hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
4a263c5a019460be71ed70498727084ba6412b83
14,809
py
Python
pytorch3d/loss/point_mesh_distance.py
martinruenz/pytorch3d
7f1e63aed1252ba8145d4a66ce2272331d60cdae
[ "BSD-3-Clause" ]
3
2022-03-09T08:12:54.000Z
2022-03-10T01:57:03.000Z
pytorch3d/loss/point_mesh_distance.py
martinruenz/pytorch3d
7f1e63aed1252ba8145d4a66ce2272331d60cdae
[ "BSD-3-Clause" ]
null
null
null
pytorch3d/loss/point_mesh_distance.py
martinruenz/pytorch3d
7f1e63aed1252ba8145d4a66ce2272331d60cdae
[ "BSD-3-Clause" ]
1
2020-05-25T07:19:08.000Z
2020-05-25T07:19:08.000Z
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. from pytorch3d import _C from pytorch3d.structures import Meshes, Pointclouds from torch.autograd import Function from torch.autograd.function import once_differentiable """ This file defines distances between meshes and pointclouds. The functions make use of the definition of a distance between a point and an edge segment or the distance of a point and a triangle (face). The exact mathematical formulations and implementations of these distances can be found in `csrc/utils/geometry_utils.cuh`. """ # PointFaceDistance class _PointFaceDistance(Function): """ Torch autograd Function wrapper PointFaceDistance Cuda implementation """ @staticmethod def forward(ctx, points, points_first_idx, tris, tris_first_idx, max_points): """ Args: ctx: Context object used to calculate gradients. points: FloatTensor of shape `(P, 3)` points_first_idx: LongTensor of shape `(N,)` indicating the first point index in each example in the batch tris: FloatTensor of shape `(T, 3, 3)` of triangular faces. The `t`-th triangular face is spanned by `(tris[t, 0], tris[t, 1], tris[t, 2])` tris_first_idx: LongTensor of shape `(N,)` indicating the first face index in each example in the batch max_points: Scalar equal to maximum number of points in the batch Returns: dists: FloatTensor of shape `(P,)`, where `dists[p]` is the squared euclidean distance of `p`-th point to the closest triangular face in the corresponding example in the batch idxs: LongTensor of shape `(P,)` indicating the closest triangular face in the corresponding example in the batch. `dists[p]` is `d(points[p], tris[idxs[p], 0], tris[idxs[p], 1], tris[idxs[p], 2])` where `d(u, v0, v1, v2)` is the distance of point `u` from the triangular face `(v0, v1, v2)` """ dists, idxs = _C.point_face_dist_forward( points, points_first_idx, tris, tris_first_idx, max_points ) ctx.save_for_backward(points, tris, idxs) return dists @staticmethod @once_differentiable def backward(ctx, grad_dists): grad_dists = grad_dists.contiguous() points, tris, idxs = ctx.saved_tensors grad_points, grad_tris = _C.point_face_dist_backward( points, tris, idxs, grad_dists ) return grad_points, None, grad_tris, None, None # pyre-fixme[16]: `_PointFaceDistance` has no attribute `apply`. point_face_distance = _PointFaceDistance.apply # FacePointDistance class _FacePointDistance(Function): """ Torch autograd Function wrapper FacePointDistance Cuda implementation """ @staticmethod def forward(ctx, points, points_first_idx, tris, tris_first_idx, max_tris): """ Args: ctx: Context object used to calculate gradients. points: FloatTensor of shape `(P, 3)` points_first_idx: LongTensor of shape `(N,)` indicating the first point index in each example in the batch tris: FloatTensor of shape `(T, 3, 3)` of triangular faces. The `t`-th triangular face is spanned by `(tris[t, 0], tris[t, 1], tris[t, 2])` tris_first_idx: LongTensor of shape `(N,)` indicating the first face index in each example in the batch max_tris: Scalar equal to maximum number of faces in the batch Returns: dists: FloatTensor of shape `(T,)`, where `dists[t]` is the squared euclidean distance of `t`-th trianguar face to the closest point in the corresponding example in the batch idxs: LongTensor of shape `(T,)` indicating the closest point in the corresponding example in the batch. `dists[t] = d(points[idxs[t]], tris[t, 0], tris[t, 1], tris[t, 2])`, where `d(u, v0, v1, v2)` is the distance of point `u` from the triangular face `(v0, v1, v2)`. """ dists, idxs = _C.face_point_dist_forward( points, points_first_idx, tris, tris_first_idx, max_tris ) ctx.save_for_backward(points, tris, idxs) return dists @staticmethod @once_differentiable def backward(ctx, grad_dists): grad_dists = grad_dists.contiguous() points, tris, idxs = ctx.saved_tensors grad_points, grad_tris = _C.face_point_dist_backward( points, tris, idxs, grad_dists ) return grad_points, None, grad_tris, None, None # pyre-fixme[16]: `_FacePointDistance` has no attribute `apply`. face_point_distance = _FacePointDistance.apply # PointEdgeDistance class _PointEdgeDistance(Function): """ Torch autograd Function wrapper PointEdgeDistance Cuda implementation """ @staticmethod def forward(ctx, points, points_first_idx, segms, segms_first_idx, max_points): """ Args: ctx: Context object used to calculate gradients. points: FloatTensor of shape `(P, 3)` points_first_idx: LongTensor of shape `(N,)` indicating the first point index for each example in the mesh segms: FloatTensor of shape `(S, 2, 3)` of edge segments. The `s`-th edge segment is spanned by `(segms[s, 0], segms[s, 1])` segms_first_idx: LongTensor of shape `(N,)` indicating the first edge index for each example in the mesh max_points: Scalar equal to maximum number of points in the batch Returns: dists: FloatTensor of shape `(P,)`, where `dists[p]` is the squared euclidean distance of `p`-th point to the closest edge in the corresponding example in the batch idxs: LongTensor of shape `(P,)` indicating the closest edge in the corresponding example in the batch. `dists[p] = d(points[p], segms[idxs[p], 0], segms[idxs[p], 1])`, where `d(u, v0, v1)` is the distance of point `u` from the edge segment spanned by `(v0, v1)`. """ dists, idxs = _C.point_edge_dist_forward( points, points_first_idx, segms, segms_first_idx, max_points ) ctx.save_for_backward(points, segms, idxs) return dists @staticmethod @once_differentiable def backward(ctx, grad_dists): grad_dists = grad_dists.contiguous() points, segms, idxs = ctx.saved_tensors grad_points, grad_segms = _C.point_edge_dist_backward( points, segms, idxs, grad_dists ) return grad_points, None, grad_segms, None, None # pyre-fixme[16]: `_PointEdgeDistance` has no attribute `apply`. point_edge_distance = _PointEdgeDistance.apply # EdgePointDistance class _EdgePointDistance(Function): """ Torch autograd Function wrapper EdgePointDistance Cuda implementation """ @staticmethod def forward(ctx, points, points_first_idx, segms, segms_first_idx, max_segms): """ Args: ctx: Context object used to calculate gradients. points: FloatTensor of shape `(P, 3)` points_first_idx: LongTensor of shape `(N,)` indicating the first point index for each example in the mesh segms: FloatTensor of shape `(S, 2, 3)` of edge segments. The `s`-th edge segment is spanned by `(segms[s, 0], segms[s, 1])` segms_first_idx: LongTensor of shape `(N,)` indicating the first edge index for each example in the mesh max_segms: Scalar equal to maximum number of edges in the batch Returns: dists: FloatTensor of shape `(S,)`, where `dists[s]` is the squared euclidean distance of `s`-th edge to the closest point in the corresponding example in the batch idxs: LongTensor of shape `(S,)` indicating the closest point in the corresponding example in the batch. `dists[s] = d(points[idxs[s]], edges[s, 0], edges[s, 1])`, where `d(u, v0, v1)` is the distance of point `u` from the segment spanned by `(v0, v1)`. """ dists, idxs = _C.edge_point_dist_forward( points, points_first_idx, segms, segms_first_idx, max_segms ) ctx.save_for_backward(points, segms, idxs) return dists @staticmethod @once_differentiable def backward(ctx, grad_dists): grad_dists = grad_dists.contiguous() points, segms, idxs = ctx.saved_tensors grad_points, grad_segms = _C.edge_point_dist_backward( points, segms, idxs, grad_dists ) return grad_points, None, grad_segms, None, None # pyre-fixme[16]: `_EdgePointDistance` has no attribute `apply`. edge_point_distance = _EdgePointDistance.apply def point_mesh_edge_distance(meshes: Meshes, pcls: Pointclouds): """ Computes the distance between a pointcloud and a mesh within a batch. Given a pair `(mesh, pcl)` in the batch, we define the distance to be the sum of two distances, namely `point_edge(mesh, pcl) + edge_point(mesh, pcl)` `point_edge(mesh, pcl)`: Computes the squared distance of each point p in pcl to the closest edge segment in mesh and averages across all points in pcl `edge_point(mesh, pcl)`: Computes the squared distance of each edge segment in mesh to the closest point in pcl and averages across all edges in mesh. The above distance functions are applied for all `(mesh, pcl)` pairs in the batch and then averaged across the batch. Args: meshes: A Meshes data structure containing N meshes pcls: A Pointclouds data structure containing N pointclouds Returns: loss: The `point_edge(mesh, pcl) + edge_point(mesh, pcl)` distance between all `(mesh, pcl)` in a batch averaged across the batch. """ if len(meshes) != len(pcls): raise ValueError("meshes and pointclouds must be equal sized batches") N = len(meshes) # packed representation for pointclouds points = pcls.points_packed() # (P, 3) points_first_idx = pcls.cloud_to_packed_first_idx() max_points = pcls.num_points_per_cloud().max().item() # packed representation for edges verts_packed = meshes.verts_packed() edges_packed = meshes.edges_packed() segms = verts_packed[edges_packed] # (S, 2, 3) segms_first_idx = meshes.mesh_to_edges_packed_first_idx() max_segms = meshes.num_edges_per_mesh().max().item() # point to edge distance: shape (P,) point_to_edge = point_edge_distance( points, points_first_idx, segms, segms_first_idx, max_points ) # weight each example by the inverse of number of points in the example point_to_cloud_idx = pcls.packed_to_cloud_idx() # (sum(P_i), ) num_points_per_cloud = pcls.num_points_per_cloud() # (N,) weights_p = num_points_per_cloud.gather(0, point_to_cloud_idx) weights_p = 1.0 / weights_p.float() point_to_edge = point_to_edge * weights_p point_dist = point_to_edge.sum() / N # edge to edge distance: shape (S,) edge_to_point = edge_point_distance( points, points_first_idx, segms, segms_first_idx, max_segms ) # weight each example by the inverse of number of edges in the example segm_to_mesh_idx = meshes.edges_packed_to_mesh_idx() # (sum(S_n),) num_segms_per_mesh = meshes.num_edges_per_mesh() # (N,) weights_s = num_segms_per_mesh.gather(0, segm_to_mesh_idx) weights_s = 1.0 / weights_s.float() edge_to_point = edge_to_point * weights_s edge_dist = edge_to_point.sum() / N return point_dist + edge_dist def point_mesh_face_distance(meshes: Meshes, pcls: Pointclouds): """ Computes the distance between a pointcloud and a mesh within a batch. Given a pair `(mesh, pcl)` in the batch, we define the distance to be the sum of two distances, namely `point_face(mesh, pcl) + face_point(mesh, pcl)` `point_face(mesh, pcl)`: Computes the squared distance of each point p in pcl to the closest triangular face in mesh and averages across all points in pcl `face_point(mesh, pcl)`: Computes the squared distance of each triangular face in mesh to the closest point in pcl and averages across all faces in mesh. The above distance functions are applied for all `(mesh, pcl)` pairs in the batch and then averaged across the batch. Args: meshes: A Meshes data structure containing N meshes pcls: A Pointclouds data structure containing N pointclouds Returns: loss: The `point_face(mesh, pcl) + face_point(mesh, pcl)` distance between all `(mesh, pcl)` in a batch averaged across the batch. """ if len(meshes) != len(pcls): raise ValueError("meshes and pointclouds must be equal sized batches") N = len(meshes) # packed representation for pointclouds points = pcls.points_packed() # (P, 3) points_first_idx = pcls.cloud_to_packed_first_idx() max_points = pcls.num_points_per_cloud().max().item() # packed representation for faces verts_packed = meshes.verts_packed() faces_packed = meshes.faces_packed() tris = verts_packed[faces_packed] # (T, 3, 3) tris_first_idx = meshes.mesh_to_faces_packed_first_idx() max_tris = meshes.num_faces_per_mesh().max().item() # point to face distance: shape (P,) point_to_face = point_face_distance( points, points_first_idx, tris, tris_first_idx, max_points ) # weight each example by the inverse of number of points in the example point_to_cloud_idx = pcls.packed_to_cloud_idx() # (sum(P_i),) num_points_per_cloud = pcls.num_points_per_cloud() # (N,) weights_p = num_points_per_cloud.gather(0, point_to_cloud_idx) weights_p = 1.0 / weights_p.float() point_to_face = point_to_face * weights_p point_dist = point_to_face.sum() / N # face to point distance: shape (T,) face_to_point = face_point_distance( points, points_first_idx, tris, tris_first_idx, max_tris ) # weight each example by the inverse of number of faces in the example tri_to_mesh_idx = meshes.faces_packed_to_mesh_idx() # (sum(T_n),) num_tris_per_mesh = meshes.num_faces_per_mesh() # (N, ) weights_t = num_tris_per_mesh.gather(0, tri_to_mesh_idx) weights_t = 1.0 / weights_t.float() face_to_point = face_to_point * weights_t face_dist = face_to_point.sum() / N return point_dist + face_dist
41.365922
87
0.661557
4a263d1def8a5daa7e1fcce18ee873e7e8903f9a
992
py
Python
cloudscraper/exceptions/reCaptcha_exceptions.py
oczkers/cloudscraper
a8c0bdd999d89a6192d0e31fb6b1d42a7bc397d1
[ "MIT" ]
null
null
null
cloudscraper/exceptions/reCaptcha_exceptions.py
oczkers/cloudscraper
a8c0bdd999d89a6192d0e31fb6b1d42a7bc397d1
[ "MIT" ]
null
null
null
cloudscraper/exceptions/reCaptcha_exceptions.py
oczkers/cloudscraper
a8c0bdd999d89a6192d0e31fb6b1d42a7bc397d1
[ "MIT" ]
1
2021-01-21T21:15:03.000Z
2021-01-21T21:15:03.000Z
# ------------------------------------------------------------------------------- # class reCaptcha_Service_Unavailable(Exception): """ Raise error for external services that cannot be reached """ class reCaptcha_Error_From_API(Exception): """ Raise error for error from API response. """ class reCaptcha_Account_Error(Exception): """ Raise error for reCaptcha provider account problem. """ class reCaptcha_Timeout(Exception): """ Raise error for reCaptcha provider taking too long. """ class reCaptcha_Bad_Parameter(NotImplementedError): """ Raise error for bad or missing Parameter. """ class reCaptcha_Bad_Job_ID(Exception): """ Raise error for invalid job id. """ class reCaptcha_Report_Error(Exception): """ Raise error for reCaptcha provider unable to report bad solve. """ class reCaptcha_Import_Error(Exception): """ Raise error for reCaptcha, cannot import a module. """
19.84
83
0.627016
4a263f00940393e9cde7ab76f36920e289c2bf05
9,672
py
Python
pa_elasticsearch/coupler.py
ncc-tools/pa-elasticsearch-coupler
0e6fcb8e851eb72c1eb9c91ff55551fa817d02a2
[ "Apache-2.0" ]
1
2018-10-24T11:13:06.000Z
2018-10-24T11:13:06.000Z
pa_elasticsearch/coupler.py
ncc-tools/pa-elasticsearch-coupler
0e6fcb8e851eb72c1eb9c91ff55551fa817d02a2
[ "Apache-2.0" ]
5
2017-01-31T11:22:11.000Z
2021-06-01T22:15:58.000Z
pa_elasticsearch/coupler.py
ncc-tools/pa-elasticsearch-coupler
0e6fcb8e851eb72c1eb9c91ff55551fa817d02a2
[ "Apache-2.0" ]
2
2017-02-15T11:38:41.000Z
2017-03-17T12:33:06.000Z
""" Reads NCC Performance Analyser data and indexes it in ElasticSearch """ # Copyright 2017 NCC Group plc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from configparser import ConfigParser import datetime import logging import os.path import signal import sys import time import elasticsearch from elasticsearch import Elasticsearch from paapi import PaAuth, PaApi, ApiQueryError from .tagdb import NCCTagDB class Coupler: """ Imports data from the PA API into an ElasticSearch database """ conf_path = None elasticsearch = None paapi = None logfile = None loglevel = None poll_period = 600 # Default polling period is 10min jobtemplates_whitelist = [] jobtemplates_since = None running = True polling = False def __init__(self, conf_path): self.conf_path = conf_path self._read_config() self.tagdb = NCCTagDB() def _read_config(self): config = ConfigParser() if not os.path.isfile(self.conf_path): raise Exception("Couldn't open configuration file '%s'" % (self.conf_path,)) config.read(self.conf_path) es_hosts = config['elasticsearch']['hosts'].split(',') if 'logfile' in config['coupler'] and config['coupler']['logfile'].strip() != '': self.logfile = config['coupler']['logfile'] if config['coupler']['loglevel'] == 'ERROR': self.loglevel = logging.ERROR elif config['coupler']['loglevel'] == 'INFO': self.loglevel = logging.INFO elif config['coupler']['loglevel'] == 'DEBUG': self.loglevel = logging.DEBUG else: self.loglevel = logging.WARNING try: self.poll_period = int(config['coupler']['poll_period']) * 60 except ValueError: raise Exception("Couldn't read poll_period from configuration") # Optional config options. try: es_username = config['elasticsearch']['username'] es_password = config['elasticsearch']['password'] verify_certs = True if 'verify_certs' in config['elasticsearch']: verify_certs = not config['elasticsearch']['verify_certs'] == '0' from pprint import pprint; pprint(verify_certs) self.elasticsearch = Elasticsearch( es_hosts, http_auth=(es_username, es_password), verify_certs=verify_certs) except KeyError: self.elasticsearch = Elasticsearch(es_hosts) auth = PaAuth(username=config['pa']['username'], password=config['pa']['password'].strip('"'), client_username=config['pa']['client_username'].strip('"'), client_password=config['pa']['client_password'].strip('"')) self.paapi = PaApi(auth, config['pa']['realm']) if 'since' in config['pa'] and config['pa']['since'].strip() != '': try: self.jobtemplates_since = datetime.datetime.strptime( config['pa']['since'], '%Y-%m-%dT%H:%M%z') except ValueError: raise Exception("Error: couldn't parse the pa.since configuration option") if 'jobtemplates' in config['pa'] and config['pa']['jobtemplates'].strip() != '': self.jobtemplates_whitelist = config['pa']['jobtemplates'].split(',') def _process_jobtemplate_testruns(self, jobtemplate, last_update): try: testruns = self.paapi.get_testruns_for_jobtemplate(jobtemplate['sref'], last_update) except ApiQueryError: return logging.info('Importing %d testruns from Jobtemplate %s', len(testruns), jobtemplate['sref']) for testrun in testruns: self._process_testrun_pageobjects(testrun, jobtemplate) def _process_testrun_pageobjects(self, testrun, jobtemplate): testrun['jobTemplateUri'] = jobtemplate['sref'] testrun['jobTemplateName'] = jobtemplate['name'] self.elasticsearch.index(index='pa-testruns', doc_type='testrun', id=testrun['sref'], body=testrun) logging.info('Indexed testrun %s', testrun['sref']) pageobjects = self.paapi.get_pageobjects_for_testrun(testrun['sref']) for pageobject in pageobjects: self._process_pageobject(pageobject, testrun, jobtemplate) def _process_pageobject(self, pageobject, testrun, jobtemplate): pageobject['company'] = 'Unknown' pageobject['category'] = 'None' pageobject['ranAt'] = testrun['ranAt'] pageobject['jobTemplateUri'] = jobtemplate['sref'] pageobject['jobTemplateName'] = jobtemplate['name'] pageobject['parentUrl'] = testrun['url'] pageobject['parentPageTitle'] = testrun['pageTitle'] try: domain_info = self.tagdb.get_url_info(pageobject['url']) if len(domain_info) > 0: company_info = self.tagdb.get_company_info( domain_info[0]['company'], domain_info[0]['product']) pageobject['company'] = company_info[0]['name'] pageobject['category'] = company_info[0]['category'] logging.info("Retrieved Tag info for %s", pageobject['sref']) except Exception as error: logging.warning("Failed to retrieve 3rd party info for '%s'", pageobject['url']) self.elasticsearch.index(index='pa-objects', doc_type='pageobject', id=pageobject['sref'], body=pageobject) logging.info('Indexed pageobject %s', pageobject['sref']) def _is_jobtemplate_allowed(self, jobtemplate): """ Checks if jobtemplate is allowed by the configured whitelist. """ if len(self.jobtemplates_whitelist) == 0: return True return jobtemplate['type'] in self.jobtemplates_whitelist def _poll(self, force_reindex): logging.info("Polling") self.polling = True min_date = None if force_reindex is False: try: results = self.elasticsearch.search(index='pa', doc_type='testrun', sort='ranAt:desc', size=1) if len(results['hits']['hits']) > 0: last_index = results['hits']['hits'][0] min_date = last_index['_source']['ranAt'].replace('+00:00', 'Z') logging.info("Importing new data from PA") except elasticsearch.exceptions.NotFoundError: logging.info("No existing data found. Fully indexing from PA") min_date = None logging.info("Fully indexing data from PA") # If no last update could be found, then try to use the one from the config if min_date is None and self.jobtemplates_since is not None: min_date = self.jobtemplates_since.isoformat() jobtemplates = self.paapi.get_all_jobtemplates() for jobtemplate in jobtemplates: if not self._is_jobtemplate_allowed(jobtemplate): continue self._process_jobtemplate_testruns(jobtemplate, min_date) def os_signal_handler(self, signum, frame): "Handles process signals SIGHUP and SIGTERM" if signum == signal.SIGHUP: logging.info("(SIGHUP) Reloading config") self._read_config() elif signum == signal.SIGTERM: if self.polling: logging.info("(SIGTERM) Exiting at next poll") self.running = False else: logging.info("(SIGTERM) Exiting") sys.exit(0) def run(self, force_reindex=False): "Starts polling PA data into Elasticsearch" log_format = '[%(asctime)s] %(levelname)s: %(message)s' if self.logfile: logging.basicConfig(filename=self.logfile, level=self.loglevel, format=log_format) else: logging.basicConfig(level=self.loglevel, format=log_format) signal.signal(signal.SIGHUP, self.os_signal_handler) signal.signal(signal.SIGTERM, self.os_signal_handler) self.running = True self.polling = False while self.running: started = time.time() try: self._poll(force_reindex) except KeyboardInterrupt: logging.info("Aborting from user input") return 0 except Exception as error: logging.error(str(error)) self.polling = False # If running was set to false, the sleep is skipped so the program can exit immediately if self.running: time.sleep(max(0, self.poll_period - (time.time() - started))) logging.info("Done, exiting")
41.87013
99
0.593052
4a263f1ebb2a68fa4a07da6e8729d9321de25b34
331
py
Python
server/com/pi_error.py
JoeEmp/pi_web_file_system
e252660c7b8f2d26853a43860da0a7fdd062e505
[ "MIT" ]
null
null
null
server/com/pi_error.py
JoeEmp/pi_web_file_system
e252660c7b8f2d26853a43860da0a7fdd062e505
[ "MIT" ]
null
null
null
server/com/pi_error.py
JoeEmp/pi_web_file_system
e252660c7b8f2d26853a43860da0a7fdd062e505
[ "MIT" ]
null
null
null
PARAMETERS_ERROR = {'code':-1,'msg':'参数错误'} UNKNOW_ERROR = {'code':-1,'msg':'未知错误,请联系管理员'} LOCAL_FAIL_ERROR = {'code':-1,'msg':'接口不存在'} LOGIN_ERROR = {'code':2,'msg':'请重新登录'} class pi_exception(BaseException): def __init__(self, reason, *args, **kwargs): self.reason = reason super().__init__(*args, **kwargs)
33.1
48
0.637462
4a263f368ee4b948d4e4142ca90756042c6207bc
3,140
py
Python
libs/cherrypy/test/test_etags.py
scambra/HTPC-Manager
1a1440db84ae1b6e7a2610c7f3bd5b6adf0aab1d
[ "MIT" ]
422
2015-01-08T14:08:08.000Z
2022-02-07T11:47:37.000Z
libs/cherrypy/test/test_etags.py
scambra/HTPC-Manager
1a1440db84ae1b6e7a2610c7f3bd5b6adf0aab1d
[ "MIT" ]
581
2015-01-01T08:07:16.000Z
2022-02-23T11:44:37.000Z
libs/cherrypy/test/test_etags.py
scambra/HTPC-Manager
1a1440db84ae1b6e7a2610c7f3bd5b6adf0aab1d
[ "MIT" ]
115
2015-01-08T14:41:00.000Z
2022-02-13T12:31:17.000Z
import cherrypy from cherrypy._cpcompat import ntou from cherrypy.test import helper class ETagTest(helper.CPWebCase): def setup_server(): class Root: def resource(self): return "Oh wah ta goo Siam." resource.exposed = True def fail(self, code): code = int(code) if 300 <= code <= 399: raise cherrypy.HTTPRedirect([], code) else: raise cherrypy.HTTPError(code) fail.exposed = True def unicoded(self): return ntou('I am a \u1ee4nicode string.', 'escape') unicoded.exposed = True # In Python 3, tools.encode is on by default unicoded._cp_config = {'tools.encode.on': True} conf = {'/': {'tools.etags.on': True, 'tools.etags.autotags': True, }} cherrypy.tree.mount(Root(), config=conf) setup_server = staticmethod(setup_server) def test_etags(self): self.getPage("/resource") self.assertStatus('200 OK') self.assertHeader('Content-Type', 'text/html;charset=utf-8') self.assertBody('Oh wah ta goo Siam.') etag = self.assertHeader('ETag') # Test If-Match (both valid and invalid) self.getPage("/resource", headers=[('If-Match', etag)]) self.assertStatus("200 OK") self.getPage("/resource", headers=[('If-Match', "*")]) self.assertStatus("200 OK") self.getPage("/resource", headers=[('If-Match', "*")], method="POST") self.assertStatus("200 OK") self.getPage("/resource", headers=[('If-Match', "a bogus tag")]) self.assertStatus("412 Precondition Failed") # Test If-None-Match (both valid and invalid) self.getPage("/resource", headers=[('If-None-Match', etag)]) self.assertStatus(304) self.getPage("/resource", method='POST', headers=[('If-None-Match', etag)]) self.assertStatus("412 Precondition Failed") self.getPage("/resource", headers=[('If-None-Match', "*")]) self.assertStatus(304) self.getPage("/resource", headers=[('If-None-Match', "a bogus tag")]) self.assertStatus("200 OK") def test_errors(self): self.getPage("/resource") self.assertStatus(200) etag = self.assertHeader('ETag') # Test raising errors in page handler self.getPage("/fail/412", headers=[('If-Match', etag)]) self.assertStatus(412) self.getPage("/fail/304", headers=[('If-Match', etag)]) self.assertStatus(304) self.getPage("/fail/412", headers=[('If-None-Match', "*")]) self.assertStatus(412) self.getPage("/fail/304", headers=[('If-None-Match', "*")]) self.assertStatus(304) def test_unicode_body(self): self.getPage("/unicoded") self.assertStatus(200) etag1 = self.assertHeader('ETag') self.getPage("/unicoded", headers=[('If-Match', etag1)]) self.assertStatus(200) self.assertHeader('ETag', etag1)
36.941176
77
0.567834
4a263f48177cad001b782106805379e0a7660863
794
py
Python
sktime/transformers/panel/tests/test_ColumnConcatenator.py
bmurdata/sktime
fb079e76e3f3dfbb849fb805e53f09adec6cdf79
[ "BSD-3-Clause" ]
1
2021-01-10T06:32:00.000Z
2021-01-10T06:32:00.000Z
sktime/transformers/panel/tests/test_ColumnConcatenator.py
bmurdata/sktime
fb079e76e3f3dfbb849fb805e53f09adec6cdf79
[ "BSD-3-Clause" ]
null
null
null
sktime/transformers/panel/tests/test_ColumnConcatenator.py
bmurdata/sktime
fb079e76e3f3dfbb849fb805e53f09adec6cdf79
[ "BSD-3-Clause" ]
1
2021-07-08T07:07:42.000Z
2021-07-08T07:07:42.000Z
# -*- coding: utf-8 -*- import numpy as np from sktime.datasets import load_basic_motions from sktime.transformers.panel.compose import ColumnConcatenator def test_TimeSeriesConcatenator(): X, y = load_basic_motions(split="train", return_X_y=True) # check that loaded dataframe is multivariate assert X.shape[1] > 1 trans = ColumnConcatenator() Xt = trans.fit_transform(X) # check if transformed dataframe is univariate assert Xt.shape[1] == 1 # check if number of time series observations are correct n_obs = np.sum([X.loc[0, col].shape[0] for col in X]) assert Xt.iloc[0, 0].shape[0] == n_obs # check specific observations assert X.iloc[0, -1].iloc[-3] == Xt.iloc[0, 0].iloc[-3] assert X.iloc[0, 0].iloc[3] == Xt.iloc[0, 0].iloc[3]
29.407407
64
0.68136
4a2640ffb6816cce3e52ecf3d2fab28e4c548ed7
2,126
py
Python
pymoo/algorithms/unsga3.py
temaurer/pymoo
1a2f3e0944ef7094df7518623e3ce23f94a39a39
[ "Apache-2.0" ]
null
null
null
pymoo/algorithms/unsga3.py
temaurer/pymoo
1a2f3e0944ef7094df7518623e3ce23f94a39a39
[ "Apache-2.0" ]
null
null
null
pymoo/algorithms/unsga3.py
temaurer/pymoo
1a2f3e0944ef7094df7518623e3ce23f94a39a39
[ "Apache-2.0" ]
null
null
null
import numpy as np from pymoo.algorithms.nsga3 import NSGA3 from pymoo.docs import parse_doc_string from pymoo.operators.selection.tournament_selection import TournamentSelection, compare from pymoo.rand import random # ========================================================================================================= # Implementation # ========================================================================================================= def comp_by_rank_and_ref_line_dist(pop, P, **kwargs): S = np.full(P.shape[0], np.nan) for i in range(P.shape[0]): a, b = P[i, 0], P[i, 1] # if at least one solution is infeasible if pop[a].CV > 0.0 or pop[b].CV > 0.0: S[i] = compare(a, pop[a].CV, b, pop[b].CV, method='smaller_is_better', return_random_if_equal=True) # both solutions are feasible else: # if in the same niche select by rank if pop[a].get("niche") == pop[b].get("niche"): if pop[a].get("rank") != pop[b].get("rank"): S[i] = compare(a, pop[a].get("rank"), b, pop[b].get("rank"), method='smaller_is_better') else: S[i] = compare(a, pop[a].get("dist_to_niche"), b, pop[b].get("dist_to_niche"), method='smaller_is_better') if np.isnan(S[i]): S[i] = random.choice([a, b]) return S[:, None].astype(np.int) # ========================================================================================================= # Interface # ========================================================================================================= def unsga3(**kwargs): """ This is an implementation of the Unified NSGA3 algorithm :cite:`unsga3`. The same options as for :class:`pymoo.algorithms.nsga3.nsga3` are available. Returns ------- unsga3 : :class:`~pymoo.model.algorithm.Algorithm` Returns an UNSGA3 algorithm object. """ return NSGA3(selection=TournamentSelection(func_comp=comp_by_rank_and_ref_line_dist), **kwargs) parse_doc_string(unsga3)
33.746032
111
0.484008
4a26414645635a8ce0cc76352220ca72317bce5d
452
py
Python
Day X/main.py
edgorman/advent-of-code
374fee72dd853c60851231a672498ab2732889cf
[ "MIT" ]
null
null
null
Day X/main.py
edgorman/advent-of-code
374fee72dd853c60851231a672498ab2732889cf
[ "MIT" ]
null
null
null
Day X/main.py
edgorman/advent-of-code
374fee72dd853c60851231a672498ab2732889cf
[ "MIT" ]
null
null
null
import os def part_one(entries): pass def part_two(entries): pass if __name__ == "__main__": # Get input from txt file with open(os.getcwd() + '\\YEAR\\Day X\\input.txt', 'r') as file_obj: file_input = file_obj.readlines() # Clean input entries = [] for entry in file_input: entries.append(entry.rstrip()) # Part one print(part_one(entries)) # Part two print(part_two(entries))
18.833333
73
0.606195
4a2641593a3279a2c829ccbecf1a373b4904e32e
9,266
py
Python
manage/discovery_manager.py
korenlev/calipso-cvim
39278a5cf09c40b26a8a143ccc0c8d437961abc2
[ "Apache-2.0" ]
null
null
null
manage/discovery_manager.py
korenlev/calipso-cvim
39278a5cf09c40b26a8a143ccc0c8d437961abc2
[ "Apache-2.0" ]
null
null
null
manage/discovery_manager.py
korenlev/calipso-cvim
39278a5cf09c40b26a8a143ccc0c8d437961abc2
[ "Apache-2.0" ]
null
null
null
############################################################################### # Copyright (c) 2017-2020 Koren Lev (Cisco Systems), # # Yaron Yogev (Cisco Systems), Ilia Abashin (Cisco Systems) and others # # # # All rights reserved. This program and the accompanying materials # # are made available under the terms of the Apache License, Version 2.0 # # which accompanies this distribution, and is available at # # http://www.apache.org/licenses/LICENSE-2.0 # ############################################################################### import argparse from typing import Optional from base.manager import Manager from base.utils.data_access_base import DataAccessBase from base.utils.logging.file_logger import FileLogger from base.utils.logging.logger import Logger from manage import discovery_api from manage.async_mongo_connector import AsyncMongoConnector from manage.async_replication_client import AsyncReplicationClient from manage.pod_data import PodData from manage.pod_manager import PodManager from manage.schedule_manager import ScheduleManager class DiscoveryManager(Manager, DataAccessBase): REQUIRED_ENV_VARIABLES = { 'central_mongo_host': 'CALIPSO_MONGO_SERVICE_HOST', 'central_mongo_password': 'CALIPSO_MONGO_SERVICE_PWD', } OPTIONAL_ENV_VARIABLES = { 'discovery_api_user': 'CALIPSO_MANAGE_SERVICE_USER', 'discovery_api_password': 'CALIPSO_MANAGE_SERVICE_PWD', 'central_mongo_port': 'CALIPSO_MONGO_SERVICE_PORT', 'central_mongo_user': 'CALIPSO_MONGO_SERVICE_USER', } DEFAULTS = { "bind": "0.0.0.0", "port": "8757", "log_file": "discovery_manager.log", "log_level": Logger.INFO, "cert_file": "", "key_file": "", "project_prefix": "cvim" } def __init__(self): self.args: argparse.Namespace = self.get_args() super().__init__(log_directory=self.args.log_directory, log_level=self.args.log_level, log_file=self.args.log_file) self.setup_data: Optional[dict] = None self.project_prefix: str = self.args.project_prefix self.verify_remotes_tls: bool = not self.args.skip_remotes_tls_verify calipso_connection_params = self.get_connection_parameters() self.central_mongo_host: str = calipso_connection_params['central_mongo_host'] self.central_mongo_port: int = int(calipso_connection_params.get('central_mongo_port', AsyncMongoConnector.DEFAULT_PORT)) self.central_mongo_user: str = calipso_connection_params.get('central_mongo_user', AsyncMongoConnector.DEFAULT_USER) self.central_mongo_password: str = calipso_connection_params['central_mongo_password'] self.discovery_api_user: str = calipso_connection_params.get('discovery_api_user') self.discovery_api_password: str = calipso_connection_params.get('discovery_api_password') self.schedule_manager: Optional[ScheduleManager] = None self.discovery_api: Optional[discovery_api.DiscoveryAPI] = None self.tls: bool = False if self.args.key_file and self.args.cert_file: self.tls = True elif self.args.key_file or self.args.cert_file: raise ValueError("Either both key_file and cert_file should be specified or neither") @staticmethod def get_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument("--cert_file", nargs="?", type=str, default=DiscoveryManager.DEFAULTS["cert_file"], help="Path to SSL certificate") parser.add_argument("--key_file", nargs="?", type=str, default=DiscoveryManager.DEFAULTS["key_file"], help="Path to SSL key") parser.add_argument("-b", "--bind", nargs="?", type=str, default=DiscoveryManager.DEFAULTS["bind"], help="Address or addresses to bind Discovery API to. " "Must be a hostname/IP or a list of comma-separated hostnames/IPs") parser.add_argument("-p", "--port", nargs="?", type=int, default=DiscoveryManager.DEFAULTS["port"], help="A port for Discovery API to bind to") parser.add_argument("-d", "--log_directory", nargs="?", type=str, default=FileLogger.LOG_DIRECTORY, help="Log file path \n(default: '{}')" .format(FileLogger.LOG_DIRECTORY)) parser.add_argument("-f", "--log_file", nargs="?", type=str, default=DiscoveryManager.DEFAULTS["log_file"], help="Scan manager log file name \n(default: '{}')" .format(DiscoveryManager.DEFAULTS["log_file"])), parser.add_argument("-l", "--log_level", nargs="?", type=str, default=DiscoveryManager.DEFAULTS["log_level"], help="Logging level \n(default: '{}')" .format(DiscoveryManager.DEFAULTS["log_level"])) parser.add_argument("--project_prefix", nargs="?", type=str, default=DiscoveryManager.DEFAULTS["project_prefix"], help="Project prefix to use in environment configurations") parser.add_argument("--skip_remotes_tls_verify", action="store_true", help="Skip TLS verification on remotes") parser.add_argument("--skip_discovery", action="store_true", default=False, help="Skip remotes discovery (simulate schedules only)" .format(DiscoveryManager.DEFAULTS["log_level"])) parser.add_argument("--skip_replication", action="store_true", default=False, help="Skip remotes replication (simulate schedules only)" .format(DiscoveryManager.DEFAULTS["log_level"])) args = parser.parse_args() return args def configure_central_pod(self) -> None: PodData.set_project_prefix(self.project_prefix) PodData.VERIFY_TLS = self.verify_remotes_tls self.schedule_manager = ScheduleManager(mongo_host=self.central_mongo_host, mongo_port=self.central_mongo_port, mongo_pwd=self.central_mongo_password, mongo_user=self.central_mongo_user, log_directory=self.args.log_directory, log_file=self.args.log_file, log_level=self.args.log_level, skip_discovery=self.args.skip_discovery, skip_replication=self.args.skip_replication) self.schedule_manager.run(detach=True) def stop_schedule_manager(self): if self.schedule_manager: self.schedule_manager.stop() @staticmethod def setup_loggers(level: str = Logger.INFO, log_file: str = ""): if log_file: for cls in (AsyncReplicationClient, discovery_api.DiscoveryAPI, PodManager): cls.LOG_FILE = log_file for cls in (AsyncReplicationClient, discovery_api.DiscoveryAPI, PodManager): cls.LOG_LEVEL = level def configure(self) -> None: self.setup_loggers(level=self.args.log_level, log_file=self.args.log_file) self.configure_central_pod() self.discovery_api = discovery_api.DiscoveryAPI(discovery_mgr=self, user=self.discovery_api_user, password=self.discovery_api_password, host=self.args.bind, port=self.args.port, tls=self.tls, key_file=self.args.key_file, cert_file=self.args.cert_file) discovery_api.discovery_manager = self self.log.info("Started DiscoveryManager with following configuration: " "Bind address(es): {0.bind}, port: {0.port}. " "Log path: {0.log_directory}{0.log_file}, log level: {0.log_level}. " .format(self.args)) def do_action(self) -> None: self.discovery_api.run() if __name__ == "__main__": discovery_manager = DiscoveryManager() try: discovery_manager.run() finally: discovery_manager.stop_schedule_manager()
52.948571
107
0.567883
4a26422f650cf13ee7d4e8d2228b50ec49876fb8
7,162
py
Python
examples/simultaneous_translation/models/convtransformer_simul_trans.py
Shiguang-Guo/fairseq
c9d3df5679d0829cda8fc3c818b6cab52b78dc37
[ "MIT" ]
16,259
2018-05-02T02:31:30.000Z
2022-03-31T21:50:23.000Z
examples/simultaneous_translation/models/convtransformer_simul_trans.py
Shiguang-Guo/fairseq
c9d3df5679d0829cda8fc3c818b6cab52b78dc37
[ "MIT" ]
3,863
2018-05-02T13:42:39.000Z
2022-03-31T19:03:32.000Z
examples/simultaneous_translation/models/convtransformer_simul_trans.py
Shiguang-Guo/fairseq
c9d3df5679d0829cda8fc3c818b6cab52b78dc37
[ "MIT" ]
4,796
2018-05-02T07:55:51.000Z
2022-03-31T14:46:45.000Z
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. from fairseq import checkpoint_utils from fairseq.models import ( register_model, register_model_architecture, ) from fairseq.models.speech_to_text import ( ConvTransformerModel, convtransformer_espnet, ConvTransformerEncoder, ) from fairseq.models.speech_to_text.modules.augmented_memory_attention import ( augmented_memory, SequenceEncoder, AugmentedMemoryConvTransformerEncoder, ) from torch import nn, Tensor from typing import Dict, List from fairseq.models.speech_to_text.modules.emformer import NoSegAugmentedMemoryTransformerEncoderLayer @register_model("convtransformer_simul_trans") class SimulConvTransformerModel(ConvTransformerModel): """ Implementation of the paper: SimulMT to SimulST: Adapting Simultaneous Text Translation to End-to-End Simultaneous Speech Translation https://www.aclweb.org/anthology/2020.aacl-main.58.pdf """ @staticmethod def add_args(parser): super(SimulConvTransformerModel, SimulConvTransformerModel).add_args(parser) parser.add_argument( "--train-monotonic-only", action="store_true", default=False, help="Only train monotonic attention", ) @classmethod def build_decoder(cls, args, task, embed_tokens): tgt_dict = task.tgt_dict from examples.simultaneous_translation.models.transformer_monotonic_attention import ( TransformerMonotonicDecoder, ) decoder = TransformerMonotonicDecoder(args, tgt_dict, embed_tokens) if getattr(args, "load_pretrained_decoder_from", None): decoder = checkpoint_utils.load_pretrained_component_from_model( component=decoder, checkpoint=args.load_pretrained_decoder_from ) return decoder @register_model_architecture( "convtransformer_simul_trans", "convtransformer_simul_trans_espnet" ) def convtransformer_simul_trans_espnet(args): convtransformer_espnet(args) @register_model("convtransformer_augmented_memory") @augmented_memory class AugmentedMemoryConvTransformerModel(SimulConvTransformerModel): @classmethod def build_encoder(cls, args): encoder = SequenceEncoder(args, AugmentedMemoryConvTransformerEncoder(args)) if getattr(args, "load_pretrained_encoder_from", None) is not None: encoder = checkpoint_utils.load_pretrained_component_from_model( component=encoder, checkpoint=args.load_pretrained_encoder_from ) return encoder @register_model_architecture( "convtransformer_augmented_memory", "convtransformer_augmented_memory" ) def augmented_memory_convtransformer_espnet(args): convtransformer_espnet(args) # ============================================================================ # # Convtransformer # with monotonic attention decoder # with emformer encoder # ============================================================================ # class ConvTransformerEmformerEncoder(ConvTransformerEncoder): def __init__(self, args): super().__init__(args) stride = self.conv_layer_stride(args) trf_left_context = args.segment_left_context // stride trf_right_context = args.segment_right_context // stride context_config = [trf_left_context, trf_right_context] self.transformer_layers = nn.ModuleList( [ NoSegAugmentedMemoryTransformerEncoderLayer( input_dim=args.encoder_embed_dim, num_heads=args.encoder_attention_heads, ffn_dim=args.encoder_ffn_embed_dim, num_layers=args.encoder_layers, dropout_in_attn=args.dropout, dropout_on_attn=args.dropout, dropout_on_fc1=args.dropout, dropout_on_fc2=args.dropout, activation_fn=args.activation_fn, context_config=context_config, segment_size=args.segment_length, max_memory_size=args.max_memory_size, scaled_init=True, # TODO: use constant for now. tanh_on_mem=args.amtrf_tanh_on_mem, ) ] ) self.conv_transformer_encoder = ConvTransformerEncoder(args) def forward(self, src_tokens, src_lengths): encoder_out: Dict[str, List[Tensor]] = self.conv_transformer_encoder(src_tokens, src_lengths.to(src_tokens.device)) output = encoder_out["encoder_out"][0] encoder_padding_masks = encoder_out["encoder_padding_mask"] return { "encoder_out": [output], # This is because that in the original implementation # the output didn't consider the last segment as right context. "encoder_padding_mask": [encoder_padding_masks[0][:, : output.size(0)]] if len(encoder_padding_masks) > 0 else [], "encoder_embedding": [], "encoder_states": [], "src_tokens": [], "src_lengths": [], } @staticmethod def conv_layer_stride(args): # TODO: make it configurable from the args return 4 @register_model("convtransformer_emformer") class ConvtransformerEmformer(SimulConvTransformerModel): @staticmethod def add_args(parser): super(ConvtransformerEmformer, ConvtransformerEmformer).add_args(parser) parser.add_argument( "--segment-length", type=int, metavar="N", help="length of each segment (not including left context / right context)", ) parser.add_argument( "--segment-left-context", type=int, help="length of left context in a segment", ) parser.add_argument( "--segment-right-context", type=int, help="length of right context in a segment", ) parser.add_argument( "--max-memory-size", type=int, default=-1, help="Right context for the segment.", ) parser.add_argument( "--amtrf-tanh-on-mem", default=False, action="store_true", help="whether to use tanh on memory vector", ) @classmethod def build_encoder(cls, args): encoder = ConvTransformerEmformerEncoder(args) if getattr(args, "load_pretrained_encoder_from", None): encoder = checkpoint_utils.load_pretrained_component_from_model( component=encoder, checkpoint=args.load_pretrained_encoder_from ) return encoder @register_model_architecture( "convtransformer_emformer", "convtransformer_emformer", ) def convtransformer_emformer_base(args): convtransformer_espnet(args)
34.936585
123
0.655124
4a2642ac791e570cccaeb0e5c00164ad6a11f7a6
1,268
py
Python
src/data/remove_spam.py
tamarakatic/sentiment-analysis-in-amazon-reviews
4b12b9136e2809fd581d3cc730cd872b7a0b2e27
[ "MIT" ]
9
2018-09-18T07:19:03.000Z
2021-01-15T06:22:30.000Z
src/data/remove_spam.py
tamarakatic/sentiment-analysis-in-amazon-reviews
4b12b9136e2809fd581d3cc730cd872b7a0b2e27
[ "MIT" ]
1
2020-04-19T15:20:14.000Z
2020-04-25T02:53:43.000Z
src/data/remove_spam.py
tamarakatic/sentiment-analysis-in-amazon-reviews
4b12b9136e2809fd581d3cc730cd872b7a0b2e27
[ "MIT" ]
3
2019-01-28T05:59:47.000Z
2020-05-27T14:03:51.000Z
#!/usr/bin/env python3 import sys import multiprocessing import pandas as pd import dask.dataframe as dd from langdetect import detect from dask.multiprocessing import get from timeit import default_timer as timer CPU_CORES = multiprocessing.cpu_count() def detect_language(review, lang="en"): try: return detect(review) == lang except Exception: return False def remove_spam(filename): df = pd.read_csv(filename, header=None) reviews = df[2] dask_df = dd.from_pandas(reviews, npartitions=CPU_CORES) non_en_indices = dask_df.map_partitions( lambda partition: partition.apply(detect_language) ).compute(get=get) # Non-english reviews are spam non_spam = df[non_en_indices] non_spam[0] -= 1 # Make sentiment binary. 1 - positive and 0 - negative print("-- Saving processed file...\n") non_spam.to_csv(filename, header=False, index=False) def main(argv): if len(argv) == 1: print("\nNo files specified.") return for filename in argv[1:]: print("\n-- Processing '{}'--\n".format(filename)) start = timer() remove_spam(filename) print("-- Done in {:.2f}s".format(timer() - start)) if __name__ == "__main__": main(sys.argv)
23.054545
76
0.667192
4a2643af68e625a02271ab509d06de8a5a8ce165
385
py
Python
horaizon/data_generator.py
mertensu/horaizon
ac0d39fca6a1e6953e8e4bb8aafc71af05d945ba
[ "MIT" ]
null
null
null
horaizon/data_generator.py
mertensu/horaizon
ac0d39fca6a1e6953e8e4bb8aafc71af05d945ba
[ "MIT" ]
null
null
null
horaizon/data_generator.py
mertensu/horaizon
ac0d39fca6a1e6953e8e4bb8aafc71af05d945ba
[ "MIT" ]
null
null
null
import numpy as np import torch from torch.utils.data import Dataset class DataGenerator(Dataset): def __init__(self, data_frame, q): self.data = data_frame.values self.q = q def __len__(self): return self.data.shape[0] - self.q def __getitem__(self, index): return torch.tensor(self.data[index : (index + self.q)], dtype=torch.float32)
24.0625
85
0.667532
4a2643db60228d3c87f1eeb59234bec353c70804
1,422
py
Python
honda_dashboard/components.py
todstoychev/dashboard
7f582c4f48511866db96475e4cfdb36f5a10eb31
[ "BSD-2-Clause" ]
null
null
null
honda_dashboard/components.py
todstoychev/dashboard
7f582c4f48511866db96475e4cfdb36f5a10eb31
[ "BSD-2-Clause" ]
null
null
null
honda_dashboard/components.py
todstoychev/dashboard
7f582c4f48511866db96475e4cfdb36f5a10eb31
[ "BSD-2-Clause" ]
null
null
null
import os from PyQt5.QtCore import Qt from PyQt5.QtGui import QFont from PyQt5.QtWidgets import QMainWindow, QWidget, QGridLayout, QLabel, QVBoxLayout from honda_dashboard.config import Config class DashboardWindow(QMainWindow): def __init__(self, cfg: Config): super().__init__() self.__config = cfg self.setWindowTitle('Dashboard') self.handle_mode() def handle_mode(self): if self.__config.night_mode_on: color = self.__config.night_colors['bg'] else: color = self.__config.day_colors['bg'] self.setStyleSheet('background-color: #' + color + ';') class DashboardWidget(QWidget): def __init__(self): super().__init__() self.setLayout(QGridLayout()) class InitialScreen(QWidget): def __init__(self): super().__init__() self.setLayout(QVBoxLayout()) loading = QLabel('LOADING...') font = QFont('Arial', 32) font.setBold(True) loading.setFont(font) loading.setAlignment(Qt.AlignCenter) self.layout().addWidget(loading) self.setMinimumSize(480, 320) path = os.path.dirname(os.path.abspath(__file__)) self.setStyleSheet('background-image: url(' + path + '/honda.png); background-position: center; ' 'background-repeat: no-repeat;') loading.setStyleSheet('color: #ed323e;')
26.333333
105
0.636428
4a2643e55cfb8a87a76ed196b01b5994115d62b4
114
py
Python
app/back/mongo/data/collect/metas/model.py
jgphilpott/polyplot
c46861174ee5881dadffbfb2278d555462523547
[ "MIT" ]
5
2021-05-17T14:17:14.000Z
2021-12-14T12:54:32.000Z
app/back/mongo/data/collect/metas/model.py
jgphilpott/iGraph
2a91ba57e4950856a83d3a109753f8f2badee829
[ "MIT" ]
8
2020-02-09T02:48:41.000Z
2021-05-16T04:57:02.000Z
app/back/mongo/data/collect/metas/model.py
jgphilpott/iGraph
2a91ba57e4950856a83d3a109753f8f2badee829
[ "MIT" ]
2
2016-09-12T03:48:16.000Z
2019-05-04T14:15:19.000Z
class Meta(): def __init__(self, meta): self.code = meta["code"] self.value = meta["value"]
16.285714
34
0.54386
4a2643fbf94b7b96fdc691562a698cd996a25bd0
4,206
py
Python
threat_connect/komand_threat_connect/actions/bulk_indicator_download/schema.py
xhennessy-r7/insightconnect-plugins
59268051313d67735b5dd3a30222eccb92aca8e9
[ "MIT" ]
null
null
null
threat_connect/komand_threat_connect/actions/bulk_indicator_download/schema.py
xhennessy-r7/insightconnect-plugins
59268051313d67735b5dd3a30222eccb92aca8e9
[ "MIT" ]
null
null
null
threat_connect/komand_threat_connect/actions/bulk_indicator_download/schema.py
xhennessy-r7/insightconnect-plugins
59268051313d67735b5dd3a30222eccb92aca8e9
[ "MIT" ]
null
null
null
# GENERATED BY KOMAND SDK - DO NOT EDIT import komand import json class Input: ATTRIBUTE = "attribute" CONFIDENCE = "confidence" DATE_ADDED = "date_added" LAST_MODIFIED = "last_modified" OWNER = "owner" RATING = "rating" TAG = "tag" THREAT_ASSESS_CONFIDENCE = "threat_assess_confidence" THREAT_ASSESS_RATING = "threat_assess_rating" TYPE = "type" class Output: BULK_INDICATORS = "bulk_indicators" class BulkIndicatorDownloadInput(komand.Input): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "attribute": { "type": "string", "title": "Attribute", "description": "Attribute type", "order": 2 }, "confidence": { "type": "integer", "title": "Confidence", "description": "Confidence value", "order": 3 }, "date_added": { "type": "string", "title": "Date Added", "displayType": "date", "description": "Date indicator added", "format": "date-time", "order": 4 }, "last_modified": { "type": "string", "title": "Last Modified", "displayType": "date", "description": "Last modified date", "format": "date-time", "order": 5 }, "owner": { "type": "string", "title": "Owner", "description": "Owner/Organization", "order": 1 }, "rating": { "type": "string", "title": "Rating", "description": "Indicator rating", "order": 6 }, "tag": { "type": "string", "title": "Tag", "description": "Single tag filter", "order": 7 }, "threat_assess_confidence": { "type": "integer", "title": "Threat Assess Confidence", "description": "Threat Assess Confidence filter", "order": 8 }, "threat_assess_rating": { "type": "string", "title": "Threat Assess Rating", "description": "Threat Assess Rating filter", "order": 9 }, "type": { "type": "string", "title": "Type", "description": "Indicator type", "order": 10 } }, "required": [ "owner" ] } """) def __init__(self): super(self.__class__, self).__init__(self.schema) class BulkIndicatorDownloadOutput(komand.Output): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "bulk_indicators": { "type": "array", "title": "Bulk Indicators", "description": "Bulk indicators", "items": { "$ref": "#/definitions/bulk_indicator_output" }, "order": 1 } }, "definitions": { "bulk_indicator_output": { "type": "object", "title": "bulk_indicator_output", "properties": { "confidence": { "type": "string", "title": "Confidence", "order": 7 }, "date_added": { "type": "string", "title": "Date Added", "displayType": "date", "format": "date-time", "order": 3 }, "id": { "type": "integer", "title": "ID", "order": 1 }, "last_modified": { "type": "string", "title": "Last Modified", "displayType": "date", "format": "date-time", "order": 4 }, "owner_name": { "type": "string", "title": "Owner Name", "order": 2 }, "rating": { "type": "string", "title": "Rating", "order": 5 }, "threat_assess_confidence": { "type": "string", "title": "Threat Assess Confidence", "order": 8 }, "threat_assess_rating": { "type": "string", "title": "Threat Assess Rating", "order": 6 }, "type": { "type": "string", "title": "Type", "order": 9 }, "weblink": { "type": "string", "title": "Weblink", "order": 10 } } } } } """) def __init__(self): super(self.__class__, self).__init__(self.schema)
22.491979
57
0.485259
4a264492b62d81d1e87b97d2fe50d971235adcad
11,114
py
Python
src/foremast/s3/s3apps.py
dnava13/foremast
53acb17631b43b6e0adc87366faa0e7e2066e6c3
[ "Apache-2.0" ]
null
null
null
src/foremast/s3/s3apps.py
dnava13/foremast
53acb17631b43b6e0adc87366faa0e7e2066e6c3
[ "Apache-2.0" ]
null
null
null
src/foremast/s3/s3apps.py
dnava13/foremast
53acb17631b43b6e0adc87366faa0e7e2066e6c3
[ "Apache-2.0" ]
null
null
null
# Foremast - Pipeline Tooling # # Copyright 2018 Gogo, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """S3 web application infrastructure.""" import json import logging import boto3 from botocore.client import ClientError from ..exceptions import S3SharedBucketNotFound from ..utils import generate_s3_tags, get_details, get_dns_zone_ids, get_properties, update_dns_zone_record LOG = logging.getLogger(__name__) # pylint: disable=too-few-public-methods class S3Apps: """Configure infrastructure and policies for S3 web applications.""" def __init__(self, app, env, region, prop_path, primary_region='us-east-1'): """S3 application object. Setups Bucket and policies for S3 applications. Args: app (str): Application name env (str): Environment/Account region (str): AWS Region prop_path (str): Path of environment property file primary_region (str): The primary region for the application. """ self.app_name = app self.env = env self.region = region boto_sess = boto3.session.Session(profile_name=env) self.s3client = boto_sess.client('s3') self.generated = get_details(app=app, env=env, region=self.region) self.properties = get_properties(prop_path, env=self.env, region=self.region) self.s3props = self.properties['s3'] self.group = self.generated.project include_region = True if self.region == primary_region: include_region = False if self.s3props.get('shared_bucket_master'): self.bucket = self.generated.shared_s3_app_bucket(include_region=include_region) elif self.s3props.get('shared_bucket_target'): shared_app = self.s3props['shared_bucket_target'] newgenerated = get_details(app=shared_app, env=env, region=self.region) self.bucket = newgenerated.shared_s3_app_bucket(include_region=include_region) else: self.bucket = self.generated.s3_app_bucket(include_region=include_region) def create_bucket(self): """Create or update bucket based on app name.""" bucket_exists = self._bucket_exists() if self.s3props.get('shared_bucket_target'): if bucket_exists: LOG.info('App uses shared bucket - %s ', self.bucket) else: LOG.error("Shared bucket %s does not exist", self.bucket) raise S3SharedBucketNotFound else: if self.region == 'us-east-1': _response = self.s3client.create_bucket(ACL=self.s3props['bucket_acl'], Bucket=self.bucket) else: if not bucket_exists: _response = self.s3client.create_bucket(ACL=self.s3props['bucket_acl'], Bucket=self.bucket, CreateBucketConfiguration={ 'LocationConstraint': self.region}) else: _response = "bucket already exists, skipping create for non-standard region buckets." LOG.debug('Response creating bucket: %s', _response) LOG.info('%s - S3 Bucket Upserted', self.bucket) self._put_bucket_policy() self._put_bucket_website() self._put_bucket_logging() self._put_bucket_lifecycle() self._put_bucket_versioning() self._put_bucket_encryption() self._put_bucket_tagging() def _bucket_exists(self): """Check if the bucket exists.""" try: self.s3client.get_bucket_location(Bucket=self.bucket) return True except ClientError as error: LOG.error(error) return False def _put_bucket_policy(self): """Attach a bucket policy to app bucket.""" if self.s3props['bucket_policy']: policy_str = json.dumps(self.s3props['bucket_policy']) _response = self.s3client.put_bucket_policy(Bucket=self.bucket, Policy=policy_str) else: _response = self.s3client.delete_bucket_policy(Bucket=self.bucket) LOG.debug('Response adding bucket policy: %s', _response) LOG.info('S3 Bucket Policy Attached') def _put_bucket_website(self): """Configure static website on S3 bucket.""" if self.s3props['website']['enabled']: website_config = { 'ErrorDocument': { 'Key': self.s3props['website']['error_document'] }, 'IndexDocument': { 'Suffix': self.s3props['website']['index_suffix'] } } _response = self.s3client.put_bucket_website(Bucket=self.bucket, WebsiteConfiguration=website_config) self._put_bucket_cors() self._set_bucket_dns() else: _response = self.s3client.delete_bucket_website(Bucket=self.bucket) self._put_bucket_cors() LOG.debug('Response setting up S3 website: %s', _response) LOG.info('S3 website settings updated') def _set_bucket_dns(self): """Create CNAME for S3 endpoint.""" # Different regions have different s3 endpoint formats dotformat_regions = ["eu-west-2", "eu-central-1", "ap-northeast-2", "ap-south-1", "ca-central-1", "us-east-2"] if self.region in dotformat_regions: s3_endpoint = "{0}.s3-website.{1}.amazonaws.com".format(self.bucket, self.region) else: s3_endpoint = "{0}.s3-website-{1}.amazonaws.com".format(self.bucket, self.region) zone_ids = get_dns_zone_ids(env=self.env, facing="public") dns_kwargs = { 'dns_name': self.bucket, 'dns_name_aws': s3_endpoint, 'dns_ttl': self.properties['dns']['ttl'] } for zone_id in zone_ids: LOG.debug('zone_id: %s', zone_id) update_dns_zone_record(self.env, zone_id, **dns_kwargs) LOG.info("Created DNS %s for Bucket", self.bucket) def _put_bucket_cors(self): """Adds bucket cors configuration.""" if self.s3props['cors']['enabled'] and self.s3props['website']['enabled']: cors_config = {} cors_rules = [] for each_rule in self.s3props['cors']['cors_rules']: cors_rules.append({ 'AllowedHeaders': each_rule['cors_headers'], 'AllowedMethods': each_rule['cors_methods'], 'AllowedOrigins': each_rule['cors_origins'], 'ExposeHeaders': each_rule['cors_expose_headers'], 'MaxAgeSeconds': each_rule['cors_max_age'] }) cors_config = { 'CORSRules': cors_rules } LOG.debug(cors_config) _response = self.s3client.put_bucket_cors(Bucket=self.bucket, CORSConfiguration=cors_config) else: _response = self.s3client.delete_bucket_cors(Bucket=self.bucket) LOG.debug('Response setting up S3 CORS: %s', _response) LOG.info('S3 CORS configuration updated') def _put_bucket_encryption(self): """Adds bucket encryption configuration.""" if self.s3props['encryption']['enabled']: encryption_config = {'Rules': [{}]} encryption_config = { 'Rules': self.s3props['encryption']['encryption_rules'] } LOG.debug(encryption_config) _response = self.s3client.put_bucket_encryption(Bucket=self.bucket, ServerSideEncryptionConfiguration=encryption_config) else: _response = self.s3client.delete_bucket_encryption(Bucket=self.bucket) LOG.debug('Response setting up S3 encryption: %s', _response) LOG.info('S3 encryption configuration updated') def _put_bucket_lifecycle(self): """Adds bucket lifecycle configuration.""" status = 'deleted' if self.s3props['lifecycle']['enabled']: lifecycle_config = { 'Rules': self.s3props['lifecycle']['lifecycle_rules'] } LOG.debug('Lifecycle Config: %s', lifecycle_config) _response = self.s3client.put_bucket_lifecycle_configuration(Bucket=self.bucket, LifecycleConfiguration=lifecycle_config) status = 'applied' else: _response = self.s3client.delete_bucket_lifecycle(Bucket=self.bucket) LOG.debug('Response setting up S3 lifecycle: %s', _response) LOG.info('S3 lifecycle configuration %s', status) def _put_bucket_logging(self): """Adds bucket logging policy to bucket for s3 access requests""" logging_config = {} if self.s3props['logging']['enabled']: logging_config = { 'LoggingEnabled': { 'TargetBucket': self.s3props['logging']['logging_bucket'], 'TargetGrants': self.s3props['logging']['logging_grants'], 'TargetPrefix': self.s3props['logging']['logging_bucket_prefix'] } } _response = self.s3client.put_bucket_logging(Bucket=self.bucket, BucketLoggingStatus=logging_config) LOG.debug('Response setting up S3 logging: %s', _response) LOG.info('S3 logging configuration updated') def _put_bucket_tagging(self): """Add bucket tags to bucket.""" all_tags = self.s3props['tagging']['tags'] all_tags.update({'app_group': self.group, 'app_name': self.app_name}) tag_set = generate_s3_tags.generated_tag_data(all_tags) tagging_config = {'TagSet': tag_set} self.s3client.put_bucket_tagging(Bucket=self.bucket, Tagging=tagging_config) LOG.info("Adding tagging %s for Bucket", tag_set) def _put_bucket_versioning(self): """Adds bucket versioning policy to bucket""" status = 'Suspended' if self.s3props['versioning']['enabled']: status = 'Enabled' versioning_config = { 'MFADelete': self.s3props['versioning']['mfa_delete'], 'Status': status } _response = self.s3client.put_bucket_versioning(Bucket=self.bucket, VersioningConfiguration=versioning_config) LOG.debug('Response setting up S3 versioning: %s', _response) LOG.info('S3 versioning configuration updated')
44.814516
118
0.61517
4a2645096ab98e8af315d9ed1e98a43542f1e15f
6,377
py
Python
plot_1D.py
cclauss/loss-landscape
35a4c9bcabdefdcaf1e3d7266da878205bfca2a0
[ "MIT" ]
3
2020-12-17T19:17:20.000Z
2021-08-17T12:00:18.000Z
plot_1D.py
cclauss/loss-landscape
35a4c9bcabdefdcaf1e3d7266da878205bfca2a0
[ "MIT" ]
null
null
null
plot_1D.py
cclauss/loss-landscape
35a4c9bcabdefdcaf1e3d7266da878205bfca2a0
[ "MIT" ]
null
null
null
""" 1D plotting routines """ from matplotlib import pyplot as pp import h5py import argparse import numpy as np import os def plot_1d_loss_err(surf_file, xmin=-1.0, xmax=1.0, loss_max=5, log=False, show=False): print('------------------------------------------------------------------') print('plot_1d_loss_err') print('------------------------------------------------------------------') f = h5py.File(surf_file,'r') print(f.keys()) x = f['xcoordinates'][:] assert 'train_loss' in f.keys(), "'train_loss' does not exist" train_loss = f['train_loss'][:] train_acc = f['train_acc'][:] print("train_loss") print(train_loss) print("train_acc") print(train_acc) xmin = xmin if xmin != -1.0 else min(x) xmax = xmax if xmax != 1.0 else max(x) # loss and accuracy map fig, ax1 = pp.subplots() ax2 = ax1.twinx() if log: tr_loss, = ax1.semilogy(x, train_loss, 'b-', label='Training loss', linewidth=1) else: tr_loss, = ax1.plot(x, train_loss, 'b-', label='Training loss', linewidth=1) tr_acc, = ax2.plot(x, train_acc, 'r-', label='Training accuracy', linewidth=1) if 'test_loss' in f.keys(): test_loss = f['test_loss'][:] test_acc = f['test_acc'][:] if log: te_loss, = ax1.semilogy(x, test_loss, 'b--', label='Test loss', linewidth=1) else: te_loss, = ax1.plot(x, test_loss, 'b--', label='Test loss', linewidth=1) te_acc, = ax2.plot(x, test_acc, 'r--', label='Test accuracy', linewidth=1) pp.xlim(xmin, xmax) ax1.set_ylabel('Loss', color='b', fontsize='xx-large') ax1.tick_params('y', colors='b', labelsize='x-large') ax1.tick_params('x', labelsize='x-large') ax1.set_ylim(0, loss_max) ax2.set_ylabel('Accuracy', color='r', fontsize='xx-large') ax2.tick_params('y', colors='r', labelsize='x-large') ax2.set_ylim(0, 100) pp.savefig(surf_file + '_1d_loss_acc' + ('_log' if log else '') + '.pdf', dpi=300, bbox_inches='tight', format='pdf') # train_loss curve pp.figure() if log: pp.semilogy(x, train_loss) else: pp.plot(x, train_loss) pp.ylabel('Training Loss', fontsize='xx-large') pp.xlim(xmin, xmax) pp.ylim(0, loss_max) pp.savefig(surf_file + '_1d_train_loss' + ('_log' if log else '') + '.pdf', dpi=300, bbox_inches='tight', format='pdf') # train_err curve pp.figure() pp.plot(x, 100 - train_acc) pp.xlim(xmin, xmax) pp.ylim(0, 100) pp.ylabel('Training Error', fontsize='xx-large') pp.savefig(surf_file + '_1d_train_err.pdf', dpi=300, bbox_inches='tight', format='pdf') if show: pp.show() f.close() def plot_1d_loss_err_repeat(prefix, idx_min=1, idx_max=10, xmin=-1.0, xmax=1.0, loss_max=5, show=False): """ Plotting multiple 1D loss surface with different directions in one figure. """ fig, ax1 = pp.subplots() ax2 = ax1.twinx() for idx in range(idx_min, idx_max + 1): # The file format should be prefix_{idx}.h5 f = h5py.File(prefix + '_' + str(idx) + '.h5','r') x = f['xcoordinates'][:] train_loss = f['train_loss'][:] train_acc = f['train_acc'][:] test_loss = f['test_loss'][:] test_acc = f['test_acc'][:] xmin = xmin if xmin != -1.0 else min(x) xmax = xmax if xmax != 1.0 else max(x) tr_loss, = ax1.plot(x, train_loss, 'b-', label='Training loss', linewidth=1) te_loss, = ax1.plot(x, test_loss, 'b--', label='Testing loss', linewidth=1) tr_acc, = ax2.plot(x, train_acc, 'r-', label='Training accuracy', linewidth=1) te_acc, = ax2.plot(x, test_acc, 'r--', label='Testing accuracy', linewidth=1) pp.xlim(xmin, xmax) ax1.set_ylabel('Loss', color='b', fontsize='xx-large') ax1.tick_params('y', colors='b', labelsize='x-large') ax1.tick_params('x', labelsize='x-large') ax1.set_ylim(0, loss_max) ax2.set_ylabel('Accuracy', color='r', fontsize='xx-large') ax2.tick_params('y', colors='r', labelsize='x-large') ax2.set_ylim(0, 100) pp.savefig(prefix + '_1d_loss_err_repeat.pdf', dpi=300, bbox_inches='tight', format='pdf') if show: pp.show() def plot_1d_eig_ratio(surf_file, xmin=-1.0, xmax=1.0, val_1='min_eig', val_2='max_eig', ymax=1, show=False): print('------------------------------------------------------------------') print('plot_1d_eig_ratio') print('------------------------------------------------------------------') f = h5py.File(surf_file,'r') x = f['xcoordinates'][:] Z1 = np.array(f[val_1][:]) Z2 = np.array(f[val_2][:]) abs_ratio = np.absolute(np.divide(Z1, Z2)) pp.plot(x, abs_ratio) pp.xlim(xmin, xmax) pp.ylim(0, ymax) pp.savefig(surf_file + '_1d_eig_abs_ratio.pdf', dpi=300, bbox_inches='tight', format='pdf') ratio = np.divide(Z1, Z2) pp.plot(x, ratio) pp.xlim(xmin, xmax) pp.ylim(0, ymax) pp.savefig(surf_file + '_1d_eig_ratio.pdf', dpi=300, bbox_inches='tight', format='pdf') f.close() if show: pp.show() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Plott 1D loss and error curves') parser.add_argument('--surf_file', '-f', default='', help='The h5 file contains loss values') parser.add_argument('--log', action='store_true', default=False, help='logarithm plot') parser.add_argument('--xmin', default=-1, type=float, help='xmin value') parser.add_argument('--xmax', default=1, type=float, help='xmax value') parser.add_argument('--loss_max', default=5, type=float, help='ymax value') parser.add_argument('--show', action='store_true', default=False, help='show plots') parser.add_argument('--prefix', default='', help='The common prefix for surface files') parser.add_argument('--idx_min', default=1, type=int, help='min index for the surface file') parser.add_argument('--idx_max', default=10, type=int, help='max index for the surface file') args = parser.parse_args() if args.prefix: plot_1d_loss_err_repeat(args.prefix, args.idx_min, args.idx_max, args.xmin, args.xmax, args.loss_max, args.show) else: plot_1d_loss_err(args.surf_file, args.xmin, args.xmax, args.loss_max, args.log, args.show)
