Balaji-P/voltha_docker_compose-rsk_tech_CKAD
3cf9b2e2bbbaeed4744ff9f33a3e91e60c8020b7
[ "Apache-2.0" ]
null
null
null
# # Copyright 2016 the original author or authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Loader to load each adapter. In this initial simple implementation we scan all subdirs in this directory, look for a python module with the same name as the subdir, and if module has a class that implements the IAdapterInterface, instantiate class and add it to plugins. """ import os import structlog from twisted.internet.defer import inlineCallbacks, returnValue from zope.interface import implementer from zope.interface.verify import verifyClass from voltha.adapters.interface import IAdapterInterface from voltha.core.adapter_agent import AdapterAgent from voltha.protos import third_party from voltha.registry import IComponent log = structlog.get_logger() mydir = os.path.abspath(os.path.dirname(__file__)) @implementer(IComponent) class AdapterLoader(object): def __init__(self, config): self.config = config self.adapter_agents = {} # adapter-name -> adapter instance @inlineCallbacks def start(self): log.debug('starting') for adapter_name, adapter_class in self._find_adapters(): agent = AdapterAgent(adapter_name, adapter_class) yield agent.start() self.adapter_agents[adapter_name] = agent log.info('started') returnValue(self) @inlineCallbacks def stop(self): log.debug('stopping') for proxy in self.adapter_agents.values(): yield proxy.stop() self.adapter_agents = {} log.info('stopped') def get_agent(self, adapter_name): return self.adapter_agents[adapter_name] def _find_adapters(self): subdirs = os.walk(mydir).next()[1] try: for subdir in subdirs: adapter_name = subdir py_file = os.path.join(mydir, subdir, subdir + '.py') if os.path.isfile(py_file): try: package_name = __package__ + '.' + subdir pkg = __import__(package_name, None, None, [adapter_name]) module = getattr(pkg, adapter_name) except ImportError, e: log.exception('cannot-load', file=py_file, e=e) continue for attr_name in dir(module): cls = getattr(module, attr_name) if isinstance(cls, type) and \ IAdapterInterface.implementedBy(cls): verifyClass(IAdapterInterface, cls) yield adapter_name, cls except Exception, e: log.exception('failed', e=e)
34.752688
82
0.64078
4a26e0d90a879e3c86e64765863bd46fbd36f9fb
1,424
py
Python
basic/dataset-processor.py
alexnguyen65/class6-homework
f3be0e5a6ec059f7ec56148fbd757f1eda2cef89
[ "MIT" ]
null
null
null
basic/dataset-processor.py
alexnguyen65/class6-homework
f3be0e5a6ec059f7ec56148fbd757f1eda2cef89
[ "MIT" ]
null
null
null
basic/dataset-processor.py
alexnguyen65/class6-homework
f3be0e5a6ec059f7ec56148fbd757f1eda2cef89
[ "MIT" ]
null
null
null
import os import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D file_path = 'housing.data' plots_dir = 'plots' plots_format = 'png' housing_df = pd.read_csv(file_path, sep='\s+', header=0) housing_df.columns = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'BLACK', 'LSTAT', 'MEDV'] os.makedirs(plots_dir, exist_ok=True) for feature1_idx, feature1_name in enumerate(housing_df.columns): for feature2_idx, feature2_name in enumerate(housing_df.columns): for feature3_idx, feature3_name in enumerate(housing_df.columns): if (feature1_idx < feature2_idx) and (feature2_idx < feature3_idx): print ('Generating 3d scatter plot with ' + feature1_name + ' + ' + feature2_name + ' + ' + feature3_name) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(housing_df[feature1_name], housing_df[feature2_name], housing_df[feature3_name]) ax.set_title('3D scatter plot') ax.set_xlabel(feature1_name) ax.set_ylabel(feature2_name) ax.set_zlabel(feature3_name) # ax.legend() plots_file = plots_dir + '/3d_scatter_' + feature1_name + '_' + feature2_name + '_' + feature3_name + '.' + plots_format plt.savefig(plots_file, format=plots_format) plt.clf() plt.close()
43.151515
133
0.653792
4a26e2843a1475a1faecfd3c0760d04cd29f8a64
24,082
py
Python
tools/generate-wire.py
mosqueiro/lightning
793a25a0e5ee0c3c80d1403d556a4a013ee233fd
[ "MIT" ]
null
null
null
tools/generate-wire.py
mosqueiro/lightning
793a25a0e5ee0c3c80d1403d556a4a013ee233fd
[ "MIT" ]
null
null
null
tools/generate-wire.py
mosqueiro/lightning
793a25a0e5ee0c3c80d1403d556a4a013ee233fd
[ "MIT" ]
null
null
null
#! /usr/bin/env python3 # Script to parse spec output CSVs and produce C files. # Released by lisa neigut under CC0: # https://creativecommons.org/publicdomain/zero/1.0/ # # Reads from stdin, outputs C header or body file. # # Standard message types: # msgtype,<msgname>,<value>[,<option>] # msgdata,<msgname>,<fieldname>,<typename>,[<count>][,<option>] # # TLV types: # tlvtype,<tlvstreamname>,<tlvname>,<value>[,<option>] # tlvdata,<tlvstreamname>,<tlvname>,<fieldname>,<typename>,[<count>][,<option>] # # Subtypes: # subtype,<subtypename> # subtypedata,<subtypename>,<fieldname>,<typename>,[<count>] from argparse import ArgumentParser, REMAINDER from collections import OrderedDict import copy import fileinput from mako.template import Template import os import re import sys # Generator to give us one line at a time. def next_line(args, lines): if lines is None: lines = fileinput.input(args) for i, line in enumerate(lines): yield i + 1, line.strip() # Class definitions, to keep things classy class Field(object): def __init__(self, name, type_obj, extensions=[], field_comments=[], optional=False): self.name = name self.type_obj = type_obj self.count = 1 self.len_field_of = None self.len_field = None self.implicit_len = False self.extension_names = extensions self.is_optional = optional self.field_comments = field_comments def __deepcopy__(self, memo): deepcopy_method = self.__deepcopy__ self.__deepcopy__ = None field = copy.deepcopy(self, memo) self.__deepcopy__ = deepcopy_method field.type_obj = self.type_obj return field def add_count(self, count): self.count = int(count) def add_len_field(self, len_field): self.count = False # we cache our len-field's name self.len_field = len_field.name # the len-field caches our name len_field.len_field_of = self.name def add_implicit_len(self): self.count = False self.implicit_len = True def is_array(self): return self.count > 1 def is_varlen(self): return not self.count def is_implicit_len(self): return self.implicit_len def is_extension(self): return bool(self.extension_names) def size(self, implicit_expression=None): if self.count: return self.count if self.len_field: return self.len_field assert self.is_implicit_len() assert implicit_expression return implicit_expression def needs_context(self): """ A field needs a context if it's varsized """ return self.is_varlen() or self.type_obj.needs_context() def arg_desc_to(self): if self.len_field_of: return '' type_name = self.type_obj.type_name() if self.is_array(): return ', const {} {}[{}]'.format(type_name, self.name, self.count) if self.type_obj.is_assignable() and not self.is_varlen(): name = self.name if self.is_optional: name = '*' + name return ', {} {}'.format(type_name, name) if self.is_varlen() and self.type_obj.is_varsize(): return ', const {} **{}'.format(type_name, self.name) return ', const {} *{}'.format(type_name, self.name) def arg_desc_from(self): type_name = self.type_obj.type_name() if self.type_obj.is_const_ptr_ptr_type(): return ', const {} **{}'.format(type_name, self.name) if self.len_field_of: return '' if self.is_array(): return ', {} {}[{}]'.format(type_name, self.name, self.count) ptrs = '*' if self.is_varlen() or self.is_optional or self.type_obj.is_varsize(): ptrs += '*' if self.is_varlen() and self.type_obj.is_varsize(): ptrs += '*' return ', {} {}{}'.format(type_name, ptrs, self.name) class FieldSet(object): def __init__(self): self.fields = OrderedDict() self.len_fields = {} def add_data_field(self, field_name, type_obj, count=1, extensions=[], comments=[], optional=False, implicit_len_ok=False): field = Field(field_name, type_obj, extensions=extensions, field_comments=comments, optional=optional) if bool(count): try: field.add_count(int(count)) except ValueError: if count in self.fields: len_field = self.find_data_field(count) field.add_len_field(len_field) self.len_fields[len_field.name] = len_field else: # '...' means "rest of TLV" assert implicit_len_ok assert count == '...' field.add_implicit_len() # You can't have any fields after an implicit-length field. if len(self.fields) != 0: assert not self.fields[next(reversed(self.fields))].is_implicit_len() self.fields[field_name] = field def find_data_field(self, field_name): return self.fields[field_name] def get_len_fields(self): return list(self.len_fields.values()) def has_len_fields(self): return bool(self.len_fields) def needs_context(self): return any([field.needs_context() or field.is_optional for field in self.fields.values()]) class Type(FieldSet): assignables = [ 'u8', 'u16', 'u32', 'u64', 'tu16', 'tu32', 'tu64', 'bool', 'amount_sat', 'amount_msat', 'bigsize', 'varint' ] typedefs = [ 'u8', 'u16', 'u32', 'u64', 'bool', 'secp256k1_ecdsa_signature', 'secp256k1_ecdsa_recoverable_signature', 'wirestring', 'double', 'bigsize', 'varint', ] truncated_typedefs = [ 'tu16', 'tu32', 'tu64', ] # Externally defined variable size types (require a context) varsize_types = [ 'peer_features', 'gossip_getnodes_entry', 'gossip_getchannels_entry', 'failed_htlc', 'utxo', 'zcore_tx', 'wirestring', 'per_peer_state', 'zcore_tx_output', 'exclude_entry', ] # Some BOLT types are re-typed based on their field name # ('fieldname partial', 'original type', 'outer type'): ('true type', 'collapse array?') name_field_map = { ('txid', 'sha256'): ('zcore_txid', False), ('amt', 'u64'): ('amount_msat', False), ('msat', 'u64'): ('amount_msat', False), ('satoshis', 'u64'): ('amount_sat', False), ('node_id', 'pubkey', 'channel_announcement'): ('node_id', False), ('node_id', 'pubkey', 'node_announcement'): ('node_id', False), ('temporary_channel_id', 'u8'): ('channel_id', True), ('secret', 'u8'): ('secret', True), ('preimage', 'u8'): ('preimage', True), } # For BOLT specified types, a few type names need to be simply 'remapped' # 'original type': 'true type' name_remap = { 'byte': 'u8', 'signature': 'secp256k1_ecdsa_signature', 'chain_hash': 'zcore_blkid', 'point': 'pubkey', # FIXME: omits 'pad' } # Types that are const pointer-to-pointers, such as chainparams, i.e., # they set a reference to some const entry. const_ptr_ptr_types = [ 'chainparams' ] @staticmethod def true_type(type_name, field_name=None, outer_name=None): """ Returns 'true' type of a given type and a flag if we've remapped a variable size/array type to a single struct (an example of this is 'temporary_channel_id' which is specified as a 32*byte, but we re-map it to a channel_id """ if type_name in Type.name_remap: type_name = Type.name_remap[type_name] if field_name: for t, true_type in Type.name_field_map.items(): if t[0] in field_name and t[1] == type_name: if len(t) == 2 or outer_name == t[2]: return true_type return (type_name, False) def __init__(self, name): FieldSet.__init__(self) self.name, self.is_enum = self.parse_name(name) self.depends_on = {} self.type_comments = [] self.tlv = False def parse_name(self, name): if name.startswith('enum '): return name[5:], True return name, False def add_data_field(self, field_name, type_obj, count=1, extensions=[], comments=[], optional=False): FieldSet.add_data_field(self, field_name, type_obj, count, extensions=extensions, comments=comments, optional=optional) if type_obj.name not in self.depends_on: self.depends_on[type_obj.name] = type_obj def type_name(self): if self.name in self.typedefs: return self.name if self.name in self.truncated_typedefs: return self.name[1:] if self.is_enum: prefix = 'enum ' else: prefix = 'struct ' return prefix + self.struct_name() # We only accelerate the u8 case: it's common and trivial. def has_array_helper(self): return self.name in ['u8'] def struct_name(self): if self.is_tlv(): return self.tlv.struct_name() return self.name def subtype_deps(self): return [dep for dep in self.depends_on.values() if dep.is_subtype()] def is_subtype(self): return bool(self.fields) def is_const_ptr_ptr_type(self): return self.name in self.const_ptr_ptr_types def is_truncated(self): return self.name in self.truncated_typedefs def needs_context(self): return self.is_varsize() def is_assignable(self): """ Generally typedef's and enums """ return self.name in self.assignables or self.is_enum def is_varsize(self): """ A type is variably sized if it's marked as such (in varsize_types) or it contains a field of variable length """ return self.name in self.varsize_types or self.has_len_fields() def add_comments(self, comments): self.type_comments = comments def mark_tlv(self, tlv): self.tlv = tlv def is_tlv(self): return bool(self.tlv) class Message(FieldSet): def __init__(self, name, number, option=[], enum_prefix='wire', struct_prefix=None, comments=[]): FieldSet.__init__(self) self.name = name self.number = number self.enum_prefix = enum_prefix self.option = option[0] if len(option) else None self.struct_prefix = struct_prefix self.enumname = None self.msg_comments = comments self.if_token = None def has_option(self): return self.option is not None def enum_name(self): name = self.enumname if self.enumname else self.name return "{}_{}".format(self.enum_prefix, name).upper() def struct_name(self): if self.struct_prefix: return self.struct_prefix + "_" + self.name return self.name def add_if(self, if_token): self.if_token = if_token class Tlv(object): def __init__(self, name): self.name = name self.messages = {} def add_message(self, tokens, comments=[]): """ tokens -> (name, value[, option]) """ self.messages[tokens[0]] = Message(tokens[0], tokens[1], option=tokens[2:], enum_prefix=self.name, struct_prefix=self.struct_name(), comments=comments) def type_name(self): return 'struct ' + self.struct_name() def struct_name(self): return "tlv_{}".format(self.name) def find_message(self, name): return self.messages[name] def ordered_msgs(self): return sorted(self.messages.values(), key=lambda item: int(item.number)) class Master(object): types = {} tlvs = {} messages = {} extension_msgs = {} inclusions = [] top_comments = [] def add_comments(self, comments): self.top_comments += comments def add_include(self, inclusion): self.inclusions.append(inclusion) def add_tlv(self, tlv_name): if tlv_name not in self.tlvs: self.tlvs[tlv_name] = Tlv(tlv_name) if tlv_name not in self.types: self.types[tlv_name] = Type(tlv_name) return self.tlvs[tlv_name] def add_message(self, tokens, comments=[]): """ tokens -> (name, value[, option])""" self.messages[tokens[0]] = Message(tokens[0], tokens[1], option=tokens[2:], comments=comments) def add_extension_msg(self, name, msg): self.extension_msgs[name] = msg def add_type(self, type_name, field_name=None, outer_name=None): optional = False if type_name.startswith('?'): type_name = type_name[1:] optional = True # Check for special type name re-mapping type_name, collapse_original = Type.true_type(type_name, field_name, outer_name) if type_name not in self.types: self.types[type_name] = Type(type_name) return self.types[type_name], collapse_original, optional def find_type(self, type_name): return self.types[type_name] def find_message(self, msg_name): if msg_name in self.messages: return self.messages[msg_name] if msg_name in self.extension_msgs: return self.extension_msgs[msg_name] return None def find_tlv(self, tlv_name): return self.tlvs[tlv_name] def get_ordered_subtypes(self): """ We want to order subtypes such that the 'no dependency' types are printed first """ subtypes = [s for s in self.types.values() if s.is_subtype()] # Start with subtypes without subtype dependencies sorted_types = [s for s in subtypes if not len(s.subtype_deps())] unsorted = [s for s in subtypes if len(s.subtype_deps())] while len(unsorted): names = [s.name for s in sorted_types] for s in list(unsorted): if all([dependency.name in names for dependency in s.subtype_deps()]): sorted_types.append(s) unsorted.remove(s) return sorted_types def tlv_messages(self): return [m for tlv in self.tlvs.values() for m in tlv.messages.values()] def find_template(self, options): dirpath = os.path.dirname(os.path.abspath(__file__)) filename = dirpath + '/gen/{}{}_template'.format( 'print_' if options.print_wire else '', options.page) return Template(filename=filename) def post_process(self): """ method to handle any 'post processing' that needs to be done. for now, we just need match up types to TLVs """ for tlv_name, tlv in self.tlvs.items(): if tlv_name in self.types: self.types[tlv_name].mark_tlv(tlv) def write(self, options, output): template = self.find_template(options) enum_sets = [] enum_sets.append({ 'name': options.enum_name, 'set': self.messages.values(), }) stuff = {} stuff['top_comments'] = self.top_comments stuff['options'] = options stuff['idem'] = re.sub(r'[^A-Z]+', '_', options.header_filename.upper()) stuff['header_filename'] = options.header_filename stuff['includes'] = self.inclusions stuff['enum_sets'] = enum_sets subtypes = self.get_ordered_subtypes() stuff['structs'] = subtypes + self.tlv_messages() stuff['tlvs'] = self.tlvs # We leave out extension messages in the printing pages. Any extension # fields will get printed under the 'original' message, if present if options.print_wire: stuff['messages'] = list(self.messages.values()) else: stuff['messages'] = list(self.messages.values()) + list(self.extension_msgs.values()) stuff['subtypes'] = subtypes print(template.render(**stuff), file=output) def main(options, args=None, output=sys.stdout, lines=None): genline = next_line(args, lines) comment_set = [] token_name = None # Create a new 'master' that serves as the coordinator for the file generation master = Master() try: while True: ln, line = next(genline) tokens = line.split(',') token_type = tokens[0] if not bool(line): master.add_comments(comment_set) comment_set = [] token_name = None continue if len(tokens) > 2: token_name = tokens[1] if token_type == 'subtype': subtype, _, _ = master.add_type(tokens[1]) subtype.add_comments(list(comment_set)) comment_set = [] elif token_type == 'subtypedata': subtype = master.find_type(tokens[1]) if not subtype: raise ValueError('Unknown subtype {} for data.\nat {}:{}' .format(tokens[1], ln, line)) type_obj, collapse, optional = master.add_type(tokens[3], tokens[2], tokens[1]) if optional: raise ValueError('Subtypes cannot have optional fields {}.{}\n at {}:{}' .format(subtype.name, tokens[2], ln, line)) if collapse: count = 1 else: count = tokens[4] subtype.add_data_field(tokens[2], type_obj, count, comments=list(comment_set), optional=optional) comment_set = [] elif token_type == 'tlvtype': tlv = master.add_tlv(tokens[1]) tlv.add_message(tokens[2:], comments=list(comment_set)) comment_set = [] elif token_type == 'tlvdata': type_obj, collapse, optional = master.add_type(tokens[4], tokens[3], tokens[1]) if optional: raise ValueError('TLV messages cannot have optional fields {}.{}\n at {}:{}' .format(tokens[2], tokens[3], ln, line)) tlv = master.find_tlv(tokens[1]) if not tlv: raise ValueError('tlvdata for unknown tlv {}.\nat {}:{}' .format(tokens[1], ln, line)) msg = tlv.find_message(tokens[2]) if not msg: raise ValueError('tlvdata for unknown tlv-message {}.\nat {}:{}' .format(tokens[2], ln, line)) if collapse: count = 1 else: count = tokens[5] msg.add_data_field(tokens[3], type_obj, count, comments=list(comment_set), optional=optional, implicit_len_ok=True) comment_set = [] elif token_type == 'msgtype': master.add_message(tokens[1:], comments=list(comment_set)) comment_set = [] elif token_type == 'msgdata': msg = master.find_message(tokens[1]) if not msg: raise ValueError('Unknown message type {}. {}:{}'.format(tokens[1], ln, line)) type_obj, collapse, optional = master.add_type(tokens[3], tokens[2], tokens[1]) if collapse: count = 1 elif len(tokens) < 5: raise ValueError('problem with parsing {}:{}'.format(ln, line)) else: count = tokens[4] # if this is an 'extension' field*, we want to add a new 'message' type # in the future, extensions will be handled as TLV's # # *(in the spec they're called 'optional', but that term is overloaded # in that internal wire messages have 'optional' fields that are treated # differently. for the sake of clarity here, for bolt-wire messages, # we'll refer to 'optional' message fields as 'extensions') # if tokens[5:] == []: msg.add_data_field(tokens[2], type_obj, count, comments=list(comment_set), optional=optional) else: # is one or more extension fields if optional: raise ValueError("Extension fields cannot be optional. {}:{}" .format(ln, line)) orig_msg = msg for extension in tokens[5:]: extension_name = "{}_{}".format(tokens[1], extension) msg = master.find_message(extension_name) if not msg: msg = copy.deepcopy(orig_msg) msg.enumname = msg.name msg.name = extension_name master.add_extension_msg(msg.name, msg) msg.add_data_field(tokens[2], type_obj, count, comments=list(comment_set), optional=optional) # If this is a print_wire page, add the extension fields to the # original message, so we can print them if present. if options.print_wire: orig_msg.add_data_field(tokens[2], type_obj, count=count, extensions=tokens[5:], comments=list(comment_set), optional=optional) comment_set = [] elif token_type.startswith('#include'): master.add_include(token_type) elif token_type.startswith('#if'): msg = master.find_message(token_name) if (msg): if_token = token_type[token_type.index(' ') + 1:] msg.add_if(if_token) elif token_type.startswith('#'): comment_set.append(token_type[1:]) else: raise ValueError("Unknown token type {} on line {}:{}".format(token_type, ln, line)) except StopIteration: pass master.post_process() master.write(options, output) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("-s", "--expose-subtypes", help="print subtypes in header", action="store_true", default=False) parser.add_argument("-P", "--print_wire", help="generate wire printing source files", action="store_true", default=False) parser.add_argument("--page", choices=['header', 'impl'], help="page to print") parser.add_argument('--expose-tlv-type', action='append', default=[]) parser.add_argument('header_filename', help='The filename of the header') parser.add_argument('enum_name', help='The name of the enum to produce') parser.add_argument("files", help='Files to read in (or stdin)', nargs=REMAINDER) parsed_args = parser.parse_args() main(parsed_args, parsed_args.files)
35.57164
117
0.561623
4a26e2b6a7e1d1a6f49fa031a3b6d151494fe821
9,521
py
Python
docs/conf.py
eblume/flask-dance
87d45328bbdaff833559a6d3da71461fe4579592
[ "MIT" ]
null
null
null
docs/conf.py
eblume/flask-dance
87d45328bbdaff833559a6d3da71461fe4579592
[ "MIT" ]
null
null
null
docs/conf.py
eblume/flask-dance
87d45328bbdaff833559a6d3da71461fe4579592
