max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
rses/__init__.py
iScrE4m/RSES
1
5400
# coding=utf-8 """RSES :)"""
1.117188
1
sdk/cosmos/azure-mgmt-cosmosdb/azure/mgmt/cosmosdb/operations/_gremlin_resources_operations.py
adewaleo/azure-sdk-for-python
2
5401
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class GremlinResourcesOperations(object): """GremlinResourcesOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.cosmosdb.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list_gremlin_databases( self, resource_group_name, # type: str account_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["models.GremlinDatabaseListResult"] """Lists the Gremlin databases under an existing Azure Cosmos DB database account. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either GremlinDatabaseListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.cosmosdb.models.GremlinDatabaseListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.GremlinDatabaseListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_gremlin_databases.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('GremlinDatabaseListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_gremlin_databases.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases'} # type: ignore def get_gremlin_database( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str **kwargs # type: Any ): # type: (...) -> "models.GremlinDatabaseGetResults" """Gets the Gremlin databases under an existing Azure Cosmos DB database account with the provided name. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: GremlinDatabaseGetResults, or the result of cls(response) :rtype: ~azure.mgmt.cosmosdb.models.GremlinDatabaseGetResults :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.GremlinDatabaseGetResults"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self.get_gremlin_database.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('GremlinDatabaseGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_gremlin_database.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}'} # type: ignore def _create_update_gremlin_database_initial( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str create_update_gremlin_database_parameters, # type: "models.GremlinDatabaseCreateUpdateParameters" **kwargs # type: Any ): # type: (...) -> Optional["models.GremlinDatabaseGetResults"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.GremlinDatabaseGetResults"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_update_gremlin_database_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(create_update_gremlin_database_parameters, 'GremlinDatabaseCreateUpdateParameters') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('GremlinDatabaseGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_update_gremlin_database_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}'} # type: ignore def begin_create_update_gremlin_database( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str create_update_gremlin_database_parameters, # type: "models.GremlinDatabaseCreateUpdateParameters" **kwargs # type: Any ): # type: (...) -> LROPoller["models.GremlinDatabaseGetResults"] """Create or update an Azure Cosmos DB Gremlin database. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :param create_update_gremlin_database_parameters: The parameters to provide for the current Gremlin database. :type create_update_gremlin_database_parameters: ~azure.mgmt.cosmosdb.models.GremlinDatabaseCreateUpdateParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either GremlinDatabaseGetResults or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.GremlinDatabaseGetResults] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.GremlinDatabaseGetResults"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_update_gremlin_database_initial( resource_group_name=resource_group_name, account_name=account_name, database_name=database_name, create_update_gremlin_database_parameters=create_update_gremlin_database_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('GremlinDatabaseGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_update_gremlin_database.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}'} # type: ignore def _delete_gremlin_database_initial( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" # Construct URL url = self._delete_gremlin_database_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_gremlin_database_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}'} # type: ignore def begin_delete_gremlin_database( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Deletes an existing Azure Cosmos DB Gremlin database. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_gremlin_database_initial( resource_group_name=resource_group_name, account_name=account_name, database_name=database_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete_gremlin_database.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}'} # type: ignore def get_gremlin_database_throughput( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str **kwargs # type: Any ): # type: (...) -> "models.ThroughputSettingsGetResults" """Gets the RUs per second of the Gremlin database under an existing Azure Cosmos DB database account with the provided name. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ThroughputSettingsGetResults, or the result of cls(response) :rtype: ~azure.mgmt.cosmosdb.models.ThroughputSettingsGetResults :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ThroughputSettingsGetResults"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self.get_gremlin_database_throughput.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_gremlin_database_throughput.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/throughputSettings/default'} # type: ignore def _update_gremlin_database_throughput_initial( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str update_throughput_parameters, # type: "models.ThroughputSettingsUpdateParameters" **kwargs # type: Any ): # type: (...) -> Optional["models.ThroughputSettingsGetResults"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.ThroughputSettingsGetResults"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_gremlin_database_throughput_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(update_throughput_parameters, 'ThroughputSettingsUpdateParameters') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_gremlin_database_throughput_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/throughputSettings/default'} # type: ignore def begin_update_gremlin_database_throughput( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str update_throughput_parameters, # type: "models.ThroughputSettingsUpdateParameters" **kwargs # type: Any ): # type: (...) -> LROPoller["models.ThroughputSettingsGetResults"] """Update RUs per second of an Azure Cosmos DB Gremlin database. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :param update_throughput_parameters: The RUs per second of the parameters to provide for the current Gremlin database. :type update_throughput_parameters: ~azure.mgmt.cosmosdb.models.ThroughputSettingsUpdateParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ThroughputSettingsGetResults or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.ThroughputSettingsGetResults] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ThroughputSettingsGetResults"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._update_gremlin_database_throughput_initial( resource_group_name=resource_group_name, account_name=account_name, database_name=database_name, update_throughput_parameters=update_throughput_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update_gremlin_database_throughput.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/throughputSettings/default'} # type: ignore def _migrate_gremlin_database_to_autoscale_initial( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str **kwargs # type: Any ): # type: (...) -> Optional["models.ThroughputSettingsGetResults"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.ThroughputSettingsGetResults"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self._migrate_gremlin_database_to_autoscale_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _migrate_gremlin_database_to_autoscale_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/throughputSettings/default/migrateToAutoscale'} # type: ignore def begin_migrate_gremlin_database_to_autoscale( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller["models.ThroughputSettingsGetResults"] """Migrate an Azure Cosmos DB Gremlin database from manual throughput to autoscale. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ThroughputSettingsGetResults or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.ThroughputSettingsGetResults] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ThroughputSettingsGetResults"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._migrate_gremlin_database_to_autoscale_initial( resource_group_name=resource_group_name, account_name=account_name, database_name=database_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_migrate_gremlin_database_to_autoscale.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/throughputSettings/default/migrateToAutoscale'} # type: ignore def _migrate_gremlin_database_to_manual_throughput_initial( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str **kwargs # type: Any ): # type: (...) -> Optional["models.ThroughputSettingsGetResults"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.ThroughputSettingsGetResults"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self._migrate_gremlin_database_to_manual_throughput_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _migrate_gremlin_database_to_manual_throughput_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/throughputSettings/default/migrateToManualThroughput'} # type: ignore def begin_migrate_gremlin_database_to_manual_throughput( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller["models.ThroughputSettingsGetResults"] """Migrate an Azure Cosmos DB Gremlin database from autoscale to manual throughput. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ThroughputSettingsGetResults or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.ThroughputSettingsGetResults] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ThroughputSettingsGetResults"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._migrate_gremlin_database_to_manual_throughput_initial( resource_group_name=resource_group_name, account_name=account_name, database_name=database_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_migrate_gremlin_database_to_manual_throughput.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/throughputSettings/default/migrateToManualThroughput'} # type: ignore def list_gremlin_graphs( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["models.GremlinGraphListResult"] """Lists the Gremlin graph under an existing Azure Cosmos DB database account. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either GremlinGraphListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.cosmosdb.models.GremlinGraphListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.GremlinGraphListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_gremlin_graphs.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('GremlinGraphListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_gremlin_graphs.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs'} # type: ignore def get_gremlin_graph( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str **kwargs # type: Any ): # type: (...) -> "models.GremlinGraphGetResults" """Gets the Gremlin graph under an existing Azure Cosmos DB database account. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :param graph_name: Cosmos DB graph name. :type graph_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: GremlinGraphGetResults, or the result of cls(response) :rtype: ~azure.mgmt.cosmosdb.models.GremlinGraphGetResults :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.GremlinGraphGetResults"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self.get_gremlin_graph.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), 'graphName': self._serialize.url("graph_name", graph_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('GremlinGraphGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_gremlin_graph.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}'} # type: ignore def _create_update_gremlin_graph_initial( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str create_update_gremlin_graph_parameters, # type: "models.GremlinGraphCreateUpdateParameters" **kwargs # type: Any ): # type: (...) -> Optional["models.GremlinGraphGetResults"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.GremlinGraphGetResults"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_update_gremlin_graph_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), 'graphName': self._serialize.url("graph_name", graph_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(create_update_gremlin_graph_parameters, 'GremlinGraphCreateUpdateParameters') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('GremlinGraphGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_update_gremlin_graph_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}'} # type: ignore def begin_create_update_gremlin_graph( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str create_update_gremlin_graph_parameters, # type: "models.GremlinGraphCreateUpdateParameters" **kwargs # type: Any ): # type: (...) -> LROPoller["models.GremlinGraphGetResults"] """Create or update an Azure Cosmos DB Gremlin graph. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :param graph_name: Cosmos DB graph name. :type graph_name: str :param create_update_gremlin_graph_parameters: The parameters to provide for the current Gremlin graph. :type create_update_gremlin_graph_parameters: ~azure.mgmt.cosmosdb.models.GremlinGraphCreateUpdateParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either GremlinGraphGetResults or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.GremlinGraphGetResults] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.GremlinGraphGetResults"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_update_gremlin_graph_initial( resource_group_name=resource_group_name, account_name=account_name, database_name=database_name, graph_name=graph_name, create_update_gremlin_graph_parameters=create_update_gremlin_graph_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('GremlinGraphGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_update_gremlin_graph.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}'} # type: ignore def _delete_gremlin_graph_initial( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" # Construct URL url = self._delete_gremlin_graph_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), 'graphName': self._serialize.url("graph_name", graph_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_gremlin_graph_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}'} # type: ignore def begin_delete_gremlin_graph( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Deletes an existing Azure Cosmos DB Gremlin graph. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :param graph_name: Cosmos DB graph name. :type graph_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_gremlin_graph_initial( resource_group_name=resource_group_name, account_name=account_name, database_name=database_name, graph_name=graph_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete_gremlin_graph.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}'} # type: ignore def get_gremlin_graph_throughput( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str **kwargs # type: Any ): # type: (...) -> "models.ThroughputSettingsGetResults" """Gets the Gremlin graph throughput under an existing Azure Cosmos DB database account with the provided name. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :param graph_name: Cosmos DB graph name. :type graph_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ThroughputSettingsGetResults, or the result of cls(response) :rtype: ~azure.mgmt.cosmosdb.models.ThroughputSettingsGetResults :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ThroughputSettingsGetResults"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self.get_gremlin_graph_throughput.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), 'graphName': self._serialize.url("graph_name", graph_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_gremlin_graph_throughput.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}/throughputSettings/default'} # type: ignore def _update_gremlin_graph_throughput_initial( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str update_throughput_parameters, # type: "models.ThroughputSettingsUpdateParameters" **kwargs # type: Any ): # type: (...) -> Optional["models.ThroughputSettingsGetResults"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.ThroughputSettingsGetResults"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_gremlin_graph_throughput_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), 'graphName': self._serialize.url("graph_name", graph_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(update_throughput_parameters, 'ThroughputSettingsUpdateParameters') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_gremlin_graph_throughput_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}/throughputSettings/default'} # type: ignore def begin_update_gremlin_graph_throughput( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str update_throughput_parameters, # type: "models.ThroughputSettingsUpdateParameters" **kwargs # type: Any ): # type: (...) -> LROPoller["models.ThroughputSettingsGetResults"] """Update RUs per second of an Azure Cosmos DB Gremlin graph. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :param graph_name: Cosmos DB graph name. :type graph_name: str :param update_throughput_parameters: The RUs per second of the parameters to provide for the current Gremlin graph. :type update_throughput_parameters: ~azure.mgmt.cosmosdb.models.ThroughputSettingsUpdateParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ThroughputSettingsGetResults or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.ThroughputSettingsGetResults] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ThroughputSettingsGetResults"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._update_gremlin_graph_throughput_initial( resource_group_name=resource_group_name, account_name=account_name, database_name=database_name, graph_name=graph_name, update_throughput_parameters=update_throughput_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update_gremlin_graph_throughput.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}/throughputSettings/default'} # type: ignore def _migrate_gremlin_graph_to_autoscale_initial( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str **kwargs # type: Any ): # type: (...) -> Optional["models.ThroughputSettingsGetResults"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.ThroughputSettingsGetResults"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self._migrate_gremlin_graph_to_autoscale_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), 'graphName': self._serialize.url("graph_name", graph_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _migrate_gremlin_graph_to_autoscale_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}/throughputSettings/default/migrateToAutoscale'} # type: ignore def begin_migrate_gremlin_graph_to_autoscale( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller["models.ThroughputSettingsGetResults"] """Migrate an Azure Cosmos DB Gremlin graph from manual throughput to autoscale. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :param graph_name: Cosmos DB graph name. :type graph_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ThroughputSettingsGetResults or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.ThroughputSettingsGetResults] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ThroughputSettingsGetResults"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._migrate_gremlin_graph_to_autoscale_initial( resource_group_name=resource_group_name, account_name=account_name, database_name=database_name, graph_name=graph_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_migrate_gremlin_graph_to_autoscale.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}/throughputSettings/default/migrateToAutoscale'} # type: ignore def _migrate_gremlin_graph_to_manual_throughput_initial( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str **kwargs # type: Any ): # type: (...) -> Optional["models.ThroughputSettingsGetResults"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.ThroughputSettingsGetResults"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self._migrate_gremlin_graph_to_manual_throughput_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), 'graphName': self._serialize.url("graph_name", graph_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _migrate_gremlin_graph_to_manual_throughput_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}/throughputSettings/default/migrateToManualThroughput'} # type: ignore def begin_migrate_gremlin_graph_to_manual_throughput( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller["models.ThroughputSettingsGetResults"] """Migrate an Azure Cosmos DB Gremlin graph from autoscale to manual throughput. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :param graph_name: Cosmos DB graph name. :type graph_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ThroughputSettingsGetResults or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.ThroughputSettingsGetResults] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ThroughputSettingsGetResults"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._migrate_gremlin_graph_to_manual_throughput_initial( resource_group_name=resource_group_name, account_name=account_name, database_name=database_name, graph_name=graph_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_migrate_gremlin_graph_to_manual_throughput.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}/throughputSettings/default/migrateToManualThroughput'} # type: ignore
1.695313
2
homeassistant/components/tasmota/discovery.py
yura505/core
0
5402
"""Support for MQTT discovery.""" import asyncio import logging from hatasmota.discovery import ( TasmotaDiscovery, get_device_config as tasmota_get_device_config, get_entities_for_platform as tasmota_get_entities_for_platform, get_entity as tasmota_get_entity, has_entities_with_platform as tasmota_has_entities_with_platform, unique_id_from_hash, ) from homeassistant.helpers.dispatcher import async_dispatcher_send from homeassistant.helpers.typing import HomeAssistantType from .const import DOMAIN _LOGGER = logging.getLogger(__name__) SUPPORTED_PLATFORMS = [ "switch", ] ALREADY_DISCOVERED = "tasmota_discovered_components" CONFIG_ENTRY_IS_SETUP = "tasmota_config_entry_is_setup" DATA_CONFIG_ENTRY_LOCK = "tasmota_config_entry_lock" TASMOTA_DISCOVERY_DEVICE = "tasmota_discovery_device" TASMOTA_DISCOVERY_ENTITY_NEW = "tasmota_discovery_entity_new_{}" TASMOTA_DISCOVERY_ENTITY_UPDATED = "tasmota_discovery_entity_updated_{}_{}_{}_{}" def clear_discovery_hash(hass, discovery_hash): """Clear entry in ALREADY_DISCOVERED list.""" del hass.data[ALREADY_DISCOVERED][discovery_hash] def set_discovery_hash(hass, discovery_hash): """Set entry in ALREADY_DISCOVERED list.""" hass.data[ALREADY_DISCOVERED][discovery_hash] = {} async def async_start( hass: HomeAssistantType, discovery_topic, config_entry, tasmota_mqtt ) -> bool: """Start MQTT Discovery.""" async def _load_platform(platform): """Load a Tasmota platform if not already done.""" async with hass.data[DATA_CONFIG_ENTRY_LOCK]: config_entries_key = f"{platform}.tasmota" if config_entries_key not in hass.data[CONFIG_ENTRY_IS_SETUP]: await hass.config_entries.async_forward_entry_setup( config_entry, platform ) hass.data[CONFIG_ENTRY_IS_SETUP].add(config_entries_key) async def _discover_entity(tasmota_entity_config, discovery_hash, platform): """Handle adding or updating a discovered entity.""" if not tasmota_entity_config: # Entity disabled, clean up entity registry entity_registry = await hass.helpers.entity_registry.async_get_registry() unique_id = unique_id_from_hash(discovery_hash) entity_id = entity_registry.async_get_entity_id(platform, DOMAIN, unique_id) if entity_id: _LOGGER.debug("Removing entity: %s %s", platform, discovery_hash) entity_registry.async_remove(entity_id) return if discovery_hash in hass.data[ALREADY_DISCOVERED]: _LOGGER.debug( "Entity already added, sending update: %s %s", platform, discovery_hash, ) async_dispatcher_send( hass, TASMOTA_DISCOVERY_ENTITY_UPDATED.format(*discovery_hash), tasmota_entity_config, ) else: _LOGGER.debug("Adding new entity: %s %s", platform, discovery_hash) tasmota_entity = tasmota_get_entity(tasmota_entity_config, tasmota_mqtt) hass.data[ALREADY_DISCOVERED][discovery_hash] = None async_dispatcher_send( hass, TASMOTA_DISCOVERY_ENTITY_NEW.format(platform), tasmota_entity, discovery_hash, ) async def async_device_discovered(payload, mac): """Process the received message.""" if ALREADY_DISCOVERED not in hass.data: hass.data[ALREADY_DISCOVERED] = {} _LOGGER.debug("Received discovery data for tasmota device: %s", mac) tasmota_device_config = tasmota_get_device_config(payload) async_dispatcher_send( hass, TASMOTA_DISCOVERY_DEVICE, tasmota_device_config, mac ) if not payload: return for platform in SUPPORTED_PLATFORMS: if not tasmota_has_entities_with_platform(payload, platform): continue await _load_platform(platform) for platform in SUPPORTED_PLATFORMS: tasmota_entities = tasmota_get_entities_for_platform(payload, platform) for (tasmota_entity_config, discovery_hash) in tasmota_entities: await _discover_entity(tasmota_entity_config, discovery_hash, platform) hass.data[DATA_CONFIG_ENTRY_LOCK] = asyncio.Lock() hass.data[CONFIG_ENTRY_IS_SETUP] = set() tasmota_discovery = TasmotaDiscovery(discovery_topic, tasmota_mqtt) await tasmota_discovery.start_discovery(async_device_discovered, None)
2.09375
2
tfx/components/infra_validator/executor.py
TimoKerr/tfx
1
5403
# Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TFX InfraValidator executor definition.""" import contextlib import functools import os import signal import threading import time from typing import Any, Dict, List, Optional from absl import logging from tfx import types from tfx.components.infra_validator import error_types from tfx.components.infra_validator import request_builder from tfx.components.infra_validator import serving_bins from tfx.components.infra_validator import types as iv_types from tfx.components.infra_validator.model_server_runners import kubernetes_runner from tfx.components.infra_validator.model_server_runners import local_docker_runner from tfx.dsl.components.base import base_executor from tfx.proto import infra_validator_pb2 from tfx.types import artifact_utils from tfx.types.standard_component_specs import BLESSING_KEY from tfx.types.standard_component_specs import EXAMPLES_KEY from tfx.types.standard_component_specs import MODEL_KEY from tfx.types.standard_component_specs import REQUEST_SPEC_KEY from tfx.types.standard_component_specs import SERVING_SPEC_KEY from tfx.types.standard_component_specs import VALIDATION_SPEC_KEY from tfx.utils import io_utils from tfx.utils import path_utils from tfx.utils import proto_utils from tfx.utils.model_paths import tf_serving_flavor from tensorflow_serving.apis import classification_pb2 from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_log_pb2 from tensorflow_serving.apis import regression_pb2 _DEFAULT_NUM_TRIES = 5 _DEFAULT_POLLING_INTERVAL_SEC = 1 _DEFAULT_MAX_LOADING_TIME_SEC = 300 _DEFAULT_MODEL_NAME = 'infra-validation-model' # Proto message keys for oneof block. _TENSORFLOW_SERVING = 'tensorflow_serving' _LOCAL_DOCKER = 'local_docker' _KUBERNETES = 'kubernetes' # Artifact property keys _BLESSED_KEY = 'blessed' _MODEL_FLAG_KEY = 'has_model' # Filename of infra blessing artifact on succeed. _BLESSED_FILENAME = 'INFRA_BLESSED' # Filename of infra blessing artifact on fail. _NOT_BLESSED_FILENAME = 'INFRA_NOT_BLESSED' def _create_model_server_runner( model_path: str, serving_binary: serving_bins.ServingBinary, serving_spec: infra_validator_pb2.ServingSpec): """Create a ModelServerRunner from a model, a ServingBinary and a ServingSpec. Args: model_path: An IV-flavored model path. (See model_path_utils.py) serving_binary: One of ServingBinary instances parsed from the `serving_spec`. serving_spec: A ServingSpec instance of this infra validation. Returns: A ModelServerRunner. """ platform = serving_spec.WhichOneof('serving_platform') if platform == 'local_docker': return local_docker_runner.LocalDockerRunner( model_path=model_path, serving_binary=serving_binary, serving_spec=serving_spec ) elif platform == 'kubernetes': return kubernetes_runner.KubernetesRunner( model_path=model_path, serving_binary=serving_binary, serving_spec=serving_spec ) else: raise NotImplementedError('Invalid serving_platform {}'.format(platform)) def _convert_to_prediction_log(request: iv_types.Request): """Try convert infra validation request to TF-Serving PredictionLog.""" if isinstance(request, classification_pb2.ClassificationRequest): return prediction_log_pb2.PredictionLog( classify_log=prediction_log_pb2.ClassifyLog(request=request)) elif isinstance(request, regression_pb2.RegressionRequest): return prediction_log_pb2.PredictionLog( regress_log=prediction_log_pb2.RegressLog(request=request)) elif isinstance(request, predict_pb2.PredictRequest): return prediction_log_pb2.PredictionLog( predict_log=prediction_log_pb2.PredictLog(request=request)) else: raise NotImplementedError( f'Cannot convert {type(request)} to PredictionLog') def _mark_blessed(blessing: types.Artifact) -> None: logging.info('Model passed infra validation.') io_utils.write_string_file( os.path.join(blessing.uri, _BLESSED_FILENAME), '') blessing.set_int_custom_property(_BLESSED_KEY, 1) def _mark_not_blessed(blessing: types.Artifact) -> None: logging.info('Model failed infra validation.') io_utils.write_string_file( os.path.join(blessing.uri, _NOT_BLESSED_FILENAME), '') blessing.set_int_custom_property(_BLESSED_KEY, 0) class Executor(base_executor.BaseExecutor): """TFX infra validator executor.""" def __init__(self, context: Optional[base_executor.BaseExecutor.Context] = None): super(Executor, self).__init__(context) self._cleanups = [] def _AddCleanup(self, function, *args, **kwargs): self._cleanups.append(functools.partial(function, *args, **kwargs)) def _Cleanup(self): for cleanup in self._cleanups: try: cleanup() except: # pylint: disable=broad-except, bare-except logging.warning('Error occurred during cleanup.', exc_info=True) def Do(self, input_dict: Dict[str, List[types.Artifact]], output_dict: Dict[str, List[types.Artifact]], exec_properties: Dict[str, Any]) -> None: """Contract for running InfraValidator Executor. Args: input_dict: - `model`: Single `Model` artifact that we're validating. - `examples`: `Examples` artifacts to be used for test requests. output_dict: - `blessing`: Single `InfraBlessing` artifact containing the validated result and optinally validated model if warmup requests are appended. Artifact URI includes an empty file with the name either of INFRA_BLESSED or INFRA_NOT_BLESSED. exec_properties: - `serving_spec`: Serialized `ServingSpec` configuration. - `validation_spec`: Serialized `ValidationSpec` configuration. - `request_spec`: Serialized `RequestSpec` configuration. """ self._log_startup(input_dict, output_dict, exec_properties) model = artifact_utils.get_single_instance(input_dict[MODEL_KEY]) blessing = artifact_utils.get_single_instance(output_dict[BLESSING_KEY]) if input_dict.get(EXAMPLES_KEY): examples = artifact_utils.get_single_instance(input_dict[EXAMPLES_KEY]) else: examples = None serving_spec = infra_validator_pb2.ServingSpec() proto_utils.json_to_proto(exec_properties[SERVING_SPEC_KEY], serving_spec) if not serving_spec.model_name: serving_spec.model_name = _DEFAULT_MODEL_NAME validation_spec = infra_validator_pb2.ValidationSpec() if exec_properties.get(VALIDATION_SPEC_KEY): proto_utils.json_to_proto(exec_properties[VALIDATION_SPEC_KEY], validation_spec) if not validation_spec.num_tries: validation_spec.num_tries = _DEFAULT_NUM_TRIES if not validation_spec.max_loading_time_seconds: validation_spec.max_loading_time_seconds = _DEFAULT_MAX_LOADING_TIME_SEC if exec_properties.get(REQUEST_SPEC_KEY): request_spec = infra_validator_pb2.RequestSpec() proto_utils.json_to_proto(exec_properties[REQUEST_SPEC_KEY], request_spec) else: request_spec = None with self._InstallGracefulShutdownHandler(): self._Do( model=model, examples=examples, blessing=blessing, serving_spec=serving_spec, validation_spec=validation_spec, request_spec=request_spec, ) @contextlib.contextmanager def _InstallGracefulShutdownHandler(self): # pylint: disable=g-doc-return-or-yield """Install graceful shutdown behavior. Caveat: InfraValidator currently only recognizes SIGTERM signal as a graceful shutdown. Furthermore, SIGTERM can be handled only if the executor is running on the MainThread (the thread that runs the python interpreter) due to the limitation of Python API. When the executor is running on Kubernetes, SIGTERM is a standard way to signal the graceful shutdown. Python default behavior for receiving SIGTERM is to terminate the process without raising any exception. By registering a handler that raises on signal, we can effectively transform the signal to an exception, and we can reuse our cleanup code inside "except" or "finally" block during the grace period. When the executor is run by the local Beam DirectRunner, the executor thread is one of the worker threads (not a MainThread) therefore SIGTERM cannot be recognized. If either of MainThread or worker thread receives SIGTERM, executor will die immediately without grace period. Even if the executor fails to shutdown gracefully, external resources that are created by model server runner can be cleaned up if the platform supports such mechanism (e.g. activeDeadlineSeconds in Kubernetes). """ def _handler(signum, frame): del frame # Unused. raise error_types.GracefulShutdown('Got signal {}.'.format(signum)) try: old_handler = signal.signal(signal.SIGTERM, _handler) except ValueError: # If current thread is not a MainThread, it is not allowed to register # the signal handler (ValueError raised). logging.info('Unable to register signal handler for non-MainThread ' '(name=%s). SIGTERM will not be handled.', threading.current_thread().name) old_handler = None try: yield finally: self._Cleanup() if old_handler: signal.signal(signal.SIGTERM, old_handler) def _Do( self, model: types.Artifact, examples: Optional[types.Artifact], blessing: types.Artifact, serving_spec: infra_validator_pb2.ServingSpec, validation_spec: infra_validator_pb2.ValidationSpec, request_spec: Optional[infra_validator_pb2.RequestSpec], ): if examples and request_spec: logging.info('InfraValidator will be run in LOAD_AND_QUERY mode.') requests = request_builder.build_requests( model_name=serving_spec.model_name, model=model, examples=examples, request_spec=request_spec) else: logging.info('InfraValidator will be run in LOAD_ONLY mode.') requests = [] model_path = self._PrepareModelPath(model, serving_spec) # TODO(jjong): Make logic parallel. all_passed = True for serving_binary in serving_bins.parse_serving_binaries(serving_spec): all_passed &= self._ValidateWithRetry( model_path=model_path, serving_binary=serving_binary, serving_spec=serving_spec, validation_spec=validation_spec, requests=requests) if all_passed: _mark_blessed(blessing) if requests and request_spec.make_warmup: self._CreateWarmupModel(blessing, model_path, warmup_requests=requests) else: _mark_not_blessed(blessing) def _CreateWarmupModel(self, blessing: types.Artifact, model_path: str, warmup_requests: List[iv_types.Request]): output_model_path = path_utils.stamped_model_path(blessing.uri) io_utils.copy_dir(src=model_path, dst=output_model_path) io_utils.write_tfrecord_file( path_utils.warmup_file_path(output_model_path), *[_convert_to_prediction_log(r) for r in warmup_requests]) blessing.set_int_custom_property(_MODEL_FLAG_KEY, 1) def _PrepareModelPath(self, model: types.Artifact, serving_spec: infra_validator_pb2.ServingSpec) -> str: model_path = path_utils.serving_model_path( model.uri, path_utils.is_old_model_artifact(model)) serving_binary = serving_spec.WhichOneof('serving_binary') if serving_binary == _TENSORFLOW_SERVING: # TensorFlow Serving requires model to be stored in its own directory # structure flavor. If current model_path does not conform to the flavor, # we need to make a copy to the temporary path. try: # Check whether current model_path conforms to the tensorflow serving # model path flavor. (Parsed without exception) tf_serving_flavor.parse_model_path( model_path, expected_model_name=serving_spec.model_name) except ValueError: # Copy the model to comply with the tensorflow serving model path # flavor. temp_model_path = tf_serving_flavor.make_model_path( model_base_path=self._get_tmp_dir(), model_name=serving_spec.model_name, version=int(time.time())) io_utils.copy_dir(src=model_path, dst=temp_model_path) self._AddCleanup(io_utils.delete_dir, self._context.get_tmp_path()) return temp_model_path return model_path def _ValidateWithRetry( self, model_path: str, serving_binary: serving_bins.ServingBinary, serving_spec: infra_validator_pb2.ServingSpec, validation_spec: infra_validator_pb2.ValidationSpec, requests: List[iv_types.Request]): for i in range(validation_spec.num_tries): logging.info('Starting infra validation (attempt %d/%d).', i + 1, validation_spec.num_tries) try: self._ValidateOnce( model_path=model_path, serving_binary=serving_binary, serving_spec=serving_spec, validation_spec=validation_spec, requests=requests) except error_types.GracefulShutdown: # GracefulShutdown means infra validation aborted. No more retry and # escalate the error. raise except Exception as e: # pylint: disable=broad-except # Other exceptions indicates validation failure. Log the error and # retry. logging.exception('Infra validation (attempt %d/%d) failed.', i + 1, validation_spec.num_tries) if isinstance(e, error_types.DeadlineExceeded): logging.info('Consider increasing the value of ' 'ValidationSpec.max_loading_time_seconds.') else: # If validation has passed without any exception, succeeded. return True # Every trial has failed. Marking model as not blessed. return False def _ValidateOnce( self, model_path: str, serving_binary: serving_bins.ServingBinary, serving_spec: infra_validator_pb2.ServingSpec, validation_spec: infra_validator_pb2.ValidationSpec, requests: List[iv_types.Request]): deadline = time.time() + validation_spec.max_loading_time_seconds runner = _create_model_server_runner( model_path=model_path, serving_binary=serving_binary, serving_spec=serving_spec) try: logging.info('Starting %r.', runner) runner.Start() # Check model is successfully loaded. runner.WaitUntilRunning(deadline) client = serving_binary.MakeClient(runner.GetEndpoint()) client.WaitUntilModelLoaded( deadline, polling_interval_sec=_DEFAULT_POLLING_INTERVAL_SEC) # Check model can be successfully queried. if requests: client.SendRequests(requests) finally: logging.info('Stopping %r.', runner) runner.Stop()
1.265625
1
learning_python/org/allnix/util.py
ykyang/org.allnix.python
0
5404
def write(message: str): print("org.allnix", message) def read() -> str: """Returns a string""" return "org.allnix"
2.8125
3
metr-la/model/Double_C_STTN.py
happys2333/DL-2021-fall
1
5405