37.075581
108
0.591971
4a26460f1709eee1e790412938d9a269e95414b1
15,553
py
Python
CryostatGUI/Keithley/Keithley6221_ControlClient.py
Cryostat-GUI/Cryostat-GUI
9b538ecaef4f1c0758907b9ee32d79ffd6793867
[ "MIT" ]
2
2018-11-23T15:59:19.000Z
2019-01-28T20:18:58.000Z
CryostatGUI/Keithley/Keithley6221_ControlClient.py
Cryostat-GUI/Cryostat-GUI
9b538ecaef4f1c0758907b9ee32d79ffd6793867
[ "MIT" ]
54
2018-10-16T20:03:32.000Z
2021-11-09T09:07:03.000Z
CryostatGUI/Keithley/Keithley6221_ControlClient.py
Cryostat-GUI/Cryostat-GUI
9b538ecaef4f1c0758907b9ee32d79ffd6793867
[ "MIT" ]
9
2018-11-04T17:37:30.000Z
2021-05-03T21:15:33.000Z
"""Module containing a class to run a Keithley 6221 Current Source in a pyqt5 application Classes: Keithley6221_ControlClient: a class for interfacing with a Keithley 6221 Current Source inherits from AbstractLoopThreadClient """ import sys import os sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # to be removed once this is packaged! from PyQt5.QtCore import pyqtSlot from PyQt5.QtCore import pyqtSignal from PyQt5.QtCore import QTimer # from PyQt5 import QtWidgets from copy import deepcopy import time from drivers import ApplicationExit from util import ExceptionHandling from util import AbstractLoopThreadClient from util import Window_trayService_ui from util import AbstractMainApp from datetime import datetime from pyvisa.errors import VisaIOError import logging # from Keithley.Keithley6221 import Keithley6221_ethernet from pymeasure.instruments.keithley import Keithley6221 class Keithley6221_ControlClient(AbstractLoopThreadClient): """Updater class for a hardware device For each device function there is a wrapping method, which we can call by a signal/by zmq comms. This wrapper sends the corresponding value to the device. There is a second method for all wrappers, which accepts the corresponding value, and stores it, so it can be sent upon acknowledgment The information from the device is collected in regular intervals (method "running"), and subsequently published on the data upstream. It is packed in a dict, the keys of which are displayed in the "data" dict in this class. """ # exposable data dictionary data = {} def __init__( self, mainthread=None, comLock=None, identity="", InstrumentAddress="", **kwargs ): super().__init__(identity=identity, **kwargs) self.interval = 0.15 self.__name__ = "Keithley6221_control " + InstrumentAddress self._logger = logging.getLogger( "CryoGUI." + __name__ + "." + self.__class__.__name__ ) # ------------------------------------------------------------------------------------------------------------------------- # Interface with hardware device self.Keithley6221 = Keithley6221( InstrumentAddress, read_termination="\n", ) # ------------------------------------------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------------------------------------------- # initial configurations for the hardware device self.Current_A_storage = self.Keithley6221.source_current self.OutputOn = self.getstatus() # 0 == OFF, 1 == ON if self.OutputOn: self.Current_A_value = self.Current_A_storage else: self.Current_A_value = 0 # if self.OutputOn: # self.disable() # ------------------------------------------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------------------------------------------- # GUI: passing GUI interactions to the corresponding slots # Examples: if mainthread is not None: self.mainthread = mainthread mainthread.hardware_IP.setText(InstrumentAddress) mainthread.hardware_id.setText(identity) mainthread.spinSetCurrent_mA.valueChanged.connect( lambda value: self.gettoset_Current_A(value * 1e-3) ) mainthread.spinSetCurrent_mA.editingFinished.connect(self.setCurrent_A) mainthread.pushToggleOut.clicked.connect(self.toggleCurrent) # ------------------------------------------------------------------------------------------------------------------------- # mainthread.spin_threadinterval.valueChanged.connect( # lambda value: self.setInterval(value) # ) # @control_checks @ExceptionHandling def running(self): """ Try to extract all current data from LakeShore350, and emit signal, sending the data """ # print('run') self.run_finished = False # ------------------------------------------------------------------------------------------------------------------------- # data collection for to be exposed on the data upstream # to be stored in self.data # example: self.OutputOn = self.getstatus() self.data["OutputOn"] = self.OutputOn self.Current_A_value = self.Keithley6221.source_current self.data["Current_A"] = self.Current_A_value # for error in self.Keithley6221.error_gen(): # if error[0] != "0": # self._logger.error("code:%s, message:%s", error[0], error[1].strip('"')) self.Keithley6221.check_errors() # pymeasure writing errors to pymeasure log self.data["realtime"] = datetime.now() # ------------------------------------------------------------------------------------------------------------------------- self.sig_Infodata.emit(deepcopy(self.data)) self.run_finished = True # data is being sent by the zmqClient class automatically def sending_upstream(self): self.data = {} self.data["OutputOn"] = self.OutputOn self.data["Current_A"] = self.Current_A_storage self.set_gauges() self.sig_Infodata.emit(deepcopy(self.data)) super().send_data_upstream() @ExceptionHandling def act_on_command(self, command): """execute commands sent on downstream""" # ------------------------------------------------------------------------------------------------------------------------- # commands, like for adjusting a set temperature on the device # commands are received via zmq downstream, and executed here # examples: if "set_Current_A" in command: self._logger.debug( "setting the current to %.5f A", command["set_Current_A"] ) self.setCurrent(command["set_Current_A"]) if "set_Output" in command: if int(command["set_Output"]) == 1: self._logger.debug("enabling current") self.enable() elif int(command["set_Output"]) == 0: self._logger.debug("disabling current") self.disable() else: self._logger.warning( "output must be 0 or 1, I received '%s'", str(command["set_Output"]) ) self.sending_upstream() # if 'setTemp_K' in command: # self.setTemp_K(command['setTemp_K']) # if 'configTempLimit' in command: # self.configTempLimit(command['configTempLimit']) # ------------------------------------------------------------------------------------------------------------------------- @ExceptionHandling def query_on_command(self, command): """execute commands sent via tcp""" answer_dict = {} # ------------------------------------------------------------------------------------------------------------------------- # commands, like for adjusting a set temperature on the device # commands are received via zmq tcp, and executed here # examples: # if 'configTempLimit' in command: # self.configTempLimit(command['configTempLimit']) try: self.act_on_command(command) answer_dict.update( dict( Current_A=self.Keithley6221.source_current, OutputOn=self.getstatus(), ) ) answer_dict["OK"] = True finally: return answer_dict # ------------------------------------------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------------------------------------------- # hardware communication functions # Examples: def getCurrent_A(self): """return currently operated current value""" return self.Current_A_value @pyqtSlot() @ExceptionHandling def disable(self): """disable the output current""" self.Keithley6221.source_enabled = False self.Current_A_storage = self.Current_A_value # for logging/application running: self.Current_A_value = 0 # self.OutputOn = self.Keithley6221.source_enabled self.OutputOn = False @pyqtSlot() @ExceptionHandling def enable(self): """enable the output current""" self.Keithley6221.source_enabled = True # self.Current_A_value = self.Keithley6221.source_current self.Current_A_value = self.Current_A_storage # self.setCurrent_A() # self.OutputOn = self.Keithley6221.source_enabled self.OutputOn = True @pyqtSlot() @ExceptionHandling def getstatus(self): """retrieve output current status""" return int(self.Keithley6221.source_enabled) @ExceptionHandling def toggle_frontpanel(self, bools, text=None): """toggle frontpanel display text""" self.Keithley6221.display_enabled = bools @pyqtSlot() @ExceptionHandling def setCurrent_A(self): """set a previously stored value for the current""" self.Keithley6221.source_current = self.Current_A_value self.sending_upstream() @pyqtSlot(float) @ExceptionHandling def setCurrent(self, current: float): """set a pass value for the current""" if self.getstatus(): self.Current_A_value = current self.Current_A_storage = current self.Keithley6221.source_current = current self.sending_upstream() # @pyqtSlot() # @ExceptionHandling # def setSweep(self): # """set a current sweep""" # self.Keithley6221.SetupSweet( # self.Start_Current_value, self.Step_Current_value, self.Stop_Current_value # ) # @pyqtSlot() # @ExceptionHandling # def startSweep(self): # """start a current sweep""" # self.Keithley6221.StartSweep() @pyqtSlot() @ExceptionHandling def toggleCurrent(self): self.OutputOn = self.getstatus() if self.OutputOn: self.disable() self.OutputOn = False self.mainthread.pushToggleOut.setText("output is OFF") else: self.enable() self.OutputOn = True self.mainthread.pushToggleOut.setText("output is ON") self.sending_upstream() # ------------------------------------------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------------------------------------------- # GUI value acceptance functions # Examples: @pyqtSlot(float) def gettoset_Current_A(self, value): """store a current value for later usage""" self.Current_A_value = value self.Current_A_storage = value # @pyqtSlot(float) # def gettoset_Start_Current(self, value): # """store a start current for a sweep""" # self.Start_Current_value = value # @pyqtSlot(float) # def gettoset_Step_Current(self, value): # """store a step current for a sweep""" # self.Step_Current_value = value # @pyqtSlot(float) # def gettoset_Stop_Current(self, value): # """store a stop current for a sweep""" # self.Stop_Current_value = value class Keithley6221GUI(AbstractMainApp, Window_trayService_ui): """This is the LakeShore GUI Window""" sig_arbitrary = pyqtSignal() sig_assertion = pyqtSignal(str) def __init__( self, identity=None, InstrumentAddress=None, prometheus_port=None, **kwargs ): self._identity = identity self._InstrumentAddress = InstrumentAddress self._prometheus_port = prometheus_port super().__init__(**kwargs) self._logger = logging.getLogger( "CryoGUI." + __name__ + "." + self.__class__.__name__ ) self.__name__ = "Keithley6221_Window" self.controls = [self.groupSettings] QTimer.singleShot(0, self.run_Hardware) @pyqtSlot() def run_Hardware(self): """start/stop the LakeShore350 thread""" try: self.getInfodata = self.running_thread_control( Keithley6221_ControlClient( InstrumentAddress=self._InstrumentAddress, mainthread=self, identity=self._identity, prometheus_port=self._prometheus_port, prometheus_name=self._identity, ), "Hardware", ) self.getInfodata.sig_Infodata.connect(self.updateGUI) except (VisaIOError, NameError) as e: # self.show_error_general('running: {}'.format(e)) self._logger.exception(e) raise ApplicationExit("Could not connect to Hardware!") def closeEvent(self, event): while not self.getInfodata.run_finished: time.sleep(0.1) with self.getInfodata.lock: del self.getInfodata.Keithley6221 super().closeEvent(event) @pyqtSlot(dict) def updateGUI(self, data): """ Store Device data in self.data, update values in GUI """ self.data.update(data) # data['date'] = convert_time(time.time()) # self.store_data(data=data, device='LakeShore350') # with self.dataLock: # this needs to draw from the self.data so that in case one of the keys did not show up, # since the command failed in the communication with the device, # the last value is retained # ----------------------------------------------------------------------------------------------------------- # update the GUI # Examples: # self.progressHeaterOutput_percentage.setValue( # self.data['Heater_Output_percentage']) # self.lcdHeaterOutput_mW.display( # self.data['Heater_Output_mW']) # self.lcdSetTemp_K.display( # self.data['Temp_K']) # # self.lcdRampeRate_Status.display(self.data['RampRate_Status']) # self.lcdSetRampRate_Kpmin.display( # self.data['Ramp_Rate']) # self.comboSetInput_Sensor.setCurrentIndex( # int(self.data['Input_Sensor']) - 1) # self.lcdSensor1_K.display( # self.data['Sensor_1_K']) # self.lcdSensor2_K.display( # self.data['Sensor_2_K']) # self.lcdSensor3_K.display( # self.data['Sensor_3_K']) # self.lcdSensor4_K.display( # self.data['Sensor_4_K']) # ----------------------------------------------------------------------------------------------------------- if __name__ == "__main__": print( "please use the program 'start_Keithley6221.py' to start communicating with this device!" )
38.120098
135
0.535009
4a26471cdff861e5213b0af1231d84b299d25ecc
4,482
py
Python
doc/sphinx/source/conf.py
JarryShaw/jspcap
9d4c980598e3c5e0af864044976f91b9b96e2e3e
[ "BSD-3-Clause" ]
3
2018-01-21T15:22:21.000Z
2018-06-22T01:27:59.000Z
doc/sphinx/source/conf.py
JarryShaw/jspcap
9d4c980598e3c5e0af864044976f91b9b96e2e3e
[ "BSD-3-Clause" ]
null
null
null
doc/sphinx/source/conf.py
JarryShaw/jspcap
9d4c980598e3c5e0af864044976f91b9b96e2e3e
[ "BSD-3-Clause" ]
null
null
null
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) import datetime # -- Project information ----------------------------------------------------- project = 'PyPCAPKit' copyright = f'2018-{datetime.date.today().year}, Jarry Shaw' # pylint: disable=redefined-builtin author = 'Jarry Shaw' # The full version, including alpha/beta/rc tags release = '0.15.5' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.viewcode', 'sphinx.ext.intersphinx', 'sphinx.ext.autodoc', 'sphinx.ext.autodoc.typehints', 'sphinx.ext.napoleon', 'sphinx.ext.todo', ] intersphinx_mapping = { 'python': ('https://docs.python.org/3', None), 'dictdumper': ('https://dictdumper.jarryshaw.me/en/latest/', None), 'chardet': ('https://chardet.readthedocs.io/en/latest/', None), 'dpkt': ('https://dpkt.readthedocs.io/en/latest/', None), 'scapy': ('https://scapy.readthedocs.io/en/latest/', None), 'requests': ('https://requests.readthedocs.io/en/latest/', None), 'bs4': ('https://www.crummy.com/software/BeautifulSoup/bs4/doc/', None), } autodoc_default_options = { 'members': True, 'member-order': 'groupwise', 'special-members': '__init__', 'undoc-members': True, 'exclude-members': '__weakref__, _abc_impl', 'ignore-module-all': True, 'private-members': True, } autodoc_typehints = 'description' #autodoc_member_order = 'bysource' #autodoc_member_order = 'alphabetic' # Napoleon settings napoleon_google_docstring = True napoleon_numpy_docstring = True napoleon_include_init_with_doc = True napoleon_include_private_with_doc = True napoleon_include_special_with_doc = True napoleon_use_admonition_for_examples = True napoleon_use_admonition_for_notes = True napoleon_use_admonition_for_references = True napoleon_use_ivar = True napoleon_use_param = True napoleon_use_rtype = True napoleon_use_keyword = True napoleon_custom_sections = None todo_include_todos = True # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'show_powered_by': False, 'github_user': 'JarryShaw', 'github_repo': 'pypcapkit', 'github_banner': True, 'github_type': 'star', #'show_related': False, #'note_bg': '#FFF59C', #'travis_button': True, #'codecov_button': True, } def maybe_skip_member(app, what: str, name: str, obj: object, skip: bool, options: dict): # pylint: disable=unused-argument if '_abc_impl' in name: return True return skip def remove_module_docstring(app, what: str, name: str, obj: object, options: dict, lines: list): # pylint: disable=unused-argument if what == "module" and "pcapkit" in name: lines.clear() def setup(app): app.connect("autodoc-process-docstring", remove_module_docstring) app.connect('autodoc-skip-member', maybe_skip_member)
33.447761
131
0.692994
4a2647a927ddb3c65afb470e140ef45219d4f29d
568
py
Python
contrib/coinkit/coinkit/__init__.py
gwangjin2/gwangcoin-core
588e357e13c385906729d9078b796dd740745445
[ "MIT" ]
2
2017-12-12T23:20:33.000Z
2021-04-15T23:10:38.000Z
contrib/coinkit/coinkit/__init__.py
gwangjin2/gwangcoin-core
588e357e13c385906729d9078b796dd740745445
[ "MIT" ]
null
null
null
contrib/coinkit/coinkit/__init__.py
gwangjin2/gwangcoin-core
588e357e13c385906729d9078b796dd740745445
[ "MIT" ]
3
2016-04-03T18:45:17.000Z
2021-04-15T23:30:04.000Z
# -*- coding: utf-8 -*- """ Coinkit ~~~~~ :copyright: (c) 2014 by Halfmoon Labs :license: MIT, see LICENSE for more details. """ __version__ = '0.4.2' from .entropy import random_secret_exponent from .passphrase import random_256bit_passphrase, random_160bit_passphrase from .b58check import b58check_encode, b58check_decode, b58check_unpack, \ b58check_version_byte, is_b58check from .utils import is_secret_exponent, is_256bit_hex_string, \ is_wif_pk, is_b58check_address, extract_pk_as_int from .wallet import SDWallet from .keypair import *
29.894737
74
0.764085
4a264819af5d3d20cbe8e6b03c43852a5b07cafd
599
py
Python
googleapiclient/version.py
abhi-hash256/google-api-python-client
9c24f44980a43b4d467532f0ac05fa6a04c53758
[ "Apache-2.0" ]
1
2022-03-21T16:06:04.000Z
2022-03-21T16:06:04.000Z
googleapiclient/version.py
hermann-wenninger/google-api-python-client
9c24f44980a43b4d467532f0ac05fa6a04c53758
[ "Apache-2.0" ]
null
null
null
googleapiclient/version.py
hermann-wenninger/google-api-python-client
9c24f44980a43b4d467532f0ac05fa6a04c53758
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "2.41.0"
37.4375
74
0.75626
4a2649322c9803f3d4a93af2f1c3a69f141e58de
2,535
py
Python
examples/ping.py
awesome-security/impacket
240e760ab543f11c913d11b1bfca26be28ed1c91
[ "Apache-1.1" ]
106
2019-03-04T21:31:47.000Z
2021-08-13T01:51:31.000Z
examples/ping.py
awesome-security/impacket
240e760ab543f11c913d11b1bfca26be28ed1c91
[ "Apache-1.1" ]
null
null
null
examples/ping.py
awesome-security/impacket
240e760ab543f11c913d11b1bfca26be28ed1c91
[ "Apache-1.1" ]
21
2019-06-13T22:57:52.000Z
2021-12-18T11:39:01.000Z
#!/usr/bin/env python # SECUREAUTH LABS. Copyright 2018 SecureAuth Corporation. All rights reserved. # # This software is provided under under a slightly modified version # of the Apache Software License. See the accompanying LICENSE file # for more information. # # Simple ICMP ping. # # This implementation of ping uses the ICMP echo and echo-reply packets # to check the status of a host. If the remote host is up, it should reply # to the echo probe with an echo-reply packet. # Note that this isn't a definite test, as in the case the remote host is up # but refuses to reply the probes. # Also note that the user must have special access to be able to open a raw # socket, which this program requires. # # Authors: # Gerardo Richarte <[email protected]> # Javier Kohen <[email protected]> # # Reference for: # ImpactPacket: IP, ICMP, DATA. # ImpactDecoder. import select import socket import time import sys from impacket import ImpactDecoder, ImpactPacket if len(sys.argv) < 3: print("Use: %s <src ip> <dst ip>" % sys.argv[0]) sys.exit(1) src = sys.argv[1] dst = sys.argv[2] # Create a new IP packet and set its source and destination addresses. ip = ImpactPacket.IP() ip.set_ip_src(src) ip.set_ip_dst(dst) # Create a new ICMP packet of type ECHO. icmp = ImpactPacket.ICMP() icmp.set_icmp_type(icmp.ICMP_ECHO) # Include a 156-character long payload inside the ICMP packet. icmp.contains(ImpactPacket.Data("A"*156)) # Have the IP packet contain the ICMP packet (along with its payload). ip.contains(icmp) # Open a raw socket. Special permissions are usually required. s = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_ICMP) s.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1) seq_id = 0 while 1: # Give the ICMP packet the next ID in the sequence. seq_id += 1 icmp.set_icmp_id(seq_id) # Calculate its checksum. icmp.set_icmp_cksum(0) icmp.auto_checksum = 1 # Send it to the target host. s.sendto(ip.get_packet(), (dst, 0)) # Wait for incoming replies. if s in select.select([s],[],[],1)[0]: reply = s.recvfrom(2000)[0] # Use ImpactDecoder to reconstruct the packet hierarchy. rip = ImpactDecoder.IPDecoder().decode(reply) # Extract the ICMP packet from its container (the IP packet). ricmp = rip.child() # If the packet matches, report it to the user. if rip.get_ip_dst() == src and rip.get_ip_src() == dst and icmp.ICMP_ECHOREPLY == ricmp.get_icmp_type(): print("Ping reply for sequence #%d" % ricmp.get_icmp_id()) time.sleep(1)
28.806818
108
0.729783
4a26493b80cd43970fd57f6d34cb57328a1c4da6
888
py
Python
test/test_patch_apply.py
vishwas1234567/tensorflow-determinism
ed01f5f34951aa113fb5907570ba6df98ebf9d8a
[ "Apache-2.0" ]
null
null
null
test/test_patch_apply.py
vishwas1234567/tensorflow-determinism
ed01f5f34951aa113fb5907570ba6df98ebf9d8a
[ "Apache-2.0" ]
null
null
null
test/test_patch_apply.py
vishwas1234567/tensorflow-determinism
ed01f5f34951aa113fb5907570ba6df98ebf9d8a
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 NVIDIA Corporation. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ======================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import tensorflow as tf sys.path.append('..') from tfdeterminism import patch patch()
32.888889
74
0.71509
4a26495153891cc7fe22bfc89542a395b4db312b
1,728
py
Python
pidal/lib/snowflake.py
pi-plan/pidal
bfd1b9c4de87bc92565acbcff108270265757e39
[ "BSD-3-Clause" ]
6
2021-02-05T04:21:00.000Z
2021-11-29T06:46:21.000Z
pidal/lib/snowflake.py
pi-plan/pidal
bfd1b9c4de87bc92565acbcff108270265757e39
[ "BSD-3-Clause" ]
1
2021-11-30T06:08:53.000Z
2021-11-30T06:08:53.000Z
pidal/lib/snowflake.py
pi-plan/pidal
bfd1b9c4de87bc92565acbcff108270265757e39
[ "BSD-3-Clause" ]
null
null
null
import time import logging from typing import Generator log = logging.getLogger(__name__) twepoch = 1609430400000 worker_id_bits = 5 data_center_id_bits = 5 max_worker_id = -1 ^ (-1 << worker_id_bits) max_data_center_id = -1 ^ (-1 << data_center_id_bits) sequence_bits = 12 worker_id_shift = sequence_bits data_center_id_shift = sequence_bits + worker_id_bits timestamp_left_shift = sequence_bits + worker_id_bits + data_center_id_bits sequence_mask = -1 ^ (-1 << sequence_bits) def snowflake_to_timestamp(_id): _id = _id >> 22 _id += twepoch _id = _id / 1000 return _id def snowflake(worker_id, data_center_id, sleep=lambda x: time.sleep(x/1000.0))\ -> Generator[int, None, None]: assert worker_id >= 0 and worker_id <= max_worker_id assert data_center_id >= 0 and data_center_id <= max_data_center_id last_timestamp = -1 sequence = 0 while True: timestamp = int(time.time()*1000) if last_timestamp > timestamp: log.warning( "clock is moving backwards. waiting until %i" % last_timestamp) sleep(last_timestamp-timestamp) continue if last_timestamp == timestamp: sequence = (sequence + 1) & sequence_mask if sequence == 0: log.warning("sequence overrun") sequence = -1 & sequence_mask sleep(1) continue else: sequence = 0 last_timestamp = timestamp yield ( ((timestamp-twepoch) << timestamp_left_shift) | (data_center_id << data_center_id_shift) | (worker_id << worker_id_shift) | sequence) generator = snowflake(1, 1)
26.181818
79
0.632523
4a264a2a68426f09fc7e7cac5dc0cf2dc55bdfa6
437
py
Python
AP1/calculadora.py
GiovannaPazello/Projetos-em-Python
3cf7edbdf2a2350605a775389f7fe2cc7fe8032e
[ "MIT" ]
null
null
null
AP1/calculadora.py
GiovannaPazello/Projetos-em-Python
3cf7edbdf2a2350605a775389f7fe2cc7fe8032e
[ "MIT" ]
null
null
null
AP1/calculadora.py
GiovannaPazello/Projetos-em-Python
3cf7edbdf2a2350605a775389f7fe2cc7fe8032e
[ "MIT" ]
null
null
null
print('Calculadora') nro1 = int(input("Digite o primeiro número: ")) nro2 = int(input("Digite o segundo número: ")) print("Menu") print("1 - somar") print("2 - subtrair") print("3 - multiplicar") print("4 - divisao") operacao = int(input("Digite a opcao que deseja: ")) if operacao == 1: soma = nro1 + nro2 print("resultado: " + str(soma)) if operacao == 2: subtracao = nro1 - nro2 print("resultado: " + str(subtracao))
25.705882
52
0.640732
4a264af03807760c35bfb1e63787ac28bcc9f51f
4,556
py
Python
sdk/containerregistry/azure-mgmt-containerregistry/azure/mgmt/containerregistry/v2018_02_01_preview/models/_paged_models.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
8
2021-01-13T23:44:08.000Z
2021-03-17T10:13:36.000Z
sdk/containerregistry/azure-mgmt-containerregistry/azure/mgmt/containerregistry/v2018_02_01_preview/models/_paged_models.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
226
2019-07-24T07:57:21.000Z
2019-10-15T01:07:24.000Z
sdk/containerregistry/azure-mgmt-containerregistry/azure/mgmt/containerregistry/v2018_02_01_preview/models/_paged_models.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
2
2021-05-23T16:46:31.000Z
2021-05-26T23:51:09.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.paging import Paged class RegistryPaged(Paged): """ A paging container for iterating over a list of :class:`Registry <azure.mgmt.containerregistry.v2018_02_01_preview.models.Registry>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[Registry]'} } def __init__(self, *args, **kwargs): super(RegistryPaged, self).__init__(*args, **kwargs) class OperationDefinitionPaged(Paged): """ A paging container for iterating over a list of :class:`OperationDefinition <azure.mgmt.containerregistry.v2018_02_01_preview.models.OperationDefinition>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[OperationDefinition]'} } def __init__(self, *args, **kwargs): super(OperationDefinitionPaged, self).__init__(*args, **kwargs) class ReplicationPaged(Paged): """ A paging container for iterating over a list of :class:`Replication <azure.mgmt.containerregistry.v2018_02_01_preview.models.Replication>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[Replication]'} } def __init__(self, *args, **kwargs): super(ReplicationPaged, self).__init__(*args, **kwargs) class WebhookPaged(Paged): """ A paging container for iterating over a list of :class:`Webhook <azure.mgmt.containerregistry.v2018_02_01_preview.models.Webhook>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[Webhook]'} } def __init__(self, *args, **kwargs): super(WebhookPaged, self).__init__(*args, **kwargs) class EventPaged(Paged): """ A paging container for iterating over a list of :class:`Event <azure.mgmt.containerregistry.v2018_02_01_preview.models.Event>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[Event]'} } def __init__(self, *args, **kwargs): super(EventPaged, self).__init__(*args, **kwargs) class BuildPaged(Paged): """ A paging container for iterating over a list of :class:`Build <azure.mgmt.containerregistry.v2018_02_01_preview.models.Build>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[Build]'} } def __init__(self, *args, **kwargs): super(BuildPaged, self).__init__(*args, **kwargs) class BuildStepPaged(Paged): """ A paging container for iterating over a list of :class:`BuildStep <azure.mgmt.containerregistry.v2018_02_01_preview.models.BuildStep>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[BuildStep]'} } def __init__(self, *args, **kwargs): super(BuildStepPaged, self).__init__(*args, **kwargs) class BuildArgumentPaged(Paged): """ A paging container for iterating over a list of :class:`BuildArgument <azure.mgmt.containerregistry.v2018_02_01_preview.models.BuildArgument>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[BuildArgument]'} } def __init__(self, *args, **kwargs): super(BuildArgumentPaged, self).__init__(*args, **kwargs) class BuildTaskPaged(Paged): """ A paging container for iterating over a list of :class:`BuildTask <azure.mgmt.containerregistry.v2018_02_01_preview.models.BuildTask>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[BuildTask]'} } def __init__(self, *args, **kwargs): super(BuildTaskPaged, self).__init__(*args, **kwargs)
34.515152
165
0.624451
4a264b41d715f0e83f4446389d82e552b97bc536
2,084
py
Python
src/games/mcts/MctsNode.py
flegac/power4
f178dd225f4b859d4292b134b6651bf119a45c30
[ "Apache-2.0" ]
null
null
null
src/games/mcts/MctsNode.py
flegac/power4
f178dd225f4b859d4292b134b6651bf119a45c30
[ "Apache-2.0" ]
null
null
null
src/games/mcts/MctsNode.py
flegac/power4
f178dd225f4b859d4292b134b6651bf119a45c30
[ "Apache-2.0" ]
null
null
null
from math import sqrt, log2 from src.games.state.State import State class MctsNode: def __init__(self, state: State, parent=None) -> None: self.parent = parent self.depth = parent.depth + 1 if parent else 0 self.state = state self.score = 0 self.games = 0 self._children = None def best_action(self): side_factor = 1 if self.state.board.current_turn % 2 == 0 else -1 children = self.children() def action_value(action): return side_factor * children[action].exploitation_score() return max(children.keys(), key=action_value) def children(self): if self._children is None: next_states = {a: self.state.next(a) for a in self.state.actions()} self._children = {a: MctsNode(state=next_states[a], parent=self) for a in next_states} return self._children def side_exploitation_score(self): side = -1 if self.state.board.current_turn % 2 == 0 else 1 return side * self.exploitation_score() def exploitation_score(self): # terminal states scores are certain (so score is better) if self.state.is_terminal: return self.state.terminal_result # unknown states are like a draw if self.games == 0: return 0 # exploitation score computing return self.score / self.games def exploration_score(self): return sqrt(log2(self.parent.games) / max(self.games, 1)) if self.parent else 0 def __repr__(self) -> str: parent_games = self.parent.games if self.parent else 0 return '[depth={}, score={}, exploration={} ({}/{})]'.format(self.depth, int(100 * self.exploitation_score()), int(100 * self.exploration_score()), self.games, parent_games)
36.561404
106
0.551344
4a264ca58a0b075a92fef7b1bb2b1863de5f730a
1,526
py
Python
predict.py
ArasAzimi/ai2r
060a95f2091b3c93c17cce4c65da46e0aa792849
[ "MIT" ]
5
2018-12-18T02:14:38.000Z
2021-09-09T01:19:22.000Z
predict.py
ArasAzimi/ai2r
060a95f2091b3c93c17cce4c65da46e0aa792849
[ "MIT" ]
1
2019-01-14T01:57:21.000Z
2019-01-14T01:57:21.000Z
predict.py
ArasAzimi/ai2r
060a95f2091b3c93c17cce4c65da46e0aa792849
[ "MIT" ]
null
null
null
from src.predict import Predict def main(): import cv2 import argparse import os # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="path to input image") args = vars(ap.parse_args()) image = args["image"] out_dir = 'out/aircrafts' # check if any model exists? # Check if model and label files exists print("-- Available trained models --") # List the sub-dicrectories in out directory: files = os.listdir(out_dir) for name, index in enumerate(files): print(str(name)+": "+index) user_model_choice = input("Choose a model for prediction (i.e., 0) > ") type(user_model_choice) model = files[int(user_model_choice)].split('_e')[0] model_file = out_dir+'/'+files[int(user_model_choice)]+'/aircrafts.model' label_file = out_dir+'/'+files[int(user_model_choice)]+'/aircrafts_lbls.pickle' config_file = 'config.json' obj = Predict(image, model, model_file, label_file, config_file=config_file) res = obj.prediction() label = res['label'] percent = res['percent'] (B, G, R) = (0,0,0) if percent<85: # print in Red (B, G, R) = (0,0,255) elif percent>95: # print in Green (B, G, R) = (0,255,0) else: # print in Yellow (B, G, R) =(0,255,255) legend = "Detected: {}".format(label) image_original = cv2.imread(image) cv2.putText(image_original, legend, (20, 40), cv2.FONT_HERSHEY_DUPLEX, 0.7, (B, G, R), 2) cv2.imshow("Image", image_original) cv2.waitKey(0) if __name__ == "__main__": main()
28.259259
90
0.686763
4a264cc6ff1c1126add8710c99179801f212c6cf
15,576
py
Python
src/sparseml/pytorch/optim/modifier_quantization.py
natuan/sparseml
299fbf87ab31a642f363dde4d403acdc38d96bc4
[ "Apache-2.0" ]
1
2021-06-03T09:16:09.000Z
2021-06-03T09:16:09.000Z
src/sparseml/pytorch/optim/modifier_quantization.py
natuan/sparseml
299fbf87ab31a642f363dde4d403acdc38d96bc4
[ "Apache-2.0" ]
null
null
null
src/sparseml/pytorch/optim/modifier_quantization.py
natuan/sparseml
299fbf87ab31a642f363dde4d403acdc38d96bc4
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Modifier for models through quantization aware training. PyTorch version must support quantization (>=1.2, ONNX export support introduced in 1.7) """ from typing import Any, Dict, List, Optional, Union from torch.nn import Module from torch.optim.optimizer import Optimizer try: from torch import quantization as torch_quantization from torch.nn import intrinsic as torch_intrinsic except Exception: torch_quantization = None torch_intrinsic = None from sparseml.optim import ModifierProp from sparseml.pytorch.optim.modifier import PyTorchModifierYAML, ScheduledModifier from sparseml.pytorch.utils import BaseLogger from sparseml.pytorch.utils.quantization import ( add_quant_dequant, fuse_module_conv_bn_relus, get_qat_qconfig, ) __all__ = [ "QuantizationModifier", ] @PyTorchModifierYAML() class QuantizationModifier(ScheduledModifier): """ Enables quantization aware training (QAT) for a given module or its submodules After the start epoch, the specified module(s)' forward pass will emulate quantized execution and the modifier will be enabled until training is completed. | Sample yaml: | !QuantizationModifier | start_epoch: 0.0 | submodules: ['blocks.0', 'blocks.2'] | model_fuse_fn_name: 'fuse_module' | disable_quantization_observer_epoch: 2.0 | freeze_bn_stats_epoch: 3.0 :param start_epoch: The epoch to start the modifier at :param submodules: List of submodule names to perform QAT on. Leave None to quantize entire model. Default is None :param model_fuse_fn_name: Name of model function to fuse the model in place prior to performing QAT. Set as 'no_fuse' to skip module fusing. Leave None to use the default function `sparseml.pytorch.utils.fuse_module_conv_bn_relus`. Default is None :param disable_quantization_observer_epoch: Epoch to disable updates to the module's quantization observers. After this point, quantized weights and zero points will not be updated. Leave None to not disable observers during QAT. Default is None :param freeze_bn_stats_epoch: Epoch to stop the tracking of batch norm stats. Leave None to not stop tracking batch norm stats during QAT. Default is None :param end_epoch: Disabled, setting to anything other than -1 will raise an exception. For compatibility with YAML serialization only. :param model_fuse_fn_kwargs: dictionary of keyword argument values to be passed to the model fusing function """ def __init__( self, start_epoch: float = -1.0, submodules: Union[List[str], None] = None, model_fuse_fn_name: Union[str, None] = None, disable_quantization_observer_epoch: Union[float, None] = None, freeze_bn_stats_epoch: Union[float, None] = None, end_epoch: float = -1, model_fuse_fn_kwargs: Dict[str, Any] = None, ): if torch_quantization is None or torch_intrinsic is None: raise RuntimeError( "Unable to import package torch.quantization and/or " "torch.nn.intrinsic. " "Try upgrading your PyTorch version to use the QuantizationModifier." ) if end_epoch != -1: raise ValueError( "end_epoch is disabled for QuantizationModifier and can only be set to" " -1. Given {}".format(end_epoch) ) super().__init__(start_epoch=start_epoch, end_epoch=-1.0, end_comparator=-1) self._start_epoch = start_epoch self._submodules = submodules self._model_fuse_fn_name = model_fuse_fn_name self._model_fuse_fn_kwargs = model_fuse_fn_kwargs or {} self._disable_quantization_observer_epoch = disable_quantization_observer_epoch self._freeze_bn_stats_epoch = freeze_bn_stats_epoch self._modules_to_quantize = None self._qat_enabled = False self._quantization_observer_disabled = False self._bn_stats_frozen = False if ( isinstance(self._model_fuse_fn_name, str) and self._model_fuse_fn_name.lower() == "none" ): self._model_fuse_fn_name = None if isinstance(self._submodules, list): self._submodules = set(self._submodules) self._validate_params() @ModifierProp() def submodules(self) -> Union[List[str], None]: """ :return: List of submodule names to perform QAT on. None quantizes the entire model """ return list(self._submodules) if self._submodules is not None else None @submodules.setter def submodules(self, value: Union[List[str], None]): """ :params value: List of submodule names to perform QAT on. Set None to quantize entire model """ self._submodules = value if isinstance(self._submodules, list): self._submodules = set(self._submodules) self._validate_params() @ModifierProp() def model_fuse_fn_name(self) -> Union[str, None]: """ :return: Name of model function to fuse the model in place prior to performing QAT. None to uses the default function `sparseml.pytorch.utils.fuse_module_conv_bn_relus`. """ return self._model_fuse_fn_name @model_fuse_fn_name.setter def model_fuse_fn_name(self, value: Union[str, None]): """ :params value: Name of model function to fuse the model in place prior to performing QAT. Set None to use the default function `sparseml.pytorch.utils.fuse_module_conv_bn_relus`. Set as 'no_fuse' to skip module fusing. """ self._model_fuse_fn_name = value if ( isinstance(self._model_fuse_fn_name, str) and self._model_fuse_fn_name.lower() == "none" ): self._model_fuse_fn_name = None self._validate_params() @ModifierProp() def disable_quantization_observer_epoch(self) -> Union[float, None]: """ :return: Epoch to disable updates to the module's quantization observers. After this point, quantized weights and zero points will not be updated. When None, observers never disabled during QAT """ return self._disable_quantization_observer_epoch @disable_quantization_observer_epoch.setter def disable_quantization_observer_epoch(self, value: Union[float, None]): """ :params value: Epoch to disable updates to the module's quantization observers. After this point, quantized weights and zero points will not be updated. Set None to not disable observers during QAT """ self._disable_quantization_observer_epoch = value self._validate_params() @ModifierProp() def freeze_bn_stats_epoch(self) -> Union[float, None]: """ :return: Epoch to stop the tracking of batch norm stats. When None, batch norm stats are track for all of training """ return self._freeze_bn_stats_epoch @freeze_bn_stats_epoch.setter def freeze_bn_stats_epoch(self, value: Union[float, None]): """ :params value: Epoch to stop the tracking of batch norm stats. Set None to not stop tracking batch norm stats during QAT """ self._freeze_bn_stats_epoch = value self._validate_params() def initialize( self, module: Module, epoch: float = 0, loggers: Optional[List[BaseLogger]] = None, **kwargs, ): """ Grab the module / submodule to perform QAT on :param module: the PyTorch model/module to modify :param epoch: The epoch to initialize the modifier and module at. Defaults to 0 (start of the training process) :param loggers: Optional list of loggers to log the modification process to :param kwargs: Optional kwargs to support specific arguments for individual modifiers. """ super().initialize(module, epoch, loggers, **kwargs) self._modules_to_quantize = [] if self._submodules is not None: found_submodules = [] for name, submodule in module.named_modules(): if name in self._submodules: self._modules_to_quantize.append(submodule) found_submodules.append(name) if not len(found_submodules) == len(self._submodules): raise RuntimeError( "Could not find all provided submodules to quantize" "given: {}, found: {}".format( list(self._submodules), found_submodules ) ) else: self._modules_to_quantize.append(module) self._check_quantization_update(module, epoch, steps_per_epoch=0) def finalize( self, module: Optional[Module] = None, reset_loggers: bool = True, **kwargs ): """ Cleans up any state :param module: The model/module to finalize the modifier for. Marked optional so state can still be cleaned up on delete, but generally should always be passed in. :param reset_loggers: True to remove any currently attached loggers (default), False to keep the loggers attached. :param kwargs: Optional kwargs to support specific arguments for individual modifiers. """ super().finalize(module, reset_loggers, **kwargs) self._modules_to_quantize = None def update( self, module: Module, optimizer: Optimizer, epoch: float, steps_per_epoch: int ): """ If start_pending(), fuses the model, sets the model quantization config, calls torch.quantization.prepare_qat on the model to begin QAT If end_pending(), updates the modules layers params to their original trainable state. :param module: module to modify :param optimizer: optimizer to modify :param epoch: current epoch and progress within the current epoch :param steps_per_epoch: number of steps taken within each epoch (calculate batch number using this and epoch) """ super().update(module, optimizer, epoch, steps_per_epoch) self._check_quantization_update(module, epoch, steps_per_epoch) def update_ready(self, epoch: float, steps_per_epoch: int) -> bool: """ :param epoch: current epoch and progress within the current epoch :param steps_per_epoch: number of steps taken within each epoch (calculate batch number using this and epoch) :return: True if the modifier is pending an update and update() should be called """ if not self._initialized: raise RuntimeError("modifier must be initialized first") if not self._enabled: return False pending = ( self.start_pending(epoch, steps_per_epoch) or self._disable_quantization_observer_update_ready(epoch) or self._freeze_bn_stats_update_ready(epoch) ) return pending def _check_quantization_update( self, module: Module, epoch: float, steps_per_epoch: int ): if self.start_pending(epoch, steps_per_epoch) and not self._qat_enabled: self._enable_module_qat(module) if self._disable_quantization_observer_update_ready(epoch): for quant_module in self._modules_to_quantize: quant_module.apply(torch_quantization.disable_observer) self._quantization_observer_disabled = True if self._freeze_bn_stats_update_ready(epoch): for quant_module in self._modules_to_quantize: quant_module.apply(torch_intrinsic.qat.freeze_bn_stats) self._bn_stats_frozen = True def _enable_module_qat(self, module: Module): # fuse module Conv-BNs if ( self._model_fuse_fn_name is not None and self._model_fuse_fn_name != "no_fuse" ): # module class fn module_fuse_fn = getattr(module, self._model_fuse_fn_name, None) if module_fuse_fn is None or not callable(module_fuse_fn): raise ValueError( "Invalid model_fuse_fn_name. " "Module has no callable function {}".format( self._model_fuse_fn_name ) ) module_fuse_fn(**self._model_fuse_fn_kwargs) elif self._model_fuse_fn_name is None: # default auto fn self._model_fuse_fn_kwargs["inplace"] = True fuse_module_conv_bn_relus(module, **self._model_fuse_fn_kwargs) # prepare each module / submodule for quantization qconfig = get_qat_qconfig() for quant_module in self._modules_to_quantize: # set quantization config (asymmetric activations, symmetric weights) quant_module.qconfig = qconfig # wrap all conv / linear blocks in with quantization observers torch_quantization.propagate_qconfig_(quant_module) add_quant_dequant(quant_module) # set model to QAT mode torch_quantization.prepare_qat(quant_module, inplace=True) self._qat_enabled = True def _disable_quantization_observer_update_ready(self, epoch: float) -> bool: return ( self._disable_quantization_observer_epoch is not None and epoch >= self._disable_quantization_observer_epoch and not self._quantization_observer_disabled ) def _freeze_bn_stats_update_ready(self, epoch: float) -> bool: return ( self._freeze_bn_stats_epoch is not None and epoch >= self._freeze_bn_stats_epoch and not self._bn_stats_frozen ) def _validate_params(self): if ( self._disable_quantization_observer_epoch is not None and self._disable_quantization_observer_epoch < self._start_epoch ): raise ValueError( f"disable_quantization_observer_epoch may not be greater than " f"start_epoch for QuantizationModifier, received: " f"{self._disable_quantization_observer_epoch} with start_epoch " f"{self._start_epoch}" ) if ( self._freeze_bn_stats_epoch is not None and self._freeze_bn_stats_epoch < self._start_epoch ): raise ValueError( "freeze_bn_stats_epoch may not be greater than start_epoch" " for QuantizationModifier, received: {} with start_epoch {}".format( self._freeze_bn_stats_epoch, self._start_epoch ) )
40.352332
88
0.657935
4a264d7376edb50f9a137afdcee090824e6397da
2,496
py
Python
moocng/decorators.py
OpenMOOC/moocng
1e3dafb84aa1838c881df0c9bcca069e47c7f52d
[ "Apache-2.0" ]
36
2015-01-10T06:00:36.000Z
2020-03-19T10:06:59.000Z
moocng/decorators.py
OpenMOOC/moocng
1e3dafb84aa1838c881df0c9bcca069e47c7f52d
[ "Apache-2.0" ]
3
2015-10-01T17:59:32.000Z
2018-09-04T03:32:17.000Z
moocng/decorators.py
OpenMOOC/moocng
1e3dafb84aa1838c881df0c9bcca069e47c7f52d
[ "Apache-2.0" ]
17
2015-01-13T03:46:58.000Z
2020-07-05T06:29:51.000Z
# -*- coding: utf-8 -*- # Copyright 2012-2013 UNED # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import urlparse from functools import wraps from django.conf import settings from django.contrib.auth import REDIRECT_FIELD_NAME from django.contrib.auth.views import redirect_to_login from django.core.exceptions import PermissionDenied from django.utils.decorators import available_attrs def user_passes_test(test_func, login_url=None, redirect_field_name=REDIRECT_FIELD_NAME): """Saner version of django.contrib.auth.decorators.user_passes_test. The problem with Django's version of this function is that if the user does not pass the test it get redirected to the LOGIN_URL, even if he is already logged in. In this later case, he should get a Forbidden (403) error instead. """ def decorator(view_func): @wraps(view_func, assigned=available_attrs(view_func)) def _wrapped_view(request, *args, **kwargs): if test_func(request.user): return view_func(request, *args, **kwargs) # This is different from the Django version # if the user is already logged in, we return a 403 error response if request.user.is_authenticated(): raise PermissionDenied path = request.build_absolute_uri() # If the login url is the same scheme and net location then just # use the path as the "next" url. login_scheme, login_netloc = urlparse.urlparse(login_url or settings.LOGIN_URL)[:2] current_scheme, current_netloc = urlparse.urlparse(path)[:2] if ((not login_scheme or login_scheme == current_scheme) and (not login_netloc or login_netloc == current_netloc)): path = request.get_full_path() return redirect_to_login(path, login_url, redirect_field_name) return _wrapped_view return decorator
43.034483
89
0.692708
4a264fb00faf3418a333ea50aa3e6ba3019b7a1b
2,602
py
Python
src/dynamic-route-agent/dra/introspect_service.py
khappucino/global-traffic-management
81a80ae86c9119066c92df0727554cb5b61f9899
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/dynamic-route-agent/dra/introspect_service.py
khappucino/global-traffic-management
81a80ae86c9119066c92df0727554cb5b61f9899
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/dynamic-route-agent/dra/introspect_service.py
khappucino/global-traffic-management
81a80ae86c9119066c92df0727554cb5b61f9899
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright (C) 2018 Nordstrom, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import requests from .constants import MESSAGE AWS_METADATA_URI = 'http://169.254.169.254/latest/dynamic/instance-identity/document' ACCOUNT_ID_KEY = 'accountId' class Introspect_Service: """ This class is used to fetch the account_id that the this instance is running in """ def __init__(self, requests_service, logger, call_timeout): self.requests_service = requests_service self.logger = logger self.call_timeout = call_timeout def get_account_id(self): result = None try: req = self.requests_service.get(AWS_METADATA_URI, timeout=self.call_timeout) if req.status_code == 200: json_payload = req.json() if ACCOUNT_ID_KEY in json_payload: result = json_payload[ACCOUNT_ID_KEY] else: if self.logger is not None: log_val = 'there was a Request Non-200 issue with the introspecting accountId' self.logger.info({MESSAGE:log_val}) except self.requests_service.exceptions.RequestException as e: if self.logger is not None: log_val = 'there was a RequestException issue with the introspecting accountId' self.logger.info({MESSAGE:log_val}) except ValueError: if self.logger is not None: log_val = 'there was a ValueError issue with the introspecting accountId' self.logger.info({MESSAGE:log_val}) except: if self.logger is not None: e = sys.exc_info()[0] log_val = 'there was a Generic Excedption %s issue with the introspecting accountId' % (e) self.logger.info({MESSAGE:log_val}) finally: return result #------------------------------ # Built in helpful test drive #------------------------------ if __name__ == "__main__": subject = Introspect_Service(requests, None, 5) print(subject.get_account_id())
39.424242
106
0.642198
4a26507f0088ee524235e93e4e971112fb3d2911
600
py
Python
api/filters.py
amirh-moshfeghi/kudo_cards
65167e1d09051bc6172e07b01c40ea2765b5a277
[ "Linux-OpenIB" ]
null
null
null
api/filters.py
amirh-moshfeghi/kudo_cards
65167e1d09051bc6172e07b01c40ea2765b5a277
[ "Linux-OpenIB" ]
null
null
null
api/filters.py
amirh-moshfeghi/kudo_cards
65167e1d09051bc6172e07b01c40ea2765b5a277
[ "Linux-OpenIB" ]
null
null
null
from django_filters import rest_framework as filters from .models import Kudo # We create filters for each field we want to be able to filter on class KudoFilter(filters.FilterSet): title = filters.CharFilter(lookup_expr='icontains') year = filters.NumberFilter() year__gt = filters.NumberFilter(field_name='year', lookup_expr='gt') year__lt = filters.NumberFilter(field_name='year', lookup_expr='lt') creator__email = filters.CharFilter(lookup_expr='icontains') class Meta: model = Kudo fields = ['title', 'year', 'year__gt', 'year__lt', 'creator__email']
37.5
76
0.726667
4a26515272d21dfbb96b944f42a77d9f57f5b8cf
1,790
py
Python
var/spack/repos/builtin/packages/libspatialite/package.py
klevzoff/spack
396936d24173254ecf4148bc460702185e4c99e5
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2
2019-02-10T13:47:48.000Z
2019-04-17T13:05:17.000Z
var/spack/repos/builtin/packages/libspatialite/package.py
klevzoff/spack
396936d24173254ecf4148bc460702185e4c99e5
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
17
2019-03-21T15:54:00.000Z
2022-03-29T19:34:28.000Z
var/spack/repos/builtin/packages/libspatialite/package.py
Kerilk/spack
e027942b55407a4a5fe323b93d8e57200c873a43
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2
2018-04-06T09:04:11.000Z
2020-01-24T12:52:12.000Z
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import os from spack import * class Libspatialite(AutotoolsPackage): """SpatiaLite is an open source library intended to extend the SQLite core to support fully fledged Spatial SQL capabilities.""" homepage = "http://www.gaia-gis.it" url = "http://www.gaia-gis.it/gaia-sins/libspatialite-sources/libspatialite-4.3.0a.tar.gz" manual_download = True version('5.0.0', preferred=True, sha256='7b7fd70243f5a0b175696d87c46dde0ace030eacc27f39241c24bac5dfac6dac') # Must download manually from: # https://www.gaia-gis.it/fossil/libspatialite/info/c7f67038bf06d98d # For instructions on the file:// below.. # https://github.com/spack/spack/issues/2489 version('5.0.0.2.c7f67038bf', sha256='f8100f71b769c7db066c6f938af6b00e920e4b90ac14c00a4f3ed7171565caab', url="file://%s/SpatiaLite-c7f67038bf.tar.gz" % os.getcwd()) version('5.0.0-beta0', sha256='caacf5378a5cfab9b8e98bb361e2b592e714e21f5c152b795df80d0ab1da1c42') version('4.3.0a', sha256='88900030a4762904a7880273f292e5e8ca6b15b7c6c3fb88ffa9e67ee8a5a499') version('3.0.1', sha256='4983d6584069fd5ff0cfcccccee1015088dab2db177c0dc7050ce8306b68f8e6') depends_on('pkgconfig', type='build') depends_on('sqlite+rtree') depends_on('proj@:5', when='@:4.999.999') # PROJ.6 is OK w/ newer versions # https://www.gaia-gis.it/fossil/libspatialite/wiki?name=PROJ.6 depends_on('proj') depends_on('geos') depends_on('freexl') depends_on('iconv') depends_on('libxml2') depends_on('minizip', when='@5.0.0:')
41.627907
111
0.718994
4a2651957a34fe8f8f4c453104b8270818a266ee
13,026
py
Python
official/cv/yolov3_resnet18/src/dataset.py
mindspore-ai/models
9127b128e2961fd698977e918861dadfad00a44c
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
official/cv/yolov3_resnet18/src/dataset.py
mindspore-ai/models
9127b128e2961fd698977e918861dadfad00a44c
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
official/cv/yolov3_resnet18/src/dataset.py
mindspore-ai/models
9127b128e2961fd698977e918861dadfad00a44c
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """YOLOv3 dataset""" from __future__ import division import os import platform import numpy as np from PIL import Image import mindspore.dataset as de from mindspore.mindrecord import FileWriter import mindspore.dataset.vision.c_transforms as C from src.config import ConfigYOLOV3ResNet18 iter_cnt = 0 _NUM_BOXES = 50 def preprocess_fn(image, box, is_training): """Preprocess function for dataset.""" config_anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 163, 326] anchors = np.array([float(x) for x in config_anchors]).reshape(-1, 2) max_boxes = 20 num_classes = ConfigYOLOV3ResNet18.num_classes def _preprocess_true_boxes(true_boxes, anchors, in_shape=None): """Get true boxes.""" num_layers = anchors.shape[0] // 3 anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] true_boxes = np.array(true_boxes, dtype='float32') input_shape = np.array(in_shape, dtype='int32') boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2. boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2] true_boxes[..., 0:2] = boxes_xy / input_shape[::-1] true_boxes[..., 2:4] = boxes_wh / input_shape[::-1] grid_shapes = [input_shape // 32, input_shape // 16, input_shape // 8] y_true = [np.zeros((grid_shapes[l][0], grid_shapes[l][1], len(anchor_mask[l]), 5 + num_classes), dtype='float32') for l in range(num_layers)] anchors = np.expand_dims(anchors, 0) anchors_max = anchors / 2. anchors_min = -anchors_max valid_mask = boxes_wh[..., 0] >= 1 wh = boxes_wh[valid_mask] if len(wh) >= 1: wh = np.expand_dims(wh, -2) boxes_max = wh / 2. boxes_min = -boxes_max intersect_min = np.maximum(boxes_min, anchors_min) intersect_max = np.minimum(boxes_max, anchors_max) intersect_wh = np.maximum(intersect_max - intersect_min, 0.) intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1] box_area = wh[..., 0] * wh[..., 1] anchor_area = anchors[..., 0] * anchors[..., 1] iou = intersect_area / (box_area + anchor_area - intersect_area) best_anchor = np.argmax(iou, axis=-1) for t, n in enumerate(best_anchor): for l in range(num_layers): if n in anchor_mask[l]: i = np.floor(true_boxes[t, 0] * grid_shapes[l][1]).astype('int32') j = np.floor(true_boxes[t, 1] * grid_shapes[l][0]).astype('int32') k = anchor_mask[l].index(n) c = true_boxes[t, 4].astype('int32') y_true[l][j, i, k, 0:4] = true_boxes[t, 0:4] y_true[l][j, i, k, 4] = 1. y_true[l][j, i, k, 5 + c] = 1. pad_gt_box0 = np.zeros(shape=[50, 4], dtype=np.float32) pad_gt_box1 = np.zeros(shape=[50, 4], dtype=np.float32) pad_gt_box2 = np.zeros(shape=[50, 4], dtype=np.float32) mask0 = np.reshape(y_true[0][..., 4:5], [-1]) gt_box0 = np.reshape(y_true[0][..., 0:4], [-1, 4]) gt_box0 = gt_box0[mask0 == 1] pad_gt_box0[:gt_box0.shape[0]] = gt_box0 mask1 = np.reshape(y_true[1][..., 4:5], [-1]) gt_box1 = np.reshape(y_true[1][..., 0:4], [-1, 4]) gt_box1 = gt_box1[mask1 == 1] pad_gt_box1[:gt_box1.shape[0]] = gt_box1 mask2 = np.reshape(y_true[2][..., 4:5], [-1]) gt_box2 = np.reshape(y_true[2][..., 0:4], [-1, 4]) gt_box2 = gt_box2[mask2 == 1] pad_gt_box2[:gt_box2.shape[0]] = gt_box2 return y_true[0], y_true[1], y_true[2], pad_gt_box0, pad_gt_box1, pad_gt_box2 def _infer_data(img_data, input_shape, box): w, h = img_data.size input_h, input_w = input_shape scale = min(float(input_w) / float(w), float(input_h) / float(h)) nw = int(w * scale) nh = int(h * scale) img_data = img_data.resize((nw, nh), Image.BICUBIC) new_image = np.zeros((input_h, input_w, 3), np.float32) new_image.fill(128) img_data = np.array(img_data) if len(img_data.shape) == 2: img_data = np.expand_dims(img_data, axis=-1) img_data = np.concatenate([img_data, img_data, img_data], axis=-1) dh = int((input_h - nh) / 2) dw = int((input_w - nw) / 2) new_image[dh:(nh + dh), dw:(nw + dw), :] = img_data new_image /= 255. new_image = np.transpose(new_image, (2, 0, 1)) new_image = np.expand_dims(new_image, 0) return new_image, np.array([h, w], np.float32), box def _data_aug(image, box, is_training, jitter=0.3, hue=0.1, sat=1.5, val=1.5, image_size=(352, 640)): """Data augmentation function.""" if not isinstance(image, Image.Image): image = Image.fromarray(image) iw, ih = image.size ori_image_shape = np.array([ih, iw], np.int32) h, w = image_size if not is_training: return _infer_data(image, image_size, box) flip = np.random.rand() < 0.5 # correct boxes box_data = np.zeros((max_boxes, 5)) while True: # Prevent the situation that all boxes are eliminated new_ar = float(w) / float(h) * np.random.uniform(1 - jitter, 1 + jitter) / \ np.random.uniform(1 - jitter, 1 + jitter) scale = np.random.uniform(0.25, 2) if new_ar < 1: nh = int(scale * h) nw = int(nh * new_ar) else: nw = int(scale * w) nh = int(nw / new_ar) dx = int(np.random.uniform(0, w - nw)) dy = int(np.random.uniform(0, h - nh)) if len(box) >= 1: t_box = box.copy() np.random.shuffle(t_box) t_box[:, [0, 2]] = t_box[:, [0, 2]] * float(nw) / float(iw) + dx t_box[:, [1, 3]] = t_box[:, [1, 3]] * float(nh) / float(ih) + dy if flip: t_box[:, [0, 2]] = w - t_box[:, [2, 0]] t_box[:, 0:2][t_box[:, 0:2] < 0] = 0 t_box[:, 2][t_box[:, 2] > w] = w t_box[:, 3][t_box[:, 3] > h] = h box_w = t_box[:, 2] - t_box[:, 0] box_h = t_box[:, 3] - t_box[:, 1] t_box = t_box[np.logical_and(box_w > 1, box_h > 1)] # discard invalid box if len(t_box) >= 1: box = t_box break box_data[:len(box)] = box # resize image image = image.resize((nw, nh), Image.BICUBIC) # place image new_image = Image.new('RGB', (w, h), (128, 128, 128)) new_image.paste(image, (dx, dy)) image = new_image # flip image or not if flip: image = image.transpose(Image.FLIP_LEFT_RIGHT) # convert image to gray or not if np.random.rand() < 0.25: image = image.convert('L').convert('RGB') # when the channels of image is 1 image = np.array(image) if len(image.shape) == 2: image = np.expand_dims(image, axis=-1) image = np.concatenate([image, image, image], axis=-1) # distort image image_data = image.astype(np.float32) / 255. # preprocess bounding boxes bbox_true_1, bbox_true_2, bbox_true_3, gt_box1, gt_box2, gt_box3 = \ _preprocess_true_boxes(box_data, anchors, image_size) return image_data, bbox_true_1, bbox_true_2, bbox_true_3, \ ori_image_shape, gt_box1, gt_box2, gt_box3 if is_training: images, bbox_1, bbox_2, bbox_3, _, gt_box1, gt_box2, gt_box3 = _data_aug(image, box, is_training) return images, bbox_1, bbox_2, bbox_3, gt_box1, gt_box2, gt_box3 images, shape, anno = _data_aug(image, box, is_training) return images, shape, anno def anno_parser(annos_str): """Parse annotation from string to list.""" annos = [] for anno_str in annos_str: anno = list(map(int, anno_str.strip().split(','))) annos.append(anno) return annos def filter_valid_data(image_dir, anno_path): """Filter valid image file, which both in image_dir and anno_path.""" image_files = [] image_anno_dict = {} if not os.path.isdir(image_dir): raise RuntimeError("Path given is not valid.") if not os.path.isfile(anno_path): raise RuntimeError("Annotation file is not valid.") with open(anno_path, "rb") as f: lines = f.readlines() for line in lines: line_str = line.decode("utf-8").strip() line_split = str(line_str).split(' ') file_name = line_split[0] if os.path.isfile(os.path.join(image_dir, file_name)): image_anno_dict[file_name] = anno_parser(line_split[1:]) image_files.append(file_name) else: raise ValueError("there is no file {}, it is construct by parameter " "image_dir:{} and first field in file {} every " "line, please check them.".format(os.path.join(image_dir, file_name), image_dir, anno_path)) return image_files, image_anno_dict def data_to_mindrecord_byte_image(image_dir, anno_path, mindrecord_dir, prefix, file_num): """Create MindRecord file by image_dir and anno_path.""" mindrecord_path = os.path.join(mindrecord_dir, prefix) writer = FileWriter(mindrecord_path, file_num) image_files, image_anno_dict = filter_valid_data(image_dir, anno_path) yolo_json = { "image": {"type": "bytes"}, "annotation": {"type": "int64", "shape": [-1, 5]}, } writer.add_schema(yolo_json, "yolo_json") for image_name in image_files: image_path = os.path.join(image_dir, image_name) with open(image_path, 'rb') as f: img = f.read() annos = np.array(image_anno_dict[image_name]) row = {"image": img, "annotation": annos} writer.write_raw_data([row]) writer.commit() def create_yolo_dataset(mindrecord_dir, batch_size=32, device_num=1, rank=0, is_training=True, num_parallel_workers=8): """Create YOLOv3 dataset with MindDataset.""" de.config.set_prefetch_size(64) if "x86" in platform.machine(): ds = de.MindDataset(mindrecord_dir, columns_list=["image", "annotation"], num_shards=device_num, shard_id=rank, num_parallel_workers=num_parallel_workers, shuffle=is_training) else: ds = de.MindDataset(mindrecord_dir, columns_list=["image", "annotation"], num_shards=device_num, shard_id=rank, num_parallel_workers=2, shuffle=is_training) decode = C.Decode() if "x86" in platform.machine(): ds = ds.map(operations=decode, input_columns=["image"], num_parallel_workers=num_parallel_workers) else: ds = ds.map(operations=decode, input_columns=["image"], num_parallel_workers=1) compose_map_func = (lambda image, annotation: preprocess_fn(image, annotation, is_training)) if is_training: hwc_to_chw = C.HWC2CHW() ds = ds.map(operations=compose_map_func, input_columns=["image", "annotation"], output_columns=["image", "bbox_1", "bbox_2", "bbox_3", "gt_box1", "gt_box2", "gt_box3"], column_order=["image", "bbox_1", "bbox_2", "bbox_3", "gt_box1", "gt_box2", "gt_box3"], num_parallel_workers=num_parallel_workers) if "x86" in platform.machine(): ds = ds.map(operations=hwc_to_chw, input_columns=["image"], num_parallel_workers=num_parallel_workers) else: ds = ds.map(operations=hwc_to_chw, input_columns=["image"], num_parallel_workers=1) ds = ds.batch(batch_size, drop_remainder=True) else: ds = ds.map(operations=compose_map_func, input_columns=["image", "annotation"], output_columns=["image", "image_shape", "annotation"], column_order=["image", "image_shape", "annotation"], num_parallel_workers=num_parallel_workers) return ds
41.75
119
0.578689
4a2651e26a1ed7e60e02b74322d46aeb196b03c2
7,084
py
Python
examples/heat-source-mpi.py
jlevine18/mirgecom
e044197cf1535a2e9742b7d97b91be4eba98db2c
[ "MIT" ]