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Flask Dance documentation build configuration file, created by # sphinx-quickstart on Sat Sep 27 09:47:52 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath("..")) from flask_dance import __version__ # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.intersphinx", "sphinx.ext.viewcode", "sphinx.ext.napoleon", "sphinxcontrib.seqdiag", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix of source filenames. source_suffix = ".rst" # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = "index" # General information about the project. project = u"Flask Dance" copyright = u"2014-2019, David Baumgold" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = __version__ # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ["_build"] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "flask" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { "index_logo": "flask-dance.png", "github_fork": "singingwolfboy/flask-dance", } # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = ['_themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = "FlaskDancedoc" # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ( "index", "FlaskDance.tex", u"Flask Dance Documentation", u"David Baumgold", "manual", ) ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = "_static/flask-dance.pdf" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ("index", "flaskdance", u"Flask Dance Documentation", [u"David Baumgold"], 1) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( "index", "FlaskDance", u"Flask Dance Documentation", u"David Baumgold", "FlaskDance", "One line description of project.", "Miscellaneous", ) ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # texinfo_no_detailmenu = False intersphinx_mapping = { "python": ("https://docs.python.org/3/", None), "flask": ("http://flask.pocoo.org/docs/", None), "flask_login": ("https://flask-login.readthedocs.io/en/latest/", None), "werkzeug": ("http://werkzeug.pocoo.org/docs/", None), "requests": ("http://docs.python-requests.org/en/latest/", None), "requests_oauthlib": ("https://requests-oauthlib.readthedocs.io/en/latest/", None), "sqlalchemy": ("https://docs.sqlalchemy.org/en/latest/", None), "sqlalchemy_utils": ("https://sqlalchemy-utils.readthedocs.io/en/latest/", None), "betamax": ("https://betamax.readthedocs.io/en/latest", None), } autodoc_member_order = "bysource" seqdiag_antialias = True seqdiag_fontpath = [ "/usr/share/fonts/Arial Unicode.ttf", "/usr/share/fonts/Arial.ttf", "/Library/Fonts/Arial Unicode.ttf", "/Library/Fonts/Arial.ttf", ]
31.842809
87
0.701607
4a26e3da81c291c52c46ff283399c5af6bffbbad
15,849
py
Python
backend/src/baserow/contrib/database/api/fields/views.py
lyhiving/baserow2
757148947a77e1469ad63540628730b637134cc2
[ "MIT" ]
null
null
null
backend/src/baserow/contrib/database/api/fields/views.py
lyhiving/baserow2
757148947a77e1469ad63540628730b637134cc2
[ "MIT" ]
null
null
null
backend/src/baserow/contrib/database/api/fields/views.py
lyhiving/baserow2
757148947a77e1469ad63540628730b637134cc2
[ "MIT" ]
null
null
null
from django.db import transaction from drf_spectacular.openapi import OpenApiParameter, OpenApiTypes from drf_spectacular.utils import extend_schema from rest_framework.decorators import permission_classes as method_permission_classes from rest_framework.permissions import IsAuthenticated, AllowAny from rest_framework.response import Response from rest_framework.views import APIView from baserow.api.decorators import validate_body_custom_fields, map_exceptions from baserow.api.errors import ERROR_USER_NOT_IN_GROUP from baserow.api.schemas import get_error_schema from baserow.api.trash.errors import ERROR_CANNOT_DELETE_ALREADY_DELETED_ITEM from baserow.api.utils import DiscriminatorCustomFieldsMappingSerializer from baserow.api.utils import validate_data_custom_fields, type_from_data_or_registry from baserow.contrib.database.api.fields.errors import ( ERROR_CANNOT_DELETE_PRIMARY_FIELD, ERROR_CANNOT_CHANGE_FIELD_TYPE, ERROR_FIELD_DOES_NOT_EXIST, ERROR_MAX_FIELD_COUNT_EXCEEDED, ERROR_RESERVED_BASEROW_FIELD_NAME, ERROR_FIELD_WITH_SAME_NAME_ALREADY_EXISTS, ERROR_INVALID_BASEROW_FIELD_NAME, ) from baserow.contrib.database.api.tables.errors import ERROR_TABLE_DOES_NOT_EXIST from baserow.contrib.database.api.tokens.authentications import TokenAuthentication from baserow.contrib.database.api.tokens.errors import ERROR_NO_PERMISSION_TO_TABLE from baserow.contrib.database.fields.exceptions import ( CannotDeletePrimaryField, CannotChangeFieldType, FieldDoesNotExist, MaxFieldLimitExceeded, ReservedBaserowFieldNameException, FieldWithSameNameAlreadyExists, InvalidBaserowFieldName, ) from baserow.contrib.database.fields.handler import FieldHandler from baserow.contrib.database.fields.models import Field from baserow.contrib.database.fields.registries import field_type_registry from baserow.contrib.database.table.exceptions import TableDoesNotExist from baserow.contrib.database.table.handler import TableHandler from baserow.contrib.database.tokens.exceptions import NoPermissionToTable from baserow.contrib.database.tokens.handler import TokenHandler from baserow.core.exceptions import UserNotInGroup from baserow.core.trash.exceptions import CannotDeleteAlreadyDeletedItem from .serializers import ( FieldSerializer, CreateFieldSerializer, UpdateFieldSerializer, FieldSerializerWithRelatedFields, RelatedFieldsSerializer, ) class FieldsView(APIView): authentication_classes = APIView.authentication_classes + [TokenAuthentication] permission_classes = (IsAuthenticated,) def get_permissions(self): if self.request.method == "GET": return [AllowAny()] return super().get_permissions() @extend_schema( parameters=[ OpenApiParameter( name="table_id", location=OpenApiParameter.PATH, type=OpenApiTypes.INT, description="Returns only the fields of the table related to the " "provided value.", ) ], tags=["Database table fields"], operation_id="list_database_table_fields", description=( "Lists all the fields of the table related to the provided parameter if " "the user has access to the related database's group. If the group is " "related to a template, then this endpoint will be publicly accessible. A " "table consists of fields and each field can have a different type. Each " "type can have different properties. A field is comparable with a regular " "table's column." ), responses={ 200: DiscriminatorCustomFieldsMappingSerializer( field_type_registry, FieldSerializer, many=True ), 400: get_error_schema(["ERROR_USER_NOT_IN_GROUP"]), 401: get_error_schema(["ERROR_NO_PERMISSION_TO_TABLE"]), 404: get_error_schema(["ERROR_TABLE_DOES_NOT_EXIST"]), }, ) @map_exceptions( { TableDoesNotExist: ERROR_TABLE_DOES_NOT_EXIST, UserNotInGroup: ERROR_USER_NOT_IN_GROUP, NoPermissionToTable: ERROR_NO_PERMISSION_TO_TABLE, } ) @method_permission_classes([AllowAny]) def get(self, request, table_id): """ Responds with a list of serialized fields that belong to the table if the user has access to that group. """ table = TableHandler().get_table(table_id) table.database.group.has_user( request.user, raise_error=True, allow_if_template=True ) TokenHandler().check_table_permissions( request, ["read", "create", "update"], table, False ) fields = Field.objects.filter(table=table).select_related("content_type") data = [ field_type_registry.get_serializer(field, FieldSerializer).data for field in fields ] return Response(data) @extend_schema( parameters=[ OpenApiParameter( name="table_id", location=OpenApiParameter.PATH, type=OpenApiTypes.INT, description="Creates a new field for the provided table related to the " "value.", ) ], tags=["Database table fields"], operation_id="create_database_table_field", description=( "Creates a new field for the table related to the provided `table_id` " "parameter if the authorized user has access to the related database's " "group. Depending on the type, different properties can optionally be " "set." "If creating the field causes other fields to change then the specific" "instances of those fields will be included in the related fields " "response key." ), request=DiscriminatorCustomFieldsMappingSerializer( field_type_registry, CreateFieldSerializer ), responses={ 200: DiscriminatorCustomFieldsMappingSerializer( field_type_registry, FieldSerializerWithRelatedFields ), 400: get_error_schema( [ "ERROR_USER_NOT_IN_GROUP", "ERROR_REQUEST_BODY_VALIDATION", "ERROR_MAX_FIELD_COUNT_EXCEEDED", "ERROR_RESERVED_BASEROW_FIELD_NAME", "ERROR_FIELD_WITH_SAME_NAME_ALREADY_EXISTS", "ERROR_INVALID_BASEROW_FIELD_NAME", ] ), 401: get_error_schema(["ERROR_NO_PERMISSION_TO_TABLE"]), 404: get_error_schema(["ERROR_TABLE_DOES_NOT_EXIST"]), }, ) @transaction.atomic @validate_body_custom_fields( field_type_registry, base_serializer_class=CreateFieldSerializer ) @map_exceptions( { TableDoesNotExist: ERROR_TABLE_DOES_NOT_EXIST, UserNotInGroup: ERROR_USER_NOT_IN_GROUP, MaxFieldLimitExceeded: ERROR_MAX_FIELD_COUNT_EXCEEDED, NoPermissionToTable: ERROR_NO_PERMISSION_TO_TABLE, FieldWithSameNameAlreadyExists: ERROR_FIELD_WITH_SAME_NAME_ALREADY_EXISTS, ReservedBaserowFieldNameException: ERROR_RESERVED_BASEROW_FIELD_NAME, InvalidBaserowFieldName: ERROR_INVALID_BASEROW_FIELD_NAME, } ) def post(self, request, data, table_id): """Creates a new field for a table.""" type_name = data.pop("type") field_type = field_type_registry.get(type_name) table = TableHandler().get_table(table_id) table.database.group.has_user(request.user, raise_error=True) # field_create permission doesn't exists, so any call of this endpoint with a # token will be rejected. TokenHandler().check_table_permissions(request, "field_create", table, False) # Because each field type can raise custom exceptions while creating the # field we need to be able to map those to the correct API exceptions which are # defined in the type. with field_type.map_api_exceptions(): field, updated_fields = FieldHandler().create_field( request.user, table, type_name, return_updated_fields=True, **data ) serializer = field_type_registry.get_serializer( field, FieldSerializerWithRelatedFields, related_fields=updated_fields ) return Response(serializer.data) class FieldView(APIView): permission_classes = (IsAuthenticated,) @extend_schema( parameters=[ OpenApiParameter( name="field_id", location=OpenApiParameter.PATH, type=OpenApiTypes.INT, description="Returns the field related to the provided value.", ) ], tags=["Database table fields"], operation_id="get_database_table_field", description=( "Returns the existing field if the authorized user has access to the " "related database's group. Depending on the type different properties " "could be returned." ), responses={ 200: DiscriminatorCustomFieldsMappingSerializer( field_type_registry, FieldSerializer ), 400: get_error_schema(["ERROR_USER_NOT_IN_GROUP"]), 404: get_error_schema(["ERROR_FIELD_DOES_NOT_EXIST"]), }, ) @map_exceptions( { FieldDoesNotExist: ERROR_FIELD_DOES_NOT_EXIST, UserNotInGroup: ERROR_USER_NOT_IN_GROUP, } ) def get(self, request, field_id): """Selects a single field and responds with a serialized version.""" field = FieldHandler().get_field(field_id) field.table.database.group.has_user(request.user, raise_error=True) serializer = field_type_registry.get_serializer(field, FieldSerializer) return Response(serializer.data) @extend_schema( parameters=[ OpenApiParameter( name="field_id", location=OpenApiParameter.PATH, type=OpenApiTypes.INT, description="Updates the field related to the provided value.", ) ], tags=["Database table fields"], operation_id="update_database_table_field", description=( "Updates the existing field if the authorized user has access to the " "related database's group. The type can also be changed and depending on " "that type, different additional properties can optionally be set. If you " "change the field type it could happen that the data conversion fails, in " "that case the `ERROR_CANNOT_CHANGE_FIELD_TYPE` is returned, but this " "rarely happens. If a data value cannot be converted it is set to `null` " "so data might go lost." "If updated the field causes other fields to change then the specific" "instances of those fields will be included in the related fields " "response key." ), request=DiscriminatorCustomFieldsMappingSerializer( field_type_registry, UpdateFieldSerializer ), responses={ 200: DiscriminatorCustomFieldsMappingSerializer( field_type_registry, FieldSerializerWithRelatedFields ), 400: get_error_schema( [ "ERROR_USER_NOT_IN_GROUP", "ERROR_CANNOT_CHANGE_FIELD_TYPE", "ERROR_REQUEST_BODY_VALIDATION", "ERROR_RESERVED_BASEROW_FIELD_NAME", "ERROR_FIELD_WITH_SAME_NAME_ALREADY_EXISTS", "ERROR_INVALID_BASEROW_FIELD_NAME", ] ), 404: get_error_schema(["ERROR_FIELD_DOES_NOT_EXIST"]), }, ) @transaction.atomic @map_exceptions( { FieldDoesNotExist: ERROR_FIELD_DOES_NOT_EXIST, UserNotInGroup: ERROR_USER_NOT_IN_GROUP, CannotChangeFieldType: ERROR_CANNOT_CHANGE_FIELD_TYPE, FieldWithSameNameAlreadyExists: ERROR_FIELD_WITH_SAME_NAME_ALREADY_EXISTS, ReservedBaserowFieldNameException: ERROR_RESERVED_BASEROW_FIELD_NAME, InvalidBaserowFieldName: ERROR_INVALID_BASEROW_FIELD_NAME, } ) def patch(self, request, field_id): """Updates the field if the user belongs to the group.""" field = ( FieldHandler() .get_field(field_id, base_queryset=Field.objects.select_for_update()) .specific ) type_name = type_from_data_or_registry(request.data, field_type_registry, field) field_type = field_type_registry.get(type_name) data = validate_data_custom_fields( type_name, field_type_registry, request.data, base_serializer_class=UpdateFieldSerializer, ) # Because each field type can raise custom exceptions at while updating the # field we need to be able to map those to the correct API exceptions which are # defined in the type. with field_type.map_api_exceptions(): field, related_fields = FieldHandler().update_field( request.user, field, type_name, return_updated_fields=True, **data ) serializer = field_type_registry.get_serializer( field, FieldSerializerWithRelatedFields, related_fields=related_fields ) return Response(serializer.data) @extend_schema( parameters=[ OpenApiParameter( name="field_id", location=OpenApiParameter.PATH, type=OpenApiTypes.INT, description="Deletes the field related to the provided value.", ) ], tags=["Database table fields"], operation_id="delete_database_table_field", description=( "Deletes the existing field if the authorized user has access to the " "related database's group. Note that all the related data to that field " "is also deleted. Primary fields cannot be deleted because their value " "represents the row. " "If deleting the field causes other fields to change then the specific" "instances of those fields will be included in the related fields " "response key." ), responses={ 200: RelatedFieldsSerializer, 400: get_error_schema( [ "ERROR_USER_NOT_IN_GROUP", "ERROR_CANNOT_DELETE_PRIMARY_FIELD", "ERROR_CANNOT_DELETE_ALREADY_DELETED_ITEM", ] ), 404: get_error_schema(["ERROR_FIELD_DOES_NOT_EXIST"]), }, ) @transaction.atomic @map_exceptions( { FieldDoesNotExist: ERROR_FIELD_DOES_NOT_EXIST, UserNotInGroup: ERROR_USER_NOT_IN_GROUP, CannotDeletePrimaryField: ERROR_CANNOT_DELETE_PRIMARY_FIELD, CannotDeleteAlreadyDeletedItem: ERROR_CANNOT_DELETE_ALREADY_DELETED_ITEM, } ) def delete(self, request, field_id): """Deletes an existing field if the user belongs to the group.""" field = FieldHandler().get_field(field_id) field_type = field_type_registry.get_by_model(field.specific_class) with field_type.map_api_exceptions(): updated_fields = FieldHandler().delete_field(request.user, field) return Response(RelatedFieldsSerializer({}, related_fields=updated_fields).data)
41.489529
88
0.659663
4a26e511262b460ad96cde480ec6f8e4c5eb6abc
450
py
Python
src/board.py
zoltax/tanks
995cd9af260e5dd1d4485cfb95c80ce7f7c358ef
[ "MIT" ]
null
null
null
src/board.py
zoltax/tanks
995cd9af260e5dd1d4485cfb95c80ce7f7c358ef
[ "MIT" ]
null
null
null
src/board.py
zoltax/tanks
995cd9af260e5dd1d4485cfb95c80ce7f7c358ef
[ "MIT" ]
null
null
null
__author__ = 'filipkulig' class Board(): # curses.LINES and curses.COLS lines = None cols = None def __init__(self): pass def get(self): return "plansza" def update(self): pass def get_cols(self): return self.cols def get_lines(self): return self.lines def set_cols(self,cols): self.cols = cols def set_lines(self,lines): self.lines = lines
13.636364
34
0.568889
4a26e55fe7fcbe5d0a9245c2c4457fc211a62299
991
py
Python
KAUSIM_py/multirotor/drone/event_manager.py
RETELLIGENCE-IWEN/KAU_SIM_PY
b922fa361d0ee20b37752470c25370089a7690e8
[ "MIT" ]
null
null
null
KAUSIM_py/multirotor/drone/event_manager.py
RETELLIGENCE-IWEN/KAU_SIM_PY
b922fa361d0ee20b37752470c25370089a7690e8
[ "MIT" ]
null
null
null
KAUSIM_py/multirotor/drone/event_manager.py
RETELLIGENCE-IWEN/KAU_SIM_PY
b922fa361d0ee20b37752470c25370089a7690e8
[ "MIT" ]
null
null
null
from typing import Callable, Dict, List, Any class EventManager: def __init__(self): self.subsciptions: Dict[Any, List[Callable]] = {} def register(self, event_name: Any): """새로운 event를 추가""" if event_name in self.subsciptions: raise ValueError(f"{event_name} is already registered") self.subsciptions[event_name] = [] def subscribe(self, event_name: Any, function: Callable): """ 이벤트 event_name이 발생했을 때 function이 실행되도록 추가 """ if event_name not in self.subsciptions: raise KeyError(f"{event_name} is not registered") self.subsciptions[event_name].append(function) def publish(self, event_name: Any, *data): """ 이벤트 event_name이 발생했을 때 구독 함수들을 data 값을 인자로 실행 """ if event_name not in self.subsciptions: raise KeyError(f"{event_name} is not registered") for f in self.subsciptions[event_name]: f(*data)
30.030303
67
0.61554
4a26e6915066addb7c742321a16686127617861a
2,892
py
Python
google/appengine/ext/mapreduce/main.py
prashanth9962/gaepatch-1.6
fbc19e3ecb1eb0709b6a92157d005d14e9b146f0
[ "Apache-2.0" ]
1
2020-10-13T19:53:04.000Z
2020-10-13T19:53:04.000Z
google/appengine/ext/mapreduce/main.py
prashanth9962/gaepatch-1.6
fbc19e3ecb1eb0709b6a92157d005d14e9b146f0
[ "Apache-2.0" ]
null
null
null
google/appengine/ext/mapreduce/main.py
prashanth9962/gaepatch-1.6
fbc19e3ecb1eb0709b6a92157d005d14e9b146f0
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Main module for map-reduce implementation. This module should be specified as a handler for mapreduce URLs in app.yaml: handlers: - url: /mapreduce(/.*)? login: admin script: mapreduce/main.py """ import wsgiref.handlers import google from google.appengine.ext import webapp from google.appengine.ext.mapreduce import handlers from google.appengine.ext.mapreduce import status from google.appengine.ext.webapp import util try: from appengine_pipeline.src import pipeline except ImportError: pipeline = None STATIC_RE = r".*/([^/]*\.(?:css|js)|status|detail)$" class RedirectHandler(webapp.RequestHandler): """Redirects the user back to the status page.""" def get(self): new_path = self.request.path if not new_path.endswith("/"): new_path += "/" new_path += "status" self.redirect(new_path) def create_handlers_map(): """Create new handlers map. Returns: list of (regexp, handler) pairs for WSGIApplication constructor. """ pipeline_handlers_map = [] if pipeline: pipeline_handlers_map = pipeline.create_handlers_map(prefix=".*/pipeline") return pipeline_handlers_map + [ (r".*/worker_callback", handlers.MapperWorkerCallbackHandler), (r".*/controller_callback", handlers.ControllerCallbackHandler), (r".*/kickoffjob_callback", handlers.KickOffJobHandler), (r".*/finalizejob_callback", handlers.FinalizeJobHandler), (r".*/command/start_job", handlers.StartJobHandler), (r".*/command/cleanup_job", handlers.CleanUpJobHandler), (r".*/command/abort_job", handlers.AbortJobHandler), (r".*/command/list_configs", status.ListConfigsHandler), (r".*/command/list_jobs", status.ListJobsHandler), (r".*/command/get_job_detail", status.GetJobDetailHandler), (STATIC_RE, status.ResourceHandler), (r".*", RedirectHandler), ] def create_application(): """Create new WSGIApplication and register all handlers. Returns: an instance of webapp.WSGIApplication with all mapreduce handlers registered. """ return webapp.WSGIApplication(create_handlers_map(), debug=True) APP = create_application() def main(): util.run_wsgi_app(APP) if __name__ == "__main__": main()
22.952381
78
0.707469
4a26e6d51404a885e2e99157e3450afa88c5170e
954
py
Python
tfx_addons/utils/test_utils.py
digits/tfx-addons
df5dbe307a50988f31a6477775348213dd5d1886
[ "Apache-2.0" ]
null
null
null
tfx_addons/utils/test_utils.py
digits/tfx-addons
df5dbe307a50988f31a6477775348213dd5d1886
[ "Apache-2.0" ]
null
null
null
tfx_addons/utils/test_utils.py
digits/tfx-addons
df5dbe307a50988f31a6477775348213dd5d1886
[ "Apache-2.0" ]
null
null
null
# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Util functions to assist with the TFX Addons tests """ from typing import List def get_tfx_version(version: str) -> List[int]: """ Returns the TFX version as integers. """ return tuple([int(x) for x in version.split(".")]) # pylint: disable=R1728
38.16
80
0.675052
4a26e8ce5513995046825932396735897fb8739f
1,415
py
Python
setup.py
waltdisgrace/dbus-signature-pyparsing
fa705f1a7932dc5c5cb7f83858d0d7006fce6495
[ "Apache-2.0" ]
null
null
null
setup.py
waltdisgrace/dbus-signature-pyparsing
fa705f1a7932dc5c5cb7f83858d0d7006fce6495
[ "Apache-2.0" ]
null
null
null
setup.py
waltdisgrace/dbus-signature-pyparsing
fa705f1a7932dc5c5cb7f83858d0d7006fce6495
[ "Apache-2.0" ]
null
null
null
# isort: STDLIB import os import sys # isort: THIRDPARTY import setuptools if sys.version_info[0] < 3: from codecs import open def local_file(name): return os.path.relpath(os.path.join(os.path.dirname(__file__), name)) README = local_file("README.rst") with open(local_file("src/dbus_signature_pyparsing/_version.py")) as o: exec(o.read()) setuptools.setup( name="dbus-signature-pyparsing", version=__version__, author="Anne Mulhern", author_email="[email protected]", url="https://github.com/stratis-storage/dbus-signature-pyparsing", description="dbus signature parser", long_description=open(README, encoding="utf-8").read(), platforms=["Linux"], license="Apache 2.0", classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Operating System :: POSIX :: Linux", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: Implementation :: CPython", "Programming Language :: Python :: Implementation :: PyPy", "Topic :: Software Development :: Libraries", "Topic :: Software Development :: Libraries :: Python Modules", ], install_requires=["pyparsing"], package_dir={"": "src"}, packages=setuptools.find_packages("src"), )
30.106383
73
0.660777
4a26e9383de0cdad501dcf4238b94ea2491309b0
10,217
py
Python
