import re import pandas as pd import glob import os from tqdm import tqdm from datasets import load_dataset # Download the dataset first print("Downloading the RedStone-Code-python dataset...") dataset = load_dataset("zjsd/RedStone-Code-python") print("Dataset downloaded successfully!") def detect_python_functions(text): if not isinstance(text, str): return [] function_pattern = r'def\s+\w+\s*\([^)]*\)\s*:' lines = text.split('\n') function_blocks = [] current_block = [] in_function = False for line in lines: if re.search(function_pattern, line): if current_block and in_function: function_blocks.append('\n'.join(current_block)) current_block = [] in_function = True current_block = [line] continue if in_function: if line.startswith(' ') or '\t' in line or not line.strip(): current_block.append(line) elif line.strip() and not line.startswith(' '): if current_block: function_blocks.append('\n'.join(current_block)) current_block = [] in_function = False if current_block and in_function: function_blocks.append('\n'.join(current_block)) def is_valid_function(block): has_python_keywords = any(keyword in block for keyword in ['return', 'print', 'if', 'for', 'while', '=']) has_proper_indentation = any(line.startswith(' ') for line in block.split('\n')[1:]) return has_python_keywords and has_proper_indentation return [block for block in function_blocks if is_valid_function(block)] def has_python_functions(row): functions = detect_python_functions(row['text']) return len(functions) > 0 def process_in_batches(parquet_file, batch_size=10000): filtered_dfs = [] total_rows = pd.read_parquet(parquet_file, columns=[]).shape[0] print(f"\nStarting to process file with {total_rows} rows") # Debug line pbar_desc = f"Processing {os.path.basename(parquet_file)}" with tqdm(total=total_rows, desc=pbar_desc, position=1, leave=False) as pbar: for batch_start in range(0, total_rows, batch_size): # Read batch batch_df = pd.read_parquet( parquet_file, offset=batch_start, rows=min(batch_size, total_rows - batch_start) ) # Debug lines print(f"\nProcessing batch of size: {len(batch_df)}") if len(batch_df) > 0: print(f"Sample text from batch:\n{batch_df['text'].iloc[0][:200]}...") # Filter and process batch filtered_batch = batch_df[batch_df.apply(has_python_functions, axis=1)].copy() print(f"Found {len(filtered_batch)} rows with functions in this batch") # Debug line if len(filtered_batch) > 0: filtered_batch['python_functions'] = filtered_batch['text'].apply(detect_python_functions) filtered_dfs.append(filtered_batch) pbar.update(len(batch_df)) pbar.set_postfix({'Found': sum(len(df) for df in filtered_dfs)}) return pd.concat(filtered_dfs) if filtered_dfs else pd.DataFrame() # Create output directory output_dir = "filtered_python_functions" os.makedirs(output_dir, exist_ok=True) # Convert dataset to parquet files if needed print("Converting dataset to parquet files...") for split in dataset.keys(): dataset[split].to_parquet(f"{output_dir}/redstone_{split}.parquet") # Get list of parquet files parq_list = glob.glob(f"{output_dir}/redstone_*.parquet") if not parq_list: print("No parquet files found! Something went wrong with the dataset conversion.") exit(1) print(f"Found {len(parq_list)} parquet files to process") # Process all files with overall progress bar total_functions_found = 0 with tqdm(total=len(parq_list), desc="Overall Progress", position=0) as pbar_files: for idx, parquet_file in enumerate(parq_list): try: # Process the file in batches filtered_df = process_in_batches(parquet_file, batch_size=10000) # Save if we found any matches if len(filtered_df) > 0: output_file = os.path.join(output_dir, f"python_functions_{idx}.parquet") filtered_df.to_parquet(output_file) total_functions_found += len(filtered_df) # Update progress bar with statistics pbar_files.set_postfix({ 'Current File': f"{idx + 1}/{len(parq_list)}", 'Total Found': total_functions_found }) except Exception as e: print(f"\nError processing {parquet_file}: {str(e)}") continue pbar_files.update(1) print(f"\nProcessing complete! Total Python functions found: {total_functions_found}")