File size: 5,131 Bytes
76abbed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import re
import pandas as pd
import glob
import os
from tqdm import tqdm
from datasets import load_dataset

# Download the dataset first
print("Downloading the RedStone-Code-python dataset...")
dataset = load_dataset("zjsd/RedStone-Code-python")
print("Dataset downloaded successfully!")

def detect_python_functions(text):
    if not isinstance(text, str):
        return []
        
    function_pattern = r'def\s+\w+\s*\([^)]*\)\s*:'
    lines = text.split('\n')
    function_blocks = []
    current_block = []
    in_function = False
    
    for line in lines:
        if re.search(function_pattern, line):
            if current_block and in_function:
                function_blocks.append('\n'.join(current_block))
                current_block = []
            in_function = True
            current_block = [line]
            continue
            
        if in_function:
            if line.startswith('    ') or '\t' in line or not line.strip():
                current_block.append(line)
            elif line.strip() and not line.startswith('    '):
                if current_block:
                    function_blocks.append('\n'.join(current_block))
                current_block = []
                in_function = False
    
    if current_block and in_function:
        function_blocks.append('\n'.join(current_block))
    
    def is_valid_function(block):
        has_python_keywords = any(keyword in block for keyword in 
                                ['return', 'print', 'if', 'for', 'while', '='])
        has_proper_indentation = any(line.startswith('    ') for line in block.split('\n')[1:])
        return has_python_keywords and has_proper_indentation
    
    return [block for block in function_blocks if is_valid_function(block)]

def has_python_functions(row):
    functions = detect_python_functions(row['text'])
    return len(functions) > 0

def process_in_batches(parquet_file, batch_size=10000):
    filtered_dfs = []
    total_rows = pd.read_parquet(parquet_file, columns=[]).shape[0]
    
    print(f"\nStarting to process file with {total_rows} rows")  # Debug line
    
    pbar_desc = f"Processing {os.path.basename(parquet_file)}"
    with tqdm(total=total_rows, desc=pbar_desc, position=1, leave=False) as pbar:
        for batch_start in range(0, total_rows, batch_size):
            # Read batch
            batch_df = pd.read_parquet(
                parquet_file,
                offset=batch_start,
                rows=min(batch_size, total_rows - batch_start)
            )
            
            # Debug lines
            print(f"\nProcessing batch of size: {len(batch_df)}")
            if len(batch_df) > 0:
                print(f"Sample text from batch:\n{batch_df['text'].iloc[0][:200]}...")
            
            # Filter and process batch
            filtered_batch = batch_df[batch_df.apply(has_python_functions, axis=1)].copy()
            print(f"Found {len(filtered_batch)} rows with functions in this batch")  # Debug line
            
            if len(filtered_batch) > 0:
                filtered_batch['python_functions'] = filtered_batch['text'].apply(detect_python_functions)
                filtered_dfs.append(filtered_batch)
            
            pbar.update(len(batch_df))
            pbar.set_postfix({'Found': sum(len(df) for df in filtered_dfs)})
    
    return pd.concat(filtered_dfs) if filtered_dfs else pd.DataFrame()

# Create output directory
output_dir = "filtered_python_functions"
os.makedirs(output_dir, exist_ok=True)

# Convert dataset to parquet files if needed
print("Converting dataset to parquet files...")
for split in dataset.keys():
    dataset[split].to_parquet(f"{output_dir}/redstone_{split}.parquet")

# Get list of parquet files
parq_list = glob.glob(f"{output_dir}/redstone_*.parquet")

if not parq_list:
    print("No parquet files found! Something went wrong with the dataset conversion.")
    exit(1)

print(f"Found {len(parq_list)} parquet files to process")

# Process all files with overall progress bar
total_functions_found = 0
with tqdm(total=len(parq_list), desc="Overall Progress", position=0) as pbar_files:
    for idx, parquet_file in enumerate(parq_list):
        try:
            # Process the file in batches
            filtered_df = process_in_batches(parquet_file, batch_size=10000)
            
            # Save if we found any matches
            if len(filtered_df) > 0:
                output_file = os.path.join(output_dir, f"python_functions_{idx}.parquet")
                filtered_df.to_parquet(output_file)
                total_functions_found += len(filtered_df)
                
                # Update progress bar with statistics
                pbar_files.set_postfix({
                    'Current File': f"{idx + 1}/{len(parq_list)}", 
                    'Total Found': total_functions_found
                })
                
        except Exception as e:
            print(f"\nError processing {parquet_file}: {str(e)}")
            continue
            
        pbar_files.update(1)

print(f"\nProcessing complete! Total Python functions found: {total_functions_found}")