sdk/python/pulumi_azure_nextgen/network/v20190201/vpn_site.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_nextgen/network/v20190201/vpn_site.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_nextgen/network/v20190201/vpn_site.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._inputs import * __all__ = ['VpnSite'] class VpnSite(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, address_space: Optional[pulumi.Input[pulumi.InputType['AddressSpaceArgs']]] = None, bgp_properties: Optional[pulumi.Input[pulumi.InputType['BgpSettingsArgs']]] = None, device_properties: Optional[pulumi.Input[pulumi.InputType['DevicePropertiesArgs']]] = None, id: Optional[pulumi.Input[str]] = None, ip_address: Optional[pulumi.Input[str]] = None, is_security_site: Optional[pulumi.Input[bool]] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, site_key: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, virtual_wan: Optional[pulumi.Input[pulumi.InputType['SubResourceArgs']]] = None, vpn_site_name: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ VpnSite Resource. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[pulumi.InputType['AddressSpaceArgs']] address_space: The AddressSpace that contains an array of IP address ranges. :param pulumi.Input[pulumi.InputType['BgpSettingsArgs']] bgp_properties: The set of bgp properties. :param pulumi.Input[pulumi.InputType['DevicePropertiesArgs']] device_properties: The device properties :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[str] ip_address: The ip-address for the vpn-site. :param pulumi.Input[bool] is_security_site: IsSecuritySite flag :param pulumi.Input[str] location: Resource location. :param pulumi.Input[str] resource_group_name: The resource group name of the VpnSite. :param pulumi.Input[str] site_key: The key for vpn-site that can be used for connections. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. :param pulumi.Input[pulumi.InputType['SubResourceArgs']] virtual_wan: The VirtualWAN to which the vpnSite belongs :param pulumi.Input[str] vpn_site_name: The name of the VpnSite being created or updated. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['address_space'] = address_space __props__['bgp_properties'] = bgp_properties __props__['device_properties'] = device_properties __props__['id'] = id __props__['ip_address'] = ip_address __props__['is_security_site'] = is_security_site __props__['location'] = location if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['site_key'] = site_key __props__['tags'] = tags __props__['virtual_wan'] = virtual_wan __props__['vpn_site_name'] = vpn_site_name __props__['etag'] = None __props__['name'] = None __props__['provisioning_state'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:network:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/latest:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/v20180401:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/v20180601:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/v20180701:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/v20180801:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/v20181001:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/v20181101:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/v20181201:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/v20190401:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/v20190601:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/v20190701:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/v20190801:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/v20190901:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/v20191101:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/v20191201:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/v20200301:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/v20200401:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/v20200501:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/v20200601:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/v20200701:VpnSite"), pulumi.Alias(type_="azure-nextgen:network/v20200801:VpnSite")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(VpnSite, __self__).__init__( 'azure-nextgen:network/v20190201:VpnSite', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'VpnSite': """ Get an existing VpnSite resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() return VpnSite(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="addressSpace") def address_space(self) -> pulumi.Output[Optional['outputs.AddressSpaceResponse']]: """ The AddressSpace that contains an array of IP address ranges. """ return pulumi.get(self, "address_space") @property @pulumi.getter(name="bgpProperties") def bgp_properties(self) -> pulumi.Output[Optional['outputs.BgpSettingsResponse']]: """ The set of bgp properties. """ return pulumi.get(self, "bgp_properties") @property @pulumi.getter(name="deviceProperties") def device_properties(self) -> pulumi.Output[Optional['outputs.DevicePropertiesResponse']]: """ The device properties """ return pulumi.get(self, "device_properties") @property @pulumi.getter def etag(self) -> pulumi.Output[str]: """ Gets a unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="ipAddress") def ip_address(self) -> pulumi.Output[Optional[str]]: """ The ip-address for the vpn-site. """ return pulumi.get(self, "ip_address") @property @pulumi.getter(name="isSecuritySite") def is_security_site(self) -> pulumi.Output[Optional[bool]]: """ IsSecuritySite flag """ return pulumi.get(self, "is_security_site") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioning state of the resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="siteKey") def site_key(self) -> pulumi.Output[Optional[str]]: """ The key for vpn-site that can be used for connections. """ return pulumi.get(self, "site_key") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter(name="virtualWan") def virtual_wan(self) -> pulumi.Output[Optional['outputs.SubResourceResponse']]: """ The VirtualWAN to which the vpnSite belongs """ return pulumi.get(self, "virtual_wan") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
45.611607
1,426
0.65577
4a26e95cb8b1f932c5c25a228d16051e52dc88c3
264
py
Python
.heroku/chrome-smoke-test.py
SalesforceFoundation/MetaCI
b80f880672d4f11594fc48cbda0d340311fa35e0
[ "BSD-3-Clause" ]
15
2017-11-06T05:26:15.000Z
2018-10-12T03:15:37.000Z
.heroku/chrome-smoke-test.py
SalesforceFoundation/MetaCI
b80f880672d4f11594fc48cbda0d340311fa35e0
[ "BSD-3-Clause" ]
66
2017-10-31T21:26:30.000Z
2018-10-19T15:55:27.000Z
.heroku/chrome-smoke-test.py
SalesforceFoundation/MetaCI
b80f880672d4f11594fc48cbda0d340311fa35e0
[ "BSD-3-Clause" ]
7
2018-01-07T11:30:47.000Z
2018-10-11T11:51:58.000Z
import selenium import selenium.webdriver import sys options = selenium.webdriver.chrome.options.Options() options.headless = True try: selenium.webdriver.Chrome(options=options) except Exception as e: print(f"Unable to open chrome:\n{e}") sys.exit(1)
24
53
0.761364
4a26ec7cdb3678976d307e8f884c85693463ff7a
3,749
py
Python
travis_pypi_setup.py
ulkaio/ulka
d33d8a695082cafcd5be808f7a745b6066931560
[ "MIT" ]
null
null
null
travis_pypi_setup.py
ulkaio/ulka
d33d8a695082cafcd5be808f7a745b6066931560
[ "MIT" ]
425
2016-09-26T21:27:56.000Z
2022-03-28T10:27:18.000Z
travis_pypi_setup.py
ulkaio/ulka
d33d8a695082cafcd5be808f7a745b6066931560
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """Update encrypted deploy password in Travis config file """ from __future__ import print_function import base64 import json import os from getpass import getpass import yaml from cryptography.hazmat.primitives.serialization import load_pem_public_key from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.asymmetric.padding import PKCS1v15 try: from urllib import urlopen except: from urllib.request import urlopen GITHUB_REPO = 'ulkaio/ulka' TRAVIS_CONFIG_FILE = os.path.join( os.path.dirname(os.path.abspath(__file__)), '.travis.yml') def load_key(pubkey): """Load public RSA key, with work-around for keys using incorrect header/footer format. Read more about RSA encryption with cryptography: https://cryptography.io/latest/hazmat/primitives/asymmetric/rsa/ """ try: return load_pem_public_key(pubkey.encode(), default_backend()) except ValueError: # workaround for https://github.com/travis-ci/travis-api/issues/196 pubkey = pubkey.replace('BEGIN RSA', 'BEGIN').replace('END RSA', 'END') return load_pem_public_key(pubkey.encode(), default_backend()) def encrypt(pubkey, password): """Encrypt password using given RSA public key and encode it with base64. The encrypted password can only be decrypted by someone with the private key (in this case, only Travis). """ key = load_key(pubkey) encrypted_password = key.encrypt(password, PKCS1v15()) return base64.b64encode(encrypted_password) def fetch_public_key(repo): """Download RSA public key Travis will use for this repo. Travis API docs: http://docs.travis-ci.com/api/#repository-keys """ keyurl = 'https://api.travis-ci.org/repos/{0}/key'.format(repo) data = json.loads(urlopen(keyurl).read().decode()) if 'key' not in data: errmsg = "Could not find public key for repo: {}.\n".format(repo) errmsg += "Have you already added your GitHub repo to Travis?" raise ValueError(errmsg) return data['key'] def prepend_line(filepath, line): """Rewrite a file adding a line to its beginning. """ with open(filepath) as f: lines = f.readlines() lines.insert(0, line) with open(filepath, 'w') as f: f.writelines(lines) def load_yaml_config(filepath): with open(filepath) as f: return yaml.load(f) def save_yaml_config(filepath, config): with open(filepath, 'w') as f: yaml.dump(config, f, default_flow_style=False) def update_travis_deploy_password(encrypted_password): """Update the deploy section of the .travis.yml file to use the given encrypted password. """ config = load_yaml_config(TRAVIS_CONFIG_FILE) config['deploy']['password'] = dict(secure=encrypted_password) save_yaml_config(TRAVIS_CONFIG_FILE, config) line = ('# This file was autogenerated and will overwrite' ' each time you run travis_pypi_setup.py\n') prepend_line(TRAVIS_CONFIG_FILE, line) def main(args): public_key = fetch_public_key(args.repo) password = args.password or getpass('PyPI password: ') update_travis_deploy_password(encrypt(public_key, password.encode())) print("Wrote encrypted password to .travis.yml -- you're ready to deploy") if '__main__' == __name__: import argparse parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('--repo', default=GITHUB_REPO, help='GitHub repo (default: %s)' % GITHUB_REPO) parser.add_argument('--password', help='PyPI password (will prompt if not provided)') args = parser.parse_args() main(args)
30.479675
79
0.69992
4a26ec94eccfae57805a691a89571e7d5237ec32
3,585
py
Python
tests/integration/sugar/test_wallet.py
sawdog/xrpl-py
ae6eac89d55a8db6b26a0189749b8c4b83d00d88
[ "ISC" ]
null
null
null
tests/integration/sugar/test_wallet.py
sawdog/xrpl-py
ae6eac89d55a8db6b26a0189749b8c4b83d00d88
[ "ISC" ]
null
null
null
tests/integration/sugar/test_wallet.py
sawdog/xrpl-py
ae6eac89d55a8db6b26a0189749b8c4b83d00d88
[ "ISC" ]
1
2022-02-21T07:36:36.000Z
2022-02-21T07:36:36.000Z
from tests.integration.integration_test_case import IntegrationTestCase from tests.integration.it_utils import submit_transaction_async, test_async_and_sync from tests.integration.reusable_values import WALLET from xrpl.asyncio.clients import AsyncJsonRpcClient, AsyncWebsocketClient from xrpl.asyncio.wallet import generate_faucet_wallet from xrpl.clients import JsonRpcClient, WebsocketClient from xrpl.core.addresscodec import classic_address_to_xaddress from xrpl.models.requests import AccountInfo from xrpl.models.transactions import Payment from xrpl.wallet import generate_faucet_wallet as sync_generate_faucet_wallet class TestWallet(IntegrationTestCase): @test_async_and_sync( globals(), ["xrpl.wallet.generate_faucet_wallet"], num_retries=5, use_testnet=True, ) async def test_generate_faucet_wallet_rel_sub(self, client): destination = await generate_faucet_wallet(client) wallet = await generate_faucet_wallet(client) response = await submit_transaction_async( Payment( account=wallet.classic_address, sequence=wallet.sequence, fee="10", amount="1", destination=destination.classic_address, ), wallet, client=client, ) self.assertTrue(response.is_successful()) async def test_generate_faucet_wallet_custom_host_async_websockets(self): async with AsyncWebsocketClient( "wss://xls20-sandbox.rippletest.net:51233" ) as client: wallet = await generate_faucet_wallet( client, faucet_host="faucet-nft.ripple.com" ) result = await client.request( AccountInfo( account=wallet.classic_address, ), ) self.assertTrue(int(result.result["account_data"]["Balance"]) > 0) async def test_generate_faucet_wallet_custom_host_async_json_rpc(self): client = AsyncJsonRpcClient("http://xls20-sandbox.rippletest.net:51234") wallet = await generate_faucet_wallet( client, faucet_host="faucet-nft.ripple.com" ) result = await client.request( AccountInfo( account=wallet.classic_address, ), ) self.assertTrue(int(result.result["account_data"]["Balance"]) > 0) def test_generate_faucet_wallet_custom_host_sync_websockets(self): with WebsocketClient("wss://xls20-sandbox.rippletest.net:51233") as client: wallet = sync_generate_faucet_wallet( client, faucet_host="faucet-nft.ripple.com" ) result = client.request( AccountInfo( account=wallet.classic_address, ), ) self.assertTrue(int(result.result["account_data"]["Balance"]) > 0) def test_generate_faucet_wallet_custom_host_sync_json_rpc(self): client = JsonRpcClient("http://xls20-sandbox.rippletest.net:51234") wallet = sync_generate_faucet_wallet( client, faucet_host="faucet-nft.ripple.com" ) result = client.request( AccountInfo( account=wallet.classic_address, ), ) self.assertTrue(int(result.result["account_data"]["Balance"]) > 0) def test_wallet_get_xaddress(self): expected = classic_address_to_xaddress(WALLET.classic_address, None, False) self.assertEqual(WALLET.get_xaddress(), expected)
40.280899
84
0.656904
4a26ecef26d01fa381d384c1986d4b889f43be90
7,805
py
Python
models/half_model.py
EliotChenKJ/CMTE
e3a7be59ea4eba09f37c20b9e19e64386e74818e
[ "BSD-3-Clause" ]
null
null
null
models/half_model.py
EliotChenKJ/CMTE
e3a7be59ea4eba09f37c20b9e19e64386e74818e
[ "BSD-3-Clause" ]
null
null
null
models/half_model.py
EliotChenKJ/CMTE
e3a7be59ea4eba09f37c20b9e19e64386e74818e
[ "BSD-3-Clause" ]
null
null
null
import torch from .base_model import BaseModel from . import networks from .vgg import VGG, GramMatrix, GramMSELoss import os class halfModel(BaseModel): """ This is HalfModel for image texture extension. The model training requires '-dataset_model half' dataset. It trains a half-gan model, mapping from k * k size image to 2k * 2k size image. """ @staticmethod def modify_commandline_options(parser, is_train=True): """ Add new model-specific options and rewrite default values for existing options. Parameters: parser -- the option parser is_train -- if it is training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. """ parser.set_defaults(netG='resnet_2x_6blocks', netD='n_layers', n_layers_D=4, gan_mode='vanilla', pool_size=0, display_ncols=3, niter=50000, niter_decay=50000, save_epoch_freq=10000, display_freq=3200, print_freq=320) if is_train: # parser.add_argument('--use_style', type=bool, default=True, help='use style loss') parser.add_argument('--lambda_L1', type=float, default=100, help='l1 loss lambda') parser.add_argument('--lambda_style', type=float, default=1e3, help='style loss lambda') else: parser.add_argument('--test_size', type=int, default=256, help='tested sample\'s size') return parser def __init__(self, opt): """ Initialize half model class. Parameters: opt -- training/test options A few things can be done here. - (required) call the initialization function of BaseModel - define loss function, visualization images, model names, and optimizers """ BaseModel.__init__(self, opt) # call the initialization method of BaseModel # specify the training losses. The program will call base_model.get_current_losses to plot the losses to the console and save them to the disk. self.loss_names = ['G_GAN', 'G_L1', 'D_fake', 'D_real', 'Style'] # specify the important images. The program will call base_model.get_current_visuals to save and display these images. self.visual_names = ['real_A', 'real_B', 'fake_B'] # specify the models. The program will call base_model.save_networks and base_model.load_networks to save and load networks. if self.isTrain: self.model_names = ['G', 'D'] else: self.model_names = ['G'] # define networks; you can use opt.isTrain to specify different behaviors for training and test. self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) if self.isTrain: # if istrain, get netD self.netD = networks.define_D(opt.input_nc, opt.ndf, opt.netD, opt.n_layers_D, 1, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids) if self.isTrain: # only defined during training time # define loss functions. self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device) # GANLoss self.criterionL1 = torch.nn.L1Loss() # L1Loss between fake_B and real_B # losses of feature map self.style_layers = ['r11', 'r21', 'r31', 'r41', 'r51'] self.style_weights = [self.opt.lambda_style / (t * t) for t in [64, 128, 256, 512, 512]] self.criterionStyle = [GramMSELoss().to(self.device)] * len(self.style_layers) self.vgg = VGG() self.vgg.load_state_dict(torch.load(os.getcwd() + '/models/' + 'vgg_conv.pth')) self.set_requires_grad(self.vgg, False) self.vgg = self.vgg.to(self.device) # define and initialize optimizers. You can define one optimizer for each network. # If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example. self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizers = [self.optimizer_G, self.optimizer_D] # show the network structure networks.print_network_structure(self.netG) if self.isTrain: networks.print_network_structure(self.netD) # Our program will automatically call <model.setup> to define schedulers, load networks, and print networks def set_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Parameters: input: a dictionary that contains the data itself and its metadata information. """ self.real_A = input['A'].to(self.device) # get image data A self.real_B = input['B'].to(self.device) # get image data B self.image_paths = input['A_paths'] # get image paths def forward(self): """Run forward pass. This will be called by both functions <optimize_parameters> and <test>.""" self.fake_B = self.netG(self.real_A) # generate output image given the input data_A def backward_D(self): """Calculate GAN loss for discriminator""" # calculate loss given the input and intermediate results pred_fake = self.netD(self.fake_B.detach()) self.loss_D_fake = self.criterionGAN(pred_fake, False) pred_real = self.netD(self.real_B) self.loss_D_real = self.criterionGAN(pred_real, True) self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5 self.loss_D.backward() # calculate gradients of network D w.r.t. loss_D def backward_G(self): """Calculate GAN loss for generator""" # calculate loss given the gan generator # first, calculate the gan generator's loss pred_fake = self.netD(self.fake_B) self.loss_G_GAN = self.criterionGAN(pred_fake, True) # second, calculate the G l1 loss self.loss_G_L1 = self.criterionL1(self.fake_B, self.real_B) * self.opt.lambda_L1 # then, calculate the style loss style_out = self.vgg(self.fake_B, self.style_layers) style_targets = [GramMatrix()(layer_out).detach() for layer_out in self.vgg(self.real_B, self.style_layers)] temp = [self.criterionStyle[i](i_out, style_targets[i]) * self.style_weights[i] for i, i_out in enumerate(style_out)] self.loss_Style = sum(temp) # calculate the all loss self.loss_G = self.loss_G_GAN + self.loss_G_L1 + self.loss_Style # finally, get the gradients for generators' parameters self.loss_G.backward() def optimize_parameters(self): """Update network weights; it will be called in every training iteration.""" self.forward() # first call forward to calculate intermediate results # update D self.set_requires_grad(self.netD, True) self.optimizer_D.zero_grad() # clear network G's existing gradients self.backward_D() # calculate gradients for network G self.optimizer_D.step() # update gradients for network G # update G self.set_requires_grad(self.netD, False) self.optimizer_G.zero_grad() # clear network G's existing gradients self.backward_G() # calculate gradients for network G self.optimizer_G.step()
54.201389
151
0.641127
4a26ed42f86572071abccaf4d585abd6c3827680
1,740
py
Python
app/main.py
AlpacaMax/Shadow-Browser
65c95eb2712a2764384b851c8bc128702ea911d1
[ "MIT" ]
1
2018-07-26T13:54:44.000Z
2018-07-26T13:54:44.000Z
app/main.py
AlpacaMax/Shadow-Browser
65c95eb2712a2764384b851c8bc128702ea911d1
[ "MIT" ]
null
null
null
app/main.py
AlpacaMax/Shadow-Browser
65c95eb2712a2764384b851c8bc128702ea911d1
[ "MIT" ]
null
null
null
from flask import * import requests import os app = Flask(__name__) SECRET = os.environ.get("SECRET") HOSTNAME = os.environ.get("HOSTNAME") def validate_token(token, hashes, secret): api_url = "https://api.coinhive.com/token/verify" data = { 'token': token, 'hashes': hashes, 'secret': secret } r = requests.post(api_url, data) return r.text.find('true') > 0 def get_page(url): return requests.get(url).text @app.route("/") def index(): host = HOSTNAME info = get_page("http://docker_api/browsers_info") info_list = info.split("#") avail = info_list[0] inuse = info_list[1] per_avail = info_list[2] per_inuse = info_list[3] return render_template('index.html', hostname=host, available=avail, inuse=inuse, per_available=per_avail, per_inuse=per_inuse) @app.route("/get_browser/<token>") def get_browser(token): if validate_token(str(token), 256, SECRET): out = get_page("http://docker_api/run_chrome?duration=" + str(300)) out_list = out.split("#") hostname = out_list[0] port = out_list[1] password = out_list[2] return render_template('launch.html', hostname=hostname, port=port, password=password) else: return "Invalid token! Please play fair!" @app.route("/helloworld") def hello(): return get_page('http://docker_api/') if __name__ == "__main__": # Only for debugging while developing app.run(host='0.0.0.0', debug=True, port=80)
26.363636
95
0.564368
4a26ee1c27e7102d8d0416365cee7dc5730c6e5a
7,377
py
Python
adafruit_bno08x/spi.py
jposada202020/Adafruit_CircuitPython_BNO08x
d96dc951a5f9aca6e2ea8ee4ebbc708cb3002cf4
[ "MIT", "MIT-0", "Unlicense" ]
null
null
null
adafruit_bno08x/spi.py
jposada202020/Adafruit_CircuitPython_BNO08x
d96dc951a5f9aca6e2ea8ee4ebbc708cb3002cf4
[ "MIT", "MIT-0", "Unlicense" ]
null
null
null
adafruit_bno08x/spi.py
jposada202020/Adafruit_CircuitPython_BNO08x
d96dc951a5f9aca6e2ea8ee4ebbc708cb3002cf4
[ "MIT", "MIT-0", "Unlicense" ]
null
null
null