null
null
null
examples/heat-source-mpi.py
jlevine18/mirgecom
e044197cf1535a2e9742b7d97b91be4eba98db2c
[ "MIT" ]
1
2021-08-11T16:21:21.000Z
2021-08-11T16:21:21.000Z
examples/heat-source-mpi.py
dshtey2/mirgecom
5089accba9f7954ca426ee5b3bd97c511e4f6861
[ "MIT" ]
null
null
null
"""Demonstrate heat source example.""" __copyright__ = "Copyright (C) 2020 University of Illinois Board of Trustees" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging import numpy as np import numpy.linalg as la # noqa import pyopencl as cl from meshmode.array_context import ( PyOpenCLArrayContext, PytatoPyOpenCLArrayContext ) from mirgecom.profiling import PyOpenCLProfilingArrayContext from meshmode.mesh import BTAG_ALL, BTAG_NONE # noqa from grudge.eager import EagerDGDiscretization from grudge.shortcuts import make_visualizer from grudge.dof_desc import DISCR_TAG_BASE, DTAG_BOUNDARY from mirgecom.integrators import rk4_step from mirgecom.diffusion import ( diffusion_operator, DirichletDiffusionBoundary, NeumannDiffusionBoundary) from mirgecom.mpi import mpi_entry_point import pyopencl.tools as cl_tools from mirgecom.logging_quantities import (initialize_logmgr, logmgr_add_device_name, logmgr_add_device_memory_usage) from logpyle import IntervalTimer, set_dt @mpi_entry_point def main(ctx_factory=cl.create_some_context, use_logmgr=True, use_leap=False, use_profiling=False, casename=None, rst_filename=None, actx_class=PyOpenCLArrayContext): """Run the example.""" cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) from mpi4py import MPI comm = MPI.COMM_WORLD num_parts = comm.Get_size() logmgr = initialize_logmgr(use_logmgr, filename="heat-source.sqlite", mode="wu", mpi_comm=comm) if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) else: queue = cl.CommandQueue(cl_ctx) actx = actx_class( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))) from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis mesh_dist = MPIMeshDistributor(comm) dim = 2 nel_1d = 16 t = 0 t_final = 0.01 istep = 0 if mesh_dist.is_mananger_rank(): from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=(-0.5,)*dim, b=(0.5,)*dim, nelements_per_axis=(nel_1d,)*dim, boundary_tag_to_face={ "dirichlet": ["+x", "-x"], "neumann": ["+y", "-y"] } ) print("%d elements" % mesh.nelements) part_per_element = get_partition_by_pymetis(mesh, num_parts) local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts) del mesh else: local_mesh = mesh_dist.receive_mesh_part() order = 3 discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) if dim == 2: # no deep meaning here, just a fudge factor dt = 0.0025/(nel_1d*order**2) else: raise ValueError("don't have a stable time step guesstimate") source_width = 0.2 from meshmode.array_context import thaw nodes = thaw(actx, discr.nodes()) boundaries = { DTAG_BOUNDARY("dirichlet"): DirichletDiffusionBoundary(0.), DTAG_BOUNDARY("neumann"): NeumannDiffusionBoundary(0.) } u = discr.zeros(actx) if logmgr: logmgr_add_device_name(logmgr, queue) logmgr_add_device_memory_usage(logmgr, queue) logmgr.add_watches(["step.max", "t_step.max", "t_log.max"]) try: logmgr.add_watches(["memory_usage_python.max", "memory_usage_gpu.max"]) except KeyError: pass if use_profiling: logmgr.add_watches(["multiply_time.max"]) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) vis = make_visualizer(discr) def rhs(t, u): return ( diffusion_operator( discr, quad_tag=DISCR_TAG_BASE, alpha=1, boundaries=boundaries, u=u) + actx.np.exp(-np.dot(nodes, nodes)/source_width**2)) rank = comm.Get_rank() while t < t_final: if logmgr: logmgr.tick_before() if istep % 10 == 0: print(istep, t, discr.norm(u)) vis.write_vtk_file("fld-heat-source-mpi-%03d-%04d.vtu" % (rank, istep), [ ("u", u) ]) u = rk4_step(u, t, dt, rhs) t += dt istep += 1 if logmgr: set_dt(logmgr, dt) logmgr.tick_after() if __name__ == "__main__": import argparse casename = "heat-source" parser = argparse.ArgumentParser(description=f"MIRGE-Com Example: {casename}") parser.add_argument("--lazy", action="store_true", help="switch to a lazy computation mode") parser.add_argument("--profiling", action="store_true", help="turn on detailed performance profiling") parser.add_argument("--log", action="store_true", default=True, help="turn on logging") parser.add_argument("--leap", action="store_true", help="use leap timestepper") parser.add_argument("--restart_file", help="root name of restart file") parser.add_argument("--casename", help="casename to use for i/o") args = parser.parse_args() if args.profiling: if args.lazy: raise ValueError("Can't use lazy and profiling together.") actx_class = PyOpenCLProfilingArrayContext else: actx_class = PytatoPyOpenCLArrayContext if args.lazy \ else PyOpenCLArrayContext logging.basicConfig(format="%(message)s", level=logging.INFO) if args.casename: casename = args.casename rst_filename = None if args.restart_file: rst_filename = args.restart_file main(use_logmgr=args.log, use_leap=args.leap, use_profiling=args.profiling, casename=casename, rst_filename=rst_filename, actx_class=actx_class) # vim: foldmethod=marker
32.347032
83
0.669819
4a26525ac2a0772d60cb0154c6a730eb29336e96
10,931
py
Python
im2txt/tf_cider.py
wangheda/ImageCaption-UnderFitting
ca98807d3a35a40a35446678d7e7b43242767a63
[ "Apache-2.0" ]
8
2018-05-08T12:29:56.000Z
2021-04-07T03:11:32.000Z
im2txt/tf_cider.py
wangheda/ImageCaption-UnderFitting
ca98807d3a35a40a35446678d7e7b43242767a63
[ "Apache-2.0" ]
null
null
null
im2txt/tf_cider.py
wangheda/ImageCaption-UnderFitting
ca98807d3a35a40a35446678d7e7b43242767a63
[ "Apache-2.0" ]
4
2017-12-22T02:10:38.000Z
2021-04-07T03:12:24.000Z
import json import tensorflow as tf import numpy as np import sys tf.flags.DEFINE_integer("max_vocab_size", 10000, "Don't change this.") tf.flags.DEFINE_string("document_frequency_file", "data/document_frequency.json", "File containing the document frequency infos.") FLAGS = tf.app.flags.FLAGS LOG_TENSOR = True def log_tensor(name, g=None, l=None): if LOG_TENSOR: if g is None and l is None: print >> sys.stderr, name, eval(name, {"self":self}) else: print >> sys.stderr, name, eval(name, g, l) def get_rank(tensor): return len(get_shape_as_list(tensor)) def get_shape_as_list(tensor): return tensor.get_shape().as_list() def get_shape(tensor): """Returns static shape if available and dynamic shape otherwise.""" static_shape = tensor.shape.as_list() dynamic_shape = tf.unstack(tf.shape(tensor)) dims = [s[1] if s[0] is None else s[0] for s in zip(static_shape, dynamic_shape)] return dims def get_real_lengths(words, lengths): # t should be rank 3 batch, num_refs, max_length = words.get_shape().as_list() mask = tf.reshape(tf.sequence_mask(tf.reshape(lengths, [-1]), maxlen=max_length), shape=[batch, num_refs, max_length]) num_end_tokens = tf.reduce_sum(tf.cast(tf.logical_and(tf.equal(words, FLAGS.end_token), mask), dtype=tf.int64), axis=-1) lengths = tf.maximum(lengths - num_end_tokens, 0) return lengths class CiderScorer(object): def __init__(self): with open(FLAGS.document_frequency_file, 'r') as f: df_data = json.load(f) df_keys = df_data['df_keys'] df_values = df_data['df_values'] ref_len = df_data['ref_len'] self.df_table = tf.contrib.lookup.HashTable( tf.contrib.lookup.KeyValueTensorInitializer( df_keys, df_values, key_dtype=tf.int64, value_dtype=tf.float32), default_value = 0.0) self.ref_len = tf.constant(ref_len) def score(self, hyp_words, hyp_lengths, ref_words, ref_lengths, sigma=6.0): """ parameters hyp_words: [batch, hyp_length] hyp_lengths: [batch] ref_words: [batch, num_refs, hyp_length] ref_lengths: [batch, num_refs] return score: [batch] """ hyp_words = tf.cast(hyp_words, dtype=tf.int64) ref_words = tf.cast(ref_words, dtype=tf.int64) hyp_lengths = tf.cast(hyp_lengths, dtype=tf.int64) ref_lengths = tf.cast(ref_lengths, dtype=tf.int64) if get_rank(hyp_words) == 2: hyp_words = tf.expand_dims(hyp_words, axis=1) hyp_lengths = tf.expand_dims(hyp_lengths, axis=1) if get_rank(ref_words) == 2: ref_words = tf.expand_dims(ref_words, axis=1) ref_lengths = tf.expand_dims(ref_lengths, axis=1) hyp_lengths = get_real_lengths(hyp_words, hyp_lengths) ref_lengths = get_real_lengths(ref_words, ref_lengths) log_tensor("hyp_words", l=locals()) log_tensor("hyp_lengths", l=locals()) log_tensor("ref_words", l=locals()) log_tensor("ref_lengths", l=locals()) def ngram_count(words, lengths, n=4): shape = words.get_shape().as_list() if len(shape) == 3: batch, num_sents, max_length = shape else: raise NotImplementedError("tensor must be of rank 3") tmp_ngrams = [] tmp_lengths = [] tmp_shifted = [] words_idx = words + 1 log_tensor("words_idx", l=locals()) for i in range(n): weights = [FLAGS.max_vocab_size**k for k in range(i,-1,-1)] if i == 0: tmp_shifted.append(words_idx) else: tmp_shifted.append(tf.concat([words_idx[:,:,i:], tf.constant(0, dtype=tf.int64, shape=[batch,num_sents,i])], axis=-1)) tmp_ngram = tf.add_n([x*y for x,y in zip(tmp_shifted, weights)]) log_tensor("tmp_ngram", l=locals()) tmp_ngrams.append(tmp_ngram) # n-gram ids tmp_lengths.append(tf.maximum(lengths-i, 0)) # bi-gram ids are shorther by 1, etc tmp_ngrams = tf.stack(tmp_ngrams, axis=2) tmp_lengths = tf.stack(tmp_lengths, axis=2) log_tensor("tmp_ngrams", l=locals()) log_tensor("tmp_lengths", l=locals()) return tmp_ngrams, tmp_lengths def compute_vec_norm_and_freq(ngrams, ngram_lengths): """ parameters ngrams : [batch, num_sents, n, max_length] ngram_lengths : [batch, num_sents, n] return vec : [batch, num_sents, n, max_length] tfidf values of every ngram norm : [batch, num_sents, n] text_freq : [batch, num_sents, n, max_length] """ shape = ngrams.get_shape().as_list() batch, num_sents, n, max_length = shape mask = tf.reshape( tf.sequence_mask( tf.reshape(ngram_lengths, shape=[-1]), maxlen=max_length), shape=[batch, num_sents, n, max_length]) float_mask = tf.cast(mask, dtype=tf.float32) square_masks = tf.reshape(float_mask, shape=[batch, num_sents, n, max_length, 1]) \ * tf.reshape(float_mask, shape=[batch, num_sents, n, 1, max_length]) tmp1_ngrams = tf.reshape(ngrams, shape=[batch, num_sents, n, 1, max_length]) tmp2_ngrams = tf.reshape(ngrams, shape=[batch, num_sents, n, max_length, 1]) tmp12_equal = tf.cast(tf.equal(tmp1_ngrams, tmp2_ngrams), dtype=tf.float32) text_freq = tf.reduce_sum(tmp12_equal * square_masks, axis=-1) doc_freq = self.df_table.lookup(ngrams) df_values = tf.log(tf.maximum(doc_freq, 1.0)) tf.summary.histogram("cider/document_freq", doc_freq) tf.summary.histogram("cider/text_freq", text_freq) tf.summary.histogram("cider/df_values", df_values) vec = text_freq * tf.maximum(self.ref_len - df_values, 0.0) norm = tf.reduce_sum(vec * vec * float_mask / (text_freq + 1e-12), axis=-1) norm = tf.sqrt(norm) tf.summary.histogram("cider/vec", vec) tf.summary.histogram("cider/norm", norm) return vec, norm, text_freq def sim(hyp_vec, hyp_norm, hyp_tf, hyp_lengths, hyp_ngrams, hyp_ngram_lengths, ref_vec, ref_norm, ref_tf, ref_lengths, ref_ngrams, ref_ngram_lengths, sigma=6.0): """ parameters vec : [batch, num_sents, n, max_length] tfidf values of every ngram norm : [batch, num_sents, n] tf : [batch, num_sents, n, max_length] lengths : [batch, num_sents, n] ngrams : [batch, num_sents, n, max_length] ngram_lengths : [batch, num_sents, n] return score : [batch] """ batch, num_sents, n, max_hyp_length = hyp_vec.get_shape().as_list() _, _, _, max_ref_length = ref_vec.get_shape().as_list() log_tensor("hyp_vec", l=locals()) log_tensor("hyp_norm", l=locals()) log_tensor("hyp_ngrams", l=locals()) log_tensor("hyp_ngram_lengths", l=locals()) log_tensor("ref_vec", l=locals()) log_tensor("ref_norm", l=locals()) log_tensor("ref_ngrams", l=locals()) log_tensor("ref_ngram_lengths", l=locals()) delta = tf.cast(hyp_lengths - ref_lengths, tf.float32) log_tensor("delta", l=locals()) ref_masks = tf.cast(tf.reshape( tf.sequence_mask( tf.reshape(ref_ngram_lengths, shape=[-1]), maxlen=max_ref_length), shape=[batch, num_sents, n, max_ref_length]), dtype=tf.float32) hyp_masks = tf.cast(tf.reshape( tf.sequence_mask( tf.reshape(hyp_ngram_lengths, shape=[-1]), maxlen=max_hyp_length), shape=[batch, num_sents, n, max_hyp_length]), dtype=tf.float32) square_masks = tf.reshape(hyp_masks, shape=[batch, num_sents, n, max_hyp_length, 1]) \ * tf.reshape(ref_masks, shape=[batch, num_sents, n, 1, max_ref_length]) freq_masks = tf.reshape(hyp_tf, shape=[batch, num_sents, n, max_hyp_length, 1]) \ * tf.reshape(ref_tf, shape=[batch, num_sents, n, 1, max_ref_length]) equal_masks = tf.cast(tf.equal( tf.reshape(hyp_ngrams, shape=[batch, num_sents, n, max_hyp_length, 1]), tf.reshape(ref_ngrams, shape=[batch, num_sents, n, 1, max_ref_length]) ), dtype=tf.float32) min_vec = tf.reduce_sum(tf.minimum( tf.reshape(hyp_vec, [batch, num_sents, n, max_hyp_length, 1]), tf.reshape(ref_vec, [batch, num_sents, n, 1, max_ref_length])) * equal_masks * square_masks, axis=-1) / (hyp_tf + 1e-12) prod = tf.reduce_sum(tf.reshape(min_vec, [batch, num_sents, n, max_hyp_length, 1]) * tf.reshape(ref_vec, [batch, num_sents, n, 1, max_ref_length]) * equal_masks * square_masks / (freq_masks + 1e-12), axis=[-2,-1]) val = prod / (hyp_norm * ref_norm + 1e-12) log_tensor("val", l=locals()) mult = np.e ** (-(delta ** 2) / ((sigma ** 2) * 2)) mask = tf.cast(ref_lengths > 0, dtype=tf.float32) scores = val * tf.expand_dims(mult, axis=2) * tf.expand_dims(mask, axis=2) tf.summary.histogram("cider/scores", scores) log_tensor("scores", l=locals()) score_avg = tf.reduce_sum(scores, axis=[1,2]) \ / (tf.reduce_sum(mask, axis=1) * float(n) + 1e-12) score_avg = score_avg * 10.0 return score_avg def tile_on_axis(tensor, axis=1, copies=5): shape = tensor.get_shape().as_list() multiples = [1] * len(shape) multiples[axis] = copies return tf.tile(tensor, multiples=multiples) ref_ngrams, ref_ngram_lengths = ngram_count(ref_words, ref_lengths) ref_vec, ref_norm, ref_text_freq = compute_vec_norm_and_freq(ref_ngrams, ref_ngram_lengths) hyp_ngrams, hyp_ngram_lengths = ngram_count(hyp_words, hyp_lengths) hyp_vec, hyp_norm, hyp_text_freq = compute_vec_norm_and_freq(hyp_ngrams, hyp_ngram_lengths) ref_vec_shape = ref_vec.get_shape().as_list() num_refs = ref_vec_shape[1] hyp_ngrams, hyp_ngram_lengths, hyp_vec, hyp_norm, hyp_text_freq = map( lambda x: tile_on_axis(x, axis=1, copies=num_refs), [hyp_ngrams, hyp_ngram_lengths, hyp_vec, hyp_norm, hyp_text_freq]) sim_score = sim(hyp_vec, hyp_norm, hyp_text_freq, hyp_lengths, hyp_ngrams, hyp_ngram_lengths, ref_vec, ref_norm, ref_text_freq, ref_lengths, ref_ngrams, ref_ngram_lengths, sigma=sigma) return sim_score
41.249057
128
0.609642
4a26531c58e3c1e3bfa11d76a73cdb07d28faaba
3,485
py
Python
Avengers_Of_GitHub/settings.py
AnubhavMadhav/Avengers-Of-GitHub
eb26a9aa65a60a8742ec2ee20ff4bbe3c9863fbb
[ "MIT" ]
36
2020-05-16T18:35:16.000Z
2022-02-22T03:53:09.000Z
Avengers_Of_GitHub/settings.py
AnubhavMadhav/Avengers-Of-GitHub
eb26a9aa65a60a8742ec2ee20ff4bbe3c9863fbb
[ "MIT" ]
8
2020-05-17T15:44:56.000Z
2021-09-22T19:01:28.000Z
Avengers_Of_GitHub/settings.py
AnubhavMadhav/Avengers-Of-GitHub
eb26a9aa65a60a8742ec2ee20ff4bbe3c9863fbb
[ "MIT" ]
3
2020-05-30T07:41:18.000Z
2020-06-11T19:54:32.000Z
""" Django settings for Avengers_Of_GitHub project. Generated by 'django-admin startproject' using Django 3.0.5. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = ')ceom0_5y%ogm*imldv9vb_g@lp%=*kcm%uuq4h^&q_^8*38&m' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['avengers-of-github.herokuapp.com','127.0.0.1'] STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static"), 'D:\My_Projects\Avengers-Of-GitHub\static', ] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'avengers', ] MIDDLEWARE = [ 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'Avengers_Of_GitHub.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': ['templates'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'Avengers_Of_GitHub.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage'
27.65873
91
0.706169
4a265386a07d05cd00051869e3144095195fe9e7
7,053
py
Python
libcxx/utils/generate_header_tests.py
LaudateCorpus1/llvm-project
ff2e0f0c1112558b3f30d8afec7c9882c33c79e3
[ "Apache-2.0" ]
null
null
null
libcxx/utils/generate_header_tests.py
LaudateCorpus1/llvm-project
ff2e0f0c1112558b3f30d8afec7c9882c33c79e3
[ "Apache-2.0" ]
null
null
null
libcxx/utils/generate_header_tests.py
LaudateCorpus1/llvm-project
ff2e0f0c1112558b3f30d8afec7c9882c33c79e3
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import glob import os import posixpath import re def get_libcxx_paths(): utils_path = os.path.dirname(os.path.abspath(__file__)) script_name = os.path.basename(__file__) assert os.path.exists(utils_path) src_root = os.path.dirname(utils_path) include_path = os.path.join(src_root, 'include') assert os.path.exists(include_path) libcxx_test_path = os.path.join(src_root, 'test', 'libcxx') assert os.path.exists(libcxx_test_path) return script_name, src_root, include_path, libcxx_test_path script_name, source_root, include_path, libcxx_test_path = get_libcxx_paths() header_markup = { "barrier": ["ifndef _LIBCPP_HAS_NO_THREADS"], "future": ["ifndef _LIBCPP_HAS_NO_THREADS"], "latch": ["ifndef _LIBCPP_HAS_NO_THREADS"], "mutex": ["ifndef _LIBCPP_HAS_NO_THREADS"], "semaphore": ["ifndef _LIBCPP_HAS_NO_THREADS"], "shared_mutex": ["ifndef _LIBCPP_HAS_NO_THREADS"], "thread": ["ifndef _LIBCPP_HAS_NO_THREADS"], "filesystem": ["ifndef _LIBCPP_HAS_NO_FILESYSTEM_LIBRARY"], "format": ["ifndef _LIBCPP_HAS_NO_INCOMPLETE_FORMAT"], "clocale": ["ifndef _LIBCPP_HAS_NO_LOCALIZATION"], "codecvt": ["ifndef _LIBCPP_HAS_NO_LOCALIZATION"], "fstream": ["ifndef _LIBCPP_HAS_NO_LOCALIZATION"], "iomanip": ["ifndef _LIBCPP_HAS_NO_LOCALIZATION"], "ios": ["ifndef _LIBCPP_HAS_NO_LOCALIZATION"], "iostream": ["ifndef _LIBCPP_HAS_NO_LOCALIZATION"], "istream": ["ifndef _LIBCPP_HAS_NO_LOCALIZATION"], "locale.h": ["ifndef _LIBCPP_HAS_NO_LOCALIZATION"], "locale": ["ifndef _LIBCPP_HAS_NO_LOCALIZATION"], "ostream": ["ifndef _LIBCPP_HAS_NO_LOCALIZATION"], "ranges": ["ifndef _LIBCPP_HAS_NO_INCOMPLETE_RANGES"], "regex": ["ifndef _LIBCPP_HAS_NO_LOCALIZATION"], "sstream": ["ifndef _LIBCPP_HAS_NO_LOCALIZATION"], "streambuf": ["ifndef _LIBCPP_HAS_NO_LOCALIZATION"], "strstream": ["ifndef _LIBCPP_HAS_NO_LOCALIZATION"], "wctype.h": ["ifndef _LIBCPP_HAS_NO_WIDE_CHARACTERS"], "cwctype": ["ifndef _LIBCPP_HAS_NO_WIDE_CHARACTERS"], "cwchar": ["ifndef _LIBCPP_HAS_NO_WIDE_CHARACTERS"], "wchar.h": ["ifndef _LIBCPP_HAS_NO_WIDE_CHARACTERS"], "experimental/coroutine": ["ifndef _LIBCPP_HAS_NO_EXPERIMENTAL_COROUTINES"], "coroutine": ["ifndef _LIBCPP_HAS_NO_CXX20_COROUTINES"], "experimental/regex": ["ifndef _LIBCPP_HAS_NO_LOCALIZATION"], } allowed_extensions = ['', '.h'] indent_width = 4 begin_pattern = """\ //////////////////////////////////////////////////////////////////////////////// // BEGIN-GENERATED-HEADERS //////////////////////////////////////////////////////////////////////////////// """ warning_note = """\ // WARNING: This test was generated by {script_name} // and should not be edited manually. """.format(script_name=script_name) end_pattern = """\ //////////////////////////////////////////////////////////////////////////////// // END-GENERATED-HEADERS //////////////////////////////////////////////////////////////////////////////// """ generated_part_pattern = re.compile(re.escape(begin_pattern) + ".*" + re.escape(end_pattern), re.MULTILINE | re.DOTALL) headers_template = """\ // Top level headers {top_level_headers} // experimental headers #if __cplusplus >= 201103L {experimental_headers} #endif // __cplusplus >= 201103L // extended headers {extended_headers} """ def should_keep_header(p, exclusions=None): if os.path.isdir(p): return False if exclusions: relpath = os.path.relpath(p, include_path) relpath = posixpath.join(*os.path.split(relpath)) if relpath in exclusions: return False return os.path.splitext(p)[1] in allowed_extensions def produce_include(relpath, indent_level, post_include=None): relpath = posixpath.join(*os.path.split(relpath)) template = "{preamble}#{indentation}include <{include}>{post_include}{postamble}" base_indentation = ' '*(indent_width * indent_level) next_indentation = base_indentation + ' '*(indent_width) post_include = "\n{}".format(post_include) if post_include else '' markup = header_markup.get(relpath, None) if markup: preamble = '#{indentation}{directive}\n'.format( directive=markup[0], indentation=base_indentation, ) postamble = '\n#{indentation}endif'.format( indentation=base_indentation, ) indentation = next_indentation else: preamble = '' postamble = '' indentation = base_indentation return template.format( include=relpath, post_include=post_include, preamble=preamble, postamble=postamble, indentation=indentation, ) def produce_headers(path_parts, indent_level, post_include=None, exclusions=None): pattern = os.path.join(*path_parts, '[a-z]*') files = sorted(glob.glob(pattern, recursive=False)) include_headers = [ produce_include(os.path.relpath(p, include_path), indent_level, post_include=post_include) for p in files if should_keep_header(p, exclusions) ] return '\n'.join(include_headers) def produce_top_level_headers(post_include=None, exclusions=None): return produce_headers([include_path], 0, post_include=post_include, exclusions=exclusions) def produce_experimental_headers(post_include=None, exclusions=None): return produce_headers([include_path, 'experimental'], 1, post_include=post_include, exclusions=exclusions) def produce_extended_headers(post_include=None, exclusions=None): return produce_headers([include_path, 'ext'], 0, post_include=post_include, exclusions=exclusions) def replace_generated_headers(test_path, test_str): with open(test_path, 'r') as f: content = f.read() preamble = begin_pattern + '\n// clang-format off\n\n' + warning_note postamble = '\n// clang-format on\n\n' + end_pattern content = generated_part_pattern.sub( preamble + test_str + postamble, content) with open(test_path, 'w', newline='\n') as f: f.write(content) def produce_test(test_filename, exclusions=None, post_include=None): test_str = headers_template.format( top_level_headers=produce_top_level_headers( post_include=post_include, exclusions=exclusions, ), experimental_headers=produce_experimental_headers( post_include=post_include, ), extended_headers=produce_extended_headers( post_include=post_include, ), ) replace_generated_headers(os.path.join( libcxx_test_path, test_filename), test_str) def main(): produce_test('clang_tidy.sh.cpp') produce_test('double_include.sh.cpp') produce_test('min_max_macros.compile.pass.cpp', post_include='TEST_MACROS();') produce_test('nasty_macros.compile.pass.cpp') produce_test('no_assert_include.compile.pass.cpp', exclusions=['cassert']) if __name__ == '__main__': main()
33.112676
111
0.667801
4a2653b2cf9c33c3287bc94bf19ad5a02463974c
5,677
py
Python
tests/eval_tests.py
andybalaam/cell
03d0670f9ebd513a983b9327108a84f2eff8ee75
[ "MIT" ]
118
2016-10-17T09:04:42.000Z
2021-12-31T03:00:55.000Z
tests/eval_tests.py
JoeyCluett/cell
a3203731e0c63a55955509e843fb99e38cf7cc7c
[ "MIT" ]
4
2019-01-23T09:59:43.000Z
2020-11-02T11:00:38.000Z
tests/eval_tests.py
JoeyCluett/cell
a3203731e0c63a55955509e843fb99e38cf7cc7c
[ "MIT" ]
21
2016-06-05T08:05:53.000Z
2022-01-29T10:08:47.000Z
from tests.util.asserts import assert_that, assert_fails, equals from tests.util.test import test from pycell.lexer import lex from pycell.parser import parse from pycell.eval_ import eval_expr, eval_list from pycell.env import Env # --- Utils --- def evald(inp, env=None): if env is None: env = Env() return eval_list(parse(lex(inp)), env) def assert_prog_fails(program, error, env=None): assert_fails(error, evald, program, env) # --- Evaluating --- @test def Evaluating_an_empty_program_gives_none(): assert_that(evald(""), equals(("none",))) @test def Evaluating_a_primitive_returns_itself(): assert_that(evald("3;"), equals(("number", 3))) assert_that(evald("3.1;"), equals(("number", 3.1))) assert_that(evald("'foo';"), equals(("string", "foo"))) @test def Arithmetic_expressions_come_out_correct(): assert_that(evald("3 + 4;"), equals(("number", 7))) assert_that(evald("3 - 4;"), equals(("number", -1))) assert_that(evald("3 * 4;"), equals(("number", 12))) assert_that(evald("3 / 4;"), equals(("number", 0.75))) @test def Referring_to_an_unknown_symbol_is_an_error(): assert_prog_fails("x;", "Unknown symbol 'x'.") @test def Can_define_a_value_and_retrieve_it(): assert_that(evald("x = 30;x;"), equals(("number", 30))) assert_that(evald("y = 'foo';y;"), equals(("string", "foo"))) @test def Modifying_a_value_is_an_error(): assert_prog_fails("x = 30;x = 10;", "Not allowed to re-assign symbol 'x'.") @test def Value_of_an_assignment_is_the_value_assigned(): assert_that(evald("x = 31;"), equals(("number", 31))) @test def None_evaluates_to_None(): assert_that(eval_expr(("none",), Env()), equals(("none", ))) @test def Calling_a_function_returns_its_last_value(): assert_that( evald("{10;11;}();"), equals(("number", 11)) ) @test def Body_of_a_function_can_use_arg_values(): assert_that( evald("{:(x, y) x + y;}(100, 1);"), equals(("number", 101)) ) @test def Can_hold_a_reference_to_a_function_and_call_it(): assert_that( evald(""" add = {:(x, y) x + y;}; add(20, 2.2); """), equals(("number", 22.2)) ) @test def A_symbol_has_different_life_inside_and_outside_a_function(): """Define a symbol outside a function, redefine inside, then evaluate outside. What happened inside the function should not affect the value outside.""" assert_that( evald(""" foo = "bar"; {foo = 3;}(); foo; """), equals(("string", "bar")) ) @test def A_symbol_within_a_function_has_the_local_value(): assert_that( evald(""" foo = 3; bar = {foo = 77;foo;}(); bar; """), equals(("number", 77)) ) @test def Native_function_gets_called(): def native_fn(env, x, y): return ("number", x[1] + y[1]) env = Env() env.set("native_fn", ("native", native_fn)) assert_that(evald("native_fn( 2, 8 );", env), equals(("number", 10))) @test def Wrong_number_of_arguments_to_a_function_is_an_error(): assert_prog_fails( "{}(3);", "1 arguments passed to function ('function', [], []), but it requires 0 arguments." ) assert_prog_fails( "x={:(a, b, c)}; x(3, 2);", "2 arguments passed to function ('symbol', 'x'), but it requires 3 arguments." ) @test def Wrong_number_of_arguments_to_a_native_function_is_an_error(): def native_fn0(env): return ("number", 12) def native_fn3(env, x, y, z): return ("number", 12) env = Env() env.set("native_fn0", ("native", native_fn0)) env.set("native_fn3", ("native", native_fn3)) assert_prog_fails( "native_fn0(3);", "1 arguments passed to function ('symbol', 'native_fn0'), but it requires 0 arguments.", env ) assert_prog_fails( "native_fn3(3, 2);", "2 arguments passed to function ('symbol', 'native_fn3'), but it requires 3 arguments.", env ) @test def Function_arguments_are_independent(): assert_that(evald( """ fn = {:(x) {x;};}; a = fn("a"); b = fn("b"); a(); """ ), equals(evald("'a';")) ) assert_that(evald( """ fn = {:(x) {x;};}; a = fn("a"); b = fn("b"); b(); """ ), equals(evald("'b';")) ) @test def A_native_function_can_edit_the_environment(): def mx3(env): env.set("x", ("number", 3)) env = Env() env.set("make_x_three", ("native", mx3)) assert_that( evald("x=1;make_x_three();x;", env), equals(("number", 3)) ) @test def A_closure_holds_updateable_values(): def dumb_set(env, sym, val): env.parent.parent.parent.set(sym[1], val) def dumb_if_equal(env, val1, val2, then_fn, else_fn): if val1 == val2: ret = then_fn else: ret = else_fn return eval_expr(("call", ret, []), env) env = Env() env.set("dumb_set", ("native", dumb_set)) env.set("dumb_if_equal", ("native", dumb_if_equal)) assert_that( evald( """ counter = { x = 0; {:(meth) dumb_if_equal(meth, "get", {x;}, {dumb_set("x", x + 1);} ); } }(); counter("inc"); counter("inc"); counter("get"); """, env ), equals(("number", 2)) )
23.753138
96
0.55399
4a2653d0b031f53616bdf84842787f011d448ecd
1,273
py
Python
MF.py
ahsanabbas123/Recommender-System
68804e68fbcadaaa909cbde4a27ee7176390a0f3
[ "MIT" ]
null
null
null
MF.py
ahsanabbas123/Recommender-System
68804e68fbcadaaa909cbde4a27ee7176390a0f3
[ "MIT" ]
null
null
null
MF.py
ahsanabbas123/Recommender-System
68804e68fbcadaaa909cbde4a27ee7176390a0f3
[ "MIT" ]
1
2020-12-08T09:45:06.000Z
2020-12-08T09:45:06.000Z
# Import libraries import numpy as np import pandas as pd import argparse import os # Getting the required packages from the Surprise library # Surprise is a Python scikit for building and analyzing recommender systems that deal with explicit rating data from surprise import SVD from surprise import Dataset from surprise import accuracy from surprise import Reader from surprise.model_selection import train_test_split ap = argparse.ArgumentParser() ap.add_argument("-d", "--ratings", required=True, help="path to input dataset") ap.add_argument("-p", "--movies", type=str, help="path to movies dataset") args = vars(ap.parse_args()) # Reading ratings file ratings = pd.read_csv(args["ratings"]) # Calculating the sparsity of the data sparsity = round(1.0 - len(ratings) / float(n_users * n_movies), 3) print('Sparsity Level of MovieLens dataset= ' + str(sparsity * 100) + '%') # Load Reader library reader = Reader() # Load ratings dataset with the Dataset library data = Dataset.load_from_df(ratings[['userId', 'movieId', 'rating']], reader) # Split the dataset for 5-fold evaluation trainset, testset = train_test_split(data, test_size=.25) algo = SVD() algo.fit(trainset) predictions = algo.test(testset) accuracy.mae(predictions) algo.predict(340, 544)
28.288889
112
0.760408
4a2653d2722a04c49242fb9ccb0891803970fd9c
595
py
Python
leetcode/palindromic_substrings/palindromic_substrings.py
sagasu/python-algorithms
d630777a3f17823165e4d72ab780ede7b10df752
[ "MIT" ]
null
null
null
leetcode/palindromic_substrings/palindromic_substrings.py
sagasu/python-algorithms
d630777a3f17823165e4d72ab780ede7b10df752
[ "MIT" ]
null
null
null
leetcode/palindromic_substrings/palindromic_substrings.py
sagasu/python-algorithms
d630777a3f17823165e4d72ab780ede7b10df752
[ "MIT" ]
null
null
null
class Solution: def countSubstrings(self, s: str) -> int: N = len(s) count = 0 for mid in range(N): left = mid right = mid while left >= 0 and right < N and s[left] == s[right]: left -= 1 right += 1 count +=1 if mid + 1 < N: left = mid right = mid +1 while left >= 0 and right < N and s[left] == s[right]: left -= 1 right += 1 count += 1 return count
24.791667
70
0.363025
4a26540de67574abfbab30598d70643d06e036d9
1,169
py
Python
public/models.py
Andrew-Chen-Wang/django-stripe-subscription
bb6031cda032784858bb484771f9a1da35b54169
[ "MIT" ]
1
2020-02-13T15:52:52.000Z
2020-02-13T15:52:52.000Z
public/models.py
Andrew-Chen-Wang/django-stripe-subscription
bb6031cda032784858bb484771f9a1da35b54169
[ "MIT" ]
6
2020-06-05T20:52:33.000Z
2021-09-22T18:30:41.000Z
public/models.py
Andrew-Chen-Wang/django-stripe-subscription
bb6031cda032784858bb484771f9a1da35b54169
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import User from django.conf import settings class Profile(models.Model): """ Extra information that isn't accessed as much as the User model. This example code uses the Client + Server integration method because we want to remember a customer_id from Stripe with our own server. """ user = models.OneToOneField(User, on_delete=models.CASCADE) class MagazineTitles(models.Model): """ These are simply magazine titles that a user can select """ id = models.BigAutoField(primary_key=True) name = models.CharField(max_length=250, unique=True) class DistributedMagazine(models.Model): """ These are the magazines that we distribute. Assume that a completely different service distributes these magazines. Our only concern is the financial component. """ id = models.BigAutoField(primary_key=True) user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) magazine = models.ForeignKey(MagazineTitles, on_delete=models.CASCADE) active = models.BooleanField(default=True) expires = models.DateTimeField()
33.4
80
0.74337
4a2654c6cb76d1ae1393640d5762e3c97193e700
84
py
Python
djangobench/benchmarks/query_in_bulk/settings.py
smithdc1/djangobench
912dc536db706fb73d24a53d10d1739a0824d2c1
[ "BSD-3-Clause" ]
92
2015-02-07T11:03:45.000Z
2022-03-23T10:51:06.000Z
djangobench/benchmarks/query_in_bulk/settings.py
smithdc1/djangobench
912dc536db706fb73d24a53d10d1739a0824d2c1
[ "BSD-3-Clause" ]
19
2015-03-22T14:30:03.000Z
2022-03-24T22:43:24.000Z
djangobench/benchmarks/query_in_bulk/settings.py
smithdc1/djangobench
912dc536db706fb73d24a53d10d1739a0824d2c1
[ "BSD-3-Clause" ]
25
2015-01-22T19:53:25.000Z
2022-03-20T11:15:54.000Z
from djangobench.base_settings import * # NOQA INSTALLED_APPS = ['query_in_bulk']
21
47
0.77381
4a2654daab98f63dbfff863fb8e989f78f42543b
1,418
py
Python
app/recipe/serializers.py
EliasOPrado/recipe-app-api
4ae20e7cb3195fa742fc6d2934f3fd5100e3c062
[ "MIT" ]
null
null
null
app/recipe/serializers.py
EliasOPrado/recipe-app-api
4ae20e7cb3195fa742fc6d2934f3fd5100e3c062
[ "MIT" ]
null
null
null
app/recipe/serializers.py
EliasOPrado/recipe-app-api
4ae20e7cb3195fa742fc6d2934f3fd5100e3c062
[ "MIT" ]
null
null
null
from rest_framework import serializers from core.models import Tag, Ingredient, Recipe class TagSerializer(serializers.ModelSerializer): """ Serializer for tag objects """ class Meta: model = Tag fields = ['id', 'name'] read_only_fields = ['id'] class IngredientSerializer(serializers.ModelSerializer): """ Serializer for ingredient objects """ class Meta: model = Ingredient fields = ['id', 'user', 'name'] read_only_fields = ['id'] class RecipeSerializer(serializers.ModelSerializer): """ Serializer for recipe objects """ ingredients = serializers.PrimaryKeyRelatedField( many=True, queryset=Ingredient.objects.all() ) tags = serializers.PrimaryKeyRelatedField( many=True, queryset=Tag.objects.all() ) class Meta: model = Recipe fields = ['id', 'title', 'ingredients', 'tags', 'time_minutes', 'price', 'link'] read_only_fields = ['id'] class RecipeDetailSerializer(RecipeSerializer): """ Serializer a recipe detail""" ingredients = IngredientSerializer(many=True, read_only=True) tags = TagSerializer(many=True, read_only=True) class RecipeImageSerializer(serializers.ModelSerializer): """ serializer for uploading images to recipes """ class Meta: model = Recipe fields = ['id','image'] read_only_fields = ['id']
27.269231
88
0.655148
4a26556d94198daa7c73bc05e74dd06a0f620615
2,866
py
Python
var/spack/repos/builtin/packages/r-brms/package.py
LiamBindle/spack
e90d5ad6cfff2ba3de7b537d6511adccd9d5fcf1
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
1
2021-11-04T17:08:15.000Z
2021-11-04T17:08:15.000Z
var/spack/repos/builtin/packages/r-brms/package.py
LiamBindle/spack
e90d5ad6cfff2ba3de7b537d6511adccd9d5fcf1
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
23
2021-01-25T15:13:45.000Z
2022-03-28T20:19:04.000Z
var/spack/repos/builtin/packages/r-brms/package.py
LiamBindle/spack
e90d5ad6cfff2ba3de7b537d6511adccd9d5fcf1
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
7
2018-09-13T18:04:56.000Z
2020-03-18T20:52:06.000Z
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RBrms(RPackage): """Bayesian Regression Models using 'Stan': Fit Bayesian generalized (non-)linear multivariate multilevel models using 'Stan' for full Bayesian inference. A wide range of distributions and link functions are supported, allowing users to fit - among others - linear, robust linear, count data, survival, response times, ordinal, zero-inflated, hurdle, and even self-defined mixture models all in a multilevel context. Further modeling options include non-linear and smooth terms, auto-correlation structures, censored data, meta-analytic standard errors, and quite a few more. In addition, all parameters of the response distribution can be predicted in order to perform distributional regression. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their beliefs. Model fit can easily be assessed and compared with posterior predictive checks and leave-one-out cross-validation. References: Burkner (2017) <doi:10.18637/jss.v080.i01>; Burkner (2018) <doi:10.32614/RJ-2018-017>; Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>.""" homepage = "https://github.com/paul-buerkner/brms" cran = "brms" version('2.16.1', sha256='749efbd9fb061fe207cf2e729c1387d9a8538b922f12ceec4e82a9f8dd9c1bc4') version('2.15.0', sha256='c11701d1d8758590b74bb845b568b736e4455a81b114c7dfde0b27b7bd1bcc2f') depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', when='@2.16:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('r-matrixstats', type=('build', 'run')) depends_on('r-nleqslv', type=('build', 'run')) depends_on('r-nlme', type=('build', 'run')) depends_on('r-coda', type=('build', 'run')) depends_on('r-abind', type=('build', 'run')) depends_on('r-backports', type=('build', 'run'))
52.109091
96
0.682484
4a2655cf14da7dc7a481f8ede62a301d3d9ccbbd
55,807
py
Python
addons/osfstorage/tests/test_views.py
kounoAkihiro/SV-COS-osf.io
0a9a68bbf9cf254d2e900d49b20d8a8e6e359c21
[ "Apache-2.0" ]
null
null
null
addons/osfstorage/tests/test_views.py
kounoAkihiro/SV-COS-osf.io
0a9a68bbf9cf254d2e900d49b20d8a8e6e359c21
[ "Apache-2.0" ]
16
2020-03-24T16:30:32.000Z
2022-03-03T22:39:45.000Z
addons/osfstorage/tests/test_views.py
kounoAkihiro/SV-COS-osf.io
0a9a68bbf9cf254d2e900d49b20d8a8e6e359c21
[ "Apache-2.0" ]
null
null
null
# encoding: utf-8 from __future__ import unicode_literals import json import mock import datetime import pytest import responses from nose.tools import * # noqa from dateutil.parser import parse as parse_datetime from website import settings from addons.osfstorage.models import OsfStorageFileNode, OsfStorageFolder from framework.auth.core import Auth from addons.osfstorage.tests.utils import ( StorageTestCase, Delta, AssertDeltas, recursively_create_file, ) from addons.osfstorage.tests import factories from addons.osfstorage.tests.utils import make_payload from framework.auth import signing from website.util import rubeus, api_url_for from framework.auth import cas from osf.models import Tag, QuickFilesNode from osf.models import files as models from addons.osfstorage.apps import osf_storage_root from addons.osfstorage import utils from addons.base.views import make_auth from addons.osfstorage import settings as storage_settings from api_tests.utils import create_test_file from osf_tests.factories import ProjectFactory, ApiOAuth2PersonalTokenFactory, PreprintFactory def create_record_with_version(path, node_settings, **kwargs): version = factories.FileVersionFactory(**kwargs) node_settings.get_root().append_file(path) record.versions.append(version) record.save() return record @pytest.mark.django_db class HookTestCase(StorageTestCase): def send_hook(self, view_name, view_kwargs, payload, target, method='get', **kwargs): method = getattr(self.app, method) guid = view_kwargs.pop('guid', None) or target._id return method( api_url_for(view_name, guid=guid, **view_kwargs), signing.sign_data(signing.default_signer, payload), **kwargs ) @pytest.mark.django_db class TestGetMetadataHook(HookTestCase): def test_empty(self): res = self.send_hook( 'osfstorage_get_children', {'fid': self.node_settings.get_root()._id, 'user_id': self.user._id}, {}, self.node ) assert_true(isinstance(res.json, list)) assert_equal(res.json, []) def test_file_metdata(self): path = u'kind/of/magíc.mp3' record = recursively_create_file(self.node_settings, path) version = factories.FileVersionFactory() record.versions.add(version) record.save() res = self.send_hook( 'osfstorage_get_metadata', {'fid': record.parent._id}, {}, self.node ) assert_true(isinstance(res.json, dict)) assert_equal(res.json, record.parent.serialize(True)) def test_preprint_primary_file_metadata(self): preprint = PreprintFactory() record = preprint.primary_file version = factories.FileVersionFactory() record.versions.add(version) record.save() res = self.send_hook( 'osfstorage_get_metadata', {'fid': record.parent._id}, {}, preprint ) assert_true(isinstance(res.json, dict)) assert_equal(res.json, record.parent.serialize(True)) def test_children_metadata(self): path = u'kind/of/magíc.mp3' record = recursively_create_file(self.node_settings, path) version = factories.FileVersionFactory() record.versions.add(version) record.save() res = self.send_hook( 'osfstorage_get_children', {'fid': record.parent._id, 'user_id': self.user._id}, {}, self.node ) assert_equal(len(res.json), 1) res_data = res.json[0] expected_data = record.serialize() # Datetimes in response might not be exactly the same as in record.serialize # because of the way Postgres serializes dates. For example, # '2017-06-05T17:32:20.964950+00:00' will be # serialized as '2017-06-05T17:32:20.96495+00:00' by postgres # Therefore, we parse the dates then compare them expected_date_modified = parse_datetime(expected_data.pop('modified')) expected_date_created = parse_datetime(expected_data.pop('created')) res_date_modified = parse_datetime(res_data.pop('modified')) res_date_created = parse_datetime(res_data.pop('created')) # latestVersionSeen should not be present in record.serialize, because it has to do # with the user making the request itself, which isn't important when serializing the record expected_data['latestVersionSeen'] = None assert_equal(res_date_modified, expected_date_modified) assert_equal(res_date_created, expected_date_created) assert_equal(res_data, expected_data) def test_children_metadata_preprint(self): preprint = PreprintFactory() record = preprint.primary_file version = factories.FileVersionFactory() record.versions.add(version) record.save() res = self.send_hook( 'osfstorage_get_children', {'fid': record.parent._id, 'user_id': self.user._id}, {}, preprint ) assert_equal(len(res.json), 1) res_data = res.json[0] expected_data = record.serialize() # Datetimes in response might not be exactly the same as in record.serialize # because of the way Postgres serializes dates. For example, # '2017-06-05T17:32:20.964950+00:00' will be # serialized as '2017-06-05T17:32:20.96495+00:00' by postgres # Therefore, we parse the dates then compare them expected_date_modified = parse_datetime(expected_data.pop('modified')) expected_date_created = parse_datetime(expected_data.pop('created')) res_date_modified = parse_datetime(res_data.pop('modified')) res_date_created = parse_datetime(res_data.pop('created')) # latestVersionSeen should not be present in record.serialize, because it has to do # with the user making the request itself, which isn't important when serializing the record expected_data['latestVersionSeen'] = None assert_equal(res_date_modified, expected_date_modified) assert_equal(res_date_created, expected_date_created) def test_osf_storage_root(self): auth = Auth(self.project.creator) result = osf_storage_root(self.node_settings.config, self.node_settings, auth) node = self.project expected = rubeus.build_addon_root( node_settings=self.node_settings, name='', permissions=auth, user=auth.user, nodeUrl=node.url, nodeApiUrl=node.api_url, ) root = result[0] assert_equal(root, expected) def test_root_default(self): res = self.send_hook('osfstorage_get_metadata', {}, {}, self.node) assert_equal(res.json['fullPath'], '/') assert_equal(res.json['id'], self.node_settings.get_root()._id) def test_root_preprint_default(self): preprint = PreprintFactory() res = self.send_hook('osfstorage_get_metadata', {}, {}, preprint) assert_equal(res.json['fullPath'], '/') assert_equal(res.json['id'], preprint.root_folder._id) def test_metadata_not_found(self): res = self.send_hook( 'osfstorage_get_metadata', {'fid': 'somebogusid'}, {}, self.node, expect_errors=True, ) assert_equal(res.status_code, 404) def test_metadata_not_found_lots_of_slashes(self): res = self.send_hook( 'osfstorage_get_metadata', {'fid': '/not/fo/u/nd/'}, {}, self.node, expect_errors=True, ) assert_equal(res.status_code, 404) @pytest.mark.django_db class TestUploadFileHook(HookTestCase): def setUp(self): super(TestUploadFileHook, self).setUp() self.name = 'pízza.png' self.record = recursively_create_file(self.node_settings, self.name) self.auth = make_auth(self.user) def send_upload_hook(self, parent, target=None, payload=None, **kwargs): return self.send_hook( 'osfstorage_create_child', {'fid': parent._id}, payload=payload or {}, target=target or self.project, method='post_json', **kwargs ) def make_payload(self, **kwargs): user = kwargs.pop('user', self.user) name = kwargs.pop('name', self.name) return make_payload(user=user, name=name, **kwargs) def test_upload_create(self): name = 'slightly-mad' res = self.send_upload_hook(self.node_settings.get_root(), self.project, self.make_payload(name=name)) assert_equal(res.status_code, 201) assert_equal(res.json['status'], 'success') record = self.node_settings.get_root().find_child_by_name(name) version = models.FileVersion.load(res.json['version']) assert_equal(version.size, 123) assert_equal(version.location_hash, 'file') assert_equal(version.location, { 'object': 'file', 'uname': 'testmachine', 'service': 'filesystem', 'provider': 'filesystem', storage_settings.WATERBUTLER_RESOURCE: 'blah', }) assert_equal(version.metadata, { 'size': 123, 'name': 'file', 'base64': '==', 'provider': 'filesystem', 'modified': 'Mon, 16 Feb 2015 18:45:34 GMT' }) assert_is_not(version, None) assert_equal([version], list(record.versions.all())) assert_not_in(version, self.record.versions.all()) assert_equal(record.serialize(), res.json['data']) assert_equal(res.json['data']['downloads'], self.record.get_download_count()) def test_upload_update(self): delta = Delta(lambda: self.record.versions.count(), lambda value: value + 1) with AssertDeltas(delta): res = self.send_upload_hook(self.node_settings.get_root(), self.project, self.make_payload()) self.record.reload() assert_equal(res.status_code, 200) assert_equal(res.json['status'], 'success') version = models.FileVersion.load(res.json['version']) assert_is_not(version, None) assert_in(version, self.record.versions.all()) def test_upload_duplicate(self): location = { 'service': 'cloud', storage_settings.WATERBUTLER_RESOURCE: 'osf', 'object': 'file', } version = self.record.create_version(self.user, location) with AssertDeltas(Delta(lambda: self.record.versions.count())): res = self.send_upload_hook(self.node_settings.get_root(), payload=self.make_payload()) self.record.reload() assert_equal(res.status_code, 200) assert_equal(res.json['status'], 'success') version = models.FileVersion.load(res.json['version']) assert_is_not(version, None) assert_in(version, self.record.versions.all()) def test_upload_create_child(self): name = 'ლ(ಠ益ಠლ).unicode' parent = self.node_settings.get_root().append_folder('cheesey') res = self.send_upload_hook(parent, payload=self.make_payload(name=name)) assert_equal(res.status_code, 201) assert_equal(res.json['status'], 'success') assert_equal(res.json['data']['downloads'], self.record.get_download_count()) version = models.FileVersion.load(res.json['version']) assert_is_not(version, None) assert_not_in(version, self.record.versions.all()) record = parent.find_child_by_name(name) assert_in(version, record.versions.all()) assert_equals(record.name, name) assert_equals(record.parent, parent) def test_upload_create_child_with_same_name(self): name = 'ლ(ಠ益ಠლ).unicode' self.node_settings.get_root().append_file(name) parent = self.node_settings.get_root().append_folder('cheesey') res = self.send_upload_hook(parent, payload=self.make_payload(name=name)) assert_equal(res.status_code, 201) assert_equal(res.json['status'], 'success') assert_equal(res.json['data']['downloads'], self.record.get_download_count()) version = models.FileVersion.load(res.json['version']) assert_is_not(version, None) assert_not_in(version, self.record.versions.all()) record = parent.find_child_by_name(name) assert_in(version, record.versions.all()) assert_equals(record.name, name) assert_equals(record.parent, parent) def test_upload_fail_to_create_version_due_to_checkout(self): user = factories.AuthUserFactory() name = 'Gunter\'s noise.mp3' self.node_settings.get_root().append_file(name) root = self.node_settings.get_root() file = root.find_child_by_name(name) file.checkout = user file.save() res = self.send_upload_hook(root, payload=self.make_payload(name=name), expect_errors=True) assert_equal(res.status_code, 403) def test_update_nested_child(self): name = 'ლ(ಠ益ಠლ).unicode' parent = self.node_settings.get_root().append_folder('cheesey') old_node = parent.append_file(name) res = self.send_upload_hook(parent, payload=self.make_payload(name=name)) old_node.reload() new_node = parent.find_child_by_name(name) assert_equal(res.status_code, 200) assert_equal(res.json['status'], 'success') assert_equal(res.json['data']['downloads'], new_node.get_download_count()) assert_equal(old_node, new_node) version = models.FileVersion.load(res.json['version']) assert_is_not(version, None) assert_in(version, new_node.versions.all()) assert_in(version, new_node.versions.all()) assert_equals(new_node.name, name) assert_equals(new_node.parent, parent) def test_upload_weird_name(self): name = 'another/dir/carpe.png' parent = self.node_settings.get_root().append_folder('cheesey') res = self.send_upload_hook(parent, payload=self.make_payload(name=name), expect_errors=True) assert_equal(res.status_code, 400) assert_equal(len(parent.children), 0) def test_upload_to_file(self): name = 'carpe.png' parent = self.node_settings.get_root().append_file('cheesey') res = self.send_upload_hook(parent, payload=self.make_payload(name=name), expect_errors=True) assert_true(parent.is_file) assert_equal(res.status_code, 400) def test_upload_no_data(self): res = self.send_upload_hook(self.node_settings.get_root(), expect_errors=True) assert_equal(res.status_code, 400) def test_archive(self): name = 'ლ(ಠ益ಠლ).unicode' parent = self.node_settings.get_root().append_folder('cheesey') res = self.send_upload_hook(parent, payload=self.make_payload(name=name, hashes={'sha256': 'foo'})) assert_equal(res.status_code, 201) assert_equal(res.json['status'], 'success') assert_is(res.json['archive'], True) res = self.send_hook( 'osfstorage_update_metadata', {}, target=self.project, payload={'metadata': { 'vault': 'Vault 101', 'archive': '101 tluaV', }, 'version': res.json['version']}, method='put_json', ) res = self.send_upload_hook(parent, payload=self.make_payload( name=name, hashes={'sha256': 'foo'}, metadata={ 'name': 'lakdjf', 'provider': 'testing', })) assert_equal(res.status_code, 200) assert_equal(res.json['status'], 'success') assert_is(res.json['archive'], False) # def test_upload_update_deleted(self): # pass @pytest.mark.django_db class TestUploadFileHookPreprint(TestUploadFileHook): def setUp(self): super(TestUploadFileHookPreprint, self).setUp() self.preprint = PreprintFactory(creator=self.user) self.name = self.preprint.primary_file.name self.record = self.preprint.primary_file self.auth = make_auth(self.user) def test_upload_create(self): name = 'slightly-mad' res = self.send_upload_hook(self.preprint.root_folder, self.preprint, self.make_payload(name=name)) assert_equal(res.status_code, 201) assert_equal(res.json['status'], 'success') record = self.preprint.root_folder.find_child_by_name(name) version = models.FileVersion.load(res.json['version']) assert_equal(version.size, 123) assert_equal(version.location_hash, 'file') assert_equal(version.location, { 'object': 'file', 'uname': 'testmachine', 'service': 'filesystem', 'provider': 'filesystem', storage_settings.WATERBUTLER_RESOURCE: 'blah', }) assert_equal(version.metadata, { 'size': 123, 'name': 'file', 'base64': '==', 'provider': 'filesystem', 'modified': 'Mon, 16 Feb 2015 18:45:34 GMT' }) assert_is_not(version, None) assert_equal([version], list(record.versions.all())) assert_not_in(version, self.record.versions.all()) assert_equal(record.serialize(), res.json['data']) assert_equal(res.json['data']['downloads'], self.record.get_download_count()) def test_upload_update(self): delta = Delta(lambda: self.record.versions.count(), lambda value: value + 1) with AssertDeltas(delta): res = self.send_upload_hook(self.preprint.root_folder, self.preprint, self.make_payload()) self.record.reload() assert_equal(res.status_code, 200) assert_equal(res.json['status'], 'success') version = models.FileVersion.load(res.json['version']) assert_is_not(version, None) assert_in(version, self.record.versions.all()) def test_upload_duplicate(self): location = { 'service': 'cloud', storage_settings.WATERBUTLER_RESOURCE: 'osf', 'object': 'file', } version = self.record.create_version(self.user, location) with AssertDeltas(Delta(lambda: self.record.versions.count())): res = self.send_upload_hook(self.preprint.root_folder, self.preprint, self.make_payload()) self.record.reload() assert_equal(res.status_code, 200) assert_equal(res.json['status'], 'success') version = models.FileVersion.load(res.json['version']) assert_is_not(version, None) assert_in(version, self.record.versions.all()) def test_upload_create_child(self): name = 'ლ(ಠ益ಠლ).unicode' parent = self.preprint.root_folder.append_folder('cheesey') res = self.send_upload_hook(parent, self.preprint, self.make_payload(name=name)) assert_equal(res.status_code, 201) assert_equal(res.json['status'], 'success') assert_equal(res.json['data']['downloads'], self.record.get_download_count()) version = models.FileVersion.load(res.json['version']) assert_is_not(version, None) assert_not_in(version, self.record.versions.all()) record = parent.find_child_by_name(name) assert_in(version, record.versions.all()) assert_equals(record.name, name) assert_equals(record.parent, parent) def test_upload_create_child_with_same_name(self): name = 'ლ(ಠ益ಠლ).unicode' self.preprint.root_folder.append_file(name) parent = self.preprint.root_folder.append_folder('cheesey') res = self.send_upload_hook(parent, self.preprint, self.make_payload(name=name)) assert_equal(res.status_code, 201) assert_equal(res.json['status'], 'success') assert_equal(res.json['data']['downloads'], self.record.get_download_count()) version = models.FileVersion.load(res.json['version']) assert_is_not(version, None) assert_not_in(version, self.record.versions.all()) record = parent.find_child_by_name(name) assert_in(version, record.versions.all()) assert_equals(record.name, name) assert_equals(record.parent, parent) def test_upload_fail_to_create_version_due_to_checkout(self): user = factories.AuthUserFactory() name = 'Gunter\'s noise.mp3' self.preprint.root_folder.append_file(name) root = self.preprint.root_folder file = root.find_child_by_name(name) file.checkout = user file.save() res = self.send_upload_hook(root, self.preprint, self.make_payload(name=name), expect_errors=True) assert_equal(res.status_code, 403) def test_update_nested_child(self): name = 'ლ(ಠ益ಠლ).unicode' parent = self.preprint.root_folder.append_folder('cheesey') old_node = parent.append_file(name) res = self.send_upload_hook(parent, self.preprint, self.make_payload(name=name)) old_node.reload() new_node = parent.find_child_by_name(name) assert_equal(res.status_code, 200) assert_equal(res.json['status'], 'success') assert_equal(res.json['data']['downloads'], new_node.get_download_count()) assert_equal(old_node, new_node) version = models.FileVersion.load(res.json['version']) assert_is_not(version, None) assert_in(version, new_node.versions.all()) assert_in(version, new_node.versions.all()) assert_equals(new_node.name, name) assert_equals(new_node.parent, parent) def test_upload_weird_name(self): name = 'another/dir/carpe.png' parent = self.preprint.root_folder.append_folder('cheesey') res = self.send_upload_hook(parent, self.preprint, self.make_payload(name=name), expect_errors=True) assert_equal(res.status_code, 400) assert_equal(len(parent.children), 0) def test_upload_to_file(self): name = 'carpe.png' parent = self.preprint.root_folder.append_file('cheesey') res = self.send_upload_hook(parent, self.preprint, self.make_payload(name=name), expect_errors=True) assert_true(parent.is_file) assert_equal(res.status_code, 400) def test_upload_no_data(self): res = self.send_upload_hook(self.preprint.root_folder, self.preprint, expect_errors=True) assert_equal(res.status_code, 400) @pytest.mark.django_db class TestUpdateMetadataHook(HookTestCase): def setUp(self): super(TestUpdateMetadataHook, self).setUp() self.path = 'greasy/pízza.png' self.record = recursively_create_file(self.node_settings, self.path) self.version = factories.FileVersionFactory() self.record.versions = [self.version] self.record.save() self.payload = { 'metadata': { 'size': 123, 'modified': 'Mon, 16 Feb 2015 18:45:34 GMT', 'md5': 'askjasdlk;jsadlkjsadf', 'sha256': 'sahduashduahdushaushda', }, 'version': self.version._id, 'size': 321, # Just to make sure the field is ignored } def send_metadata_hook(self, payload=None, target=None, **kwargs): return self.send_hook( 'osfstorage_update_metadata', {}, payload=payload or self.payload, target=target or self.node, method='put_json', **kwargs ) def test_callback(self): self.version.external_modified = None self.version.save() self.send_metadata_hook() self.version.reload() #Test fields are added assert_equal(self.version.metadata['size'], 123) assert_equal(self.version.metadata['md5'], 'askjasdlk;jsadlkjsadf') assert_equal(self.version.metadata['modified'], 'Mon, 16 Feb 2015 18:45:34 GMT') #Test attributes are populated assert_equal(self.version.size, 123) assert_true(isinstance(self.version.external_modified, datetime.datetime)) def test_archived(self): self.send_metadata_hook({ 'version': self.version._id, 'metadata': { 'vault': 'osf_storage_prod', 'archive': 'Some really long glacier object id here' } }) self.version.reload() assert_equal(self.version.metadata['vault'], 'osf_storage_prod') assert_equal(self.version.metadata['archive'], 'Some really long glacier object id here') def test_archived_record_not_found(self): res = self.send_metadata_hook( payload={ 'metadata': {'archive': 'glacier'}, 'version': self.version._id[::-1], 'size': 123, 'modified': 'Mon, 16 Feb 2015 18:45:34 GMT' }, expect_errors=True, ) assert_equal(res.status_code, 404) self.version.reload() assert_not_in('archive', self.version.metadata) @pytest.mark.django_db class TestUpdateMetadataHookPreprints(HookTestCase): def setUp(self): super(TestUpdateMetadataHookPreprints, self).setUp() self.preprint = PreprintFactory() self.record = self.preprint.primary_file self.path = 'greasy/pízza.png' self.version = factories.FileVersionFactory() self.record.versions = [self.version] self.record.save() self.payload = { 'metadata': { 'size': 123, 'modified': 'Mon, 16 Feb 2015 18:45:34 GMT', 'md5': 'askjasdlk;jsadlkjsadf', 'sha256': 'sahduashduahdushaushda', }, 'version': self.version._id, 'size': 321, # Just to make sure the field is ignored } def send_metadata_hook(self, payload=None, target=None, **kwargs): return self.send_hook( 'osfstorage_update_metadata', {}, payload=payload or self.payload, target=target or self.preprint, method='put_json', **kwargs ) def test_callback(self): self.version.external_modified = None self.version.save() self.send_metadata_hook() self.version.reload() #Test fields are added assert_equal(self.version.metadata['size'], 123) assert_equal(self.version.metadata['md5'], 'askjasdlk;jsadlkjsadf') assert_equal(self.version.metadata['modified'], 'Mon, 16 Feb 2015 18:45:34 GMT') #Test attributes are populated assert_equal(self.version.size, 123) assert_true(isinstance(self.version.external_modified, datetime.datetime)) def test_archived(self): self.send_metadata_hook({ 'version': self.version._id, 'metadata': { 'vault': 'osf_storage_prod', 'archive': 'Some really long glacier object id here' } }) self.version.reload() assert_equal(self.version.metadata['vault'], 'osf_storage_prod') assert_equal(self.version.metadata['archive'], 'Some really long glacier object id here') def test_archived_record_not_found(self): res = self.send_metadata_hook( payload={ 'metadata': {'archive': 'glacier'}, 'version': self.version._id[::-1], 'size': 123, 'modified': 'Mon, 16 Feb 2015 18:45:34 GMT' }, expect_errors=True, ) assert_equal(res.status_code, 404) self.version.reload() assert_not_in('archive', self.version.metadata) @pytest.mark.django_db class TestGetRevisions(StorageTestCase): def setUp(self): super(TestGetRevisions, self).setUp() self.path = 'tie/your/mother/down.mp3' self.record = recursively_create_file(self.node_settings, self.path) self.record.versions = [factories.FileVersionFactory() for __ in range(15)] self.record.save() def get_revisions(self, fid=None, guid=None, **kwargs): return self.app.get( api_url_for( 'osfstorage_get_revisions', fid=fid or self.record._id, guid=guid or self.project._id, **signing.sign_data(signing.default_signer, {}) ), auth=self.user.auth, **kwargs ) def test_get_revisions(self): res = self.get_revisions() expected = [ utils.serialize_revision( self.project, self.record, version, index=self.record.versions.count() - 1 - idx ) for idx, version in enumerate(self.record.versions.all()) ] assert_equal(len(res.json['revisions']), 15) assert_equal(res.json['revisions'], [x for x in expected]) assert_equal(res.json['revisions'][0]['index'], 15) assert_equal(res.json['revisions'][-1]['index'], 1) def test_get_revisions_path_not_found(self): res = self.get_revisions(fid='missing', expect_errors=True) assert_equal(res.status_code, 404) @pytest.mark.django_db class TestCreateFolder(HookTestCase): def setUp(self): super(TestCreateFolder, self).setUp() self.root_node = self.node_settings.get_root() def create_folder(self, name, parent=None, target=None, **kwargs): parent = parent or self.node_settings.get_root() target = target or self.project return self.send_hook( 'osfstorage_create_child', {'fid': parent._id, 'guid': target._id}, payload={ 'name': name, 'user': self.user._id, 'kind': 'folder' }, target=self.project, method='post_json', **kwargs ) def test_create_folder(self): resp = self.create_folder('name') self.root_node.reload() assert_equal(resp.status_code, 201) assert_equal(len(self.root_node.children), 1) assert_equal(self.root_node.children[0].serialize(), resp.json['data']) def test_no_data(self): resp = self.send_hook( 'osfstorage_create_child', {'fid': self.root_node._id, 'guid': self.project._id}, payload={}, target=self.project, method='post_json', expect_errors=True ) assert_equal(resp.status_code, 400) def test_create_with_parent(self): resp = self.create_folder('name') assert_equal(resp.status_code, 201) assert_equal(self.root_node.children.count(), 1) assert_equal(self.root_node.children.all()[0].serialize(), resp.json['data']) resp = self.create_folder('name', parent=OsfStorageFileNode.load(resp.json['data']['id'])) assert_equal(resp.status_code, 201) assert_equal(self.root_node.children.count(), 1) assert_false(self.root_node.children.all()[0].is_file) assert_equal(self.root_node.children.all()[0].children.count(), 1) assert_false(self.root_node.children.all()[0].children.all()[0].is_file) assert_equal(self.root_node.children.all()[0].children.all()[0].serialize(), resp.json['data']) @pytest.mark.django_db class TestDeleteHook(HookTestCase): def setUp(self): super(TestDeleteHook, self).setUp() self.root_node = self.node_settings.get_root() def send_hook(self, view_name, view_kwargs, payload, target, method='get', **kwargs): method = getattr(self.app, method) return method( '{url}?payload={payload}&signature={signature}'.format( url=api_url_for(view_name, guid=target._id, **view_kwargs), **signing.sign_data(signing.default_signer, payload) ), **kwargs ) def delete(self, file_node, **kwargs): return self.send_hook( 'osfstorage_delete', {'fid': file_node._id}, payload={ 'user': self.user._id }, target=self.node, method='delete', **kwargs ) def test_delete(self): file = self.root_node.append_file('Newfile') resp = self.delete(file) assert_equal(resp.status_code, 200) assert_equal(resp.json, {'status': 'success'}) fid = file._id del file # models.StoredFileNode._clear_object_cache() assert_is(OsfStorageFileNode.load(fid), None) assert_true(models.TrashedFileNode.load(fid)) def test_delete_deleted(self): file = self.root_node.append_file('Newfile') file.delete() resp = self.delete(file, expect_errors=True) assert_equal(resp.status_code, 404) def test_cannot_delete_root(self): resp = self.delete(self.root_node, expect_errors=True) assert_equal(resp.status_code, 400) def test_attempt_delete_rented_file(self): user = factories.AuthUserFactory() file_checked = self.root_node.append_file('Newfile') file_checked.checkout = user file_checked.save() res = self.delete(file_checked, expect_errors=True) assert_equal(res.status_code, 403) def test_attempt_delete_folder_with_rented_file(self): folder = self.root_node.append_folder('Hotel Events') user = factories.AuthUserFactory() file_checked = folder.append_file('Checkout time') file_checked.checkout = user file_checked.save() res = self.delete(folder, expect_errors=True) assert_equal(res.status_code, 403) def test_attempt_delete_double_nested_folder_rented_file(self): folder = self.root_node.append_folder('One is not enough') folder_two = folder.append_folder('Two might be doe') user = factories.AuthUserFactory() file_checked = folder_two.append_file('We shall see') file_checked.checkout = user file_checked.save() res = self.delete(folder, expect_errors=True) assert_equal(res.status_code, 403) @pytest.mark.django_db class TestDeleteHookPreprint(TestDeleteHook): def setUp(self): super(TestDeleteHookPreprint, self).setUp() self.preprint = PreprintFactory(creator=self.user) self.node = self.preprint self.root_node = self.preprint.root_folder def test_attempt_delete_while_preprint(self): res = self.delete(self.preprint.primary_file, expect_errors=True) assert_equal(res.status_code, 403) def test_attempt_delete_folder_with_preprint(self): folder = self.root_node.append_folder('Fishes') file = folder.append_file('Fish') self.preprint.primary_file = file self.preprint.save() res = self.delete(folder, expect_errors=True) assert_equal(res.status_code, 403) def test_delete_folder_while_preprint(self): folder = self.root_node.append_folder('Mr. Yuck') preprint_file = self.root_node.append_file('Thyme Out') self.preprint.primary_file = preprint_file self.preprint.save() res = self.delete(folder) assert_equal(res.status_code, 200) def test_delete_folder_on_preprint_with_non_preprint_file_inside(self): folder = self.root_node.append_folder('Herbal Crooners') file = folder.append_file('Frank Cilantro') # project having a preprint should not block other moves primary_file = self.root_node.append_file('Thyme Out') self.preprint.primary_file = primary_file self.preprint.save() res = self.delete(folder) assert_equal(res.status_code, 200) @pytest.mark.django_db @pytest.mark.enable_quickfiles_creation class TestMoveHook(HookTestCase): def setUp(self): super(TestMoveHook, self).setUp() self.root_node = self.node_settings.get_root() def test_move_hook(self): file = self.root_node.append_file('Ain\'t_got_no,_I_got_life') folder = self.root_node.append_folder('Nina Simone') res = self.send_hook( 'osfstorage_move_hook', {'guid': self.root_node.target._id}, payload={ 'source': file._id, 'target': self.root_node._id, 'user': self.user._id, 'destination': { 'parent': folder._id, 'target': folder.target._id, 'name': folder.name, } }, target=self.node, method='post_json',) assert_equal(res.status_code, 200) def test_move_checkedout_file(self): file = self.root_node.append_file('Ain\'t_got_no,_I_got_life') file.checkout = self.user file.save() folder = self.root_node.append_folder('Nina Simone') res = self.send_hook( 'osfstorage_move_hook', {'guid': self.root_node.target._id}, payload={ 'source': file._id, # id of the actual file 'target': self.root_node._id, # the source FOLDER 'user': self.user._id, 'destination': { 'parent': folder._id, # the destination FOLDER 'target': folder.target._id, # The TARGET for the folder where it is going 'name': folder.name, } }, target=self.node, method='post_json', expect_errors=True, ) assert_equal(res.status_code, 405) def test_move_checkedout_file_in_folder(self): folder = self.root_node.append_folder('From Here') file = folder.append_file('No I don\'t wanna go') file.checkout = self.user file.save() folder_two = self.root_node.append_folder('To There') res = self.send_hook( 'osfstorage_move_hook', {'guid': self.root_node.target._id}, payload={ 'source': folder._id, 'target': self.root_node._id, 'user': self.user._id, 'destination': { 'parent': folder_two._id, 'target': folder_two.target._id, 'name': folder_two.name, } }, target=self.node, method='post_json', expect_errors=True, ) assert_equal(res.status_code, 405) def test_move_checkedout_file_two_deep_in_folder(self): folder = self.root_node.append_folder('From Here') folder_nested = folder.append_folder('Inbetween') file = folder_nested.append_file('No I don\'t wanna go') file.checkout = self.user file.save() folder_two = self.root_node.append_folder('To There') res = self.send_hook( 'osfstorage_move_hook', {'guid': self.root_node.target._id}, payload={ 'source': folder._id, 'target': self.root_node._id, 'user': self.user._id, 'destination': { 'parent': folder_two._id, 'target': folder_two.target._id, 'name': folder_two.name, } }, target=self.node, method='post_json', expect_errors=True, ) assert_equal(res.status_code, 405) def test_move_file_out_of_node(self): folder = self.root_node.append_folder('A long time ago') file = folder.append_file('in a galaxy') project = ProjectFactory(creator=self.user) project_settings = project.get_addon('osfstorage') project_root_node = project_settings.get_root() folder_two = project_root_node.append_folder('far away') res = self.send_hook( 'osfstorage_move_hook', {'guid': self.root_node.target._id}, payload={ 'source': folder._id, 'target': self.root_node._id, 'user': self.user._id, 'destination': { 'parent': folder_two._id, 'target': folder_two.target._id, 'name': folder_two.name, } }, target=project, method='post_json', expect_errors=True, ) assert_equal(res.status_code, 200) def test_can_move_file_out_of_quickfiles_node(self): quickfiles_node = QuickFilesNode.objects.get_for_user(self.user) quickfiles_file = create_test_file(quickfiles_node, self.user, filename='slippery.mp3') quickfiles_folder = OsfStorageFolder.objects.get_root(target=quickfiles_node) dest_folder = OsfStorageFolder.objects.get_root(target=self.project) res = self.send_hook( 'osfstorage_move_hook', {'guid': quickfiles_node._id}, payload={ 'source': quickfiles_file._id, 'target': quickfiles_node._id, 'user': self.user._id, 'destination': { 'parent': dest_folder._id, 'target': self.project._id, 'name': dest_folder.name, } }, target=quickfiles_node, method='post_json', ) assert_equal(res.status_code, 200) def test_can_rename_file_in_quickfiles_node(self): quickfiles_node = QuickFilesNode.objects.get_for_user(self.user) quickfiles_file = create_test_file(quickfiles_node, self.user, filename='road_dogg.mp3') quickfiles_folder = OsfStorageFolder.objects.get_root(target=quickfiles_node) dest_folder = OsfStorageFolder.objects.get_root(target=self.project) new_name = 'JesseJames.mp3' res = self.send_hook( 'osfstorage_move_hook', {'guid': quickfiles_node._id}, payload={ 'action': 'rename', 'source': quickfiles_file._id, 'target': quickfiles_node._id, 'user': self.user._id, 'name': quickfiles_file.name, 'destination': { 'parent': quickfiles_folder._id, 'target': quickfiles_node._id, 'name': new_name, } }, target=quickfiles_node, method='post_json', expect_errors=True, ) quickfiles_file.reload() assert_equal(res.status_code, 200) assert_equal(quickfiles_file.name, new_name) @pytest.mark.django_db class TestMoveHookPreprint(TestMoveHook): def setUp(self): super(TestMoveHook, self).setUp() self.node = PreprintFactory(creator=self.user) self.root_node = self.node.root_folder def test_move_primary_file_out_of_preprint(self): project = ProjectFactory(creator=self.user) project_settings = project.get_addon('osfstorage') project_root_node = project_settings.get_root() folder_two = project_root_node.append_folder('To There') res = self.send_hook( 'osfstorage_move_hook', {'guid': self.root_node.target._id}, payload={ 'source': self.node.primary_file._id, 'target': self.root_node._id, 'user': self.user._id, 'destination': { 'parent': folder_two._id, 'target': folder_two.target._id, 'name': folder_two.name, } }, target=project, method='post_json', expect_errors=True, ) assert_equal(res.status_code, 403) @pytest.mark.django_db @pytest.mark.enable_quickfiles_creation class TestCopyHook(HookTestCase): @pytest.mark.enable_implicit_clean def test_can_copy_file_out_of_quickfiles_node(self): quickfiles_node = QuickFilesNode.objects.get_for_user(self.user) quickfiles_folder = OsfStorageFolder.objects.get_root(target=quickfiles_node) dest_folder = OsfStorageFolder.objects.get_root(target=self.project) res = self.send_hook( 'osfstorage_copy_hook', {'guid': quickfiles_node._id}, payload={ 'source': quickfiles_folder._id, 'target': quickfiles_node._id, 'user': self.user._id, 'destination': { 'parent': dest_folder._id, 'target': self.project._id, 'name': dest_folder.name, } }, target=self.project, method='post_json', ) assert_equal(res.status_code, 201) @pytest.mark.django_db class TestFileTags(StorageTestCase): def test_file_add_tag(self): file = self.node_settings.get_root().append_file('Good Morning.mp3') assert_not_in('Kanye_West', file.tags.values_list('name', flat=True)) url = api_url_for('osfstorage_add_tag', guid=self.node._id, fid=file._id) self.app.post_json(url, {'tag': 'Kanye_West'}, auth=self.user.auth) file.reload() assert_in('Kanye_West', file.tags.values_list('name', flat=True)) def test_file_add_non_ascii_tag(self): file = self.node_settings.get_root().append_file('JapaneseCharacters.txt') assert_not_in('コンサート', file.tags.values_list('name', flat=True)) url = api_url_for('osfstorage_add_tag', guid=self.node._id, fid=file._id) self.app.post_json(url, {'tag': 'コンサート'}, auth=self.user.auth) file.reload() assert_in('コンサート', file.tags.values_list('name', flat=True)) def test_file_remove_tag(self): file = self.node_settings.get_root().append_file('Champion.mp3') tag = Tag(name='Graduation') tag.save() file.tags.add(tag) file.save() assert_in('Graduation', file.tags.values_list('name', flat=True)) url = api_url_for('osfstorage_remove_tag', guid=self.node._id, fid=file._id) self.app.delete_json(url, {'tag': 'Graduation'}, auth=self.user.auth) file.reload() assert_not_in('Graduation', file.tags.values_list('name', flat=True)) def test_tag_the_same_tag(self): file = self.node_settings.get_root().append_file('Lie,Cheat,Steal.mp3') tag = Tag(name='Run_the_Jewels') tag.save() file.tags.add(tag) file.save() assert_in('Run_the_Jewels', file.tags.values_list('name', flat=True)) url = api_url_for('osfstorage_add_tag', guid=self.node._id, fid=file._id) res = self.app.post_json(url, {'tag': 'Run_the_Jewels'}, auth=self.user.auth, expect_errors=True) assert_equal(res.status_code, 400) assert_equal(res.json['status'], 'failure') def test_remove_nonexistent_tag(self): file = self.node_settings.get_root().append_file('WonderfulEveryday.mp3') assert_not_in('Chance', file.tags.values_list('name', flat=True)) url = api_url_for('osfstorage_remove_tag', guid=self.node._id, fid=file._id) res = self.app.delete_json(url, {'tag': 'Chance'}, auth=self.user.auth, expect_errors=True) assert_equal(res.status_code, 400) assert_equal(res.json['status'], 'failure') def test_file_add_tag_creates_log(self): file = self.node_settings.get_root().append_file('Yeezy Season 3.mp4') url = api_url_for('osfstorage_add_tag', guid=self.node._id, fid=file._id) res = self.app.post_json(url, {'tag': 'Kanye_West'}, auth=self.user.auth) assert_equal(res.status_code, 200) self.node.reload() assert_equal(self.node.logs.latest().action, 'file_tag_added') @mock.patch('addons.osfstorage.models.OsfStorageFile.add_tag_log') def test_file_add_tag_fail_doesnt_create_log(self, mock_log): file = self.node_settings.get_root().append_file('UltraLightBeam.mp3') tag = Tag(name='The Life of Pablo') tag.save() file.tags.add(tag) file.save() url = api_url_for('osfstorage_add_tag', guid=self.node._id, fid=file._id) res = self.app.post_json(url, {'tag': 'The Life of Pablo'}, auth=self.user.auth, expect_errors=True) assert_equal(res.status_code, 400) mock_log.assert_not_called() def test_file_remove_tag_creates_log(self): file = self.node_settings.get_root().append_file('Formation.flac') tag = Tag(name='You that when you cause all this conversation') tag.save() file.tags.add(tag) file.save() url = api_url_for('osfstorage_remove_tag', guid=self.node._id, fid=file._id) res = self.app.delete_json(url, {'tag': 'You that when you cause all this conversation'}, auth=self.user.auth) assert_equal(res.status_code, 200) self.node.reload() assert_equal(self.node.logs.latest().action, 'file_tag_removed') @mock.patch('addons.osfstorage.models.OsfStorageFile.add_tag_log') def test_file_remove_tag_fail_doesnt_create_log(self, mock_log): file = self.node_settings.get_root().append_file('For-once-in-my-life.mp3') url = api_url_for('osfstorage_remove_tag', guid=self.node._id, fid=file._id) res = self.app.delete_json(url, {'tag': 'wonder'}, auth=self.user.auth, expect_errors=True) assert_equal(res.status_code, 400) mock_log.assert_not_called() @pytest.mark.django_db @pytest.mark.enable_bookmark_creation class TestFileViews(StorageTestCase): def test_file_views(self): file = create_test_file(target=self.node, user=self.user) url = self.node.web_url_for('addon_view_or_download_file', path=file._id, provider=file.provider) # Test valid url file 200 on redirect redirect = self.app.get(url, auth=self.user.auth) assert redirect.status_code == 302 res = redirect.follow(auth=self.user.auth) assert res.status_code == 200 # Test invalid node but valid deep_url redirects (moved log urls) project_two = ProjectFactory(creator=self.user) url = project_two.web_url_for('addon_view_or_download_file', path=file._id, provider=file.provider) redirect = self.app.get(url, auth=self.user.auth) assert redirect.status_code == 302 redirect_two = redirect.follow(auth=self.user.auth) assert redirect_two.status_code == 302 res = redirect_two.follow(auth=self.user.auth) assert res.status_code == 200 def test_download_file(self): file = create_test_file(target=self.node, user=self.user) folder = self.node_settings.get_root().append_folder('Folder') base_url = '/download/{}/' # Test download works with path url = base_url.format(file._id) redirect = self.app.get(url, auth=self.user.auth) assert redirect.status_code == 302 # Test download works with guid url = base_url.format(file.get_guid()._id) redirect = self.app.get(url, auth=self.user.auth) assert redirect.status_code == 302 # Test nonexistant file 404's url = base_url.format('FakeGuid') redirect = self.app.get(url, auth=self.user.auth, expect_errors=True) assert redirect.status_code == 404 # Test folder 400's url = base_url.format(folder._id) redirect = self.app.get(url, auth=self.user.auth, expect_errors=True) assert redirect.status_code == 400 @responses.activate @mock.patch('framework.auth.cas.get_client') def test_download_file_with_token(self, mock_get_client): cas_base_url = 'http://accounts.test.test' client = cas.CasClient(cas_base_url) mock_get_client.return_value = client base_url = '/download/{}/' file = create_test_file(target=self.node, user=self.user) responses.add( responses.Response( responses.GET, '{}/oauth2/profile'.format(cas_base_url), body=json.dumps({'id': '{}'.format(self.user._id)}), status=200, ) ) download_url = base_url.format(file.get_guid()._id) token = ApiOAuth2PersonalTokenFactory(owner=self.user) headers = { 'Authorization': str('Bearer {}'.format(token.token_id)) } redirect = self.app.get(download_url, headers=headers) assert mock_get_client.called assert self.node.osfstorage_region.waterbutler_url in redirect.location assert redirect.status_code == 302 @pytest.mark.django_db class TestPreprintFileViews(StorageTestCase): def test_file_views(self): self.preprint = PreprintFactory(creator=self.user) file = self.preprint.primary_file guid = file.get_guid(create=True) url = self.preprint.web_url_for('resolve_guid', guid=guid._id) # File view for preprint file redirects to the preprint res = self.app.get(url, auth=self.user.auth, expect_errors=True) assert res.status_code == 302 assert self.preprint._id in res.location def test_download_file(self): self.preprint = PreprintFactory(creator=self.user) file = self.preprint.primary_file folder = self.preprint.root_folder.append_folder('Folder') base_url = '/download/{}/' # Test download works with path url = base_url.format(file._id) redirect = self.app.get(url, auth=self.user.auth) assert redirect.status_code == 302 # Test download works with guid url = base_url.format(file.get_guid(create=True)._id) redirect = self.app.get(url, auth=self.user.auth) assert redirect.status_code == 302 # Test nonexistant file 404's url = base_url.format('FakeGuid') redirect = self.app.get(url, auth=self.user.auth, expect_errors=True) assert redirect.status_code == 404 # Test folder 400's url = base_url.format(folder._id) redirect = self.app.get(url, auth=self.user.auth, expect_errors=True) assert redirect.status_code == 400 @responses.activate @mock.patch('framework.auth.cas.get_client') def test_download_file_with_token(self, mock_get_client): self.preprint = PreprintFactory(creator=self.user) file = self.preprint.primary_file cas_base_url = 'http://accounts.test.test' client = cas.CasClient(cas_base_url) mock_get_client.return_value = client base_url = '/download/{}/' responses.add( responses.Response( responses.GET, '{}/oauth2/profile'.format(cas_base_url), body=json.dumps({'id': '{}'.format(self.user._id)}), status=200, ) ) download_url = base_url.format(file.get_guid(create=True)._id) token = ApiOAuth2PersonalTokenFactory(owner=self.user) headers = { 'Authorization': str('Bearer {}'.format(token.token_id)) } redirect = self.app.get(download_url, headers=headers) assert mock_get_client.called assert settings.WATERBUTLER_URL in redirect.location assert redirect.status_code == 302
37.479516
118
0.627807
4a2656b804a5ca954a770e7a6addf69d2637b32b
1,070
py
Python
examples/rules/TaskHasTag.py
tonipamies/ansible-lint
7c82e774dbecf1cdd0757fc3ca774849534b29bc
[ "MIT" ]
null
null
null
examples/rules/TaskHasTag.py
tonipamies/ansible-lint
7c82e774dbecf1cdd0757fc3ca774849534b29bc
[ "MIT" ]
null
null
null
examples/rules/TaskHasTag.py
tonipamies/ansible-lint
7c82e774dbecf1cdd0757fc3ca774849534b29bc
[ "MIT" ]
null
null
null
"""Example implementation of a rule requiring tasks to have tags set.""" from ansiblelint.rules import AnsibleLintRule class TaskHasTag(AnsibleLintRule): """Tasks must have tag.""" id = 'EXAMPLE001' shortdesc = 'Tasks must have tag' description = 'Tasks must have tag' tags = ['productivity', 'tags'] def matchtask(self, file, task): """Task matching method.""" # The meta files don't have tags if file.kind in ["meta", "playbooks"]: return False if isinstance(task, str): return False # If the task include another task or make the playbook fail # Don't force to have a tag if not set(task.keys()).isdisjoint(['include', 'fail']): return False if not set(task.keys()).isdisjoint(['include_tasks', 'fail']): return False if not set(task.keys()).isdisjoint(['import_tasks', 'fail']): return False # Task should have tags if 'tags' not in task: return True return False
28.157895
72
0.592523
4a2656bd124c3f265419f37400b3f4026fddddd6
1,763
py
Python
qiskit_metal/tests/test_gui_basic.py
rupeshknn/qiskit-metal
94d2cd1ecac4b42828bca855adedcea5a6afe3b2
[ "Apache-2.0" ]
null
null
null
qiskit_metal/tests/test_gui_basic.py
rupeshknn/qiskit-metal
94d2cd1ecac4b42828bca855adedcea5a6afe3b2
[ "Apache-2.0" ]
null
null
null
qiskit_metal/tests/test_gui_basic.py
rupeshknn/qiskit-metal
94d2cd1ecac4b42828bca855adedcea5a6afe3b2
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. #pylint: disable-msg=unnecessary-pass #pylint: disable-msg=broad-except #pylint: disable-msg=unused-variable """ Qiskit Metal unit tests analyses functionality. Test a planar design and launching the GUI. """ import unittest from qiskit_metal._gui.widgets.bases.dict_tree_base import BranchNode from qiskit_metal._gui.widgets.bases.dict_tree_base import LeafNode class TestGUIBasic(unittest.TestCase): """ Unit test class. """ def setUp(self): """ Setup unit test. """ pass def tearDown(self): """ Tie any loose ends. """ pass def test_instantiate_branch_node(self): """ Test instantiation of BranchNode in dict_tree_base.py. """ try: BranchNode('my_name') except Exception: message = "BranchNode instantiation failed" self.fail(message) def test_instantiate_leaf_node(self): """ Test instantiation of LeafNode in dict_tree_base.py. """ try: LeafNode('my_label') except Exception: message = "LeafNode instantiation failed" self.fail(message) if __name__ == '__main__': unittest.main(verbosity=2)
25.550725
77
0.654566
4a2656d17fbf208077789e571a4e3ebe62ff8bd5
2,238
py
Python
languages/python3/dash/app.py
jcnaud/snippet
10db24e2a648af29c51f6bc3a083ffe86e11ae5c
[ "Apache-2.0" ]
5
2018-01-18T10:08:50.000Z
2020-05-01T04:18:02.000Z
languages/python3/dash/app.py
jcnaud/snippet
10db24e2a648af29c51f6bc3a083ffe86e11ae5c
[ "Apache-2.0" ]
null
null
null
languages/python3/dash/app.py
jcnaud/snippet
10db24e2a648af29c51f6bc3a083ffe86e11ae5c
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 import dash import dash_core_components as dcc import dash_html_components as html external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.layout = html.Div(children=[ html.H1(children='Hello Dash'), html.Div(children=''' Dash: A web application framework for Python. '''), dcc.Graph( id='example-graph', figure={ 'data': [ {'x': [1, 2, 3], 'y': [4, 1, 2], 'type': 'bar', 'name': 'SF'}, {'x': [1, 2, 3], 'y': [2, 4, 5], 'type': 'bar', 'name': u'Montréal'}, ], 'layout': { 'title': 'Dash Data Visualization' } } ), html.Label('Dropdown'), dcc.Dropdown( options=[ {'label': 'New York City', 'value': 'NYC'}, {'label': u'Montréal', 'value': 'MTL'}, {'label': 'San Francisco', 'value': 'SF'} ], value='MTL' ), html.Label('Multi-Select Dropdown'), dcc.Dropdown( options=[ {'label': 'New York City', 'value': 'NYC'}, {'label': u'Montréal', 'value': 'MTL'}, {'label': 'San Francisco', 'value': 'SF'} ], value=['MTL', 'SF'], multi=True ), html.Label('Radio Items'), dcc.RadioItems( options=[ {'label': 'New York City', 'value': 'NYC'}, {'label': u'Montréal', 'value': 'MTL'}, {'label': 'San Francisco', 'value': 'SF'} ], value='MTL' ), html.Label('Checkboxes'), dcc.Checklist( options=[ {'label': 'New York City', 'value': 'NYC'}, {'label': u'Montréal', 'value': 'MTL'}, {'label': 'San Francisco', 'value': 'SF'} ], values=['MTL', 'SF'] ), html.Label('Text Input'), dcc.Input(value='MTL', type='text'), html.Label('Slider'), dcc.Slider( min=0, max=9, marks={i: 'Label {}'.format(i) if i == 1 else str(i) for i in range(1, 6)}, value=5, ), ]) if __name__ == '__main__': app.run_server(debug=True)
25.431818
83
0.471403
4a2657a3ec4be89c1f254a3781efc76635d6c2af
42,430
py
Python
extra/unused/pxfuncs.py
whyjz/CARST
875c915e835b0e09a7eccb58833719bbfc85b635
[ "MIT" ]
10
2018-01-02T18:03:07.000Z
2022-01-25T05:36:21.000Z
extra/unused/pxfuncs.py
whyjz/CARST
875c915e835b0e09a7eccb58833719bbfc85b635
[ "MIT" ]
1
2020-04-14T16:57:15.000Z
2020-05-15T16:10:17.000Z
extra/unused/pxfuncs.py
whyjz/CARST
875c915e835b0e09a7eccb58833719bbfc85b635
[ "MIT" ]
4
2016-08-12T15:06:48.000Z
2019-11-27T05:33:50.000Z
#!/usr/bin/python # Author: Andrew Kenneth Melkonian # All rights reserved #import calendar; #import fileinput; from makeAzo import *; import math; import numpy; import os; #from pxfuncs import *; import pylab; import re; import scipy; import shutil; import subprocess; #import sys; #import time; def adjustPhase(radar_path, wavelength, width): radar_dir = "."; index = radar_path.rfind("/"); if index > -1: radar_dir = radar_path[ : index]; radar_name = radar_path[index + 1 : ]; new_radar_path = radar_dir + "/new_" + radar_name; infile = open(radar_path, "rb"); radar_unw_data = scipy.matrix(numpy.fromfile(infile,numpy.float32, -1)).reshape(int(width), -1); radar_unw_data = radar_unw_data * float(wavelength) / 4 / numpy.pi; infile.close(); radar_unw_data = scipy.matrix(radar_unw_data,scipy.float32); radar_unw_data.tofile(new_radar_path); radar_unw_data = None; return(new_radar_path); def ampcor(path, rwin, awin, search_x, search_y, wsamp, numproc): cwd = os.getcwd(); import glob; cull_paths = glob.glob(path + "/int*/*_cull.off"); for i in range(0,len(cull_paths)): cull_name = cull_paths[i].strip()[cull_paths[i].rfind("/")+1:]; cull_dir = cull_paths[i][:cull_paths[i].rfind("/")]; if not re.search("\d{6}",cull_name): continue; already_processed=False; contents=os.listdir(cull_dir); for item in contents: if re.search("azo_" + wsamp + "_r" + rwin + "x" + awin + "_s" + search_x + "x" + search_y,item) > -1: already_processed=True; break; if already_processed: print("\n***** WARNING, " + cull_dir + " contains \"" + item +"\", \"ampcor\" step already run, exiting...\n"); continue; index1 = re.search("\d{6}",cull_name).start(0); index2 = re.search("\d{6}",cull_name).end(0); index3 = re.search("\d{6}",cull_name[index2:]).start(0)+index2; index4 = re.search("\d{6}",cull_name[index2:]).end(0)+index2; date2 = cull_name[index1:index2]; date1 = cull_name[index3:index4]; slc1 = path + "/" + date1 + "/" + date1 + ".slc"; if not os.path.exists(slc1): print("\n***** ERROR, could not find \"" + date1 + ".slc\" in \"" + path + "/" + date1 + "/\"\n"); break; slc2 = path + "/" + date2 + "/" + date2 + ".slc"; if not os.path.exists(slc2): print("\n***** ERROR, could not find \"" + date2 + ".slc\" in \"" + path + "/" + date2 + "/\"\n"); break; slc1_rsc_file = open(slc1 + ".rsc","r"); while 1: line = slc1_rsc_file.readline(); if not line: break; elif line.find("WIDTH") > -1: width = line.split()[1].strip(); slc1_rsc_file.close(); amp1 = cull_dir + "/" + date1 + ".amp"; amp2 = cull_dir + "/" + date2 + ".amp"; if not os.path.exists(amp1): cmd = "\ncpx2mag_phs " + slc1 + " " + cull_dir + "/" + date1 + ".amp " + cull_dir + "/" + date1 + ".phs " + width + "\n"; cmd += "\ncp -pr " + slc1 + ".rsc " + cull_dir + "/" + date1 + ".amp.rsc\n"; cmd += "\nrm " + cull_dir + "/" + date1 + ".phs\n"; subprocess.call(cmd,shell=True); slc2_rsc_file = open(slc2 + ".rsc","r"); while 1: line = slc2_rsc_file.readline(); if not line: break; elif line.find("WIDTH") > -1: width = line.split()[1].strip(); slc2_rsc_file.close(); if not os.path.exists(amp2): cmd = "\ncpx2mag_phs " + slc2 + " " + cull_dir + "/" + date2 + ".amp " + cull_dir + "/" + date2 + ".phs " + width + "\n"; cmd += "\ncp -pr " + slc2 + ".rsc " + cull_dir + "/" + date2 + ".amp.rsc\n"; cmd += "\nrm " + cull_dir + "/" + date2 + ".phs\n"; subprocess.call(cmd,shell=True); cmd = "\ncp -pr azo_real.pl " + cull_dir + "\n"; subprocess.call(cmd,shell=True); cmd = "\ncd " + cull_dir + "\n"; cmd += "\nperl azo_real.pl " + amp2 + " " + amp1 + " " + cull_name[0:cull_name.rfind(".")] + " " + cull_name[index1:index4] + "_azo_" + wsamp + " " + rwin + " " + awin + " " + search_x + " " + search_y + " " + wsamp + " " + numproc + " &\n"; cmd += "\ncd " + cwd + "\n"; print(cmd); #subprocess.call(cmd,shell=True); return; def makeUNW(path, rwin, awin, search_x, search_y, wsamp, angle, data_type): cmd = "\nfind " + path + " -name \"*azo_" + wsamp + "_r" + rwin + "x" + awin + "_s" + search_x + "x" + search_y + "*.off\" -print\n"; pipe = subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE).stdout; ampoff_paths = pipe.read().split(); pipe.close(); ampoff_dirs={}; cat_cmds={}; angles = {}; max_inc_angle = ""; min_inc_angle = ""; if data_type.lower().find("tsx") > -1: cmd = "\nfind " + path + " -name \"T*X*.xml\"\n"; pipe = subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE).stdout; leader_file_paths = pipe.read().split(); pipe.close(); for path in leader_file_paths: date = ""; infile = open(path,"r"); for line in infile: if line.find("timeUTC") > -1: index = re.search("timeUTC>",line).end(0); year = line[index + 2 : index + 4]; month = line[index + 5 : index + 7]; day = line[index + 8 : index + 10]; date = year + month + day; elif line.find("coverageRegionMin incidenceAngle") > -1: min_inc_angle = line[re.search("\">",line).end(0) : re.search("</",line).start(0)]; elif line.find("coverageRegionMax incidenceAngle") > -1: max_inc_angle = line[re.search("\">",line).end(0) : re.search("</",line).start(0)]; infile.close(); angles[date] = str((float(max_inc_angle) + float(min_inc_angle)) / 2.); for i in range(0,len(ampoff_paths)): ampoff_dir = ampoff_paths[i].strip()[0:ampoff_paths[i].strip().rfind("/")]; if ampoff_dir not in ampoff_dirs: ampoff_dirs[ampoff_dir] = ampoff_paths[i]; cat_cmds[ampoff_dir] = "\ncat " + ampoff_paths[i]; else: cat_cmds[ampoff_dir] += " " + ampoff_paths[i]; for ampoff_dir in cat_cmds: cmd = cat_cmds[ampoff_dir]; elements = cmd.split(); if len(elements) < 3: continue; else: if not re.search("_\d\.off",elements[1]): ampoff_dirs[ampoff_dir] = elements[1]; continue; else: composite_ampoff_path = elements[1][:re.search("_\d\.off",elements[1]).start(0)] + ".off"; ampoff_dirs[ampoff_dir]=composite_ampoff_path; if os.path.exists(composite_ampoff_path): continue; cat_cmds[ampoff_dir] += " > " + composite_ampoff_path + "\n"; print("\n***** pixelTrack - step \"make_unw\" - running cat to compose ampcor results into single file...\n"); subprocess.call(cat_cmds[ampoff_dir],shell=True); for ampoff_dir in ampoff_dirs: ampoff_dir_contents = os.listdir(ampoff_dir); already_done = False; item=""; for i in range(0,len(ampoff_dir_contents)): item = ampoff_dir_contents[i]; if re.search(".*azimuth_r" + rwin + "x" + awin + "_s" + search_x + "x" + search_y + "_" + str(int(rwin)/int(wsamp)) + "rlks.unw",item) or \ re.search(".*range_r" + rwin + "x" + awin + "_s" + search_x + "x" + search_y + "_" + str(int(rwin)/int(wsamp)) + "rlks.unw",item): already_done=True; break; if already_done: print("\n****** \"" + item +"\" already exists in \"" + ampoff_dir + "\", make_unw step likely already done for this directory, skipping...\n"); continue; ampoff_path = ampoff_dirs[ampoff_dir]; date = ampoff_path[re.search("/\d{6}[\-_]\d{6}",ampoff_path).start(0) + 1 : re.search("/\d{6}[\-_]\d{6}", ampoff_path).start(0) + 7]; cmd = "\nls " + ampoff_path[0:ampoff_path.rfind("azo")+3]+"*.off.rsc\n"; pipe = subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE).stdout; ampoff_rsc_paths = pipe.read().split(); pipe.close(); if len(ampoff_rsc_paths) < 1: print("\n***** WARNING, could not find any azo rsc file in \"" + amcporDir + "\", skipping these results\n"); break; ampoff_rsc_path = ampoff_rsc_paths[0]; da_p = ""; r_e = ""; p_h = ""; dr = ""; endRefSample = ""; endRefLine = ""; ampoff_rsc_file = open(ampoff_rsc_path,"r"); while 1: line = ampoff_rsc_file.readline(); if not line: break; elif line.find("RANGE_PIXEL_SIZE") > -1: dr = line.split()[1].strip(); elif line.find("FILE_LENGTH") > -1: endRefLine = line.split()[1].strip(); elif line.find("WIDTH") > -1: endRefSample = line.split()[1].strip(); elif line.find("EARTH_RADIUS") > -1: r_e = line.split()[1].strip(); elif re.search("^HEIGHT\s+",line): p_h = line.split()[1].strip(); elif line.find("AZIMUTH_PIXEL_SIZE") > -1: da_p = line.split()[1].strip(); ampoff_rsc_file.close(); if da_p == "": print("\n***** WARNING, could not find parameter \"FILE_LENGTH\" in \"" + ampoff_rsc_path[0].strip() + "\", skipping these results\n"); break; if da_p == "": print("\n***** WARNING, could not find parameter \"WIDTH\" in \"" + ampoff_rsc_path[0].strip() + "\", skipping these results\n"); break; if da_p == "": print("\n***** WARNING, could not find parameter \"AZIMUTH_PIXEL_SIZE\" in \"" + ampoff_rsc_path[0].strip() + "\", skipping these results\n"); break; if r_e == "": print("\n***** WARNING, could not find parameter \"EARTH_RADIUS\" in \"" + ampoff_rsc_path[0].strip() + "\", skipping these results\n"); break; if p_h == "": print("\n***** WARNING, could not find parameter \"HEIGHT\" in \"" + ampoff_rsc_path[0].strip() + "\", skipping these results\n"); break; if dr == "": print("\n***** WARNING, could not find parameter \"RANGE_PIXEL_SIZE\" in \"" + ampoff_rsc_path[0].strip() + "\", skipping these results\n"); break; input_angle = angle; if data_type.lower().find("tsx") > -1: input_angle = angles[date]; print("\n***** pixelTrack - step \"make_unw\" - running makeAzo in " + ampoff_dir + " to generate azimuth and range unw files ...\n"); makeAzo(ampoff_path, float(da_p), float(r_e), float(p_h), float(dr), float(input_angle), int(wsamp), int(rwin), int(awin), search_x, search_y, int(endRefSample), int(endRefLine)); cwd = os.getcwd(); if not os.path.exists(ampoff_dir+"/azimuth_" + rwin + "x" + awin + "_" + str(int(rwin)/int(wsamp)) + "rlks.unw.rsc"): date = ampoff_path[re.search("/\d{6}[\-_]\d{6}",ampoff_path).start(0)+1:re.search("/\d{6}[\-_]\d{6}",ampoff_path).start(0)+7]; cmd = ""; if not os.path.exists(ampoff_dir + "/" + date + "_" + str(int(rwin)/int(wsamp)) + "rlks.slc.rsc"): cmd += "\nlook.pl " + ampoff_dir + "/" + date + ".slc " + str(int(rwin)/int(wsamp)) + " " + str(int(awin)/int(wsamp)) + "\n"; cmd += "\ncp -p " + ampoff_dir + "/" + date + "_" + str(int(rwin)/int(wsamp)) + "rlks.slc.rsc " + ampoff_dir + "/azimuth_r" + rwin + "x" + awin + "_s" + search_x + "x" + search_y + "_" + str(int(rwin)/int(wsamp)) + "rlks.unw.rsc\n"; cmd += "\ncp -p " + ampoff_dir + "/" + date + "_" + str(int(rwin)/int(wsamp)) + "rlks.slc.rsc " + ampoff_dir + "/range_r" + rwin + "x" + awin + "_s" + search_x + "x" + search_y + "_" + str(int(rwin)/int(wsamp)) + "rlks.unw.rsc\n"; cmd += "\ncp -p " + ampoff_dir + "/" + date + "_" + str(int(rwin)/int(wsamp)) + "rlks.slc.rsc " + ampoff_dir + "/snr_r" + rwin + "x" + awin + "_s" + search_x + "x" + search_y + "_" + str(int(rwin)/int(wsamp)) + "rlks.unw.rsc\n"; subprocess.call(cmd,shell=True); return; def beamTable(): beam_angle["ST1"] = "23.7"; beam_angle["ST2"] = "27.7"; beam_angle["ST3"] = "33.7"; beam_angle["ST4"] = "36.6"; beam_angle["ST5"] = "39.4"; beam_angle["ST6"] = "44.0"; beam_angle["ST7"] = "47.2"; beam_angle["F1"] = "38.5"; beam_angle["F2"] = "40.8"; beam_angle["F3"] = "42.9"; beam_angle["F4"] = "44.8"; beam_angle["F5"] = "46.6"; return; #def densifyAmpmag(path, date): # # if # # return; def findAzimuthPixelSize(path, date, orbit): cwd = os.getcwd(); cmd = "find " + path + " -name \"" + date + ".slc.rsc\" -print"; pipe = subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE).stdout; slc_rsc_paths = pipe.read().split(); pipe.close(); slc_rsc_path = ""; if len(slc_rsc_paths) < 1: cmd = "find " + path + " -name \"" + date + ".raw\" -print"; pipe = subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE).stdout; raw_paths = pipe.read().split(); pipe.close(); cmd = "find " + path + " -name \"hdr*"+date+"*.rsc\" -print"; pipe = subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE).stdout; hdr_paths = pipe.read().split(); pipe.close(); if len(raw_paths) < 1: print("\n***** WARNING, could not find \"" + date + ".raw\", necessary to determine azimuth pixel size\n"); return "-1"; raw_path = raw_paths[0]; if not os.path.exists(raw_path + ".rsc"): print("\n***** WARNING, could not find \"" + date + ".raw.rsc\", necessary to determine azimuth pixel size\n"); return "-1"; if len(hdr_paths) < 1: print("\n***** WARNING, could not find \"hdr*" + date + "*.rsc\", necessary to determine azimuth pixel size\n"); return "-1"; hdr_path = hdr_paths[0]; cmd = "\nmkdir " + path + "/" + date + "_APS\n"; cmd += "\ncd " + path + "/" + date + "_APS\n"; cmd += "\nln -s " + raw_path + " " + raw_path[raw_path.rfind("/") + 1 : ] + "\n"; cmd += "\nln -s " + raw_path + ".rsc " + raw_path[raw_path.rfind("/") + 1 : ] + ".rsc\n"; cmd += "\nln -s " + hdr_path + " " + hdr_path[hdr_path.rfind("/") + 1 : ]+"\n"; cmd += "\ndopav.pl . . " + date + " " + date + " \"\"\n"; cmd += "\nroi_prep.pl " + date + " " + orbit + " " + date + "-" + date + "\n"; cmd += "\ncd " + cwd + "\n"; subprocess.call(cmd,shell=True); slc_rsc_path = path + "/" + date + "_APS/" + date + ".slc.rsc"; else: slc_rsc_path = slc_rsc_paths[0]; slc_rsc_file = open(slc_rsc_path,"r"); while 1: line = slc_rsc_file.readline(); if not line: break; if line.find("AZIMUTH_PIXEL_SIZE") > -1: slc_rsc_file.close(); if os.path.exists(path + "/" + date + "_APS"): shutil.rmtree(path + "/" + date + "_APS"); return line[re.search("\d+\.*\d*",line).start(0) : re.search("\d+\.*\d*",line).end(0)]; slc_rsc_file.close(); print("\n***** WARNING, unable to determine azimuth pixel size, using default value of \"5\"\n"); shutil.rmtree(path + "/" + date + "_APS"); return "-1"; def GCF(num): temp = num[0]; for i in range(len(num)-1): num1 = temp; num2 = num[i+1]; if num1 < num2: num1,num2=num2,num1; while num1 - num2: num3 = num1 - num2; num1 = max(num2,num3); num2 = min(num2,num3); temp = num1; return num1; def has_value(self, value): return value in self.values(); def LCM(num): temp = num[0]; for i in range(len(num)-1): num1 = temp; num2 = num[i+1]; t_gcf = GCF([num1,num2]); temp = t_gcf * num1/t_gcf * num2/t_gcf; return temp; def makeProcFile(path, date2, date1, angle, dem, orbit): proc_file_path = path + "/int_" + date2 + "_" + date1 + ".proc"; print(proc_file_path); if os.path.exists(proc_file_path): print("\n\"" + proc_file_path + "\" already exists, skipping\n"); return; int_path = path + "/int_" + date2 + "_" + date1; proc_file = open(proc_file_path,"w"); proc_file.write("SarDir1=" + path + "/" + date2 + "\n"); proc_file.write("SarDir2=" + path + "/" + date1 + "\n"); proc_file.write("IntDir=" + int_path + "\n"); proc_file.write("SimDir=" + int_path + "/SIM\n"); proc_file.write("GeoDir=" + int_path + "/GEO\n"); proc_file.write("flattening=orbit\n"); proc_file.write("DEM=" + dem + "\n"); proc_file.write("OrbitType=" + orbit + "\n"); proc_file.write("Rlooks_sim=1\n"); proc_file.write("Rlooks_unw=1\n"); proc_file.write("Rlooks_geo=1\n"); proc_file.write("Rlooks_int=1\n"); pixelRatio = "-1"; if re.search("\d+", angle): azimuth_pixel_size = findAzimuthPixelSize(path, date1, orbit); range_pixel_size = "-1"; if azimuth_pixel_size != "-1": cmd = "\nfind " + path + " -name \"" + date1 + ".raw.rsc\" -print\n"; pipe = subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE).stdout; raw_rsc_paths = pipe.read().split(); pipe.close(); if len(raw_rsc_paths) > 0: raw_rsc_file = open(raw_rsc_paths[0],"r"); while 1: line = raw_rsc_file.readline(); if not line: break; if line.find("RANGE_PIXEL_SIZE") > -1: raw_rsc_file.close(); range_pixel_size = line[re.search("\d+\.*\d*",line).start(0) : re.search("\d+\.*\d*",line).end(0)]; pixel_ratio = str(round(float(range_pixel_size) / math.sin(math.radians(float(angle))) / float(azimuth_pixel_size))); pixel_ratio = pixel_ratio[0 : pixel_ratio.rfind(".")]; break; raw_rsc_file.close(); if pixel_ratio != "-1": proc_file.write("pixel_ratio=" + pixel_ratio + "\n"); proc_file.close(); def getPixelRatios(path): return; def readProcFile(path,date2,date1): procCmd = "find " + path + " -name \"*" + date2 + "*" + date1 + "*.proc\" -print"; procStream = subprocess.Popen(procCmd); procOutput = procStream.read(); procFilePath = procOutput.strip().split(); if len(procFilePath) < 1: print("\n***** ERROR, no proc file found for dates \"" + date2 + ", " + date1 + "\" in \"" + path + "\"\n"); sys.exit(); if len(procFilePath) > 1: print("\n***** WARNING, found more than one proc file for dates \"" + date2 + ", " + date1 + "\", using \"" + procFilePath[0] + "\"\n"); procStream.close(); procFile = open(procFilePath[0],"r"); procHash = {}; while 1: line = procFile.readline(); if not line: break; line = line.strip(); name = ""; value = ""; elements = line.split("="); if len(elements) < 2 or len(elements[0]) < 1 or len(elements[1]) < 1: print("\n***** ERROR, proc file line format is \"varName=varValue\", \"" + line + "\" does not conform to this format\n"); sys.exit(); procHash[elements[0]] = elements[1]; procFile.close(); return procHash; def gausshpfilt(data,kernel): padSize = numpy.size(kernel,axis=0) / 2; temp = numpy.zeros((numpy.size(data,axis=0)+2*padSize,numpy.size(data,axis=1)+2*padSize)); #fill temp with data values for i in range(padSize,numpy.size(temp,axis=0)-padSize): for j in range(padSize,numpy.size(temp,axis=1)-padSize): temp[i,j] = data[i-padSize,j-padSize]; #pad left for i in range(0,padSize): for j in range(padSize,padSize+numpy.size(data,axis=0)): temp[j,padSize-1-i] = data[j-padSize,i]; #pad top for i in range(0,padSize): for j in range(padSize,padSize+numpy.size(data,axis=1)): temp[padSize-1-i,j] = data[i,j-padSize]; #pad right for i in range(0,padSize): for j in range(padSize,padSize+numpy.size(data,axis=0)): temp[j,numpy.size(temp,axis=1)-padSize+i] = data[j-padSize,numpy.size(data,axis=1)-1-i]; #pad bottom for i in range(0,padSize): for j in range(padSize,padSize+numpy.size(data,axis=1)): temp[numpy.size(temp,axis=0)-padSize+i,j] = data[numpy.size(data,axis=0)-1-i,j-padSize]; #fill top-left corner for i in range(0,padSize): for j in range(0, padSize): temp[padSize-i-1,padSize-j-1] = int((temp[padSize-i-1,padSize-j] + temp[padSize-i,padSize-j-1]) / 2); #fill top-right corner for i in range(0,padSize): for j in range(0, padSize): temp[padSize-i-1,numpy.size(temp,axis=1)-padSize+j] = int((temp[padSize-i-1,numpy.size(temp,axis=1)-padSize+j-1] + temp[padSize-i,numpy.size(temp,axis=1)-padSize+j]) / 2); #fill bottom-right corner for i in range(0,padSize): for j in range(0, padSize): temp[numpy.size(temp,axis=0)-padSize+i,numpy.size(temp,axis=1)-padSize+j] = int((temp[numpy.size(temp,axis=0)-padSize+i,numpy.size(temp,axis=1)-padSize+j-1] + temp[numpy.size(temp,axis=0)-padSize+i-1,numpy.size(temp,axis=1)-padSize+j]) / 2); #fill bottom-left corner for i in range(0,padSize): for j in range(0, padSize): temp[numpy.size(temp,axis=0)-padSize+i,padSize-j-1] = (temp[numpy.size(temp,axis=0)-padSize+i,padSize-j] + temp[numpy.size(temp,axis=0)-padSize+i-1,padSize-j-1]) / 2; #perform convolution ghp_data = numpy.zeros((numpy.size(data,axis=0),numpy.size(data,axis=1))); for i in range(numpy.size(ghp_data,axis=0)): for j in range(numpy.size(ghp_data,axis=1)): ghp_data[i,j] = numpy.sum(kernel*temp[i:i+numpy.size(kernel,axis=0),j:j+numpy.size(kernel,axis=1)]); return ghp_data; def geocode(path, rwin, awin, search_x, search_y, wsamp, orbit, dem_path): import fnmatch; cwd = os.getcwd(); azo_unw_paths = []; for root, dirnames, filenames in os.walk(path): for filename in fnmatch.filter(filenames, "*.unw"): if re.search("r" + rwin + "x" + awin + "_s" + search_x + "x" + search_y + "_" + str(int(rwin) / int(wsamp)), filename): azo_unw_paths.append(root + "/" + filename); ld_range = str(int(rwin) / int(wsamp)); ld_azimuth = str(int(awin) / int(wsamp)); for azo_unw_path in azo_unw_paths: index = re.search("\d{6}_\d{6}", azo_unw_path).start(0); later_date = azo_unw_path[index : index + 6]; early_date = azo_unw_path[index + 7 : index + 13]; print(azo_unw_path); azo_unw_dir = "."; index = azo_unw_path.rfind("/"); if index > -1: azo_unw_dir = azo_unw_path[ : index]; azo_unw_name = azo_unw_path[index + 1 : ]; os.chdir(azo_unw_dir); geo_unw = "geo_" + azo_unw_name[ : azo_unw_name.find("_")] + "_" + later_date + "-" + early_date + "_r" + rwin + "x" + awin + "_s" + search_x + "x" + search_y + "_" + ld_range + "rlks.unw"; if os.path.exists(geo_unw): print("\n**** WARNING, \"" + geo_unw + "\" already exists in \"" + azo_unw_dir + "\", skipping " + azo_unw_name + "...\n"); elif geo_unw.find("range") > -1 and os.path.exists(geo_unw.replace("range", "adj_range")): print("\n**** WARNING, \"" + geo_unw.replace("range", "adj_range") + "\" already exists in \"" + azo_unw_dir + "\", skipping " + azo_unw_name + "...\n"); radar_name = "radar_" + orbit + ".unw"; radar_rsc_name = radar_name + ".rsc"; if not os.path.exists(radar_name): print("\n**** WARNING, \"" + radar_name + "\" not found in \"" + azo_unw_dir + "\", skipping range ramp-removal for this pair...\n"); if not os.path.exists(radar_rsc_name): print("\n***** WARNING, \"" + radar_rsc_name + "\" not found in \"" + azo_unw_dir + "\", skipping range ramp-removal for this pair...\n"); if re.search("^blalbalbrange", azo_unw_name) and os.path.exists(radar_name) and os.path.exists(radar_name + ".rsc"): cmd = "\nlook.pl " + radar_name + " " + ld_range + " " + ld_azimuth + "\n"; subprocess.call(cmd, shell=True); radar_ld_name = "radar_" + orbit + "_" + ld_range + "rlks"; radar_ld_unw = "radar_" + orbit + "_" + ld_range + "rlks.unw"; width = ""; wavelength = ""; radar_rsc_file = open(radar_ld_unw + ".rsc", "r"); while 1: line = radar_rsc_file.readline(); if not line: break; if line.find("WIDTH") > -1: elements = line.split(); width = elements[1]; if line.find("WAVELENGTH") > -1: elements = line.split(); wavelength = elements[1]; radar_rsc_file.close(); if width == "": print("\n***** WARNING, could not find \"WIDTH\" in \"" + radar_ld_unw + ".rsc\", skipping range ramp-removal for \"" + azo_unw_dir + "\"...\n"); continue; if wavelength == "": print("\n***** WARNING, could not find \"WAVELENGTH\" in \"" + radar_ld_unw + ".rsc\", skipping range ramp-removal for \"" + azo_unw_dir + "\"...\n"); continue; cmd = "\nrmg2mag_phs " + radar_ld_unw + " " + radar_ld_name + ".mag " + radar_ld_name + ".phs " + width + "\n"; subprocess.call(cmd, shell=True); adj_radar_ld_phs = adjustPhase(radar_ld_name + ".phs", str(100 * float(wavelength)), width); cmd = "\nmag_phs2rmg " + radar_ld_name + ".mag " + adj_radar_ld_phs + " " + radar_ld_unw + " " + width + "\n"; subprocess.call(cmd, shell=True); adj_range_unw_name = "adj_" + azo_unw_name; cmd = "\nadd_rmg.pl " + azo_unw_name + " " + radar_ld_unw + " " + adj_range_unw_name + " -1 1\n"; subprocess.call(cmd, shell=True); azo_unw_name = adj_range_unw_name; cmd = ""; if not os.path.exists(azo_unw_dir + "/" + later_date + "_" + ld_range + "rlks.slc.rsc"): cmd += "\nlook.pl " + later_date + ".slc " + ld_range + " " + ld_azimuth + "\n"; cmd += "\ncp -pr " + later_date + "_" + ld_range + "rlks.slc.rsc " + azo_unw_path + ".rsc\n"; cmd += "\nmake_geomap.pl ./GEO " + azo_unw_name + " azm.trans " + orbit + " " + dem_path + " " + later_date + "-" + early_date + "_SIM.aff " + ld_range + " " + later_date + " yes ../SIM\n"; cmd += "\ngeocode.pl ./GEO/azm.trans " + azo_unw_name + " geo_" + azo_unw_name[ : azo_unw_name.find("_")] + "_" + later_date + "-" + early_date + "_r" + rwin + "x" + awin + "_s" + search_x + "x" + search_y + "_" + ld_range + "rlks.unw\n"; subprocess.call(cmd,shell=True); os.chdir(cwd); return; def generateProfiles(path): currentDir = os.getcwd(); profilesCmd = "find " + path + " -name \"*.distance\" -print"; profilesStream = subprocess.Popen(profilesCmd); profilesOutput = profilesStream.read(); profilesStream.close(); profiles = profilesOutput.split(); xyzCmd = "find " + path + " -name \"northxyz.txt\" -print"; xyzStream = subprocess.Popen(xyzCmd); xyzOutput = xyzStream.read(); xyzStream.close(); xyzCmd = "find " + path + " -name \"eastxyz.txt\" -print"; xyzStream = subprocess.Popen(xyzCmd); xyzOutput = xyzOutput + xyzStream.read(); xyzStream.close(); xyzCmd = "find " + path + " -name \"magxyz.txt\" -print"; xyzStream = subprocess.Popen(xyzCmd); xyzOutput = xyzOutput + xyzStream.read(); xyzStream.close(); xyzFileList = xyzOutput.split(); for i in range(0,len(xyzFileList)): xyzPath = xyzFileList[i].strip()[0:xyzFileList[i].strip().rfind("/")]; xyzFileName = xyzFileList[i].strip()[xyzFileList[i].strip().rfind("/")+1:]; xyzName = xyzFileName[0:xyzFileName.find(".")]; gridCmd = ""; if not os.path.exists(xyzPath + "/" + xyzName + ".grd"): gridCmd = gridCmd + "\npython grid.py " + xyzFileList[i].strip() + "\n"; gridCmdStream = subprocess.Popen(gridCmd); gridCmdOutput = gridCmdStream.read(); gridCmdStream.close(); #for i in range(0,len(profiles)): # genProfileCmd = "\ncd " + xyzPath + "\ngrdtrack " + profiles[i] + " -G" + xyzName + ".grd > " + profiles[i][profiles[i].rfind("/")+1:profiles[i].find(".")] + "_" + xyzName + ".txt\ncd " + currentDir + "\n"; # print(genProfileCmd); #genProfileStream = subprocess.Popen(genProfileCmd); #genProfileStream.close(); def generatePNGs(path): currentDir = os.getcwd(); findGRDsCmd = "find " + path + " -name \"*.grd\" -print"; findGRDsStream = subprocess.Popen(findGRDsCmd); findGRDsOutput = findGRDsStream.read().split(); findGRDsStream.close(); pngCmd = ""; for i in range(0,len(findGRDsOutput)): psName = findGRDsOutput[i][0:findGRDsOutput[i].rfind(".")] + ".ps"; psPath = findGRDsOutput[i][0:findGRDsOutput[i].rfind("/")]; pngName = findGRDsOutput[i][0:findGRDsOutput[i].rfind(".")] + ".png"; if os.path.exists(psName) and not os.path.exists(pngName): pngCmd += "\ncd " + psPath + "\nps2raster -A -TG " + psName + "\ncd " + currentDir + "\n"; if pngCmd != "": pngStream = subprocess.Popen(pngCmd); pngStream.close(); def getAffineTrans(path): cwd = os.getcwd(); contents = os.listdir(path); proc_paths = [item for item in contents if ".proc" in item]; if len(proc_paths) < 1: print("\n***** WARNING, no *.proc files found in " + path + ", not running \"affine\" step...\n"); return; cmd = ""; for proc_path in proc_paths: int_vars = readIntProcFile(proc_path); date1 = int_vars["SarDir1"]; date2 = int_vars["SarDir2"]; int_dir = int_vars["IntDir"]; rlooks = int_vars["Rlooks_geo"]; aff_path = path + "/" + int_dir + "/" + date1 + "-" + date2 + "_" + rlooks + "rlks_SIM.aff"; if os.path.exists(aff_path): print("\n***** WARNING, " + aff_path + " already exists in " + int_dir + ", skipping...\n"); continue; cmd += "\ncd " + path + "\n"; cmd += "\nprocess_2pass_glac.pl " + proc_path + " offsets done_sim_removal &\n"; cmd += "\ncd " + cwd + "\n"; print(cmd); #subprocess.call(cmd,shell=True); return; def getGRDCorners(path): currentDir = os.getcwd(); findGRDsCmd = "find " + path + " -name \"*.grd\" -print"; findGRDsStream = subprocess.Popen(findGRDsCmd); findGRDsOutput = findGRDsStream.read().split(); findGRDsStream.close(); for i in range(0,len(findGRDsOutput)): grdPath = findGRDsOutput[i][0:findGRDsOutput[i].rfind("/")]; grdName = findGRDsOutput[i][findGRDsOutput[i].rfind("/")+1:findGRDsOutput[i].rfind(".")]; if not os.path.exists(grdPath + "/" + grdName + "_corners.dat"): grdinfoCmd = "\ngrdinfo " + findGRDsOutput[i].strip() + "\n"; grdinfoStream = subprocess.Popen(grdinfoCmd); grdinfoOutput = grdinfoStream.read(); grdinfoStream.close(); x_min = grdinfoOutput[grdinfoOutput.find("x_min:")+6:grdinfoOutput.find("x_max:")].strip(); x_max = grdinfoOutput[grdinfoOutput.find("x_max:")+6:grdinfoOutput.find("x_inc:")].strip(); y_min = grdinfoOutput[grdinfoOutput.find("y_min:")+6:grdinfoOutput.find("y_max:")].strip(); y_max = grdinfoOutput[grdinfoOutput.find("y_max:")+6:grdinfoOutput.find("y_inc:")].strip(); cornersFileName = grdPath + "/" + grdName + "_corners.dat"; cornersFile = open(cornersFileName,"w"); cornersFile.write(x_min + " " + y_min + " LL\n"); cornersFile.write(x_max + " " + y_max + " TR\n"); cornersFile.write(x_min + " " + y_max + " TL\n"); cornersFile.write(x_max + " " + y_min + " LR\n"); cornersFile.close() def generateKML(path): findPNGsCmd = "find " + path + " -name \"*.png\" -print"; findPNGsStream = subprocess.Popen(findPNGsCmd); findPNGsOutput = findPNGsStream.read().split(); findPNGsStream.close(); def createMatlabGetXYZ(matlabPath,ampcorInFilePath): startRefSample = ""; endRefSample = ""; skipRefSample = ""; startRefLine = ""; endRefLine = ""; skipRefLine = ""; ampcorInFile = open(ampcorInFilePath,"r"); ampoff_dir = ampcorInFilePath[0:ampcorInFilePath.rfind("/")]; ampoff_name = ampcorInFilePath[0:ampcorInFilePath.rfind(".")]; cornersFilePath = ampoff_dir + "/corners.dat"; cornersFile = open(cornersFilePath,"r"); ul_long = ""; ul_lat = ""; while 1: line = cornersFile.readline(); if not line: break; line = line.strip(); if line.find("ul_long") > -1: ul_long = line.split("=")[1]; elif line.find("ul_lat") > -1: ul_lat = line.split("=")[1]; cornersFile.close(); while 1: line = ampcorInFile.readline(); if not line: break; if line.find("Start, End and Skip Samples in Reference Image") > -1: line = line.strip().split("="); sampleInfo = line[1].split(); startRefSample = sampleInfo[0]; endRefSample = sampleInfo[1]; skipRefSample = sampleInfo[2]; elif line.find("Start, End and Skip Lines in Reference Image") > -1: line = line.strip().split("="); lineInfo = line[1].split(); startRefLine = lineInfo[0]; endRefLine = lineInfo[1]; skipRefLine = lineInfo[2]; ampcorInFile.close(); matlabFile = open(matlabPath,"r"); outputMatlabFile = open(ampoff_dir + "/getxyzs.m","w"); while 1: line = matlabFile.readline(); if not line: break; elif re.search("rwin\s*=\s*;",line): outputMatlabFile.write(line.replace(";",skipRefSample+";")); break; else: outputMatlabFile.write(line); while 1: line = matlabFile.readline(); if not line: break; elif re.search("awin\s*=\s*;",line): outputMatlabFile.write(line.replace(";",skipRefLine+";")); break; else: outputMatlabFile.write(line); while 1: line = matlabFile.readline(); if not line: break; elif re.search("load\s*;",line): outputMatlabFile.write(line.replace(";",ampoff_name[ampoff_name.rfind("/")+1:]+".off;")); break; else: outputMatlabFile.write(line); while 1: line = matlabFile.readline(); if not line: break; elif re.search("indat\s*=\s*;",line): outputMatlabFile.write(line.replace(";",ampoff_name[ampoff_name.rfind("/")+1:]+";")); break; else: outputMatlabFile.write(line); while 1: line = matlabFile.readline(); if not line: break; elif re.search("width0\s*=\s*;",line): outputMatlabFile.write(line.replace(";",endRefSample+";")); break; else: outputMatlabFile.write(line); while 1: line = matlabFile.readline(); if not line: break; elif re.search("length0\s*=\s*;",line): outputMatlabFile.write(line.replace(";",endRefLine+";")); break; else: outputMatlabFile.write(line); while 1: line = matlabFile.readline(); if not line: break; elif re.search("ul_long\s*=\s*;",line): outputMatlabFile.write(line.replace(";",ul_long+";")); break; else: outputMatlabFile.write(line); while 1: line = matlabFile.readline(); if not line: break; elif re.search("ul_lat\s*=\s*;",line): outputMatlabFile.write(line.replace(";",ul_lat+";")); break; else: outputMatlabFile.write(line); while 1: line = matlabFile.readline(); if not line: break; elif re.search("x_step\s*=\s*;",line): outputMatlabFile.write(line.replace(";",str(15*int(skipRefSample))+";")); break; else: outputMatlabFile.write(line); while 1: line = matlabFile.readline(); if not line: break; elif re.search("y_step\s*=\s*",line): outputMatlabFile.write(line.replace(";",str(15*int(skipRefLine))+";")); else: outputMatlabFile.write(line); outputMatlabFile.close(); matlabFile.close(); currentDir = os.getcwd(); getXYZCmd = "\ncd " + ampoff_dir + "\nmatlab -nodesktop -nosplash -r getxyzs\ncd " + currentDir; getXYZCmdStream = subprocess.Popen(getXYZCmd); getXYZCmdStream.close(); def makeRawALOS(WorkPath): contents = os.listdir(WorkPath); cmd = ""; for i in range(0, len(contents)): if re.search("^\d\d\d\d\d\d$", contents[i]): date_contents = os.listdir(WorkPath + "/" + contents[i]); for item in date_contents: if item.find("LED") > -1: fbd2fbs = "NO"; img_path = item.replace("LED", "IMG-HH"); img_full_path = os.readlink(WorkPath + "/" + contents[i] + "/" + img_path); img_alt_path = img_full_path.replace("HH","HV"); if os.path.exists(img_alt_path): fbd2fbs = "FBD2FBS"; cwd = os.getcwd(); cmd = cmd + "\ncd " + WorkPath + "/" + contents[i] + "\nmake_raw_alos.pl IMG " + contents[i] + " " + fbd2fbs + "\ncd " + cwd + "\n"; break; subprocess.call(cmd,shell=True); return; def makeRawENVISAT(WorkPath, orbit): contents = os.listdir(WorkPath); cmd = ""; for i in range(0, len(contents)): if re.search("^\d\d\d\d\d\d$", contents[i]): date_contents = os.listdir(WorkPath + "/" + contents[i]); for item in date_contents: if item.find("ASA_") > -1: cwd = os.getcwd(); cmd = cmd + "\ncd " + WorkPath + "/" + contents[i] + "\nmake_raw_envi.pl " + item + " " + orbit + " " + contents[i] + "\ncd " + cwd + "\n"; break; subprocess.call(cmd,shell=True); return; def makeRawERS(WorkPath, orbit): contents = os.listdir(WorkPath); cmd = ""; for i in range(0, len(contents)): if re.search("^\d\d\d\d\d\d$", contents[i]): date_contents = os.listdir(WorkPath + "/" + contents[i]); for item in date_contents: if item.find("SARLEADER") > -1: cwd = os.getcwd(); # cmd = cmd + "\ncd " + WorkPath + "/" + contents[i] + "\nmake_raw_ASF.pl " + orbit + " " + item + " " + contents[i] + "\ncd " + cwd + "\n"; cmd = cmd + "\ncd " + WorkPath + "/" + contents[i] + "\nmake_raw.pl " + orbit + " " + item + " " + contents[i] + "\ncd " + cwd + "\n"; break; subprocess.call(cmd,shell=True); return; def makeRawTSX(WorkPath): cwd = os.getcwd(); cmd = "\nfind " + WorkPath + " -name \"TDX*.xml\"\n"; pipe = subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE).stdout; leader_file_paths = pipe.read().split(); pipe.close(); dates = {}; for path in leader_file_paths: infile = open(path,"r"); for line in infile: if line.find("timeUTC") > -1: index = re.search("timeUTC>",line).end(0); year = line[index + 2 : index + 4]; month = line[index + 5 : index + 7]; day = line[index + 8 : index + 10]; date = year + month + day; dates[date] = path; break; infile.close(); for date in dates: cmd = "\ncd " + WorkPath + "/" + date + "\n"; cmd += "\nmake_slc_tsx.csh " + dates[date] + " " + date + "\n"; cmd += "\ncp -p " + WorkPath + "/" + date + "/" + date + ".slc.rsc " + WorkPath + "/" + date + "/" + date + ".raw.rsc\n"; cmd += "\ntouch " + WorkPath + "/" + date + "/" + date + ".raw\n"; cmd += "\ncd " + cwd + "\n"; subprocess.call(cmd,shell=True); return; def readIntProcFile(proc_path): assert os.path.exists(proc_path), "***** ERROR: " + proc_path + " not found, cannot read proc file\n"; int_vars = {}; proc_file = open(proc_path,"r"); while 1: line = proc_file.readline(); if not line: break; line = line.strip(); if not line: continue; name = ""; value = ""; elements = line.split("="); if len(elements) < 2 or len(elements[0]) < 1 or len(elements[1]) < 1: print("\n***** ERROR, proc file line format is \"name = value\", \"" + line + "\" does not conform to this format\n"); sys.exit(); name = elements[0].strip(); value = elements[1].strip(); int_vars[name] = value; proc_file.close(); return int_vars; def setupALOS(WorkPath, leader_file_paths): for leader_path in leader_file_paths: existingSARLeaderFiles = {}; sarNumber = {}; dateName = ""; extension = leader_path[leader_path.rfind("."):]; leader_name = leader_path[leader_path.rfind("/") + 1 : ]; leaderFile = open(leader_path,"rb"); while 1: line = leaderFile.readline(); if not line: break; searchExp = "\s\d\d\d\d\d\d\d\d"; if re.search(searchExp,line): index = re.search(searchExp,line).start(0); dateName = line[index:index+9].strip(); dateName = dateName[2:8]; if not os.path.isdir(WorkPath + "/" + dateName): cmd = "mkdir " + WorkPath + "/" + dateName; subprocess.call(cmd,shell=True); if not existingSARLeaderFiles.has_key(leader_path): leader_link_path = WorkPath + "/" + dateName + "/" + leader_name; os.symlink(leader_path, leader_link_path); existingSARLeaderFiles[leader_path] = leader_link_path; break; leaderFile.close(); if re.search("LED-A",leader_path): raw_path = leader_path.replace("LED","IMG-HH"); raw_alt_path = leader_path.replace("LED","IMG-HV"); raw_name = raw_path[raw_path.rfind("IMG") : ]; raw_alt_name = raw_alt_path[raw_alt_path.rfind("IMG") : ]; raw_link_path = WorkPath + "/" + dateName + "/" + raw_name; raw_alt_link_path = WorkPath + "/" + dateName + "/" + raw_alt_name; if os.path.exists(raw_path) and not os.path.exists(raw_link_path): os.symlink(raw_path, raw_link_path); # if os.path.exists(raw_alt_path) and not os.path.exists(raw_alt_link_path): # os.symlink(raw_alt_path, raw_alt_link_path); if not os.path.exists(raw_path): print("\n***** WARNING, could not find corresponding raw file for leader file \"" + leader_path + "\"\nPlease make sure the raw file is in the same directory and is named \"IMG-HH*"+leader_path.replace("LED","")+"\"\n"); continue; return; def setupTSX(WorkPath, leader_file_paths): for path in leader_file_paths: infile = open(path,"r"); for path in leader_file_paths: print(path); return; def setupENVISAT(WorkPath, leader_file_paths): for path in leader_file_paths: print(path); return; def setupERS(WorkPath, leader_file_paths): for path in leader_file_paths: existingSARLeaderFiles = {}; sarNumber = {}; dateName = ""; extension = path[path.rfind("."):]; leaderFile = open(path,"rb"); while 1: line = leaderFile.readline(); if not line: break; searchExp = "\s\d\d\d\d\d\d\d\d"; if re.search(searchExp,line): index = re.search(searchExp,line).start(0); dateName = line[index:index+9].strip(); dateName = dateName[2:8]; if not os.path.isdir(WorkPath + "/" + dateName): cmd = "mkdir " + WorkPath + "/" + dateName; subprocess.call(cmd,shell=True); if not existingSARLeaderFiles.has_key(path): if not sarNumber.has_key(dateName): sarNumber[dateName] = 1; else: sarNumber[dateName] = sarNumber[dateName] + 1; sarNumberStr = str(sarNumber[dateName]) if sarNumber[dateName] < 10: sarNumberStr = "0" + sarNumberStr; tempPath = WorkPath + "/" + dateName + "/SARLEADER" + sarNumberStr; while has_value(existingSARLeaderFiles,tempPath): sarNumber[dateName] = sarNumber[dateName] + 1; sarNumberStr = str(sarNumber[dateName]); if sarNumber[dateName] < 10: sarNumberStr = "0" + sarNumberStr; tempPath = WorkPath + "/" + dateName + "/SARLEADER" + sarNumberStr; os.symlink(path,tempPath); existingSARLeaderFiles[path] = tempPath; break; leaderFile.close(); rawFileName = "rawness"; if re.search("LEA.*\.001",path): rawFileName = path.replace("LEA","DAT"); else: rawFileName = path[0:path.find(".ldr")] + ".raw"; if not os.path.exists(rawFileName): rawFileName = rawFileName[0:rawFileName.find(".raw")] + ".RAW"; if not os.path.exists(rawFileName): rawFileName = rawFileName[0:rawFileName.find(".RAW")] + ".Raw"; if not os.path.exists(rawFileName): if DataType.lower().find("alos") > -1: print("\n***** WARNING, could not find corresponding raw file for leader file \"" + path + "\"\nPlease make sure the raw file is in the same directory and is named \"IMG*"+path.replace("LED","")+"\"\n"); else: print("\n***** WARNING, could not find corresponding raw file for leader file \"" + path + "\"\nPlease make sure the raw file is in the same directory and has the extension \".raw\"\n"); continue; tempImagePath = ""; if re.search("SARLEADER", existingSARLeaderFiles[path]): tempImagePath = existingSARLeaderFiles[path].replace("SARLEADER","IMAGERY"); if not os.path.exists(tempImagePath): os.symlink(rawFileName, tempImagePath); return; def setupTSX(WorkPath, leader_file_paths): for path in leader_file_paths: infile = open(path,"r"); for line in infile: if line.find("timeUTC") > -1: index = re.search("timeUTC>",line).end(0); year = line[index + 2 : index + 4]; month = line[index + 5 : index + 7]; day = line[index + 8 : index + 10]; date = year + month + day; if not os.path.exists(date): os.mkdir(WorkPath + "/" + date); break; infile.close(); return;
29.485754
245
0.615107
4a265858cb387fa7e2cf4e16153a25cf47610f0c
1,896
py
Python
tests/components/homekit/test_type_triggers.py
basicpail/core
5cc54618c5af3f75c08314bf2375cc7ac40d2b7e
[ "Apache-2.0" ]
7
2019-08-15T13:36:58.000Z
2020-03-18T10:46:29.000Z
tests/components/homekit/test_type_triggers.py
basicpail/core
5cc54618c5af3f75c08314bf2375cc7ac40d2b7e
[ "Apache-2.0" ]
100
2020-06-17T22:22:41.000Z
2022-03-31T06:24:19.000Z
tests/components/homekit/test_type_triggers.py
winning1120xx/home-assistant
53d4c0ce2d374b5e97bbdc37742656c27adf8eea
[ "Apache-2.0" ]
11
2020-12-16T13:48:14.000Z
2022-02-01T00:28:05.000Z
"""Test different accessory types: Triggers (Programmable Switches).""" from unittest.mock import MagicMock from homeassistant.components.homekit.type_triggers import DeviceTriggerAccessory from homeassistant.const import STATE_OFF, STATE_ON from homeassistant.setup import async_setup_component from tests.common import MockConfigEntry, async_get_device_automations async def test_programmable_switch_button_fires_on_trigger( hass, hk_driver, events, demo_cleanup, device_reg, entity_reg ): """Test that DeviceTriggerAccessory fires the programmable switch event on trigger.""" hk_driver.publish = MagicMock() demo_config_entry = MockConfigEntry(domain="domain") demo_config_entry.add_to_hass(hass) assert await async_setup_component(hass, "demo", {"demo": {}}) await hass.async_block_till_done() hass.states.async_set("light.ceiling_lights", STATE_OFF) await hass.async_block_till_done() entry = entity_reg.async_get("light.ceiling_lights") assert entry is not None device_id = entry.device_id device_triggers = await async_get_device_automations(hass, "trigger", device_id) acc = DeviceTriggerAccessory( hass, hk_driver, "DeviceTriggerAccessory", None, 1, None, device_id=device_id, device_triggers=device_triggers, ) await acc.run() await hass.async_block_till_done() assert acc.entity_id is None assert acc.device_id is device_id assert acc.available is True hk_driver.publish.reset_mock() hass.states.async_set("light.ceiling_lights", STATE_ON) await hass.async_block_till_done() hk_driver.publish.assert_called_once() hk_driver.publish.reset_mock() hass.states.async_set("light.ceiling_lights", STATE_OFF) await hass.async_block_till_done() hk_driver.publish.assert_called_once() await acc.stop()
32.689655
90
0.75
4a2658eee845a1c3ee9848750128da0c11abf7f7
459
py
Python
venv/Scripts/easy_install-3.7-script.py
derysudrajat/Translate
7ee7c62d10268166033bcf5c7c6254dcd4c7c055
[ "MIT" ]
null
null
null
venv/Scripts/easy_install-3.7-script.py
derysudrajat/Translate
7ee7c62d10268166033bcf5c7c6254dcd4c7c055
[ "MIT" ]
null
null
null
venv/Scripts/easy_install-3.7-script.py
derysudrajat/Translate
7ee7c62d10268166033bcf5c7c6254dcd4c7c055
[ "MIT" ]
null
null
null