<filename>metr-la/model/Double_C_STTN.py<gh_stars>1-10 # from folder workMETRLA # MODEL CODE # -*- coding: utf-8 -*- """ Created on Mon Sep 28 10:28:06 2020 @author: wb """ import torch import torch.nn as nn import math # from GCN_models import GCN # from One_hot_encoder import One_hot_encoder import torch.nn.functional as F import numpy as np from scipy.sparse.linalg import eigs from Param import * from torchsummary import summary DEVICE = 'cuda:1' class One_hot_encoder(nn.Module): def __init__(self, embed_size, time_num=288): super(One_hot_encoder, self).__init__() self.time_num = time_num self.I = nn.Parameter(torch.eye(time_num, time_num, requires_grad=True)) self.onehot_Linear = nn.Linear(time_num, embed_size) # 线性层改变one hot编码维度 def forward(self, i, N=25, T=12): if i % self.time_num + T > self.time_num: o1 = self.I[i % self.time_num:, :] o2 = self.I[0: (i + T) % self.time_num, :] onehot = torch.cat((o1, o2), 0) else: onehot = self.I[i % self.time_num: i % self.time_num + T, :] # onehot = onehot.repeat(N, 1, 1) onehot = onehot.expand(N, T, self.time_num) onehot = self.onehot_Linear(onehot) return onehot ''' Attention 基础代码 ScaledDotProductAttention 是通用的 解释dk: 数据进来的时候是B,N,T,C,做attention的时候,C=1 ,不能很好的表征数据高维空间的特征,C ---> embedded size 32 or 64 加入dk = 32, 那么一个头就是32,然后加上多头注意力机制的话,比如8个head,8个头,那就是32*8=256,如果要跟NIPS17 tranformer论文完全对应上,那么dk=64,head = 8 ,all embeded size = 512 ''' class ScaledDotProductAttention(nn.Module): def __init__(self): super(ScaledDotProductAttention, self).__init__() def forward(self, Q, K, V): ''' Q: [batch_size, n_heads, T(Spatial) or N(Temporal), N(Spatial) or T(Temporal), d_k] K: [batch_size, n_heads, T(Spatial) or N(Temporal), N(Spatial) or T(Temporal), d_k] V: [batch_size, n_heads, T(Spatial) or N(Temporal), N(Spatial) or T(Temporal), d_k] attn_mask: [batch_size, n_heads, seq_len, seq_len] 可能没有 ''' B, n_heads, len1, len2, d_k = Q.shape scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # scores : [batch_size, n_heads, T(Spatial) or N(Temporal), N(Spatial) or T(Temporal), N(Spatial) or T(Temporal)] # scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is True. attn = nn.Softmax(dim=-1)(scores) context = torch.matmul(attn, V) # [batch_size, n_heads, T(Spatial) or N(Temporal), N(Spatial) or T(Temporal), d_k]] return context ''' S 代表spatial ,MultiHeadAttention 代表多头注意力机制 ''' class SMultiHeadAttention(nn.Module): def __init__(self, embed_size, heads): super(SMultiHeadAttention, self).__init__() self.embed_size = embed_size self.heads = heads self.head_dim = embed_size // heads assert ( self.head_dim * heads == embed_size ), "Embedding size needs to be divisible by heads" # 用Linear来做投影矩阵 # 但这里如果是多头的话,是不是需要声明多个矩阵??? self.W_V = nn.Linear(self.embed_size, self.head_dim * self.heads, bias=False) self.W_K = nn.Linear(self.embed_size, self.head_dim * self.heads, bias=False) self.W_Q = nn.Linear(self.embed_size, self.head_dim * self.heads, bias=False) self.fc_out = nn.Linear(heads * self.head_dim, embed_size) def forward(self, input_Q, input_K, input_V): ''' input_Q: [batch_size, N, T, C] input_K: [batch_size, N, T, C] input_V: [batch_size, N, T, C] attn_mask: [batch_size, seq_len, seq_len] ''' B, N, T, C = input_Q.shape # [B, N, T, C] --> [B, N, T, h * d_k] --> [B, N, T, h, d_k] --> [B, h, T, N, d_k] Q = self.W_Q(input_Q).view(B, N, T, self.heads, self.head_dim).transpose(1, 3) # Q: [B, N, T, C] --[B, N, T, self.heads, self.head_dim] -> [B,h,T,N,dk] 然后是为了把N,dk这两维度考虑去做ScaledDotProductAttention ,代表着是spatial attention K = self.W_K(input_K).view(B, N, T, self.heads, self.head_dim).transpose(1, 3) # K: [B, h, T, N, d_k] V = self.W_V(input_V).view(B, N, T, self.heads, self.head_dim).transpose(1, 3) # V: [B, h, T, N, d_k] # attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size, n_heads, seq_len, seq_len] seq_len = N # context: [batch_size, n_heads, len_q, d_v], attn: [batch_size, n_heads, len_q, len_k] context = ScaledDotProductAttention()(Q, K, V) # [B, h, T, N, d_k] context = context.permute(0, 3, 2, 1, 4) # [B, N, T, h, d_k] context = context.reshape(B, N, T, self.heads * self.head_dim) # [B, N, T, C] # context = context.transpose(1, 2).reshape(batch_size, -1, n_heads * d_v) # context: [batch_size, len_q, n_heads * d_v] output = self.fc_out(context) # [batch_size, len_q, d_model] return output ''' T 代表Temporal ,MultiHeadAttention 代表多头注意力机制 ''' class TMultiHeadAttention(nn.Module): def __init__(self, embed_size, heads): super(TMultiHeadAttention, self).__init__() self.embed_size = embed_size self.heads = heads self.head_dim = embed_size // heads assert ( self.head_dim * heads == embed_size ), "Embedding size needs to be divisible by heads" # 用Linear来做投影矩阵 # 但这里如果是多头的话,是不是需要声明多个矩阵??? self.W_V = nn.Linear(self.embed_size, self.head_dim * self.heads, bias=False) self.W_K = nn.Linear(self.embed_size, self.head_dim * self.heads, bias=False) self.W_Q = nn.Linear(self.embed_size, self.head_dim * self.heads, bias=False) self.fc_out = nn.Linear(heads * self.head_dim, embed_size) def forward(self, input_Q, input_K, input_V): ''' input_Q: [batch_size, N, T, C] input_K: [batch_size, N, T, C] input_V: [batch_size, N, T, C] attn_mask: [batch_size, seq_len, seq_len] ''' B, N, T, C = input_Q.shape # [B, N, T, C] --> [B, N, T, h * d_k] --> [B, N, T, h, d_k] --> [B, h, N, T, d_k] Q = self.W_Q(input_Q).view(B, N, T, self.heads, self.head_dim).permute(0, 3, 1, 2, 4) # Q: [B, h, N, T, d_k] T,dk 就代表是temporal attention K = self.W_K(input_K).view(B, N, T, self.heads, self.head_dim).permute(0, 3, 1, 2, 4) # K: [B, h, N, T, d_k] V = self.W_V(input_V).view(B, N, T, self.heads, self.head_dim).permute(0, 3, 1, 2, 4) # V: [B, h, N, T, d_k] # attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size, n_heads, seq_len, seq_len] # context: [batch_size, n_heads, len_q, d_v], attn: [batch_size, n_heads, len_q, len_k] context = ScaledDotProductAttention()(Q, K, V) # [B, h, N, T, d_k] context = context.permute(0, 2, 3, 1, 4) # [B, N, T, h, d_k] context = context.reshape(B, N, T, self.heads * self.head_dim) # [B, N, T, C] # context = context.transpose(1, 2).reshape(batch_size, -1, n_heads * d_v) # context: [batch_size, len_q, n_heads * d_v] output = self.fc_out(context) # [batch_size, len_q, d_model] return output class STransformer(nn.Module): def __init__(self, embed_size, heads, adj, cheb_K, dropout, forward_expansion): super(STransformer, self).__init__() # Spatial Embedding self.adj = adj self.D_S = adj.to(DEVICE) self.embed_liner = nn.Linear(adj.shape[0], embed_size) self.attention = SMultiHeadAttention(embed_size, heads) self.norm1 = nn.LayerNorm(embed_size) self.norm2 = nn.LayerNorm(embed_size) self.feed_forward = nn.Sequential( nn.Linear(embed_size, forward_expansion * embed_size), nn.ReLU(), nn.Linear(forward_expansion * embed_size, embed_size), ) # 调用GCN self.norm_adj = nn.InstanceNorm2d(1) # 对邻接矩阵归一化 self.dropout = nn.Dropout(dropout) self.fs = nn.Linear(embed_size, embed_size) self.fg = nn.Linear(embed_size, embed_size) def forward(self, value, key, query): # value, key, query: [N, T, C] [B, N, T, C] # Spatial Embedding 部分 # N, T, C = query.shape # D_S = self.embed_liner(self.D_S) # [N, C] # D_S = D_S.expand(T, N, C) #[T, N, C]相当于在第一维复制了T份 # D_S = D_S.permute(1, 0, 2) #[N, T, C] B, N, T, C = query.shape D_S = self.embed_liner(self.D_S) # [N, C] ---position encoding D_S = D_S.expand(B, T, N, C) # [B, T, N, C] 相当于在第2维复制了T份, 第一维复制B份 D_S = D_S.permute(0, 2, 1, 3) # [B, N, T, C] # Spatial Transformer 部分 query = query + D_S attention = self.attention(query, query, query) # (B, N, T, C) # Add skip connection, run through normalization and finally dropout x = self.dropout(self.norm1(attention + query)) forward = self.feed_forward(x) U_S = self.dropout(self.norm2(forward + x)) # 融合 STransformer and GCN g = torch.sigmoid(self.fs(U_S)) # (7) out = g * U_S + (1 - g) # (8) return out # (B, N, T, C) class TTransformer(nn.Module): def __init__(self, embed_size, heads, time_num, dropout, forward_expansion): super(TTransformer, self).__init__() # Temporal embedding One hot self.time_num = time_num # self.one_hot = One_hot_encoder(embed_size, time_num) # temporal embedding选用one-hot方式 或者 self.temporal_embedding = nn.Embedding(time_num, embed_size) # temporal embedding选用nn.Embedding self.attention = TMultiHeadAttention(embed_size, heads) self.norm1 = nn.LayerNorm(embed_size) self.norm2 = nn.LayerNorm(embed_size) self.feed_forward = nn.Sequential( nn.Linear(embed_size, forward_expansion * embed_size), nn.ReLU(), nn.Linear(forward_expansion * embed_size, embed_size), ) self.dropout = nn.Dropout(dropout) def forward(self, value, key, query, t): B, N, T, C = query.shape # D_T = self.one_hot(t, N, T) # temporal embedding选用one-hot方式 或者 D_T = self.temporal_embedding(torch.arange(0, T).to(DEVICE)) # temporal embedding选用nn.Embedding D_T = D_T.expand(B, N, T, C) # temporal embedding加到query。 原论文采用concatenated query = query + D_T attention = self.attention(query, query, query) # Add skip connection, run through normalization and finally dropout x = self.dropout(self.norm1(attention + query)) forward = self.feed_forward(x) out = self.dropout(self.norm2(forward + x)) return out ### STBlock class STTransformerBlock(nn.Module): def __init__(self, embed_size, heads, adj, time_num, cheb_K, dropout, forward_expansion): super(STTransformerBlock, self).__init__() self.STransformer = STransformer(embed_size, heads, adj, cheb_K, dropout, forward_expansion) self.TTransformer = TTransformer(embed_size, heads, time_num, dropout, forward_expansion) self.norm1 = nn.LayerNorm(embed_size) self.norm2 = nn.LayerNorm(embed_size) self.dropout = nn.Dropout(dropout) def forward(self, value, key, query, t): # value, key, query: [N, T, C] [B, N, T, C] # Add skip connection,run through normalization and finally dropout x1 = self.norm1(self.STransformer(value, key, query) + query) # (B, N, T, C) x2 = self.dropout(self.norm2(self.TTransformer(x1, x1, x1, t) + x1)) return x2 ### Encoder class Encoder(nn.Module): # 堆叠多层 ST-Transformer Block def __init__( self, embed_size, num_layers, heads, adj, time_num, device, forward_expansion, cheb_K, dropout, ): super(Encoder, self).__init__() self.embed_size = embed_size self.device = device self.layers = nn.ModuleList( [ STTransformerBlock( embed_size, heads, adj, time_num, cheb_K, dropout=dropout, forward_expansion=forward_expansion ) for _ in range(num_layers) ] ) self.dropout = nn.Dropout(dropout) def forward(self, x, t): # x: [N, T, C] [B, N, T, C] out = self.dropout(x) # In the Encoder the query, key, value are all the same. for layer in self.layers: out = layer(out, out, out, t) return out ### Transformer class Transformer(nn.Module): def __init__( self, adj, embed_size, num_layers, heads, time_num, forward_expansion, ##? cheb_K, dropout, device=DEVICE ): super(Transformer, self).__init__() self.encoder = Encoder( embed_size, num_layers, heads, adj, time_num, device, forward_expansion, cheb_K, dropout ) self.device = device def forward(self, src, t): ## scr: [N, T, C] [B, N, T, C] enc_src = self.encoder(src, t) return enc_src # [B, N, T, C] ### ST Transformer: Total Model class STTransformer(nn.Module): def __init__( self, adj, in_channels, embed_size, time_num, num_layers, T_dim, output_T_dim, heads, cheb_K, forward_expansion, dropout=0 ): super(STTransformer, self).__init__() self.forward_expansion = forward_expansion # feed forward 的 embeded size 8,16,32....1024 # 第一次卷积扩充通道数 self.conv1 = nn.Conv2d(in_channels, embed_size, 1) # Channel = 1 给 扩维,成 embeded size self.Transformer = Transformer( adj, embed_size, num_layers, heads, time_num, forward_expansion, cheb_K, dropout=0 ) # 缩小时间维度。 例:T_dim=12到output_T_dim=3,输入12维降到输出3维 or 12in 12 out self.conv2 = nn.Conv2d(T_dim, output_T_dim, 1) # 缩小通道数,降到1维。 self.conv3 = nn.Conv2d(embed_size, in_channels, 1) self.relu = nn.ReLU() # 和归一化搭配好,防止梯度爆炸,消失。 def forward(self, x): # platform: (CHANNEL, TIMESTEP_IN, N_NODE) # input x shape[ C, N, T] # C:通道数量。 N:传感器数量。 T:时间数量 # x = x.unsqueeze(0) # x = np.transpose(x,(0,2,1)).to(DEVICE) input_Transformer = self.conv1(x) # conv 要求第二维度是C, 也就是必须得B C + 其他 # input_Transformer = input_Transformer.squeeze(0) # input_Transformer = input_Transformer.permute(1, 2, 0) input_Transformer = input_Transformer.permute(0, 2, 3, 1) # input_Transformer shape[N, T, C] [B, N, T, C] output_Transformer = self.Transformer(input_Transformer, self.forward_expansion) # [B, N, T, C] output_Transformer = output_Transformer.permute(0, 2, 1, 3) # output_Transformer shape[B, T, N, C] # output_Transformer = output_Transformer.unsqueeze(0) out = self.relu(self.conv2(output_Transformer)) # 等号左边 out shape: [1, output_T_dim, N, C] out = out.permute(0, 3, 2, 1) # 等号左边 out shape: [B, C, N, output_T_dim] out = self.conv3(out) # 等号左边 out shape: [B, 1, N, output_T_dim] # out = out.squeeze(1) out = out.permute(0, 1, 3, 2) # print('out: ',out.shape) return out # [B, N, output_dim] # return out shape: [N, output_dim] def print_params(model_name, model): param_count = 0 for name, param in model.named_parameters(): if param.requires_grad: param_count += param.numel() print(f'{model_name}, {param_count} trainable parameters in total.') return import sys import pandas as pd def main(): GPU = sys.argv[-1] if len(sys.argv) == 2 else '1' device = torch.device("cuda:{}".format(GPU)) if torch.cuda.is_available() else torch.device("cpu") in_channels = 2 # Channels of input embed_size = 32 # Dimension of hidden embedding features time_num = 288 num_layers = 2 # Number of ST Block T_dim = 12 # Input length, should be the same as prepareData.py output_T_dim = 12 # Output Expected length heads = 4 # Number of Heads in MultiHeadAttention cheb_K = 2 # Order for Chebyshev Polynomials (Eq 2) forward_expansion = 32 # Dimension of Feed Forward Network: embed_size --> embed_size * forward_expansion --> embed_size dropout = 0 A = pd.read_csv(ADJPATH).values A = torch.Tensor(A) ### Construct Network model = STTransformer( A, in_channels, embed_size, time_num, num_layers, T_dim, output_T_dim, heads, cheb_K, forward_expansion, dropout).to(DEVICE) summary(model, (2, N_NODE, TIMESTEP_IN), device=device) print_params('STTransformer', model) if __name__ == '__main__': main() ''' 布置作业: 1. 设计 only Spatial Transformer 的版本,跑出PEMSBAY的结果 12 步in 12 步 out 2. 设计 only Temporal Transformer 的版本,跑出PEMSBAY的结果 12 步in 12 步 out 3. 设计 Temporal-Spatial Transformer 的版本,跑出PEMSBAY的结果 12 步in 12 步 out 4. 前面的版本完成后,全部升级为,C 维度由1变成2,多的一个C是时间戳,时间戳的写法,参考 也就是说原来是B N T C=1 ,现在要求改成 B,N,T,C=2, 然后跑出1,2,3 升级版结果。 12 步in 12 步 out PEMSBAY 数据集 '''
2.125
2
tetrisanim3.py
daniel-chuang/tetris
0
5406
<reponame>daniel-chuang/tetris # animation for medium article from termcolor import colored import time import imageio import pyautogui pyautogui.FAILSAFE = True matrix = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 2, 0, 0, 0], [0, 0, 0, 0, 0, 2, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 1, 1, 1, 1, 1, 1, 1, 0], [1, 0, 1, 0, 0, 0, 0, 1, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 0, 1, 0, 1, 0, 0, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] lst = set() for i in range(21): for z in range(10): for row in range(len(matrix)): if 0 not in matrix[row]: lst.add(row) if (i == 20 or i > row) and row in lst: print(colored("1 " * 10, "green")) else: for element in range(len(matrix[row])): if i == row and z == element: print(colored(matrix[row][element], "green"), end=" ", flush=False) elif matrix[row][element] == 1: print(colored(matrix[row][element], "red"), end=" ", flush=False) elif matrix[row][element] == 2: print(colored(matrix[row][element], "blue"), end=" ", flush=False) else: print(matrix[row][element], end=" ", flush=False) print("") print("") # takes a screenshot pyautogui.moveTo(338, 580, duration = 0) pyautogui.hotkey('command', 'shift', '4') pyautogui.dragTo(547, 1000, duration = 0, button = 'left')