# SPDX-FileCopyrightText: Copyright (c) 2020 Bryan Siepert for Adafruit Industries # # SPDX-License-Identifier: MIT """ Subclass of `adafruit_bno08x.BNO08X` to use SPI ================================================ """ import time from struct import pack_into from digitalio import Direction, Pull import adafruit_bus_device.spi_device as spi_device from . import BNO08X, DATA_BUFFER_SIZE, _elapsed, Packet, PacketError class BNO08X_SPI(BNO08X): """ Instantiate a `adafruit_bno08x.spi.BNO08X_SPI` instance to communicate with the sensor using SPI :param ~busio.SPI spi_bus: The SPI bus to use to communicate with the BNO08x :param ~digitalio.DigitalInOut cspin: The pin object to use for the SPI Chip Select :param ~digitalio.DigitalInOut intpin: The pin object to interrupt :param ~digitalio.DigitalInOut resetpin: Required for SPI mode. Connected to the RST pin on the device, and used to hard-reset the device. :param int baudrate: baudrate of the SPI bus. Defaults to :const:`1000000` :param bool debug: Enables print statements used for debugging. Defaults to `False` **Quickstart: Importing and using the device** Here is an example of using the :class:`BNO08X_SPI` class. First you will need to import the libraries to use the sensor .. code-block:: python import board from adafruit_bno08x.spi import BNO08X_SPI Once this is done you can define your `board.SPI` object and define your sensor object .. code-block:: python spi = board.SPI() bno = BNO08X_SPI(spi) For this particular you need to define some things to get some data. .. code-block:: python bno.enable_feature(adafruit_bno08x.BNO_REPORT_ACCELEROMETER) bno.enable_feature(adafruit_bno08x.BNO_REPORT_GYROSCOPE) bno.enable_feature(adafruit_bno08x.BNO_REPORT_MAGNETOMETER) bno.enable_feature(adafruit_bno08x.BNO_REPORT_ROTATION_VECTOR) Now you have access to the :attr:`acceleration`, :attr:`gyro` :attr:`magnetic` and :attr:`quaternion` attributes .. code-block:: python accel_x, accel_y, accel_z = bno.acceleration gyro_x, gyro_y, gyro_z = bno.gyro mag_x, mag_y, mag_z = bno.magnetic quat_i, quat_j, quat_k, quat_real = bno.quaternion """ def __init__( self, spi_bus, cspin, intpin, resetpin, baudrate=1000000, debug=False ): # pylint:disable=too-many-arguments self._spi = spi_device.SPIDevice( spi_bus, cspin, baudrate=baudrate, polarity=1, phase=1 ) self._int = intpin super().__init__(resetpin, debug) def hard_reset(self): """Hardware reset the sensor to an initial unconfigured state""" self._reset.direction = Direction.OUTPUT self._int.direction = Direction.INPUT self._int.pull = Pull.UP print("Hard resetting...") self._reset.value = True # perform hardware reset time.sleep(0.01) self._reset.value = False time.sleep(0.01) self._reset.value = True self._wait_for_int() print("Done!") self._read_packet() def _wait_for_int(self): # print("Waiting for INT...", end="") start_time = time.monotonic() while _elapsed(start_time) < 3.0: if not self._int.value: break else: self.hard_reset() # raise RuntimeError("Could not wake up") # print("OK") def soft_reset(self): """Reset the sensor to an initial unconfigured state""" # print("Soft resetting...", end="") # data = bytearray(1) # data[0] = 1 # _seq = self._send_packet(BNO_CHANNEL_EXE, data) # time.sleep(0.5) for _i in range(3): try: _packet = self._read_packet() except PacketError: time.sleep(0.1) # print("OK!") # all is good! def _read_into(self, buf, start=0, end=None): self._wait_for_int() with self._spi as spi: spi.readinto(buf, start=start, end=end, write_value=0x00) # print("SPI Read buffer (", end-start, "b )", [hex(i) for i in buf[start:end]]) def _read_header(self): """Reads the first 4 bytes available as a header""" self._wait_for_int() # read header with self._spi as spi: spi.readinto(self._data_buffer, end=4, write_value=0x00) self._dbg("") self._dbg("SHTP READ packet header: ", [hex(x) for x in self._data_buffer[0:4]]) def _read_packet(self): self._read_header() halfpacket = False print([hex(x) for x in self._data_buffer[0:4]]) if self._data_buffer[1] & 0x80: halfpacket = True header = Packet.header_from_buffer(self._data_buffer) packet_byte_count = header.packet_byte_count channel_number = header.channel_number sequence_number = header.sequence_number self._sequence_number[channel_number] = sequence_number if packet_byte_count == 0: raise PacketError("No packet available") self._dbg( "channel %d has %d bytes available" % (channel_number, packet_byte_count - 4) ) if packet_byte_count > DATA_BUFFER_SIZE: self._data_buffer = bytearray(packet_byte_count) # re-read header bytes since this is going to be a new transaction self._read_into(self._data_buffer, start=0, end=packet_byte_count) # print("Packet: ", [hex(i) for i in self._data_buffer[0:packet_byte_count]]) if halfpacket: raise PacketError("read partial packet") new_packet = Packet(self._data_buffer) if self._debug: print(new_packet) self._update_sequence_number(new_packet) return new_packet def _read(self, requested_read_length): self._dbg("trying to read", requested_read_length, "bytes") unread_bytes = 0 # +4 for the header total_read_length = requested_read_length + 4 if total_read_length > DATA_BUFFER_SIZE: unread_bytes = total_read_length - DATA_BUFFER_SIZE total_read_length = DATA_BUFFER_SIZE with self._spi as spi: spi.readinto(self._data_buffer, end=total_read_length) return unread_bytes > 0 def _send_packet(self, channel, data): data_length = len(data) write_length = data_length + 4 pack_into("<H", self._data_buffer, 0, write_length) self._data_buffer[2] = channel self._data_buffer[3] = self._sequence_number[channel] for idx, send_byte in enumerate(data): self._data_buffer[4 + idx] = send_byte self._wait_for_int() with self._spi as spi: spi.write(self._data_buffer, end=write_length) self._dbg("Sending: ", [hex(x) for x in self._data_buffer[0:write_length]]) self._sequence_number[channel] = (self._sequence_number[channel] + 1) % 256 return self._sequence_number[channel] @property def _data_ready(self): try: self._wait_for_int() return True except RuntimeError: return False
35.296651
94
0.63088
4a26eec2e8d3ecbe57b5eab87ad9f527ea61f1ff
127
py
Python
is_even/_typings.py
spookyahell/PyIsEven
da0fe5a181c77ef84e858a2da5c04f66b7916591
[ "MIT" ]
45
2021-04-02T22:19:49.000Z
2022-02-01T15:38:33.000Z
is_even/_typings.py
spookyahell/PyIsEven
da0fe5a181c77ef84e858a2da5c04f66b7916591
[ "MIT" ]
20
2021-04-03T10:06:51.000Z
2021-08-20T22:46:23.000Z
is_even/_typings.py
spookyahell/PyIsEven
da0fe5a181c77ef84e858a2da5c04f66b7916591
[ "MIT" ]
11
2021-04-02T17:25:46.000Z
2021-12-14T03:28:30.000Z
from typing import TypedDict class Success(TypedDict): ad: str iseven: bool class Error(TypedDict): error: str
11.545455
28
0.692913
4a26eec7c95d374f67c63256a1e01a11e9ff3a2f
2,100
py
Python
web/addons/account/project/wizard/account_analytic_chart.py
diogocs1/comps
63df07f6cf21c41e4527c06e2d0499f23f4322e7
[ "Apache-2.0" ]
1
2019-12-29T11:53:56.000Z
2019-12-29T11:53:56.000Z
odoo/addons/account/project/wizard/account_analytic_chart.py
tuanquanghpvn/odoo8-tutorial
52d25f1ca5f233c431cb9d3b24b79c3b4fb5127e
[ "MIT" ]
null
null
null
odoo/addons/account/project/wizard/account_analytic_chart.py
tuanquanghpvn/odoo8-tutorial
52d25f1ca5f233c431cb9d3b24b79c3b4fb5127e
[ "MIT" ]
3
2020-10-08T14:42:10.000Z
2022-01-28T14:12:29.000Z
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp.osv import fields, osv class account_analytic_chart(osv.osv_memory): _name = 'account.analytic.chart' _description = 'Account Analytic Chart' _columns = { 'from_date': fields.date('From'), 'to_date': fields.date('To'), } def analytic_account_chart_open_window(self, cr, uid, ids, context=None): mod_obj = self.pool.get('ir.model.data') act_obj = self.pool.get('ir.actions.act_window') result_context = {} if context is None: context = {} result = mod_obj.get_object_reference(cr, uid, 'account', 'action_account_analytic_account_tree2') id = result and result[1] or False result = act_obj.read(cr, uid, [id], context=context)[0] data = self.read(cr, uid, ids, [])[0] if data['from_date']: result_context.update({'from_date': data['from_date']}) if data['to_date']: result_context.update({'to_date': data['to_date']}) result['context'] = str(result_context) return result # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
42
106
0.61619
4a26eedc512b2a1f7c479fbad185fc88a1544978
21,050
py
Python
analysis_module.py
huangbrandon432/Investing-Trading-Tool
370015b906b7ee90c0fb48ca69865ac7428b3917
[ "BSD-3-Clause" ]
null
null
null
analysis_module.py
huangbrandon432/Investing-Trading-Tool
370015b906b7ee90c0fb48ca69865ac7428b3917
[ "BSD-3-Clause" ]
null
null
null
analysis_module.py
huangbrandon432/Investing-Trading-Tool
370015b906b7ee90c0fb48ca69865ac7428b3917
[ "BSD-3-Clause" ]
null
null
null
import robin_stocks as r import pandas as pd import numpy as np from datetime import date, timedelta import yfinance as yf from collections import deque ###Stocks/Crypto######################################################################################################################################### class StocksCrypto: def __init__(self, orders, crypto = 'no'): self.orders = orders self.crypto = crypto def examine_trades(self): self.total_gain = 0 self.total_loss = 0 self.trades = [] trading_dict = {} net_gain_loss = 0 for i in range(len(self.orders)): side = self.orders.loc[i, 'side'] symbol = self.orders.loc[i, 'symbol'] date = self.orders.loc[i, 'date'].strftime('%Y-%m-%d') quantity = self.orders.loc[i, 'quantity'] avg_price = self.orders.loc[i, 'average_price'] total = round(self.orders.loc[i, 'total'],2) if side == 'buy': if symbol+'_avgprice' in trading_dict: cur_total = trading_dict[symbol+'_quantity']*trading_dict[symbol+'_avgprice'] new_total = cur_total + quantity * avg_price trading_dict[symbol+'_quantity'] += quantity trading_dict[symbol+'_avgprice'] = new_total/trading_dict[symbol+'_quantity'] else: trading_dict[symbol+'_avgprice'] = avg_price trading_dict[symbol+'_quantity'] = quantity cur_avg_price = round(trading_dict[symbol+'_avgprice'],2) cur_quantity = round(trading_dict[symbol+'_quantity'],2) self.trades.append([side, symbol, date, round(quantity, 2), round(avg_price, 2), cur_quantity, cur_avg_price, total, 0, str(0) + '%', net_gain_loss, '']) #if sell if side == 'sell': if symbol+'_avgprice' in trading_dict: gain = round((avg_price - trading_dict[symbol+'_avgprice']) * quantity,2) perc_gain = round((avg_price - trading_dict[symbol+'_avgprice'])/trading_dict[symbol+'_avgprice']*100,2) if gain >= 0: self.total_gain += gain else: self.total_loss += gain trading_dict[symbol+'_quantity'] -= quantity net_gain_loss = round(self.total_gain + self.total_loss,2) cur_avg_price = round(trading_dict[symbol+'_avgprice'],2) cur_quantity = round(trading_dict[symbol+'_quantity'],2) self.trades.append([side, symbol, date, round(quantity, 2), round(avg_price, 2), cur_quantity, cur_avg_price, total, gain, str(perc_gain) + '%', net_gain_loss, '']) #if holding = 0, pop symbol avgprice and quantity if trading_dict[symbol+'_quantity'] == 0: trading_dict.pop(symbol+'_avgprice') trading_dict.pop(symbol+'_quantity') else: gain = round(avg_price * quantity,2) self.total_gain += gain net_gain_loss = round(self.total_gain + self.total_loss,2) self.trades.append([side, symbol, date, round(quantity, 2), round(avg_price, 2), None, None, total, gain, str(0) + '%', net_gain_loss, 'Yes']) self.trades_df = pd.DataFrame(self.trades, columns = ['Side', 'Symbol', 'Date', 'Quantity', 'Avg_Price', 'Cur Quantity', 'Cur_Avg_Cost', 'Total', 'Gain', '% Gain', 'Net Gain/Loss', 'Free/Acquired Stock']) self.gains_df = self.trades_df[(self.trades_df['Gain'] >= 0) & (self.trades_df['Side'] == 'sell')].sort_values('Gain', ascending = False).reset_index(drop=True) self.losses_df = self.trades_df[(self.trades_df['Gain'] < 0) & (self.trades_df['Side'] == 'sell')].sort_values('Gain').reset_index(drop=True) def add_price_diff(self): if self.crypto == 'no': stocks_sold = list(set(self.trades_df[self.trades_df['Side'] == 'sell']['Symbol'])) ticker_cur_price = [] for i in stocks_sold: try: ticker = yf.Ticker(i) close = round(ticker.history(period = "1d").reset_index(drop=True).loc[0, 'Close'],2) ticker_cur_price.append((i, close, 'sell')) except: pass ticker_cur_price = pd.DataFrame(ticker_cur_price, columns =['Symbol', 'Current Price', 'Side']) self.trades_df_with_price_diff = self.trades_df.merge(ticker_cur_price, how = 'left', on = ['Symbol', 'Side']) for i in range(len(self.trades_df_with_price_diff)): transac_date = pd.to_datetime(self.trades_df_with_price_diff.loc[i, 'Date']) symbol = self.trades_df_with_price_diff.loc[i, 'Symbol'] if symbol == 'SOXL' and transac_date < pd.to_datetime('2021-03-02'): self.trades_df_with_price_diff.loc[i, 'Current Price'] *= 15 if symbol == 'TECL' and transac_date < pd.to_datetime('2021-03-02'): self.trades_df_with_price_diff.loc[i, 'Current Price'] *= 10 if symbol == 'AAPL' and transac_date < pd.to_datetime('2020-08-28'): self.trades_df_with_price_diff.loc[i, 'Current Price'] *= 4 if symbol == 'TSLA' and transac_date < pd.to_datetime('2020-08-31'): self.trades_df_with_price_diff.loc[i, 'Current Price'] *= 5 else: crypto_sold = list(set(self.trades_df[self.trades_df['Side'] == 'sell']['Symbol'])) crypto_cur_price = [] for i in crypto_sold: try: crypto_market_price = float(r.crypto.get_crypto_quote(i, info='mark_price')) crypto_cur_price.append((i, crypto_market_price, 'sell')) except: pass crypto_cur_price = pd.DataFrame(crypto_cur_price, columns =['Symbol', 'Current Price', 'Side']) self.trades_df_with_price_diff = self.trades_df.merge(crypto_cur_price, how = 'left', on = ['Symbol', 'Side']) self.trades_df_with_price_diff['Price Sold & Curr Price % Diff'] = round((self.trades_df_with_price_diff['Current Price'] - self.trades_df_with_price_diff["Avg_Price"])/self.trades_df_with_price_diff["Avg_Price"] * 100, 2) self.trades_df_with_price_diff['Avg Cost & Curr Price % Diff'] = round((self.trades_df_with_price_diff['Current Price'] - self.trades_df_with_price_diff["Cur_Avg_Cost"])/self.trades_df_with_price_diff["Cur_Avg_Cost"] * 100, 2) self.trades_df_with_price_diff['Current Price'].fillna('', inplace=True) self.trades_df_with_price_diff['Price Sold & Curr Price % Diff'].fillna('', inplace=True) self.trades_df_with_price_diff['Avg Cost & Curr Price % Diff'].fillna('', inplace=True) self.trades_df_with_price_diff['Price Sold & Curr Price % Diff'] = self.trades_df_with_price_diff['Price Sold & Curr Price % Diff'].apply(lambda x: str(x) + '%' if x != '' else '') self.trades_df_with_price_diff['Avg Cost & Curr Price % Diff'] = self.trades_df_with_price_diff['Avg Cost & Curr Price % Diff'].apply(lambda x: str(x) + '%' if x != '' else '') self.gains_df_with_price_diff = self.trades_df_with_price_diff[(self.trades_df_with_price_diff['Gain'] >= 0) & (self.trades_df_with_price_diff['Side'] == 'sell')].sort_values('Gain', ascending = False).reset_index(drop=True) self.losses_df_with_price_diff = self.trades_df_with_price_diff[(self.trades_df_with_price_diff['Gain'] < 0) & (self.trades_df_with_price_diff['Side'] == 'sell')].sort_values('Gain').reset_index(drop=True) def add_hold_time(self): self.trades_df_with_price_diff['Days Held'] = None symbols = {} for i in range(len(self.trades_df_with_price_diff)): side = self.trades_df_with_price_diff.loc[i, 'Side'] symbol = self.trades_df_with_price_diff.loc[i, 'Symbol'] date = self.trades_df_with_price_diff.loc[i, 'Date'] quantity = self.trades_df_with_price_diff.loc[i, 'Quantity'] if side == 'buy': if symbol not in symbols: symbols[symbol] = deque([]) symbols[symbol].append([date, quantity]) if side == 'sell': if symbol in symbols and len(symbols[symbol]) > 0: first_in_queue_quantity = symbols[symbol][0][1] symbols[symbol][0][1] -= quantity hold_time = (pd.to_datetime(date) - pd.to_datetime(symbols[symbol][0][0])).days if symbols[symbol][0][1] == 0: self.trades_df_with_price_diff.loc[i, 'Days Held'] = hold_time symbols[symbol].popleft() elif symbols[symbol][0][1] > 0: self.trades_df_with_price_diff.loc[i, 'Days Held'] = hold_time else: first_in_queue_weight_times_holdtime = 0 while symbols[symbol][0][1] < 0: #neg value quantity_excess = symbols[symbol][0][1] hold_time = (pd.to_datetime(date) - pd.to_datetime(symbols[symbol][0][0])).days first_in_que_weight = first_in_queue_quantity/quantity first_in_queue_weight_times_holdtime += first_in_que_weight * hold_time symbols[symbol].popleft() first_in_queue_quantity = symbols[symbol][0][1] symbols[symbol][0][1] += quantity_excess hold_time = (pd.to_datetime(date) - pd.to_datetime(symbols[symbol][0][0])).days if symbols[symbol][0][1] == 0: self.trades_df_with_price_diff.loc[i, 'Days Held'] = round(first_in_queue_weight_times_holdtime + first_in_queue_quantity/quantity * hold_time,2) symbols[symbol].popleft() elif symbols[symbol][0][1] > 0: self.trades_df_with_price_diff.loc[i, 'Days Held'] = round(first_in_queue_weight_times_holdtime + (first_in_queue_quantity - symbols[symbol][0][1])/quantity * hold_time,2) ###Options######################################################################################################################################### class Options: def __init__(self, option_orders): self.option_orders = option_orders def examine_trades(self): self.total_optionsgain = 0 self.total_optionsloss = 0 self.trades = [] long_trading_dict = {} long_symbol_strike_exp_type_list = [] short_trading_dict = {} short_symbol_strike_exp_type_list = [] net_gain_loss = 0 for i in range(len(self.option_orders)): side = self.option_orders.loc[i, 'side'] symbol = self.option_orders.loc[i, 'chain_symbol'] exp = self.option_orders.loc[i, 'expiration_date'] strike = self.option_orders.loc[i, 'strike_price'] option_type = self.option_orders.loc[i, 'option_type'] order_date = self.option_orders.loc[i, 'order_created_at'].strftime('%Y-%m-%d') quantity = self.option_orders.loc[i, 'processed_quantity'] opening_strategy = self.option_orders.loc[i, 'opening_strategy'] closing_strategy = self.option_orders.loc[i, 'closing_strategy'] avg_price = self.option_orders.loc[i, 'price'] total = round(avg_price * quantity * 100,2) symb_exp_strike_type = f'{symbol} {exp} {strike} {option_type}' if side == 'buy' and opening_strategy in ['long_call', 'long_put']: if symb_exp_strike_type not in long_symbol_strike_exp_type_list: long_symbol_strike_exp_type_list.append(symb_exp_strike_type) if symb_exp_strike_type+'_avgprice' in long_trading_dict: cur_total = long_trading_dict[symb_exp_strike_type+'_quantity']*long_trading_dict[symb_exp_strike_type+'_avgprice'] new_total = cur_total + quantity * avg_price long_trading_dict[symb_exp_strike_type+'_quantity'] += quantity long_trading_dict[symb_exp_strike_type+'_avgprice'] = new_total/long_trading_dict[symb_exp_strike_type+'_quantity'] else: long_trading_dict[symb_exp_strike_type+'_avgprice'] = avg_price long_trading_dict[symb_exp_strike_type+'_quantity'] = quantity cur_long_avg_price = round(long_trading_dict[symb_exp_strike_type+'_avgprice'],2) cur_long_quantity = round(long_trading_dict[symb_exp_strike_type+'_quantity'],2) self.trades.append([side, symbol, option_type, opening_strategy, exp, strike, order_date, quantity, avg_price, cur_long_avg_price, cur_long_quantity, total, 0, str(0), '', net_gain_loss]) elif side == 'sell' and closing_strategy in ['long_call', 'long_put']: if symb_exp_strike_type+'_avgprice' in long_trading_dict: cur_long_avg_price = round(long_trading_dict[symb_exp_strike_type+'_avgprice'],2) gain = round((avg_price - cur_long_avg_price) * quantity*100,2) perc_gain = round((avg_price - cur_long_avg_price)/cur_long_avg_price*100,2) if gain >= 0: self.total_optionsgain += gain else: self.total_optionsloss += gain long_trading_dict[symb_exp_strike_type+'_quantity'] -= quantity net_gain_loss = round(self.total_optionsgain + self.total_optionsloss, 2) cur_long_quantity = round(long_trading_dict[symb_exp_strike_type+'_quantity'], 2) self.trades.append([side, symbol, option_type, closing_strategy, exp, strike, order_date, quantity, avg_price, cur_long_avg_price, cur_long_quantity, total, gain, str(perc_gain) + '%', '', net_gain_loss]) #if holding = 0, pop chain_symbol avgprice and quantity if long_trading_dict[symb_exp_strike_type+'_quantity'] == 0: long_trading_dict.pop(symb_exp_strike_type+'_avgprice') long_trading_dict.pop(symb_exp_strike_type+'_quantity') long_symbol_strike_exp_type_list.remove(symb_exp_strike_type) elif side == 'sell' and opening_strategy in ['short_call', 'short_put']: if symb_exp_strike_type not in short_symbol_strike_exp_type_list: short_symbol_strike_exp_type_list.append(symb_exp_strike_type) if symb_exp_strike_type+'_avgprice' in short_trading_dict: cur_total = short_trading_dict[symb_exp_strike_type+'_quantity']*short_trading_dict[symb_exp_strike_type+'_avgprice'] new_total = cur_total + quantity * avg_price short_trading_dict[symb_exp_strike_type+'_quantity'] += quantity short_trading_dict[symb_exp_strike_type+'_avgprice'] = new_total/short_trading_dict[symb_exp_strike_type+'_quantity'] #else add chain_symbol_avgprice = buy price in df and chain_symbol_quantity = bought quantity else: short_trading_dict[symb_exp_strike_type+'_avgprice'] = avg_price short_trading_dict[symb_exp_strike_type+'_quantity'] = quantity cur_short_avg_price = round(short_trading_dict[symb_exp_strike_type+'_avgprice'], 2) cur_short_quantity = round(short_trading_dict[symb_exp_strike_type+'_quantity'], 2) self.trades.append([side, symbol, option_type, opening_strategy, exp, strike, order_date, quantity, avg_price, cur_short_avg_price, cur_short_quantity, total, 0, str(0), '', net_gain_loss]) elif side == 'buy' and closing_strategy in ['short_call', 'short_put']: if symb_exp_strike_type+'_avgprice' in short_trading_dict: cur_short_avg_price = round(short_trading_dict[symb_exp_strike_type+'_avgprice'],2) gain = round((cur_short_avg_price - avg_price) * quantity * 100, 2) perc_gain = round( (cur_short_avg_price - avg_price) / cur_short_avg_price * 100, 2) if gain >= 0: self.total_optionsgain += gain else: self.total_optionsloss += gain short_trading_dict[symb_exp_strike_type+'_quantity'] -= quantity net_gain_loss = round(self.total_optionsgain + self.total_optionsloss, 2) cur_short_quantity = round(short_trading_dict[symb_exp_strike_type+'_quantity'], 2) self.trades.append([side, symbol, option_type, closing_strategy, exp, strike, order_date, quantity, avg_price, cur_short_avg_price, cur_short_quantity, total, gain, str(perc_gain) + '%', '', net_gain_loss]) #if holding position = 0, then pop chain_symbol avgprice and chain_symbol quantity if short_trading_dict[symb_exp_strike_type+'_quantity'] == 0: short_trading_dict.pop(symb_exp_strike_type+'_avgprice') short_trading_dict.pop(symb_exp_strike_type+'_quantity') short_symbol_strike_exp_type_list.remove(symb_exp_strike_type) #expired orders for i in range(len(self.option_orders)): symbol = self.option_orders.loc[i, 'chain_symbol'] exp = self.option_orders.loc[i, 'expiration_date'] strike = self.option_orders.loc[i, 'strike_price'] option_type = self.option_orders.loc[i, 'option_type'] quantity = self.option_orders.loc[i, 'processed_quantity'] order_date = self.option_orders.loc[i, 'order_created_at'].strftime('%Y-%m-%d') opening_strategy = self.option_orders.loc[i, 'opening_strategy'] closing_strategy = self.option_orders.loc[i, 'closing_strategy'] avg_price = self.option_orders.loc[i, 'price'] symb_exp_strike_type = f'{symbol} {exp} {strike} {option_type}' if symb_exp_strike_type in long_symbol_strike_exp_type_list and opening_strategy in ['long_call', 'long_put'] and exp < date.today(): total = long_trading_dict[symb_exp_strike_type+'_avgprice'] * long_trading_dict[symb_exp_strike_type+'_quantity'] * 100 long_trading_dict.pop(symb_exp_strike_type+'_avgprice') long_trading_dict.pop(symb_exp_strike_type+'_quantity') long_symbol_strike_exp_type_list.remove(symb_exp_strike_type) self.total_optionsloss -= total net_gain_loss = round(self.total_optionsgain + self.total_optionsloss, 2) self.trades.append([side, symbol, option_type, opening_strategy, exp, strike, order_date, quantity, avg_price, 0, 0, total, -total, '-100%', 'Yes', net_gain_loss]) if symb_exp_strike_type in short_symbol_strike_exp_type_list and opening_strategy in ['short_call', 'short_put'] and exp < date.today(): total = short_trading_dict[symb_exp_strike_type+'_avgprice'] * short_trading_dict[symb_exp_strike_type+'_quantity'] * 100 short_trading_dict.pop(symb_exp_strike_type+'_avgprice') short_trading_dict.pop(symb_exp_strike_type+'_quantity') short_symbol_strike_exp_type_list.remove(symb_exp_strike_type) self.total_optionsgain += total net_gain_loss = round(self.total_optionsgain + self.total_optionsloss, 2) self.trades.append([side, symbol, option_type, opening_strategy, exp, strike, order_date, quantity, avg_price, 0, 0, total, total, '', 'Yes', net_gain_loss]) self.trades_df = pd.DataFrame(self.trades, columns = ['Side', 'Symbol', 'Option Type', 'Strategy', 'Expiration', 'Strike', 'Date', 'Quantity', 'Avg_Price', 'Cur_Avg_Cost', 'Cur Quantity', 'Total', 'Gain', '% Gain', 'Expired', 'Net Gain/Loss']) self.trades_df['Expiration'] = self.trades_df['Expiration'].astype(str).str.replace(' 00:00:00', '') self.trades_df['Gain'] = self.trades_df['Gain'].astype('float64') self.gains_df = self.trades_df[(self.trades_df['Gain'] > 0)].sort_values('Gain', ascending = False).reset_index(drop=True) self.losses_df = self.trades_df[(self.trades_df['Gain'] < 0)].sort_values('Gain').reset_index(drop=True)