#!C:\Users\ASUS\PycharmProjects\Translate\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install-3.7' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install-3.7')() )
35.307692
87
0.694989
4a265a09a4ecaf80eed578a082070b3972e744e8
7,384
py
Python
thothlibrary/mutation.py
dqprogramming/thoth-client
616a2286efd562d580568b9d80e439343c19e1fb
[ "MIT" ]
3
2021-07-27T17:46:32.000Z
2021-10-12T15:46:43.000Z
thothlibrary/mutation.py
dqprogramming/thoth-client
616a2286efd562d580568b9d80e439343c19e1fb
[ "MIT" ]
null
null
null
thothlibrary/mutation.py
dqprogramming/thoth-client
616a2286efd562d580568b9d80e439343c19e1fb
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ GraphQL client for Thoth (c) Open Book Publishers, February 2020 This programme is free software; you may redistribute and/or modify it under the terms of the Apache License v2.0. """ import json import urllib from .errors import ThothError class ThothMutation(): """GraphQL mutation in Thoth Mutations are specified in the MUTATIONS list, which specifies their fields and desired return value 'fields' must be a list of tuples (str, bool) where the string represents the attribute and the boolean represents whether the values should be enclosed with quotes and sanitised. Each mutation must have a return_value. Normally this is the primary key of that object, but in some cases, when we don't need to use the return value, we simply specify any field that can be returned in that mutation (e.g. createContribution). """ MUTATIONS = { "createPublisher": { "fields": [ ("publisherName", True), ("publisherShortname", True), ("publisherUrl", True) ], "return_value": "publisherId" }, "createImprint": { "fields": [ ("publisherId", True), ("imprintName", True), ("imprintUrl", True) ], "return_value": "imprintId" }, "createWork": { "fields": [ ("workType", False), ("workStatus", False), ("fullTitle", True), ("title", True), ("subtitle", True), ("reference", True), ("edition", False), ("imprintId", True), ("doi", True), ("publicationDate", True), ("place", True), ("width", False), ("height", False), ("pageCount", False), ("pageBreakdown", True), ("imageCount", False), ("tableCount", False), ("audioCount", False), ("videoCount", False), ("license", True), ("copyrightHolder", True), ("landingPage", True), ("lccn", True), ("oclc", True), ("shortAbstract", True), ("longAbstract", True), ("generalNote", True), ("toc", True), ("coverUrl", True), ("coverCaption", True) ], "return_value": "workId" }, "createPublication": { "fields": [ ("publicationType", False), ("workId", True), ("isbn", True), ("publicationUrl", True) ], "return_value": "publicationId" }, "createPrice": { "fields": [ ("publicationId", True), ("currencyCode", False), ("unitPrice", False) ], "return_value": "priceId" }, "createLanguage": { "fields": [ ("workId", True), ("languageCode", False), ("languageRelation", False), ("mainLanguage", False) ], "return_value": "languageId" }, "createSubject": { "fields": [ ("workId", True), ("subjectType", False), ("subjectCode", True), ("subjectOrdinal", False) ], "return_value": "subjectId" }, "createSeries": { "fields": [ ("imprintId", True), ("seriesType", False), ("seriesName", True), ("issnPrint", True), ("issnDigital", True), ("seriesUrl", True) ], "return_value": "seriesId" }, "createIssue": { "fields": [ ("seriesId", True), ("workId", True), ("issueOrdinal", False) ], "return_value": "issueOrdinal" }, "createContributor": { "fields": [ ("firstName", True), ("lastName", True), ("fullName", True), ("orcid", True), ("website", True) ], "return_value": "contributorId" }, "createContribution": { "fields": [ ("workId", True), ("contributorId", True), ("contributionType", False), ("mainContribution", False), ("biography", True), ("institution", True), ("firstName", True), ("lastName", True), ("fullName", True) ], "return_value": "workId" } } def __init__(self, mutation_name, mutation_data): """Returns new ThothMutation object with specified mutation data mutation_name: Must match one of the keys found in MUTATIONS. mutation_data: Dictionary of mutation fields and their values. """ self.mutation_name = mutation_name self.return_value = self.MUTATIONS[mutation_name]["return_value"] self.mutation_data = mutation_data self.data_str = self.generate_values() self.request = self.prepare_request() def prepare_request(self): """Format the mutation request string""" values = { "mutation_name": self.mutation_name, "data": self.data_str, "return_value": self.return_value } payload = """ mutation { %(mutation_name)s( data: { %(data)s } ) { %(return_value)s } } """ return payload % values def run(self, client): """Perform the GraphQL mutation and report any errors""" result = "" try: result = client.execute(self.request) if "errors" in result: raise AssertionError return json.loads(result)[ "data"][self.mutation_name][self.return_value] except (KeyError, TypeError, ValueError, AssertionError, json.decoder.JSONDecodeError, urllib.error.HTTPError): raise ThothError(self.request, result) def generate_values(self): """Returns a set of mutation statements based on object attributes.""" def sanitise(text): """Escape quotes and linebreaks""" tmp = text.replace("\n", "\\n") return tmp.replace('"', '''\\"''') values = [] for key, enclose in self.MUTATIONS[self.mutation_name]["fields"]: value = self.mutation_data[key] if value is None or not str(value): continue if enclose: statement = "{}: \"{}\"".format(key, sanitise(value)) else: statement = "{}: {}".format(key, value) values.append(statement) return "\n".join(values)
32.672566
79
0.463841
4a265a8a40f890ccf8bc0958235d99156edec773
2,972
py
Python
siam_tracker/benchmarks/data/vot.py
microsoft/PySiamTracking
a82dabeaa42a7816dbd8e823da7b7e92ebb622ce
[ "MIT" ]
28
2020-03-18T04:41:21.000Z
2022-02-24T16:44:01.000Z
siam_tracker/benchmarks/data/vot.py
HengFan2010/PySiamTracking
a82dabeaa42a7816dbd8e823da7b7e92ebb622ce
[ "MIT" ]
1
2020-04-05T15:23:22.000Z
2020-04-07T16:23:12.000Z
siam_tracker/benchmarks/data/vot.py
HengFan2010/PySiamTracking
a82dabeaa42a7816dbd8e823da7b7e92ebb622ce
[ "MIT" ]
11
2020-03-19T00:30:06.000Z
2021-11-10T08:22:35.000Z
import os import numpy as np from .base_data import Dataset, Sequence from ..utils import read_file from ..builder import BENCHMARKS @BENCHMARKS.register_module class VOT(Dataset): def __init__(self, name='vot', vot_root='data/benchmark/vot17/', zip_mode=False): super(VOT, self).__init__(name=name, zip_mode=zip_mode) self._load_seqs(vot_root) def select_tag(self, video_name: str, tag: str, start: int = 0, end: int = 0): seq = self.seqs[self.get(video_name)] if tag == 'all': all_tags = [1] * len(seq) return all_tags[start:end] elif hasattr(seq, tag): return getattr(seq, tag)[start:end] else: raise NotImplementedError("Cannot find tag '{}'".format(tag)) def _load_seqs(self, vot_root: str) -> None: list_file = os.path.join(vot_root, 'list.txt') seq_name_list = read_file(list_file) for seq_name in seq_name_list: seq = self._load_single_seq(os.path.join(vot_root, seq_name)) self._seqs.append(seq) def _load_single_seq(self, data_dir: str) -> Sequence: name = os.path.basename(data_dir) # load ground-truth annotation gt_rects = np.loadtxt(os.path.join(data_dir, 'groundtruth.txt'), dtype=np.float64, delimiter=',') # load frames img_dir = os.path.join(data_dir, 'color') frames = [os.path.join(img_dir, '{:08d}.jpg'.format(i+1)) for i in range(len(gt_rects))] kwargs = dict() for att in ['occlusion', 'illum_change', 'motion_change', 'size_change', 'camera_motion']: tag_file = os.path.join(data_dir, '{}.tag'.format(att)) if os.path.exists(tag_file): att_tags = np.loadtxt(tag_file).astype(np.bool) if len(att_tags) < len(frames): _pad = np.zeros((len(frames),), dtype=np.bool) _pad[:len(att_tags)] = att_tags att_tags = _pad kwargs[att] = att_tags if self.zip_mode: seq_name = os.path.basename(data_dir) zip_path = os.path.join(data_dir, '..', 'zips', '{}.zip'.format(seq_name)) else: zip_path = None return Sequence(name, frames, gt_rects, attrs=None, zip_path=zip_path, **kwargs) @BENCHMARKS.register_module class VOT17(VOT): def __init__(self, data_root='data/benchmark/', zip_mode=False): super(VOT17, self).__init__(name='vot17', vot_root=os.path.join(data_root, 'vot17'), zip_mode=zip_mode) @BENCHMARKS.register_module class VOT16(VOT): def __init__(self, data_root='data/benchmark/', zip_mode=False): super(VOT16, self).__init__(name='vot16', vot_root=os.path.join(data_root, 'vot16'), zip_mode=zip_mode)
37.620253
105
0.5821
4a265dbfbb52ff2693eeef28547374a23730396c
2,495
py
Python
backend/api/python_http_client/test/test_api_report_run_metrics_request.py
FrancisLfg/pipelines
b0466cb9626407f125bf7ce2c9de37991e654a6d
[ "Apache-2.0" ]
null
null
null
backend/api/python_http_client/test/test_api_report_run_metrics_request.py
FrancisLfg/pipelines
b0466cb9626407f125bf7ce2c9de37991e654a6d
[ "Apache-2.0" ]
null
null
null
backend/api/python_http_client/test/test_api_report_run_metrics_request.py
FrancisLfg/pipelines
b0466cb9626407f125bf7ce2c9de37991e654a6d
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 """ Kubeflow Pipelines API This file contains REST API specification for Kubeflow Pipelines. The file is autogenerated from the swagger definition. # noqa: E501 The version of the OpenAPI document: 1.0.0-dev.1 Contact: [email protected] Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import datetime import kfp_server_api from kfp_server_api.models.api_report_run_metrics_request import ApiReportRunMetricsRequest # noqa: E501 from kfp_server_api.rest import ApiException class TestApiReportRunMetricsRequest(unittest.TestCase): """ApiReportRunMetricsRequest unit test stubs""" def setUp(self): pass def tearDown(self): pass def make_instance(self, include_optional): """Test ApiReportRunMetricsRequest include_option is a boolean, when False only required params are included, when True both required and optional params are included """ # model = kfp_server_api.models.api_report_run_metrics_request.ApiReportRunMetricsRequest() # noqa: E501 if include_optional : return ApiReportRunMetricsRequest( run_id = '0', metrics = [ kfp_server_api.models.api_run_metric.apiRunMetric( name = '0', node_id = '0', number_value = 1.337, format = 'UNSPECIFIED', ) ] ) else : return ApiReportRunMetricsRequest( ) def testApiReportRunMetricsRequest(self): """Test ApiReportRunMetricsRequest""" inst_req_only = self.make_instance(include_optional=False) inst_req_and_optional = self.make_instance(include_optional=True) if __name__ == '__main__': unittest.main()
33.266667
138
0.676954
4a265f4c5a64df6d722eef18391454eae2ad69a1
5,031
py
Python
tests/test_packages/test_skills_integration/test_coin_price.py
bryanchriswhite/agents-aea
d3f177a963eb855d9528555167255bf2b478f4ba
[ "Apache-2.0" ]
1
2022-01-23T22:28:43.000Z
2022-01-23T22:28:43.000Z
tests/test_packages/test_skills_integration/test_coin_price.py
salman6049/agents-aea
d3f177a963eb855d9528555167255bf2b478f4ba
[ "Apache-2.0" ]
null
null
null
tests/test_packages/test_skills_integration/test_coin_price.py
salman6049/agents-aea
d3f177a963eb855d9528555167255bf2b478f4ba
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This test module contains the integration test for the coin price skill.""" import time from typing import Dict import pytest from aea.helpers import http_requests as requests from aea.test_tools.test_cases import AEATestCaseEmpty def parse_prometheus_output(prom_data: bytes) -> Dict[str, float]: """Convert prometheus text output to a dict of {"metric": value}""" metrics = {} for line in prom_data.decode().splitlines(): tokens = line.split() if tokens[0] != "#": metrics.update({tokens[0]: float(tokens[1])}) return metrics @pytest.mark.integration class TestCoinPriceSkill(AEATestCaseEmpty): """Test that coin price skill works.""" def test_coin_price(self): """Run the coin price skill sequence.""" coin_price_feed_aea_name = self.agent_name self.generate_private_key() self.add_private_key() self.add_item("connection", "fetchai/http_client:0.24.0") self.add_item("connection", "fetchai/http_server:0.23.0") self.add_item("connection", "fetchai/prometheus:0.9.0") self.add_item("skill", "fetchai/advanced_data_request:0.7.0") self.set_config("agent.default_connection", "fetchai/http_server:0.23.0") default_routing = { "fetchai/http:1.1.0": "fetchai/http_client:0.24.0", "fetchai/prometheus:1.1.0": "fetchai/prometheus:0.9.0", } setting_path = "agent.default_routing" self.nested_set_config(setting_path, default_routing) # set 'api spec path' *after* comparison with fetched agent. self.set_config( "vendor.fetchai.connections.http_server.config.api_spec_path", "vendor/fetchai/skills/advanced_data_request/api_spec.yaml", ) self.set_config( "vendor.fetchai.connections.http_server.config.target_skill_id", "fetchai/advanced_data_request:0.7.0", ) self.set_config( "vendor.fetchai.skills.advanced_data_request.models.advanced_data_request_model.args.use_http_server", True, type_="bool", ) self.set_config( "vendor.fetchai.skills.advanced_data_request.models.advanced_data_request_model.args.url", "https://api.coingecko.com/api/v3/simple/price?ids=fetch-ai&vs_currencies=usd", type_="str", ) self.set_config( "vendor.fetchai.skills.advanced_data_request.models.advanced_data_request_model.args.outputs", '[{"name": "price", "json_path": "fetch-ai.usd"}]', type_="list", ) diff = self.difference_to_fetched_agent( "fetchai/coin_price_feed:0.15.0", coin_price_feed_aea_name ) assert ( diff == [] ), "Difference between created and fetched project for files={}".format(diff) self.run_install() process = self.run_agent() is_running = self.is_running(process) assert is_running, "AEA not running within timeout!" time.sleep(6) # we wait a bit longer than the tick rate of the behaviour response = requests.get("http://127.0.0.1:8000/data") assert response.status_code == 200, "Failed to get response code 200" coin_price = response.json() assert "price" in coin_price, "Response does not contain 'price'" response = requests.get("http://127.0.0.1:8000") assert response.status_code == 404 assert response.content == b"", "Get request should not work without valid path" response = requests.post("http://127.0.0.1:8000/data") assert response.status_code == 404 assert response.content == b"", "Post not allowed" # test prometheus metrics prom_response = requests.get("http://127.0.0.1:9090/metrics") metrics = parse_prometheus_output(prom_response.content) assert metrics["num_retrievals"] > 0.0, "num_retrievals metric not updated" assert metrics["num_requests"] == 1.0, "num_requests metric not equal to 1" self.terminate_agents() assert ( self.is_successfully_terminated() ), "Http echo agent wasn't successfully terminated."
39.304688
114
0.636255
4a266002989791867cf4545fe65b05f759b2a16f
1,873
py
Python
venv/Lib/site-packages/pyrogram/raw/base/payment_charge.py
D1ne2021/jjhhhjj
a090da30983b3ef276dfe4cef2ded4526f36002a
[ "MIT" ]
5
2021-09-11T22:01:15.000Z
2022-03-16T21:33:42.000Z
backend/pyrogram/raw/base/payment_charge.py
iamatlasss/social-media-analyzer
429d1d2bbd8bfce80c50c5f8edda58f87ace668d
[ "Apache-2.0" ]
null
null
null
backend/pyrogram/raw/base/payment_charge.py
iamatlasss/social-media-analyzer
429d1d2bbd8bfce80c50c5f8edda58f87ace668d
[ "Apache-2.0" ]
3
2022-01-18T11:06:22.000Z
2022-02-26T13:39:28.000Z
# Pyrogram - Telegram MTProto API Client Library for Python # Copyright (C) 2017-2021 Dan <https://github.com/delivrance> # # This file is part of Pyrogram. # # Pyrogram is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Pyrogram is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Pyrogram. If not, see <http://www.gnu.org/licenses/>. # # # # # # # # # # # # # # # # # # # # # # # # # !!! WARNING !!! # # This is a generated file! # # All changes made in this file will be lost! # # # # # # # # # # # # # # # # # # # # # # # # # from typing import Union from pyrogram import raw from pyrogram.raw.core import TLObject PaymentCharge = Union[raw.types.PaymentCharge] # noinspection PyRedeclaration class PaymentCharge: # type: ignore """This base type has 1 constructor available. Constructors: .. hlist:: :columns: 2 - :obj:`PaymentCharge <pyrogram.raw.types.PaymentCharge>` """ QUALNAME = "pyrogram.raw.base.PaymentCharge" def __init__(self): raise TypeError("Base types can only be used for type checking purposes: " "you tried to use a base type instance as argument, " "but you need to instantiate one of its constructors instead. " "More info: https://docs.pyrogram.org/telegram/base/payment-charge")
37.46
92
0.641217
4a266023c87aaa921a04897001c3cc745dd37909
21,376
py
Python
tests/integration/package/test_package_command_zip.py
westonsteimel/aws-sam-cli
eeb462e50b41b408da3b8c7df618f5a0e3a4f3dc
[ "BSD-2-Clause", "Apache-2.0" ]
null
null
null
tests/integration/package/test_package_command_zip.py
westonsteimel/aws-sam-cli
eeb462e50b41b408da3b8c7df618f5a0e3a4f3dc
[ "BSD-2-Clause", "Apache-2.0" ]
null
null
null
tests/integration/package/test_package_command_zip.py
westonsteimel/aws-sam-cli
eeb462e50b41b408da3b8c7df618f5a0e3a4f3dc
[ "BSD-2-Clause", "Apache-2.0" ]
null
null
null
import os import pathlib import re from subprocess import Popen, PIPE, TimeoutExpired import tempfile from unittest import skipIf from parameterized import parameterized, param from samcli.lib.utils.hash import dir_checksum, file_checksum from samcli.lib.warnings.sam_cli_warning import CodeDeployWarning from .package_integ_base import PackageIntegBase from tests.testing_utils import RUNNING_ON_CI, RUNNING_TEST_FOR_MASTER_ON_CI, RUN_BY_CANARY # Package tests require credentials and CI/CD will only add credentials to the env if the PR is from the same repo. # This is to restrict package tests to run outside of CI/CD, when the branch is not master and tests are not run by Canary. SKIP_PACKAGE_TESTS = RUNNING_ON_CI and RUNNING_TEST_FOR_MASTER_ON_CI and not RUN_BY_CANARY TIMEOUT = 300 @skipIf(SKIP_PACKAGE_TESTS, "Skip package tests in CI/CD only") class TestPackageZip(PackageIntegBase): def setUp(self): super().setUp() def tearDown(self): super().tearDown() @parameterized.expand(["aws-serverless-function.yaml"]) def test_package_template_flag(self, template_file): template_path = self.test_data_path.joinpath(template_file) command_list = self.get_command_list(s3_bucket=self.s3_bucket.name, template=template_path) process = Popen(command_list, stdout=PIPE) try: stdout, _ = process.communicate(timeout=TIMEOUT) except TimeoutExpired: process.kill() raise process_stdout = stdout.strip() self.assertIn("{bucket_name}".format(bucket_name=self.s3_bucket.name), process_stdout.decode("utf-8")) @parameterized.expand( [ "aws-serverless-function.yaml", "aws-serverless-api.yaml", "aws-serverless-httpapi.yaml", "aws-appsync-graphqlschema.yaml", "aws-appsync-resolver.yaml", "aws-appsync-functionconfiguration.yaml", "aws-lambda-function.yaml", "aws-apigateway-restapi.yaml", "aws-elasticbeanstalk-applicationversion.yaml", "aws-cloudformation-stack.yaml", "aws-serverless-application.yaml", "aws-lambda-layerversion.yaml", "aws-serverless-layerversion.yaml", "aws-glue-job.yaml", "aws-serverlessrepo-application.yaml", "aws-serverless-statemachine.yaml", "aws-stepfunctions-statemachine.yaml", "aws-include-transform.yaml", ] ) def test_package_barebones(self, template_file): template_path = self.test_data_path.joinpath(template_file) command_list = self.get_command_list(s3_bucket=self.s3_bucket.name, template_file=template_path) process = Popen(command_list, stdout=PIPE) try: stdout, _ = process.communicate(timeout=TIMEOUT) except TimeoutExpired: process.kill() raise process_stdout = stdout.strip() self.assertIn("{bucket_name}".format(bucket_name=self.s3_bucket.name), process_stdout.decode("utf-8")) def test_package_without_required_args(self): command_list = self.get_command_list() process = Popen(command_list, stdout=PIPE) try: process.communicate(timeout=TIMEOUT) except TimeoutExpired: process.kill() raise self.assertNotEqual(process.returncode, 0) @parameterized.expand( [ "aws-serverless-function.yaml", "aws-serverless-api.yaml", "aws-serverless-httpapi.yaml", "aws-appsync-graphqlschema.yaml", "aws-appsync-resolver.yaml", "aws-appsync-functionconfiguration.yaml", "aws-lambda-function.yaml", "aws-apigateway-restapi.yaml", "aws-elasticbeanstalk-applicationversion.yaml", "aws-cloudformation-stack.yaml", "aws-serverless-application.yaml", "aws-lambda-layerversion.yaml", "aws-serverless-layerversion.yaml", "aws-glue-job.yaml", "aws-serverlessrepo-application.yaml", "aws-serverless-statemachine.yaml", "aws-stepfunctions-statemachine.yaml", ] ) def test_package_with_prefix(self, template_file): template_path = self.test_data_path.joinpath(template_file) s3_prefix = "integ_test_prefix" command_list = self.get_command_list( s3_bucket=self.s3_bucket.name, template_file=template_path, s3_prefix=s3_prefix ) process = Popen(command_list, stdout=PIPE) try: stdout, _ = process.communicate(timeout=TIMEOUT) except TimeoutExpired: process.kill() raise process_stdout = stdout.strip() self.assertIn("{bucket_name}".format(bucket_name=self.s3_bucket.name), process_stdout.decode("utf-8")) self.assertIn("{s3_prefix}".format(s3_prefix=s3_prefix), process_stdout.decode("utf-8")) @parameterized.expand( [ "aws-serverless-function.yaml", "aws-serverless-api.yaml", "aws-serverless-httpapi.yaml", "aws-appsync-graphqlschema.yaml", "aws-appsync-resolver.yaml", "aws-appsync-functionconfiguration.yaml", "aws-lambda-function.yaml", "aws-apigateway-restapi.yaml", "aws-elasticbeanstalk-applicationversion.yaml", "aws-cloudformation-stack.yaml", "aws-serverless-application.yaml", "aws-lambda-layerversion.yaml", "aws-serverless-layerversion.yaml", "aws-glue-job.yaml", "aws-serverlessrepo-application.yaml", "aws-serverless-statemachine.yaml", "aws-stepfunctions-statemachine.yaml", ] ) def test_package_with_output_template_file(self, template_file): template_path = self.test_data_path.joinpath(template_file) s3_prefix = "integ_test_prefix" with tempfile.NamedTemporaryFile(delete=False) as output_template: command_list = self.get_command_list( s3_bucket=self.s3_bucket.name, template_file=template_path, s3_prefix=s3_prefix, output_template_file=output_template.name, ) process = Popen(command_list, stdout=PIPE) try: stdout, _ = process.communicate(timeout=TIMEOUT) except TimeoutExpired: process.kill() raise process_stdout = stdout.strip() self.assertIn( bytes( "Successfully packaged artifacts and wrote output template to file {output_template_file}".format( output_template_file=str(output_template.name) ), encoding="utf-8", ), process_stdout, ) @parameterized.expand( [ "aws-serverless-function.yaml", "aws-serverless-api.yaml", "aws-serverless-httpapi.yaml", "aws-appsync-graphqlschema.yaml", "aws-appsync-resolver.yaml", "aws-appsync-functionconfiguration.yaml", "aws-lambda-function.yaml", "aws-apigateway-restapi.yaml", "aws-elasticbeanstalk-applicationversion.yaml", "aws-cloudformation-stack.yaml", "aws-serverless-application.yaml", "aws-lambda-layerversion.yaml", "aws-serverless-layerversion.yaml", "aws-glue-job.yaml", "aws-serverlessrepo-application.yaml", "aws-serverless-statemachine.yaml", "aws-stepfunctions-statemachine.yaml", ] ) def test_package_with_json(self, template_file): template_path = self.test_data_path.joinpath(template_file) s3_prefix = "integ_test_prefix" with tempfile.NamedTemporaryFile(delete=False) as output_template: command_list = self.get_command_list( s3_bucket=self.s3_bucket.name, template_file=template_path, s3_prefix=s3_prefix, output_template_file=output_template.name, use_json=True, ) process = Popen(command_list, stdout=PIPE) try: stdout, _ = process.communicate(timeout=TIMEOUT) except TimeoutExpired: process.kill() raise process_stdout = stdout.strip() self.assertIn( bytes( "Successfully packaged artifacts and wrote output template to file {output_template_file}".format( output_template_file=str(output_template.name) ), encoding="utf-8", ), process_stdout, ) @parameterized.expand( [ "aws-serverless-function.yaml", "aws-serverless-api.yaml", "aws-serverless-httpapi.yaml", "aws-appsync-graphqlschema.yaml", "aws-appsync-resolver.yaml", "aws-appsync-functionconfiguration.yaml", "aws-lambda-function.yaml", "aws-apigateway-restapi.yaml", "aws-elasticbeanstalk-applicationversion.yaml", "aws-cloudformation-stack.yaml", "aws-serverless-application.yaml", "aws-lambda-layerversion.yaml", "aws-serverless-layerversion.yaml", "aws-glue-job.yaml", "aws-serverlessrepo-application.yaml", "aws-serverless-statemachine.yaml", "aws-stepfunctions-statemachine.yaml", ] ) def test_package_with_force_upload(self, template_file): template_path = self.test_data_path.joinpath(template_file) s3_prefix = "integ_test_prefix" with tempfile.NamedTemporaryFile(delete=False) as output_template: # Upload twice and see the string to have packaged artifacts both times. for _ in range(2): command_list = self.get_command_list( s3_bucket=self.s3_bucket.name, template_file=template_path, s3_prefix=s3_prefix, output_template_file=output_template.name, force_upload=True, ) process = Popen(command_list, stdout=PIPE) try: stdout, _ = process.communicate(timeout=TIMEOUT) except TimeoutExpired: process.kill() raise process_stdout = stdout.strip() self.assertIn( bytes( "Successfully packaged artifacts and wrote output template to file {output_template_file}".format( output_template_file=str(output_template.name) ), encoding="utf-8", ), process_stdout, ) @parameterized.expand( [ "aws-serverless-function.yaml", "aws-serverless-api.yaml", "aws-serverless-httpapi.yaml", "aws-appsync-graphqlschema.yaml", "aws-appsync-resolver.yaml", "aws-appsync-functionconfiguration.yaml", "aws-lambda-function.yaml", "aws-apigateway-restapi.yaml", "aws-elasticbeanstalk-applicationversion.yaml", "aws-cloudformation-stack.yaml", "aws-serverless-application.yaml", "aws-lambda-layerversion.yaml", "aws-serverless-layerversion.yaml", "aws-glue-job.yaml", "aws-serverlessrepo-application.yaml", "aws-serverless-statemachine.yaml", "aws-stepfunctions-statemachine.yaml", ] ) def test_package_with_kms_key(self, template_file): template_path = self.test_data_path.joinpath(template_file) s3_prefix = "integ_test_prefix" with tempfile.NamedTemporaryFile(delete=False) as output_template: command_list = self.get_command_list( s3_bucket=self.s3_bucket.name, template_file=template_path, s3_prefix=s3_prefix, output_template_file=output_template.name, force_upload=True, kms_key_id=self.kms_key, ) process = Popen(command_list, stdout=PIPE) try: stdout, _ = process.communicate(timeout=TIMEOUT) except TimeoutExpired: process.kill() raise process_stdout = stdout.strip() self.assertIn( bytes( "Successfully packaged artifacts and wrote output template to file {output_template_file}".format( output_template_file=str(output_template.name) ), encoding="utf-8", ), process_stdout, ) @parameterized.expand( [ "aws-serverless-function.yaml", "aws-serverless-api.yaml", "aws-serverless-httpapi.yaml", "aws-appsync-graphqlschema.yaml", "aws-appsync-resolver.yaml", "aws-appsync-functionconfiguration.yaml", "aws-lambda-function.yaml", "aws-apigateway-restapi.yaml", "aws-elasticbeanstalk-applicationversion.yaml", "aws-cloudformation-stack.yaml", "aws-serverless-application.yaml", "aws-lambda-layerversion.yaml", "aws-serverless-layerversion.yaml", "aws-glue-job.yaml", "aws-serverlessrepo-application.yaml", "aws-serverless-statemachine.yaml", "aws-stepfunctions-statemachine.yaml", ] ) def test_package_with_metadata(self, template_file): template_path = self.test_data_path.joinpath(template_file) s3_prefix = "integ_test_prefix" with tempfile.NamedTemporaryFile(delete=False) as output_template: command_list = self.get_command_list( s3_bucket=self.s3_bucket.name, template_file=template_path, s3_prefix=s3_prefix, output_template_file=output_template.name, force_upload=True, metadata={"integ": "yes"}, ) process = Popen(command_list, stdout=PIPE) try: stdout, _ = process.communicate(timeout=TIMEOUT) except TimeoutExpired: process.kill() raise process_stdout = stdout.strip() self.assertIn( bytes( "Successfully packaged artifacts and wrote output template to file {output_template_file}".format( output_template_file=str(output_template.name) ), encoding="utf-8", ), process_stdout, ) @parameterized.expand( [ "aws-serverless-function.yaml", "aws-serverless-api.yaml", "aws-appsync-graphqlschema.yaml", "aws-appsync-resolver.yaml", "aws-appsync-functionconfiguration.yaml", "aws-lambda-function.yaml", "aws-apigateway-restapi.yaml", "aws-elasticbeanstalk-applicationversion.yaml", "aws-cloudformation-stack.yaml", "aws-serverless-application.yaml", "aws-lambda-layerversion.yaml", "aws-serverless-layerversion.yaml", "aws-glue-job.yaml", "aws-serverlessrepo-application.yaml", "aws-serverless-statemachine.yaml", "aws-stepfunctions-statemachine.yaml", ] ) def test_package_with_resolve_s3(self, template_file): template_path = self.test_data_path.joinpath(template_file) s3_prefix = "integ_test_prefix" with tempfile.NamedTemporaryFile(delete=False) as output_template: command_list = self.get_command_list( template_file=template_path, s3_prefix=s3_prefix, output_template_file=output_template.name, force_upload=True, resolve_s3=True, ) process = Popen(command_list, stdout=PIPE) try: stdout, _ = process.communicate(timeout=TIMEOUT) except TimeoutExpired: process.kill() raise process_stdout = stdout.strip() self.assertIn( bytes( "Successfully packaged artifacts and wrote output template to file {output_template_file}".format( output_template_file=str(output_template.name) ), encoding="utf-8", ), process_stdout, ) @parameterized.expand([(True,), (False,)]) def test_package_with_no_progressbar(self, no_progressbar): template_path = self.test_data_path.joinpath("aws-serverless-function.yaml") s3_prefix = "integ_test_prefix" with tempfile.NamedTemporaryFile(delete=False) as output_template: command_list = self.get_command_list( template_file=template_path, s3_prefix=s3_prefix, output_template_file=output_template.name, force_upload=True, no_progressbar=no_progressbar, resolve_s3=True, ) process = Popen(command_list, stdout=PIPE, stderr=PIPE) try: _, stderr = process.communicate(timeout=TIMEOUT) except TimeoutExpired: process.kill() raise process_stderr = stderr.strip() upload_message = bytes("Uploading to", encoding="utf-8") if no_progressbar: self.assertNotIn( upload_message, process_stderr, ) else: self.assertIn( upload_message, process_stderr, ) @parameterized.expand( [ param("aws-serverless-function-codedeploy-warning.yaml", "CodeDeploy"), param("aws-serverless-function-codedeploy-condition-warning.yaml", "CodeDeploy DeploymentGroups"), ] ) def test_package_with_warning_template(self, template_file, warning_keyword): template_path = self.test_data_path.joinpath(template_file) command_list = self.get_command_list(s3_bucket=self.s3_bucket.name, template=template_path) process = Popen(command_list, stdout=PIPE) try: stdout, _ = process.communicate(timeout=TIMEOUT) except TimeoutExpired: process.kill() raise process_stdout = stdout.strip().decode("utf-8") # Not comparing with full warning message because of line ending mismatch on # windows and non-windows self.assertIn(warning_keyword, process_stdout) def test_package_with_deep_nested_template(self): """ this template contains two nested stacks: - root - FunctionA - ChildStackX - FunctionB - ChildStackY - FunctionA - MyLayerVersion """ template_file = os.path.join("deep-nested", "template.yaml") template_path = self.test_data_path.joinpath(template_file) command_list = self.get_command_list(s3_bucket=self.s3_bucket.name, template=template_path, force_upload=True) process = Popen(command_list, stdout=PIPE, stderr=PIPE) try: _, stderr = process.communicate(timeout=TIMEOUT) except TimeoutExpired: process.kill() raise process_stderr = stderr.strip().decode("utf-8") # there are in total 3 function dir, 1 layer dir and 2 child templates to upload uploads = re.findall(r"Uploading to.+", process_stderr) self.assertEqual(len(uploads), 6) # make sure uploads' checksum match the dirs and child templates build_dir = pathlib.Path(os.path.dirname(__file__)).parent.joinpath("testdata", "package", "deep-nested") dirs = [ build_dir.joinpath("FunctionA"), build_dir.joinpath("ChildStackX", "FunctionB"), build_dir.joinpath("ChildStackX", "ChildStackY", "FunctionA"), build_dir.joinpath("ChildStackX", "ChildStackY", "MyLayerVersion"), ] # here we only verify function/layer code dirs' hash # because templates go through some pre-process before being uploaded and the hash can not be determined for dir in dirs: checksum = dir_checksum(dir.absolute()) self.assertIn(checksum, process_stderr) # verify both child templates are uploaded uploads = re.findall(r"\.template", process_stderr) self.assertEqual(len(uploads), 2)
38.865455
123
0.591832
4a2660d1dd5fedffca147810343fcd4ed3e4e03c
4,897
py
Python
program_slicing/graph/convert/cdg.py
acheshkov/program_slicing
124d2dcf6c9c2cd8e505b96f4f47f3ea98f0a260
[ "MIT" ]
5
2021-11-06T04:35:17.000Z
2022-03-21T09:11:54.000Z
program_slicing/graph/convert/cdg.py
acheshkov/program_slicing
124d2dcf6c9c2cd8e505b96f4f47f3ea98f0a260
[ "MIT" ]
19
2021-11-15T14:42:56.000Z
2022-02-01T14:30:34.000Z
program_slicing/graph/convert/cdg.py
acheshkov/program_slicing
124d2dcf6c9c2cd8e505b96f4f47f3ea98f0a260
[ "MIT" ]
null
null
null
__licence__ = 'MIT' __author__ = 'kuyaki' __credits__ = ['kuyaki'] __maintainer__ = 'kuyaki' __date__ = '2021/04/01' from typing import Dict, List from program_slicing.graph.cdg import ControlDependenceGraph from program_slicing.graph.cfg import ControlFlowGraph from program_slicing.graph.ddg import DataDependenceGraph from program_slicing.graph.pdg import ProgramDependenceGraph from program_slicing.graph.basic_block import BasicBlock from program_slicing.graph.statement import Statement from program_slicing.graph.convert.cfg import to_ddg as cfg_to_ddg def to_cfg(cdg: ControlDependenceGraph) -> ControlFlowGraph: """ Convert the Control Dependence Graph into a Control Flow Graph. New graph will contain links on nodes of the original one so that any changes made after converting in the original graph's statements will affect the converted one. :param cdg: Control Dependence Graph that should to be converted. :return: Control Flow Graph which nodes contain nodes of the Control Dependence Graph on which it was based on. """ cfg = ControlFlowGraph() block: Dict[Statement, BasicBlock] = {} for root in cdg.entry_points: __to_cfg(root, cdg=cdg, cfg=cfg, block=block) cfg.set_scope_dependency(cdg.scope_dependency) return cfg def to_ddg(cdg: ControlDependenceGraph) -> DataDependenceGraph: """ Convert the Control Dependence Graph into a Data Dependence Graph. New graph will contain same nodes as in the original one so that any changes made after converting in the original graph's statements will affect the converted one. :param cdg: Control Dependence Graph that should to be converted. :return: Data Dependence Graph which nodes where presented in the Control Dependence Graph on which it was based on. """ cfg = to_cfg(cdg) return cfg_to_ddg(cfg) def to_pdg(cdg: ControlDependenceGraph) -> ProgramDependenceGraph: """ Convert the Control Dependence Graph into a Program Dependence Graph. New graph will contain same nodes as in the original one so that any changes made after converting in the original graph's statements will affect the converted one. :param cdg: Control Dependence Graph that should to be converted. :return: Program Dependence Graph which nodes where presented in the original Control Dependence Graph. """ ddg = to_ddg(cdg) pdg = ProgramDependenceGraph() for node in cdg: pdg.add_node(node) for cdg_successor in cdg.successors(node): pdg.add_edge(node, cdg_successor) if node in ddg: for ddg_successor in ddg.successors(node): pdg.add_edge(node, ddg_successor) for entry_point in cdg.entry_points: pdg.add_entry_point(entry_point) pdg.set_scope_dependency(cdg.scope_dependency) return pdg def __to_cfg( statement: Statement, cdg: ControlDependenceGraph, cfg: ControlFlowGraph, block: Dict[Statement, BasicBlock]) -> None: f_children: List[Statement] = cdg.control_flow.get(statement, []) prev_block: BasicBlock = block.get(statement, None) process_list: List[Statement] = [] for child in f_children: if child in block: __process_loop(child, cfg, block, prev_block) elif len(f_children) > 1: new_block = BasicBlock(statements=[child]) cfg.add_node(new_block) if prev_block is None: cfg.add_entry_point(new_block) else: cfg.add_edge(prev_block, new_block) block[child] = new_block process_list.append(child) else: if prev_block is None: prev_block = BasicBlock() cfg.add_node(prev_block) cfg.add_entry_point(prev_block) prev_block.append(child) block[child] = prev_block process_list.append(child) for child in process_list: __to_cfg(child, cdg, cfg, block) def __process_loop( child: Statement, cfg: ControlFlowGraph, block: Dict[Statement, BasicBlock], prev_block: BasicBlock) -> None: old_block: BasicBlock = block[child] index = old_block.statements.index(child) if index == 0: if prev_block is not None: cfg.add_edge(prev_block, old_block) return new_block = old_block.split(index) for new_block_statement in new_block.statements: block[new_block_statement] = new_block cfg.add_node(new_block) old_successors: List[BasicBlock] = [successor for successor in cfg.successors(old_block)] for old_successor in old_successors: cfg.remove_edge(old_block, old_successor) cfg.add_edge(new_block, old_successor) cfg.add_edge(old_block, new_block) if prev_block is not None: cfg.add_edge(prev_block, new_block)
39.813008
120
0.700837
4a266106cdb808a33ff7ef5ee9224b147c18711e
1,615
py
Python
tests/conftest.py
adamkusmirek/mkdocs-static-i18n
c8be7dd86a7b0b951414e18b93b2a7b7ea439373
[ "MIT" ]
null
null
null
tests/conftest.py
adamkusmirek/mkdocs-static-i18n
c8be7dd86a7b0b951414e18b93b2a7b7ea439373
[ "MIT" ]
null
null
null
tests/conftest.py
adamkusmirek/mkdocs-static-i18n
c8be7dd86a7b0b951414e18b93b2a7b7ea439373
[ "MIT" ]
null
null
null
import tempfile import pytest from mkdocs.config.base import load_config @pytest.fixture def config_base(): with tempfile.TemporaryDirectory(prefix="mkdocs_tests_") as site_dir: return load_config( "tests/mkdocs_base.yml", docs_dir="../docs/", site_dir=site_dir ) @pytest.fixture def config_plugin(): with tempfile.TemporaryDirectory(prefix="mkdocs_tests_") as site_dir: return load_config( "tests/mkdocs_i18n.yml", docs_dir="../docs/", site_dir=site_dir ) @pytest.fixture def config_plugin_static_nav(): with tempfile.TemporaryDirectory(prefix="mkdocs_tests_") as site_dir: return load_config( "tests/mkdocs_i18n_static_nav.yml", docs_dir="../docs/", site_dir=site_dir ) @pytest.fixture def config_plugin_no_default_language(): with tempfile.TemporaryDirectory(prefix="mkdocs_tests_") as site_dir: return load_config( "tests/mkdocs_i18n_no_default_language.yml", docs_dir="../docs/", site_dir=site_dir, ) @pytest.fixture def config_plugin_translated_nav(): with tempfile.TemporaryDirectory(prefix="mkdocs_tests_") as site_dir: return load_config( "tests/mkdocs_i18n_translated_nav.yml", docs_dir="../docs/", site_dir=site_dir, ) @pytest.fixture def config_plugin_search(): with tempfile.TemporaryDirectory(prefix="mkdocs_tests_") as site_dir: return load_config( "tests/mkdocs_i18n_search.yml", docs_dir="../docs/", site_dir=site_dir, )
27.372881
86
0.668111
4a2661efb470c1729b1b26483256e864f7e0395f
12,169
py
Python
utils/utils.py
andreasmarxer/keras-yolo3
b56bf38c830c6a57a299335aa2192fe845830264
[ "MIT" ]
null
null
null
utils/utils.py
andreasmarxer/keras-yolo3
b56bf38c830c6a57a299335aa2192fe845830264
[ "MIT" ]
null
null
null
utils/utils.py
andreasmarxer/keras-yolo3
b56bf38c830c6a57a299335aa2192fe845830264
[ "MIT" ]
null
null
null
import cv2 import numpy as np import os from .bbox import BoundBox, bbox_iou from scipy.special import expit def _sigmoid(x): return expit(x) def makedirs(path): try: os.makedirs(path) except OSError: if not os.path.isdir(path): raise def evaluate(model, generator, iou_threshold=0.5, obj_thresh=0.5, nms_thresh=0.45, net_h=416, net_w=416, save_path=None): """ Evaluate a given dataset using a given model. code originally from https://github.com/fizyr/keras-retinanet # Arguments model : The model to evaluate. generator : The generator that represents the dataset to evaluate. iou_threshold : The threshold used to consider when a detection is positive or negative. obj_thresh : The threshold used to distinguish between object and non-object nms_thresh : The threshold used to determine whether two detections are duplicates net_h : The height of the input image to the model, higher value results in better accuracy net_w : The width of the input image to the model save_path : The path to save images with visualized detections to. # Returns A dict mapping class names to mAP scores. """ # gather all detections and annotations all_detections = [[None for i in range(generator.num_classes())] for j in range(generator.size())] all_annotations = [[None for i in range(generator.num_classes())] for j in range(generator.size())] for i in range(generator.size()): raw_image = [generator.load_image(i)] # make the boxes and the labels pred_boxes = get_yolo_boxes(model, raw_image, net_h, net_w, generator.get_anchors(), obj_thresh, nms_thresh)[0] score = np.array([box.get_score() for box in pred_boxes]) pred_labels = np.array([box.label for box in pred_boxes]) if len(pred_boxes) > 0: pred_boxes = np.array([[box.xmin, box.ymin, box.xmax, box.ymax, box.get_score()] for box in pred_boxes]) else: pred_boxes = np.array([[]]) # sort the boxes and the labels according to scores score_sort = np.argsort(-score) pred_labels = pred_labels[score_sort] pred_boxes = pred_boxes[score_sort] # copy detections to all_detections for label in range(generator.num_classes()): all_detections[i][label] = pred_boxes[pred_labels == label, :] annotations = generator.load_annotation(i) # copy detections to all_annotations for label in range(generator.num_classes()): all_annotations[i][label] = annotations[annotations[:, 4] == label, :4].copy() # compute mAP by comparing all detections and all annotations average_precisions = {} for label in range(generator.num_classes()): false_positives = np.zeros((0,)) true_positives = np.zeros((0,)) scores = np.zeros((0,)) num_annotations = 0.0 for i in range(generator.size()): detections = all_detections[i][label] annotations = all_annotations[i][label] num_annotations += annotations.shape[0] detected_annotations = [] for d in detections: scores = np.append(scores, d[4]) if annotations.shape[0] == 0: false_positives = np.append(false_positives, 1) true_positives = np.append(true_positives, 0) continue overlaps = compute_overlap(np.expand_dims(d, axis=0), annotations) assigned_annotation = np.argmax(overlaps, axis=1) max_overlap = overlaps[0, assigned_annotation] if max_overlap >= iou_threshold and assigned_annotation not in detected_annotations: false_positives = np.append(false_positives, 0) true_positives = np.append(true_positives, 1) detected_annotations.append(assigned_annotation) else: false_positives = np.append(false_positives, 1) true_positives = np.append(true_positives, 0) # no annotations -> AP for this class is 0 (is this correct?) if num_annotations == 0: average_precisions[label] = 0 continue # sort by score indices = np.argsort(-scores) false_positives = false_positives[indices] true_positives = true_positives[indices] # compute false positives and true positives false_positives = np.cumsum(false_positives) true_positives = np.cumsum(true_positives) # compute recall and precision recall = true_positives / num_annotations precision = true_positives / np.maximum(true_positives + false_positives, np.finfo(np.float64).eps) # compute average precision average_precision = compute_ap(recall, precision) average_precisions[label] = average_precision return average_precisions # stretched back into the original size def correct_yolo_boxes(boxes, image_h, image_w, net_h, net_w): if (float(net_w)/image_w) < (float(net_h)/image_h): new_w = net_w new_h = (image_h*net_w)/image_w else: new_h = net_w new_w = (image_w*net_h)/image_h #print('correct yolo boxes - new_h: ' +str(new_h)) #print('correct yolo boxes - new_w: ' +str(new_w)) for i in range(len(boxes)): x_offset, x_scale = (net_w - new_w)/2./net_w, float(new_w)/net_w #either high or width is let original with offset 0 scale 1 y_offset, y_scale = (net_h - new_h)/2./net_h, float(new_h)/net_h #if and elif added Andreas if abs(boxes[i].xmin) > 99999: boxes[i].xmin = 9999999999 elif abs(boxes[i].xmax) > 99999: boxes[i].xmax = 9999999999 else: boxes[i].xmin = int((boxes[i].xmin - x_offset) / x_scale * image_w) boxes[i].xmax = int((boxes[i].xmax - x_offset) / x_scale * image_w) boxes[i].ymin = int((boxes[i].ymin - y_offset) / y_scale * image_h) boxes[i].ymax = int((boxes[i].ymax - y_offset) / y_scale * image_h) # non-max supression def do_nms(boxes, nms_thresh): if len(boxes) > 0: nb_class = len(boxes[0].classes) else: return for c in range(nb_class): sorted_indices = np.argsort([-box.classes[c] for box in boxes]) for i in range(len(sorted_indices)): index_i = sorted_indices[i] if boxes[index_i].classes[c] == 0: continue for j in range(i+1, len(sorted_indices)): index_j = sorted_indices[j] if bbox_iou(boxes[index_i], boxes[index_j]) >= nms_thresh: boxes[index_j].classes[c] = 0 def decode_netout(netout, anchors, obj_thresh, net_h, net_w): grid_h, grid_w = netout.shape[:2] nb_box = 3 netout = netout.reshape((grid_h, grid_w, nb_box, -1)) nb_class = netout.shape[-1] - 5 boxes = [] netout[..., :2] = _sigmoid(netout[..., :2]) netout[..., 4] = _sigmoid(netout[..., 4]) netout[..., 5:] = netout[..., 4][..., np.newaxis] * _softmax(netout[..., 5:]) netout[..., 5:] *= netout[..., 5:] > obj_thresh for i in range(grid_h*grid_w): row = i // grid_w col = i % grid_w for b in range(nb_box): # 4th element is objectness score objectness = netout[row, col, b, 4] if(objectness <= obj_thresh): continue # first 4 elements are x, y, w, and h x, y, w, h = netout[row,col,b,:4] x = (col + x) / grid_w # center position, unit: image width y = (row + y) / grid_h # center position, unit: image height w = anchors[2 * b + 0] * np.exp(w) / net_w # unit: image width h = anchors[2 * b + 1] * np.exp(h) / net_h # unit: image height # last elements are class probabilities classes = netout[row,col,b,5:] box = BoundBox(x-w/2, y-h/2, x+w/2, y+h/2, objectness, classes) boxes.append(box) return boxes def preprocess_input(image, net_h, net_w): new_h, new_w, _ = image.shape # determine the new size of the image if (float(net_w)/new_w) < (float(net_h)/new_h): new_h = (new_h * net_w)//new_w new_w = net_w else: new_w = (new_w * net_h)//new_h new_h = net_h # resize the image to the new size resized = cv2.resize(image[:,:,::-1]/255., (new_w, new_h)) # embed the image into the standard letter box new_image = np.ones((net_h, net_w, 3)) * 0.5 new_image[(net_h-new_h)//2:(net_h+new_h)//2, (net_w-new_w)//2:(net_w+new_w)//2, :] = resized new_image = np.expand_dims(new_image, 0) return new_image def normalize(image): return image/255. # calculates the yolo boxes and rescale to original size def get_yolo_boxes(model, images, net_h, net_w, anchors, obj_thresh, nms_thresh): image_h, image_w, _ = images[0].shape nb_images = len(images) batch_input = np.zeros((nb_images, net_h, net_w, 3)) # preprocess the input for i in range(nb_images): batch_input[i] = preprocess_input(images[i], net_h, net_w) # run the prediction batch_output = model.predict_on_batch(batch_input) batch_boxes = [None]*nb_images for i in range(nb_images): yolos = [batch_output[0][i], batch_output[1][i], batch_output[2][i]] boxes = [] # decode the output of the network for j in range(len(yolos)): yolo_anchors = anchors[(2-j)*6:(3-j)*6] # config['model']['anchors'] boxes += decode_netout(yolos[j], yolo_anchors, obj_thresh, net_h, net_w) # correct the sizes of the bounding boxes to the original image size correct_yolo_boxes(boxes, image_h, image_w, net_h, net_w) # suppress non-maximal boxes do_nms(boxes, nms_thresh) batch_boxes[i] = boxes return batch_boxes def compute_overlap(a, b): """ Code originally from https://github.com/rbgirshick/py-faster-rcnn. Parameters ---------- a: (N, 4) ndarray of float b: (K, 4) ndarray of float Returns ------- overlaps: (N, K) ndarray of overlap between boxes and query_boxes """ area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1]) iw = np.minimum(np.expand_dims(a[:, 2], axis=1), b[:, 2]) - np.maximum(np.expand_dims(a[:, 0], 1), b[:, 0]) ih = np.minimum(np.expand_dims(a[:, 3], axis=1), b[:, 3]) - np.maximum(np.expand_dims(a[:, 1], 1), b[:, 1]) iw = np.maximum(iw, 0) ih = np.maximum(ih, 0) ua = np.expand_dims((a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1]), axis=1) + area - iw * ih ua = np.maximum(ua, np.finfo(float).eps) intersection = iw * ih return intersection / ua def compute_ap(recall, precision): """ Compute the average precision, given the recall and precision curves. Code originally from https://github.com/rbgirshick/py-faster-rcnn. # Arguments recall: The recall curve (list). precision: The precision curve (list). # Returns The average precision as computed in py-faster-rcnn. """ # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], recall, [1.])) mpre = np.concatenate(([0.], precision, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def _softmax(x, axis=-1): x = x - np.amax(x, axis, keepdims=True) e_x = np.exp(x) return e_x / e_x.sum(axis, keepdims=True)
36.434132
135
0.599638
4a2663218fac23d533f18bddaa5a4264609e9b6c
22,805
py
Python
networkx/readwrite/tests/test_gexf.py
ibraheem-moosa/networkx
fe8ac9f2d9c66e0337e11688078fdaccc90052cd
[ "BSD-3-Clause" ]
1
2020-08-20T03:02:00.000Z
2020-08-20T03:02:00.000Z
networkx/readwrite/tests/test_gexf.py
hugs314/networkx
7b4168bdb09275a2ed860b01b9dbb77a151d85c6
[ "BSD-3-Clause" ]
null
null
null
networkx/readwrite/tests/test_gexf.py
hugs314/networkx
7b4168bdb09275a2ed860b01b9dbb77a151d85c6
[ "BSD-3-Clause" ]
null
null
null
import io import sys import time import pytest import networkx as nx class TestGEXF: @classmethod def setup_class(cls): _ = pytest.importorskip("xml.etree.ElementTree") cls.simple_directed_data = """<?xml version="1.0" encoding="UTF-8"?> <gexf xmlns="http://www.gexf.net/1.2draft" version="1.2"> <graph mode="static" defaultedgetype="directed"> <nodes> <node id="0" label="Hello" /> <node id="1" label="Word" /> </nodes> <edges> <edge id="0" source="0" target="1" /> </edges> </graph> </gexf> """ cls.simple_directed_graph = nx.DiGraph() cls.simple_directed_graph.add_node("0", label="Hello") cls.simple_directed_graph.add_node("1", label="World") cls.simple_directed_graph.add_edge("0", "1", id="0") cls.simple_directed_fh = io.BytesIO(cls.simple_directed_data.encode("UTF-8")) cls.attribute_data = """<?xml version="1.0" encoding="UTF-8"?>\ <gexf xmlns="http://www.gexf.net/1.2draft" xmlns:xsi="http://www.w3.\ org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.gexf.net/\ 1.2draft http://www.gexf.net/1.2draft/gexf.xsd" version="1.2"> <meta lastmodifieddate="2009-03-20"> <creator>Gephi.org</creator> <description>A Web network</description> </meta> <graph defaultedgetype="directed"> <attributes class="node"> <attribute id="0" title="url" type="string"/> <attribute id="1" title="indegree" type="integer"/> <attribute id="2" title="frog" type="boolean"> <default>true</default> </attribute> </attributes> <nodes> <node id="0" label="Gephi"> <attvalues> <attvalue for="0" value="https://gephi.org"/> <attvalue for="1" value="1"/> <attvalue for="2" value="false"/> </attvalues> </node> <node id="1" label="Webatlas"> <attvalues> <attvalue for="0" value="http://webatlas.fr"/> <attvalue for="1" value="2"/> <attvalue for="2" value="false"/> </attvalues> </node> <node id="2" label="RTGI"> <attvalues> <attvalue for="0" value="http://rtgi.fr"/> <attvalue for="1" value="1"/> <attvalue for="2" value="true"/> </attvalues> </node> <node id="3" label="BarabasiLab"> <attvalues> <attvalue for="0" value="http://barabasilab.com"/> <attvalue for="1" value="1"/> <attvalue for="2" value="true"/> </attvalues> </node> </nodes> <edges> <edge id="0" source="0" target="1"/> <edge id="1" source="0" target="2"/> <edge id="2" source="1" target="0"/> <edge id="3" source="2" target="1"/> <edge id="4" source="0" target="3"/> </edges> </graph> </gexf> """ cls.attribute_graph = nx.DiGraph() cls.attribute_graph.graph["node_default"] = {"frog": True} cls.attribute_graph.add_node( "0", label="Gephi", url="https://gephi.org", indegree=1, frog=False ) cls.attribute_graph.add_node( "1", label="Webatlas", url="http://webatlas.fr", indegree=2, frog=False ) cls.attribute_graph.add_node( "2", label="RTGI", url="http://rtgi.fr", indegree=1, frog=True ) cls.attribute_graph.add_node( "3", label="BarabasiLab", url="http://barabasilab.com", indegree=1, frog=True, ) cls.attribute_graph.add_edge("0", "1", id="0") cls.attribute_graph.add_edge("0", "2", id="1") cls.attribute_graph.add_edge("1", "0", id="2") cls.attribute_graph.add_edge("2", "1", id="3") cls.attribute_graph.add_edge("0", "3", id="4") cls.attribute_fh = io.BytesIO(cls.attribute_data.encode("UTF-8")) cls.simple_undirected_data = """<?xml version="1.0" encoding="UTF-8"?> <gexf xmlns="http://www.gexf.net/1.2draft" version="1.2"> <graph mode="static" defaultedgetype="undirected"> <nodes> <node id="0" label="Hello" /> <node id="1" label="Word" /> </nodes> <edges> <edge id="0" source="0" target="1" /> </edges> </graph> </gexf> """ cls.simple_undirected_graph = nx.Graph() cls.simple_undirected_graph.add_node("0", label="Hello") cls.simple_undirected_graph.add_node("1", label="World") cls.simple_undirected_graph.add_edge("0", "1", id="0") cls.simple_undirected_fh = io.BytesIO( cls.simple_undirected_data.encode("UTF-8") ) def test_read_simple_directed_graphml(self): G = self.simple_directed_graph H = nx.read_gexf(self.simple_directed_fh) assert sorted(G.nodes()) == sorted(H.nodes()) assert sorted(G.edges()) == sorted(H.edges()) assert sorted(G.edges(data=True)) == sorted(H.edges(data=True)) self.simple_directed_fh.seek(0) def test_write_read_simple_directed_graphml(self): G = self.simple_directed_graph fh = io.BytesIO() nx.write_gexf(G, fh) fh.seek(0) H = nx.read_gexf(fh) assert sorted(G.nodes()) == sorted(H.nodes()) assert sorted(G.edges()) == sorted(H.edges()) assert sorted(G.edges(data=True)) == sorted(H.edges(data=True)) self.simple_directed_fh.seek(0) def test_read_simple_undirected_graphml(self): G = self.simple_undirected_graph H = nx.read_gexf(self.simple_undirected_fh) assert sorted(G.nodes()) == sorted(H.nodes()) assert sorted(sorted(e) for e in G.edges()) == sorted( sorted(e) for e in H.edges() ) self.simple_undirected_fh.seek(0) def test_read_attribute_graphml(self): G = self.attribute_graph H = nx.read_gexf(self.attribute_fh) assert sorted(G.nodes(True)) == sorted(H.nodes(data=True)) ge = sorted(G.edges(data=True)) he = sorted(H.edges(data=True)) for a, b in zip(ge, he): assert a == b self.attribute_fh.seek(0) def test_directed_edge_in_undirected(self): s = """<?xml version="1.0" encoding="UTF-8"?> <gexf xmlns="http://www.gexf.net/1.2draft" version='1.2'> <graph mode="static" defaultedgetype="undirected" name=""> <nodes> <node id="0" label="Hello" /> <node id="1" label="Word" /> </nodes> <edges> <edge id="0" source="0" target="1" type="directed"/> </edges> </graph> </gexf> """ fh = io.BytesIO(s.encode("UTF-8")) pytest.raises(nx.NetworkXError, nx.read_gexf, fh) def test_undirected_edge_in_directed(self): s = """<?xml version="1.0" encoding="UTF-8"?> <gexf xmlns="http://www.gexf.net/1.2draft" version='1.2'> <graph mode="static" defaultedgetype="directed" name=""> <nodes> <node id="0" label="Hello" /> <node id="1" label="Word" /> </nodes> <edges> <edge id="0" source="0" target="1" type="undirected"/> </edges> </graph> </gexf> """ fh = io.BytesIO(s.encode("UTF-8")) pytest.raises(nx.NetworkXError, nx.read_gexf, fh) def test_key_raises(self): s = """<?xml version="1.0" encoding="UTF-8"?> <gexf xmlns="http://www.gexf.net/1.2draft" version='1.2'> <graph mode="static" defaultedgetype="directed" name=""> <nodes> <node id="0" label="Hello"> <attvalues> <attvalue for='0' value='1'/> </attvalues> </node> <node id="1" label="Word" /> </nodes> <edges> <edge id="0" source="0" target="1" type="undirected"/> </edges> </graph> </gexf> """ fh = io.BytesIO(s.encode("UTF-8")) pytest.raises(nx.NetworkXError, nx.read_gexf, fh) def test_relabel(self): s = """<?xml version="1.0" encoding="UTF-8"?> <gexf xmlns="http://www.gexf.net/1.2draft" version='1.2'> <graph mode="static" defaultedgetype="directed" name=""> <nodes> <node id="0" label="Hello" /> <node id="1" label="Word" /> </nodes> <edges> <edge id="0" source="0" target="1"/> </edges> </graph> </gexf> """ fh = io.BytesIO(s.encode("UTF-8")) G = nx.read_gexf(fh, relabel=True) assert sorted(G.nodes()) == ["Hello", "Word"] def test_default_attribute(self): G = nx.Graph() G.add_node(1, label="1", color="green") nx.add_path(G, [0, 1, 2, 3]) G.add_edge(1, 2, foo=3) G.graph["node_default"] = {"color": "yellow"} G.graph["edge_default"] = {"foo": 7} fh = io.BytesIO() nx.write_gexf(G, fh) fh.seek(0) H = nx.read_gexf(fh, node_type=int) assert sorted(G.nodes()) == sorted(H.nodes()) assert sorted(sorted(e) for e in G.edges()) == sorted( sorted(e) for e in H.edges() ) # Reading a gexf graph always sets mode attribute to either # 'static' or 'dynamic'. Remove the mode attribute from the # read graph for the sake of comparing remaining attributes. del H.graph["mode"] assert G.graph == H.graph def test_serialize_ints_to_strings(self): G = nx.Graph() G.add_node(1, id=7, label=77) fh = io.BytesIO() nx.write_gexf(G, fh) fh.seek(0) H = nx.read_gexf(fh, node_type=int) assert list(H) == [7] assert H.nodes[7]["label"] == "77" # FIXME: We should test xml without caring about their order This is causing a # problem b/c of a change in Python 3.8 # # "Prior to Python 3.8, the serialisation order of the XML attributes of # elements was artificially made predictable by sorting the attributes by their # name. Based on the now guaranteed ordering of dicts, this arbitrary # reordering was removed in Python 3.8 to preserve the order in which # attributes were originally parsed or created by user code." # # https://docs.python.org/3.8/library/xml.etree.elementtree.html # https://bugs.python.org/issue34160 def test_write_with_node_attributes(self): # Addresses #673. G = nx.OrderedGraph() G.add_edges_from([(0, 1), (1, 2), (2, 3)]) for i in range(4): G.nodes[i]["id"] = i G.nodes[i]["label"] = i G.nodes[i]["pid"] = i G.nodes[i]["start"] = i G.nodes[i]["end"] = i + 1 if sys.version_info < (3, 8): expected = f"""<gexf version="1.2" xmlns="http://www.gexf.net/1.2\ draft" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:\ schemaLocation="http://www.gexf.net/1.2draft http://www.gexf.net/1.2draft/\ gexf.xsd"> <meta lastmodifieddate="{time.strftime('%Y-%m-%d')}"> <creator>NetworkX {nx.__version__}</creator> </meta> <graph defaultedgetype="undirected" mode="dynamic" name="" timeformat="long"> <nodes> <node end="1" id="0" label="0" pid="0" start="0" /> <node end="2" id="1" label="1" pid="1" start="1" /> <node end="3" id="2" label="2" pid="2" start="2" /> <node end="4" id="3" label="3" pid="3" start="3" /> </nodes> <edges> <edge id="0" source="0" target="1" /> <edge id="1" source="1" target="2" /> <edge id="2" source="2" target="3" /> </edges> </graph> </gexf>""" else: expected = f"""<gexf xmlns="http://www.gexf.net/1.2draft" xmlns:xsi\ ="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=\ "http://www.gexf.net/1.2draft http://www.gexf.net/1.2draft/\ gexf.xsd" version="1.2"> <meta lastmodifieddate="{time.strftime('%Y-%m-%d')}"> <creator>NetworkX {nx.__version__}</creator> </meta> <graph defaultedgetype="undirected" mode="dynamic" name="" timeformat="long"> <nodes> <node id="0" label="0" pid="0" start="0" end="1" /> <node id="1" label="1" pid="1" start="1" end="2" /> <node id="2" label="2" pid="2" start="2" end="3" /> <node id="3" label="3" pid="3" start="3" end="4" /> </nodes> <edges> <edge source="0" target="1" id="0" /> <edge source="1" target="2" id="1" /> <edge source="2" target="3" id="2" /> </edges> </graph> </gexf>""" obtained = "\n".join(nx.generate_gexf(G)) assert expected == obtained def test_edge_id_construct(self): G = nx.Graph() G.add_edges_from([(0, 1, {"id": 0}), (1, 2, {"id": 2}), (2, 3)]) if sys.version_info < (3, 8): expected = f"""<gexf version="1.2" xmlns="http://www.gexf.net/\ 1.2draft" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:\ schemaLocation="http://www.gexf.net/1.2draft http://www.gexf.net/1.2draft/\ gexf.xsd"> <meta lastmodifieddate="{time.strftime('%Y-%m-%d')}"> <creator>NetworkX {nx.__version__}</creator> </meta> <graph defaultedgetype="undirected" mode="static" name=""> <nodes> <node id="0" label="0" /> <node id="1" label="1" /> <node id="2" label="2" /> <node id="3" label="3" /> </nodes> <edges> <edge id="0" source="0" target="1" /> <edge id="2" source="1" target="2" /> <edge id="1" source="2" target="3" /> </edges> </graph> </gexf>""" else: expected = f"""<gexf xmlns="http://www.gexf.net/1.2draft" xmlns:xsi\ ="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.\ gexf.net/1.2draft http://www.gexf.net/1.2draft/gexf.xsd" version="1.2"> <meta lastmodifieddate="{time.strftime('%Y-%m-%d')}"> <creator>NetworkX {nx.__version__}</creator> </meta> <graph defaultedgetype="undirected" mode="static" name=""> <nodes> <node id="0" label="0" /> <node id="1" label="1" /> <node id="2" label="2" /> <node id="3" label="3" /> </nodes> <edges> <edge source="0" target="1" id="0" /> <edge source="1" target="2" id="2" /> <edge source="2" target="3" id="1" /> </edges> </graph> </gexf>""" obtained = "\n".join(nx.generate_gexf(G)) assert expected == obtained def test_numpy_type(self): G = nx.path_graph(4) try: import numpy except ImportError: return nx.set_node_attributes(G, {n: n for n in numpy.arange(4)}, "number") G[0][1]["edge-number"] = numpy.float64(1.1) if sys.version_info < (3, 8): expected = f"""<gexf version="1.2" xmlns="http://www.gexf.net/1.2draft"\ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation\ ="http://www.gexf.net/1.2draft http://www.gexf.net/1.2draft/gexf.xsd"> <meta lastmodifieddate="{time.strftime('%Y-%m-%d')}"> <creator>NetworkX {nx.__version__}</creator> </meta> <graph defaultedgetype="undirected" mode="static" name=""> <attributes class="edge" mode="static"> <attribute id="1" title="edge-number" type="float" /> </attributes> <attributes class="node" mode="static"> <attribute id="0" title="number" type="int" /> </attributes> <nodes> <node id="0" label="0"> <attvalues> <attvalue for="0" value="0" /> </attvalues> </node> <node id="1" label="1"> <attvalues> <attvalue for="0" value="1" /> </attvalues> </node> <node id="2" label="2"> <attvalues> <attvalue for="0" value="2" /> </attvalues> </node> <node id="3" label="3"> <attvalues> <attvalue for="0" value="3" /> </attvalues> </node> </nodes> <edges> <edge id="0" source="0" target="1"> <attvalues> <attvalue for="1" value="1.1" /> </attvalues> </edge> <edge id="1" source="1" target="2" /> <edge id="2" source="2" target="3" /> </edges> </graph> </gexf>""" else: expected = f"""<gexf xmlns="http://www.gexf.net/1.2draft"\ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation\ ="http://www.gexf.net/1.2draft http://www.gexf.net/1.2draft/gexf.xsd"\ version="1.2"> <meta lastmodifieddate="{time.strftime('%Y-%m-%d')}"> <creator>NetworkX {nx.__version__}</creator> </meta> <graph defaultedgetype="undirected" mode="static" name=""> <attributes mode="static" class="edge"> <attribute id="1" title="edge-number" type="float" /> </attributes> <attributes mode="static" class="node"> <attribute id="0" title="number" type="int" /> </attributes> <nodes> <node id="0" label="0"> <attvalues> <attvalue for="0" value="0" /> </attvalues> </node> <node id="1" label="1"> <attvalues> <attvalue for="0" value="1" /> </attvalues> </node> <node id="2" label="2"> <attvalues> <attvalue for="0" value="2" /> </attvalues> </node> <node id="3" label="3"> <attvalues> <attvalue for="0" value="3" /> </attvalues> </node> </nodes> <edges> <edge source="0" target="1" id="0"> <attvalues> <attvalue for="1" value="1.1" /> </attvalues> </edge> <edge source="1" target="2" id="1" /> <edge source="2" target="3" id="2" /> </edges> </graph> </gexf>""" obtained = "\n".join(nx.generate_gexf(G)) assert expected == obtained def test_bool(self): G = nx.Graph() G.add_node(1, testattr=True) fh = io.BytesIO() nx.write_gexf(G, fh) fh.seek(0) H = nx.read_gexf(fh, node_type=int) assert H.nodes[1]["testattr"] # Test for NaN, INF and -INF def test_specials(self): from math import isnan inf, nan = float("inf"), float("nan") G = nx.Graph() G.add_node(1, testattr=inf, strdata="inf", key="a") G.add_node(2, testattr=nan, strdata="nan", key="b") G.add_node(3, testattr=-inf, strdata="-inf", key="c") fh = io.BytesIO() nx.write_gexf(G, fh) fh.seek(0) filetext = fh.read() fh.seek(0) H = nx.read_gexf(fh, node_type=int) assert b"INF" in filetext assert b"NaN" in filetext assert b"-INF" in filetext assert H.nodes[1]["testattr"] == inf assert isnan(H.nodes[2]["testattr"]) assert H.nodes[3]["testattr"] == -inf assert H.nodes[1]["strdata"] == "inf" assert H.nodes[2]["strdata"] == "nan" assert H.nodes[3]["strdata"] == "-inf" assert H.nodes[1]["networkx_key"] == "a" assert H.nodes[2]["networkx_key"] == "b" assert H.nodes[3]["networkx_key"] == "c" def test_simple_list(self): G = nx.Graph() list_value = [(1, 2, 3), (9, 1, 2)] G.add_node(1, key=list_value) fh = io.BytesIO() nx.write_gexf(G, fh) fh.seek(0) H = nx.read_gexf(fh, node_type=int) assert H.nodes[1]["networkx_key"] == list_value def test_dynamic_mode(self): G = nx.Graph() G.add_node(1, label="1", color="green") G.graph["mode"] = "dynamic" fh = io.BytesIO() nx.write_gexf(G, fh) fh.seek(0) H = nx.read_gexf(fh, node_type=int) assert sorted(G.nodes()) == sorted(H.nodes()) assert sorted(sorted(e) for e in G.edges()) == sorted( sorted(e) for e in H.edges() ) def test_multigraph_with_missing_attributes(self): G = nx.MultiGraph() G.add_node(0, label="1", color="green") G.add_node(1, label="2", color="green") G.add_edge(0, 1, id="0", weight=3, type="undirected", start=0, end=1) G.add_edge(0, 1) fh = io.BytesIO() nx.write_gexf(G, fh) fh.seek(0) H = nx.read_gexf(fh, node_type=int) assert sorted(G.nodes()) == sorted(H.nodes()) assert sorted(sorted(e) for e in G.edges()) == sorted( sorted(e) for e in H.edges() ) def test_missing_viz_attributes(self): G = nx.Graph() G.add_node(0, label="1", color="green") G.nodes[0]["viz"] = {"size": 54} G.nodes[0]["viz"]["position"] = {"x": 0, "y": 1, "z": 0} G.nodes[0]["viz"]["color"] = {"r": 0, "g": 0, "b": 256} G.nodes[0]["viz"]["shape"] = "http://random.url" G.nodes[0]["viz"]["thickness"] = 2 fh = io.BytesIO() nx.write_gexf(G, fh, version="1.1draft") fh.seek(0) H = nx.read_gexf(fh, node_type=int) assert sorted(G.nodes()) == sorted(H.nodes()) assert sorted(sorted(e) for e in G.edges()) == sorted( sorted(e) for e in H.edges() ) # Second graph for the other branch G = nx.Graph() G.add_node(0, label="1", color="green") G.nodes[0]["viz"] = {"size": 54} G.nodes[0]["viz"]["position"] = {"x": 0, "y": 1, "z": 0} G.nodes[0]["viz"]["color"] = {"r": 0, "g": 0, "b": 256, "a": 0.5} G.nodes[0]["viz"]["shape"] = "ftp://random.url" G.nodes[0]["viz"]["thickness"] = 2 fh = io.BytesIO() nx.write_gexf(G, fh) fh.seek(0) H = nx.read_gexf(fh, node_type=int) assert sorted(G.nodes()) == sorted(H.nodes()) assert sorted(sorted(e) for e in G.edges()) == sorted( sorted(e) for e in H.edges() ) def test_slice_and_spell(self): # Test spell first, so version = 1.2 G = nx.Graph() G.add_node(0, label="1", color="green") G.nodes[0]["spells"] = [(1, 2)] fh = io.BytesIO() nx.write_gexf(G, fh) fh.seek(0) H = nx.read_gexf(fh, node_type=int) assert sorted(G.nodes()) == sorted(H.nodes()) assert sorted(sorted(e) for e in G.edges()) == sorted( sorted(e) for e in H.edges() ) G = nx.Graph() G.add_node(0, label="1", color="green") G.nodes[0]["slices"] = [(1, 2)] fh = io.BytesIO() nx.write_gexf(G, fh, version="1.1draft") fh.seek(0) H = nx.read_gexf(fh, node_type=int) assert sorted(G.nodes()) == sorted(H.nodes()) assert sorted(sorted(e) for e in G.edges()) == sorted( sorted(e) for e in H.edges() ) def test_add_parent(self): G = nx.Graph() G.add_node(0, label="1", color="green", parents=[1, 2]) fh = io.BytesIO() nx.write_gexf(G, fh) fh.seek(0) H = nx.read_gexf(fh, node_type=int) assert sorted(G.nodes()) == sorted(H.nodes()) assert sorted(sorted(e) for e in G.edges()) == sorted( sorted(e) for e in H.edges() )