3.0625
3
inventories/models.py
destodasoftware/kately_api
0
5407
from django.db import models from products.models import Product from utils.models import Utility class Inventory(Utility): inventory_number = models.CharField(unique=True, max_length=100, blank=True, null=True) supplier = models.CharField(max_length=100, blank=True, null=True) user = models.ForeignKey('auth.User', on_delete=models.SET_NULL, blank=True, null=True) is_adjusment = models.BooleanField(default=False) def __str__(self): return self.inventory_number class InventoryItem(Utility): inventory = models.ForeignKey(Inventory, on_delete=models.CASCADE) product = models.ForeignKey(Product, on_delete=models.CASCADE) quantity = models.PositiveIntegerField(default=1) def __str__(self): return self.product.name
2.28125
2
hierarchical_app/views.py
stephken/Hierarchical_assessment
0
5408
from django.shortcuts import render from hierarchical_app.models import Folder # Create your views here. def index_view(request): return render(request, 'index.html', {'welcome': "Welcome to Kens Hierarchical Data and You assessment", 'folders': Folder.objects.all()})
1.867188
2
bin/train_vit.py
ramizdundar/Chexpert
0
5409
import sys import os import argparse import logging import json import time import subprocess from shutil import copyfile import numpy as np from sklearn import metrics from easydict import EasyDict as edict import torch from torch.utils.data import DataLoader import torch.nn.functional as F from torch.nn import DataParallel from vit_pytorch import ViT from tensorboardX import SummaryWriter sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../') torch.manual_seed(0) torch.cuda.manual_seed_all(0) from data.dataset import ImageDataset # noqa from model.classifier import Classifier # noqa from utils.misc import lr_schedule # noqa from model.utils import get_optimizer # noqa parser = argparse.ArgumentParser(description='Train model') parser.add_argument('cfg_path', default=None, metavar='CFG_PATH', type=str, help="Path to the config file in yaml format") parser.add_argument('save_path', default=None, metavar='SAVE_PATH', type=str, help="Path to the saved models") parser.add_argument('--num_workers', default=8, type=int, help="Number of " "workers for each data loader") parser.add_argument('--device_ids', default='0,1,2,3', type=str, help="GPU indices ""comma separated, e.g. '0,1' ") parser.add_argument('--pre_train', default=None, type=str, help="If get" "parameters from pretrained model") parser.add_argument('--resume', default=0, type=int, help="If resume from " "previous run") parser.add_argument('--logtofile', default=False, type=bool, help="Save log " "in save_path/log.txt if set True") parser.add_argument('--verbose', default=False, type=bool, help="Detail info") def get_loss(output, target, index, device, cfg): if cfg.criterion == 'BCE': for num_class in cfg.num_classes: assert num_class == 1 target = target[:, index].view(-1) pos_weight = torch.from_numpy( np.array(cfg.pos_weight, dtype=np.float32)).to(device).type_as(target) if cfg.batch_weight: if target.sum() == 0: loss = torch.tensor(0., requires_grad=True).to(device) else: weight = (target.size()[0] - target.sum()) / target.sum() loss = F.binary_cross_entropy_with_logits( output[index].view(-1), target, pos_weight=weight) else: loss = F.binary_cross_entropy_with_logits( output[index].view(-1), target, pos_weight=pos_weight[index]) label = torch.sigmoid(output[index].view(-1)).ge(0.5).float() acc = (target == label).float().sum() / len(label) else: raise Exception('Unknown criterion : {}'.format(cfg.criterion)) return (loss, acc) def train_epoch(summary, summary_dev, cfg, args, model, dataloader, dataloader_dev, optimizer, summary_writer, best_dict, dev_header): torch.set_grad_enabled(True) model.train() device_ids = list(map(int, args.device_ids.split(','))) device = torch.device('cuda:{}'.format(device_ids[0])) steps = len(dataloader) dataiter = iter(dataloader) label_header = dataloader.dataset._label_header num_tasks = len(cfg.num_classes) time_now = time.time() loss_sum = np.zeros(num_tasks) acc_sum = np.zeros(num_tasks) for step in range(steps): image, target = next(dataiter) image = image.to(device) target = target.to(device) # output, logit_map = model(image) output = model(image) output = [torch.unsqueeze(i, 1) for i in output.T] # different number of tasks loss = 0 for t in range(num_tasks): loss_t, acc_t = get_loss(output, target, t, device, cfg) loss += loss_t loss_sum[t] += loss_t.item() acc_sum[t] += acc_t.item() optimizer.zero_grad() loss.backward() optimizer.step() summary['step'] += 1 if summary['step'] % cfg.log_every == 0: time_spent = time.time() - time_now time_now = time.time() loss_sum /= cfg.log_every acc_sum /= cfg.log_every loss_str = ' '.join(map(lambda x: '{:.5f}'.format(x), loss_sum)) acc_str = ' '.join(map(lambda x: '{:.3f}'.format(x), acc_sum)) logging.info( '{}, Train, Epoch : {}, Step : {}, Loss : {}, ' 'Acc : {}, Run Time : {:.2f} sec' .format(time.strftime("%Y-%m-%d %H:%M:%S"), summary['epoch'] + 1, summary['step'], loss_str, acc_str, time_spent)) for t in range(num_tasks): summary_writer.add_scalar( 'train/loss_{}'.format(label_header[t]), loss_sum[t], summary['step']) summary_writer.add_scalar( 'train/acc_{}'.format(label_header[t]), acc_sum[t], summary['step']) loss_sum = np.zeros(num_tasks) acc_sum = np.zeros(num_tasks) if summary['step'] % cfg.test_every == 0: time_now = time.time() summary_dev, predlist, true_list = test_epoch( summary_dev, cfg, args, model, dataloader_dev) time_spent = time.time() - time_now auclist = [] for i in range(len(cfg.num_classes)): y_pred = predlist[i] y_true = true_list[i] fpr, tpr, thresholds = metrics.roc_curve( y_true, y_pred, pos_label=1) auc = metrics.auc(fpr, tpr) auclist.append(auc) summary_dev['auc'] = np.array(auclist) loss_dev_str = ' '.join(map(lambda x: '{:.5f}'.format(x), summary_dev['loss'])) acc_dev_str = ' '.join(map(lambda x: '{:.3f}'.format(x), summary_dev['acc'])) auc_dev_str = ' '.join(map(lambda x: '{:.3f}'.format(x), summary_dev['auc'])) logging.info( '{}, Dev, Step : {}, Loss : {}, Acc : {}, Auc : {},' 'Mean auc: {:.3f} ''Run Time : {:.2f} sec' .format( time.strftime("%Y-%m-%d %H:%M:%S"), summary['step'], loss_dev_str, acc_dev_str, auc_dev_str, summary_dev['auc'].mean(), time_spent)) for t in range(len(cfg.num_classes)): summary_writer.add_scalar( 'dev/loss_{}'.format(dev_header[t]), summary_dev['loss'][t], summary['step']) summary_writer.add_scalar( 'dev/acc_{}'.format(dev_header[t]), summary_dev['acc'][t], summary['step']) summary_writer.add_scalar( 'dev/auc_{}'.format(dev_header[t]), summary_dev['auc'][t], summary['step']) save_best = False mean_acc = summary_dev['acc'][cfg.save_index].mean() if mean_acc >= best_dict['acc_dev_best']: best_dict['acc_dev_best'] = mean_acc if cfg.best_target == 'acc': save_best = True mean_auc = summary_dev['auc'][cfg.save_index].mean() if mean_auc >= best_dict['auc_dev_best']: best_dict['auc_dev_best'] = mean_auc if cfg.best_target == 'auc': save_best = True mean_loss = summary_dev['loss'][cfg.save_index].mean() if mean_loss <= best_dict['loss_dev_best']: best_dict['loss_dev_best'] = mean_loss if cfg.best_target == 'loss': save_best = True if save_best: torch.save( {'epoch': summary['epoch'], 'step': summary['step'], 'acc_dev_best': best_dict['acc_dev_best'], 'auc_dev_best': best_dict['auc_dev_best'], 'loss_dev_best': best_dict['loss_dev_best'], 'state_dict': model.module.state_dict()}, os.path.join(args.save_path, 'best{}.ckpt'.format( best_dict['best_idx'])) ) best_dict['best_idx'] += 1 if best_dict['best_idx'] > cfg.save_top_k: best_dict['best_idx'] = 1 logging.info( '{}, Best, Step : {}, Loss : {}, Acc : {},Auc :{},' 'Best Auc : {:.3f}' .format( time.strftime("%Y-%m-%d %H:%M:%S"), summary['step'], loss_dev_str, acc_dev_str, auc_dev_str, best_dict['auc_dev_best'])) model.train() torch.set_grad_enabled(True) summary['epoch'] += 1 return summary, best_dict def test_epoch(summary, cfg, args, model, dataloader): torch.set_grad_enabled(False) model.eval() device_ids = list(map(int, args.device_ids.split(','))) device = torch.device('cuda:{}'.format(device_ids[0])) steps = len(dataloader) dataiter = iter(dataloader) num_tasks = len(cfg.num_classes) loss_sum = np.zeros(num_tasks) acc_sum = np.zeros(num_tasks) predlist = list(x for x in range(len(cfg.num_classes))) true_list = list(x for x in range(len(cfg.num_classes))) for step in range(steps): image, target = next(dataiter) image = image.to(device) target = target.to(device) output = model(image) output = [torch.unsqueeze(i, 1) for i in output.T] # different number of tasks for t in range(len(cfg.num_classes)): loss_t, acc_t = get_loss(output, target, t, device, cfg) # AUC output_tensor = torch.sigmoid( output[t].view(-1)).cpu().detach().numpy() target_tensor = target[:, t].view(-1).cpu().detach().numpy() if step == 0: predlist[t] = output_tensor true_list[t] = target_tensor else: predlist[t] = np.append(predlist[t], output_tensor) true_list[t] = np.append(true_list[t], target_tensor) loss_sum[t] += loss_t.item() acc_sum[t] += acc_t.item() summary['loss'] = loss_sum / steps summary['acc'] = acc_sum / steps return summary, predlist, true_list def run(args): with open(args.cfg_path) as f: cfg = edict(json.load(f)) if args.verbose is True: print(json.dumps(cfg, indent=4)) if not os.path.exists(args.save_path): os.mkdir(args.save_path) if args.logtofile is True: logging.basicConfig(filename=args.save_path + '/log.txt', filemode="w", level=logging.INFO) else: logging.basicConfig(level=logging.INFO) if not args.resume: with open(os.path.join(args.save_path, 'cfg.json'), 'w') as f: json.dump(cfg, f, indent=1) device_ids = list(map(int, args.device_ids.split(','))) num_devices = torch.cuda.device_count() if num_devices < len(device_ids): raise Exception( '#available gpu : {} < --device_ids : {}' .format(num_devices, len(device_ids))) device = torch.device('cuda:{}'.format(device_ids[0])) # model = Classifier(cfg) model = ViT( cfg = cfg, image_size=cfg.width, patch_size=32, num_classes=5, dim=1024, depth=6, heads=8, mlp_dim=512, dropout=0.3, emb_dropout=0.3, channels=3 ) if args.verbose is True: from torchsummary import summary if cfg.fix_ratio: h, w = cfg.long_side, cfg.long_side else: h, w = cfg.height, cfg.width summary(model.to(device), (3, h, w)) model = DataParallel(model, device_ids=device_ids).to(device).train() if args.pre_train is not None: if os.path.exists(args.pre_train): ckpt = torch.load(args.pre_train, map_location=device) model.module.load_state_dict(ckpt) optimizer = get_optimizer(model.parameters(), cfg) src_folder = os.path.dirname(os.path.abspath(__file__)) + '/../' dst_folder = os.path.join(args.save_path, 'classification') rc, size = subprocess.getstatusoutput('du --max-depth=0 %s | cut -f1' % src_folder) if rc != 0: raise Exception('Copy folder error : {}'.format(rc)) rc, err_msg = subprocess.getstatusoutput('cp -R %s %s' % (src_folder, dst_folder)) if rc != 0: raise Exception('copy folder error : {}'.format(err_msg)) copyfile(cfg.train_csv, os.path.join(args.save_path, 'train.csv')) copyfile(cfg.dev_csv, os.path.join(args.save_path, 'dev.csv')) dataloader_train = DataLoader( ImageDataset(cfg.train_csv, cfg, mode='train'), batch_size=cfg.train_batch_size, num_workers=args.num_workers, drop_last=True, shuffle=True) dataloader_dev = DataLoader( ImageDataset(cfg.dev_csv, cfg, mode='dev'), batch_size=cfg.dev_batch_size, num_workers=args.num_workers, drop_last=False, shuffle=False) dev_header = dataloader_dev.dataset._label_header summary_train = {'epoch': 0, 'step': 0} summary_dev = {'loss': float('inf'), 'acc': 0.0} summary_writer = SummaryWriter(args.save_path) epoch_start = 0 best_dict = { "acc_dev_best": 0.0, "auc_dev_best": 0.0, "loss_dev_best": float('inf'), "fused_dev_best": 0.0, "best_idx": 1} if args.resume: ckpt_path = os.path.join(args.save_path, 'train.ckpt') ckpt = torch.load(ckpt_path, map_location=device) model.module.load_state_dict(ckpt['state_dict']) summary_train = {'epoch': ckpt['epoch'], 'step': ckpt['step']} best_dict['acc_dev_best'] = ckpt['acc_dev_best'] best_dict['loss_dev_best'] = ckpt['loss_dev_best'] best_dict['auc_dev_best'] = ckpt['auc_dev_best'] epoch_start = ckpt['epoch'] for epoch in range(epoch_start, cfg.epoch): lr = lr_schedule(cfg.lr, cfg.lr_factor, summary_train['epoch'], cfg.lr_epochs) for param_group in optimizer.param_groups: param_group['lr'] = lr summary_train, best_dict = train_epoch( summary_train, summary_dev, cfg, args, model, dataloader_train, dataloader_dev, optimizer, summary_writer, best_dict, dev_header) time_now = time.time() summary_dev, predlist, true_list = test_epoch( summary_dev, cfg, args, model, dataloader_dev) time_spent = time.time() - time_now auclist = [] for i in range(len(cfg.num_classes)): y_pred = predlist[i] y_true = true_list[i] fpr, tpr, thresholds = metrics.roc_curve( y_true, y_pred, pos_label=1) auc = metrics.auc(fpr, tpr) auclist.append(auc) summary_dev['auc'] = np.array(auclist) loss_dev_str = ' '.join(map(lambda x: '{:.5f}'.format(x), summary_dev['loss'])) acc_dev_str = ' '.join(map(lambda x: '{:.3f}'.format(x), summary_dev['acc'])) auc_dev_str = ' '.join(map(lambda x: '{:.3f}'.format(x), summary_dev['auc'])) logging.info( '{}, Dev, Step : {}, Loss : {}, Acc : {}, Auc : {},' 'Mean auc: {:.3f} ''Run Time : {:.2f} sec' .format( time.strftime("%Y-%m-%d %H:%M:%S"), summary_train['step'], loss_dev_str, acc_dev_str, auc_dev_str, summary_dev['auc'].mean(), time_spent)) for t in range(len(cfg.num_classes)): summary_writer.add_scalar( 'dev/loss_{}'.format(dev_header[t]), summary_dev['loss'][t], summary_train['step']) summary_writer.add_scalar( 'dev/acc_{}'.format(dev_header[t]), summary_dev['acc'][t], summary_train['step']) summary_writer.add_scalar( 'dev/auc_{}'.format(dev_header[t]), summary_dev['auc'][t], summary_train['step']) save_best = False mean_acc = summary_dev['acc'][cfg.save_index].mean() if mean_acc >= best_dict['acc_dev_best']: best_dict['acc_dev_best'] = mean_acc if cfg.best_target == 'acc': save_best = True mean_auc = summary_dev['auc'][cfg.save_index].mean() if mean_auc >= best_dict['auc_dev_best']: best_dict['auc_dev_best'] = mean_auc if cfg.best_target == 'auc': save_best = True mean_loss = summary_dev['loss'][cfg.save_index].mean() if mean_loss <= best_dict['loss_dev_best']: best_dict['loss_dev_best'] = mean_loss if cfg.best_target == 'loss': save_best = True if save_best: torch.save( {'epoch': summary_train['epoch'], 'step': summary_train['step'], 'acc_dev_best': best_dict['acc_dev_best'], 'auc_dev_best': best_dict['auc_dev_best'], 'loss_dev_best': best_dict['loss_dev_best'], 'state_dict': model.module.state_dict()}, os.path.join(args.save_path, 'best{}.ckpt'.format(best_dict['best_idx'])) ) best_dict['best_idx'] += 1 if best_dict['best_idx'] > cfg.save_top_k: best_dict['best_idx'] = 1 logging.info( '{}, Best, Step : {}, Loss : {}, Acc : {},' 'Auc :{},Best Auc : {:.3f}' .format( time.strftime("%Y-%m-%d %H:%M:%S"), summary_train['step'], loss_dev_str, acc_dev_str, auc_dev_str, best_dict['auc_dev_best'])) torch.save({'epoch': summary_train['epoch'], 'step': summary_train['step'], 'acc_dev_best': best_dict['acc_dev_best'], 'auc_dev_best': best_dict['auc_dev_best'], 'loss_dev_best': best_dict['loss_dev_best'], 'state_dict': model.module.state_dict()}, os.path.join(args.save_path, 'train.ckpt')) summary_writer.close() def main(): args = parser.parse_args() if args.verbose is True: print('Using the specified args:') print(args) run(args) if __name__ == '__main__': main()
1.921875
2
Sets/the capaint s room.py
AndreasGeiger/hackerrank-python
0
5410
groupSize = input() groups = list(map(int,input().split(' '))) tmpArray1 = set() tmpArray2 = set() for i in groups: if i in tmpArray1: tmpArray2.discard(i) else: tmpArray1.add(i) tmpArray2.add(i) for i in tmpArray2: print(i)
3.25
3
tests/testsoma.py
gtmadureira/Python
4
5411
import unittest from hf_src.main import soma class TestSoma(unittest.TestCase): def test_retorno_soma_15_30(self): self.assertEqual(soma(15, 30), 45)
2.375
2
src/oictest/setup.py
rohe/oictest
32
5412
import copy import json from oic.utils.authn.client import CLIENT_AUTHN_METHOD from oic.utils.keyio import KeyJar from oic.utils.keyio import KeyBundle __author__ = 'roland' import logging logger = logging.getLogger(__name__) class OIDCError(Exception): pass def flow2sequence(operations, item): flow = operations.FLOWS[item] return [operations.PHASES[phase] for phase in flow["sequence"]] class OIDCTestSetup(object): def __init__(self, client_cls, config, test_defs): """ :param config: Imported configuration module :return: """ self.client_cls = client_cls self.config = config self.test_features = [] self.client = self.create_client(**config.CLIENT) self.test_defs = test_defs def create_client(self, **kwargs): """ Instantiate a _client instance :param: Keyword arguments Keys are ["srv_discovery_url", "client_info", "client_registration", "provider_info". "keys] :return: _client instance """ _key_set = set(kwargs.keys()) args = {} _client = self.client_cls(client_authn_method=CLIENT_AUTHN_METHOD, behaviour=kwargs["behaviour"], verify_ssl=self.config.VERIFY_SSL, **args) # The behaviour parameter is not significant for the election process _key_set.discard("behaviour") try: setattr(_client, "allow", kwargs["allow"]) except KeyError: pass else: _key_set.discard("allow") try: jwks = self.construct_jwks(_client, kwargs["keys"]) except KeyError: pass else: # export JWKS f = open("export/jwk.json", "w") f.write(json.dumps(jwks)) f.close() _client.jwks_uri = self.config.CLIENT["key_export_url"] self.test_features = _key_set try: _client.client_prefs = copy.copy(kwargs["preferences"]) except KeyError: pass else: _key_set.discard("preferences") if "client_info" in _key_set: _client.redirect_uris = self.config.CLIENT[ "client_info"]["redirect_uris"] elif "client_registration" in _key_set: reg_info = self.config.CLIENT["client_registration"] _client.redirect_uris = reg_info["redirect_uris"] _client.client_id = reg_info["client_id"] _client.client_secret = reg_info["client_secret"] return _client @staticmethod def construct_jwks(_client, key_conf): """ Construct the jwks """ if _client.keyjar is None: _client.keyjar = KeyJar() kbl = [] kid_template = "a%d" kid = 0 for typ, info in key_conf.items(): kb = KeyBundle(source="file://%s" % info["key"], fileformat="der", keytype=typ) for k in kb.keys(): k.serialize() k.kid = kid_template % kid kid += 1 _client.kid[k.use][k.kty] = k.kid _client.keyjar.add_kb("", kb) kbl.append(kb) jwks = {"keys": []} for kb in kbl: # ignore simple keys jwks["keys"].extend([k.to_dict() for k in kb.keys() if k.kty != 'oct']) return jwks def make_sequence(self, flow): """ Translate a flow name into a sequence of request/responses. :param flow: Which test flow to use :return: test sequence and test definitions """ sequence = flow2sequence(self.test_defs, flow) res = {"sequence": sequence, "tests": {"pre": [], "post": []}, "flow": [flow], "block": [], "mode": "", "expect_exception": False} _flow = self.test_defs.FLOWS[flow] for param in ["tests", "block", "mode", "expect_exception"]: try: res[param] = _flow[param] except KeyError: pass return res def add_init(self, test_spec): """ Add _client registration and provider info gathering if necessary :param test_spec: :return: """ _seq = test_spec["sequence"] _flow = test_spec["flow"] if "client_info" in self.test_features and \ "registration" not in test_spec["block"]: _register = True # May not be the first item in the sequence for sq in _seq: try: if sq[0].request == "RegistrationRequest": _register = False except TypeError: pass if _register: _ext = self.test_defs.PHASES["oic-registration"] _seq.insert(0, _ext) _flow.insert(0, "oic-registration") if "srv_discovery_url" in self.test_features: op_spec = self.test_defs.PHASES["provider-discovery"] if op_spec not in _seq: _seq.insert(0, op_spec) _flow.insert(0, "provider-discovery") return test_spec def request_and_return(conv, url, response=None, method="GET", body=None, body_type="json", state="", http_args=None, **kwargs): """ :param url: The URL to which the request should be sent :param response: Response type :param method: Which HTTP method to use :param body: A message body if any :param body_type: The format of the body of the return message :param http_args: Arguments for the HTTP _client :return: A cls or ErrorResponse instance or the HTTP response instance if no response body was expected. """ if http_args is None: http_args = {} _cli = conv._client try: _resp = _cli.http_request(url, method, data=body, **http_args) except Exception: raise conv.position = url conv.last_response = _resp conv.last_content = _resp.content if not "keyjar" in kwargs: kwargs["keyjar"] = conv.keyjar _response = _cli.parse_request_response(_resp, response, body_type, state, **kwargs) conv.protocol_response.append((_response, _resp.content)) return _response def test_summation(conv, sid): status = 0 for item in conv.test_output: if item["status"] > status: status = item["status"] if status == 0: status = 1 info = { "id": sid, "status": status, "tests": conv.test_output } return info
2.234375
2
HLTrigger/Configuration/python/HLT_75e33/modules/hltPFPuppiNoLep_cfi.py
PKUfudawei/cmssw
1
5413
<gh_stars>1-10 import FWCore.ParameterSet.Config as cms hltPFPuppiNoLep = cms.EDProducer("PuppiProducer", DeltaZCut = cms.double(0.1), DeltaZCutForChargedFromPUVtxs = cms.double(0.2), EtaMaxCharged = cms.double(99999.0), EtaMaxPhotons = cms.double(2.5), EtaMinUseDeltaZ = cms.double(-1.0), MinPuppiWeight = cms.double(0.01), NumOfPUVtxsForCharged = cms.uint32(0), PUProxyValue = cms.InputTag("hltPixelClustersMultiplicity"), PtMaxCharged = cms.double(-1.0), PtMaxNeutrals = cms.double(200.0), PtMaxNeutralsStartSlope = cms.double(0.0), PtMaxPhotons = cms.double(20.0), UseDeltaZCut = cms.bool(True), UseFromPVLooseTight = cms.bool(False), algos = cms.VPSet( cms.PSet( EtaMaxExtrap = cms.double(2.0), MedEtaSF = cms.vdouble(1.0, 1.0), MinNeutralPt = cms.vdouble(0.5105, 0.821), MinNeutralPtSlope = cms.vdouble(9.51e-06, 1.902e-05), RMSEtaSF = cms.vdouble(1.0, 1.0), etaMax = cms.vdouble(2.5, 3.5), etaMin = cms.vdouble(0.0, 2.5), ptMin = cms.vdouble(0.0, 0.0), puppiAlgos = cms.VPSet(cms.PSet( algoId = cms.int32(5), applyLowPUCorr = cms.bool(True), combOpt = cms.int32(0), cone = cms.double(0.4), rmsPtMin = cms.double(0.1), rmsScaleFactor = cms.double(1.0), useCharged = cms.bool(True) )) ), cms.PSet( EtaMaxExtrap = cms.double(2.0), MedEtaSF = cms.vdouble(0.75), MinNeutralPt = cms.vdouble(3.656), MinNeutralPtSlope = cms.vdouble(5.072e-05), RMSEtaSF = cms.vdouble(1.0), etaMax = cms.vdouble(10.0), etaMin = cms.vdouble(3.5), ptMin = cms.vdouble(0.0), puppiAlgos = cms.VPSet(cms.PSet( algoId = cms.int32(5), applyLowPUCorr = cms.bool(True), combOpt = cms.int32(0), cone = cms.double(0.4), rmsPtMin = cms.double(0.5), rmsScaleFactor = cms.double(1.0), useCharged = cms.bool(False) )) ) ), applyCHS = cms.bool(True), candName = cms.InputTag("particleFlowTmp"), clonePackedCands = cms.bool(False), invertPuppi = cms.bool(False), puppiDiagnostics = cms.bool(False), puppiNoLep = cms.bool(True), useExistingWeights = cms.bool(False), useExp = cms.bool(False), usePUProxyValue = cms.bool(True), vertexName = cms.InputTag("goodOfflinePrimaryVertices"), vtxNdofCut = cms.int32(4), vtxZCut = cms.double(24) )
1.164063
1
wizbin/build.py
RogueScholar/debreate
97
5414
# -*- coding: utf-8 -*- ## \package wizbin.build # MIT licensing # See: docs/LICENSE.txt import commands, os, shutil, subprocess, traceback, wx from dbr.functions import FileUnstripped from dbr.language import GT from dbr.log import DebugEnabled from dbr.log import Logger from dbr.md5 import WriteMD5 from fileio.fileio import ReadFile from fileio.fileio import WriteFile from globals.bitmaps import ICON_EXCLAMATION from globals.bitmaps import ICON_INFORMATION from globals.errorcodes import dbrerrno from globals.execute import ExecuteCommand from globals.execute import GetExecutable from globals.execute import GetSystemInstaller from globals.ident import btnid from globals.ident import chkid from globals.ident import inputid from globals.ident import pgid from globals.paths import ConcatPaths from globals.paths import PATH_app from globals.strings import GS from globals.strings import RemoveEmptyLines from globals.strings import TextIsEmpty from globals.system import PY_VER_MAJ from globals.tooltips import SetPageToolTips from input.toggle import CheckBox from input.toggle import CheckBoxESS from startup.tests import UsingTest from ui.button import CreateButton from ui.checklist import CheckListDialog from ui.dialog import DetailedMessageDialog from ui.dialog import ShowErrorDialog from ui.layout import BoxSizer from ui.output import OutputLog from ui.panel import BorderedPanel from ui.progress import PD_DEFAULT_STYLE from ui.progress import ProgressDialog from ui.progress import TimedProgressDialog from ui.style import layout as lyt from wiz.helper import FieldEnabled from wiz.helper import GetField from wiz.helper import GetMainWindow from wiz.helper import GetPage from wiz.wizard import WizardPage ## Build page class Page(WizardPage): ## Constructor # # \param parent # Parent <b><i>wx.Window</i></b> instance def __init__(self, parent): WizardPage.