45.960699
251
0.606936
4a26eede28f40dbcdf207bf7b86c723f153cb695
10,816
py
Python
opsgenie_sdk/configuration.py
BATS/opsgenie-python-sdk
b59b3881187288c4cff401f05e4a84ca380425ab
[ "Apache-2.0" ]
null
null
null
opsgenie_sdk/configuration.py
BATS/opsgenie-python-sdk
b59b3881187288c4cff401f05e4a84ca380425ab
[ "Apache-2.0" ]
null
null
null
opsgenie_sdk/configuration.py
BATS/opsgenie-python-sdk
b59b3881187288c4cff401f05e4a84ca380425ab
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Python SDK for Opsgenie REST API Python SDK for Opsgenie REST API # noqa: E501 The version of the OpenAPI document: 2.0.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import copy import logging import multiprocessing import sys import urllib3 import six from six.moves import http_client as httplib class TypeWithDefault(type): def __init__(cls, name, bases, dct): super(TypeWithDefault, cls).__init__(name, bases, dct) cls._default = None def __call__(cls): if cls._default is None: cls._default = type.__call__(cls) return copy.copy(cls._default) def set_default(cls, default): cls._default = copy.copy(default) class Configuration(six.with_metaclass(TypeWithDefault, object)): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self): """Constructor""" # Default Base url self.host = "https://api.opsgenie.com" # Temp file folder for downloading files self.temp_folder_path = None # Authentication Settings # dict to store API key(s) self.api_key = {} # dict to store API prefix (e.g. Bearer) self.api_key_prefix = {} self.api_key_prefix['Authorization'] = 'GenieKey' # Username for HTTP basic authentication self.username = "" # Password for HTTP basic authentication self.password = "" # Logging Settings self.logger = {} self.logger["package_logger"] = logging.getLogger("opsgenie_sdk") self.logger["urllib3_logger"] = logging.getLogger("urllib3") # Log format self.logger_format = '%(asctime)s %(levelname)s %(message)s' # Log stream handler self.logger_stream_handler = None # Log file handler self.logger_file_handler = None # Debug file location self.logger_file = None # Debug switch self.debug = False # Retry policy settings # Retry count self.retry_count = 5 # Delay time between attempts self.retry_delay = 30 # Maximum amount of delay self.retry_max_delay = 60 # Multiplier applied to delay between attempts self.back_off = 1 # Http status codes on which to perform retry self.retry_http_response = ['429', '500', '502-599'] # To enable/disable retry feature self.retry_enabled = True # SSL/TLS verification # Set this to false to skip verifying SSL certificate when calling API # from https server. self.verify_ssl = True # Set this to customize the certificate file to verify the peer. self.ssl_ca_cert = None # client certificate file self.cert_file = None # client key file self.key_file = None # Set this to True/False to enable/disable SSL hostname verification. self.assert_hostname = None # urllib3 connection pool's maximum number of connections saved # per pool. urllib3 uses 1 connection as default value, but this is # not the best value when you are making a lot of possibly parallel # requests to the same host, which is often the case here. # cpu_count * 5 is used as default value to increase performance. self.connection_pool_maxsize = multiprocessing.cpu_count() * 5 # Proxy URL self.proxy = None # Proxy headers self.proxy_headers = None # Safe chars for path_param self.safe_chars_for_path_param = '' self.metrics_transaction_id = None self.short_polling_max_retries = 10 @property def logger_file(self): """The logger file. If the logger_file is None, then add stream handler and remove file handler. Otherwise, add file handler and remove stream handler. :param value: The logger_file path. :type: str """ return self.__logger_file @logger_file.setter def logger_file(self, value): """The logger file. If the logger_file is None, then add stream handler and remove file handler. Otherwise, add file handler and remove stream handler. :param value: The logger_file path. :type: str """ self.__logger_file = value if self.__logger_file: # If set logging file, # then add file handler and remove stream handler. self.logger_file_handler = logging.FileHandler(self.__logger_file) self.logger_file_handler.setFormatter(self.logger_formatter) for _, logger in six.iteritems(self.logger): logger.addHandler(self.logger_file_handler) @property def debug(self): """Debug status :param value: The debug status, True or False. :type: bool """ return self.__debug @debug.setter def debug(self, value): """Debug status :param value: The debug status, True or False. :type: bool """ self.__debug = value if self.__debug: # if debug status is True, turn on debug logging for _, logger in six.iteritems(self.logger): logger.setLevel(logging.DEBUG) # turn on httplib debug httplib.HTTPConnection.debuglevel = 1 else: # if debug status is False, turn off debug logging, # setting log level to default `logging.WARNING` for _, logger in six.iteritems(self.logger): logger.setLevel(logging.WARNING) # turn off httplib debug httplib.HTTPConnection.debuglevel = 0 @property def logger_format(self): """The logger format. The logger_formatter will be updated when sets logger_format. :param value: The format string. :type: str """ return self.__logger_format @logger_format.setter def logger_format(self, value): """The logger format. The logger_formatter will be updated when sets logger_format. :param value: The format string. :type: str """ self.__logger_format = value self.logger_formatter = logging.Formatter(self.__logger_format) def get_api_key_with_prefix(self, identifier): """Gets API key (with prefix if set). :param identifier: The identifier of apiKey. :return: The token for api key authentication. """ if (self.api_key.get(identifier) and self.api_key_prefix.get(identifier)): return self.api_key_prefix[identifier] + ' ' + self.api_key[identifier] # noqa: E501 elif self.api_key.get(identifier): return self.api_key[identifier] def get_basic_auth_token(self): """Gets HTTP basic authentication header (string). :return: The token for basic HTTP authentication. """ return urllib3.util.make_headers( basic_auth=self.username + ':' + self.password ).get('authorization') def auth_settings(self): """Gets Auth Settings dict for api client. :return: The Auth Settings information dict. """ return { 'GenieKey': { 'type': 'api_key', 'in': 'header', 'key': 'Authorization', 'value': self.get_api_key_with_prefix('Authorization') }, } def to_debug_report(self): """Gets the essential information for debugging. :return: The report for debugging. """ return "Python SDK Debug Report:\n"\ "OS: {env}\n"\ "Python Version: {pyversion}\n"\ "Version of the API: 2.0.0\n"\ "SDK Package Version: 2.0.3".\ format(env=sys.platform, pyversion=sys.version) def get_host_settings(self): """Gets an array of host settings :return: An array of host settings """ return [ { 'url': "https://api.opsgenie.com/", 'description': "No description provided", } ] def get_host_from_settings(self, index, variables={}): """Gets host URL based on the index and variables :param index: array index of the host settings :param variables: hash of variable and the corresponding value :return: URL based on host settings """ servers = self.get_host_settings() # check array index out of bound if index < 0 or index >= len(servers): raise ValueError( "Invalid index {} when selecting the host settings. Must be less than {}" # noqa: E501 .format(index, len(servers))) server = servers[index] url = server['url'] # go through variable and assign a value for variable_name in server['variables']: if variable_name in variables: if variables[variable_name] in server['variables'][ variable_name]['enum_values']: url = url.replace("{" + variable_name + "}", variables[variable_name]) else: raise ValueError( "The variable `{}` in the host URL has invalid value {}. Must be {}." # noqa: E501 .format( variable_name, variables[variable_name], server['variables'][variable_name]['enum_values'])) else: # use default value url = url.replace( "{" + variable_name + "}", server['variables'][variable_name]['default_value']) return url # If retry policy passed as config object def set_retry_policy(self, custom={}): if "retry_count" in custom.keys(): self.retry_count = custom["retry_count"] if "retry_delay" in custom.keys(): self.retry_delay = custom["retry_delay"] if "back_off" in custom.keys(): self.back_off = custom["back_off"] if "retry_http_response" in custom.keys(): self.retry_http_response = custom["retry_http_response"] if "retry_max_delay" in custom.keys(): self.retry_max_delay = custom["retry_max_delay"] if "retry_enabled" in custom.keys(): self.retry_enabled = custom["retry_enabled"]
32.87538
107
0.592825
4a26eee8278a2e29877eb1fa8a8c546ca6b6bd68
7,269
py
Python
test/test_motor_pool.py
myfreecomm/motor
bf1382c906045d9d9ad14106486a02f6b8721ada
[ "Apache-2.0" ]
null
null
null
test/test_motor_pool.py
myfreecomm/motor
bf1382c906045d9d9ad14106486a02f6b8721ada
[ "Apache-2.0" ]
null
null
null
test/test_motor_pool.py
myfreecomm/motor
bf1382c906045d9d9ad14106486a02f6b8721ada
[ "Apache-2.0" ]
null
null
null
# Copyright 2013-2014 MongoDB, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import unicode_literals """Test Motor, an asynchronous driver for MongoDB and Tornado.""" import functools import greenlet import random import unittest import pymongo.errors from tornado import stack_context from tornado.concurrent import Future from tornado.testing import gen_test import test from test import MotorTest, assert_raises, SkipTest from test.utils import delay class MotorPoolTest(MotorTest): @gen_test def test_max_size_default(self): yield self.cx.open() pool = self.cx._get_primary_pool() # Current defaults self.assertEqual(100, pool.max_size) self.assertEqual(None, pool.wait_queue_timeout) self.assertEqual(None, pool.wait_queue_multiple) @gen_test(timeout=30) def test_max_size(self): if not test.env.v8: raise SkipTest("Need multithreaded Javascript in mongod for test") max_pool_size = 5 cx = self.motor_client(max_pool_size=max_pool_size) # Lazy connection. self.assertEqual(None, cx._get_primary_pool()) yield cx.motor_test.test_collection.remove() pool = cx._get_primary_pool() self.assertEqual(max_pool_size, pool.max_size) self.assertEqual(1, len(pool.sockets)) self.assertEqual(1, pool.motor_sock_counter) # Grow to max_pool_size. ops_completed = Future() nops = 100 results = [] def callback(i, result, error): self.assertFalse(error) results.append(i) if len(results) == nops: ops_completed.set_result(None) collection = cx.motor_test.test_collection yield collection.insert({}) # Need a document. for i in range(nops): # Introduce random delay, avg 5ms, just to make sure we're async. collection.find_one( {'$where': delay(random.random() / 10)}, callback=functools.partial(callback, i)) yield ops_completed # All ops completed, but not in order. self.assertEqual(list(range(nops)), sorted(results)) self.assertNotEqual(list(range(nops)), results) self.assertEqual(max_pool_size, len(pool.sockets)) self.assertEqual(max_pool_size, pool.motor_sock_counter) cx.close() @gen_test(timeout=30) def test_wait_queue_timeout(self): # Do a find_one that takes 1 second, and set waitQueueTimeoutMS to 500, # 5000, and None. Verify timeout iff max_wait_time < 1 sec. where_delay = 1 yield self.collection.insert({}) for waitQueueTimeoutMS in (500, 5000, None): cx = self.motor_client( max_pool_size=1, waitQueueTimeoutMS=waitQueueTimeoutMS) yield cx.open() pool = cx._get_primary_pool() if waitQueueTimeoutMS: self.assertEqual( waitQueueTimeoutMS, pool.wait_queue_timeout * 1000) else: self.assertTrue(pool.wait_queue_timeout is None) collection = cx.motor_test.test_collection future = collection.find_one({'$where': delay(where_delay)}) if waitQueueTimeoutMS and waitQueueTimeoutMS < where_delay * 1000: with assert_raises(pymongo.errors.ConnectionFailure): yield collection.find_one() else: # No error yield collection.find_one() yield future cx.close() @gen_test def test_connections_unacknowledged_writes(self): # Verifying that unacknowledged writes don't open extra connections collection = self.cx.motor_test.test_collection yield collection.drop() pool = self.cx._get_primary_pool() self.assertEqual(1, pool.motor_sock_counter) nops = 10 for i in range(nops - 1): collection.insert({'_id': i}, w=0) # We have only one socket open, and it's already back in the pool self.assertEqual(1, pool.motor_sock_counter) self.assertEqual(1, len(pool.sockets)) # Acknowledged write; uses same socket and blocks for all inserts yield collection.insert({'_id': nops - 1}) self.assertEqual(1, pool.motor_sock_counter) # Socket is back in the idle pool self.assertEqual(1, len(pool.sockets)) # All ops completed docs = yield collection.find().sort('_id').to_list(length=100) self.assertEqual(list(range(nops)), [doc['_id'] for doc in docs]) @gen_test def test_stack_context(self): # See http://tornadoweb.org/en/stable/stack_context.html # MotorPool.get_socket can block waiting for a callback in another # context to return a socket. We verify MotorPool's stack-context # handling by testing that exceptions raised in get_socket's # continuation are caught in get_socket's stack context, not # return_socket's. loop = self.io_loop history = [] cx = self.motor_client(max_pool_size=1) # Open a socket yield cx.motor_test.test_collection.find_one() pool = cx._get_primary_pool() self.assertEqual(1, len(pool.sockets)) sock_info = pool.get_socket() main_gr = greenlet.getcurrent() def catch_get_sock_exc(exc_type, exc_value, exc_traceback): history.extend(['get_sock_exc', exc_value]) return True # Don't propagate def catch_return_sock_exc(exc_type, exc_value, exc_traceback): history.extend(['return_sock_exc', exc_value]) return True # Don't propagate def get_socket(): # Blocks until socket is available, since max_pool_size is 1. pool.get_socket() loop.add_callback(raise_callback) my_assert = AssertionError('foo') def raise_callback(): history.append('raise') raise my_assert def return_socket(): with stack_context.ExceptionStackContext(catch_return_sock_exc): pool.maybe_return_socket(sock_info) main_gr.switch() with stack_context.ExceptionStackContext(catch_get_sock_exc): loop.add_callback(greenlet.greenlet(get_socket).switch) greenlet.greenlet(return_socket).switch() yield self.pause(0.1) # 'return_sock_exc' was *not* added to history, because stack context # wasn't leaked from return_socket to get_socket. self.assertEqual(['raise', 'get_sock_exc', my_assert], history) cx.close() if __name__ == '__main__': unittest.main()
34.947115
79
0.649745
4a26f0816b209c1d559188e8cdc9467006e51228
118
py
Python
week1/yaml_test1.py
nlinkov/test_a
091dc66134f1e77ede35f58a774593862a44ded2
[ "MIT" ]
null
null
null
week1/yaml_test1.py
nlinkov/test_a
091dc66134f1e77ede35f58a774593862a44ded2
[ "MIT" ]
null
null
null
week1/yaml_test1.py
nlinkov/test_a
091dc66134f1e77ede35f58a774593862a44ded2
[ "MIT" ]
null
null
null
#!/usr/bin/python from pprint import pprint as pp from yaml_helper import read_yaml pp(read_yaml('test_file3.yml'))
16.857143
33
0.779661
4a26f0a264024ee1aa72a1a6bb0e8bf6ea932197
127
py
Python
predict/urls.py
yen936/adaptic_public
905e287843c152d8a743a2a64ceac539aac96149
[ "MIT" ]
3
2019-05-18T14:26:18.000Z
2020-04-25T16:15:24.000Z
predict/urls.py
yen936/adaptic_public
905e287843c152d8a743a2a64ceac539aac96149
[ "MIT" ]
2
2020-02-12T00:17:32.000Z
2020-06-05T20:53:28.000Z
predict/urls.py
yen936/adaptic_public
905e287843c152d8a743a2a64ceac539aac96149
[ "MIT" ]
null
null
null
from django.urls import path from predict.views import Predictor urlpatterns = [ path('predict/', Predictor.as_view()), ]
18.142857
42
0.732283
4a26f2cf117c6b090f145a881a079198f16fb028
2,968
py
Python
openff/benchmark/analysis/readwrite.py
openforcefield/openbenchmark
65a3519f18cb587622471a6bda6d58d9e39cd1d2
[ "MIT" ]
3
2020-03-14T22:52:18.000Z
2020-05-21T10:28:44.000Z
openff/benchmark/analysis/readwrite.py
openforcefield/openbenchmark
65a3519f18cb587622471a6bda6d58d9e39cd1d2
[ "MIT" ]
5
2020-03-24T19:35:38.000Z
2020-04-30T22:37:29.000Z
openff/benchmark/analysis/readwrite.py
openforcefield/openbenchmark
65a3519f18cb587622471a6bda6d58d9e39cd1d2
[ "MIT" ]
null
null
null
#!/usr/bin/env python """ io.py I/O operations for the analysis/report part of the openff-benchmark workflow By: David F. Hahn Version: Nov 18 2020 """ import os import numpy as np import pandas as pd import pint ureg = pint.UnitRegistry() from openforcefield.topology import Molecule from openforcefield.utils.toolkits import GLOBAL_TOOLKIT_REGISTRY, OpenEyeToolkitWrapper oetk_loaded = False for tkw in GLOBAL_TOOLKIT_REGISTRY.registered_toolkits: if isinstance(tkw, OpenEyeToolkitWrapper): oetk_loaded = True if oetk_loaded: GLOBAL_TOOLKIT_REGISTRY.deregister_toolkit(OpenEyeToolkitWrapper) def read_sdfs(path): mols = [] if (os.path.exists(path) and path.split('.')[-1] == 'sdf' ): mols.append(Molecule.from_file(path, 'SDF', allow_undefined_stereo=True)) elif os.path.isdir(path): for root, dirs, files in os.walk(path): for file in files: file_name = os.path.join(root, file) if (os.path.exists(file_name) and file_name.split('.')[-1] == 'sdf' ): mols.append(Molecule.from_file(file_name, 'SDF', allow_undefined_stereo=True)) return mols def convert_to_quantity(dataframe, columns='final_energy', to='kilocalories / mole'): if type(columns) is str: columns=[columns] for col in columns: dataframe[col] = dataframe[col].apply(lambda val: ureg.Quantity(val).to(to).magnitude) def mols_to_dataframe(mols): moldata = [] for mol in mols: moldata_i = { 'name': mol.name, 'mol': mol } for key, item in mol.properties.items(): moldata_i[key] = item moldata.append(moldata_i) df = pd.DataFrame(moldata) df['molecule_index'] = df['molecule_index'].astype(int) df['conformer_index'] = df['conformer_index'].astype(int) # add a unique molecule identifier in case there are two or molecules with the same # molecule index, but different group names df['molecule_identifier'] = df.apply(lambda row: f"{row['group_name']}_{row['molecule_index']:05d}", axis=1) convert_to_quantity(df, columns=['initial_energy', 'final_energy']) df.set_index('name', drop=False, inplace=True) return df def write_results(dataframe, file_name, columns=['name', 'group_name', 'molecule_index', 'conformer_index', 'rmsd', 'tfd', 'dde']): if 'molecule_index' in columns: dataframe['molecule_index'] = dataframe['molecule_index'].apply(lambda x: f'{x:05d}') if 'conformer_index' in columns: dataframe['conformer_index'] = dataframe['conformer_index'].apply(lambda x: f'{x:02d}') dataframe = dataframe.loc[:,columns] if 'dde' in columns: dataframe.rename(columns={'dde': 'dde[kcal/mol]'}, inplace=True) dataframe.to_csv(file_name, index=False if 'name' in columns else True, float_format='%15.8e')
34.511628
131
0.65566
4a26f37b1e1618e41d525358192d1fed3f05ca23
473
py
Python
delphi_epidata/__init__.py
lee14257/delphi-epidata-py
ca84147fb75a50b073bab43e77dcb32b52b26f4b
[ "MIT" ]
null
null
null
delphi_epidata/__init__.py
lee14257/delphi-epidata-py
ca84147fb75a50b073bab43e77dcb32b52b26f4b
[ "MIT" ]
null
null
null
delphi_epidata/__init__.py
lee14257/delphi-epidata-py
ca84147fb75a50b073bab43e77dcb32b52b26f4b
[ "MIT" ]
1
2021-12-22T23:56:58.000Z
2021-12-22T23:56:58.000Z
"""Fetch data from Delphi's API. """ from ._constants import __version__ from ._model import ( EpiRange, EpiRangeDict, EpiDataResponse, EpiRangeLike, InvalidArgumentException, EpiRangeParam, IntParam, StringParam, EpiDataFormatType, AEpiDataCall, ) from ._covidcast import ( DataSignal, DataSource, WebLink, DataSignalGeoStatistics, CovidcastDataSources, GeoType, TimeType, ) __author__ = "Delphi Group"
17.518519
35
0.693446
4a26f3db1020108c23c59d18f242e4fd22d7dc15
1,837
py
Python
aio_graphite_api/cluster/cluster.py
yunstanford/aio-graphite-api
819b82c451c23ce5928e711202bde79a5399c3da
[ "Apache-2.0" ]
1
2016-12-09T04:14:16.000Z
2016-12-09T04:14:16.000Z
aio_graphite_api/cluster/cluster.py
yunstanford/aio-graphite-api
819b82c451c23ce5928e711202bde79a5399c3da
[ "Apache-2.0" ]
1
2017-02-06T22:15:07.000Z
2017-02-06T23:01:04.000Z
aio_graphite_api/cluster/cluster.py
yunstanford/aio-graphite-api
819b82c451c23ce5928e711202bde79a5399c3da
[ "Apache-2.0" ]
null
null
null
import aiohttp async def init_cluster(config): """ a helper function for initing a cluster that talk with remote graphite-web. """ return await Cluster(config["cluster_servers"], config["graphite_web_cluster_protocol"], config["cluster_timeout"]) class Cluster: """ an aiohttp ClientSession class, which can talk with remote graphite-web. """ def __init__(self, cluster, protocol="http", timeout): self.cluster = cluster self.session = aiohttp.ClientSession() self.time_out = timeout async def query(self, server, target, fromTime, untilTime): """ query one server. """ url = _query_url(server) params = _query_params(target, fromTime, untilTime) result = [] try: async with session.get( url, timeout=self.time_out params=params) as resp: result = await resp.json() except asyncio.TimeoutError as err: raise err except Exception as e: raise e return result async def query_all(self, target, fromTime, untilTime): """ query all servers in cluster. #Todoooooooo optimization: understand same consistent hashing as used in writing metrics. """ results = [] for server in self.cluster: try: data = await self.query(server, target, fromTime, untilTime) results.append(data) except Exception as e: raise e return merge_data(results) def merge_data(self, data): """ Merge data from different servers. """ pass def _query_url(self, server): """ generate url for query. """ return "{protocol}://{server}/render/".format(self.protocol, server) def _query_params(self, target, fromTime, untilTime): # Only support json for now. # time interval process should be happened before come here. # NoCache return { "target": target, "from": fromTime, "until": untilTime, "noCache": 1, }
21.360465
91
0.688078
4a26f4a594ff2847d4d76b85b3586ca2c01a07e2
4,450
py
Python
sdk/keyvault/azure-keyvault-certificates/samples/backup_restore_operations_async.py
omziv/azure-sdk-for-python
3fbb0f9e1f86acc4e0a8cb13b790dccf32e3860f
[ "MIT" ]
1
2021-04-26T21:15:01.000Z
2021-04-26T21:15:01.000Z
sdk/keyvault/azure-keyvault-certificates/samples/backup_restore_operations_async.py
omziv/azure-sdk-for-python
3fbb0f9e1f86acc4e0a8cb13b790dccf32e3860f
[ "MIT" ]
2