34.658055
85
0.545056
4a26648869af28ec0b7f28ff31ae30b04775baa5
259
py
Python
Chapter05/datetimes_01.py
vabyte/Modern-Python-Standard-Library-Cookbook
4f53e3ab7b61aca1cca9343e7421e170280cd5b5
[ "MIT" ]
84
2018-08-09T09:30:03.000Z
2022-01-04T23:20:38.000Z
Chapter05/datetimes_01.py
jiro74/Modern-Python-Standard-Library-Cookbook
4f53e3ab7b61aca1cca9343e7421e170280cd5b5
[ "MIT" ]
1
2019-11-04T18:57:40.000Z
2020-09-07T08:52:25.000Z
Chapter05/datetimes_01.py
jiro74/Modern-Python-Standard-Library-Cookbook
4f53e3ab7b61aca1cca9343e7421e170280cd5b5
[ "MIT" ]
33
2018-09-26T11:05:55.000Z
2022-03-15T10:31:10.000Z
import datetime def now(): return datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc) def astimezone(d, offset): return d.astimezone(datetime.timezone(datetime.timedelta(hours=offset))) d = now() print(d) d = astimezone(d, 1) print(d)
19.923077
76
0.733591
4a2665379ab538120810c72d37bc108e504ce264
23,263
py
Python
sympy/printing/fcode.py
GayanSandaruwan/sympy
7b127bdf71a36d85216315f80c1b54d22b060818
[ "BSD-3-Clause" ]
null
null
null
sympy/printing/fcode.py
GayanSandaruwan/sympy
7b127bdf71a36d85216315f80c1b54d22b060818
[ "BSD-3-Clause" ]
null
null
null
sympy/printing/fcode.py
GayanSandaruwan/sympy
7b127bdf71a36d85216315f80c1b54d22b060818
[ "BSD-3-Clause" ]
1
2020-01-01T19:49:22.000Z
2020-01-01T19:49:22.000Z
""" Fortran code printer The FCodePrinter converts single sympy expressions into single Fortran expressions, using the functions defined in the Fortran 77 standard where possible. Some useful pointers to Fortran can be found on wikipedia: http://en.wikipedia.org/wiki/Fortran Most of the code below is based on the "Professional Programmer\'s Guide to Fortran77" by Clive G. Page: http://www.star.le.ac.uk/~cgp/prof77.html Fortran is a case-insensitive language. This might cause trouble because SymPy is case sensitive. The implementation below does not care and leaves the responsibility for generating properly cased Fortran code to the user. """ from __future__ import print_function, division from collections import defaultdict from itertools import chain import string from sympy.core import S, Add, N, Float from sympy.core.compatibility import string_types, range from sympy.core.function import Function from sympy.core.relational import Eq from sympy.sets import Range from sympy.codegen.ast import (Assignment, Declaration, Pointer, Type, float32, float64, complex64, complex128, intc, real, integer, bool_, complex_) from sympy.codegen.ffunctions import isign, dsign, cmplx, merge, literal_dp from sympy.printing.codeprinter import CodePrinter from sympy.printing.precedence import precedence, PRECEDENCE known_functions = { "sin": "sin", "cos": "cos", "tan": "tan", "asin": "asin", "acos": "acos", "atan": "atan", "atan2": "atan2", "sinh": "sinh", "cosh": "cosh", "tanh": "tanh", "log": "log", "exp": "exp", "erf": "erf", "Abs": "abs", "conjugate": "conjg" } class FCodePrinter(CodePrinter): """A printer to convert sympy expressions to strings of Fortran code""" printmethod = "_fcode" language = "Fortran" type_aliases = { real: float64, complex_: complex128, } type_mappings = { intc: 'integer(c_int)', float32: 'real(4)', float64: 'real(8)', complex64: 'complex(4)', complex128: 'complex(8)', integer: 'integer', bool_: 'logical' } type_modules = { intc: {'iso_c_binding': 'c_int'} } _default_settings = { 'order': None, 'full_prec': 'auto', 'precision': 17, 'user_functions': {}, 'human': True, 'source_format': 'fixed', 'contract': True, 'standard': 77, } _operators = { 'and': '.and.', 'or': '.or.', 'xor': '.neqv.', 'equivalent': '.eqv.', 'not': '.not. ', } _relationals = { '!=': '/=', } def __init__(self, settings={}): self.type_aliases = dict(chain(self.type_aliases.items(), settings.pop('type_aliases', {}).items())) self.type_mappings = dict(chain(self.type_mappings.items(), settings.pop('type_mappings', {}).items())) super(FCodePrinter, self).__init__(settings) self.known_functions = dict(known_functions) userfuncs = settings.get('user_functions', {}) self.known_functions.update(userfuncs) # leading columns depend on fixed or free format standards = {66, 77, 90, 95, 2003, 2008} if self._settings['standard'] not in standards: raise ValueError("Unknown Fortran standard: %s" % self._settings[ 'standard']) self.module_uses = defaultdict(set) # e.g.: use iso_c_binding, only: c_int @property def _lead(self): if self._settings['source_format'] == 'fixed': return {'code': " ", 'cont': " @ ", 'comment': "C "} elif self._settings['source_format'] == 'free': return {'code': "", 'cont': " ", 'comment': "! "} else: raise ValueError("Unknown source format: %s" % self._settings['source_format']) def _rate_index_position(self, p): return -p*5 def _get_statement(self, codestring): return codestring def _get_comment(self, text): return "! {0}".format(text) def _declare_number_const(self, name, value): return "parameter ({0} = {1})".format(name, self._print(value)) def _print_NumberSymbol(self, expr): # A Number symbol that is not implemented here or with _printmethod # is registered and evaluated self._number_symbols.add((expr, Float(expr.evalf(self._settings['precision'])))) return str(expr) def _format_code(self, lines): return self._wrap_fortran(self.indent_code(lines)) def _traverse_matrix_indices(self, mat): rows, cols = mat.shape return ((i, j) for j in range(cols) for i in range(rows)) def _get_loop_opening_ending(self, indices): open_lines = [] close_lines = [] for i in indices: # fortran arrays start at 1 and end at dimension var, start, stop = map(self._print, [i.label, i.lower + 1, i.upper + 1]) open_lines.append("do %s = %s, %s" % (var, start, stop)) close_lines.append("end do") return open_lines, close_lines def _print_sign(self, expr): from sympy import Abs arg, = expr.args if arg.is_integer: new_expr = merge(0, isign(1, arg), Eq(arg, 0)) elif arg.is_complex: new_expr = merge(cmplx(literal_dp(0), literal_dp(0)), arg/Abs(arg), Eq(Abs(arg), literal_dp(0))) else: new_expr = merge(literal_dp(0), dsign(literal_dp(1), arg), Eq(arg, literal_dp(0))) return self._print(new_expr) def _print_Piecewise(self, expr): if expr.args[-1].cond != True: # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") lines = [] if expr.has(Assignment): for i, (e, c) in enumerate(expr.args): if i == 0: lines.append("if (%s) then" % self._print(c)) elif i == len(expr.args) - 1 and c == True: lines.append("else") else: lines.append("else if (%s) then" % self._print(c)) lines.append(self._print(e)) lines.append("end if") return "\n".join(lines) elif self._settings["standard"] >= 95: # Only supported in F95 and newer: # The piecewise was used in an expression, need to do inline # operators. This has the downside that inline operators will # not work for statements that span multiple lines (Matrix or # Indexed expressions). pattern = "merge({T}, {F}, {COND})" code = self._print(expr.args[-1].expr) terms = list(expr.args[:-1]) while terms: e, c = terms.pop() expr = self._print(e) cond = self._print(c) code = pattern.format(T=expr, F=code, COND=cond) return code else: # `merge` is not supported prior to F95 raise NotImplementedError("Using Piecewise as an expression using " "inline operators is not supported in " "standards earlier than Fortran95.") def _print_MatrixElement(self, expr): return "{0}({1}, {2})".format(self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True), expr.i + 1, expr.j + 1) def _print_Add(self, expr): # purpose: print complex numbers nicely in Fortran. # collect the purely real and purely imaginary parts: pure_real = [] pure_imaginary = [] mixed = [] for arg in expr.args: if arg.is_number and arg.is_real: pure_real.append(arg) elif arg.is_number and arg.is_imaginary: pure_imaginary.append(arg) else: mixed.append(arg) if len(pure_imaginary) > 0: if len(mixed) > 0: PREC = precedence(expr) term = Add(*mixed) t = self._print(term) if t.startswith('-'): sign = "-" t = t[1:] else: sign = "+" if precedence(term) < PREC: t = "(%s)" % t return "cmplx(%s,%s) %s %s" % ( self._print(Add(*pure_real)), self._print(-S.ImaginaryUnit*Add(*pure_imaginary)), sign, t, ) else: return "cmplx(%s,%s)" % ( self._print(Add(*pure_real)), self._print(-S.ImaginaryUnit*Add(*pure_imaginary)), ) else: return CodePrinter._print_Add(self, expr) def _print_Function(self, expr): # All constant function args are evaluated as floats prec = self._settings['precision'] args = [N(a, prec) for a in expr.args] eval_expr = expr.func(*args) if not isinstance(eval_expr, Function): return self._print(eval_expr) else: return CodePrinter._print_Function(self, expr.func(*args)) def _print_ImaginaryUnit(self, expr): # purpose: print complex numbers nicely in Fortran. return "cmplx(0,1)" def _print_int(self, expr): return str(expr) def _print_Mul(self, expr): # purpose: print complex numbers nicely in Fortran. if expr.is_number and expr.is_imaginary: return "cmplx(0,%s)" % ( self._print(-S.ImaginaryUnit*expr) ) else: return CodePrinter._print_Mul(self, expr) def _print_Pow(self, expr): PREC = precedence(expr) if expr.exp == -1: return '1.0/%s' % (self.parenthesize(expr.base, PREC)) elif expr.exp == 0.5: if expr.base.is_integer: # Fortran intrinsic sqrt() does not accept integer argument if expr.base.is_Number: return 'sqrt(%s.0d0)' % self._print(expr.base) else: return 'sqrt(dble(%s))' % self._print(expr.base) else: return 'sqrt(%s)' % self._print(expr.base) else: return CodePrinter._print_Pow(self, expr) def _print_Rational(self, expr): p, q = int(expr.p), int(expr.q) return "%d.0d0/%d.0d0" % (p, q) def _print_Float(self, expr): printed = CodePrinter._print_Float(self, expr) e = printed.find('e') if e > -1: return "%sd%s" % (printed[:e], printed[e + 1:]) return "%sd0" % printed def _print_Indexed(self, expr): inds = [ self._print(i) for i in expr.indices ] return "%s(%s)" % (self._print(expr.base.label), ", ".join(inds)) def _print_Idx(self, expr): return self._print(expr.label) def _print_For(self, expr): target = self._print(expr.target) if isinstance(expr.iterable, Range): start, stop, step = expr.iterable.args else: raise NotImplementedError("Only iterable currently supported is Range") body = self._print(expr.body) return ('do {target} = {start}, {stop}, {step}\n' '{body}\n' 'end do').format(target=target, start=start, stop=stop, step=step, body=body) def _print_Equality(self, expr): lhs, rhs = expr.args return ' == '.join(map(self._print, (lhs, rhs))) def _print_Unequality(self, expr): lhs, rhs = expr.args return ' /= '.join(map(self._print, (lhs, rhs))) def _print_Type(self, type_): type_ = self.type_aliases.get(type_, type_) type_str = self.type_mappings.get(type_, type_.name) module_uses = self.type_modules.get(type_) if module_uses: for k, v in module_uses: self.module_uses[k].add(v) return type_str def _print_Declaration(self, expr): var, val = expr.variable, expr.value if isinstance(var, Pointer): raise NotImplementedError("Pointers are not available by default in Fortran.") if self._settings["standard"] >= 90: result = '{t}{vc} :: {s}'.format( t=self._print(var.type), vc=', parameter' if var.value_const else '', s=self._print(var.symbol) ) if val is not None: result += ' = %s' % self._print(val) else: if var.value_const or val: raise NotImplementedError("F77 init./parameter statem. req. multiple lines.") result = ' '.join(self._print(var.type), self._print(var.symbol)) return result def _print_BooleanTrue(self, expr): return '.true.' def _print_BooleanFalse(self, expr): return '.false.' def _pad_leading_columns(self, lines): result = [] for line in lines: if line.startswith('!'): result.append(self._lead['comment'] + line[1:].lstrip()) else: result.append(self._lead['code'] + line) return result def _wrap_fortran(self, lines): """Wrap long Fortran lines Argument: lines -- a list of lines (without \\n character) A comment line is split at white space. Code lines are split with a more complex rule to give nice results. """ # routine to find split point in a code line my_alnum = set("_+-." + string.digits + string.ascii_letters) my_white = set(" \t()") def split_pos_code(line, endpos): if len(line) <= endpos: return len(line) pos = endpos split = lambda pos: \ (line[pos] in my_alnum and line[pos - 1] not in my_alnum) or \ (line[pos] not in my_alnum and line[pos - 1] in my_alnum) or \ (line[pos] in my_white and line[pos - 1] not in my_white) or \ (line[pos] not in my_white and line[pos - 1] in my_white) while not split(pos): pos -= 1 if pos == 0: return endpos return pos # split line by line and add the split lines to result result = [] if self._settings['source_format'] == 'free': trailing = ' &' else: trailing = '' for line in lines: if line.startswith(self._lead['comment']): # comment line if len(line) > 72: pos = line.rfind(" ", 6, 72) if pos == -1: pos = 72 hunk = line[:pos] line = line[pos:].lstrip() result.append(hunk) while len(line) > 0: pos = line.rfind(" ", 0, 66) if pos == -1 or len(line) < 66: pos = 66 hunk = line[:pos] line = line[pos:].lstrip() result.append("%s%s" % (self._lead['comment'], hunk)) else: result.append(line) elif line.startswith(self._lead['code']): # code line pos = split_pos_code(line, 72) hunk = line[:pos].rstrip() line = line[pos:].lstrip() if line: hunk += trailing result.append(hunk) while len(line) > 0: pos = split_pos_code(line, 65) hunk = line[:pos].rstrip() line = line[pos:].lstrip() if line: hunk += trailing result.append("%s%s" % (self._lead['cont'], hunk)) else: result.append(line) return result def indent_code(self, code): """Accepts a string of code or a list of code lines""" if isinstance(code, string_types): code_lines = self.indent_code(code.splitlines(True)) return ''.join(code_lines) free = self._settings['source_format'] == 'free' code = [ line.lstrip(' \t') for line in code ] inc_keyword = ('do ', 'if(', 'if ', 'do\n', 'else') dec_keyword = ('end do', 'enddo', 'end if', 'endif', 'else') increase = [ int(any(map(line.startswith, inc_keyword))) for line in code ] decrease = [ int(any(map(line.startswith, dec_keyword))) for line in code ] continuation = [ int(any(map(line.endswith, ['&', '&\n']))) for line in code ] level = 0 cont_padding = 0 tabwidth = 3 new_code = [] for i, line in enumerate(code): if line == '' or line == '\n': new_code.append(line) continue level -= decrease[i] if free: padding = " "*(level*tabwidth + cont_padding) else: padding = " "*level*tabwidth line = "%s%s" % (padding, line) if not free: line = self._pad_leading_columns([line])[0] new_code.append(line) if continuation[i]: cont_padding = 2*tabwidth else: cont_padding = 0 level += increase[i] if not free: return self._wrap_fortran(new_code) return new_code def fcode(expr, assign_to=None, **settings): """Converts an expr to a string of fortran code Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements. precision : integer, optional DEPRECATED. Use type_mappings instead. The precision for numbers such as pi [default=17]. user_functions : dict, optional A dictionary where keys are ``FunctionClass`` instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. source_format : optional The source format can be either 'fixed' or 'free'. [default='fixed'] standard : integer, optional The Fortran standard to be followed. This is specified as an integer. Acceptable standards are 66, 77, 90, 95, 2003, and 2008. Default is 77. Note that currently the only distinction internally is between standards before 95, and those 95 and after. This may change later as more features are added. Examples ======== >>> from sympy import fcode, symbols, Rational, sin, ceiling, floor >>> x, tau = symbols("x, tau") >>> fcode((2*tau)**Rational(7, 2)) ' 8*sqrt(2.0d0)*tau**(7.0d0/2.0d0)' >>> fcode(sin(x), assign_to="s") ' s = sin(x)' Custom printing can be defined for certain types by passing a dictionary of "type" : "function" to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. >>> custom_functions = { ... "ceiling": "CEIL", ... "floor": [(lambda x: not x.is_integer, "FLOOR1"), ... (lambda x: x.is_integer, "FLOOR2")] ... } >>> fcode(floor(x) + ceiling(x), user_functions=custom_functions) ' CEIL(x) + FLOOR1(x)' ``Piecewise`` expressions are converted into conditionals. If an ``assign_to`` variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(fcode(expr, tau)) if (x > 0) then tau = x + 1 else tau = x end if Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> fcode(e.rhs, assign_to=e.lhs, contract=False) ' Dy(i) = (y(i + 1) - y(i))/(t(i + 1) - t(i))' Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions must be provided to ``assign_to``. Note that any expression that can be generated normally can also exist inside a Matrix: >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(fcode(mat, A)) A(1, 1) = x**2 if (x > 0) then A(2, 1) = x + 1 else A(2, 1) = x end if A(3, 1) = sin(x) """ return FCodePrinter(settings).doprint(expr, assign_to) def print_fcode(expr, **settings): """Prints the Fortran representation of the given expression. See fcode for the meaning of the optional arguments. """ print(fcode(expr, **settings))
37.042994
108
0.549155
4a2665b628fbe584f2a8e7ced912de880d01d0f4
8,512
py
Python
program/object-detection-tensorrt-loadgen-py/tensorrt_detect_loadgen.py
dsavenko/ck-mlperf
55ab3d2ed4cd0e11fb3103f76429a6ebec3ea788
[ "BSD-3-Clause" ]
35
2018-09-20T10:21:43.000Z
2021-07-28T15:01:48.000Z
program/object-detection-tensorrt-loadgen-py/tensorrt_detect_loadgen.py
dsavenko/ck-mlperf
55ab3d2ed4cd0e11fb3103f76429a6ebec3ea788
[ "BSD-3-Clause" ]
25
2018-12-14T07:48:03.000Z
2021-05-01T13:35:31.000Z
program/object-detection-tensorrt-loadgen-py/tensorrt_detect_loadgen.py
dsavenko/ck-mlperf
55ab3d2ed4cd0e11fb3103f76429a6ebec3ea788
[ "BSD-3-Clause" ]
14
2018-12-13T18:57:11.000Z
2021-04-27T14:32:51.000Z
#!/usr/bin/env python3 import array import numpy as np import os import sys import time from coco_helper import (load_image_by_index_and_normalize, image_filenames, original_w_h, class_labels, num_classes, bg_class_offset, class_map, MODEL_DATA_LAYOUT, MODEL_USE_DLA, BATCH_SIZE, MODEL_IMAGE_CHANNELS, MODEL_IMAGE_HEIGHT, MODEL_IMAGE_WIDTH, MODEL_INPUT_DATA_TYPE) from tensorrt_helper import (initialize_predictor, inference_for_given_batch) import mlperf_loadgen as lg ## LoadGen test properties: # LOADGEN_SCENARIO = os.getenv('CK_LOADGEN_SCENARIO', 'SingleStream') LOADGEN_MODE = os.getenv('CK_LOADGEN_MODE', 'AccuracyOnly') LOADGEN_BUFFER_SIZE = int(os.getenv('CK_LOADGEN_BUFFER_SIZE')) # set to how many samples are you prepared to keep in memory at once LOADGEN_DATASET_SIZE = int(os.getenv('CK_LOADGEN_DATASET_SIZE')) # set to how many total samples to choose from (0 = full set) LOADGEN_COUNT_OVERRIDE = os.getenv('CK_LOADGEN_COUNT_OVERRIDE', '') # if not set, use value from LoadGen's config file LOADGEN_MULTISTREAMNESS = os.getenv('CK_LOADGEN_MULTISTREAMNESS', '') # if not set, use value from LoadGen's config file MLPERF_CONF_PATH = os.environ['CK_ENV_MLPERF_INFERENCE_MLPERF_CONF'] USER_CONF_PATH = os.environ['CK_LOADGEN_USER_CONF'] MODEL_NAME = os.getenv('ML_MODEL_MODEL_NAME', 'unknown_model') ## Model properties: # MODEL_MAX_PREDICTIONS = int(os.getenv('ML_MODEL_MAX_PREDICTIONS', 100)) ## Misc # VERBOSITY_LEVEL = int(os.getenv('CK_VERBOSE', '0')) # Load preprocessed image filepaths: LOADGEN_DATASET_SIZE = LOADGEN_DATASET_SIZE or len(image_path_list) def tick(letter, quantity=1): if VERBOSITY_LEVEL: print(letter + (str(quantity) if quantity>1 else ''), end='') # Currently loaded preprocessed images are stored in pre-allocated numpy arrays: preprocessed_image_buffer = None preprocessed_image_map = np.empty(LOADGEN_DATASET_SIZE, dtype=np.int) # this type should be able to hold indices in range 0:LOADGEN_DATASET_SIZE def load_query_samples(sample_indices): # 0-based indices in our whole dataset global preprocessed_image_buffer if VERBOSITY_LEVEL > 1: print("load_query_samples({})".format(sample_indices)) len_sample_indices = len(sample_indices) tick('B', len_sample_indices) if preprocessed_image_buffer is None: # only do this once, once we know the expected size of the buffer preprocessed_image_buffer = np.empty((len_sample_indices, MODEL_IMAGE_CHANNELS, MODEL_IMAGE_HEIGHT, MODEL_IMAGE_WIDTH), dtype=MODEL_INPUT_DATA_TYPE) for buffer_index, sample_index in zip(range(len_sample_indices), sample_indices): preprocessed_image_map[sample_index] = buffer_index preprocessed_image_buffer[buffer_index] = np.array( load_image_by_index_and_normalize(sample_index) ) tick('l') if VERBOSITY_LEVEL: print('') def unload_query_samples(sample_indices): #print("unload_query_samples({})".format(sample_indices)) tick('U') if VERBOSITY_LEVEL: print('') def issue_queries(query_samples): global BATCH_SIZE if VERBOSITY_LEVEL > 2: printable_query = [(qs.index, qs.id) for qs in query_samples] print("issue_queries( {} )".format(printable_query)) tick('Q', len(query_samples)) for j in range(0, len(query_samples), BATCH_SIZE): batch = query_samples[j:j+BATCH_SIZE] # NB: the last one may be shorter than BATCH_SIZE in length batch_data = preprocessed_image_buffer[preprocessed_image_map[ [qs.index for qs in batch] ]] trimmed_batch_results, inference_time_s = inference_for_given_batch(batch_data) actual_batch_size = len(trimmed_batch_results) if VERBOSITY_LEVEL > 1: print("[batch of {}] inference={:.2f} ms".format(actual_batch_size, inference_time_s*1000)) tick('p', len(batch)) if VERBOSITY_LEVEL > 2: print("predicted_batch_results = {}".format(trimmed_batch_results)) response = [] response_array_refs = [] # This is needed to guarantee that the individual buffers to which we keep extra-Pythonian references, do not get garbage-collected. for qs, all_boxes_for_this_sample in zip(batch, trimmed_batch_results): num_active_boxes_for_this_sample = all_boxes_for_this_sample[MODEL_MAX_PREDICTIONS*7].view('int32') global_image_index = qs.index width_orig, height_orig = original_w_h[global_image_index] reformed_active_boxes_for_this_sample = [] for i in range(num_active_boxes_for_this_sample): (image_id, ymin, xmin, ymax, xmax, confidence_score, class_number) = all_boxes_for_this_sample[i*7:(i+1)*7] if class_map: class_number = float(class_map[int(class_number)]) reformed_active_boxes_for_this_sample += [ float(global_image_index), ymin, xmin, ymax, xmax, confidence_score, class_number ] response_array = array.array("B", np.array(reformed_active_boxes_for_this_sample, np.float32).tobytes()) response_array_refs.append(response_array) bi = response_array.buffer_info() response.append(lg.QuerySampleResponse(qs.id, bi[0], bi[1])) lg.QuerySamplesComplete(response) #tick('R', len(response)) sys.stdout.flush() def flush_queries(): pass def process_latencies(latencies_ns): print("LG called process_latencies({})".format(latencies_ns)) latencies_size = len(latencies_ns) latencies_avg = int(sum(latencies_ns)/latencies_size) latencies_sorted = sorted(latencies_ns) latencies_p50 = int(latencies_size * 0.5); latencies_p90 = int(latencies_size * 0.9); print("--------------------------------------------------------------------") print("| LATENCIES (in nanoseconds and fps) |") print("--------------------------------------------------------------------") print("Number of queries run: {:9d}".format(latencies_size)) print("Min latency: {:9d} ns ({:.3f} fps)".format(latencies_sorted[0], 1e9/latencies_sorted[0])) print("Median latency: {:9d} ns ({:.3f} fps)".format(latencies_sorted[latencies_p50], 1e9/latencies_sorted[latencies_p50])) print("Average latency: {:9d} ns ({:.3f} fps)".format(latencies_avg, 1e9/latencies_avg)) print("90 percentile latency: {:9d} ns ({:.3f} fps)".format(latencies_sorted[latencies_p90], 1e9/latencies_sorted[latencies_p90])) print("Max latency: {:9d} ns ({:.3f} fps)".format(latencies_sorted[-1], 1e9/latencies_sorted[-1])) print("--------------------------------------------------------------------") def benchmark_using_loadgen(): "Perform the benchmark using python API for the LoadGen library" pycuda_context, max_batch_size, input_volume, output_volume, num_layers = initialize_predictor() scenario = { 'SingleStream': lg.TestScenario.SingleStream, 'MultiStream': lg.TestScenario.MultiStream, 'Server': lg.TestScenario.Server, 'Offline': lg.TestScenario.Offline, }[LOADGEN_SCENARIO] mode = { 'AccuracyOnly': lg.TestMode.AccuracyOnly, 'PerformanceOnly': lg.TestMode.PerformanceOnly, 'SubmissionRun': lg.TestMode.SubmissionRun, }[LOADGEN_MODE] ts = lg.TestSettings() ts.FromConfig(MLPERF_CONF_PATH, MODEL_NAME, LOADGEN_SCENARIO) ts.FromConfig(USER_CONF_PATH, MODEL_NAME, LOADGEN_SCENARIO) ts.scenario = scenario ts.mode = mode if LOADGEN_MULTISTREAMNESS: ts.multi_stream_samples_per_query = int(LOADGEN_MULTISTREAMNESS) if LOADGEN_COUNT_OVERRIDE: ts.min_query_count = int(LOADGEN_COUNT_OVERRIDE) ts.max_query_count = int(LOADGEN_COUNT_OVERRIDE) sut = lg.ConstructSUT(issue_queries, flush_queries, process_latencies) qsl = lg.ConstructQSL(LOADGEN_DATASET_SIZE, LOADGEN_BUFFER_SIZE, load_query_samples, unload_query_samples) log_settings = lg.LogSettings() log_settings.enable_trace = False lg.StartTestWithLogSettings(sut, qsl, ts, log_settings) lg.DestroyQSL(qsl) lg.DestroySUT(sut) pycuda_context.pop() try: benchmark_using_loadgen() except Exception as e: print('{}'.format(e))
40.923077
168
0.683153
4a2665f145842f18f5531d92dce8b3114a3f788c
37,026
py
Python
dependency_miner/ltminer.py
AshwiniJogbhat/dependency-miner-pm4py
2b05781dd30d7462adce5dbd30cac5b6365e43fa
[ "MIT" ]
null
null
null
dependency_miner/ltminer.py
AshwiniJogbhat/dependency-miner-pm4py
2b05781dd30d7462adce5dbd30cac5b6365e43fa
[ "MIT" ]
null
null
null
dependency_miner/ltminer.py
AshwiniJogbhat/dependency-miner-pm4py
2b05781dd30d7462adce5dbd30cac5b6365e43fa
[ "MIT" ]
null
null
null
import copy import os from os import listdir from os.path import isfile, join import dependency_miner.settings as settings #import Miner.to_petri_net_bordered as discover_net #from Miner.helper_functions import * from pm4py.objects.log.importer.xes import importer as xes_importer import pm4py.objects.process_tree as pt from pm4py.analysis import check_soundness from pm4py.algo.evaluation.precision import algorithm as precision_evaluator from pm4py.algo.evaluation.replay_fitness import algorithm as replay_fitness_evaluator from pm4py.visualization.petri_net import visualizer as pn_visualizer from pm4py.objects.process_tree.utils import bottomup as b from pm4py.algo.discovery.inductive import algorithm as inductive_miner from pm4py.visualization.process_tree import visualizer as pt_visualizer from pm4py.objects.petri_net.exporter import exporter as pnml_exporter from pm4py.objects.petri_net.importer import importer as pnml_importer from pm4py.objects.petri_net.obj import PetriNet, Marking from pm4py.statistics.traces.generic.log import case_statistics from pm4py.objects.process_tree.obj import Operator as pt_op from pm4py.objects.process_tree.utils import generic as util from pm4py.objects.petri_net import obj from pm4py.objects.petri_net.utils import petri_utils as pn_util log_attributes = {} def miner(log_path, support, confidence, lift, sound): """ Extracts long-term dependencies between the task using the given input thresholds. Parameters: logpath (str): Path of event log support (str): Threshold value for support confidence (str) : Threshold value for confidence lift (str): Threshold value for confidence sound (str) : sound model requirement Yes/No Returns: rules (dict): Rules added to the repaired precise net precision (float): Improved precision value fitness (float): Fitness of the repaired Petri net net_path (str) : Path of the .SVG file generated for the repaired net pnml_path (str) : Path of the .pnml file generated for the repaired net """ settings.init() eventlogs, attributes, log, tree, net, im, fm = set_event_log(log_path) #process_tree_path = display_process_tree() if sound == 'Yes' or sound == 'yes': sound = 'on' net_path, precision, fitness, rules, pnml_path = repair_petri_net(support, confidence, lift, sound) print("Added rules in the repaired Petri net", rules) print("Precision of the repaired Petri net", precision) print("Fitness of the repaired Petri net", fitness) print("Saved Path of the repaired Petri net in .SVG format", net_path) print("Saved Path of the repaired Petri net in .pnml format", pnml_path) return rules, precision, fitness, net_path, pnml_path def set_event_log(file_path): """ Given an input event log, the function imports the log and returns discovered process tree and petri net model along with the details of the log. Parameters: file_path (str): Path of event log Returns: eventlogs (list): List of event logs log_attributes (dict): Details of the log log (EventLog) : Imported event log tree (processtree): Discovered Process tree from the given event log net (PetriNet) : Discovered Petri net from the given event log im (Marking) : Initial marking of the generated Petri net fm (Marking) : Final marking of the generated Petri net """ filename = os.path.basename(file_path) settings.EVENT_LOG_NAME = filename settings.EVENT_LOG_PATH = file_path log = import_event_log(file_path) settings.EVENT_LOG = log no_traces = len(log) no_events = sum([len(trace) for trace in log]) log_attributes['no_traces'] = no_traces log_attributes['no_events'] = no_events #discover Tree tree = None tree = discover_process_tree(log) #discover net net = None im = None fm = None settings.RULES_DICT = {} settings.RULES = {} settings.PRECISION = None settings.FITNESS = None net, im, fm = discover_petri_net(tree) pnml_path = export_pnml(net, im, fm) # disover rules rules_dict = {} xor_tree = [] rules_dicts, xor_tree = findAsociationRules() settings.RULES_DICT = copy.deepcopy(rules_dicts) settings.XOR_TREES = copy.deepcopy(xor_tree) #eventlogs = [f for f in listdir(file_path) if isfile(join(file_path, f))] eventlogs = "" return eventlogs, log_attributes, log, tree, net, im, fm def findAsociationRules(): """ This function mines the long-term dependency rules between XOR branches of the process tree. Parameters: Returns: Rules (dict) : Discovered rules between XOR branches of the process tree XOR blocks (dict) : Candidate XOR blocks present in the process tree """ tree = settings.PROCESS_TREE log = settings.EVENT_LOG # Explore Log total_traces = 0 xor_tree = {} rules_dict = {} variants_count = case_statistics.get_variant_statistics(log) variants_count = sorted(variants_count, key=lambda x: x['count'], reverse=True) rules_values = {} for ele in variants_count: total_traces += ele['count'] rule_dicti = {} ## Firstly, get all XOR tree list if it has no tau at the leaves. xor_tree = {} xor_tree = get_xor_trees(tree) ## find all valid XOR combinations for i in range(1, len(xor_tree)): for j in range(i+1, len(xor_tree)+1): max_v = 0 rules_values = {} LCA = util.common_ancestor(xor_tree[f'X{i}'], xor_tree[f'X{j}']) if LCA.operator == pt_op.SEQUENCE and (pt_op.XOR not in get_ancestors_operator(xor_tree[f'X{i}'], LCA)) and (pt_op.XOR not in get_ancestors_operator(xor_tree[f'X{j}'], LCA)) and (pt_op.LOOP not in get_ancestors_operator(xor_tree[f'X{i}'], LCA)) and (pt_op.LOOP not in get_ancestors_operator(xor_tree[f'X{j}'], LCA)): xor_children = [] source, target = get_candidates(xor_tree[f'X{i}'], xor_tree[f'X{j}']) for s in source: for t in target: values = [] support = get_support_updated([s,t], variants_count, total_traces, source, target) conf_value = get_confidence([s,t], support[tuple(s), tuple(t)], variants_count, total_traces) lift_value = get_lift([s, t], conf_value, variants_count, total_traces) values.append(support[tuple(s), tuple(t)]) values.append(conf_value) values.append(lift_value) l = [s,t] rules_values[(f"{s}", f"{t}")] = values if values[2] > max_v: max_v = values[2] rules_values['Max'] = max_v rule_dicti[(f"X{i}", f"X{j}")] = rules_values sorted_rule_dict = dict(sorted(rule_dicti.items(), key=lambda item: item[1]['Max'], reverse=True)) return sorted_rule_dict, xor_tree def import_event_log(log_path): EVENT_LOG = xes_importer.apply(log_path) return EVENT_LOG def discover_petri_net(tree): """ Given a process tree, the function generates the corresponding petri net. Parameters: tree (ProcessTree): The discovered process tree from the given event log Returns: net (PetriNet): Generated Petri net of the log im (Marking) : Initial marking of the generated Petri net fm (Marking) : Final marking of the generated Petri net """ orig_net = None im = None fm = None settings.sink_dict = {} settings.src_dict = {} orig_net, im, fm = apply(tree) settings.PETRI_NET_ORIG = orig_net settings.I_MARKS_ORIG = im settings.F_MARKS_ORIG = fm settings.PETRI_NET = orig_net return orig_net, im, fm def discover_process_tree(log): """ Given an event log, the function discovers the process tree using inductive miner algorithm. Parameters: log (EventLog): Given event log Returns: tree (ProcessTree): The generated Process tree from the log """ tree = inductive_miner.apply_tree(log) settings.PROCESS_TREE = tree return tree def export_pnml(precise_net, im, fm, net_name=None): """ The function exports the Petri net in pnml format and saves it in current directory Parameter: precise_net (PetriNet) : Petri net model to be stored in .pnml format im (Marking) : Initial marking of the generated Petri net fm (Marking) : Final marking of the generated Petri net net_name (str) : Any prefered name to be stored, by default it is the log name Returns: pnml_path (str): The path of the saved Petri net model in .pnml form """ if net_name == None: net_name = f"{settings.EVENT_LOG_NAME}" net_name = net_name.rsplit('.', 1)[0] net_name = net_name+".pnml" settings.PNML_PATH = None log_path = os.path.dirname(copy.deepcopy(settings.EVENT_LOG_PATH)) pnml_path = os.path.join(log_path, net_name) pnml_exporter.apply(precise_net, im, pnml_path) pnml_exporter.apply(precise_net, im, pnml_path , final_marking=fm) settings.PNML_PATH = pnml_path return pnml_path def get_xor_trees(pt, xor_tree = None): """ Given a process tree, it extracts all XOR block from the process tree Parameter: pt (ProcessTree) : Generated process tree from the log xor_tree (list) : All XOR blocks list, at the beginning it is empty Returns: xor_tree (str): All extracted XOR blocks from the process tree """ xor_tree = xor_tree if xor_tree is not None else {} if pt.operator != None: for node in pt.children: if node.operator != None and node.operator == pt_op.XOR and not check_for_tau(node): xor_tree[f'X{len(xor_tree)+1}'] = node else: xor_tree = get_xor_trees(node, xor_tree) return xor_tree def get_candidates(node1, node2): """ Given two XOR branches, checks whether the given branches are in sequential order. Parameter: node1 (ProcessTree) : Source XOR blocks node2 (ProcessTree) : All XOR blocks list, at the beginning it is empty Returns: XOR_source (list) : source branches of the candidate XOR blocks pair XOR_target (list) : target branches of the candidate XOR blocks pair """ XOR_source = [] XOR_target = [] if util.common_ancestor(node1, node2).operator == pt_op.SEQUENCE: XOR_source = get_xor_children(node1, XOR_source) XOR_target = get_xor_children(node2, XOR_target) return XOR_source, XOR_target def get_ancestors_operator(t, until, include_until = True): """ Given an XOR block and lowest common ancestor(LCA), the method returns all operators present in the path from XOR branch to LCA, adapted from PM4Py. Parameter: t (ProcessTree) : Source XOR block until (ProcessTree) : LCA of those XOR blocks Returns: ancestors (Operator): All operators present in the path from XOR block to the given LCA """ ancestors = list() if t == until: return ancestors parent = t.parent while parent != until: ancestors.append(parent.operator) parent = parent.parent if parent is None: return None if include_until: ancestors.append(until.operator) return ancestors def get_lift(pair, confidence, variants, total): """ Given a long-term dependency rules, confidence value of the rule, It calculates the lift of the rule. Parameter: pair (dict) : Long-term dependency rules confidence (str) : Confidence of the rule variants (dict) : Unique traces with the count of those traces total (str) : Total number of traces in Event log Returns: lift (str): Lift value of the rule """ rhs_c = 0 for item in variants: for i in range(0, len(pair[1])): if not repr(pair[1][i]) in item['variant']: continue else: rhs_c += item['count'] break sup_c = round((rhs_c / total),3) lift = round((confidence / sup_c), 3) return lift def get_support_updated(pair, variants, total, source, target): """ Given a long-term dependency rules, variants of the event log and total number of traces It calculates the support value of the rule. Parameter: pair (dict) : Long-term dependency rules variants (dict) : Unique traces with the count of those traces total (str) : Total number of traces in Event log source (list) : All source XOR branches target (list) : All target XOR branches Returns: sup (dict): Support value of the rule """ lhs_c = 0 rule_count = 0 l_found = 0 r_found = 0 sup = {} for item in variants: trace = item['variant'].split(",") #added line temp_src = [str(i) for i in pair[0]] temp_tgt = [str(i) for i in pair[1]] for i in range(0, len(trace)): if not str(trace[i]) in temp_src:#repr(pair[0]): continue else: l_found = 1 track = 0 for j in range(i, len(trace)): track = j if str(trace[j]) in temp_tgt:#repr(pair[1]): if l_found: r_found = 1 rule_count += item['count'] i = j break else: if str(trace[j]) in list(str(source)) and str(trace[j]) not in temp_src: #repr(pair[0]): l_found = 0 break if track == len(trace) - 1: break if l_found and r_found: break sup[tuple(pair[0]), tuple(pair[1])] = round((rule_count / total), 3) return sup def get_confidence(pair, sup, variants, total): """ Given a long-term dependency rules, variants of the event log and total number of traces It calculates the support value of the rule. Parameter: pair (dict) : Long-term dependency rules support (dict) : support of the rule variants (dict) : Unique traces with the count of those traces total (str) : Total number of traces in Event log Returns: conf (str): Confidence value of the rule """ lhs_c = 0 for item in variants: trace = item['variant'].split(",") for i in range(0, len(pair[0])): if not repr(pair[0][i]) in trace:#item['variant']: continue else: lhs_c += item['count'] break sup_c = round((lhs_c / total),3) conf = round((sup / sup_c), 3) return conf def check_for_tau(tree): """ Given a process tree, this function checks whether invisible node exists in the tree. Parameter: tree (ProcessTree): Generated Process tree for the given log Returns: bool : True if tau exists, else False """ for node in tree.children: leaves = util.get_leaves(node) if len(leaves) == 1: for leaf in leaves: if util.is_tau_leaf(leaf): return True def get_xor_children(node, xor_list=None): """ Given a process tree, this function returns the activity involved in the tree. Parameter: xor_list (list): Activity involved in the branch tree Returns: bool : True if tau exists, else False """ xor_list = xor_list if xor_list is not None else {} for child in node.children: if len(get_xor_leaves(child)) > 0: xor_list.append(get_xor_leaves(child)) return xor_list def get_xor_leaves(xor_tree, leaves=None): """ Given a xor tree, this function returns the leaves of the tree. Parameter: xor_tree (ProcessTree): XOR block Returns: leaves (list) : Leaves of the XOR trees """ tau_exist = 0 leaves = leaves if leaves is not None else [] if len(xor_tree.children) == 0: if xor_tree.label is not None: leaves.append(xor_tree) else: for c in xor_tree.children: leaves = get_xor_leaves(c, leaves) return leaves def repair_petri_net(support, confidence, lift, sound): """ Given a Petri net and threshold values, the functions repair the free-choice Petri net Parameter: support (str): Threshold value for support confidence (str) : Threshold value for confidence lift (str): Threshold value for confidence sound (str) : sound model requirement Yes/No Returns: net_path (str) : Path of the .SVG file generated for the repaired net precision (float): Improved precision value fitness (float): Fitness of the repaired Petri net rules (dict): Rules added to the repaired precise net pnml_path (str) : Path of the .pnml file generated for the repaired net """ p_net = None im = None fm = None repaired_net = None sound_net = None p_net, im, fm = discover_petri_net(settings.PROCESS_TREE) rules_dict = dict(settings.RULES_DICT) if sound == 'on': print("Sound Model Requirement is On") rules_dict_sound = soundness_at_XOR_tree(rules_dict) else: print("Sound Model Requirement is Off") rules_dict_sound = rules_dict repair_net = 1 rules_dicti = {} if rules_dict_sound != {}: for pair, value in rules_dict_sound.items(): rules_dicti.update(value) if sound == 'on': maxi = list() for key, value in rules_dict_sound.items(): for k, v in value.items(): if k == 'Max': maxi.append(v) if max(maxi) < float(lift): repair_net = 0 settings.RULES = {} del rules_dicti['Max'] if repair_net: repaired_net = None if sound == 'on': sound_net = discover_sound_petrinet(rules_dicti, p_net) repaired_net, rules = repair_sound_Model(sound_net, rules_dicti, support, confidence, lift, sound) check_soundness(repaired_net, im, fm) else: repaired_net, rules = repair_unsound_model(p_net, rules_dicti, support, confidence, lift) settings.PETRI_NET = None settings.PETRI_NET = repaired_net settings.RULES = rules precision = get_precision(settings.PETRI_NET ,im, fm) fitness = get_fitness(settings.PETRI_NET, im, fm) net_path = display_petri_net(settings.PETRI_NET) pnml_path = export_pnml(settings.PETRI_NET, im,fm) return net_path, round(precision,2), round(fitness['average_trace_fitness'], 2), settings.RULES, pnml_path def get_soundness(): """ Returns the soundness of the model. """ return check_soundness(settings.PETRI_NET, settings.I_MARKS_ORIG, settings.F_MARKS_ORIG) def get_precision(pn_net, im, fm): """ Returns the precision of the model. Parameter: net (PetriNet): Generated Petri net of the log im (Marking) : Initial marking of the generated Petri net fm (Marking) : Final marking of the generated Petri net Return: Precision (float) : Precision value measured using pm4py """ log = settings.EVENT_LOG prec = precision_evaluator.apply(log, pn_net, im, fm, variant=precision_evaluator.Variants.ALIGN_ETCONFORMANCE) return prec def get_fitness(net, im, fm): """ Returns the precision of the model. Parameter: net (PetriNet): Generated Petri net of the log im (Marking) : Initial marking of the generated Petri net fm (Marking) : Final marking of the generated Petri net Return: Fitness (float) : Fitness value measured using pm4py """ log = settings.EVENT_LOG fitness = replay_fitness_evaluator.apply(log, net, im, fm, variant=replay_fitness_evaluator.Variants.ALIGNMENT_BASED) return fitness def repair_unsound_model(net, rules_dict, support, confidence, lift): """ Repairing a bordered Petri net generated from Process tree to include long-term dependencies in it and create a precise Petri net. Soundness parameter is not given. Parameter: net (PetriNet): Generated Petri net of the log rules (dict) : Discovered rules with the association rule metrics values support (str): Threshold value for support confidence (str) : Threshold value for confidence lift (str): Threshold value for confidence Return: net (PetriNet): Repaired Petri net of the log rules (dict) : Added rules to the net with their association rule metrics values """ rules = {} for pair, value in rules_dict.items(): if str(value[2]) > lift and str(value[0]) > support and str(value[1]) > confidence and value[2] > 1.001: rules[pair] = value trans_exist = 0 #if the place already exists, We do not need to add new places, just use existing ones tau_t = PetriNet.Transition(f"tau_{pair[0]}{pair[1]}", None) for trans in net.transitions: if str(trans) == str(tau_t): trans_exist = 1 break if(trans_exist == 0): net.transitions.add(tau_t) s_place = f"ps_{pair[0]}" t_place = f"pt_{pair[1]}" source_found = 0 target_found = 0 for place in net.places: if place.name == s_place: source_found = 1 pn_util.add_arc_from_to(place, tau_t, net) elif place.name == t_place: target_found = 1 pn_util.add_arc_from_to(tau_t, place, net) if (source_found and target_found): break ## Handle Source Side # Adding new place after source if (not source_found): source = PetriNet.Place(s_place) net.places.add(source) pn_util.add_arc_from_to(source, tau_t, net) all_src = pair[0][1:-1].split(", ") for k,v in settings.sink_dict.items(): if all(item in list(map(str,settings.sink_dict[k])) for item in list(all_src)): for t in net.transitions: if str(t) == str(k): pn_util.add_arc_from_to(t, source, net) break if (not target_found): target = PetriNet.Place(t_place) net.places.add(target) pn_util.add_arc_from_to(tau_t, target, net) all_tgt = pair[1][1:-1].split(", ") for k,v in settings.src_dict.items(): if all(item in list(map(str,settings.src_dict[k])) for item in list(all_tgt)): for t in net.transitions: if str(t) == str(k): pn_util.add_arc_from_to(target, t, net) break return net, rules def soundness_at_XOR_tree(rules): """ Preserving Soundness between XOR blocks based on the highest lift value. Parameters: rules (dict) : Discovered rules and their XOR blocks Return: Sound XOR blocks pair (dict) : Sound XOR block pairs to be used for generating sound Precise net """ sound_xor_rule = {} keys_to_be_removed = [] key_copy = tuple(rules.keys()) for i in range(len(rules.keys())): if len(rules.keys()) != 0: sound_xor_rule[next(iter(rules))] = rules[next(iter(rules))] for k,v in rules.items(): if k[0] == list(sound_xor_rule.items())[len(sound_xor_rule)-1][0][0]: keys_to_be_removed.append(k) elif k[1] == list(sound_xor_rule.items())[len(sound_xor_rule)-1][0][1]: keys_to_be_removed.append(k) for k in keys_to_be_removed: if k in rules.keys(): del rules[k] return sound_xor_rule def discover_sound_petrinet(rules_dict, net): """ Discover Intermediate Petri net which preserves soundness between XOR branches. Parameter: rules (dict) : Discovered rules with the association rule metrics values net (PetriNet): Generated Petri net of the log Return: net (PetriNet): Intermediate Petri net of the log """ for pair in rules_dict: trans_exist = 0 #if the place already exists, We do not need to add new places, just use existing ones tau_t = PetriNet.Transition(f"tau_{pair[0]}{pair[1]}", None) for trans in net.transitions: if str(trans) == str(tau_t): trans_exist = 1 break if(trans_exist == 0): net.transitions.add(tau_t) s_place = f"ps_{pair[0]}" t_place = f"pt_{pair[1]}" source_found = 0 target_found = 0 for place in net.places: if place.name == s_place: source_found = 1 pn_util.add_arc_from_to(place, tau_t, net) elif place.name == t_place: target_found = 1 pn_util.add_arc_from_to(tau_t, place, net) if (source_found and target_found): break ## Handle Source Side # Adding new place after source if (not source_found): source = PetriNet.Place(s_place) net.places.add(source) pn_util.add_arc_from_to(source, tau_t, net) all_src = pair[0][1:-1].split(", ") for k,v in settings.sink_dict.items(): if all(item in list(map(str,settings.sink_dict[k])) for item in list(all_src)): for t in net.transitions: if str(t) == str(k): pn_util.add_arc_from_to(t, source, net) break if (not target_found): target = PetriNet.Place(t_place) net.places.add(target) pn_util.add_arc_from_to(tau_t, target, net) all_tgt = pair[1][1:-1].split(", ") for k,v in settings.src_dict.items(): if all(item in list(map(str,settings.src_dict[k])) for item in list(all_tgt)): for t in net.transitions: if str(t) == str(k): pn_util.add_arc_from_to(target, t, net) break return net def repair_sound_Model(s_net, rules_dict, support, confidence, lift, sound=1): """ Repairing a bordered Petri net generated from Process tree to include long-term dependencies in it and create a precise Petri net. Soundness parameter is a given requirement. Parameter: net (PetriNet): Generated Petri net of the log rules (dict) : Discovered rules with the association rule metrics values support (str): Threshold value for support confidence (str) : Threshold value for confidence lift (str): Threshold value for confidence sound (str) : Yes Return: net (PetriNet): Repaired Sound Petri net of the log rules (dict) : Added rules to the net with their association rule metrics values """ rules = {} rules_dict = dict(sorted(rules_dict.items(), key=lambda item: item[1][2])) for pair, value in rules_dict.items(): trans = None if value[2] < 1.001 or str(value[2]) < lift or str(value[0]) < support or str(value[1]) < confidence: tau_t = f"tau_{pair[0]}{pair[1]}" for t in s_net.transitions: s_place_valid = 0 t_place_valid = 0 if str(t) == str(tau_t): trans = t source_places = set([x.source for x in t.in_arcs]) for p in source_places: s_place = f"ps_{pair[0]}" if str(p) == s_place: if sound == 'on' and len(p.out_arcs) > 1: s_place_valid = 1 elif sound == None: s_place_valid = -1 if len(p.out_arcs) == 1: pn_util.remove_place(s_net, p) if sound == 'on' and len(p.out_arcs) == 1: rules[pair] = value target_places = set([x.target for x in t.out_arcs]) for p in target_places: t_place = f"pt_{pair[1]}" if str(p) == t_place: if sound == 'on' and len(p.in_arcs) > 1: t_place_valid = 1 elif sound== None: t_place_valid = -1 if len(p.in_arcs) == 1: pn_util.remove_place(s_net, p) if sound == 'on' and len(p.in_arcs) == 1: rules[pair] = value if s_place_valid==1 and t_place_valid==1: s_net = pn_util.remove_transition(s_net, trans) break elif s_place_valid == -1 and t_place_valid == -1: s_net = pn_util.remove_transition(s_net, trans) break else: rules[pair] = value return s_net, rules def display_petri_net(net=None): """ The function exports the Petri net in .SVG format and saves it in current directory Parameter: net (PetriNet) : Petri net model to be stored in .SVG format Returns: net_path (str): The path of the saved Petri net model in .SVG form """ if net == None : net = settings.PETRI_NET im = settings.I_MARKS_ORIG fm = settings.F_MARKS_ORIG parameters = {pn_visualizer.Variants.WO_DECORATION.value.Parameters.FORMAT: "SVG"} gviz = pn_visualizer.apply(net, im, fm, parameters=parameters) log_name = settings.EVENT_LOG_NAME log_name = log_name.rsplit('.', 1)[0] log_name = log_name.replace(" ", "") log_path = os.path.dirname(copy.deepcopy(settings.EVENT_LOG_PATH)) image_path = os.path.join(log_path, f"{log_name}.SVG") pn_visualizer.save(gviz, image_path) return image_path def apply(tree, parameters=None): ''' Generation of bordered Petri net from the given tree, adapted from PM4Py Only supports loops with 2 children! :param tree: :return: ''' net = obj.PetriNet(name=str(tree)) if len(tree.children) == 0: pn_util.add_transition(net, label=tree.label, name=str(id(tree))) else: sub_nets = list() for c in tree.children: sub_net, ini, fin = apply(c) sub_nets.append(sub_net) pn_util.merge(net, sub_nets) switch = { pt_op.SEQUENCE: construct_sequence_pattern, pt_op.XOR: construct_xor_pattern, pt_op.PARALLEL: construct_and_pattern, pt_op.LOOP: construct_loop_pattern } net, ini, fin = switch[tree.operator](net, sub_nets) if tree.parent is None: p_ini = pn_util.add_place(net) p_fin = pn_util.add_place(net) pn_util.add_arc_from_to(p_ini, _get_src_transition(net), net) pn_util.add_arc_from_to(_get_sink_transition(net), p_fin, net) return net, obj.Marking({p_ini: 1}), obj.Marking({p_fin: 1}) return net, obj.Marking(), obj.Marking() def _get_src_transition(sub_net): for t in sub_net.transitions: if len(pn_util.pre_set(t)) == 0: return t return None def _get_sink_transition(sub_net): for t in sub_net.transitions: if len(pn_util.post_set(t)) == 0: return t return None def _add_src_sink_transitions(net, p_s, p_t): src = pn_util.add_transition(net) pn_util.add_arc_from_to(src, p_s, net) sink = pn_util.add_transition(net) pn_util.add_arc_from_to(p_t, sink, net) return net, obj.Marking(), obj.Marking() def construct_sequence_pattern(net, sub_nets): places = [None] * (len(sub_nets) + 1) for i in range(len(sub_nets) + 1): places[i] = pn_util.add_place(net) for i in range(len(sub_nets)): pn_util.add_arc_from_to(places[i], _get_src_transition(sub_nets[i]), net) pn_util.add_arc_from_to(_get_sink_transition(sub_nets[i]), places[i + 1], net) src = pn_util.add_transition(net) pn_util.add_arc_from_to(src, places[0], net) sink = pn_util.add_transition(net) pn_util.add_arc_from_to(places[len(places) - 1], sink, net) return net, obj.Marking(), obj.Marking() def construct_xor_pattern(net, sub_nets): p_s = pn_util.add_place(net) p_o = pn_util.add_place(net) for n in sub_nets: #settings.src_dict[tuple(n.transitions)] = _get_src_transition(n) #settings.sink_dict[tuple(n.transitions)] = _get_sink_transition(n) settings.src_dict[_get_src_transition(n)] = n.transitions settings.sink_dict[_get_sink_transition(n)] = n.transitions pn_util.add_arc_from_to(p_s, _get_src_transition(n), net) pn_util.add_arc_from_to(_get_sink_transition(n), p_o, net) return _add_src_sink_transitions(net, p_s, p_o) def construct_and_pattern(net, sub_nets): p_s = [None] * len(sub_nets) p_t = [None] * len(sub_nets) for i in range(len(sub_nets)): p_s[i] = pn_util.add_place(net) p_t[i] = pn_util.add_place(net) pn_util.add_arc_from_to(p_s[i], _get_src_transition(sub_nets[i]), net) pn_util.add_arc_from_to(_get_sink_transition(sub_nets[i]), p_t[i], net) src = pn_util.add_transition(net) for p in p_s: pn_util.add_arc_from_to(src, p, net) sink = pn_util.add_transition(net) for p in p_t: pn_util.add_arc_from_to(p, sink, net) return net, obj.Marking(), obj.Marking() def construct_loop_pattern(net, sub_nets): assert (len(sub_nets) == 2) p_s = pn_util.add_place(net) p_t = pn_util.add_place(net) pn_util.add_arc_from_to(p_s, _get_src_transition(sub_nets[0]), net) pn_util.add_arc_from_to(p_t, _get_src_transition(sub_nets[1]), net) pn_util.add_arc_from_to(_get_sink_transition(sub_nets[0]), p_t, net) pn_util.add_arc_from_to(_get_sink_transition(sub_nets[1]), p_s, net) net, ini, fin = _add_src_sink_transitions(net, p_s, p_t) return net, obj.Marking(), obj.Marking() def deepcopy_net(): im = obj.Marking() fm = obj.Marking() p_net = copy.deepcopy(settings.PETRI_NET_ORIG) for place in p_net.places: for p_ini in settings.I_MARKS_ORIG: if str(p_ini) == str(place): im = obj.Marking({place : 1}) for p_f in settings.F_MARKS_ORIG: if str(p_f) == str(place): fm = obj.Marking({place : 1}) return p_net, im, fm if __name__ == "__main__": file_path = "<path>\<file>.xes" support = "0.2" confidence = "0.3" lift = "1.0" sound = "No" rules, precision, fitness, net_path, pnml_path = miner(file_path, support, confidence, lift, sound)
36.732143
328
0.590747
4a26663ae2d365a402e0ba02ec71cf6f10d75768
3,587
py
Python
samples/main_menu_simple.py
Werxzy/ursina
c897ab329e5c5489ac4073a3b4a26ed162f771c6
[ "MIT" ]
2
2018-01-27T14:25:22.000Z
2018-05-17T20:06:04.000Z
samples/main_menu_simple.py
pokepetter/pandaeditor
7c47279f7492ad2b70c6310600fd8a40a10848fb
[ "MIT" ]
null
null
null
samples/main_menu_simple.py
pokepetter/pandaeditor
7c47279f7492ad2b70c6310600fd8a40a10848fb
[ "MIT" ]
null
null
null
from ursina import * # Main Menu Example, or it can be any kind of menu, like Inventory, Quest journal, etc. # Created by Doctor # 09 Feb 21 # Edited version by @jasonheller on 07 Apr 22 # Class of game menu class MenuMenu(Entity): def __init__(self, **kwargs): super().__init__(parent=camera.ui, ignore_paused=True) # Create empty entities that will be parents of our menus content self.main_menu = Entity(parent=self, enabled=True) self.options_menu = Entity(parent=self, enabled=False) self.help_menu = Entity(parent=self, enabled=False) # Add a background. You can change 'shore' to a different texture of you'd like. self.background = Sprite('shore', color=color.dark_gray, z=1) # [MAIN MENU] WINDOW START # Title of our menu Text("MAIN MENU", parent=self.main_menu, y=0.4, x=0, origin=(0,0)) def switch(menu1, menu2): menu1.enable() menu2.disable() # Button list ButtonList(button_dict={ "Start": Func(print_on_screen,"You clicked on Start button!", position=(0,.1), origin=(0,0)), "Options": Func(lambda: switch(self.options_menu, self.main_menu)), "Help": Func(lambda: switch(self.help_menu, self.main_menu)), "Exit": Func(lambda: application.quit()) },y=0,parent=self.main_menu) # [MAIN MENU] WINDOW END # [OPTIONS MENU] WINDOW START # Title of our menu Text ("OPTIONS MENU", parent=self.options_menu, y=0.4, x=0, origin=(0, 0)) # Button Button("Back",parent=self.options_menu,y=-0.3,scale=(0.1,0.05),color=rgb(50,50,50), on_click=lambda: switch(self.main_menu, self.options_menu)) # [OPTIONS MENU] WINDOW END # [HELP MENU] WINDOW START # Title of our menu Text ("HELP MENU", parent=self.help_menu, y=0.4, x=0, origin=(0, 0)) # Button list ButtonList (button_dict={ "Gameplay": Func(print_on_screen,"You clicked on Gameplay help button!", position=(0,.1), origin=(0,0)), "Battle": Func(print_on_screen,"You clicked on Battle help button!", position=(0,.1), origin=(0,0)), "Control": Func(print_on_screen,"You clicked on Control help button!", position=(0,.1), origin=(0,0)), "Back": Func (lambda: switch(self.main_menu, self.help_menu)) }, y=0, parent=self.help_menu) # [HELP MENU] WINDOW END # Here we can change attributes of this class when call this class for key, value in kwargs.items (): setattr (self, key, value) # Input function that check if key pressed on keyboard def input(self, key): # And if you want use same keys on different windows # Like [Escape] or [Enter] or [Arrows] # Just write like that: # If our main menu enabled and we press [Escape] if self.main_menu.enabled and key == "escape": application.quit() elif self.options_menu.enabled and key == "escape": self.main_menu.enable() self.options_menu.disable() elif self.help_menu.enabled and key == "escape": self.main_menu.enable() self.help_menu.disable() # Update function that check something every frame # You can use it similar to input with checking # what menu is currently enabled def update(self): pass # Init application app = Ursina(title='Main Menu Tutorial') # Call our menu main_menu = MenuMenu() # Run application app.run()
36.979381
116
0.620574
4a26663cdd82019c971f03bf313d8b7fc4852002
3,390
py
Python
app/auth/forms.py
gzxultra/FlaskLoginManagement
0a36a36fa1322e91a35735280bb119c94d016592
[ "MIT" ]
null
null
null
app/auth/forms.py
gzxultra/FlaskLoginManagement
0a36a36fa1322e91a35735280bb119c94d016592
[ "MIT" ]
null
null
null
app/auth/forms.py
gzxultra/FlaskLoginManagement
0a36a36fa1322e91a35735280bb119c94d016592
[ "MIT" ]
null
null
null
from flask_wtf import Form from wtforms import StringField, PasswordField, BooleanField, SubmitField from wtforms.validators import DataRequired, Length, Email, Regexp, EqualTo from wtforms import ValidationError from wtforms.fields import RadioField, SelectField from ..models import User class LoginMethodForm(Form): method = RadioField(u'Login Method', choices=[('email', 'Email'), ('weibo', 'Weibo'), ('qzone', ' Qzone')]) class LoginForm(Form): email = StringField('Email', validators=[DataRequired(), Length(1, 64), Email()]) password = PasswordField('Passowrd', validators=[DataRequired()]) remember_me = BooleanField('Keep me logged in') submit = SubmitField('Login') class RegistrationForm(Form): email = StringField('Email', validators=[DataRequired(), Length(1, 64), Email()]) username = StringField('Username', validators=[ DataRequired(), Length(1, 64), Regexp('^[A-Za-z][A-Za-z0-9_.]*$', 0, 'Username must have only letters,' 'numbers, dots or underscores')]) password = PasswordField('Password', validators=[ DataRequired(), EqualTo('password2', message='Passwords must match')]) password2 = PasswordField('Confirm password', validators=[DataRequired()]) submit = SubmitField('Register') def validate_email(self, field): if User.query.filter_by(email=field.data).first(): raise ValidationError('Email already registered.') def validate_username(self, field): user = User.query.filter_by(username=field.data).first() if user is not None and user.weibo_id is None: raise ValidationError('Username already in use.') class ChangePasswordForm(Form): old_password = PasswordField('Old password', validators=[DataRequired()]) password = PasswordField('New password', validators=[ DataRequired(), EqualTo('password2', message='Passwords must match')]) password2 = PasswordField('Confirm new password', validators=[DataRequired()]) submit = SubmitField('Update Password') class PasswordResetRequestForm(Form): email = StringField('Email', validators=[DataRequired(), Length(1, 64), Email()]) submit = SubmitField('Reset Password') class PasswordResetForm(Form): email = StringField('Email', validators=[DataRequired(), Length(1, 64), Email()]) password = PasswordField('New Password', validators=[ DataRequired(), EqualTo('password2', message='Passwords must match')]) password2 = PasswordField('Confirm password', validators=[DataRequired()]) submit = SubmitField('Reset Password') def validate_email(self, field): if User.query.filter_by(email=field.data).first() is None: raise ValidationError('Unknown email address.') class ChangeEmailForm(Form): email = StringField('New Email', validators=[DataRequired(), Length(1, 64), Email()]) password = PasswordField('Password', validators=[DataRequired()]) submit = SubmitField('Update Email Address') def validate_email(self, field): if User.query.filter_by(email=field.data).first(): raise ValidationError('Email already registered.')
