k1h0's picture
Create filter.py
76abbed verified
raw
history blame contribute delete
5.13 kB
import re
import pandas as pd
import glob
import os
from tqdm import tqdm
from datasets import load_dataset
# Download the dataset first
print("Downloading the RedStone-Code-python dataset...")
dataset = load_dataset("zjsd/RedStone-Code-python")
print("Dataset downloaded successfully!")
def detect_python_functions(text):
if not isinstance(text, str):
return []
function_pattern = r'def\s+\w+\s*\([^)]*\)\s*:'
lines = text.split('\n')
function_blocks = []
current_block = []
in_function = False
for line in lines:
if re.search(function_pattern, line):
if current_block and in_function:
function_blocks.append('\n'.join(current_block))
current_block = []
in_function = True
current_block = [line]
continue
if in_function:
if line.startswith(' ') or '\t' in line or not line.strip():
current_block.append(line)
elif line.strip() and not line.startswith(' '):
if current_block:
function_blocks.append('\n'.join(current_block))
current_block = []
in_function = False
if current_block and in_function:
function_blocks.append('\n'.join(current_block))
def is_valid_function(block):
has_python_keywords = any(keyword in block for keyword in
['return', 'print', 'if', 'for', 'while', '='])
has_proper_indentation = any(line.startswith(' ') for line in block.split('\n')[1:])
return has_python_keywords and has_proper_indentation
return [block for block in function_blocks if is_valid_function(block)]
def has_python_functions(row):
functions = detect_python_functions(row['text'])
return len(functions) > 0
def process_in_batches(parquet_file, batch_size=10000):
filtered_dfs = []
total_rows = pd.read_parquet(parquet_file, columns=[]).shape[0]
print(f"\nStarting to process file with {total_rows} rows") # Debug line
pbar_desc = f"Processing {os.path.basename(parquet_file)}"
with tqdm(total=total_rows, desc=pbar_desc, position=1, leave=False) as pbar:
for batch_start in range(0, total_rows, batch_size):
# Read batch
batch_df = pd.read_parquet(
parquet_file,
offset=batch_start,
rows=min(batch_size, total_rows - batch_start)
)
# Debug lines
print(f"\nProcessing batch of size: {len(batch_df)}")
if len(batch_df) > 0:
print(f"Sample text from batch:\n{batch_df['text'].iloc[0][:200]}...")
# Filter and process batch
filtered_batch = batch_df[batch_df.apply(has_python_functions, axis=1)].copy()
print(f"Found {len(filtered_batch)} rows with functions in this batch") # Debug line
if len(filtered_batch) > 0:
filtered_batch['python_functions'] = filtered_batch['text'].apply(detect_python_functions)
filtered_dfs.append(filtered_batch)
pbar.update(len(batch_df))
pbar.set_postfix({'Found': sum(len(df) for df in filtered_dfs)})
return pd.concat(filtered_dfs) if filtered_dfs else pd.DataFrame()
# Create output directory
output_dir = "filtered_python_functions"
os.makedirs(output_dir, exist_ok=True)
# Convert dataset to parquet files if needed
print("Converting dataset to parquet files...")
for split in dataset.keys():
dataset[split].to_parquet(f"{output_dir}/redstone_{split}.parquet")
# Get list of parquet files
parq_list = glob.glob(f"{output_dir}/redstone_*.parquet")
if not parq_list:
print("No parquet files found! Something went wrong with the dataset conversion.")
exit(1)
print(f"Found {len(parq_list)} parquet files to process")
# Process all files with overall progress bar
total_functions_found = 0
with tqdm(total=len(parq_list), desc="Overall Progress", position=0) as pbar_files:
for idx, parquet_file in enumerate(parq_list):
try:
# Process the file in batches
filtered_df = process_in_batches(parquet_file, batch_size=10000)
# Save if we found any matches
if len(filtered_df) > 0:
output_file = os.path.join(output_dir, f"python_functions_{idx}.parquet")
filtered_df.to_parquet(output_file)
total_functions_found += len(filtered_df)
# Update progress bar with statistics
pbar_files.set_postfix({
'Current File': f"{idx + 1}/{len(parq_list)}",
'Total Found': total_functions_found
})
except Exception as e:
print(f"\nError processing {parquet_file}: {str(e)}")
continue
pbar_files.update(1)
print(f"\nProcessing complete! Total Python functions found: {total_functions_found}")