2021-08-24T15:32:30.000Z
2021-08-24T23:21:34.000Z
sdk/keyvault/azure-keyvault-certificates/samples/backup_restore_operations_async.py
omziv/azure-sdk-for-python
3fbb0f9e1f86acc4e0a8cb13b790dccf32e3860f
[ "MIT" ]
null
null
null
# ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ import asyncio import os from azure.keyvault.certificates.aio import CertificateClient from azure.keyvault.certificates import CertificatePolicy from azure.identity.aio import DefaultAzureCredential from azure.core.exceptions import HttpResponseError # ---------------------------------------------------------------------------------------------------------- # Prerequisites: # 1. An Azure Key Vault (https://docs.microsoft.com/en-us/azure/key-vault/quick-create-cli) # # 2. azure-keyvault-certificates and azure-identity packages (pip install these) # # 3. Set Environment variables AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET, VAULT_URL # (See https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/keyvault/azure-keyvault-keys#authenticate-the-client) # # ---------------------------------------------------------------------------------------------------------- # Sample - demonstrates the basic backup and restore operations on a vault(certificates) resource for Azure Key Vault # # 1. Create a certificate (create_certificate) # # 2. Backup a certificate (backup_certificate) # # 3. Delete a certificate (delete_certificate) # # 4. Purge a certificate (purge_deleted_certificate) # # 5. Restore a certificate (restore_certificate_backup) # ---------------------------------------------------------------------------------------------------------- async def run_sample(): # Instantiate a certificate client that will be used to call the service. # Notice that the client is using default Azure credentials. # To make default credentials work, ensure that environment variables 'AZURE_CLIENT_ID', # 'AZURE_CLIENT_SECRET' and 'AZURE_TENANT_ID' are set with the service principal credentials. vault_url = os.environ["VAULT_URL"] credential = DefaultAzureCredential() client = CertificateClient(vault_url=vault_url, credential=credential) try: print("\n.. Create Certificate") cert_name = "BackupRestoreCertificate" # Let's create a certificate for your key vault. # if the certificate already exists in the Key Vault, then a new version of the certificate is created. # Awaiting the call returns a KeyVaultCertificate if creation is successful, and a CertificateOperation if not. certificate = await client.create_certificate( certificate_name=cert_name, policy=CertificatePolicy.get_default() ) print("Certificate with name '{0}' created.".format(certificate.name)) # Backups are good to have, if in case certificates gets deleted accidentally. # For long term storage, it is ideal to write the backup to a file. print("\n.. Create a backup for an existing certificate") certificate_backup = await client.backup_certificate(cert_name) print("Backup created for certificate with name '{0}'.".format(cert_name)) # The storage account certificate is no longer in use, so you can delete it. print("\n.. Delete the certificate") await client.delete_certificate(cert_name) print("Deleted certificate with name '{0}'".format(cert_name)) # Purge the deleted certificate. # The purge will take some time, so wait before restoring the backup to avoid a conflict. print("\n.. Purge the certificate") await client.purge_deleted_certificate(cert_name) await asyncio.sleep(60) print("Purged certificate with name '{0}'".format(cert_name)) # In the future, if the certificate is required again, we can use the backup value to restore it in the Key Vault. print("\n.. Restore the certificate using the backed up certificate bytes") certificate = await client.restore_certificate_backup(certificate_backup) print("Restored certificate with name '{0}'".format(certificate.name)) except HttpResponseError as e: print("\nrun_sample has caught an error. {0}".format(e.message)) finally: print("\nrun_sample done") await credential.close() await client.close() if __name__ == "__main__": try: loop = asyncio.get_event_loop() loop.run_until_complete(run_sample()) loop.close() except Exception as e: print("Top level Error: {0}".format(str(e)))
45.408163
123
0.656854
4a26f5493094b13ab10540aebfefc50c1414ac15
2,960
py
Python
load_tests/create_bus_subscription.py
mbta/alerts_concierge
d8e643445ef06f80ca273f2914c6959daea146f6
[ "MIT" ]
null
null
null
load_tests/create_bus_subscription.py
mbta/alerts_concierge
d8e643445ef06f80ca273f2914c6959daea146f6
[ "MIT" ]
21
2021-03-12T17:05:30.000Z
2022-02-16T21:48:35.000Z
load_tests/create_bus_subscription.py
mbta/alerts_concierge
d8e643445ef06f80ca273f2914c6959daea146f6
[ "MIT" ]
1
2021-12-09T15:09:53.000Z
2021-12-09T15:09:53.000Z
from locust import TaskSequence, seq_task from page import Page class CreateBusSubscription(TaskSequence): """Sequence to create a bus subscription""" @seq_task(1) def visit_new_subscription_page(self): response = self.client.get("/trip/new") self.csrf_token = Page.get_csrf_token(response) @seq_task(2) def select_route(self): response = self.client.post( "/trip/leg", json={ "mode_toggle": "bus", "trip": { "alternate_routes": "%7B%221%20-%201%22:%5B%22701%20-%201~~Route%20CT1~~bus%22%5D%7D", "from_new_trip": "true", "round_trip": "true", "route": "1 - 1~~Route 1~~bus" }, "_utf8": "✓", "_csrf_token": self.csrf_token } ) self.csrf_token = Page.get_csrf_token(response) @seq_task(3) def select_direction(self): response = self.client.post( "/trip/leg", json={ "mode_toggle": "subway", "trip": { "alternate_routes": "%7B%221%20-%200%22:%5B%22701%20-%200~~Route%20CT1~~bus%22%5D%7D", "destination": None, "direction": "0", "new_leg": "false", "origin": None, "round_trip": "true", "route": "Red~~Red Line~~subway", "saved_leg": "1 - 0", "saved_mode": "bus" }, "_utf8": "✓", "_csrf_token": self.csrf_token } ) self.csrf_token = Page.get_csrf_token(response) @seq_task(4) def select_times(self): self.client.post( "/trip", json={ "trip": { "alternate_routes": "%7B%221%20-%200%22:[%22701%20-%200~~Route%20CT1~~bus%22]%7D", "bike_storage": "false", "destinations": [None], "elevator": "false", "end_time": {"am_pm": "AM", "hour": "9", "minute": "0"}, "escalator": "false", "legs": ["1 - 0"], "modes": ["bus"], "origins": [None], "parking_area": "false", "relevant_days": ["saturday", "sunday"], "return_end_time": {"am_pm": "PM", "hour": "6", "minute": "0"}, "return_start_time": {"am_pm": "PM", "hour": "5", "minute": "0"}, "round_trip": "true", "start_time": {"am_pm": "AM", "hour": "8", "minute": "0"} }, "_utf8": "✓", "_csrf_token": self.csrf_token } ) @seq_task(5) def visit_trips_index_page(self): self.client.get("/trips")
35.238095
106
0.430743
4a26f55b723ec75566ffee7337d8ade5fd46eb9b
817
py
Python
app/core/tests/test_commands.py
dulvinw/recipe-api
f132345987a5962134755e5425e88dde4c56d5fe
[ "Apache-2.0" ]
1
2021-07-08T05:15:38.000Z
2021-07-08T05:15:38.000Z
app/core/tests/test_commands.py
TMEU/recipe-api
f132345987a5962134755e5425e88dde4c56d5fe
[ "Apache-2.0" ]
null
null
null
app/core/tests/test_commands.py
TMEU/recipe-api
f132345987a5962134755e5425e88dde4c56d5fe
[ "Apache-2.0" ]
1
2021-07-08T05:15:42.000Z
2021-07-08T05:15:42.000Z
from unittest.mock import patch from django.core.management import call_command from django.db.utils import OperationalError from django.test import TestCase class CommandTests(TestCase): def test_wait_for_db_ready(self): """Test waiting for db until db is ready""" with patch('django.db.utils.ConnectionHandler.__getitem__') as gi: gi.return_value = True call_command("wait_for_db") self.assertEqual(gi.call_count, 1) @patch('time.sleep', return_value=True) def test_wait_for_db(self, ts): """Test waiting for DB""" with patch('django.db.utils.ConnectionHandler.__getitem__') as gi: gi.side_effect = [OperationalError] * 5 + [True] call_command('wait_for_db') self.assertEqual(gi.call_count, 6)
34.041667
74
0.676867
4a26f59f27eb36e1af3e2061e9c12a6ddb7542c5
5,002
py
Python
track-gps-l1.py
wumouyan/GNSS-SDR-Python
61292c2ba151724538808663e2a6d0b048635401
[ "MIT" ]
68
2015-06-23T17:30:06.000Z
2022-03-29T22:06:54.000Z
track-gps-l1.py
wumouyan/GNSS-SDR-Python
61292c2ba151724538808663e2a6d0b048635401
[ "MIT" ]
4
2018-03-01T05:14:36.000Z
2021-12-05T11:07:39.000Z
track-gps-l1.py
wumouyan/GNSS-SDR-Python
61292c2ba151724538808663e2a6d0b048635401
[ "MIT" ]
43
2015-06-26T10:27:05.000Z
2022-03-30T02:47:09.000Z
#!/usr/bin/env python import optparse import numpy as np import gnsstools.gps.ca as ca import gnsstools.nco as nco import gnsstools.io as io import gnsstools.discriminator as discriminator import gnsstools.util as util class tracking_state: def __init__(self,fs,prn,code_p,code_f,code_i,carrier_p,carrier_f,carrier_i,mode): self.fs = fs self.prn = prn self.code_p = code_p self.code_f = code_f self.code_i = code_i self.carrier_p = carrier_p self.carrier_f = carrier_f self.carrier_i = carrier_i self.mode = mode self.prompt1 = 0 + 0*(1j) self.carrier_e1 = 0 self.code_e1 = 0 self.eml = 0 self.carrier_cyc = 0 self.code_cyc = 0 # tracking loops def track(x,s): n = len(x) fs = s.fs nco.mix(x,-s.carrier_f/fs, s.carrier_p) s.carrier_p = s.carrier_p - n*s.carrier_f/fs t = np.mod(s.carrier_p,1) dcyc = int(round(s.carrier_p-t)) s.carrier_cyc += dcyc s.carrier_p = t cf = (s.code_f+s.carrier_f/1540.0)/fs p_early = ca.correlate(x, s.prn, 0, s.code_p-0.05, cf, ca.ca_code(prn)) p_prompt = ca.correlate(x, s.prn, 0, s.code_p, cf, ca.ca_code(prn)) p_late = ca.correlate(x, s.prn, 0, s.code_p+0.05, cf, ca.ca_code(prn)) if s.mode=='FLL_WIDE': fll_k = 3.0 a = p_prompt b = s.prompt1 e = discriminator.fll_atan(a,b) s.carrier_f = s.carrier_f + fll_k*e s.prompt1 = p_prompt elif s.mode=='FLL_NARROW': fll_k = 0.8 a = p_prompt b = s.prompt1 e = discriminator.fll_atan(a,b) s.carrier_f = s.carrier_f + fll_k*e s.prompt1 = p_prompt elif s.mode=='PLL': pll_k1 = 0.1 pll_k2 = 3.5 e = discriminator.pll_costas(p_prompt) e1 = s.carrier_e1 s.carrier_f = s.carrier_f + pll_k1*e + pll_k2*(e-e1) s.carrier_e1 = e # code loop dll_k1 = 0.00002 dll_k2 = 0.2 s.early = np.absolute(p_early) s.prompt = np.absolute(p_prompt) s.late = np.absolute(p_late) if (s.late+s.early)==0: e = 0 else: e = (s.late-s.early)/(s.late+s.early) s.eml = e e1 = s.code_e1 s.code_f = s.code_f + dll_k1*e + dll_k2*(e-e1) s.code_e1 = e s.code_p = s.code_p + n*cf t = np.mod(s.code_p,ca.code_length) dcyc = int(round(s.code_p-t)) s.code_cyc += dcyc s.code_p = t return p_prompt,s # # main program # parser = optparse.OptionParser(usage="""track-gps-l1.py [options] input_filename sample_rate carrier_offset PRN doppler code_offset Track GPS L1 signal Examples: Track with default options: track-gps-l1.py /dev/stdin 69984000 -9334875 31 1200.0 831.15 Track with pure PLL (no FLL intervals at the start) and with a specified carrier phase: track-gps-l1.py --carrier-phase 0.214 /dev/stdin 69984000 -9334875 31 1200.0 831.15 Arguments: input_filename input data file, i/q interleaved, 8 bit signed sample_rate sampling rate in Hz carrier_offset offset to L1 carrier in Hz (positive or negative) PRN PRN doppler Doppler estimate from acquisition code_offset Code-offset estimate from acquisition""") parser.disable_interspersed_args() parser.add_option("--loop-dwells", default="500,500", help="initial time intervals for wide FLL, then narrow FLL, in milliseconds (default %default)") parser.add_option("--carrier-phase", help="initial carrier phase in cycles (disables FLL: uses PLL from the start)") (options, args) = parser.parse_args() filename = args[0] fs = float(args[1]) coffset = float(args[2]) prn = int(args[3]) doppler = float(args[4]) code_offset = float(args[5]) loop_dwells = util.parse_list_floats(options.loop_dwells) carrier_p = 0.0 if options.carrier_phase is not None: carrier_p = float(options.carrier_phase) loop_dwells = 0,0 fll_wide_time,fll_narrow_time = loop_dwells fp = open(filename,"rb") n = int(fs*0.001*((ca.code_length-code_offset)/ca.code_length)) # align with 1 ms code boundary x = io.get_samples_complex(fp,n) code_offset += n*1000.0*ca.code_length/fs s = tracking_state(fs=fs, prn=prn, # initialize tracking state code_p=code_offset, code_f=ca.chip_rate, code_i=0, carrier_p=carrier_p, carrier_f=doppler, carrier_i=0, mode='FLL_WIDE') block = 0 coffset_phase = 0.0 samp = 0 while True: if block>=fll_wide_time: s.mode = 'FLL_NARROW' if block>=fll_wide_time+fll_narrow_time: s.mode = 'PLL' if s.code_p<ca.code_length/2: n = int(fs*0.001*(ca.code_length-s.code_p)/ca.code_length) else: n = int(fs*0.001*(2*ca.code_length-s.code_p)/ca.code_length) x = io.get_samples_complex(fp,n) if x is None: break samp += n nco.mix(x,-coffset/fs,coffset_phase) coffset_phase = coffset_phase - n*coffset/fs coffset_phase = np.mod(coffset_phase,1) p_prompt,s = track(x,s) vars = block, np.real(p_prompt), np.imag(p_prompt), s.carrier_f, s.code_f-ca.chip_rate, (180/np.pi)*np.angle(p_prompt), s.early, s.prompt, s.late, s.code_cyc, s.code_p, s.carrier_cyc, s.carrier_p, samp print('%d %f %f %f %f %f %f %f %f %d %f %d %f %d' % vars) block = block + 1
27.788889
203
0.681128
4a26f5a8b8d008fb61af5e44696deddbf15128a4
4,392
py
Python
google/ads/google_ads/v3/proto/enums/conversion_attribution_event_type_pb2.py
andy0937/google-ads-python
cb5da7f4a75076828d1fc3524b08cc167670435a
[ "Apache-2.0" ]
1
2019-11-30T23:42:39.000Z
2019-11-30T23:42:39.000Z
google/ads/google_ads/v3/proto/enums/conversion_attribution_event_type_pb2.py
andy0937/google-ads-python
cb5da7f4a75076828d1fc3524b08cc167670435a
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v3/proto/enums/conversion_attribution_event_type_pb2.py
andy0937/google-ads-python
cb5da7f4a75076828d1fc3524b08cc167670435a
[ "Apache-2.0" ]
1
2020-03-13T00:14:31.000Z
2020-03-13T00:14:31.000Z
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/ads/googleads_v3/proto/enums/conversion_attribution_event_type.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads_v3/proto/enums/conversion_attribution_event_type.proto', package='google.ads.googleads.v3.enums', syntax='proto3', serialized_options=_b('\n!com.google.ads.googleads.v3.enumsB#ConversionAttributionEventTypeProtoP\001ZBgoogle.golang.org/genproto/googleapis/ads/googleads/v3/enums;enums\242\002\003GAA\252\002\035Google.Ads.GoogleAds.V3.Enums\312\002\035Google\\Ads\\GoogleAds\\V3\\Enums\352\002!Google::Ads::GoogleAds::V3::Enums'), serialized_pb=_b('\nKgoogle/ads/googleads_v3/proto/enums/conversion_attribution_event_type.proto\x12\x1dgoogle.ads.googleads.v3.enums\x1a\x1cgoogle/api/annotations.proto\"\x85\x01\n\"ConversionAttributionEventTypeEnum\"_\n\x1e\x43onversionAttributionEventType\x12\x0f\n\x0bUNSPECIFIED\x10\x00\x12\x0b\n\x07UNKNOWN\x10\x01\x12\x0e\n\nIMPRESSION\x10\x02\x12\x0f\n\x0bINTERACTION\x10\x03\x42\xf8\x01\n!com.google.ads.googleads.v3.enumsB#ConversionAttributionEventTypeProtoP\x01ZBgoogle.golang.org/genproto/googleapis/ads/googleads/v3/enums;enums\xa2\x02\x03GAA\xaa\x02\x1dGoogle.Ads.GoogleAds.V3.Enums\xca\x02\x1dGoogle\\Ads\\GoogleAds\\V3\\Enums\xea\x02!Google::Ads::GoogleAds::V3::Enumsb\x06proto3') , dependencies=[google_dot_api_dot_annotations__pb2.DESCRIPTOR,]) _CONVERSIONATTRIBUTIONEVENTTYPEENUM_CONVERSIONATTRIBUTIONEVENTTYPE = _descriptor.EnumDescriptor( name='ConversionAttributionEventType', full_name='google.ads.googleads.v3.enums.ConversionAttributionEventTypeEnum.ConversionAttributionEventType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='UNSPECIFIED', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='UNKNOWN', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='IMPRESSION', index=2, number=2, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INTERACTION', index=3, number=3, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=179, serialized_end=274, ) _sym_db.RegisterEnumDescriptor(_CONVERSIONATTRIBUTIONEVENTTYPEENUM_CONVERSIONATTRIBUTIONEVENTTYPE) _CONVERSIONATTRIBUTIONEVENTTYPEENUM = _descriptor.Descriptor( name='ConversionAttributionEventTypeEnum', full_name='google.ads.googleads.v3.enums.ConversionAttributionEventTypeEnum', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ _CONVERSIONATTRIBUTIONEVENTTYPEENUM_CONVERSIONATTRIBUTIONEVENTTYPE, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=141, serialized_end=274, ) _CONVERSIONATTRIBUTIONEVENTTYPEENUM_CONVERSIONATTRIBUTIONEVENTTYPE.containing_type = _CONVERSIONATTRIBUTIONEVENTTYPEENUM DESCRIPTOR.message_types_by_name['ConversionAttributionEventTypeEnum'] = _CONVERSIONATTRIBUTIONEVENTTYPEENUM _sym_db.RegisterFileDescriptor(DESCRIPTOR) ConversionAttributionEventTypeEnum = _reflection.GeneratedProtocolMessageType('ConversionAttributionEventTypeEnum', (_message.Message,), dict( DESCRIPTOR = _CONVERSIONATTRIBUTIONEVENTTYPEENUM, __module__ = 'google.ads.googleads_v3.proto.enums.conversion_attribution_event_type_pb2' , __doc__ = """Container for enum indicating the event type the conversion is attributed to. """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v3.enums.ConversionAttributionEventTypeEnum) )) _sym_db.RegisterMessage(ConversionAttributionEventTypeEnum) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
42.640777
700
0.806239
4a26f61f1742dfaa300b67797b8d7dd1684f18f2
5,333
py
Python
src/RobotFrameworkCore/org.robotframework.ide.core-functions/src/test/python/scripts/test_red_variables.py
alex729/RED
128bf203cf035892c02805aabd0c915f96006bb0
[ "Apache-2.0" ]
375
2015-11-02T19:15:30.000Z
2022-03-19T03:32:10.000Z
src/RobotFrameworkCore/org.robotframework.ide.core-functions/src/test/python/scripts/test_red_variables.py
alex729/RED
128bf203cf035892c02805aabd0c915f96006bb0
[ "Apache-2.0" ]
433
2015-11-03T13:24:40.000Z
2022-03-30T11:20:14.000Z
src/RobotFrameworkCore/org.robotframework.ide.core-functions/src/test/python/scripts/test_red_variables.py
alex729/RED
128bf203cf035892c02805aabd0c915f96006bb0
[ "Apache-2.0" ]
133
2016-05-02T02:20:06.000Z
2022-01-06T06:01:28.000Z
import unittest import os from red_variables import get_variables from red_variables import get_global_variables from robot.errors import DataError class VariablesRetrievingTests(unittest.TestCase): def test_if_global_variables_are_returned(self): result = get_global_variables() self.assertEqual(set(result.keys()), set(['${/}', '${:}', '${CURDIR}', '${DEBUG_FILE}', '${EMPTY}', '${EXECDIR}', '${False}', '${KEYWORD_MESSAGE}', '${KEYWORD_STATUS}', '${LOG_FILE}', '${LOG_LEVEL}', '${None}', '${OUTPUT_DIR}', '${OUTPUT_FILE}', '${PREV_TEST_MESSAGE}', '${PREV_TEST_NAME}', '${PREV_TEST_STATUS}', '${REPORT_FILE}', '${SPACE}', '${SUITE_DOCUMENTATION}', '${SUITE_MESSAGE}', '${SUITE_NAME}', '${SUITE_SOURCE}', '${SUITE_STATUS}', '${SUMMARY_FILE}', '${TEMPDIR}', '${TEST_DOCUMENTATION}', '${TEST_MESSAGE}', '${TEST_NAME}', '${TEST_STATUS}', '${True}', '${\\n}', '${null}', '&{EMPTY}', '&{SUITE_METADATA}', '@{EMPTY}', '@{TEST_TAGS}'])) def test_if_empty_result_is_returned_for_empty_file(self): parent_path = os.path.dirname(os.path.realpath(__file__)) vars_location = os.path.join(parent_path, 'res_test_red_variables', 'empty.py') result = get_variables(vars_location, []) self.assertEqual(result, {}) def test_if_result_is_returned_for_vars_in_lines(self): parent_path = os.path.dirname(os.path.realpath(__file__)) vars_location = os.path.join(parent_path, 'res_test_red_variables', 'vars_in_lines.py') result = get_variables(vars_location, []) self.assertEqual(result, {'first': '123', 'second': '234', 'third': '345'}) def test_if_result_is_returned_for_vars_in_method(self): parent_path = os.path.dirname(os.path.realpath(__file__)) vars_location = os.path.join(parent_path, 'res_test_red_variables', 'vars_in_method.py') result = get_variables(vars_location, []) self.assertEqual(result, {'a': '1', 'b': '2', 'c': '3'}) def test_if_result_is_returned_for_vars_in_class(self): parent_path = os.path.dirname(os.path.realpath(__file__)) vars_location = os.path.join(parent_path, 'res_test_red_variables', 'vars_in_class.py') result = get_variables(vars_location, []) self.assertEqual(result, {'x': '9', 'y': '8', 'z': '7'}) def test_if_result_is_returned_for_vars_with_argument(self): parent_path = os.path.dirname(os.path.realpath(__file__)) vars_location = os.path.join(parent_path, 'res_test_red_variables', 'vars_with_argument.py') result = get_variables(vars_location, ['_arg']) self.assertEqual(result, {'a': '1_arg', 'b': '2_arg', 'c': '3_arg'}) def test_if_result_is_returned_for_vars_with_proper_casing(self): parent_path = os.path.dirname(os.path.realpath(__file__)) vars_location = os.path.join(parent_path, 'res_test_red_variables', 'vars_with_case_sensitive_names.py') result = get_variables(vars_location, []) self.assertEqual(result, {'first': '123', 'SECOND': '234', 'ThIrD': '345', 'FORTH_with_UnderSCORES' : '456'}) def test_if_result_is_returned_with_defined_classes_visible_as_variables(self): parent_path = os.path.dirname(os.path.realpath(__file__)) vars_location = os.path.join(parent_path, 'res_test_red_variables', 'vars_class_as_var.py') result = get_variables(vars_location, []) self.assertSetEqual(set(result.keys()), set(['SomeClass'])) def test_if_data_error_is_raised_for_file_without_arguments(self): parent_path = os.path.dirname(os.path.realpath(__file__)) vars_location = os.path.join(parent_path, 'res_test_red_variables', 'vars_with_argument.py') with self.assertRaises(DataError) as cm: get_variables(vars_location, []) self.assertTrue('TypeError: ' in cm.exception.message) def test_if_data_error_is_raised_for_not_existing_file(self): parent_path = os.path.dirname(os.path.realpath(__file__)) vars_location = os.path.join(parent_path, 'res_test_red_variables', 'not_existing.py') with self.assertRaises(DataError) as cm: get_variables(vars_location, []) self.assertTrue('File or directory does not exist' in cm.exception.message) def test_if_data_error_is_raised_for_file_with_unsupported_extension(self): parent_path = os.path.dirname(os.path.realpath(__file__)) vars_location = os.path.join(parent_path, 'res_test_red_variables', 'vars_in_unsupported.robot') with self.assertRaises(DataError) as cm: get_variables(vars_location, []) self.assertTrue('Not a valid file or directory to import' in cm.exception.message) def test_if_data_error_is_raised_for_file_with_error(self): parent_path = os.path.dirname(os.path.realpath(__file__)) vars_location = os.path.join(parent_path, 'res_test_red_variables', 'vars_with_syntax.py') with self.assertRaises(DataError) as cm: get_variables(vars_location, []) self.assertTrue('SyntaxError: ' in cm.exception.message)
46.780702
117
0.663979
4a26f70def3b16570b4ec65b48b67c354c27cee1
8,581
py
Python
tests/repositories/test_installed_repository.py
sivanbecker/poetry
72497bcb66b5a1cc20e3aa95973c523a22b05bfa
[ "MIT" ]
null
null
null
tests/repositories/test_installed_repository.py
sivanbecker/poetry
72497bcb66b5a1cc20e3aa95973c523a22b05bfa
[ "MIT" ]
null
null
null
tests/repositories/test_installed_repository.py
sivanbecker/poetry
72497bcb66b5a1cc20e3aa95973c523a22b05bfa
[ "MIT" ]
null
null
null