44.025974
94
0.651327
4a26665270fd70e722a05d2a74779dd8e5474cde
455
py
Python
src/evaluation.py
skeptycal/twde-datalab
ba2038e0e9d9f05b53e2723bc18f93fdb73f462a
[ "Apache-2.0" ]
53
2017-12-12T17:18:13.000Z
2020-02-10T10:21:24.000Z
src/evaluation.py
thoughtworks/twde-datalab
00702081a41ac0868d518eeea95a165c19ccd24e
[ "Apache-2.0" ]
27
2017-12-08T10:11:57.000Z
2018-09-03T11:36:47.000Z
src/evaluation.py
skeptycal/twde-datalab
ba2038e0e9d9f05b53e2723bc18f93fdb73f462a
[ "Apache-2.0" ]
14
2018-01-28T10:41:39.000Z
2020-01-08T19:56:48.000Z
import numpy as np import pandas as pd def nwrmsle(predictions, targets, weights): predictions = np.array([x if x > 0 else 0 for x in list(predictions)]) targetsf = targets.astype(float) targetsf = np.array([x if x > 0 else 0 for x in list(targetsf)]) weights = 1 + 0.25 * weights log_square_errors = (np.log(predictions + 1) - np.log(targetsf + 1)) ** 2 return(np.sqrt(np.sum(weights * log_square_errors) / np.sum(weights)))
30.333333
77
0.668132
4a26667a776374657bc0715ab94124e21b7b5228
5,768
py
Python
__dump__/_x_segslice.py
fakegit/mo-han-toolbox
9d5bbc1fe7f12040715d3a0d3f320a1ad617aed8
[ "MIT" ]
24
2019-12-08T03:56:32.000Z
2021-10-02T13:26:37.000Z
__dump__/_x_segslice.py
fakegit/mo-han-toolbox
9d5bbc1fe7f12040715d3a0d3f320a1ad617aed8
[ "MIT" ]
2
2020-04-27T14:20:01.000Z
2020-07-17T06:05:33.000Z
__dump__/_x_segslice.py
fakegit/mo-han-toolbox
9d5bbc1fe7f12040715d3a0d3f320a1ad617aed8
[ "MIT" ]
10
2019-08-06T01:11:28.000Z
2021-07-19T08:45:11.000Z
#!/usr/bin/env python3 # encoding=utf8 class Formatter: def __init__(self, fmt_func=lambda x: x, mark=None): self._fmt_func = fmt_func self._mark = mark def __call__(self, *args, **kwargs): return self._fmt_func(*args, **kwargs) def __hash__(self): return hash(self._fmt_func) def __eq__(self, other): return hash(self) == hash(other) and self.mark == other.mark @property def mark(self): return self._mark class Segment: def __init__(self, value, formatter: Formatter): self._value = value self._formatter = formatter self._form = self._formatter(self._value) def __str__(self): return 'segment({}, {})'.format(self.signature, self.value) def __eq__(self, other): return self.value == other.value and self.formatter == other.formatter def __hash__(self): return hash(self.value) + hash(self.formatter) @property def mark(self): return self.formatter.mark @property def value(self): return self._value @value.setter def value(self, new): self._value = new if self._formatter: self._form = self._formatter(self._value) else: self._form = self._value @property def formatter(self): return self._formatter @formatter.setter def formatter(self, new): self._formatter = new if self._formatter: self._form = self._formatter(self._value) else: self._form = self._value @property def signature(self): return self.formatter.mark @property def repr(self): return self._form class BaseSegments: def __init__(self, whole=None, segments: list = None): if whole: self._whole = whole self.redivide() elif segments: self._segments = segments self.reunion() else: self._whole = '' self._segments = [] def __getitem__(self, item): return self.segments[item] def redivide(self): self.segments = [Segment(self.whole, Formatter())] def reunion(self): segments = self.segments whole = segments[0].repr for e in segments[1:]: whole += e.repr self.whole = whole @property def is_original(self): return len(self.segments) == 1 and (self.segments[0].formatter is None or self.segments[0].value == self.whole) @property def whole(self): return self._whole @whole.setter def whole(self, new): self._whole = new self.redivide() @property def segments(self): return self._segments @segments.setter def segments(self, new): self._segments = new self.reunion() def __repr__(self): head = super(BaseSegments, self).__repr__() body = '\n'.join(seg.repr for seg in self.segments) return '{}\n{}'.format(head, body) class BracketedSegments(BaseSegments): def __init__(self, brackets: tuple, whole=None, segments: list = None): left, right = brackets def fmt_func(value): return left + value + right self._left = left self._right = right self._formatter = Formatter(fmt_func, left + right) super(BracketedSegments, self).__init__(whole=whole, segments=segments) @property def left_mark(self): return self._left @property def right_mark(self): return self._right @property def formatter(self): return self._formatter def redivide(self): empty_fmt = Formatter() i = preamble_stop = start = stop = stage = 0 left = self.left_mark left_n = len(left) right = self.right_mark right_n = len(right) w = self.whole seg_l = [] while w: while i < len(w): if stage == 0: search_l = w[i:i + left_n] if search_l == left: preamble_stop = i start = i + left_n i += left_n stage += 1 else: i += 1 elif stage == 1: search_r = w[i:i + right_n] if search_r == right: stop = i i += right_n stage += 1 else: i += 1 elif stage == 2: search_l = w[i:i + left_n] search_r = w[i:i + right_n] if search_l == left: if preamble_stop: seg_l.append(Segment(w[:preamble_stop], empty_fmt)) seg_l.append(Segment(w[start:stop], self.formatter)) w = w[stop + right_n:] i = stage = preamble_stop = start = stop = 0 break elif search_r == right: stop = i i += right_n else: i += 1 else: if stop: if preamble_stop: seg_l.append(Segment(w[:preamble_stop], empty_fmt)) seg_l.append(Segment(w[start:stop], self.formatter)) w = w[stop + right_n:] else: seg_l.append(Segment(w, empty_fmt)) w = None break i = stage = preamble_stop = start = stop = 0 self._segments = seg_l
27.730769
119
0.509362
4a2666a7a4c10964001e6425d84360da643336ef
1,435
py
Python
ibis/sql/sqlite/api.py
hjoo/ibis
72ece317337fb7d329337f20db930845a669ce85
[ "Apache-2.0" ]
5
2018-04-26T17:42:14.000Z
2020-10-14T19:02:59.000Z
ibis/sql/sqlite/api.py
hjoo/ibis
72ece317337fb7d329337f20db930845a669ce85
[ "Apache-2.0" ]
12
2018-04-07T03:13:34.000Z
2020-07-13T15:45:34.000Z
ibis/sql/sqlite/api.py
ian-r-rose/ibis
c2323b8dfd7b56db821426513c379de38203b332
[ "Apache-2.0" ]
1
2020-10-01T18:48:01.000Z
2020-10-01T18:48:01.000Z
# Copyright 2015 Cloudera Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ibis.sql.sqlite.client import SQLiteClient from ibis.sql.sqlite.compiler import dialect, rewrites # noqa: F401 def compile(expr, params=None): """ Force compilation of expression for the SQLite target """ from ibis.sql.alchemy import to_sqlalchemy return to_sqlalchemy(expr, dialect.make_context(params=params)) def connect(path=None, create=False): """ Create an Ibis client connected to a SQLite database. Multiple database files can be created using the attach() method Parameters ---------- path : string, default None File path to the SQLite database file. If None, creates an in-memory transient database and you can use attach() to add more files create : boolean, default False If file does not exist, create it """ return SQLiteClient(path, create=create)
31.195652
76
0.725436
4a2667126470fba36ed8973ffd0e62fe87264e5e
23,575
py
Python
gui/kivy/uix/dialogs/installwizard.py
recryptproject/recrypt-electrum
4898f1b2b265b4a5980893471a3ed40c92e44193
[ "MIT" ]
null
null
null
gui/kivy/uix/dialogs/installwizard.py
recryptproject/recrypt-electrum
4898f1b2b265b4a5980893471a3ed40c92e44193
[ "MIT" ]
null
null
null
gui/kivy/uix/dialogs/installwizard.py
recryptproject/recrypt-electrum
4898f1b2b265b4a5980893471a3ed40c92e44193
[ "MIT" ]
null
null
null
from functools import partial import threading from kivy.app import App from kivy.clock import Clock from kivy.lang import Builder from kivy.properties import ObjectProperty, StringProperty, OptionProperty from kivy.core.window import Window from kivy.uix.button import Button from kivy.utils import platform from kivy.uix.widget import Widget from kivy.core.window import Window from kivy.clock import Clock from kivy.utils import platform from recrypt_electrum.base_wizard import BaseWizard from . import EventsDialog from ...i18n import _ from .password_dialog import PasswordDialog # global Variables is_test = (platform == "linux") test_seed = "time taxi field recycle tiny license olive virus report rare steel portion achieve" test_xpub = "xpub661MyMwAqRbcEbvVtRRSjqxVnaWVUMewVzMiURAKyYratih4TtBpMypzzefmv8zUNebmNVzB3PojdC5sV2P9bDgMoo9B3SARw1MXUUfU1GL" Builder.load_string(''' #:import Window kivy.core.window.Window #:import _ electrum_gui.kivy.i18n._ <WizardTextInput@TextInput> border: 4, 4, 4, 4 font_size: '15sp' padding: '15dp', '15dp' background_color: (1, 1, 1, 1) if self.focus else (0.454, 0.698, 0.909, 1) foreground_color: (0.31, 0.31, 0.31, 1) if self.focus else (0.835, 0.909, 0.972, 1) hint_text_color: self.foreground_color background_active: 'atlas://gui/kivy/theming/light/create_act_text_active' background_normal: 'atlas://gui/kivy/theming/light/create_act_text_active' size_hint_y: None height: '48sp' <WizardButton@Button>: root: None size_hint: 1, None height: '48sp' on_press: if self.root: self.root.dispatch('on_press', self) on_release: if self.root: self.root.dispatch('on_release', self) <BigLabel@Label> color: .854, .925, .984, 1 size_hint: 1, None text_size: self.width, None height: self.texture_size[1] bold: True <-WizardDialog> text_color: .854, .925, .984, 1 value: '' #auto_dismiss: False size_hint: None, None canvas.before: Color: rgba: 0, 0, 0, .9 Rectangle: size: Window.size Color: rgba: .239, .588, .882, 1 Rectangle: size: Window.size crcontent: crcontent # add recrypt_electrum icon BoxLayout: orientation: 'vertical' if self.width < self.height else 'horizontal' padding: min(dp(27), self.width/32), min(dp(27), self.height/32),\ min(dp(27), self.width/32), min(dp(27), self.height/32) spacing: '10dp' GridLayout: id: grid_logo cols: 1 pos_hint: {'center_y': .5} size_hint: 1, None height: self.minimum_height Label: color: root.text_color text: 'ELECTRUM' size_hint: 1, None height: self.texture_size[1] if self.opacity else 0 font_size: '33sp' font_name: 'gui/kivy/data/fonts/tron/Tr2n.ttf' GridLayout: cols: 1 id: crcontent spacing: '1dp' Widget: size_hint: 1, 0.3 GridLayout: rows: 1 spacing: '12dp' size_hint: 1, None height: self.minimum_height WizardButton: id: back text: _('Back') root: root WizardButton: id: next text: _('Next') root: root disabled: root.value == '' <WizardMultisigDialog> value: 'next' Widget size_hint: 1, 1 Label: color: root.text_color size_hint: 1, None text_size: self.width, None height: self.texture_size[1] text: _("Choose the number of signatures needed to unlock funds in your wallet") Widget size_hint: 1, 1 GridLayout: orientation: 'vertical' cols: 2 spacing: '14dp' size_hint: 1, 1 height: self.minimum_height Label: color: root.text_color text: _('From %d cosigners')%n.value Slider: id: n range: 2, 5 step: 1 value: 2 Label: color: root.text_color text: _('Require %d signatures')%m.value Slider: id: m range: 1, n.value step: 1 value: 2 <WizardChoiceDialog> message : '' Widget: size_hint: 1, 1 Label: color: root.text_color size_hint: 1, None text_size: self.width, None height: self.texture_size[1] text: root.message Widget size_hint: 1, 1 GridLayout: row_default_height: '48dp' orientation: 'vertical' id: choices cols: 1 spacing: '14dp' size_hint: 1, None <MButton@Button>: size_hint: 1, None height: '33dp' on_release: self.parent.update_amount(self.text) <WordButton@Button>: size_hint: None, None padding: '5dp', '5dp' text_size: None, self.height width: self.texture_size[0] height: '30dp' on_release: self.parent.new_word(self.text) <SeedButton@Button>: height: dp(100) border: 4, 4, 4, 4 halign: 'justify' valign: 'top' font_size: '18dp' text_size: self.width - dp(24), self.height - dp(12) color: .1, .1, .1, 1 background_normal: 'atlas://gui/kivy/theming/light/white_bg_round_top' background_down: self.background_normal size_hint_y: None <SeedLabel@Label>: font_size: '12sp' text_size: self.width, None size_hint: 1, None height: self.texture_size[1] halign: 'justify' valign: 'middle' border: 4, 4, 4, 4 <RestoreSeedDialog> message: '' word: '' BigLabel: text: "ENTER YOUR SEED PHRASE" GridLayout cols: 1 padding: 0, '12dp' orientation: 'vertical' spacing: '12dp' size_hint: 1, None height: self.minimum_height SeedButton: id: text_input_seed text: '' on_text: Clock.schedule_once(root.on_text) on_release: root.options_dialog() SeedLabel: text: root.message BoxLayout: id: suggestions height: '35dp' size_hint: 1, None new_word: root.on_word BoxLayout: id: line1 update_amount: root.update_text size_hint: 1, None height: '30dp' MButton: text: 'Q' MButton: text: 'W' MButton: text: 'E' MButton: text: 'R' MButton: text: 'T' MButton: text: 'Y' MButton: text: 'U' MButton: text: 'I' MButton: text: 'O' MButton: text: 'P' BoxLayout: id: line2 update_amount: root.update_text size_hint: 1, None height: '30dp' Widget: size_hint: 0.5, None height: '33dp' MButton: text: 'A' MButton: text: 'S' MButton: text: 'D' MButton: text: 'F' MButton: text: 'G' MButton: text: 'H' MButton: text: 'J' MButton: text: 'K' MButton: text: 'L' Widget: size_hint: 0.5, None height: '33dp' BoxLayout: id: line3 update_amount: root.update_text size_hint: 1, None height: '30dp' Widget: size_hint: 1, None MButton: text: 'Z' MButton: text: 'X' MButton: text: 'C' MButton: text: 'V' MButton: text: 'B' MButton: text: 'N' MButton: text: 'M' MButton: text: ' ' MButton: text: '<' <AddXpubDialog> title: '' message: '' BigLabel: text: root.title GridLayout cols: 1 padding: 0, '12dp' orientation: 'vertical' spacing: '12dp' size_hint: 1, None height: self.minimum_height SeedButton: id: text_input text: '' on_text: Clock.schedule_once(root.check_text) SeedLabel: text: root.message GridLayout rows: 1 spacing: '12dp' size_hint: 1, None height: self.minimum_height IconButton: id: scan height: '48sp' on_release: root.scan_xpub() icon: 'atlas://gui/kivy/theming/light/camera' size_hint: 1, None WizardButton: text: _('Paste') on_release: root.do_paste() WizardButton: text: _('Clear') on_release: root.do_clear() <ShowXpubDialog> xpub: '' message: _('Here is your master public key. Share it with your cosigners.') BigLabel: text: "MASTER PUBLIC KEY" GridLayout cols: 1 padding: 0, '12dp' orientation: 'vertical' spacing: '12dp' size_hint: 1, None height: self.minimum_height SeedButton: id: text_input text: root.xpub SeedLabel: text: root.message GridLayout rows: 1 spacing: '12dp' size_hint: 1, None height: self.minimum_height WizardButton: text: _('QR code') on_release: root.do_qr() WizardButton: text: _('Copy') on_release: root.do_copy() WizardButton: text: _('Share') on_release: root.do_share() <ShowSeedDialog> spacing: '12dp' value: 'next' BigLabel: text: "PLEASE WRITE DOWN YOUR SEED PHRASE" GridLayout: id: grid cols: 1 pos_hint: {'center_y': .5} size_hint_y: None height: self.minimum_height orientation: 'vertical' spacing: '12dp' SeedButton: text: root.seed_text on_release: root.options_dialog() SeedLabel: text: root.message <LineDialog> BigLabel: text: root.title SeedLabel: text: root.message TextInput: id: passphrase_input multiline: False size_hint: 1, None height: '27dp' SeedLabel: text: root.warning ''') class WizardDialog(EventsDialog): ''' Abstract dialog to be used as the base for all Create Account Dialogs ''' crcontent = ObjectProperty(None) def __init__(self, wizard, **kwargs): super(WizardDialog, self).__init__() self.wizard = wizard self.ids.back.disabled = not wizard.can_go_back() self.app = App.get_running_app() self.run_next = kwargs['run_next'] _trigger_size_dialog = Clock.create_trigger(self._size_dialog) Window.bind(size=_trigger_size_dialog, rotation=_trigger_size_dialog) _trigger_size_dialog() self._on_release = False def _size_dialog(self, dt): app = App.get_running_app() if app.ui_mode[0] == 'p': self.size = Window.size else: #tablet if app.orientation[0] == 'p': #portrait self.size = Window.size[0]/1.67, Window.size[1]/1.4 else: self.size = Window.size[0]/2.5, Window.size[1] def add_widget(self, widget, index=0): if not self.crcontent: super(WizardDialog, self).add_widget(widget) else: self.crcontent.add_widget(widget, index=index) def on_dismiss(self): app = App.get_running_app() if app.wallet is None and not self._on_release: app.stop() def get_params(self, button): return (None,) def on_release(self, button): self._on_release = True self.close() if not button: self.parent.dispatch('on_wizard_complete', None) return if button is self.ids.back: self.wizard.go_back() return params = self.get_params(button) self.run_next(*params) class WizardMultisigDialog(WizardDialog): def get_params(self, button): m = self.ids.m.value n = self.ids.n.value return m, n class WizardChoiceDialog(WizardDialog): def __init__(self, wizard, **kwargs): super(WizardChoiceDialog, self).__init__(wizard, **kwargs) self.message = kwargs.get('message', '') choices = kwargs.get('choices', []) layout = self.ids.choices layout.bind(minimum_height=layout.setter('height')) for action, text in choices: l = WizardButton(text=text) l.action = action l.height = '48dp' l.root = self layout.add_widget(l) def on_parent(self, instance, value): if value: app = App.get_running_app() self._back = _back = partial(app.dispatch, 'on_back') def get_params(self, button): return (button.action,) class LineDialog(WizardDialog): title = StringProperty('') message = StringProperty('') warning = StringProperty('') def __init__(self, wizard, **kwargs): WizardDialog.__init__(self, wizard, **kwargs) self.ids.next.disabled = False def get_params(self, b): return (self.ids.passphrase_input.text,) class ShowSeedDialog(WizardDialog): seed_text = StringProperty('') message = _("If you forget your PIN or lose your device, your seed phrase will be the only way to recover your funds.") ext = False def __init__(self, wizard, **kwargs): super(ShowSeedDialog, self).__init__(wizard, **kwargs) self.seed_text = kwargs['seed_text'] def on_parent(self, instance, value): if value: app = App.get_running_app() self._back = _back = partial(self.ids.back.dispatch, 'on_release') def options_dialog(self): from .seed_options import SeedOptionsDialog def callback(status): self.ext = status d = SeedOptionsDialog(self.ext, callback) d.open() def get_params(self, b): return (self.ext,) class WordButton(Button): pass class WizardButton(Button): pass class RestoreSeedDialog(WizardDialog): def __init__(self, wizard, **kwargs): super(RestoreSeedDialog, self).__init__(wizard, **kwargs) self._test = kwargs['test'] from recrypt_electrum.mnemonic import Mnemonic from recrypt_electrum.old_mnemonic import words as old_wordlist self.words = set(Mnemonic('en').wordlist).union(set(old_wordlist)) self.ids.text_input_seed.text = test_seed if is_test else '' self.message = _('Please type your seed phrase using the virtual keyboard.') self.title = _('Enter Seed') self.ext = False def options_dialog(self): from .seed_options import SeedOptionsDialog def callback(status): self.ext = status d = SeedOptionsDialog(self.ext, callback) d.open() def get_suggestions(self, prefix): for w in self.words: if w.startswith(prefix): yield w def on_text(self, dt): self.ids.next.disabled = not bool(self._test(self.get_text())) text = self.ids.text_input_seed.text if not text: last_word = '' elif text[-1] == ' ': last_word = '' else: last_word = text.split(' ')[-1] enable_space = False self.ids.suggestions.clear_widgets() suggestions = [x for x in self.get_suggestions(last_word)] if last_word in suggestions: b = WordButton(text=last_word) self.ids.suggestions.add_widget(b) enable_space = True for w in suggestions: if w != last_word and len(suggestions) < 10: b = WordButton(text=w) self.ids.suggestions.add_widget(b) i = len(last_word) p = set() for x in suggestions: if len(x)>i: p.add(x[i]) for line in [self.ids.line1, self.ids.line2, self.ids.line3]: for c in line.children: if isinstance(c, Button): if c.text in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ': c.disabled = (c.text.lower() not in p) and last_word elif c.text == ' ': c.disabled = not enable_space def on_word(self, w): text = self.get_text() words = text.split(' ') words[-1] = w text = ' '.join(words) self.ids.text_input_seed.text = text + ' ' self.ids.suggestions.clear_widgets() def get_text(self): ti = self.ids.text_input_seed return ' '.join(ti.text.strip().split()) def update_text(self, c): c = c.lower() text = self.ids.text_input_seed.text if c == '<': text = text[:-1] else: text += c self.ids.text_input_seed.text = text def on_parent(self, instance, value): if value: tis = self.ids.text_input_seed tis.focus = True #tis._keyboard.bind(on_key_down=self.on_key_down) self._back = _back = partial(self.ids.back.dispatch, 'on_release') app = App.get_running_app() def on_key_down(self, keyboard, keycode, key, modifiers): if keycode[0] in (13, 271): self.on_enter() return True def on_enter(self): #self._remove_keyboard() # press next next = self.ids.next if not next.disabled: next.dispatch('on_release') def _remove_keyboard(self): tis = self.ids.text_input_seed if tis._keyboard: tis._keyboard.unbind(on_key_down=self.on_key_down) tis.focus = False def get_params(self, b): return (self.get_text(), False, self.ext) class ConfirmSeedDialog(RestoreSeedDialog): def get_params(self, b): return (self.get_text(),) def options_dialog(self): pass class ShowXpubDialog(WizardDialog): def __init__(self, wizard, **kwargs): WizardDialog.__init__(self, wizard, **kwargs) self.xpub = kwargs['xpub'] self.ids.next.disabled = False def do_copy(self): self.app._clipboard.copy(self.xpub) def do_share(self): self.app.do_share(self.xpub, _("Master Public Key")) def do_qr(self): from .qr_dialog import QRDialog popup = QRDialog(_("Master Public Key"), self.xpub, True) popup.open() class AddXpubDialog(WizardDialog): def __init__(self, wizard, **kwargs): WizardDialog.__init__(self, wizard, **kwargs) self.is_valid = kwargs['is_valid'] self.title = kwargs['title'] self.message = kwargs['message'] def check_text(self, dt): self.ids.next.disabled = not bool(self.is_valid(self.get_text())) def get_text(self): ti = self.ids.text_input return ti.text.strip() def get_params(self, button): return (self.get_text(),) def scan_xpub(self): def on_complete(text): self.ids.text_input.text = text self.app.scan_qr(on_complete) def do_paste(self): self.ids.text_input.text = test_xpub if is_test else self.app._clipboard.paste() def do_clear(self): self.ids.text_input.text = '' class InstallWizard(BaseWizard, Widget): ''' events:: `on_wizard_complete` Fired when the wizard is done creating/ restoring wallet/s. ''' __events__ = ('on_wizard_complete', ) def on_wizard_complete(self, wallet): """overriden by main_window""" pass def waiting_dialog(self, task, msg): '''Perform a blocking task in the background by running the passed method in a thread. ''' def target(): # run your threaded function try: task() except Exception as err: self.show_error(str(err)) # on completion hide message Clock.schedule_once(lambda dt: app.info_bubble.hide(now=True), -1) app = App.get_running_app() app.show_info_bubble( text=msg, icon='atlas://gui/kivy/theming/light/important', pos=Window.center, width='200sp', arrow_pos=None, modal=True) t = threading.Thread(target = target) t.start() def terminate(self, **kwargs): self.dispatch('on_wizard_complete', self.wallet) def choice_dialog(self, **kwargs): choices = kwargs['choices'] if len(choices) > 1: WizardChoiceDialog(self, **kwargs).open() else: f = kwargs['run_next'] f(choices[0][0]) def multisig_dialog(self, **kwargs): WizardMultisigDialog(self, **kwargs).open() def show_seed_dialog(self, **kwargs): ShowSeedDialog(self, **kwargs).open() def line_dialog(self, **kwargs): LineDialog(self, **kwargs).open() def confirm_seed_dialog(self, **kwargs): kwargs['title'] = _('Confirm Seed') kwargs['message'] = _('Please retype your seed phrase, to confirm that you properly saved it') ConfirmSeedDialog(self, **kwargs).open() def restore_seed_dialog(self, **kwargs): RestoreSeedDialog(self, **kwargs).open() def add_xpub_dialog(self, **kwargs): kwargs['message'] += ' ' + _('Use the camera button to scan a QR code.') AddXpubDialog(self, **kwargs).open() def add_cosigner_dialog(self, **kwargs): kwargs['title'] = _("Add Cosigner") + " %d"%kwargs['index'] kwargs['message'] = _('Please paste your cosigners master public key, or scan it using the camera button.') AddXpubDialog(self, **kwargs).open() def show_xpub_dialog(self, **kwargs): ShowXpubDialog(self, **kwargs).open() def show_error(self, msg): app = App.get_running_app() Clock.schedule_once(lambda dt: app.show_error(msg)) def password_dialog(self, message, callback): popup = PasswordDialog() popup.init(message, callback) popup.open() def request_password(self, run_next, force_disable_encrypt_cb=False): def callback(pin): if pin: self.run('confirm_password', pin, run_next) else: run_next(None, None) self.password_dialog('Choose a PIN code', callback) def confirm_password(self, pin, run_next): def callback(conf): if conf == pin: run_next(pin, False) else: self.show_error(_('PIN mismatch')) self.run('request_password', run_next) self.password_dialog('Confirm your PIN code', callback) def action_dialog(self, action, run_next): f = getattr(self, action) f()
28.541162
125
0.562587
4a266847a6ed732b2115cd32026c7f35425a7d06
4,921
py
Python
faceTk.py
snaily16/FaceFilters
466e27041e53549d81ded3f8e099e5a1a696e6e9
[ "MIT" ]
null
null
null
faceTk.py
snaily16/FaceFilters
466e27041e53549d81ded3f8e099e5a1a696e6e9
[ "MIT" ]
null
null
null
faceTk.py
snaily16/FaceFilters
466e27041e53549d81ded3f8e099e5a1a696e6e9
[ "MIT" ]
null
null
null
from tkinter import * import cv2 import threading import datetime import os import time from PIL import Image, ImageTk from FaceFilters import FaceFilters class GUIFace: def __init__(self, vs, fc, outPath): self.vs = vs self.fc = fc self.outPath = outPath self.frame = None self.thread = None self.stopEvent = None self.filterChoice = None # initialize the root window and video panel self.root = Tk() self.panel = None self.center = Frame(self.root, width=150, height=40,padx=10, pady=10) btm_frame = Frame(self.root, bg='white', width=450, height=45, padx=3, pady=3) btm_frame2 = Frame(self.root, bg='white', width=450, height=60) # layout all of the main containers self.root.grid_rowconfigure(1, weight=1) self.root.grid_columnconfigure(0, weight=1) self.center.grid(row=1) btm_frame.grid(row=3) btm_frame2.grid(row=4) # create the center widgets self.center.grid_rowconfigure(1, weight=1) self.center.grid_columnconfigure(1, weight=1) #panel = Frame(center, bg='yellow', width=250, height=210, padx=3, pady=3) #ctr_mid.grid(row=0, column=1, sticky="nsew") # create the bottom widgets btn1 = Button(btm_frame, text='Glasses', command=lambda: self.setFilterChoice(0), width = 20, fg = "black", bg = "pink", bd = 0) btn2 = Button(btm_frame, text='Sunglasses1', command=lambda: self.setFilterChoice(1), width = 20, fg = "black", bg = "light blue", bd = 0) btn3 = Button(btm_frame, text='Sunglasses2', command=lambda: self.setFilterChoice(2), width = 20, fg = "black", bg = "aquamarine", bd = 0) btn4 = Button(btm_frame, text='Sunglasses3', command=lambda: self.setFilterChoice(3), width = 20, fg = "black", bg = "light blue", bd = 0) btn5 = Button(btm_frame, text='Dog', command=lambda: self.setFilterChoice(4), width = 20, fg = "black", bg = "pink", bd = 0) btn6 = Button(btm_frame, text='Rabbit', command=lambda: self.setFilterChoice(5), width = 20,fg = "black", bg = "aquamarine", bd = 0) btn7 = Button(btm_frame, text='Moustache1', command=lambda: self.setFilterChoice(6), width = 20, fg = "black", bg = "pink", bd = 0) btn8 = Button(btm_frame, text='Moustache2', command=lambda: self.setFilterChoice(7), width = 20, fg = "black", bg = "light blue", bd = 0) btn9 = Button(btm_frame, text='Ironman', command=lambda: self.setFilterChoice(8), width = 20, fg = "black", bg = "aquamarine", bd = 0) btn10 = Button(btm_frame, text='Captain America', command=lambda: self.setFilterChoice(9), width = 20, fg = "black", bg = "light blue", bd = 0) # layout the widgets in bottom frame btn1.grid(row=0, column=1) btn2.grid(row=0, column=2) btn3.grid(row=0, column=3) btn4.grid(row=0, column=4) btn5.grid(row=0, column=5) btn6.grid(row=1, column=1) btn7.grid(row=1, column=2) btn8.grid(row=1, column=3) btn9.grid(row=1, column=4) btn10.grid(row=1, column=5) # create the bottom2 widgets btm_frame2.grid_columnconfigure(1, weight=1) snapbtn = Button(btm_frame2, text='Snap!', command=self.takeSnapshot, width = 80, height=2, fg = "black", bg = "lime green", bd = 1) snapbtn.grid(row=0, column=0,columnspan=3) # start a thread that constantly pools video sensor for most recently read frame self.stopEvent = threading.Event() self.videoLoop() #self.root.geometry('800x610') self.root.wm_title('Face Filters') self.root.wm_protocol('WM_DELETE_WINDOW', self.onClose) self.root.mainloop() def videoLoop(self): try: if not self.stopEvent.is_set(): # keep looping over frames until instructed to stop self.frame = self.vs.read() if self.filterChoice!=None: self.frame = self.fc.applyFilter(self.frame, self.filterChoice) self.frame = cv2.flip(self.frame, 1) cv2image = cv2.cvtColor(self.frame, cv2.COLOR_BGR2RGBA) img = Image.fromarray(cv2image) img = ImageTk.PhotoImage(image=img) # if panel in not None, we need to initialize it if self.panel is None: self.panel = Label(self.center,image=img) self.panel.image = img #self.panel.pack(side='left', expand='yes', padx=10, pady=10) self.panel.grid(row=0, column=1, sticky="nsew") else: self.panel.configure(image=img) self.panel.image = img self.panel.after(10,self.videoLoop) except Exception as e: print("[ERROR] {}".format(e)) def setFilterChoice(self, n): self.filterChoice = n print('[INFO] Filter selected: {}'.format(self.fc.filters[n])) def takeSnapshot(self): # grab current timestamp and construct the output path ts = datetime.datetime.now() filename = '{}.jpg'.format(ts.strftime('%Y%b%d_%H%M%S')) p = os.path.sep.join((self.outPath, filename)) # save file cv2.imwrite(p, self.frame.copy()) print("[INFO] saved {}".format(filename)) def onClose(self): # set stop event, cleanup the camera # allow rest of the quit process to continue print("[INFO] closing...") self.stopEvent.set() self.vs.stop() self.root.quit()
37.853846
145
0.687462
4a26685139d38367e6c8767a7d77fd703eacef36
917
py
Python
Preprocessing/Zhang_psf/src/blackboxrepairers/calculators.py
maliha93/Fairness-Analysis-Code
acf13c6e7993704fc627249fe4ada44d8b616264
[ "MIT" ]
null
null
null
Preprocessing/Zhang_psf/src/blackboxrepairers/calculators.py
maliha93/Fairness-Analysis-Code
acf13c6e7993704fc627249fe4ada44d8b616264
[ "MIT" ]
null
null
null
Preprocessing/Zhang_psf/src/blackboxrepairers/calculators.py
maliha93/Fairness-Analysis-Code
acf13c6e7993704fc627249fe4ada44d8b616264
[ "MIT" ]
null
null
null
from copy import deepcopy def get_median(values): """ Given an unsorted list of numeric values, return median value (as a float). Note that in the case of even-length lists of values, we apply the value to the left of the center to be the median (such that the median can only be a value from the list of values). Eg: get_median([1,2,3,4]) == 2, not 2.5. """ if not values: raise Exception("Cannot calculate median of list with no values!") sorted_values = deepcopy(values) sorted_values.sort() # Not calling `sorted` b/c `sorted_values` may not be list. if len(values) % 2 == 0: return sorted_values[len(values)/2-1] else: return sorted_values[len(values)/2] def test(): test_median() def test_median(): feature_values = [4,1,3,2] correct_median = 2 print "median value is correct?", get_median(feature_values) == correct_median if __name__=="__main__": test()
26.2
82
0.697928
4a266a2d8174cd3d49aebe2e67aa92ba5bdb69af
1,966
py
Python
test/unit/mysql_class/fetch_global_var.py
deepcoder42/mysql-lib
d3d2459e0476fdbc4465e1d9389612e58d36fb25
[ "MIT" ]
1
2022-03-23T04:53:19.000Z
2022-03-23T04:53:19.000Z
test/unit/mysql_class/fetch_global_var.py
deepcoder42/mysql-lib
d3d2459e0476fdbc4465e1d9389612e58d36fb25
[ "MIT" ]
null
null
null
test/unit/mysql_class/fetch_global_var.py
deepcoder42/mysql-lib
d3d2459e0476fdbc4465e1d9389612e58d36fb25
[ "MIT" ]
null
null
null
#!/usr/bin/python # Classification (U) """Program: fetch_global_var.py Description: Unit testing of fetch_global_var in mysql_class.py. Usage: test/unit/mysql_class/fetch_global_var.py Arguments: """ # Libraries and Global Variables # Standard import sys import os if sys.version_info < (2, 7): import unittest2 as unittest else: import unittest # Third-party # Local sys.path.append(os.getcwd()) import mysql_class import version __version__ = version.__version__ class Server(object): """Class: Server Description: Class stub holder for Server class. Methods: __init__ -> Class initialization. sql -> Stub holder for Server.sql method. """ def __init__(self): """Method: __init__ Description: Class initialization. Arguments: """ self.cmd = None self.var = None def vert_sql(self, cmd, var): """Method: vert_sql Description: Stub holder for Server.vert_sql method. Arguments: (input) cmd -> Query command. (input) var -> Global variable name. """ self.cmd = cmd self.var = var return True class UnitTest(unittest.TestCase): """Class: UnitTest Description: Class which is a representation of a unit testing. Methods: setUp -> Initialize testing environment. test_fetch_global_var -> Test fetch_global_var function. """ def setUp(self): """Function: setUp Description: Initialization for unit testing. Arguments: """ self.server = Server() def test_fetch_global_var(self): """Function: test_fetch_global_var Description: Test fetch_global_var function. Arguments: """ self.assertTrue(mysql_class.fetch_global_var(self.server, "Variable")) if __name__ == "__main__": unittest.main()
16.661017
78
0.620549
4a266a4aa2f2e727fa4178292e36bee6e400ea04
2,653
py
Python
gdal/swig/python/samples/classify.py
jpapadakis/gdal
f07aa15fd65af36b04291303cc6834c87f662814
[ "MIT" ]
3,100
2015-01-02T10:33:40.000Z
2022-03-31T02:06:51.000Z
gdal/swig/python/samples/classify.py
jpapadakis/gdal
f07aa15fd65af36b04291303cc6834c87f662814
[ "MIT" ]
3,496
2015-01-06T16:53:30.000Z
2022-03-31T20:18:51.000Z
gdal/swig/python/samples/classify.py
jpapadakis/gdal
f07aa15fd65af36b04291303cc6834c87f662814
[ "MIT" ]
2,036
2015-01-08T20:22:12.000Z
2022-03-31T10:24:08.000Z
#!/usr/bin/env python3 # ****************************************************************************** # # Project: GDAL # Purpose: Example doing range based classification # Author: Frank Warmerdam, [email protected] # # ****************************************************************************** # Copyright (c) 2008, Frank Warmerdam <[email protected]> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # ****************************************************************************** import sys import numpy as np from osgeo import gdal, gdal_array def doit(src_filename, dst_filename): class_defs = [(1, 10, 20), (2, 20, 30), (3, 128, 255)] src_ds = gdal.Open(src_filename) xsize = src_ds.RasterXSize ysize = src_ds.RasterYSize src_image = gdal_array.LoadFile(src_filename) dst_image = np.zeros((ysize, xsize)) for class_info in class_defs: class_id = class_info[0] class_start = class_info[1] class_end = class_info[2] class_value = np.ones((ysize, xsize)) * class_id mask = np.bitwise_and( np.greater_equal(src_image, class_start), np.less_equal(src_image, class_end)) dst_image = np.choose(mask, (dst_image, class_value)) gdal_array.SaveArray(dst_image, dst_filename) def main(argv): src_filename = 'utm.tif' dst_filename = 'classes.tif' if len(argv) > 1: src_filename = argv[1] if len(argv) > 2: dst_filename = argv[2] return doit(src_filename, dst_filename) if __name__ == '__main__': sys.exit(main(sys.argv))
34.454545
80
0.634376
4a266b65476d12f075878e9efbfbcf37fcb76ba4
2,722
py
Python
mangopi/metasite.py
BFTeck/mangopi
8598c8b35c38f9bf2a0880c93af5c1d3ae5728be
[ "MIT" ]
24
2015-01-03T00:47:06.000Z
2020-11-27T14:58:32.000Z
mangopi/metasite.py
BFTeck/mangopi
8598c8b35c38f9bf2a0880c93af5c1d3ae5728be
[ "MIT" ]
4
2015-03-14T14:00:21.000Z
2020-12-30T07:15:20.000Z
mangopi/metasite.py
BFTeck/mangopi
8598c8b35c38f9bf2a0880c93af5c1d3ae5728be
[ "MIT" ]
5
2015-02-04T00:44:08.000Z
2018-08-13T21:59:47.000Z
from collections import OrderedDict from underscore import _ from mangopi.helper.decorators import memoize from mangopi.helper.util import Util class MetaSite(object): def __init__(self, modules=[], options={}): self.modules = modules self.options = options @memoize def series(self, name): """ :type name: str :rtype: MetaSeries """ return MetaSite.MetaSeries(self, name) class MetaSeries(object): def __init__(self, site, name): """ :type site: MetaSite :type name: str """ self.site = site self.name = name @property @memoize def chapters(self): """ :rtype: OrderedDict of (str, MetaChapter) """ all_chapters = _.flatten([ site.series(self.name).chapters for site in self.site.modules ]) chapter_map = OrderedDict( Util.natural_sort( _.groupBy(all_chapters, lambda chapter, index: chapter.chapter).items(), key=lambda t: t[0] ) ) return OrderedDict( (chapter, MetaSite.MetaChapter(self, chapter, choices)) for chapter, choices in chapter_map.items()) class MetaChapter(object): def __init__(self, series, chapter, choices): """ :type series: MetaSeries :type chapter: str :type choices: list of site.mangasite.MangaSite.Chapter """ self.series = series self.chapter = chapter self.choices = choices @property @memoize def title(self): """ :rtype: str """ return (_(self.choices).chain() .map(lambda chapter, *args: chapter.title) .sortBy(lambda title, *args: len(title)) .last().value() ) @property @memoize def first_available_choice(self): """ :rtype: site.mangasite.MangaSite.Chapter """ return _(self.choices).find( lambda chapter, *args: (_(chapter.pages).chain() .map(lambda page, *args: page.image) .all(lambda image, *args: image is not None).value() ) ) @property @memoize def pages(self): """ :rtype: list of site.mangasite.MangaSite.Page """ return self.first_available_choice.pages
28.652632
95
0.490816
4a266b93125f2d17c5864a04e94f97e47e3221dd
234
py
Python
unet_ce_hard_per_im_c13_1.py
pykao/BraTS2018-tumor-segmentation
6c81ab670f7bd035312f7ccd729776c5c05c47a3
[ "MIT" ]
86
2018-09-07T08:45:19.000Z
2022-03-26T18:26:24.000Z
unet_ce_hard_per_im_c13_1.py
pykao/BraTS2018-tumor-segmentation
6c81ab670f7bd035312f7ccd729776c5c05c47a3
[ "MIT" ]
5
2018-09-16T07:59:47.000Z
2020-12-16T07:20:26.000Z
unet_ce_hard_per_im_c13_1.py
pykao/BraTS2018-tumor-segmentation
6c81ab670f7bd035312f7ccd729776c5c05c47a3
[ "MIT" ]
27
2018-09-11T05:08:40.000Z
2021-12-22T16:02:35.000Z
from subprocess import call model = 'unet_ce_hard_per_im_c13' seeds = ['_s5042', '_s6437', '_s7859', '_s8074', '_s9829'] for seed in seeds: cfg_name = model+seed call(['python', 'train_unet.py', '--gpu', '3', '--cfg', cfg_name])
23.4
67
0.662393
4a266c4d635d789ab00624c41443d2e3e227ce7e
12,165
py
Python
heat/tests/test_neutron_autoscaling.py
redhat-openstack/heat
6b9be0a868b857e942c1cc90594d0f3a0d0725d0
[ "Apache-2.0" ]
null
null
null
heat/tests/test_neutron_autoscaling.py
redhat-openstack/heat
6b9be0a868b857e942c1cc90594d0f3a0d0725d0
[ "Apache-2.0" ]
null
null
null
heat/tests/test_neutron_autoscaling.py
redhat-openstack/heat
6b9be0a868b857e942c1cc90594d0f3a0d0725d0
[ "Apache-2.0" ]
null
null
null
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy from neutronclient.v2_0 import client as neutronclient import uuid import mox from oslo.config import cfg from heat.common import template_format from heat.db import api as db_api from heat.engine.clients.os import glance from heat.engine.clients.os import nova from heat.engine import environment from heat.engine import parser from heat.engine.resources import instance from heat.engine import template from heat.tests.common import HeatTestCase from heat.tests import utils from heat.tests.v1_1 import fakes as v1fakes as_template = ''' { "AWSTemplateFormatVersion" : "2010-09-09", "Description" : "AutoScaling Test", "Parameters" : { "ImageId": {"Type": "String"}, "KeyName": {"Type": "String"}, "SubnetId": {"Type": "String"} }, "Resources" : { "SvrGrp" : { "Type" : "AWS::AutoScaling::AutoScalingGroup", "Properties" : { "AvailabilityZones" : ["nova"], "LaunchConfigurationName" : { "Ref" : "LaunchConfig" }, "MinSize" : "1", "MaxSize" : "5", "DesiredCapacity": "1", "VPCZoneIdentifier": [ { "Ref": "SubnetId" } ], "LoadBalancerNames" : [ { "Ref" : "ElasticLoadBalancer" } ] } }, "myMonitor": { "Type": "OS::Neutron::HealthMonitor", "Properties": { "type": "HTTP", "delay": 3, "max_retries": 5, "timeout": 10 } }, "myPool": { "Type": "OS::Neutron::Pool", "Properties": { "description": "Test Pool", "lb_method": "ROUND_ROBIN", "monitors": [ { "Ref": "myMonitor" } ], "name": "Test_Pool", "protocol": "HTTP", "subnet_id": { "Ref": "SubnetId" }, "vip": { "description": "Test VIP", "connection_limit": 1000, "address": "10.0.3.121", "protocol_port": 80, "name": "test_vip" } } }, "ElasticLoadBalancer" : { 'Type': 'OS::Neutron::LoadBalancer', 'Properties': { 'protocol_port': 8080, 'pool_id': { "Ref": "myPool" } } }, "LaunchConfig" : { "Type" : "AWS::AutoScaling::LaunchConfiguration", "Properties": { "ImageId" : {"Ref": "ImageId"}, "InstanceType" : "bar", } } } } ''' class AutoScalingTest(HeatTestCase): params = {'KeyName': 'test', 'ImageId': 'foo'} def setUp(self): super(AutoScalingTest, self).setUp() self.ctx = utils.dummy_context() self.fc = v1fakes.FakeClient() cfg.CONF.set_default('heat_waitcondition_server_url', 'http://server.test:8000/v1/waitcondition') self.stub_keystoneclient() self.m.StubOutWithMock(neutronclient.Client, 'create_health_monitor') self.m.StubOutWithMock(neutronclient.Client, 'associate_health_monitor') self.m.StubOutWithMock(neutronclient.Client, 'create_pool') self.m.StubOutWithMock(neutronclient.Client, 'create_vip') self.m.StubOutWithMock(neutronclient.Client, 'show_pool') self.m.StubOutWithMock(neutronclient.Client, 'show_vip') self.m.StubOutWithMock(neutronclient.Client, 'create_member') self.m.StubOutWithMock(neutronclient.Client, 'list_members') self.m.StubOutWithMock(nova.NovaClientPlugin, 'server_to_ipaddress') self.m.StubOutWithMock(parser.Stack, 'validate') self.m.StubOutWithMock(instance.Instance, 'handle_create') self.m.StubOutWithMock(instance.Instance, 'check_create_complete') self.m.StubOutWithMock(glance.ImageConstraint, "validate") def test_lb(self): tmpl = template_format.parse(as_template) network_body = { "network": { "id": str(uuid.uuid4()), "name": "testnet", "admin_state_up": True } } subnet_body = { "subnet": { "name": "testsubnet", "id": str(uuid.uuid4()), "network_id": network_body['network']['id'], "ip_version": 4, "cidr": "10.0.3.0/24", "allocation_pools": [ { "start": "10.0.3.20", "end": "10.0.3.150" } ], "gateway_ip": "10.0.3.1" } } self.params["SubnetId"] = subnet_body['subnet']['id'] mon_block = { 'health_monitor': tmpl['Resources']['myMonitor']['Properties'] } mon_block['health_monitor']['admin_state_up'] = True mon_ret_block = copy.deepcopy(mon_block) mon_ret_block['health_monitor']['id'] = str(uuid.uuid4()) mon_ret_block['health_monitor']['status'] = 'ACTIVE' pool_block = {'pool': {}} tmp_pool_block = tmpl['Resources']['myPool']['Properties'] for val in ['lb_method', 'protocol', 'name', 'description']: pool_block['pool'][val] = tmp_pool_block[val] pool_block['pool']['admin_state_up'] = True pool_block['pool']['subnet_id'] = self.params['SubnetId'] pool_block['pool']['admin_state_up'] = True pool_ret_block = copy.deepcopy(pool_block) pool_ret_block['pool']['id'] = str(uuid.uuid4()) pool_ret_block['pool']['status'] = 'ACTIVE' tmp_vip_block = tmp_pool_block.pop('vip') vip_block = { 'vip': { 'protocol': pool_block['pool']['protocol'], 'description': tmp_vip_block['description'], 'admin_state_up': True, 'subnet_id': self.params['SubnetId'], 'connection_limit': tmp_vip_block['connection_limit'], 'pool_id': pool_ret_block['pool']['id'], 'address': tmp_vip_block['address'], 'protocol_port': tmp_vip_block['protocol_port'], 'name': tmp_vip_block['name'] } } vip_ret_block = copy.deepcopy(vip_block) vip_ret_block['vip']['id'] = str(uuid.uuid4()) vip_ret_block['vip']['status'] = 'ACTIVE' port_block = { 'port': { 'network_id': network_body['network']['id'], 'fixed_ips': [ { 'subnet_id': subnet_body['subnet']['id'], } ], 'admin_state_up': True } } port_ret_block = copy.deepcopy(port_block) port_ret_block['port']['id'] = str(uuid.uuid4()) membera_block = { 'member': { 'protocol_port': 8080, 'pool_id': pool_ret_block['pool']['id'], 'address': '1.2.3.4' } } membera_ret_block = copy.deepcopy(membera_block) membera_ret_block['member']['id'] = str(uuid.uuid4()) memberb_block = { 'member': { 'protocol_port': 8080, 'pool_id': pool_ret_block['pool']['id'], 'address': '1.2.3.5' } } memberb_ret_block = copy.deepcopy(memberb_block) memberb_ret_block['member']['id'] = str(uuid.uuid4()) memberc_block = { 'member': { 'protocol_port': 8080, 'pool_id': pool_ret_block['pool']['id'], 'address': '1.2.3.6' } } memberc_ret_block = copy.deepcopy(memberc_block) memberc_ret_block['member']['id'] = str(uuid.uuid4()) class id_type(object): def __init__(self, id, name): self.id = id self.name = name instances = {} neutronclient.Client.create_health_monitor(mon_block).\ AndReturn(mon_ret_block) neutronclient.Client.create_pool(pool_block).\ AndReturn(pool_ret_block) neutronclient.Client.associate_health_monitor( pool_ret_block['pool']['id'], {'health_monitor': { 'id': mon_ret_block['health_monitor']['id'] }}).AndReturn(None) neutronclient.Client.create_vip(vip_block).\ AndReturn(vip_ret_block) neutronclient.Client.show_pool(pool_ret_block['pool']['id']).\ AndReturn(pool_ret_block) neutronclient.Client.show_vip(vip_ret_block['vip']['id']).\ AndReturn(vip_ret_block) parser.Stack.validate() instid = str(uuid.uuid4()) instance.Instance.handle_create().AndReturn(instid) instance.Instance.check_create_complete(mox.IgnoreArg())\ .AndReturn(False) instance.Instance.check_create_complete(mox.IgnoreArg())\ .AndReturn(True) glance.ImageConstraint.validate( mox.IgnoreArg(), mox.IgnoreArg()).MultipleTimes().AndReturn(True) nova.NovaClientPlugin.server_to_ipaddress( mox.IgnoreArg()).AndReturn('1.2.3.4') neutronclient.Client.create_member(membera_block).\ AndReturn(membera_ret_block) instances[instid] = membera_ret_block['member']['id'] # Start of update parser.Stack.validate() instid = str(uuid.uuid4()) instance.Instance.handle_create().AndReturn(instid) instance.Instance.check_create_complete(mox.IgnoreArg())\ .AndReturn(False) instance.Instance.check_create_complete(mox.IgnoreArg())\ .AndReturn(True) instances[instid] = memberb_ret_block['member']['id'] instid = str(uuid.uuid4()) instance.Instance.handle_create().AndReturn(instid) instance.Instance.check_create_complete(mox.IgnoreArg())\ .AndReturn(False) instance.Instance.check_create_complete(mox.IgnoreArg())\ .AndReturn(True) nova.NovaClientPlugin.server_to_ipaddress( mox.IgnoreArg()).AndReturn('1.2.3.5') neutronclient.Client.create_member(memberb_block).\ AndReturn(memberb_ret_block) nova.NovaClientPlugin.server_to_ipaddress( mox.IgnoreArg()).AndReturn('1.2.3.6') neutronclient.Client.create_member(memberc_block).\ AndReturn(memberc_ret_block) self.m.ReplayAll() # Start of stack create env = {'parameters': self.params} tmpl = template_format.parse(as_template) stack = parser.Stack(self.ctx, 'update_test_stack', template.Template(tmpl), environment.Environment(env)) stack.store() stack.create() self.assertEqual((parser.Stack.CREATE, parser.Stack.COMPLETE), stack.state) # Start of stack update stack2 = parser.Stack.load(self.ctx, stack_id=stack.id) tmpl2 = copy.deepcopy(tmpl) tmpl2['Resources']['SvrGrp']['Properties']['DesiredCapacity'] = '3' update_stack = parser.Stack(self.ctx, 'update_test_stack', template.Template(tmpl2), environment.Environment(env)) stack2.update(update_stack) self.assertEqual((parser.Stack.UPDATE, parser.Stack.COMPLETE), stack2.state) members = db_api.resource_data_get_all(stack['ElasticLoadBalancer']) self.assertEqual(3, len(members.keys())) self.m.VerifyAll()
34.461756
78
0.563337
4a266c62f676ba2c74b510484819887db52cc18c
1,275
py
Python
code/ch_1-DATA_STRUCTURES_AND_ALGORITHMS/16-filtering_sequence_elements/main.py
ordinary-developer/book_python_cookbook_3_ed_d_beazley_b_k_jones
677c2bcd12c2223e731908114ae081bcbc32077d
[ "MIT" ]
1
2017-05-04T08:23:46.000Z
2017-05-04T08:23:46.000Z
code/ch_1-DATA_STRUCTURES_AND_ALGORITHMS/16-filtering_sequence_elements/main.py
ordinary-developer/book_python_cookbook_3_ed_d_beazley_b_k_jones
677c2bcd12c2223e731908114ae081bcbc32077d
[ "MIT" ]
null
null
null
code/ch_1-DATA_STRUCTURES_AND_ALGORITHMS/16-filtering_sequence_elements/main.py
ordinary-developer/book_python_cookbook_3_ed_d_beazley_b_k_jones
677c2bcd12c2223e731908114ae081bcbc32077d
[ "MIT" ]
null
null
null
def example_1(): mylist = [1, 4, -5, 10, -7, 2, 3, -1] print([n for n in mylist if n > 0]) print([n for n in mylist if n < 0]) def example_2(): mylist = [1, 4, -5, 10, -7, 2, 3, -1] positive_numbers = (n for n in mylist if n > 0) for number in positive_numbers: print(number) def example_3(): values = ['1', '2', '-3', '4', 'N/A', '5'] def is_int(value): try: x = int(value) return True except ValueError: return False print(list(filter(is_int, values))) def example_4(): mylist = [1, 4, -5, 10, -7, 2, 3, -1] clip_neg = [n if n > 0 else 0 for n in mylist] clip_pos = [n if n < 0 else 0 for n in mylist] print(clip_neg) print(clip_pos) def example_5(): addresses = [ '5412 N CLARK', '5148 N CLARK', '5800 E 58TH', '2122 N CLARK', '5645 N RAVENSWOOD', '1060 W ADDISON', '4801 N BROADWAY', '1039 W GRANVILLE' ] counts = [0, 3, 10, 4, 1, 7, 6, 1] from itertools import compress more5 = [n > 5 for n in counts] print(list(compress(addresses, more5))) if __name__ == '__main__': example_1() example_2() example_3() example_4() example_5()
20.238095
51
0.522353
4a266dc46c2aee6f2a4c5e07b7a52309177bdfeb
2,082
py
Python
mars/tensor/expressions/arithmetic/rint.py
ChenQuan/mars
46fc9747e99210cebfabfc2d85bcc8272440d1a3
[ "Apache-2.0" ]
null
null
null
mars/tensor/expressions/arithmetic/rint.py
ChenQuan/mars
46fc9747e99210cebfabfc2d85bcc8272440d1a3
[ "Apache-2.0" ]
null
null
null
mars/tensor/expressions/arithmetic/rint.py
ChenQuan/mars
46fc9747e99210cebfabfc2d85bcc8272440d1a3
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2018 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from .... import operands from ..utils import infer_dtype from .core import TensorUnaryOp from .utils import arithmetic_operand @arithmetic_operand(sparse_mode='unary') class TensorRint(operands.Rint, TensorUnaryOp): pass @infer_dtype(np.rint) def rint(x, out=None, where=None, **kwargs): """ Round elements of the tensor to the nearest integer. Parameters ---------- x : array_like Input tensor. out : Tensor, None, or tuple of Tensor and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated tensor is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs Returns ------- out : Tensor or scalar Output array is same shape and type as `x`. See Also -------- ceil, floor, trunc Examples -------- >>> import mars.tensor as mt >>> a = mt.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> mt.rint(a).execute() array([-2., -2., -0., 0., 2., 2., 2.]) """ op = TensorRint(**kwargs) return op(x, out=out, where=where)
30.617647
79
0.664745
4a266e5b985ff54396048cf5cfc3a53340147958
598
py
Python
apps/02-guess-number-app/you_try/program.py
alexjj/python-jumpstart-course-demos
962bd8cbe412a385158fc74fb7529825c2b01471
[ "MIT" ]
null
null
null
apps/02-guess-number-app/you_try/program.py
alexjj/python-jumpstart-course-demos
962bd8cbe412a385158fc74fb7529825c2b01471
[ "MIT" ]
null
null
null
apps/02-guess-number-app/you_try/program.py
alexjj/python-jumpstart-course-demos
962bd8cbe412a385158fc74fb7529825c2b01471
[ "MIT" ]
null
null
null
import random print('-' * 32) print(' Guess a number game') print('-' * 32) print() the_number = random.randint(0, 100) guess: int = -1 name = input('What is your name? ') while guess != the_number: guess_text = input('Guess a number between 0 and 100: ') guess = int(guess_text) if guess < the_number: print('Sorry {1}, Your guess of {0} is too low'.format(guess, name)) elif guess > the_number: print('Sorry {1}, Your guess of {0} is too high'.format(guess, name)) else: print('Well done {1}! Your guess of {0} is right!'.format(guess, name))
24.916667
79
0.620401
4a266f9e74db7e4bff4939db449806378bbd77de
4,687
py
Python
basic_samples/SDS/Python/SDSPy/Python3/Dataview.py
hanhossain/OCS-Samples
6f0f7878e6d9bccc32b6d663446678e070859d14
[ "Apache-2.0" ]
null
null
null
basic_samples/SDS/Python/SDSPy/Python3/Dataview.py
hanhossain/OCS-Samples
6f0f7878e6d9bccc32b6d663446678e070859d14
[ "Apache-2.0" ]
null
null
null
basic_samples/SDS/Python/SDSPy/Python3/Dataview.py
hanhossain/OCS-Samples
6f0f7878e6d9bccc32b6d663446678e070859d14
[ "Apache-2.0" ]
null
null
null
# Dataview.py # # Copyright (C) 2018 OSIsoft, LLC. All rights reserved. # # THIS SOFTWARE CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF # OSIsoft, LLC. USE, DISCLOSURE, OR REPRODUCTION IS PROHIBITED WITHOUT # THE PRIOR EXPRESS WRITTEN PERMISSION OF OSIsoft, LLC. # # RESTRICTED RIGHTS LEGEND # Use, duplication, or disclosure by the Government is subject to restrictions # as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and # Computer Software clause at DFARS 252.227.7013 # # OSIsoft, LLC # 1600 Alvarado St, San Leandro, CA 94577 import json from DataviewQuery import DataviewQuery from DataviewMapping import DataviewMapping from DataviewIndexConfig import DataviewIndexConfig from DataviewGroupRule import DataviewGroupRule class Dataview(object): """Sds dataview definition""" @property def Id(self): return self.__id @Id.setter def Id(self, id): self.__id = id @property def Name(self): return self.__name @Name.setter def Name(self, name): self.__name = name @property def Description(self): return self.__description @Description.setter def Description(self, description): self.__description = description @property def Queries(self): return self.__queries @Queries.setter def Queries(self, queries): self.__queries = queries @property def Mappings(self): return self.__mappings @Mappings.setter def Mappings(self, mappings): self.__mappings = mappings @property def IndexConfig(self): return self.__indexConfig @IndexConfig.setter def IndexConfig(self, indexConfig): self.__indexConfig = indexConfig @property def IndexDataType(self): return self.__indexDataType @IndexDataType.setter def IndexDataType(self, indexDataType): self.__indexDataType = indexDataType @property def GroupRules(self): return self.__groupRules @GroupRules.setter def GroupRules(self, groupRules): self.__groupRules = groupRules def toJson(self): return json.dumps(self.toDictionary()) def toDictionary(self): # required properties dictionary = { 'Id' : self.Id} dictionary['Queries'] = [] for value in self.Queries: dictionary['Queries'].append(value.toDictionary()) # optional properties if hasattr(self, 'Name'): dictionary['Name'] = self.Name if hasattr(self, 'Description'): dictionary['Description'] = self.Description if hasattr(self, 'Mappings'): dictionary['Mappings'] = self.Mappings.toDictionary() if hasattr(self, 'IndexConfig'): dictionary['IndexConfig'] = self.IndexConfig.toDictionary() if hasattr(self, 'IndexDataType'): dictionary['IndexDataType'] = self.IndexDataType if hasattr(self, 'GroupRules'): dictionary['GroupRules'] = [] for value in self.GroupRules: dictionary['GroupRules'].append(value.toDictionary()) return dictionary @staticmethod def fromJson(jsonObj): return Dataview.fromDictionary(jsonObj) @staticmethod def fromDictionary(content): dataview = Dataview() if len(content) == 0: return dataview if 'Id' in content: dataview.Id = content['Id'] if 'Name' in content: dataview.Name = content['Name'] if 'Description' in content: dataview.Description = content['Description'] if 'Queries' in content: queries = content['Queries'] if queries is not None and len(queries) > 0: dataview.Queries = [] for value in queries: dataview.Queries.append(DataviewQuery.fromDictionary(value)) if 'Mappings' in content: dataview.Mappings = DataviewMapping.fromDictionary(content['Mappings']) if 'IndexConfig' in content: dataview.IndexConfig = DataviewIndexConfig.fromDictionary(content['IndexConfig']) if 'IndexDataType' in content: dataview.IndexDataType = content['IndexDataType'] if 'GroupRules' in content: groupRules = content['GroupRules'] if groupRules is not None and len(groupRules) > 0: dataview.GroupRules = [] for value in groupRules: dataview.GroupRules.append(DataviewGroupRule.fromDictionary(value)) return dataview
28.406061
93
0.632814
4a26708b266dcd2768cef363b9ab044bf3cc0cb4
9,174
py
Python
sdk/python/pulumi_azure/kusto/database_principal.py
davidobrien1985/pulumi-azure
811beeea473bd798d77354521266a87a2fac5888
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure/kusto/database_principal.py
davidobrien1985/pulumi-azure
811beeea473bd798d77354521266a87a2fac5888
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure/kusto/database_principal.py
davidobrien1985/pulumi-azure
811beeea473bd798d77354521266a87a2fac5888
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class DatabasePrincipal(pulumi.CustomResource): app_id: pulumi.Output[str] """ The app id, if not empty, of the principal. """ client_id: pulumi.Output[str] """ The Client ID that owns the specified `object_id`. Changing this forces a new resource to be created. """ cluster_name: pulumi.Output[str] """ Specifies the name of the Kusto Cluster this database principal will be added to. Changing this forces a new resource to be created. """ database_name: pulumi.Output[str] """ Specified the name of the Kusto Database this principal will be added to. Changing this forces a new resource to be created. """ email: pulumi.Output[str] """ The email, if not empty, of the principal. """ fully_qualified_name: pulumi.Output[str] """ The fully qualified name of the principal. """ name: pulumi.Output[str] """ The name of the Kusto Database Principal. """ object_id: pulumi.Output[str] """ An Object ID of a User, Group, or App. Changing this forces a new resource to be created. """ resource_group_name: pulumi.Output[str] """ Specifies the Resource Group where the Kusto Database Principal should exist. Changing this forces a new resource to be created. """ role: pulumi.Output[str] """ Specifies the permissions the Principal will have. Valid values include `Admin`, `Ingestor`, `Monitor`, `UnrestrictedViewers`, `User`, `Viewer`. Changing this forces a new resource to be created. """ type: pulumi.Output[str] """ Specifies the type of object the principal is. Valid values include `App`, `Group`, `User`. Changing this forces a new resource to be created. """ def __init__(__self__, resource_name, opts=None, client_id=None, cluster_name=None, database_name=None, object_id=None, resource_group_name=None, role=None, type=None, __props__=None, __name__=None, __opts__=None): """ Manages a Kusto (also known as Azure Data Explorer) Database Principal :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] client_id: The Client ID that owns the specified `object_id`. Changing this forces a new resource to be created. :param pulumi.Input[str] cluster_name: Specifies the name of the Kusto Cluster this database principal will be added to. Changing this forces a new resource to be created. :param pulumi.Input[str] database_name: Specified the name of the Kusto Database this principal will be added to. Changing this forces a new resource to be created. :param pulumi.Input[str] object_id: An Object ID of a User, Group, or App. Changing this forces a new resource to be created. :param pulumi.Input[str] resource_group_name: Specifies the Resource Group where the Kusto Database Principal should exist. Changing this forces a new resource to be created. :param pulumi.Input[str] role: Specifies the permissions the Principal will have. Valid values include `Admin`, `Ingestor`, `Monitor`, `UnrestrictedViewers`, `User`, `Viewer`. Changing this forces a new resource to be created. :param pulumi.Input[str] type: Specifies the type of object the principal is. Valid values include `App`, `Group`, `User`. Changing this forces a new resource to be created. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if client_id is None: raise TypeError("Missing required property 'client_id'") __props__['client_id'] = client_id if cluster_name is None: raise TypeError("Missing required property 'cluster_name'") __props__['cluster_name'] = cluster_name if database_name is None: raise TypeError("Missing required property 'database_name'") __props__['database_name'] = database_name if object_id is None: raise TypeError("Missing required property 'object_id'") __props__['object_id'] = object_id if resource_group_name is None: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name if role is None: raise TypeError("Missing required property 'role'") __props__['role'] = role if type is None: raise TypeError("Missing required property 'type'") __props__['type'] = type __props__['app_id'] = None __props__['email'] = None __props__['fully_qualified_name'] = None __props__['name'] = None super(DatabasePrincipal, __self__).__init__( 'azure:kusto/databasePrincipal:DatabasePrincipal', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, app_id=None, client_id=None, cluster_name=None, database_name=None, email=None, fully_qualified_name=None, name=None, object_id=None, resource_group_name=None, role=None, type=None): """ Get an existing DatabasePrincipal resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] app_id: The app id, if not empty, of the principal. :param pulumi.Input[str] client_id: The Client ID that owns the specified `object_id`. Changing this forces a new resource to be created. :param pulumi.Input[str] cluster_name: Specifies the name of the Kusto Cluster this database principal will be added to. Changing this forces a new resource to be created. :param pulumi.Input[str] database_name: Specified the name of the Kusto Database this principal will be added to. Changing this forces a new resource to be created. :param pulumi.Input[str] email: The email, if not empty, of the principal. :param pulumi.Input[str] fully_qualified_name: The fully qualified name of the principal. :param pulumi.Input[str] name: The name of the Kusto Database Principal. :param pulumi.Input[str] object_id: An Object ID of a User, Group, or App. Changing this forces a new resource to be created. :param pulumi.Input[str] resource_group_name: Specifies the Resource Group where the Kusto Database Principal should exist. Changing this forces a new resource to be created. :param pulumi.Input[str] role: Specifies the permissions the Principal will have. Valid values include `Admin`, `Ingestor`, `Monitor`, `UnrestrictedViewers`, `User`, `Viewer`. Changing this forces a new resource to be created. :param pulumi.Input[str] type: Specifies the type of object the principal is. Valid values include `App`, `Group`, `User`. Changing this forces a new resource to be created. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["app_id"] = app_id __props__["client_id"] = client_id __props__["cluster_name"] = cluster_name __props__["database_name"] = database_name __props__["email"] = email __props__["fully_qualified_name"] = fully_qualified_name __props__["name"] = name __props__["object_id"] = object_id __props__["resource_group_name"] = resource_group_name __props__["role"] = role __props__["type"] = type return DatabasePrincipal(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
55.939024
234
0.686178
4a2670cc49b03f95d2155dc6e7e0b5d4ba67dad7
4,925
py
Python
models/seq2seq-pytorch/run.py
heyLinsir/cotk
95f2b671779adfe8fb46e82b18e368867a5899bd
[ "Apache-2.0" ]
null
null
null
models/seq2seq-pytorch/run.py
heyLinsir/cotk
95f2b671779adfe8fb46e82b18e368867a5899bd
[ "Apache-2.0" ]
null
null
null
models/seq2seq-pytorch/run.py
heyLinsir/cotk
95f2b671779adfe8fb46e82b18e368867a5899bd
[ "Apache-2.0" ]
null
null
null
# coding:utf-8 def run(*argv): import argparse import time from utils import Storage parser = argparse.ArgumentParser(description='A seq2seq model with GRU encoder and decoder. Attention, beamsearch,\ dropout and batchnorm is supported.') args = Storage() parser.add_argument('--name', type=str, default=None, help='The name of your model, used for tensorboard, etc. Default: runXXXXXX_XXXXXX (initialized by current time)') parser.add_argument('--restore', type=str, default=None, help='Checkpoints name to load. \ "NAME_last" for the last checkpoint of model named NAME. "NAME_best" means the best checkpoint. \ You can also use "last" and "best", defaultly use last model you run. \ Attention: "NAME_last" and "NAME_best" are not guaranteed to work when 2 models with same name run in the same time. \ "last" and "best" are not guaranteed to work when 2 models run in the same time.\ Default: None (don\'t load anything)') parser.add_argument('--mode', type=str, default="train", help='"train" or "test". Default: train') parser.add_argument('--eh_size', type=int, default=200, help='Size of encoder GRU') parser.add_argument('--dh_size', type=int, default=200, help='Size of decoder GRU') parser.add_argument('--droprate', type=float, default=0, help='The probability to be zerod in dropout. 0 indicates for don\'t use dropout') parser.add_argument('--batchnorm', action='store_true', help='Use bathnorm') parser.add_argument('--decode_mode', type=str, choices=['max', 'sample', 'gumbel', 'samplek', 'beam'], default='beam', help='The decode strategy when freerun. Choices: max, sample, gumbel(=sample), \ samplek(sample from topk), beam(beamsearch). Default: beam') parser.add_argument('--top_k', type=int, default=10, help='The top_k when decode_mode == "beam" or "samplek"') parser.add_argument('--length_penalty', type=float, default=0.7, help='The beamsearch penalty for short sentences. The penalty will get larger when this becomes smaller.') parser.add_argument('--dataset', type=str, default='OpenSubtitles', help='Dataloader class. Default: OpenSubtitles') parser.add_argument('--datapath', type=str, default='OpenSubtitles', help='Directory for data set. Default: OpenSubtitles') parser.add_argument('--epoch', type=int, default=100, help="Epoch for trainning. Default: 100") parser.add_argument('--wvclass', type=str, default='Glove', help="Wordvector class, none for not using pretrained wordvec. Default: Glove") parser.add_argument('--wvpath', type=str, default="resources://Glove300d", help="Directory for pretrained wordvector. Default: resources://Glove300d") parser.add_argument('--out_dir', type=str, default="./output", help='Output directory for test output. Default: ./output') parser.add_argument('--log_dir', type=str, default="./tensorboard", help='Log directory for tensorboard. Default: ./tensorboard') parser.add_argument('--model_dir', type=str, default="./model", help='Checkpoints directory for model. Default: ./model') parser.add_argument('--cache_dir', type=str, default="./cache", help='Checkpoints directory for cache. Default: ./cache') parser.add_argument('--cpu', action="store_true", help='Use cpu.') parser.add_argument('--debug', action='store_true', help='Enter debug mode (using ptvsd).') parser.add_argument('--cache', action='store_true', help='Use cache for speeding up load data and wordvec. (It may cause problems when you switch dataset.)') cargs = parser.parse_args(argv) # Editing following arguments to bypass command line. args.name = cargs.name or time.strftime("run%Y%m%d_%H%M%S", time.localtime()) args.restore = cargs.restore args.mode = cargs.mode args.dataset = cargs.dataset args.datapath = cargs.datapath args.epochs = cargs.epoch args.wvclass = cargs.wvclass args.wvpath = cargs.wvpath args.out_dir = cargs.out_dir args.log_dir = cargs.log_dir args.model_dir = cargs.model_dir args.cache_dir = cargs.cache_dir args.debug = cargs.debug args.cache = cargs.cache args.cuda = not cargs.cpu # The following arguments are not controlled by command line. args.restore_optimizer = True load_exclude_set = [] restoreCallback = None args.batch_per_epoch = 1500 args.embedding_size = 300 args.eh_size = cargs.eh_size args.dh_size = cargs.dh_size args.decode_mode = cargs.decode_mode args.top_k = cargs.top_k args.length_penalty = cargs.length_penalty args.droprate = cargs.droprate args.batchnorm = cargs.batchnorm args.lr = 1e-3 args.batch_size = 64 args.batch_num_per_gradient = 4 args.grad_clip = 5 args.show_sample = [0] # show which batch when evaluating at tensorboard args.max_sent_length = 50 args.checkpoint_steps = 20 args.checkpoint_max_to_keep = 5 import random random.seed(0) from main import main main(args, load_exclude_set, restoreCallback) if __name__ == '__main__': import sys run(*sys.argv[1:])
40.368852
121
0.73665
4a2670f2929357b84c72362e5a993a84e853da18
2,304
py
Python
config/urls.py
Michaelwwgo/V2X_Project
d26f476329dd7f6083e9275e01e2748d38918afc
[ "MIT" ]
1
2021-02-03T08:15:59.000Z
2021-02-03T08:15:59.000Z
config/urls.py
Michaelwwgo/V2X_Project
d26f476329dd7f6083e9275e01e2748d38918afc
[ "MIT" ]
null
null
null
config/urls.py
Michaelwwgo/V2X_Project
d26f476329dd7f6083e9275e01e2748d38918afc
[ "MIT" ]
null
null
null
from django.conf import settings from django.urls import include, path from django.conf.urls.static import static from django.contrib import admin from django.views.generic import TemplateView from django.views import defaults as default_views from rest_framework_jwt.views import obtain_jwt_token urlpatterns = [ path("", TemplateView.as_view(template_name="pages/home.html"), name="home"), path( "about/", TemplateView.as_view(template_name="pages/about.html"), name="about", ), # Django Admin, use {% url 'admin:index' %} path(settings.ADMIN_URL, admin.site.urls), # User management path( "rest-auth/", include('rest_auth.urls') ), path( "rest-auth/registration/", include('rest_auth.registration.urls') ), path( "users/", include("v2x_solution.users.urls", namespace="users"), ), path("accounts/", include("allauth.urls")), # Your stuff: custom urls includes go here path( "roads/", include("v2x_solution.road.urls", namespace="road"), ), path( "events/", include("v2x_solution.event.urls", namespace="event"), ), path( "cars/", include("v2x_solution.car.urls", namespace="car"), ), path( "boards/", include("v2x_solution.board.urls", namespace="board"), ) ] + static( settings.MEDIA_URL, document_root=settings.MEDIA_ROOT ) if settings.DEBUG: # This allows the error pages to be debugged during development, just visit # these url in browser to see how these error pages look like. urlpatterns += [ path( "400/", default_views.bad_request, kwargs={"exception": Exception("Bad Request!")}, ), path( "403/", default_views.permission_denied, kwargs={"exception": Exception("Permission Denied")}, ), path( "404/", default_views.page_not_found, kwargs={"exception": Exception("Page not Found")}, ), path("500/", default_views.server_error), ] if "debug_toolbar" in settings.INSTALLED_APPS: import debug_toolbar urlpatterns = [path("__debug__/", include(debug_toolbar.urls))] + urlpatterns
30.315789
85
0.613715
4a26715dfd6c73c52f1d9e51f3c67b812864b3d1
1,796
py
Python
JuckPae.py
AINukeHere/SCBot-DiscordBot
821997f19dd0affc3a65aa56f23696496803dd13
[ "MIT" ]
null
null
null
JuckPae.py
AINukeHere/SCBot-DiscordBot
821997f19dd0affc3a65aa56f23696496803dd13
[ "MIT" ]
null
null
null
JuckPae.py
AINukeHere/SCBot-DiscordBot
821997f19dd0affc3a65aa56f23696496803dd13
[ "MIT" ]
null
null
null
CommentDict={ '기사단장':[], '버서커':[], '아크메이지':[], '배틀메이지':[], '스나이퍼':[], '트랩퍼':[], '클레릭':[], '프리스트':[], '레인저':[], '런처':[], '닌자':[], '어쌔신':[], '발로그':[], '디아블로':[], '메카니즘마스터':[], '폭발물제조사':[], '소울브레이커':[], '대지도자':[], '버프빌더':[], '모스트빌더':[], '네크로맨서':[], '신앙자':[], '검신':[], '자객':[], '크루세이더':[], '샤이닝엠페러스':[], '갓핸드':[], '파일럿':[], '광기의살육자':[], '의문의사나이':[], } class Comment(): def __init__(self, author, content): self.author = author self.content = content def getCharNames(): res = '' for charname in list(CommentDict.keys()): res += charname+'\n' return res def isCharacter(name): return name in CommentDict def addComment(name,comment): CommentDict[name].append(comment) print('추가됨') saveComment(name) def getComments(name): res = '' for comment in CommentDict[name]: res += f'[{comment.author}] : {comment.content}\n' return res def saveComment(name): with open('TeampleRPG Data\\'+name+'.dat','wt',encoding="utf-8") as f: for comment in CommentDict[name]: f.writelines(comment.author + '\n') f.writelines(comment.content + '\n') def loadAllComment(): for key in list(CommentDict.keys()): loadComment(key) def loadComment(name): try: with open('TeampleRPG Data\\'+name+'.dat','rt',encoding="utf-8") as f: data = f.readlines() print(data,data.__len__()) i = 0 while i < data.__len__(): addComment(name, Comment(data[i].strip(),data[i+1].strip())) i+=2 except FileNotFoundError: pass except: import traceback traceback.print_exc()
22.45
78
0.508352
4a2672176ed1084bb34cac9a25db1646bc262584
3,534
py
Python
find_best_sampled_weight_rec.py
gugarosa/synthetic_rbms
a86c323e165a893810ac5bf79213f603ed86a8b3
[ "MIT" ]
null
null
null
find_best_sampled_weight_rec.py
gugarosa/synthetic_rbms
a86c323e165a893810ac5bf79213f603ed86a8b3
[ "MIT" ]
null
null
null
find_best_sampled_weight_rec.py
gugarosa/synthetic_rbms
a86c323e165a893810ac5bf79213f603ed86a8b3
[ "MIT" ]
null
null
null
import argparse import numpy as np import torch import utils.stream as s def get_arguments(): """Gets arguments from the command line. Returns: A parser with the input arguments. """ # Creates the ArgumentParser parser = argparse.ArgumentParser( usage='Finds the best sampled weight by reconstructing an RBM over a validation set with original and sampled weights.') # Adds a dataset argument with pre-defined choices parser.add_argument('dataset', help='Dataset identifier', choices=[ 'mnist', 'fmnist', 'kmnist']) # Adds an identifier argument to the desired pre-trained model path parser.add_argument( 'input_model', help='Input name for the pre-trained RBM', type=str) # Adds an identifier argument to the desired weights file parser.add_argument( 'input_weight', help='Input name for the weight file', type=str) # Adds an identifier argument to the desired sampled weights file parser.add_argument( 'input_sampled', help='Input name for the sampled weight file', type=str) return parser.parse_args() if __name__ == '__main__': # Gathers the input arguments args = get_arguments() # Gathering variables from arguments dataset = args.dataset input_model = args.input_model input_weight = args.input_weight input_sampled = args.input_sampled # Loads the validation data _, val, _ = s.load_dataset(name=dataset) # Loads the pre-trained model model = torch.load(f'models/{input_model}.pth') # Loading original and sampled weights W = np.load(f'weights/{input_weight}.npy') W_sampled = np.load(f'weights/{input_sampled}.npy') # Reshaping weights to correct dimension W = np.reshape(W, [model.n_visible, model.n_hidden]) W_sampled = np.reshape(W_sampled, [W_sampled.shape[0], model.n_visible, model.n_hidden]) # Resetting biases for fair comparison model.a = torch.nn.Parameter(torch.zeros(model.n_visible)) model.b = torch.nn.Parameter(torch.zeros(model.n_hidden)) # Applying original weights model.W = torch.nn.Parameter(torch.from_numpy(W)) # Checking model device type if model.device == 'cuda': # Applying its parameters as cuda again model = model.cuda() # Reconstructs the original RBM original_mse, _ = model.reconstruct(val) # Defining best sampled MSE as a high value best_sampled_mse = 9999999 # Iterating over all possible epochs for e in range(W_sampled.shape[0]): print(f'Weights from GAN epoch {e+1}/{W_sampled.shape[0]}') # Resetting biases for fair comparison model.a = torch.nn.Parameter(torch.zeros(model.n_visible)) model.b = torch.nn.Parameter(torch.zeros(model.n_hidden)) # Applying sampled weights model.W = torch.nn.Parameter(torch.from_numpy(W_sampled[e])) # Checking model device type if model.device == 'cuda': # Applying its parameters as cuda again model = model.cuda() # Reconstructs an RBM sampled_mse, _ = model.reconstruct(val) # Checking if current sampled MSE was better than previous one if sampled_mse < best_sampled_mse: # Saving best MSE and best epoch values best_sampled_mse, best_epoch = sampled_mse, e print(f'Validation finished and best RBM found.') print(f'Original MSE: {original_mse} | Best Sampled MSE: {best_sampled_mse} | Epoch: {best_epoch+1}')
32.722222
128
0.680249
4a26725c918112afe7a3713fbc27417d2030184f
5,331
py
Python
core/match.py
yycho0108/monovo
9f2b5cf15f97e467c8e6e94ee16bb785ed6c7edd
[ "MIT" ]
null
null
null
core/match.py
yycho0108/monovo
9f2b5cf15f97e467c8e6e94ee16bb785ed6c7edd
[ "MIT" ]
null
null
null
core/match.py
yycho0108/monovo
9f2b5cf15f97e467c8e6e94ee16bb785ed6c7edd
[ "MIT" ]
null
null
null
import cv2 import numpy as np from utils import vmath as M import viz as V import time class Matcher(object): PRESET_HARD=dict( lowe=0.75, maxd=32.0, cross=True, fold=True ) PRESET_SOFT=dict( lowe=1.0, maxd=128.0, cross=False, fold=True ) def __init__(self, des): # define un-exported enums from OpenCV FLANN_INDEX_LINEAR = 0 FLANN_INDEX_KDTREE = 1 FLANN_INDEX_KMEANS = 2 FLANN_INDEX_COMPOSITE = 3 FLANN_INDEX_KDTREE_SINGLE = 4 FLANN_INDEX_HIERARCHICAL = 5 FLANN_INDEX_LSH = 6 FLANN_INDEX_SAVED = 254 FLANN_INDEX_AUTOTUNED = 255 # TODO : figure out what to set for # search_params search_params = dict(checks=50) # or pass empty dictionary # build flann matcher self.des_t_ = (np.uint8 if des.descriptorType() == cv2.CV_8U else np.float32) #if isinstance(des, cv2.ORB) or isinstance(des, cv2.AKAZE): if self.des_t_ == np.uint8: # probably hamming # ~HAMMING index_params= dict(algorithm = FLANN_INDEX_LSH, table_number = 12,#6, # 12 key_size = 20,#12, # 20 multi_probe_level = 2) #2 flann = cv2.FlannBasedMatcher(index_params,search_params) self.match_ = flann #bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=False) #self.match_ = bf else: # Euclidean index_params = dict( algorithm = FLANN_INDEX_KDTREE, trees = 5) flann = cv2.FlannBasedMatcher(index_params,search_params) self.match_ = flann def match(self, a, b): """ search k matches in b for a """ return self.match_.knnMatch( self.des_t_(a), self.des_t_(b), k=2) def filter(self, match, lowe, maxd): """ Apply lowe + distance filter. # TODO : set threshold for lowe's filter # TODO : set reasonable maxd for GFTT, for instance. """ good = [] for e in match: if not len(e) == 2: continue (m, n) = e if not (m.distance <= lowe * n.distance): continue #print m.distance if not (m.distance <= maxd): continue # passed all checks good.append(m) return good def __call__(self, des1, des2, lowe=0.75, maxd=64.0, cross=True, fold=True ): # soft fail in case des1/des2 is empty if len(des1) <= 0 or len(des2) <= 0: return np.int32([]), np.int32([]) i1, i2 = None, None if cross: # check bidirectional i1_ab, i2_ab = self(des1, des2, lowe, maxd, cross=False) if fold: # opt1 : apply match on pre-filtered data ( faster ) i2_ba, i1_ba = self(des2[i2_ab], des1[i1_ab], lowe, maxd, cross=False) i1, i2 = i1_ab[i1_ba], i2_ab[i2_ba] else: # opt2 : apply the same operation reversed ( slower, maybe more robust ?? ) i2_ba, i1_ba = self(des2, des1, lowe, maxd, cross=False) m1 = np.stack([i1_ab, i2_ab], axis=-1) m2 = np.stack([i1_ba, i2_ba], axis=-1) m = M.intersect2d(m1, m2) i1, i2 = m.T else: # check unidirectional (des1->des2) if len(des1) < 2: # insufficient # of descriptors return np.int32([]), np.int32([]) match = self.match(des1, des2) match = self.filter(match, lowe, maxd) # extract indices i1, i2 = np.int32([ (m.queryIdx, m.trainIdx) for m in match ]).reshape(-1,2).T return i1, i2 def main(): np.random.seed( 0 ) orb = cv2.ORB_create( nfeatures=1024, scaleFactor=1.2, nlevels=8, # NOTE : scoretype here influences response-based filters. scoreType=cv2.ORB_FAST_SCORE, #scoreType=cv2.ORB_HARRIS_SCORE, ) match = Matcher(orb) img1 = np.random.randint(0, 255, size=(6,8,3), dtype=np.uint8) img1 = cv2.resize(img1, (640,480), interpolation=cv2.INTER_NEAREST) #img2 = np.random.randint(0, 255, size=(480,640,3), dtype=np.uint8) roll_i = np.random.randint( 64 ) roll_j = np.random.randint( 64 ) img2 = np.roll(img1, roll_i, axis=0) img2 = np.roll(img2, roll_j, axis=1) kpt1, des1 = orb.detectAndCompute(img1, None) kpt2, des2 = orb.detectAndCompute(img2, None) pt1 = cv2.KeyPoint.convert(kpt1) pt2 = cv2.KeyPoint.convert(kpt2) i1, i2 = match(des1, des2) mim = V.draw_matches(img1, img2, pt1[i1], pt2[i2]) d = (pt1[i1] - pt2[i2]) + (roll_j, roll_i) tol = 5.0 msk = (np.linalg.norm(d, axis=-1) < tol) print msk.sum(), msk.size cv2.imshow('win', mim) cv2.waitKey(0) if __name__ == "__main__": main()
30.994186
91
0.516789
4a26738fff337115f0b116b5960b1cff27985620
6,920
py
Python
tfx/orchestration/beam/beam_dag_runner.py
jkim1014/tfx-async
efb007cc8fb884f600b3f7ad2b43268058015ce7
[ "Apache-2.0" ]
null
null
null
tfx/orchestration/beam/beam_dag_runner.py
jkim1014/tfx-async
efb007cc8fb884f600b3f7ad2b43268058015ce7
[ "Apache-2.0" ]
null
null
null
tfx/orchestration/beam/beam_dag_runner.py
jkim1014/tfx-async
efb007cc8fb884f600b3f7ad2b43268058015ce7
[ "Apache-2.0" ]
null
null
null
# Lint as: python2, python3 # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Definition of Beam TFX runner.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import datetime import os from typing import Any, Iterable, List, Optional, Text, Type import absl import apache_beam as beam from tfx.components.base import base_node from tfx.orchestration import data_types from tfx.orchestration import metadata from tfx.orchestration import pipeline from tfx.orchestration import tfx_runner from tfx.orchestration.config import base_component_config from tfx.orchestration.config import config_utils from tfx.orchestration.config import pipeline_config from tfx.orchestration.launcher import base_component_launcher from tfx.orchestration.launcher import docker_component_launcher from tfx.orchestration.launcher import looped_component_launcher from tfx.orchestration.launcher import base_component_launcher_2 from tfx.utils import telemetry_utils # TODO(jyzhao): confirm it's re-executable, add test case. @beam.typehints.with_input_types(Any) @beam.typehints.with_output_types(Any) class _ComponentAsDoFn(beam.DoFn): """Wrap component as beam DoFn.""" def __init__(self, component: base_node.BaseNode, component_launcher_class: Type[ base_component_launcher_2.BaseComponentLauncher2], component_config: base_component_config.BaseComponentConfig, tfx_pipeline: pipeline.Pipeline): """Initialize the _ComponentAsDoFn. Args: component: Component that to be executed. component_launcher_class: The class of the launcher to launch the component. component_config: component config to launch the component. tfx_pipeline: Logical pipeline that contains pipeline related information. """ driver_args = data_types.DriverArgs(enable_cache=tfx_pipeline.enable_cache) metadata_connection = metadata.Metadata( tfx_pipeline.metadata_connection_config) self._component_launcher = component_launcher_class.create( component=component, pipeline_info=tfx_pipeline.pipeline_info, driver_args=driver_args, metadata_connection=metadata_connection, beam_pipeline_args=tfx_pipeline.beam_pipeline_args, additional_pipeline_args=tfx_pipeline.additional_pipeline_args, component_config=component_config) self._component_id = component.id def process(self, element: Any, *signals: Iterable[Any]) -> None: """Executes component based on signals. Args: element: a signal element to trigger the component. *signals: side input signals indicate completeness of upstream components. """ for signal in signals: assert not list(signal), 'Signal PCollection should be empty.' self._run_component() def _run_component(self) -> None: absl.logging.info('Component %s is running.', self._component_id) self._component_launcher.launch() absl.logging.info('Component %s is finished.', self._component_id) class BeamDagRunner(tfx_runner.TfxRunner): """Tfx runner on Beam.""" def __init__(self, beam_orchestrator_args: Optional[List[Text]] = None, config: Optional[pipeline_config.PipelineConfig] = None): """Initializes BeamDagRunner as a TFX orchestrator. Args: beam_orchestrator_args: beam args for the beam orchestrator. Note that this is different from the beam_pipeline_args within additional_pipeline_args, which is for beam pipelines in components. config: Optional pipeline config for customizing the launching of each component. Defaults to pipeline config that supports InProcessComponentLauncher and DockerComponentLauncher. """ if config is None: config = pipeline_config.PipelineConfig( supported_launcher_classes=[ looped_component_launcher.LoopedComponentLauncher, docker_component_launcher.DockerComponentLauncher, ], ) super(BeamDagRunner, self).__init__(config) self._beam_orchestrator_args = beam_orchestrator_args def run(self, tfx_pipeline: pipeline.Pipeline) -> None: """Deploys given logical pipeline on Beam. Args: tfx_pipeline: Logical pipeline containing pipeline args and components. """ # For CLI, while creating or updating pipeline, pipeline_args are extracted # and hence we avoid deploying the pipeline. if 'TFX_JSON_EXPORT_PIPELINE_ARGS_PATH' in os.environ: return tfx_pipeline.pipeline_info.run_id = datetime.datetime.now().isoformat() with telemetry_utils.scoped_labels( {telemetry_utils.LABEL_TFX_RUNNER: 'beam'}): with beam.Pipeline(argv=self._beam_orchestrator_args) as p: # Uses for triggering the component DoFns. root = p | 'CreateRoot' >> beam.Create([None]) # Stores mapping of component to its signal. signal_map = {} # pipeline.components are in topological order. for component in tfx_pipeline.components: component_id = component.id # Signals from upstream components. signals_to_wait = [] if component.upstream_nodes: for upstream_node in component.upstream_nodes: assert upstream_node in signal_map, ('Components is not in ' 'topological order') signals_to_wait.append(signal_map[upstream_node]) absl.logging.info('Component %s depends on %s.', component_id, [s.producer.full_label for s in signals_to_wait]) (component_launcher_class, component_config) = config_utils.find_component_launch_info( self._config, component) # Each signal is an empty PCollection. AsIter ensures component will # be triggered after upstream components are finished. signal_map[component] = ( root | 'Run[%s]' % component_id >> beam.ParDo( _ComponentAsDoFn(component, component_launcher_class, component_config, tfx_pipeline), *[beam.pvalue.AsIter(s) for s in signals_to_wait])) absl.logging.info('Component %s is scheduled.', component_id)
41.437126
80
0.717775
4a2674c51c61c1c312a453f374bf295b0c814999
14,995
py
Python
synapse/models/telco.py
vishalbelsare/synapse
c0f0d318cc5d3098b3a8d80222e2b0b1d19c5740
[ "Apache-2.0" ]
null
null
null
synapse/models/telco.py
vishalbelsare/synapse
c0f0d318cc5d3098b3a8d80222e2b0b1d19c5740
[ "Apache-2.0" ]
null
null
null
synapse/models/telco.py
vishalbelsare/synapse
c0f0d318cc5d3098b3a8d80222e2b0b1d19c5740
[ "Apache-2.0" ]
null
null
null
import logging import synapse.exc as s_exc import synapse.lib.types as s_types import synapse.lib.module as s_module import synapse.lookup.phonenum as s_l_phone logger = logging.getLogger(__name__) def digits(text): return ''.join([c for c in text if c.isdigit()]) def chop_imei(imei): valu = int(imei) tac = int(imei[0:8]) snr = int(imei[8:14]) cd = int(imei[14:15]) return valu, {'subs': {'tac': tac, 'serial': snr, 'cd': cd}} class Phone(s_types.Str): def postTypeInit(self): s_types.Str.postTypeInit(self) self.opts['globsuffix'] = True self.setNormFunc(str, self._normPyStr) self.setNormFunc(int, self._normPyInt) def _normPyStr(self, valu): digs = digits(valu) if not digs: raise s_exc.BadTypeValu(valu=valu, name=self.name, mesg='requires a digit string') subs = {} try: info = s_l_phone.getPhoneInfo(int(digs)) except Exception as e: # pragma: no cover raise s_exc.BadTypeValu(valu=valu, name=self.name, mesg='Failed to get phone info') from None cc = info.get('cc') if cc is not None: subs['loc'] = cc # TODO prefix based validation? return digs, {'subs': subs} def _normPyInt(self, valu): if valu < 1: raise s_exc.BadTypeValu(valu=valu, name=self.name, mesg='phone int must be greater than 0') return self._normPyStr(str(valu)) def repr(self, valu): # XXX geo-aware reprs are practically a function of cc which # XXX the raw value may only have after doing a s_l_phone lookup if valu[0] == '1' and len(valu) == 11: area = valu[1:4] pref = valu[4:7] numb = valu[7:11] return '+1 (%s) %s-%s' % (area, pref, numb) return '+' + valu def imeicsum(text): ''' Calculate the imei check byte. ''' digs = [] for i in range(14): v = int(text[i]) if i % 2: v *= 2 [digs.append(int(x)) for x in str(v)] chek = 0 valu = sum(digs) remd = valu % 10 if remd != 0: chek = 10 - remd return str(chek) class Imsi(s_types.Int): def postTypeInit(self): self.opts['size'] = 8 self.opts['signed'] = False return s_types.Int.postTypeInit(self) def _normPyInt(self, valu): imsi = str(valu) ilen = len(imsi) if ilen > 15: raise s_exc.BadTypeValu(valu=valu, name=self.name, mesg='invalid imsi len: %d' % (ilen,)) mcc = imsi[0:3] # TODO full imsi analysis tree return valu, {'subs': {'mcc': mcc}} # TODO: support pre 2004 "old" imei format class Imei(s_types.Int): def postTypeInit(self): self.opts['size'] = 8 self.opts['signed'] = False return s_types.Int.postTypeInit(self) def _normPyInt(self, valu): imei = str(valu) ilen = len(imei) # we are missing our optional check digit # lets add it for consistency... if ilen == 14: imei += imeicsum(imei) return chop_imei(imei) # if we *have* our check digit, lets check it elif ilen == 15: if imeicsum(imei) != imei[-1]: raise s_exc.BadTypeValu(valu=valu, name=self.name, mesg='invalid imei checksum byte') return chop_imei(imei) raise s_exc.BadTypeValu(valu=valu, name=self.name, mesg='Failed to norm IMEI') class TelcoModule(s_module.CoreModule): def getModelDefs(self): modl = { 'ctors': ( ('tel:mob:imei', 'synapse.models.telco.Imei', {}, { 'ex': '490154203237518', 'doc': 'An International Mobile Equipment Id.'}), ('tel:mob:imsi', 'synapse.models.telco.Imsi', {}, { 'ex': '310150123456789', 'doc': 'An International Mobile Subscriber Id.'}), ('tel:phone', 'synapse.models.telco.Phone', {}, { 'ex': '+15558675309', 'doc': 'A phone number.'}), ), 'types': ( ('tel:call', ('guid', {}), { 'doc': 'A guid for a telephone call record.'}), ('tel:txtmesg', ('guid', {}), { 'doc': 'A guid for an individual text message.'}), ('tel:mob:tac', ('int', {}), { 'ex': '49015420', 'doc': 'A mobile Type Allocation Code.'}), ('tel:mob:imid', ('comp', {'fields': (('imei', 'tel:mob:imei'), ('imsi', 'tel:mob:imsi'))}), { 'ex': '(490154203237518, 310150123456789)', 'doc': 'Fused knowledge of an IMEI/IMSI used together.'}), ('tel:mob:imsiphone', ('comp', {'fields': (('imsi', 'tel:mob:imsi'), ('phone', 'tel:phone'))}), { 'ex': '(310150123456789, "+7(495) 124-59-83")', 'doc': 'Fused knowledge of an IMSI assigned phone number.'}), ('tel:mob:telem', ('guid', {}), { 'doc': 'A single mobile telemetry measurement.'}), ('tel:mob:mcc', ('str', {'regex': '^[0-9]{3}$', 'strip': 1}), { 'doc': 'ITU Mobile Country Code.', }), ('tel:mob:mnc', ('str', {'regex': '^[0-9]{2,3}$', 'strip': 1}), { 'doc': 'ITU Mobile Network Code.', }), ('tel:mob:carrier', ('comp', {'fields': (('mcc', 'tel:mob:mcc'), ('mnc', 'tel:mob:mnc'))}), { 'doc': 'The fusion of a MCC/MNC.' }), ('tel:mob:cell', ('comp', {'fields': (('carrier', 'tel:mob:carrier'), ('lac', ('int', {})), ('cid', ('int', {})))}), { 'doc': 'A mobile cell site which a phone may connect to.' }), ), 'forms': ( ('tel:phone', {}, ( ('loc', ('loc', {}), { 'doc': 'The location associated with the number.', }), )), ('tel:call', {}, ( ('src', ('tel:phone', {}), { 'doc': 'The source phone number for a call.' }), ('dst', ('tel:phone', {}), { 'doc': 'The destination phone number for a call.' }), ('time', ('time', {}), { 'doc': 'The time the call was initiated.' }), ('duration', ('int', {}), { 'doc': 'The duration of the call in seconds.' }), ('connected', ('bool', {}), { 'doc': 'Indicator of whether the call was connected.', }), ('text', ('str', {}), { 'doc': 'The text transcription of the call.', 'disp': {'hint': 'text'}, }), ('file', ('file:bytes', {}), { 'doc': 'A file containing related media.', }), )), ('tel:txtmesg', {}, ( ('from', ('tel:phone', {}), { 'doc': 'The phone number assigned to the sender.' }), ('to', ('tel:phone', {}), { 'doc': 'The phone number assigned to the primary recipient.' }), ('recipients', ('array', {'type': 'tel:phone', 'uniq': True, 'sorted': True}), { 'doc': 'An array of phone numbers for additional recipients of the message.', }), ('svctype', ('str', {'enums': 'sms,mms,rcs', 'strip': 1, 'lower': 1}), { 'doc': 'The message service type (sms, mms, rcs).', }), ('time', ('time', {}), { 'doc': 'The time the message was sent.' }), ('text', ('str', {}), { 'doc': 'The text of the message.', 'disp': {'hint': 'text'}, }), ('file', ('file:bytes', {}), { 'doc': 'A file containing related media.', }), )), ('tel:mob:tac', {}, ( ('org', ('ou:org', {}), { 'doc': 'The org guid for the manufacturer.', }), ('manu', ('str', {'lower': 1}), { 'doc': 'The TAC manufacturer name.', }), ('model', ('str', {'lower': 1}), { 'doc': 'The TAC model name.', }), ('internal', ('str', {'lower': 1}), { 'doc': 'The TAC internal model name.', }), )), ('tel:mob:imei', {}, ( ('tac', ('tel:mob:tac', {}), { 'ro': True, 'doc': 'The Type Allocate Code within the IMEI.' }), ('serial', ('int', {}), { 'ro': True, 'doc': 'The serial number within the IMEI.', }) )), ('tel:mob:imsi', {}, ( ('mcc', ('tel:mob:mcc', {}), { 'ro': True, 'doc': 'The Mobile Country Code.', }), )), ('tel:mob:imid', {}, ( ('imei', ('tel:mob:imei', {}), { 'ro': True, 'doc': 'The IMEI for the phone hardware.' }), ('imsi', ('tel:mob:imsi', {}), { 'ro': True, 'doc': 'The IMSI for the phone subscriber.' }), )), ('tel:mob:imsiphone', {}, ( ('phone', ('tel:phone', {}), { 'ro': True, 'doc': 'The phone number assigned to the IMSI.' }), ('imsi', ('tel:mob:imsi', {}), { 'ro': True, 'doc': 'The IMSI with the assigned phone number.' }), )), ('tel:mob:mcc', {}, ( ('loc', ('loc', {}), {'doc': 'Location assigned to the MCC.'}), )), ('tel:mob:carrier', {}, ( ('mcc', ('tel:mob:mcc', {}), { 'ro': True, }), ('mnc', ('tel:mob:mnc', {}), { 'ro': True, }), ('org', ('ou:org', {}), { 'doc': 'Organization operating the carrier.' }), ('loc', ('loc', {}), { 'doc': 'Location the carrier operates from.' }), )), ('tel:mob:cell', {}, ( ('carrier', ('tel:mob:carrier', {}), {'doc': 'Mobile carrier.'}), ('carrier:mcc', ('tel:mob:mcc', {}), {'doc': 'Mobile Country Code.'}), ('carrier:mnc', ('tel:mob:mnc', {}), {'doc': 'Mobile Network Code.'}), ('lac', ('int', {}), {'doc': 'Location Area Code. LTE networks may call this a TAC.'}), ('cid', ('int', {}), {'doc': 'The Cell ID.'}), ('radio', ('str', {'lower': 1, 'onespace': 1}), {'doc': 'Cell radio type.'}), ('latlong', ('geo:latlong', {}), {'doc': 'Last known location of the cell site.'}), ('loc', ('loc', {}), { 'doc': 'Location at which the cell is operated.'}), ('place', ('geo:place', {}), { 'doc': 'The place associated with the latlong property.'}), )), ('tel:mob:telem', {}, ( ('time', ('time', {}), {}), ('latlong', ('geo:latlong', {}), {}), ('http:request', ('inet:http:request', {}), { 'doc': 'The HTTP request that the telemetry was extracted from.', }), ('host', ('it:host', {}), { 'doc': 'The host that generated the mobile telemetry data.'}), ('place', ('geo:place', {}), { 'doc': 'The place representing the location of the mobile telemetry sample.'}), ('loc', ('loc', {}), { 'doc': 'The geo-political location of the mobile telemetry sample.', }), ('accuracy', ('geo:dist', {}), { 'doc': 'The reported accuracy of the latlong telemetry reading.', }), # telco specific data ('cell', ('tel:mob:cell', {}), {}), ('cell:carrier', ('tel:mob:carrier', {}), {}), ('imsi', ('tel:mob:imsi', {}), {}), ('imei', ('tel:mob:imei', {}), {}), ('phone', ('tel:phone', {}), {}), # inet protocol addresses ('mac', ('inet:mac', {}), {}), ('ipv4', ('inet:ipv4', {}), {}), ('ipv6', ('inet:ipv6', {}), {}), ('wifi', ('inet:wifi:ap', {}), {}), ('wifi:ssid', ('inet:wifi:ssid', {}), {}), ('wifi:bssid', ('inet:mac', {}), {}), # host specific data ('adid', ('it:adid', {}), {}), ('aaid', ('it:os:android:aaid', {}), {}), ('idfa', ('it:os:ios:idfa', {}), {}), # User related data ('name', ('ps:name', {}), {}), ('email', ('inet:email', {}), {}), ('acct', ('inet:web:acct', {}), {}), # reporting related data ('app', ('it:prod:softver', {}), {}), ('data', ('data', {}), {}), # any other fields may be refs... )), ) } name = 'tel' return ((name, modl),)
38.350384
113
0.377659
4a267c471e4fa52ecdee9fea097a03087cd2bd55
85
py
Python
preprocessing/exported_midi_chord_recognition/mir/extractors/__init__.py
Dsqvival/hierarchical-structure-analysis
8ef0b47db1687c97b5a8cd8794b9a344fb1ee13c
[ "MIT" ]
39
2020-12-22T17:55:05.000Z
2022-03-27T07:03:19.000Z
preprocessing/exported_midi_chord_recognition/mir/extractors/__init__.py
Dsqvival/hierarchical-structure-analysis
8ef0b47db1687c97b5a8cd8794b9a344fb1ee13c
[ "MIT" ]
3
2021-06-28T16:32:11.000Z
2021-12-27T10:58:34.000Z
preprocessing/exported_midi_chord_recognition/mir/extractors/__init__.py
Dsqvival/hierarchical-structure-analysis
8ef0b47db1687c97b5a8cd8794b9a344fb1ee13c
[ "MIT" ]
4
2021-01-03T03:13:26.000Z
2022-03-04T07:40:51.000Z
from mir.extractors.extractor_base import ExtractorBase __all__ =['ExtractorBase']
28.333333
56
0.823529
4a267c62c9002f9e03b7cea838c7e2e54df31f46
6,243
py
Python
custom_components/aarlo/pyaarlo/cfg.py
PysX/home-assistant-conf
614c5a67314b6c7b8af4237a918a437b79ab460d
[ "MIT" ]
28
2019-05-31T12:30:15.000Z
2022-03-10T18:54:57.000Z
custom_components/aarlo/pyaarlo/cfg.py
PysX/home-assistant-conf
614c5a67314b6c7b8af4237a918a437b79ab460d
[ "MIT" ]
5
2020-08-14T17:43:48.000Z
2021-01-08T21:12:45.000Z
custom_components/aarlo/pyaarlo/cfg.py
PysX/home-assistant-config
614c5a67314b6c7b8af4237a918a437b79ab460d
[ "MIT" ]
2
2021-03-31T08:27:19.000Z
2021-04-30T15:13:24.000Z
from .constant import ( DEFAULT_AUTH_HOST, DEFAULT_HOST, PRELOAD_DAYS, TFA_CONSOLE_SOURCE, TFA_DEFAULT_HOST, TFA_DELAY, TFA_EMAIL_TYPE, TFA_RETRIES, ) class ArloCfg(object): """Helper class to get at Arlo configuration options. I got sick of adding in variables each time the config changed so I moved it all here. Config is passed in a kwarg and parsed out by the property methods. """ def __init__(self, arlo, **kwargs): """The constructor. Args: kwargs (kwargs): Configuration options. """ self._arlo = arlo self._kw = kwargs self._arlo.debug("Cfg started") @property def storage_dir(self): return self._kw.get("storage_dir", "/tmp/.aarlo") @property def name(self): return self._kw.get("name", "aarlo") @property def username(self): return self._kw.get("username", "unknown") @property def password(self): return self._kw.get("password", "unknown") @property def host(self): return self._kw.get("host", DEFAULT_HOST) @property def auth_host(self): return self._kw.get("auth_host", DEFAULT_AUTH_HOST) @property def dump(self): return self._kw.get("dump", False) @property def max_days(self): return self._kw.get("max_days", 365) @property def db_motion_time(self): return self._kw.get("db_motion_time", 30) @property def db_ding_time(self): return self._kw.get("db_ding_time", 10) @property def request_timeout(self): return self._kw.get("request_timeout", 60) @property def stream_timeout(self): return self._kw.get("stream_timeout", 0) @property def recent_time(self): return self._kw.get("recent_time", 600) @property def last_format(self): return self._kw.get("last_format", "%m-%d %H:%M") @property def no_media_upload(self): return self._kw.get("no_media_upload", False) @property def media_retry(self): retries = self._kw.get("media_retry", []) if not retries and self.no_media_upload: retries = [0, 5, 10] return retries @property def snapshot_checks(self): checks = self._kw.get("snapshot_checks", []) if not checks: return [1, 5] return checks @property def user_agent(self): return self._kw.get("user_agent", "arlo") @property def mode_api(self): return self._kw.get("mode_api", "auto") @property def refresh_devices_every(self): return self._kw.get("refresh_devices_every", 0) * 60 * 60 @property def refresh_modes_every(self): return self._kw.get("refresh_modes_every", 0) * 60 @property def http_connections(self): return self._kw.get("http_connections", 20) @property def http_max_size(self): return self._kw.get("http_maz_size", 10) @property def reconnect_every(self): return self._kw.get("reconnect_every", 0) * 60 @property def snapshot_timeout(self): return self._kw.get("snapshot_timeout", 60) @property def verbose(self): return self._kw.get("verbose_debug", False) @property def hide_deprecated_services(self): return self._kw.get("hide_deprecated_services", False) @property def tfa_source(self): return self._kw.get("tfa_source", TFA_CONSOLE_SOURCE) @property def tfa_type(self): return self._kw.get("tfa_type", TFA_EMAIL_TYPE).lower() @property def tfa_delay(self): return self._kw.get("tfa_delay", TFA_DELAY) @property def tfa_retries(self): return self._kw.get("tfa_retries", TFA_RETRIES) @property def tfa_timeout(self): return self._kw.get("tfa_timeout", 3) @property def tfa_total_timeout(self): return self._kw.get("tfa_total_timeout", 60) @property def tfa_host(self): h = self._kw.get("tfa_host", TFA_DEFAULT_HOST).split(":") return h[0] @property def tfa_port(self): h = self._kw.get("tfa_host", TFA_DEFAULT_HOST).split(":") if len(h) == 1: return 993 else: return h[1] @property def tfa_username(self): u = self._kw.get("tfa_username", None) if u is None: u = self.username return u @property def tfa_password(self): p = self._kw.get("tfa_password", None) if p is None: p = self.password return p @property def wait_for_initial_setup(self): return self._kw.get("wait_for_initial_setup", True) @property def save_state(self): return self._kw.get("save_state", True) @property def state_file(self): if self.save_state: return self.storage_dir + "/" + self.name + ".pickle" return None @property def session_file(self): return self.storage_dir + "/session.pickle" return None @property def save_session(self): return self._kw.get("save_session", True) @property def dump_file(self): if self.dump: return self.storage_dir + "/" + "packets.dump" return None @property def library_days(self): return self._kw.get("library_days", PRELOAD_DAYS) @property def synchronous_mode(self): return self._kw.get("synchronous_mode", False) @property def user_stream_delay(self): return self._kw.get("user_stream_delay", 1) @property def serial_ids(self): return self._kw.get("serial_ids", False) @property def stream_snapshot(self): return self._kw.get("stream_snapshot", False) @property def stream_snapshot_stop(self): return self._kw.get("stream_snapshot_stop", 10) @property def save_updates_to(self): return self._kw.get("save_updates_to", "") @property def save_media_to(self): return self._kw.get("save_media_to", "") @property def no_unicode_squash(self): return self._kw.get("no_unicode_squash", True)
23.91954
97
0.61605
4a267cfa2e8ea502f12a011cbbfc79a9efc48c35
711
py
Python
algorithms/warmup/birthday_cake_candles/harisonmg_submission.py
mazaosoko/hackerrank
d9db66a5812ab68e88953c88c511242484af4990
[ "MIT" ]
null
null
null
algorithms/warmup/birthday_cake_candles/harisonmg_submission.py
mazaosoko/hackerrank
d9db66a5812ab68e88953c88c511242484af4990
[ "MIT" ]
null
null
null
algorithms/warmup/birthday_cake_candles/harisonmg_submission.py
mazaosoko/hackerrank
d9db66a5812ab68e88953c88c511242484af4990
[ "MIT" ]
1
2020-11-18T19:23:05.000Z
2020-11-18T19:23:05.000Z
#!/bin/python3 import math import os import random import re import sys # # Complete the 'birthdayCakeCandles' function below. # # The function is expected to return an INTEGER. # The function accepts INTEGER_ARRAY candles as parameter. # def birthdayCakeCandles(candles): height_tallest = max(candles) print(height_tallest) num_tallest = candles.count(height_tallest) return num_tallest if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') candles_count = int(input().strip()) candles = list(map(int, input().rstrip().split())) result = birthdayCakeCandles(candles) fptr.write(str(result) + '\n') fptr.close()
20.911765
59
0.673699
4a267ddccf08306e119b672f733dadffec5ea494
731
py
Python
boost_adaptbx/tests/tst_std_pair.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
null
null
null
boost_adaptbx/tests/tst_std_pair.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
null
null
null
boost_adaptbx/tests/tst_std_pair.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
null
null
null
from __future__ import division import boost.std_pair from libtbx.test_utils import Exception_expected def run(): boost.std_pair.exercise(( 1, 2)) == ( 2, 1.) boost.std_pair.exercise((-2, 4)) == (-4, 2.) try: boost.std_pair.exercise(1) except Exception, err: assert err.__class__.__name__ == 'ArgumentError' else: raise Exception_expected try: boost.std_pair.exercise((1,)) except Exception, err: assert err.__class__.__name__ == 'ArgumentError' else: raise Exception_expected try: boost.std_pair.exercise((1,2,3,)) except Exception, err: assert err.__class__.__name__ == 'ArgumentError' else: raise Exception_expected print "OK" if __name__ == '__main__': run()
21.5
52
0.689466
4a267de3faec4d4240d12b0faffd88895be6f6ac
3,640
py
Python
dataset.py
sbharadwajj/point-based-method
2f778cdb4e4ed218bff4aa33e57be2d5d993a77b
[ "Apache-2.0" ]
null
null
null
dataset.py
sbharadwajj/point-based-method
2f778cdb4e4ed218bff4aa33e57be2d5d993a77b
[ "Apache-2.0" ]
null
null
null
dataset.py
sbharadwajj/point-based-method
2f778cdb4e4ed218bff4aa33e57be2d5d993a77b
[ "Apache-2.0" ]
null
null
null
# import open3d as o3d import torch import numpy as np import torch.utils.data as data import torchvision.transforms as transforms import os import random from utils.data_utils import load_h5, pad_cloudN, augment_cloud #from utils import * class Kitti360(data.Dataset): def __init__(self, dataset_path, train = True, weights = False, npoints_partial = 1024, npoints = 2048): self.train = train self.npoints = npoints self.weights = weights if self.train: self.inp = os.path.join(dataset_path, "train", "partial") self.gt = os.path.join(dataset_path, "train", "gt") self.X = os.listdir(self.inp) self.Y = os.listdir(self.gt) # sort_y = sorted(self.Y)[0::2000] # choose 10 for visualization # sort_y = sorted(self.Y)[0::200] self.Y = sort_y self.len = len(self.Y) else: self.inp = os.path.join(dataset_path, "val", "partial") self.gt = os.path.join(dataset_path, "val", "gt") self.X = os.listdir(self.inp) self.Y = os.listdir(self.gt) # sort_y = sorted(self.Y)[0::200] # choose for visualization # self.Y = sort_y self.len = len(self.Y) # print(self.inp) # print(self.gt) ''' loads poses to a dictonary to read ''' self.pose = '/home/bharadwaj/dataset/KITTI-360/data_poses' pose_dict = {} poses = os.listdir(self.pose) pose_folders = [os.path.join('/home/bharadwaj/dataset/KITTI-360/data_poses', folder) for folder in poses] self.pose_dict = {path.split("/")[-1]:np.loadtxt(path+"/poses.txt") for path in pose_folders} def get_weight_vec(self, points_z, percent, array_pcd, axis): thresh = np.quantile(points_z, percent) bottom = array_pcd[:, axis] < thresh top = array_pcd[:, axis] > thresh weights_array = (np.ones((self.npoints)).astype(float)) #* 2.0 weights_array[bottom] = 0.1 # WEIGHTS FOR BOTTOM 60 % assert(weights_array[top] == 1.0).all() return weights_array def get_translation_vec(self, model_id, poses): ''' gets poses from pose.txt for each file ''' id = float(model_id) vec = np.squeeze(poses[poses[:,0] == id]) reshaped = vec[1:].reshape(3,4) return reshaped[:,3:].astype(np.float64) def read_pcd(self, filename, center): ''' reads pcd and normalizes ''' point_set = np.load(filename) # .astype(np.float64) saved as float already point_set = point_set - center dist = np.max(np.sqrt(np.sum(point_set ** 2, axis = 1)),0) pcd = point_set / dist # scale return pcd #.astype(np.float) def __getitem__(self, index): model_id = self.Y[index] split_list = model_id.split("_") file_name = split_list[-1].split(".")[0] drive_name = "_".join(split_list[:6]) center = self.get_translation_vec(file_name, self.pose_dict[drive_name]).transpose() partial = self.read_pcd(os.path.join(self.inp, model_id), center) complete = self.read_pcd(os.path.join(self.gt, model_id), center) # DATA AUGMENTATION if self.train: complete, partial = augment_cloud([complete, partial]) if self.weights: model_id = self.get_weight_vec(complete[:,2], 0.6, complete, axis=2) #z axis return model_id, partial.astype(np.float32), complete.astype(np.float32) def __len__(self): return self.len
38.315789
113
0.595879
4a267f00a1f84b70c230aadc8d2c6a2f0af55bb6
2,054
py
Python
homeassistant/components/rpi_gpio/switch.py
SimonCardaire/core
1ea3f824da6afd9adee030d5b6bccfb2cc73d46d
[ "Apache-2.0" ]
null
null
null
homeassistant/components/rpi_gpio/switch.py
SimonCardaire/core
1ea3f824da6afd9adee030d5b6bccfb2cc73d46d
[ "Apache-2.0" ]
null
null
null
homeassistant/components/rpi_gpio/switch.py
SimonCardaire/core
1ea3f824da6afd9adee030d5b6bccfb2cc73d46d
[ "Apache-2.0" ]
null
null
null
"""Allows to configure a switch using RPi GPIO.""" from homeassistant.components import rpi_gpio from homeassistant.components.rpi_gpio.const import ( CONF_SWITCH, CONF_SWITCH_INVERT_LOGIC, CONF_SWITCH_PORTS, DOMAIN, PLATFORMS, ) from homeassistant.const import DEVICE_DEFAULT_NAME from homeassistant.helpers.entity import ToggleEntity from homeassistant.helpers.reload import setup_reload_service def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the Raspberry PI GPIO devices.""" setup_reload_service(hass, DOMAIN, PLATFORMS) config_switch = hass.data[DOMAIN][CONF_SWITCH] invert_logic = config_switch[CONF_SWITCH_INVERT_LOGIC] switches = [] ports = config_switch[CONF_SWITCH_PORTS] for port, name in ports.items(): switches.append(RPiGPIOSwitch(name, port, invert_logic)) add_entities(switches) class RPiGPIOSwitch(ToggleEntity): """Representation of a Raspberry Pi GPIO.""" def __init__(self, name, port, invert_logic): """Initialize the pin.""" self._name = name or DEVICE_DEFAULT_NAME self._port = port self._invert_logic = invert_logic self._state = False rpi_gpio.setup_output(self._port) rpi_gpio.write_output(self._port, 1 if self._invert_logic else 0) @property def name(self): """Return the name of the switch.""" return self._name @property def should_poll(self): """No polling needed.""" return False @property def is_on(self): """Return true if device is on.""" return self._state def turn_on(self, **kwargs): """Turn the device on.""" rpi_gpio.write_output(self._port, 0 if self._invert_logic else 1) self._state = True self.schedule_update_ha_state() def turn_off(self, **kwargs): """Turn the device off.""" rpi_gpio.write_output(self._port, 1 if self._invert_logic else 0) self._state = False self.schedule_update_ha_state()
30.205882
73
0.685005
4a267f31c413612a25d20abe2648bcb99eb23053
1,149
py
Python
preprocess.py
devinaarvind/tensorflow-efe
7b3001ca6f885d6c94b198d24560e2004bbd356e
[ "MIT" ]
13
2017-07-28T17:30:04.000Z
2021-03-13T01:43:18.000Z
preprocess.py
devinaarvind/tensorflow-efe
7b3001ca6f885d6c94b198d24560e2004bbd356e
[ "MIT" ]
3
2017-12-05T14:52:59.000Z
2018-03-02T09:56:14.000Z
preprocess.py
devinaarvind/tensorflow-efe
7b3001ca6f885d6c94b198d24560e2004bbd356e
[ "MIT" ]
7
2018-05-27T02:55:13.000Z
2019-07-16T11:12:59.000Z
import pandas as pd from optparse import OptionParser import config from utils import data_utils def preprocess(data_name): dataset = data_utils.DataSet(config.DATASET[data_name]) df_train, df_valid, df_test = dataset.load_raw_data() df_all = pd.concat([df_train, df_valid, df_test], ignore_index=True) train_size = df_train.shape[0] test_size = df_test.shape[0] e2id = dataset.save_e2id(set(list(df_all.e1) + list(df_all.e2))) r2id = dataset.save_r2id(set(list(df_all.r))) df_all.e1 = df_all.e1.map(e2id) df_all.e2 = df_all.e2.map(e2id) df_all.r = df_all.r.map(r2id) df_train = df_all[:train_size] df_valid = df_all[train_size:-test_size] df_test = df_all[-test_size:] dataset.save_data(df_train, df_valid, df_test) def parse_args(parser): parser.add_option("-d", "--data", type="string", dest="data_name", default="wn18") options, args = parser.parse_args() return options, args def main(options): data_name = options.data_name preprocess(data_name) if __name__ == "__main__": parser = OptionParser() options, args = parse_args(parser) main(options)
28.725
86
0.704091
4a2680a821dfa87a84b5c5766d0017e9633b53a3
1,096
py
Python
user/migrations/0001_initial.py
superior-prog/DevBlog
5c82e60f0360c0bad243d67d924d1ed591f9fb4b
[ "MIT" ]
null
null
null
user/migrations/0001_initial.py
superior-prog/DevBlog
5c82e60f0360c0bad243d67d924d1ed591f9fb4b
[ "MIT" ]
null
null
null
user/migrations/0001_initial.py
superior-prog/DevBlog
5c82e60f0360c0bad243d67d924d1ed591f9fb4b
[ "MIT" ]
null
null
null
# Generated by Django 3.1.4 on 2020-12-10 16:31 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('email', models.EmailField(max_length=255, unique=True)), ('name', models.CharField(max_length=255)), ('date_joined', models.DateTimeField(auto_now_add=True)), ('is_active', models.BooleanField(default=True)), ('is_staff', models.BooleanField(default=False)), ('is_admin', models.BooleanField(default=False)), ], options={ 'abstract': False, }, ), ]
34.25
114
0.569343
4a26811698f183ef7486aa6beb68a2ab131fd039
3,524
py
Python
imaging/src/radiomics_utils.py
bhuwanupadhyay/machine-learning-pipelines-for-multimodal-health-data
19cb8faa3d2c10c5ffd13fbd1c5219d8e9fd7f10
[ "MIT-0" ]
7
2021-06-02T13:47:44.000Z
2022-02-11T17:13:47.000Z
imaging/src/radiomics_utils.py
bhuwanupadhyay/machine-learning-pipelines-for-multimodal-health-data
19cb8faa3d2c10c5ffd13fbd1c5219d8e9fd7f10
[ "MIT-0" ]
2
2021-12-13T16:36:47.000Z
2022-02-17T18:52:55.000Z
imaging/src/radiomics_utils.py
bhuwanupadhyay/machine-learning-pipelines-for-multimodal-health-data
19cb8faa3d2c10c5ffd13fbd1c5219d8e9fd7f10
[ "MIT-0" ]
8
2021-06-10T18:54:31.000Z
2022-02-23T16:00:40.000Z
import pandas as pd import time import numpy as np from radiomics import featureextractor import boto3 import sagemaker from sagemaker.session import Session from sagemaker.feature_store.feature_group import FeatureGroup from sagemaker import get_execution_role sagemaker_session = sagemaker.Session() region = sagemaker_session.boto_region_name print('region is %s' % region) boto_session = boto3.Session(region_name=region) role = get_execution_role() print('role is %s' % role) sagemaker_client = boto3.client(service_name='sagemaker', region_name=region) featurestore_runtime = boto3.client('sagemaker-featurestore-runtime', region_name=region) feature_store_session = Session( boto_session=boto_session, sagemaker_client=sagemaker_client, sagemaker_featurestore_runtime_client=featurestore_runtime ) def cast_object_to_string(data_frame): for label in data_frame.columns: if data_frame.dtypes[label] == 'object': data_frame[label] = data_frame[label].astype("str").astype("string") def compute_features(imageName, maskName): extractor = featureextractor.RadiomicsFeatureExtractor() featureVector = extractor.execute(imageName, maskName) new_dict={} for featureName in featureVector.keys(): print("Computed %s: %s" % (featureName, featureVector[featureName])) print(type(featureVector[featureName])) if isinstance(featureVector[featureName], np.ndarray): new_dict[featureName]=float(featureVector[featureName]) else: new_dict[featureName]=featureVector[featureName] df=pd.DataFrame.from_dict(new_dict, orient='index').T df=df.convert_dtypes(convert_integer=False) df['imageName']=imageName df['maskName']=maskName return df def check_feature_group(feature_group_name): feature_group = FeatureGroup(name=feature_group_name, sagemaker_session=feature_store_session) status = None try: status = feature_group.describe()['FeatureGroupStatus'] except: pass if status == 'Created': return feature_group elif status is None: return False else: wait_for_feature_group_creation_complete(feature_group) return feature_group def create_feature_group(feature_group_name, dataframe, s3uri, record_id = 'Subject', event_time = 'EventTime', enable_online_store = True): print(feature_group_name) print(feature_store_session) feature_group = FeatureGroup(name=feature_group_name, sagemaker_session=feature_store_session) feature_group.load_feature_definitions(data_frame=dataframe) feature_group.create(s3_uri=s3uri, record_identifier_name=record_id, event_time_feature_name=event_time, role_arn=role, enable_online_store=enable_online_store) wait_for_feature_group_creation_complete(feature_group) return feature_group def wait_for_feature_group_creation_complete(feature_group): status = feature_group.describe()['FeatureGroupStatus'] while status == "Creating": print("Waiting for Feature Group Creation") time.sleep(5) status = feature_group.describe()['FeatureGroupStatus'] if status != "Created": raise RuntimeError(f"Failed to create feature group {feature_group.name}") print(f"FeatureGroup {feature_group.name} successfully created.")
36.329897
112
0.719069