from pathlib import Path from typing import TYPE_CHECKING from typing import Dict from typing import List from typing import Optional import pytest from poetry.repositories.installed_repository import InstalledRepository from poetry.utils._compat import metadata from poetry.utils.env import MockEnv as BaseMockEnv from tests.compat import zipp if TYPE_CHECKING: from pytest_mock.plugin import MockerFixture from poetry.core.packages.package import Package FIXTURES_DIR = Path(__file__).parent / "fixtures" ENV_DIR = (FIXTURES_DIR / "installed").resolve() SITE_PURELIB = ENV_DIR / "lib" / "python3.7" / "site-packages" SITE_PLATLIB = ENV_DIR / "lib64" / "python3.7" / "site-packages" SRC = ENV_DIR / "src" VENDOR_DIR = ENV_DIR / "vendor" / "py3.7" INSTALLED_RESULTS = [ metadata.PathDistribution(SITE_PURELIB / "cleo-0.7.6.dist-info"), metadata.PathDistribution(SRC / "pendulum" / "pendulum.egg-info"), metadata.PathDistribution( zipp.Path(str(SITE_PURELIB / "foo-0.1.0-py3.8.egg"), "EGG-INFO") ), metadata.PathDistribution(VENDOR_DIR / "attrs-19.3.0.dist-info"), metadata.PathDistribution(SITE_PURELIB / "standard-1.2.3.dist-info"), metadata.PathDistribution(SITE_PURELIB / "editable-2.3.4.dist-info"), metadata.PathDistribution(SITE_PURELIB / "editable-with-import-2.3.4.dist-info"), metadata.PathDistribution(SITE_PLATLIB / "lib64-2.3.4.dist-info"), metadata.PathDistribution(SITE_PLATLIB / "bender-2.0.5.dist-info"), metadata.PathDistribution(SITE_PURELIB / "git_pep_610-1.2.3.dist-info"), metadata.PathDistribution(SITE_PURELIB / "url_pep_610-1.2.3.dist-info"), metadata.PathDistribution(SITE_PURELIB / "file_pep_610-1.2.3.dist-info"), metadata.PathDistribution(SITE_PURELIB / "directory_pep_610-1.2.3.dist-info"), metadata.PathDistribution( SITE_PURELIB / "editable_directory_pep_610-1.2.3.dist-info" ), ] class MockEnv(BaseMockEnv): @property def paths(self) -> Dict[str, Path]: return { "purelib": SITE_PURELIB, "platlib": SITE_PLATLIB, } @property def sys_path(self) -> List[Path]: return [ENV_DIR, SITE_PLATLIB, SITE_PURELIB] @pytest.fixture def env() -> MockEnv: return MockEnv(path=ENV_DIR) @pytest.fixture def repository(mocker: "MockerFixture", env: MockEnv) -> InstalledRepository: mocker.patch( "poetry.utils._compat.metadata.Distribution.discover", return_value=INSTALLED_RESULTS, ) mocker.patch( "poetry.core.vcs.git.Git.rev_parse", return_value="bb058f6b78b2d28ef5d9a5e759cfa179a1a713d6", ) mocker.patch( "poetry.core.vcs.git.Git.remote_urls", side_effect=[ {"remote.origin.url": "https://github.com/sdispater/pendulum.git"}, {"remote.origin.url": "[email protected]:sdispater/pendulum.git"}, ], ) mocker.patch("poetry.repositories.installed_repository._VENDORS", str(VENDOR_DIR)) return InstalledRepository.load(env) def get_package_from_repository( name: str, repository: InstalledRepository ) -> Optional["Package"]: for pkg in repository.packages: if pkg.name == name: return pkg return None def test_load_successful(repository: InstalledRepository): assert len(repository.packages) == len(INSTALLED_RESULTS) - 1 def test_load_ensure_isolation(repository: InstalledRepository): package = get_package_from_repository("attrs", repository) assert package is None def test_load_standard_package(repository: InstalledRepository): cleo = get_package_from_repository("cleo", repository) assert cleo is not None assert cleo.name == "cleo" assert cleo.version.text == "0.7.6" assert ( cleo.description == "Cleo allows you to create beautiful and testable command-line interfaces." ) foo = get_package_from_repository("foo", repository) assert foo is not None assert foo.version.text == "0.1.0" def test_load_git_package(repository: InstalledRepository): pendulum = get_package_from_repository("pendulum", repository) assert pendulum is not None assert pendulum.name == "pendulum" assert pendulum.version.text == "2.0.5" assert pendulum.description == "Python datetimes made easy" assert pendulum.source_type == "git" assert pendulum.source_url in [ "[email protected]:sdispater/pendulum.git", "https://github.com/sdispater/pendulum.git", ] assert pendulum.source_reference == "bb058f6b78b2d28ef5d9a5e759cfa179a1a713d6" def test_load_git_package_pth(repository: InstalledRepository): bender = get_package_from_repository("bender", repository) assert bender is not None assert bender.name == "bender" assert bender.version.text == "2.0.5" assert bender.source_type == "git" def test_load_platlib_package(repository: InstalledRepository): lib64 = get_package_from_repository("lib64", repository) assert lib64 is not None assert lib64.name == "lib64" assert lib64.version.text == "2.3.4" def test_load_editable_package(repository: InstalledRepository): # test editable package with text .pth file editable = get_package_from_repository("editable", repository) assert editable is not None assert editable.name == "editable" assert editable.version.text == "2.3.4" assert editable.source_type == "directory" assert ( editable.source_url == Path("/path/to/editable").resolve(strict=False).as_posix() ) def test_load_editable_with_import_package(repository: InstalledRepository): # test editable package with executable .pth file editable = get_package_from_repository("editable-with-import", repository) assert editable is not None assert editable.name == "editable-with-import" assert editable.version.text == "2.3.4" assert editable.source_type is None assert editable.source_url is None def test_load_standard_package_with_pth_file(repository: InstalledRepository): # test standard packages with .pth file is not treated as editable standard = get_package_from_repository("standard", repository) assert standard is not None assert standard.name == "standard" assert standard.version.text == "1.2.3" assert standard.source_type is None assert standard.source_url is None def test_load_pep_610_compliant_git_packages(repository: InstalledRepository): package = get_package_from_repository("git-pep-610", repository) assert package is not None assert package.name == "git-pep-610" assert package.version.text == "1.2.3" assert package.source_type == "git" assert package.source_url == "https://github.com/demo/git-pep-610.git" assert package.source_reference == "my-branch" assert package.source_resolved_reference == "123456" def test_load_pep_610_compliant_url_packages(repository: InstalledRepository): package = get_package_from_repository("url-pep-610", repository) assert package is not None assert package.name == "url-pep-610" assert package.version.text == "1.2.3" assert package.source_type == "url" assert ( package.source_url == "https://python-poetry.org/distributions/url-pep-610-1.2.3.tar.gz" ) def test_load_pep_610_compliant_file_packages(repository: InstalledRepository): package = get_package_from_repository("file-pep-610", repository) assert package is not None assert package.name == "file-pep-610" assert package.version.text == "1.2.3" assert package.source_type == "file" assert package.source_url == "/path/to/distributions/file-pep-610-1.2.3.tar.gz" def test_load_pep_610_compliant_directory_packages(repository: InstalledRepository): package = get_package_from_repository("directory-pep-610", repository) assert package is not None assert package.name == "directory-pep-610" assert package.version.text == "1.2.3" assert package.source_type == "directory" assert package.source_url == "/path/to/distributions/directory-pep-610" assert not package.develop def test_load_pep_610_compliant_editable_directory_packages( repository: InstalledRepository, ): package = get_package_from_repository("editable-directory-pep-610", repository) assert package is not None assert package.name == "editable-directory-pep-610" assert package.version.text == "1.2.3" assert package.source_type == "directory" assert package.source_url == "/path/to/distributions/directory-pep-610" assert package.develop
35.903766
86
0.725207
4a26f80e01a9b6dc8ff701a28d28cc2eea97b737
768
py
Python
thinc/tests/regression/issue519/test_issue519.py
TheVinhLuong102/thinc
7b54f728ddec7765a1d8a5e553d4b4b90b9edaec
[ "MIT" ]
2,542
2016-10-20T07:02:59.000Z
2022-03-30T20:18:35.000Z
thinc/tests/regression/issue519/test_issue519.py
TheVinhLuong102/thinc
7b54f728ddec7765a1d8a5e553d4b4b90b9edaec
[ "MIT" ]
453
2016-10-19T21:09:35.000Z
2022-03-31T11:01:15.000Z
thinc/tests/regression/issue519/test_issue519.py
TheVinhLuong102/thinc
7b54f728ddec7765a1d8a5e553d4b4b90b9edaec
[ "MIT" ]
265
2016-11-14T14:53:58.000Z
2022-03-31T02:25:24.000Z
import subprocess try: import importlib.resources as importlib_resources except ImportError: import importlib_resources # type: ignore import pytest @pytest.mark.slow def test_issue519(): """ Test ability of Thinc mypy plugin to handle variadic arguments. This test can take up to 45 seconds, and is thus marked as slow. """ # Determine the name of the parent module (which contains the test program) parent_module_name = __name__[:__name__.rfind(".")] # Load test program that calls a Thinc API with variadic arguments program_text = importlib_resources.read_text(parent_module_name, "program.py") # Ask Mypy to type-check the loaded program text subprocess.run(["mypy", "--command", program_text], check=True)
29.538462
82
0.733073
4a26f86bce83518e28ba8ec427802d6ae5252a84
1,315
py
Python
girder_utils/templatetags/girder_utils.py
girder/django-girder-utils
587919e4c7b48b67624be40df3389d02380c69bb
[ "Apache-2.0" ]
2
2020-10-12T18:46:54.000Z
2021-01-28T21:02:24.000Z
girder_utils/templatetags/girder_utils.py
girder/django-girder-utils
587919e4c7b48b67624be40df3389d02380c69bb
[ "Apache-2.0" ]
12
2020-12-01T20:13:31.000Z
2021-12-19T02:32:05.000Z
girder_utils/templatetags/girder_utils.py
girder/django-girder-utils
587919e4c7b48b67624be40df3389d02380c69bb
[ "Apache-2.0" ]
1
2021-01-04T22:26:47.000Z
2021-01-04T22:26:47.000Z
import json from typing import Any, Mapping, Optional, TypeVar from django import template register = template.Library() _KT = TypeVar('_KT') _VT_co = TypeVar('_VT_co', covariant=True) @register.filter def getitem(value: Mapping[_KT, _VT_co], arg: _KT) -> Optional[_VT_co]: """ Retrieve `value[arg]` from a mapping `value`, where `arg` can be a variable. This will return `None` if `arg` is not found. It may be useful to chain the `default_if_none` filter after this one. Sample usage:: {% load girder_utils %} {% for key in some_keys %} {{ my_dict|getitem:key }} {% endfor %} """ return value.get(arg, None) @register.filter def pretty_json(value: Any, indent: Optional[int] = None) -> str: """ Convert `value` to a JSON-formatted string. Optionally, `indent` can be specified as an positive integer number of spaces to pretty-print indentation with; `None` (the default) will disable pretty-printing. The output should typically be embedded within HTML an `<pre>` element. If `indent` is specified, the output will likely contain newlines, which `<pre>` will render. Sample usage:: {% load girder_utils %} <pre>{{ my_object|pretty_json:4 }}</pre> """ return json.dumps(value, indent=indent)
28.586957
98
0.66692
4a26f8950bd69b6143fa438d7ff6e3326a3a28a8
11,438
py
Python
cogs/extra.py
SilentSerenityy/JDBot
cd404000f06d51757439e435b2aaedbbab233144
[ "MIT" ]
null
null
null
cogs/extra.py
SilentSerenityy/JDBot
cd404000f06d51757439e435b2aaedbbab233144
[ "MIT" ]
null
null
null
cogs/extra.py
SilentSerenityy/JDBot
cd404000f06d51757439e435b2aaedbbab233144
[ "MIT" ]
null
null
null
from discord.ext import commands import discord, random, asuna_api, math, aiohttp, io, chardet, aiogtts, mystbin, alexflipnote, os class Extra(commands.Cog): def __init__(self,client): self.client = client @commands.command(brief="a way to look up minecraft usernames",help="using the official minecraft api, looking up minecraft information has never been easier(tis only gives minecraft account history relating to name changes)") async def mchistory(self,ctx,*,args=None): if args is None: await ctx.send("Please pick a minecraft user.") if args: asuna = asuna_api.Client(self.client.session) minecraft_info=await asuna.mc_user(args) embed=discord.Embed(title=f"Minecraft Username: {args}",color=random.randint(0, 16777215)) embed.set_footer(text=f"Minecraft UUID: {minecraft_info.uuid}") embed.add_field(name="Orginal Name:",value=minecraft_info.name) y = 0 for x in minecraft_info.history: if y > 0: embed.add_field(name=f"Username:\n{x['name']}",value=f"Date Changed:\n{x['changedToAt']}\n \nTime Changed: \n {x['timeChangedAt']}") y = y + 1 embed.set_author(name=f"Requested by {ctx.author}",icon_url=(ctx.author.avatar_url)) await ctx.send(embed=embed) @commands.command(help="This gives random history using Sp46's api.",brief="a command that uses SP46's api's random history command to give you random history responses") async def random_history(self,ctx,*,args=None): if args is None: args = 1 asuna = asuna_api.Client(self.client.session) response = await asuna.random_history(args) for x in response: await ctx.send(f":earth_africa: {x}") @commands.command(brief="gives you the digits of pi that Python knows") async def pi(self,ctx): await ctx.send(math.pi) @commands.command(brief="reverses text") async def reverse(self,ctx,*,args=None): if args: await ctx.send(args[::-1]) if args is None: await ctx.send("Try sending actual to reverse") @commands.command(brief="Oh no Dad Jokes, AHHHHHH!") async def dadjoke(self,ctx): response=await self.client.session.get("https://icanhazdadjoke.com/",headers={"Accept": "application/json"}) joke=await response.json() embed = discord.Embed(title="Random Dad Joke:",color=random.randint(0, 16777215)) embed.set_author(name=f"Dad Joke Requested by {ctx.author}",icon_url=(ctx.author.avatar_url)) embed.add_field(name="Dad Joke:",value=joke["joke"]) embed.set_footer(text=f"View here:\n https://icanhazdadjoke.com/j/{joke['id']}") await ctx.send(embed=embed) @commands.command(brief="gets a panel from the xkcd comic",aliases=["astrojoke","astro_joke"]) async def xkcd(self,ctx): response=await self.client.session.get("https://xkcd.com/info.0.json") info=await response.json() num = random.randint(1,info["num"]) comic = await self.client.session.get(f"https://xkcd.com/{num}/info.0.json") data=await comic.json() title = data["title"] embed=discord.Embed(title=f"Title: {title}",color=random.randint(0, 16777215)) embed.set_image(url=data["img"]) embed.set_footer(text=f"Made on {data['month']}/{data['day']}/{data['year']}") await ctx.send(embed=embed) @commands.command() async def http_cat(self,ctx,args=None): if args is None: code = "404" if args: if args.isdigit(): if int(args) > 99 and int(args) < 600: code = args if args.isdigit() is False: await ctx.send("Not a valid arg using 404") code = "404" response = await self.client.session.get(f"https://http.cat/{code}") if response.status: image = f"https://http.cat/{code}.jpg" embed=discord.Embed(title=f"Status Code: {code}",color=random.randint(0, 16777215)) embed.set_author(name=f"Requested by {ctx.author}",icon_url=ctx.author.avatar_url) embed.set_image(url=image) embed.set_footer(text="Powered by http.cat") await ctx.send(embed=embed) @commands.command(help="Gives advice from JDJG api.",aliases=["ad"]) async def advice(self,ctx): r=await self.client.session.get('https://jdjgapi.nom.mu/api/advice') res = await r.json() embed = discord.Embed(title = "Here is some advice for you!",color=random.randint(0, 16777215)) embed.add_field(name = f"{res['text']}", value = "Hopefully this helped!") embed.set_footer(text="Powered by JDJG Api!") try: await ctx.send(embed=embed) except: await ctx.send("was too long...") @commands.command(help="gives random compliment") async def compliment(self,ctx): r=await self.client.session.get('https://jdjgapi.nom.mu/api/compliment') res = await r.json() embed = discord.Embed(title = "Here is a compliment:",color=random.randint(0, 16777215)) embed.add_field(name = f"{res['text']}", value = "Hopefully this helped your day!") embed.set_footer(text="Powered by JDJG Api!") await ctx.send(embed=embed) @commands.command(help="gives an insult") async def insult(self,ctx): r=await self.client.session.get('https://jdjgapi.nom.mu/api/insult') res = await r.json() embed = discord.Embed(title = "Here is a insult:",color=random.randint(0, 16777215)) embed.add_field(name = f"{res['text']}", value = "Hopefully this Helped?") embed.set_footer(text="Powered by JDJG Api!") await ctx.send(embed=embed) @commands.command(help="gives response to slur") async def noslur(self,ctx): r=await self.client.session.get('https://jdjgapi.nom.mu/api/noslur') res = await r.json() embed = discord.Embed(title = "Don't Swear",color=random.randint(0, 16777215)) embed.add_field(name = f"{res['text']}", value = "WHY MUST YOU SWEAR?") embed.set_footer(text="Powered by JDJG Api!") await ctx.send(embed=embed) @commands.command(help="gives random message",aliases=["rm"]) async def random_message(self,ctx): r=await self.client.session.get('https://jdjgapi.nom.mu/api/randomMessage') res = await r.json() embed = discord.Embed(title = "Random Message:",color=random.randint(0, 16777215)) embed.add_field(name="Here:",value=res["text"]) embed.set_footer(text="Powered by JDJG Api!") await ctx.send(embed=embed) async def google_tts(self,ctx,text): await ctx.send("if you have a lot of text it may take a bit") mp3_fp = io.BytesIO() tts=aiogtts.aiogTTS() await tts.write_to_fp(text,mp3_fp,lang='en') mp3_fp.seek(0) file = discord.File(mp3_fp,"tts.mp3") await ctx.send(file=file) @commands.command(help="a command to talk to Google TTS",brief="using the power of the GTTS module you can now do tts") async def tts(self,ctx,*,args=None): if args: await self.google_tts(ctx,args) if ctx.message.attachments: for x in ctx.message.attachments: file=await x.read() if len(file) > 0: encoding=chardet.detect(file)["encoding"] if encoding: text = file.decode(encoding) await self.google_tts(ctx,text) if encoding is None: await ctx.send("it looks like it couldn't decode this file, if this is an issue DM JDJG Inc. Official#3439") if len(file ) < 1: await ctx.send("this doesn't contain any bytes.") if args is None and len(ctx.message.attachments) < 1: await ctx.send("You didn't specify any value.") @commands.command(help="learn about a secret custom xbox controller",brief="this will give you a message of JDJG's classic wanted xbox design.") async def secret_controller(self,ctx): embed = discord.Embed(color=random.randint(0, 16777215)) embed.set_author(name="Secret Xbox Image:") embed.add_field(name="Body:",value="Zest Orange") embed.add_field(name="Back:",value="Zest Orange") embed.add_field(name="Bumpers:",value="Zest Orange") embed.add_field(name="Triggers:",value="Zest Orange") embed.add_field(name="D-pad:",value="Electric Green") embed.add_field(name="Thumbsticks:",value="Electric Green") embed.add_field(name="ABXY:",value="Colors on Black") embed.add_field(name="View & Menu:",value="White on Black") embed.add_field(name="Engraving(not suggested):",value="JDJG Inc.") embed.add_field(name="Disclaimer:",value="I do not work at microsoft,or suggest you buy this I just wanted a place to represent a controller that I designed a while back.") embed.set_image(url="https://i.imgur.com/QCh4M2W.png") embed.set_footer(text="This is Xbox's custom controller design that I picked for myself.\nXbox is owned by Microsoft. I don't own the image") await ctx.send(embed=embed) @commands.command(brief="repeats what you say",help="a command that repeats what you say the orginal message is deleted") async def say(self,ctx,*,args=None): if args: args = discord.utils.escape_mentions(args) args=discord.utils.escape_markdown(args,as_needed=False,ignore_links=False) try: await ctx.message.delete() except discord.errors.Forbidden: pass await ctx.send(args) if args is None: await ctx.send("You didn't give us any text to use.") @commands.command(brief="a command to backup text",help="please don't upload any private files that aren't meant to be seen") async def text_backup(self,ctx): if ctx.message.attachments: for x in ctx.message.attachments: file=await x.read() if len(file) > 0: encoding=chardet.detect(file)["encoding"] if encoding: text = file.decode(encoding) mystbin_client = mystbin.Client(session=self.client.session) paste = await mystbin_client.post(text) await ctx.send(content=f"Added text file to mystbin: \n{paste.url}") if encoding is None: await ctx.send("it looks like it couldn't decode this file, if this is an issue DM JDJG Inc. Official#3439 or it wasn't a text file.") if len(file ) < 1: await ctx.send("this doesn't contain any bytes.") @commands.group(name="apply",invoke_without_command=True) async def apply(self,ctx): await ctx.send("this command is meant to apply") @apply.command(brief="a command to apply for our Bloopers.",help="a command to apply for our bloopers.") async def bloopers(self,ctx,*,args=None): if args is None: await ctx.send("You didn't give us any info.") if args: if isinstance(ctx.message.channel, discord.TextChannel): await ctx.message.delete() for x in [708167737381486614,168422909482762240]: apply_user = self.client.get_user(x) if (apply_user.dm_channel is None): await apply_user.create_dm() embed_message = discord.Embed(title=args,color=random.randint(0, 16777215),timestamp=(ctx.message.created_at)) embed_message.set_author(name=f"Application from {ctx.author}",icon_url=(ctx.author.avatar_url)) embed_message.set_footer(text = f"{ctx.author.id}") embed_message.set_thumbnail(url="https://i.imgur.com/PfWlEd5.png") await apply_user.send(embed=embed_message) @commands.command() async def caw(self,ctx): alex_api = alexflipnote.Client(os.environ["alex_apikey"],session=self.client.session) url=await alex_api.birb() await ctx.send(url) def setup(client): client.add_cog(Extra(client))
44.162162
228
0.678703
4a26f9a975958731b04bde1c5702cbe1de1fac78
74
py
Python
Numpy-Arrays.py
H2oPtic/Codecademy-Education
454ecff36a055fa17b4b338e1c6f1e9b3b94ef66
[ "MIT" ]
null
null
null
Numpy-Arrays.py
H2oPtic/Codecademy-Education
454ecff36a055fa17b4b338e1c6f1e9b3b94ef66
[ "MIT" ]
null
null
null
Numpy-Arrays.py
H2oPtic/Codecademy-Education
454ecff36a055fa17b4b338e1c6f1e9b3b94ef66
[ "MIT" ]
null
null
null
import numpy as np test_1 = np.array([92,94,88,91,87]) print(test_1)
14.8
36
0.662162
4a26fba4d46ab33071ae8c09e60058986522f1ad
1,523
py
Python
pylearn2/scripts/papers/jia_huang_wkshp_11/assemble.py
ikervazquezlopez/Pylearn2
2971e8f64374ffde572d4cf967aad5342beaf5e0
[ "BSD-3-Clause" ]
2,045
2015-01-01T14:07:52.000Z
2022-03-08T08:56:41.000Z
pylearn2/scripts/papers/jia_huang_wkshp_11/assemble.py
ikervazquezlopez/Pylearn2
2971e8f64374ffde572d4cf967aad5342beaf5e0
[ "BSD-3-Clause" ]
305
2015-01-02T13:18:24.000Z
2021-08-20T18:03:28.000Z
pylearn2/scripts/papers/jia_huang_wkshp_11/assemble.py
ikervazquezlopez/Pylearn2
2971e8f64374ffde572d4cf967aad5342beaf5e0
[ "BSD-3-Clause" ]
976
2015-01-01T17:08:51.000Z
2022-03-25T19:53:17.000Z
from __future__ import print_function import numpy as np import os from theano.compat.six.moves import xrange #check that the right files are present names = os.listdir('.') if 'features.npy' in names: print("Not doing anything, features.npy already exists.") quit(0) chunk_names = [ 'features_A.npy', 'features_B.npy', 'features_C.npy', 'features_D.npy', 'features_E.npy' ] for name in chunk_names: assert name in names for name in chunk_names: if name.startswith('features') and name.endswith('.npy'): if name not in chunk_names: print("I'm not sure what to do with "+name) print("The existence of this file makes me think extract_features.yaml has changed") print("I don't want to do something incorrect so I'm going to give up.") quit(-1) #Do the conversion print('loading '+chunk_names[0]) first_chunk = np.load(chunk_names[0]) final_shape = list(first_chunk.shape) final_shape[0] = 50000 print('making output') X = np.zeros(final_shape,dtype='float32') idx = first_chunk.shape[0] X[0:idx,:] = first_chunk for i in xrange(1, len(chunk_names)): arg = chunk_names[i] print('loading '+arg) chunk = np.load(arg) chunk_span = chunk.shape[0] X[idx:idx+chunk_span,...] = chunk idx += chunk_span print("Saving features.npy...") np.save('features.npy',X) print("Deleting the chunks...") for chunk_name in chunk_names: os.remove(chunk_name)
22.397059
96
0.653972
4a26fc58ffddcf5f99e402731e986a9079a16d03
170
py
Python
ciclo1_python/udea/MisionTIC_UdeA_Ciclo1/Material/Semana_7/Semana 7/msc.py
felipeescallon/mision_tic_2022
20496fc40b18d2e98114d6362928f34fde41aaae
[ "CC0-1.0" ]
7
2021-07-05T21:25:50.000Z
2021-11-09T11:09:41.000Z
ciclo1_python/udea/MisionTIC_UdeA_Ciclo1/Material/Semana_7/Semana 7/msc.py
felipeescallon/mision_tic_2022
20496fc40b18d2e98114d6362928f34fde41aaae
[ "CC0-1.0" ]
null
null
null
ciclo1_python/udea/MisionTIC_UdeA_Ciclo1/Material/Semana_7/Semana 7/msc.py
felipeescallon/mision_tic_2022
20496fc40b18d2e98114d6362928f34fde41aaae
[ "CC0-1.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Jun 29 11:15:12 2021 @author: USUARIO """ import os dta=os.getcwd() Rutaab=os.dta.realpath(__file__) print (Rutaab)
15.454545
36
0.629412
4a26fd5fed52f52f3c649b64e011bf8ef79c968a
30,313
py
Python
tests/conftest.py
nismod/onion
950bb5ee7bff929277133a6e82ce0d8e4ce2542b
[ "MIT" ]
2
2019-02-12T15:33:04.000Z
2019-02-13T13:51:17.000Z
tests/conftest.py
nismod/onion
950bb5ee7bff929277133a6e82ce0d8e4ce2542b
[ "MIT" ]
1
2019-02-14T10:24:38.000Z
2019-02-14T10:24:38.000Z
tests/conftest.py
nismod/onion
950bb5ee7bff929277133a6e82ce0d8e4ce2542b
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Dummy conftest.py for onion. If you don't know what this is for, just leave it empty. Read more about conftest.py under: https://pytest.org/latest/plugins.html """ import pytest @pytest.fixture() def geojson_no_substation(): data = \ { "type": "FeatureCollection", "features": [ { "type": "Feature", "properties": { "type": "railwaystation", "code": "APF", "pax": 6562 }, "geometry": { "type": "Point", "coordinates": [ -1.24262902639089, 51.6389953266527 ] } }, { "type": "Feature", "properties": { "type": "railwaystation", "code": "CHO", "pax": 271850 }, "geometry": { "type": "Point", "coordinates": [ -1.15824245298617, 51.5700313809884 ] } } ] } return data @pytest.fixture() def geojson(): data = \ { "type": "FeatureCollection", "features": [ { "type": "Feature", "properties": { "type": "substation", "operating_voltage": "400kV", "name": "MOULSFORD DOWN 400KV SUBSTATION" }, "geometry": { "type": "Point", "coordinates": [ -1.16028744986759, 51.5351050684567 ] } }, { "type": "Feature", "properties": { "type": "substation", "operating_voltage": "400kV", "name": "CULHAM JET 400KV SUBSTATION" }, "geometry": { "type": "Point", "coordinates": [ -1.22835338989177, 51.6611686319984 ] } }, { "type": "Feature", "properties": { "type": "substation", "operating_voltage": "400kV", "name": "DIDCOT 400KV SUBSTATION" }, "geometry": { "type": "Point", "coordinates": [ -1.25934538640586, 51.6255544962863 ] } }, { "type": "Feature", "properties": { "type": "railwaystation", "code": "APF", "pax": 6562 }, "geometry": { "type": "Point", "coordinates": [ -1.24262902639089, 51.6389953266527 ] } }, { "type": "Feature", "properties": { "type": "railwaystation", "code": "CHO", "pax": 271850 }, "geometry": { "type": "Point", "coordinates": [ -1.15824245298617, 51.5700313809884 ] } }, { "type": "Feature", "properties": { "type": "railwaystation", "code": "DID", "pax": 3185928 }, "geometry": { "type": "Point", "coordinates": [ -1.24252767003678, 51.6112380133509 ] } }, { "type": "Feature", "properties": { "type": "railwaystation", "code": "RAD", "pax": 141792 }, "geometry": { "type": "Point", "coordinates": [ -1.24027394922877, 51.6856723771796 ] } }, { "type": "Feature", "properties": { "type": "railwaystation", "code": "CUM", "pax": 83908 }, "geometry": { "type": "Point", "coordinates": [ -1.23655176310231, 51.6541065120975 ] } }, { "type": "Feature", "properties": { "name": "Grim's Ditch; section 600yds (550m) long on East Ginge Down", "type": "monument" }, "geometry": { "type": "Point", "coordinates": [ -1.35711307254206, 51.5661547905162 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A34", "traffic": 54439, "length": 4.6 }, "geometry": { "type": "Point", "coordinates": [ -1.2892109818117, 51.6837622099323 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A329", "traffic": 3345, "length": 7.1 }, "geometry": { "type": "Point", "coordinates": [ -1.13467728496191, 51.6556706308269 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A4130", "traffic": 19149, "length": 3.2 }, "geometry": { "type": "Point", "coordinates": [ -1.2806100994504, 51.6167284821114 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A4074", "traffic": 17856, "length": 4.8 }, "geometry": { "type": "Point", "coordinates": [ -1.1207516332245, 51.613307190284 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A34", "traffic": 48111, "length": 6.2 }, "geometry": { "type": "Point", "coordinates": [ -1.30043835995313, 51.5952687707253 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A415", "traffic": 14424, "length": 6.3 }, "geometry": { "type": "Point", "coordinates": [ -1.24534907877791, 51.6636087954115 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A4074", "traffic": 14875, "length": 2.1 }, "geometry": { "type": "Point", "coordinates": [ -1.18382921973757, 51.6672212045913 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A4130", "traffic": 10892, "length": 2.9 }, "geometry": { "type": "Point", "coordinates": [ -1.30684035471683, 51.6090636612318 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A415", "traffic": 17857, "length": 0.3 }, "geometry": { "type": "Point", "coordinates": [ -1.28152109832397, 51.6715411557998 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A415", "traffic": 27740, "length": 1.8 }, "geometry": { "type": "Point", "coordinates": [ -1.29801515902622, 51.6695683429367 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A4074", "traffic": 17849, "length": 4.9 }, "geometry": { "type": "Point", "coordinates": [ -1.20829873037113, 51.694362780306 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A4183", "traffic": 18705, "length": 1 }, "geometry": { "type": "Point", "coordinates": [ -1.26918111978116, 51.6943165705608 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A4130", "traffic": 9314, "length": 9.2 }, "geometry": { "type": "Point", "coordinates": [ -1.17877314103447, 51.5973312387089 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A329", "traffic": 6865, "length": 5.8 }, "geometry": { "type": "Point", "coordinates": [ -1.13839914671395, 51.5641327865591 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A415", "traffic": 7587, "length": 2.5 }, "geometry": { "type": "Point", "coordinates": [ -1.19278305240772, 51.6580758499934 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A4185", "traffic": 10001, "length": 3.4 }, "geometry": { "type": "Point", "coordinates": [ -1.30409210625312, 51.5857325425876 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A417", "traffic": 11512, "length": 7.2 }, "geometry": { "type": "Point", "coordinates": [ -1.3604697222294, 51.5949546630729 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A34", "traffic": 58188, "length": 5.9 }, "geometry": { "type": "Point", "coordinates": [ -1.30688917633811, 51.6437933042357 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A415", "traffic": 12092, "length": 3.8 }, "geometry": { "type": "Point", "coordinates": [ -1.33672034162554, 51.669384089834 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A417", "traffic": 4443, "length": 13.5 }, "geometry": { "type": "Point", "coordinates": [ -1.23387514581252, 51.568436279247 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A4074", "traffic": 18534, "length": 4.3 }, "geometry": { "type": "Point", "coordinates": [ -1.15692787879399, 51.6445930974072 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A415", "traffic": 14810, "length": 0.3 }, "geometry": { "type": "Point", "coordinates": [ -1.28324879440082, 51.670189515777 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A34", "traffic": 45394, "length": 2.1 }, "geometry": { "type": "Point", "coordinates": [ -1.29797963216915, 51.5627678276496 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A417", "traffic": 4443, "length": 1.5 }, "geometry": { "type": "Point", "coordinates": [ -1.15329139732202, 51.5312868903388 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A4185", "traffic": 10001, "length": 0.1 }, "geometry": { "type": "Point", "coordinates": [ -1.29704629058976, 51.5718436707401 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A4183", "traffic": 10570, "length": 2.2 }, "geometry": { "type": "Point", "coordinates": [ -1.27626539149497, 51.6814758207361 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A4130", "traffic": 10338, "length": 0.9 }, "geometry": { "type": "Point", "coordinates": [ -1.22609756716941, 51.610550961041 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A4130", "traffic": 11629, "length": 3.3 }, "geometry": { "type": "Point", "coordinates": [ -1.24119571523403, 51.6144708576188 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A4130", "traffic": 13359, "length": 1.3 }, "geometry": { "type": "Point", "coordinates": [ -1.12041694600567, 51.5876472976218 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A415", "traffic": 17932, "length": 0.4 }, "geometry": { "type": "Point", "coordinates": [ -1.28370531434468, 51.671500542698 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A34", "traffic": 55022, "length": 11.8 }, "geometry": { "type": "Point", "coordinates": [ -1.30423213044639, 51.5061595600564 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A4130", "traffic": 9782, "length": 8.7 }, "geometry": { "type": "Point", "coordinates": [ -1.04654527847476, 51.5861265187696 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A4074", "traffic": 8140, "length": 14.7 }, "geometry": { "type": "Point", "coordinates": [ -1.05465715207522, 51.5360187312564 ] } }, { "type": "Feature", "properties": { "type": "road", "roadnumber": "A4074", "traffic": 18324, "length": 1.1 }, "geometry": { "type": "Point", "coordinates": [ -1.10733820652602, 51.5921342917369 ] } }, { "type": "Feature", "properties": { "type": "landfill", "name": "" }, "geometry": { "type": "Point", "coordinates": [ -1.26810891166814, 51.6328804155471 ] } }, { "type": "Feature", "properties": { "type": "landfill", "name": "National\r\nPower Plc" }, "geometry": { "type": "Point", "coordinates": [ -1.24367383461684, 51.6754029312736 ] } }, { "type": "Feature", "properties": { "type": "landfill", "name": "" }, "geometry": { "type": "Point", "coordinates": [ -1.27581375970588, 51.6734608951868 ] } }, { "type": "Feature", "properties": { "type": "landfill", "name": "ARC Limited" }, "geometry": { "type": "Point", "coordinates": [ -1.31024382134045, 51.6350287103914 ] } }, { "type": "Feature", "properties": { "type": "landfill", "name": "Thames Water" }, "geometry": { "type": "Point", "coordinates": [ -1.17560451083803, 51.6449123308464 ] } }, { "type": "Feature", "properties": { "type": "landfill", "name": "M L Parker" }, "geometry": { "type": "Point", "coordinates": [ -1.24796196859382, 51.6859645202037 ] } }, { "type": "Feature", "properties": { "type": "landfill", "name": "ARC\r\nLimited" }, "geometry": { "type": "Point", "coordinates": [ -1.31547514340399, 51.6337512701145 ] } }, { "type": "Feature", "properties": { "type": "landfill", "name": "Oxfordshire Highways" }, "geometry": { "type": "Point", "coordinates": [ -1.34630491382614, 51.5983703806159 ] } }, { "type": "Feature", "properties": { "type": "landfill", "name": "H S Raynor" }, "geometry": { "type": "Point", "coordinates": [ -1.29176826174873, 51.6262153240203 ] } }, { "type": "Feature", "properties": { "type": "landfill", "name": "ARC Limited" }, "geometry": { "type": "Point", "coordinates": [ -1.26584440907651, 51.6352844903224 ] } }, { "type": "Feature", "properties": { "type": "landfill", "name": "ARC Limited" }, "geometry": { "type": "Point", "coordinates": [ -1.25278048046993, 51.6302398847646 ] } }, { "type": "Feature", "properties": { "type": "landfill", "name": "ARC Limited" }, "geometry": { "type": "Point", "coordinates": [ -1.24942904559911, 51.6377549146346 ] } }, { "type": "Feature", "properties": { "type": "landfill", "name": "Oxfordshire County Council" }, "geometry": { "type": "Point", "coordinates": [ -1.33775987095526, 51.677427069764 ] } }, { "type": "Feature", "properties": { "type": "landfill", "name": "Tuckwells" }, "geometry": { "type": "Point", "coordinates": [ -1.23307182072792, 51.6820128263116 ] } }, { "type": "Feature", "properties": { "type": "landfill", "name": "J Curtis and Sons" }, "geometry": { "type": "Point", "coordinates": [ -1.28698949651945, 51.6571554353294 ] } }, { "type": "Feature", "properties": { "type": "landfill", "name": "J Curtis and Sons" }, "geometry": { "type": "Point", "coordinates": [ -1.29202780839381, 51.6505271122317 ] } }, { "type": "Feature", "properties": { "type": "landfill", "name": "Thames Water" }, "geometry": { "type": "Point", "coordinates": [ -1.26584145907056, 51.6491343354668 ] } }, { "type": "Feature", "properties": { "type": "landfill", "name": "ARC Limited" }, "geometry": { "type": "Point", "coordinates": [ -1.16174439429281, 51.657735268529 ] } }, { "type": "Feature", "properties": { "type": "landfill", "name": "ARC" }, "geometry": { "type": "Point", "coordinates": [ -1.16241131301098, 51.6540996801051 ] } }, { "type": "Feature", "properties": { "type": "landfill", "name": "Mr Pratt" }, "geometry": { "type": "Point", "coordinates": [ -1.16627422349311, 51.6503690664972 ] } }, { "type": "Feature", "properties": { "type": "urbanwastewater", "name": "ABINGDON (OXON STW" }, "geometry": { "type": "Point", "coordinates": [ -1.29023400482192, 51.6525458905304 ] } }, { "type": "Feature", "properties": { "type": "urbanwastewater", "name": "BENSON, HENLEY ROA" }, "geometry": { "type": "Point", "coordinates": [ -1.10591156441916, 51.6096569683235 ] } }, { "type": "Feature", "properties": { "type": "urbanwastewater", "name": "CHOLSEY, CHOLSEY," }, "geometry": { "type": "Point", "coordinates": [ -1.14847942810127, 51.5805710109343 ] } }, { "type": "Feature", "properties": { "type": "urbanwastewater", "name": "CULHAM, CULHAM, CL" }, "geometry": { "type": "Point", "coordinates": [ -1.22224255617706, 51.6557120182403 ] } }, { "type": "Feature", "properties": { "type": "urbanwastewater", "name": "DIDCOT, FOXHALL RO" }, "geometry": { "type": "Point", "coordinates": [ -1.25117697460096, 51.6192149712736 ] } }, { "type": "Feature", "properties": { "type": "urbanwastewater", "name": "DORCHESTER STW (OX" }, "geometry": { "type": "Point", "coordinates": [ -1.16329570438292, 51.6382232186528 ] } }, { "type": "Feature", "properties": { "type": "urbanwastewater", "name": "DRAYTON, DRAYTON," }, "geometry": { "type": "Point", "coordinates": [ -1.30348721780704, 51.6366205266501 ] } }, { "type": "Feature", "properties": { "type": "urbanwastewater", "name": "ABINGDON STW" }, "geometry": { "type": "Point", "coordinates": [ -1.29023400482192, 51.6525458905304 ] } } ] } return data
26.778269
86
0.290601
4a26fd6ca0439a024a0b752d4cd7ff3946118f0c
2,121
py
Python
pymeasure/thread.py
NeoBeats/pymeasure
e48f9d679d6ee970e2e875d2fc9a5679378b07aa
[ "MIT" ]
2
2020-11-24T11:08:21.000Z
2021-01-23T01:46:05.000Z
pymeasure/thread.py
NeoBeats/pymeasure
e48f9d679d6ee970e2e875d2fc9a5679378b07aa
[ "MIT" ]
1
2021-01-07T19:22:49.000Z
2021-01-07T19:22:49.000Z
pymeasure/thread.py
NeoBeats/pymeasure
e48f9d679d6ee970e2e875d2fc9a5679378b07aa
[ "MIT" ]
1
2021-05-19T05:39:28.000Z
2021-05-19T05:39:28.000Z
# # This file is part of the PyMeasure package. # # Copyright (c) 2013-2020 PyMeasure Developers # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # import logging from threading import Thread, Event log = logging.getLogger(__name__) log.addHandler(logging.NullHandler()) class StoppableThread(Thread): """ Base class for Threads which require the ability to be stopped by a thread-safe method call """ def __init__(self): super().__init__() self._should_stop = Event() self._should_stop.clear() def join(self, timeout=0): """ Joins the current thread and forces it to stop after the timeout if necessary :param timeout: Timeout duration in seconds """ self._should_stop.wait(timeout) if not self.should_stop(): self.stop() return super().join(0) def stop(self): self._should_stop.set() def should_stop(self): return self._should_stop.is_set() def __repr__(self): return "<%s(should_stop=%s)>" % ( self.__class__.__name__, self.should_stop())
33.666667
79
0.710042
4a26fd8110674d991d74099660c3019f71bda1ae
849
py
Python
PycharmProjects/PythonExercíciosHARDMODE/ex033HM.py
RodrigoMASRamos/Projects.py
ed15981b320914c9667305dcd5fb5b7906fd9b00
[ "MIT" ]
null
null
null
PycharmProjects/PythonExercíciosHARDMODE/ex033HM.py
RodrigoMASRamos/Projects.py
ed15981b320914c9667305dcd5fb5b7906fd9b00
[ "MIT" ]
null
null
null
PycharmProjects/PythonExercíciosHARDMODE/ex033HM.py
RodrigoMASRamos/Projects.py
ed15981b320914c9667305dcd5fb5b7906fd9b00
[ "MIT" ]
null
null
null
# ex033: Faça um programa que leia três números e mostre qual é o maior e qual é o menor. print('\033[1;30mEste programa irá ler \033[1;35mtrês números \033[1;30me indicar qual é o \033[1;32mmaior ' '\033[1;30me o \033[1;31mmenor.\033[m') n1_ = input('\033[0;30mDigite o primeiro número: \033[m').strip() n2_ = input('\033[0;30mDigite o segundo número: \033[m').strip() n3_ = input('\033[0;30mAgora, digite o terceiro número: \033[m').strip() n1 = float(n1_) n2 = float(n2_) n3 = float(n3_) maior = n1 menor = n1 if n2 > n1 and n2 > n3: maior = n2 if n3 > n1 and n3 > n2: maior = n3 if n2 < n1 and n2 < n3: menor = n2 if n3 < n1 and n3 < n1: menor = n3 print(f'\033[0;30mO \033[1;32mmaior \033[0;30mnúmero é \033[1;32m{maior}\033[0;30m, e o \033[1;31mmenor ' f'\033[0;30mnúmero é \033[1;31m{menor}\033[0;30m.\033[m')
32.653846
108
0.644287
4a26fdb73e1fad0f5ad9cd39da6e1342ccf6ffac
1,118
py
Python
leetcode/linked-list/reverse-linked-list.py
jaimeulloa61/data-structure-and-algorithms
76140bb36b62ebc7c60914c48a323aae4956fb0a
[ "MIT" ]
81
2020-05-22T14:22:04.000Z
2021-12-18T10:11:23.000Z
leetcode/linked-list/reverse-linked-list.py
jaimeulloa61/data-structure-and-algorithms
76140bb36b62ebc7c60914c48a323aae4956fb0a
[ "MIT" ]
4
2020-08-06T21:08:00.000Z
2021-03-31T16:07:50.000Z
leetcode/linked-list/reverse-linked-list.py
jaimeulloa61/data-structure-and-algorithms
76140bb36b62ebc7c60914c48a323aae4956fb0a
[ "MIT" ]
37
2020-05-22T14:25:21.000Z
2021-12-30T03:13:13.000Z
""" ## Questions ### 206. [Reverse Linked List](https://leetcode.com/problems/reverse-linked-list/) Reverse a singly linked list. Example: Input: 1->2->3->4->5->NULL Output: 5->4->3->2->1->NULL Follow up: A linked list can be reversed either iteratively or recursively. Could you implement both? """ # Solutions # Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: """ Time Complexity: O( n ) Space Complexity: O( 1 ) """ def reverseList(self, head: ListNode) -> ListNode: if not head or not head.next: return head # Pointer to track the reversed list prev = None while head: # Storing next value temp = head.next # Reverse head.next = prev prev = head # Increment head head = temp return prev # Runtime: 28 ms, faster than 97.79% of Python3 online submissions # Memory Usage: 15.1 MB, less than 93.46% of Python3 online submissions
21.09434
90
0.595707
4a26fe30fe72882a815cb3c16026f443926e3ea3
3,283
py
Python
large_dat.py
ck44liu/ICA-blind-source-separation
ad42c6cf00bb3686aa7ea4550f8222f4a9890415
[ "MIT" ]
null
null
null
large_dat.py
ck44liu/ICA-blind-source-separation
ad42c6cf00bb3686aa7ea4550f8222f4a9890415
[ "MIT" ]
null
null
null
large_dat.py
ck44liu/ICA-blind-source-separation
ad42c6cf00bb3686aa7ea4550f8222f4a9890415
[ "MIT" ]
null
null
null
from scipy.io import loadmat # import loadmat to read .mat file # from scipy.io import wavfile # import wavfile if we want to transform to sound files import numpy as np from numpy import array, matmul, identity, longdouble from matplotlib import pyplot as plt # use loadmat to read sounds.mat U = loadmat('sounds.mat').get('sounds') U = array(U, dtype=longdouble) (n, t) = U.shape print('U shape: {}'.format((n,t))) # should be n=5 and t=44000 # set m, the number of mixed signals we want to have m = 5 # set a random seed and generate our mixing matrix A np.random.seed(10) A = np.random.uniform(-5, 5, (m, n)) print('A:\n', A) # mix the signals X = matmul(A, U) # initialize matrix W with small random values W = np.random.uniform(0, 1e-3, (n, m)) print('initial W:\n', W) # update algorithm num = 100 eta = 1e-5 for k in range(num): Y = matmul(W, X) # print("Y shape:", Y.shape) Z = np.zeros((n, t), dtype=longdouble) # print("Z.shape:", Z.shape) # compute Z[i][j], note that if Y[i][j] is too large or too small, # the exponent will be 0 or very large; to make the computation faster, # we directly set Z[i][j] to 1 or 0 in such case. for i in range(n): for j in range(t): if Y[i][j] > 20: # exp will be close to 0 Z[i][j] = 1 elif Y[i][j] < -20: # exp will be very large Z[i][j] = 0 else: Z[i][j] = 1 / (1 + np.exp(-Y[i][j])) Mat = t * identity(n) + matmul(1 - 2 * Z, Y.T) delta_W = eta * matmul(Mat, W) W = W + delta_W # since the algorithm takes longer time to run than the small dataset one, # we print the W after each 20 iterations to check the progress if k % 20 == 0: print('W after iteration', k, ':\n', W) print('W after', num, 'iterations:\n', W) # compute our estimation of U U_hat = matmul(W, X) # create sig and sig_hat to store original and recovered signals sig = np.zeros((n,t)) sig_hat = np.zeros((n,t)) for i in range(n): sig[i,:] = U[i, :] sig_hat[i,:] = U_hat[i, :] # rescale the recovered sig_hat to [0,1] # sig_hat[i,:] = (sig_hat[i,:]-min(sig_hat[i,:]))/(max(sig_hat[i,:])-min(sig_hat[i,:])) # compute and print correlation matrix r = np.corrcoef(sig, sig_hat) # there are 10*10 entries in correlation matrix, we only print the 5*5 part # that shows the correlation between original and recovered signals print('Correlation matrix:\n', r[0:n, n:2*n]) # plot signals x = np.arange(t) plt.figure() for i in range(n): # original signals plt.subplot(n,1,i+1) plt.plot(x, sig[i]) plt.figure() for i in range(m): # mixed signals plt.subplot(m,1,i+1) plt.plot(x, X[i]) plt.figure() for i in range(n): # recovered signals plt.subplot(n,1,i+1) plt.plot(x, sig_hat[i]) plt.show() # # use wavfile to generate the .wav sound files, scaling might be needed to # # ensure the audibility of the sound files # wavfile.write('original_sounds_1.wav', 11000, np.int16(sig[0,:]*40000)) # wavfile.write('mixed_sounds_1.wav', 11000, np.int16(mix[0,:]*40000)) # wavfile.write('recovered_sounds_1.wav', 11000, np.int16(sig_hat[0,:]*40000))
32.186275
92
0.607981