__init__(self, parent, pgid.BUILD) # ----- Extra Options pnl_options = BorderedPanel(self) self.chk_md5 = CheckBoxESS(pnl_options, chkid.MD5, GT(u'Create md5sums file'), name=u'MD5', defaultValue=True, commands=u'md5sum') # The » character denotes that an alternate tooltip should be shown if the control is disabled self.chk_md5.tt_name = u'md5»' self.chk_md5.col = 0 # Option to strip binaries self.chk_strip = CheckBoxESS(pnl_options, chkid.STRIP, GT(u'Strip binaries'), name=u'strip»', defaultValue=True, commands=u'strip') self.chk_strip.col = 0 # Deletes the temporary build tree self.chk_rmstage = CheckBoxESS(pnl_options, chkid.DELETE, GT(u'Delete staged directory'), name=u'RMSTAGE', defaultValue=True) self.chk_rmstage.col = 0 # Checks the output .deb for errors self.chk_lint = CheckBoxESS(pnl_options, chkid.LINT, GT(u'Check package for errors with lintian'), name=u'LINTIAN', defaultValue=True, commands=u'lintian') self.chk_lint.tt_name = u'lintian»' self.chk_lint.col = 0 # Installs the deb on the system self.chk_install = CheckBox(pnl_options, chkid.INSTALL, GT(u'Install package after build'), name=u'INSTALL', commands=(u'gdebi-gtk', u'gdebi-kde',)) self.chk_install.tt_name = u'install»' self.chk_install.col = 0 # *** Lintian Overrides *** # if UsingTest(u'alpha'): # FIXME: Move next to lintian check box Logger.Info(__name__, u'Enabling alpha feature "lintian overrides" option') self.lint_overrides = [] btn_lint_overrides = CreateButton(self, label=GT(u'Lintian overrides')) btn_lint_overrides.Bind(wx.EVT_BUTTON, self.OnSetLintOverrides) btn_build = CreateButton(self, btnid.BUILD, GT(u'Build'), u'build', 64) # Display log dsp_log = OutputLog(self) SetPageToolTips(self) # *** Event Handling *** # btn_build.Bind(wx.EVT_BUTTON, self.OnBuild) # *** Layout *** # lyt_options = wx.GridBagSizer() next_row = 0 prev_row = next_row for CHK in pnl_options.Children: row = next_row FLAGS = lyt.PAD_LR if CHK.col: row = prev_row FLAGS = wx.RIGHT lyt_options.Add(CHK, (row, CHK.col), flag=FLAGS, border=5) if not CHK.col: prev_row = next_row next_row += 1 pnl_options.SetSizer(lyt_options) pnl_options.SetAutoLayout(True) pnl_options.Layout() lyt_buttons = BoxSizer(wx.HORIZONTAL) lyt_buttons.Add(btn_build, 1) lyt_main = BoxSizer(wx.VERTICAL) lyt_main.AddSpacer(10) lyt_main.Add(wx.StaticText(self, label=GT(u'Extra Options')), 0, lyt.ALGN_LB|wx.LEFT, 5) lyt_main.Add(pnl_options, 0, wx.LEFT, 5) lyt_main.AddSpacer(5) if UsingTest(u'alpha'): #lyt_main.Add(wx.StaticText(self, label=GT(u'Lintian overrides')), 0, wx.LEFT, 5) lyt_main.Add(btn_lint_overrides, 0, wx.LEFT, 5) lyt_main.AddSpacer(5) lyt_main.Add(lyt_buttons, 0, lyt.ALGN_C) lyt_main.Add(dsp_log, 2, wx.EXPAND|lyt.PAD_LRB, 5) self.SetAutoLayout(True) self.SetSizer(lyt_main) self.Layout() ## Method that builds the actual Debian package # # \param task_list # \b \e dict : Task string IDs & page data # \param build_path # \b \e unicode|str : Directory where .deb will be output # \param filename # \b \e unicode|str : Basename of output file without .deb extension # \return # \b \e dbrerror : SUCCESS if build completed successfully def Build(self, task_list, build_path, filename): # Declare this here in case of error before progress dialog created build_progress = None try: # Other mandatory tasks that will be processed mandatory_tasks = ( u'stage', u'install_size', u'control', u'build', ) # Add other mandatory tasks for T in mandatory_tasks: task_list[T] = None task_count = len(task_list) # Add each file for updating progress dialog if u'files' in task_list: task_count += len(task_list[u'files']) # Add each script for updating progress dialog if u'scripts' in task_list: task_count += len(task_list[u'scripts']) if DebugEnabled(): task_msg = GT(u'Total tasks: {}').format(task_count) print(u'DEBUG: [{}] {}'.format(__name__, task_msg)) for T in task_list: print(u'\t{}'.format(T)) create_changelog = u'changelog' in task_list create_copyright = u'copyright' in task_list pg_control = GetPage(pgid.CONTROL) pg_menu = GetPage(pgid.MENU) stage_dir = u'{}/{}__dbp__'.format(build_path, filename) if os.path.isdir(u'{}/DEBIAN'.format(stage_dir)): try: shutil.rmtree(stage_dir) except OSError: ShowErrorDialog(GT(u'Could not free stage directory: {}').format(stage_dir), title=GT(u'Cannot Continue')) return (dbrerrno.EEXIST, None) # Actual path to new .deb deb = u'"{}/{}.deb"'.format(build_path, filename) progress = 0 task_msg = GT(u'Preparing build tree') Logger.Debug(__name__, task_msg) wx.Yield() build_progress = ProgressDialog(GetMainWindow(), GT(u'Building'), task_msg, maximum=task_count, style=PD_DEFAULT_STYLE|wx.PD_ELAPSED_TIME|wx.PD_ESTIMATED_TIME|wx.PD_CAN_ABORT) DIR_debian = ConcatPaths((stage_dir, u'DEBIAN')) # Make a fresh build tree os.makedirs(DIR_debian) progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) def UpdateProgress(current_task, message=None): task_eval = u'{} / {}'.format(current_task, task_count) if message: Logger.Debug(__name__, u'{} ({})'.format(message, task_eval)) wx.Yield() build_progress.Update(current_task, message) return wx.Yield() build_progress.Update(current_task) # *** Files *** # if u'files' in task_list: UpdateProgress(progress, GT(u'Copying files')) no_follow_link = GetField(GetPage(pgid.FILES), chkid.SYMLINK).IsChecked() # TODO: move this into a file functions module def _copy(f_src, f_tgt, exe=False): # NOTE: Python 3 appears to have follow_symlinks option for shutil.copy # FIXME: copying nested symbolic link may not work if os.path.isdir(f_src): if os.path.islink(f_src) and no_follow_link: Logger.Debug(__name__, u'Adding directory symbolic link to stage: {}'.format(f_tgt)) os.symlink(os.readlink(f_src), f_tgt) else: Logger.Debug(__name__, u'Adding directory to stage: {}'.format(f_tgt)) shutil.copytree(f_src, f_tgt) os.chmod(f_tgt, 0o0755) elif os.path.isfile(f_src): if os.path.islink(f_src) and no_follow_link: Logger.Debug(__name__, u'Adding file symbolic link to stage: {}'.format(f_tgt)) os.symlink(os.readlink(f_src), f_tgt) else: if exe: Logger.Debug(__name__, u'Adding executable to stage: {}'.format(f_tgt)) else: Logger.Debug(__name__, u'Adding file to stage: {}'.format(f_tgt)) shutil.copy(f_src, f_tgt) # Set FILE permissions if exe: os.chmod(f_tgt, 0o0755) else: os.chmod(f_tgt, 0o0644) files_data = task_list[u'files'] for FILE in files_data: file_defs = FILE.split(u' -> ') source_file = file_defs[0] target_file = u'{}{}/{}'.format(stage_dir, file_defs[2], file_defs[1]) target_dir = os.path.dirname(target_file) if not os.path.isdir(target_dir): os.makedirs(target_dir) # Remove asteriks from exectuables exe = False if source_file[-1] == u'*': exe = True source_file = source_file[:-1] _copy(source_file, u'{}/{}'.format(target_dir, os.path.basename(source_file)), exe) # Individual files progress += 1 UpdateProgress(progress) # Entire file task progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) # *** Strip files ***# # FIXME: Needs only be run if 'files' step is used if u'strip' in task_list: UpdateProgress(progress, GT(u'Stripping binaries')) for ROOT, DIRS, FILES in os.walk(stage_dir): #@UnusedVariable for F in FILES: # Don't check files in DEBIAN directory if ROOT != DIR_debian: F = ConcatPaths((ROOT, F)) if FileUnstripped(F): Logger.Debug(__name__, u'Unstripped file: {}'.format(F)) # FIXME: Strip command should be set as class member? ExecuteCommand(GetExecutable(u'strip'), F) progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) package = GetField(pg_control, inputid.PACKAGE).GetValue() # Make sure that the directory is available in which to place documentation if create_changelog or create_copyright: doc_dir = u'{}/usr/share/doc/{}'.format(stage_dir, package) if not os.path.isdir(doc_dir): os.makedirs(doc_dir) # *** Changelog *** # if create_changelog: UpdateProgress(progress, GT(u'Creating changelog')) # If changelog will be installed to default directory changelog_target = task_list[u'changelog'][0] if changelog_target == u'STANDARD': changelog_target = ConcatPaths((u'{}/usr/share/doc'.format(stage_dir), package)) else: changelog_target = ConcatPaths((stage_dir, changelog_target)) if not os.path.isdir(changelog_target): os.makedirs(changelog_target) WriteFile(u'{}/changelog'.format(changelog_target), task_list[u'changelog'][1]) CMD_gzip = GetExecutable(u'gzip') if CMD_gzip: UpdateProgress(progress, GT(u'Compressing changelog')) c = u'{} -n --best "{}/changelog"'.format(CMD_gzip, changelog_target) clog_status = commands.getstatusoutput(c.encode(u'utf-8')) if clog_status[0]: ShowErrorDialog(GT(u'Could not compress changelog'), clog_status[1], warn=True, title=GT(u'Warning')) progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) # *** Copyright *** # if create_copyright: UpdateProgress(progress, GT(u'Creating copyright')) WriteFile(u'{}/usr/share/doc/{}/copyright'.format(stage_dir, package), task_list[u'copyright']) progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) # Characters that should not be in filenames invalid_chars = (u' ', u'/') # *** Menu launcher *** # if u'launcher' in task_list: UpdateProgress(progress, GT(u'Creating menu launcher')) # This might be changed later to set a custom directory menu_dir = u'{}/usr/share/applications'.format(stage_dir) menu_filename = pg_menu.GetOutputFilename() # Remove invalid characters from filename for char in invalid_chars: menu_filename = menu_filename.replace(char, u'_') if not os.path.isdir(menu_dir): os.makedirs(menu_dir) WriteFile(u'{}/{}.desktop'.format(menu_dir, menu_filename), task_list[u'launcher']) progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) # *** md5sums file *** # # Good practice to create hashes before populating DEBIAN directory if u'md5sums' in task_list: UpdateProgress(progress, GT(u'Creating md5sums')) if not WriteMD5(stage_dir, parent=build_progress): # Couldn't call md5sum command build_progress.Cancel() progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) # *** Scripts *** # if u'scripts' in task_list: UpdateProgress(progress, GT(u'Creating scripts')) scripts = task_list[u'scripts'] for SCRIPT in scripts: script_name = SCRIPT script_text = scripts[SCRIPT] script_filename = ConcatPaths((stage_dir, u'DEBIAN', script_name)) WriteFile(script_filename, script_text) # Make sure scipt path is wrapped in quotes to avoid whitespace errors os.chmod(script_filename, 0755) os.system((u'chmod +x "{}"'.format(script_filename))) # Individual scripts progress += 1 UpdateProgress(progress) # Entire script task progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) # *** Control file *** # UpdateProgress(progress, GT(u'Getting installed size')) # Get installed-size installed_size = os.popen((u'du -hsk "{}"'.format(stage_dir))).readlines() installed_size = installed_size[0].split(u'\t') installed_size = installed_size[0] # Insert Installed-Size into control file control_data = pg_control.Get().split(u'\n') control_data.insert(2, u'Installed-Size: {}'.format(installed_size)) progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) # Create final control file UpdateProgress(progress, GT(u'Creating control file')) # dpkg fails if there is no newline at end of file control_data = u'\n'.join(control_data).strip(u'\n') # Ensure there is only one empty trailing newline # Two '\n' to show physical empty line, but not required # Perhaps because string is not null terminated??? control_data = u'{}\n\n'.format(control_data) WriteFile(u'{}/DEBIAN/control'.format(stage_dir), control_data, noStrip=u'\n') progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) # *** Final build *** # UpdateProgress(progress, GT(u'Running dpkg')) working_dir = os.path.split(stage_dir)[0] c_tree = os.path.split(stage_dir)[1] deb_package = u'{}.deb'.format(filename) # Move the working directory becuase dpkg seems to have problems with spaces in path os.chdir(working_dir) # HACK to fix file/dir permissions for ROOT, DIRS, FILES in os.walk(stage_dir): for D in DIRS: D = u'{}/{}'.format(ROOT, D) os.chmod(D, 0o0755) for F in FILES: F = u'{}/{}'.format(ROOT, F) if os.access(F, os.X_OK): os.chmod(F, 0o0755) else: os.chmod(F, 0o0644) # FIXME: Should check for working fakeroot & dpkg-deb executables build_status = commands.getstatusoutput((u'{} {} -b "{}" "{}"'.format(GetExecutable(u'fakeroot'), GetExecutable(u'dpkg-deb'), c_tree, deb_package))) progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) # *** Delete staged directory *** # if u'rmstage' in task_list: UpdateProgress(progress, GT(u'Removing temp directory')) try: shutil.rmtree(stage_dir) except OSError: ShowErrorDialog(GT(u'An error occurred when trying to delete the build tree'), parent=build_progress) progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) # *** ERROR CHECK if u'lintian' in task_list: UpdateProgress(progress, GT(u'Checking package for errors')) # FIXME: Should be set as class memeber? CMD_lintian = GetExecutable(u'lintian') errors = commands.getoutput((u'{} {}'.format(CMD_lintian, deb))) if errors != wx.EmptyString: e1 = GT(u'Lintian found some issues with the package.') e2 = GT(u'Details saved to {}').format(filename) WriteFile(u'{}/{}.lintian'.format(build_path, filename), errors) DetailedMessageDialog(build_progress, GT(u'Lintian Errors'), ICON_INFORMATION, u'{}\n{}.lintian'.format(e1, e2), errors).ShowModal() progress += 1 # Close progress dialog wx.Yield() build_progress.Update(progress) build_progress.Destroy() # Build completed successfullly if not build_status[0]: return (dbrerrno.SUCCESS, deb_package) if PY_VER_MAJ <= 2: # Unicode decoder has trouble with certain characters. Replace any # non-decodable characters with � (0xFFFD). build_output = list(build_status[1]) # String & unicode string incompatibilities index = 0 for C in build_output: try: GS(C) except UnicodeDecodeError: build_output[index] = u'�' index += 1 build_status = (build_status[0], u''.join(build_output)) # Build failed return (build_status[0], build_status[1]) except: if build_progress: build_progress.Destroy() return(dbrerrno.EUNKNOWN, traceback.format_exc()) ## TODO: Doxygen # # \return # \b \e tuple containing Return code & build details def BuildPrep(self): # Declare these here in case of error before dialogs created save_dia = None prebuild_progress = None try: # List of tasks for build process # 'stage' should be very first task task_list = {} # Control page pg_control = GetPage(pgid.CONTROL) fld_package = GetField(pg_control, inputid.PACKAGE) fld_version = GetField(pg_control, inputid.VERSION) fld_maint = GetField(pg_control, inputid.MAINTAINER) fld_email = GetField(pg_control, inputid.EMAIL) fields_control = ( fld_package, fld_version, fld_maint, fld_email, ) # Menu launcher page pg_launcher = GetPage(pgid.MENU) # Check to make sure that all required fields have values required = list(fields_control) if pg_launcher.IsOkay(): task_list[u'launcher'] = pg_launcher.Get() required.append(GetField(pg_launcher, inputid.NAME)) if not GetField(pg_launcher, chkid.FNAME).GetValue(): required.append(GetField(pg_launcher, inputid.FNAME)) for item in required: if TextIsEmpty(item.GetValue()): field_name = GT(item.GetName().title()) page_name = pg_control.GetName() if item not in fields_control: page_name = pg_launcher.GetName() return (dbrerrno.FEMPTY, u'{} ➜ {}'.format(page_name, field_name)) # Get information from control page for default filename package = fld_package.GetValue() # Remove whitespace package = package.strip(u' \t') package = u'-'.join(package.split(u' ')) version = fld_version.GetValue() # Remove whitespace version = version.strip(u' \t') version = u''.join(version.split()) arch = GetField(pg_control, inputid.ARCH).GetStringSelection() # Dialog for save destination ttype = GT(u'Debian packages') save_dia = wx.FileDialog(self, GT(u'Save'), os.getcwd(), wx.EmptyString, u'{}|*.deb'.format(ttype), wx.FD_SAVE|wx.FD_OVERWRITE_PROMPT|wx.FD_CHANGE_DIR) save_dia.SetFilename(u'{}_{}_{}.deb'.format(package, version, arch)) if not save_dia.ShowModal() == wx.ID_OK: return (dbrerrno.ECNCLD, None) build_path = os.path.split(save_dia.GetPath())[0] filename = os.path.split(save_dia.GetPath())[1].split(u'.deb')[0] # Control, menu, & build pages not added to this list page_checks = ( (pgid.FILES, u'files'), (pgid.SCRIPTS, u'scripts'), (pgid.CHANGELOG, u'changelog'), (pgid.COPYRIGHT, u'copyright'), ) # Install step is not added to this list # 'control' should be after 'md5sums' # 'build' should be after 'control' other_checks = ( (self.chk_md5, u'md5sums'), (self.chk_strip, u'strip'), (self.chk_rmstage, u'rmstage'), (self.chk_lint, u'lintian'), ) prep_task_count = len(page_checks) + len(other_checks) progress = 0 wx.Yield() prebuild_progress = ProgressDialog(GetMainWindow(), GT(u'Preparing to build'), maximum=prep_task_count) if wx.MAJOR_VERSION < 3: # Resize dialog for better fit pb_size = prebuild_progress.GetSizeTuple() pb_size = (pb_size[0]+200, pb_size[1]) prebuild_progress.SetSize(pb_size) prebuild_progress.CenterOnParent() for PID, id_string in page_checks: wx.Yield() prebuild_progress.Update(progress, GT(u'Checking {}').format(id_string)) wizard_page = GetPage(PID) if wizard_page.IsOkay(): task_list[id_string] = wizard_page.Get() progress += 1 for task_check, id_string in other_checks: wx.Yield() prebuild_progress.Update(progress, GT(u'Testing for: {}').format(task_check.GetLabel())) if task_check.GetValue(): task_list[id_string] = None progress += 1 # Close progress dialog wx.Yield() prebuild_progress.Update(progress) prebuild_progress.Destroy() return (dbrerrno.SUCCESS, (task_list, build_path, filename)) except: if save_dia: save_dia.Destroy() if prebuild_progress: prebuild_progress.Destroy() return (dbrerrno.EUNKNOWN, traceback.format_exc()) ## TODO: Doxygen def GetSaveData(self): build_list = [] options = ( self.chk_md5, self.chk_rmstage, self.chk_lint, ) for O in options: if O.GetValue(): build_list.append(u'1') else: build_list.append(u'0') if self.chk_strip.GetValue(): build_list.append(u'strip') return u'<<BUILD>>\n{}\n<</BUILD>>'.format(u'\n'.join(build_list)) ## Installs the built .deb package onto the system # # Uses the system's package installer: # gdebi if available or dpkg # # Shows a success dialog if installed. Otherwise shows an # error dialog. # \param package # \b \e unicode|str : Path to package to be installed def InstallPackage(self, package): system_installer = GetSystemInstaller() if not system_installer: ShowErrorDialog( GT(u'Cannot install package'), GT(u'A compatible package manager could not be found on the system'), __name__, warn=True ) return Logger.Info(__name__, GT(u'Attempting to install package: {}').format(package)) Logger.Info(__name__, GT(u'Installing with {}').format(system_installer)) install_cmd = (system_installer, package,) wx.Yield() # FIXME: Use ExecuteCommand here install_output = subprocess.Popen(install_cmd) # Command appears to not have been executed correctly if install_output == None: ShowErrorDialog( GT(u'Could not install package: {}'), GT(u'An unknown error occurred'), __name__ ) return # Command executed but did not return success code if install_output.returncode: err_details = ( GT(u'Process returned code {}').format(install_output.returncode), GT(u'Command executed: {}').format(u' '.join(install_cmd)), ) ShowErrorDialog( GT(u'An error occurred during installation'), u'\n'.join(err_details), __name__ ) return ## TODO: Doxygen def OnBuild(self, event=None): # Build preparation ret_code, build_prep = self.BuildPrep() if ret_code == dbrerrno.ECNCLD: return if ret_code == dbrerrno.FEMPTY: err_dia = DetailedMessageDialog(GetMainWindow(), GT(u'Cannot Continue'), ICON_EXCLAMATION, text=u'{}\n{}'.format(GT(u'One of the required fields is empty:'), build_prep)) err_dia.ShowModal() err_dia.Destroy() return if ret_code == dbrerrno.SUCCESS: task_list, build_path, filename = build_prep # Actual build ret_code, result = self.Build(task_list, build_path, filename) # FIXME: Check .deb package timestamp to confirm build success if ret_code == dbrerrno.SUCCESS: DetailedMessageDialog(GetMainWindow(), GT(u'Success'), ICON_INFORMATION, text=GT(u'Package created successfully')).ShowModal() # Installing the package if FieldEnabled(self.chk_install) and self.chk_install.GetValue(): self.InstallPackage(result) return if result: ShowErrorDialog(GT(u'Package build failed'), result) else: ShowErrorDialog(GT(u'Package build failed with unknown error')) return if build_prep: ShowErrorDialog(GT(u'Build preparation failed'), build_prep) else: ShowErrorDialog(GT(u'Build preparation failed with unknown error')) ## TODO: Doxygen # # TODO: Show warning dialog that this could take a while # TODO: Add cancel option to progress dialog # FIXME: List should be cached so no need for re-scanning def OnSetLintOverrides(self, event=None): Logger.Debug(__name__, GT(u'Setting Lintian overrides...')) lintian_tags_file = u'{}/data/lintian/tags'.format(PATH_app) if not os.path.isfile(lintian_tags_file): Logger.Error(__name__, u'Lintian tags file is missing: {}'.format(lintian_tags_file)) return False lint_tags = RemoveEmptyLines(ReadFile(lintian_tags_file, split=True)) if lint_tags: Logger.Debug(__name__, u'Lintian tags set') # DEBUG: Start if DebugEnabled() and len(lint_tags) > 50: print(u' Reducing tag count to 200 ...') lint_tags = lint_tags[:50] Logger.Debug(__name__, u'Processing {} tags'.format(len(lint_tags))) # DEBUG: End tag_count = len(lint_tags) def GetProgressMessage(message, count=tag_count): return u'{} ({} {})'.format(message, count, GT(u'tags')) progress = TimedProgressDialog(GetMainWindow(), GT(u'Building Tag List'), GetProgressMessage(GT(u'Scanning default tags'))) progress.Start() wx.Yield() # Create the dialog overrides_dialog = CheckListDialog(GetMainWindow(), title=GT(u'Lintian Overrides'), allow_custom=True) # FIXME: Needs progress dialog overrides_dialog.InitCheckList(tuple(lint_tags)) progress.SetMessage(GetProgressMessage(GT(u'Setting selected overrides'))) for T in lint_tags: if T in self.lint_overrides: overrides_dialog.SetItemCheckedByLabel(T) self.lint_overrides.remove(T) progress.SetMessage(GetProgressMessage(GT(u'Adding custom tags'), len(self.lint_overrides))) # Remaining tags should be custom entries # FIXME: if self.lint_overrides: for T in self.lint_overrides: overrides_dialog.AddItem(T, True) progress.Stop() if overrides_dialog.ShowModal() == wx.ID_OK: # Remove old overrides self.lint_overrides = [] for L in overrides_dialog.GetCheckedLabels(): Logger.Debug(__name__, GT(u'Adding Lintian override: {}').format(L)) self.lint_overrides.append(L) return True else: Logger.Debug(__name__, u'Setting lintian tags failed') return False ## TODO: Doxygen # # TODO: Use string names in project file but retain # compatibility with older projects that use # integer values. def Set(self, data): # ???: Redundant self.Reset() build_data = data.split(u'\n') if GetExecutable(u'md5sum'): try: self.chk_md5.SetValue(int(build_data[0])) except IndexError: pass try: self.chk_rmstage.SetValue(int(build_data[1])) except IndexError: pass if GetExecutable(u'lintian'): try: self.chk_lint.SetValue(int(build_data[2])) except IndexError: pass self.chk_strip.SetValue(GetExecutable(u'strip') and u'strip' in build_data) ## TODO: Doxygen def SetSummary(self, event=None): pg_scripts = GetPage(pgid.SCRIPTS) # Make sure the page is not destroyed so no error is thrown if self: # Set summary when "Build" page is shown # Get the file count files_total = GetPage(pgid.FILES).GetFileCount() f = GT(u'File Count') file_count = u'{}: {}'.format(f, files_total) # Scripts to make scripts_to_make = [] scripts = ((u'preinst', pg_scripts.chk_preinst), (u'postinst', pg_scripts.chk_postinst), (u'prerm', pg_scripts.chk_prerm), (u'postrm', pg_scripts.chk_postrm)) for script in scripts: if script[1].IsChecked(): scripts_to_make.append(script[0]) s = GT(u'Scripts') if len(scripts_to_make): scripts_to_make = u'{}: {}'.format(s, u', '.join(scripts_to_make)) else: scripts_to_make = u'{}: 0'.format(s) self.summary.SetValue(u'\n'.join((file_count, scripts_to_make)))
1.5
2
__main__.py
maelstromdat/YOSHI
6
5415
from YoshiViz import Gui if __name__ == '__main__': #file director gui = Gui.Gui() """ report_generator.\ generate_pdf_report(fileDirectory, repositoryName, tempCommunityType) """ print('the type of', repositoryName, 'is', tempCommunityType, '\n"check .\YoshiViz\output"')
1.84375
2
hpotter/src/lazy_init.py
LarsenClose/dr.hpotter
1
5416
''' Wrap an __init__ function so that I don't have to assign all the parameters to a self. variable. ''' # https://stackoverflow.com/questions/5048329/python-decorator-for-automatic-binding-init-arguments import inspect from functools import wraps def lazy_init(init): ''' Create an annotation to assign all the parameters to a self. variable. ''' arg_names = inspect.getfullargspec(init)[0] # pylint: disable=E1101 @wraps(init) def new_init(self, *args): for name, value in zip(arg_names[1:], args): setattr(self, name, value) init(self, *args) return new_init
3.359375
3
main.py
technojam/MLian
1
5417
# def register_feed(): import os import cv2 path = '/UserImage' cam = cv2.VideoCapture(0) name=input("Name: ") cv2.namedWindow("test") img_counter = 0 while True: ret, frame = cam.read() if not ret: print("failed to grab frame") break else: cv2.imshow("test", frame) k = cv2.waitKey(1) if k%256 == 27: # ESC pressed print("Escape hit, closing...") break elif k%256 == 32: # SPACE pressed # img_name = "opencv_frame_{}.png".format(img_counter) cv2.imwrite(name + ".jpg", frame) # print("{} written!".format(img_name)) print("Image Captured! Proceed...") img_counter += 1 cam.release() cv2.destroyAllWindows()
3.046875
3
models/train.py
Hiwyl/keras_cnn_finetune
1
5418
# -*- encoding: utf-8 -*- ''' @Author : lance @Email : <EMAIL> ''' import time from model_cx.inceptionresnet import inceptionresnet from model_cx.vgg19two import vgg19_all_lr from model_cx.inceptionv3 import inceptionv3 from model_cx.densenet import densenet from model_cx.nasnet import nasnet from model_cx.merge import merge from model_cx.bcnn import bilinearnet from model_cx.resnet import ResNet50 from model_cx.mobilenetv2 import mobilenetv2 from model_cx.senet import senet if __name__=="__main__": classes = 1 epochs = 100 steps_per_epoch = 113 validation_steps = 48 shape=(224,224) print("开始训练...") start = time.time() # # try: # print("densenet") # densenet(classes, epochs, steps_per_epoch, validation_steps, shape) # except Exception as e: # print(e) # try: # print("bcnn") # bilinearnet(classes, epochs, steps_per_epoch, validation_steps, shape) # # except Exception as e: # print(e) # try: # print("resnet") # ResNet50(classes, epochs, steps_per_epoch, validation_steps, shape) # except Exception as e: # print(e) try: print("merge") merge(classes, epochs, steps_per_epoch, validation_steps, shape) except Exception as e: print(e) # try: # print("ince_res") # inceptionresnet(classes, epochs, steps_per_epoch, validation_steps, (299, 299)) # # inceptionresnet(classes, epochs, steps_per_epoch, validation_steps, shape) # except Exception as e: # print(e) # try: # print("mobilenetv2") # mobilenetv2(classes, epochs, steps_per_epoch, validation_steps, shape) # except Exception as e: # print(e) # try: # print("inceptionv3") # inceptionv3(classes, epochs, steps_per_epoch, validation_steps, (299, 299)) # # inceptionv3(classes, epochs, steps_per_epoch, validation_steps, shape) # except Exception as e: # print(e) try: print("nasnet") nasnet(classes, epochs, steps_per_epoch, validation_steps, shape) except Exception as e: print(e) try: print("vgg19two") vgg19_all_lr(classes, epochs, steps_per_epoch, validation_steps, shape) except Exception as e: print(e) try: print("senet") vgg19_all_lr(classes, epochs, steps_per_epoch, validation_steps, (100,100)) except Exception as e: print(e) end = time.time() print("ETA:", (end - start) / 3600)
2.1875
2
src/probnum/randprocs/markov/integrator/_preconditioner.py
alpiges/probnum
0
5419
"""Coordinate changes in state space models.""" import abc try: # cached_property is only available in Python >=3.8 from functools import cached_property except ImportError: from cached_property import cached_property import numpy as np import scipy.special # for vectorised factorial from probnum import config, linops, randvars def apply_precon(precon, rv): # public (because it is needed in some integrator implementations), # but not exposed to the 'randprocs' namespace # (i.e. not imported in any __init__.py). # There is no way of checking whether `rv` has its Cholesky factor computed already or not. # Therefore, since we need to update the Cholesky factor for square-root filtering, # we also update the Cholesky factor for non-square-root algorithms here, # which implies additional cost. # See Issues #319 and #329. # When they are resolved, this function here will hopefully be superfluous. new_mean = precon @ rv.mean new_cov_cholesky = precon @ rv.cov_cholesky # precon is diagonal, so this is valid new_cov = new_cov_cholesky @ new_cov_cholesky.T return randvars.Normal(new_mean, new_cov, cov_cholesky=new_cov_cholesky) class Preconditioner(abc.ABC): """Coordinate change transformations as preconditioners in state space models. For some models, this makes the filtering and smoothing steps more numerically stable. """ @abc.abstractmethod def __call__(self, step) -> np.ndarray: # if more than step is needed, add them into the signature in the future raise NotImplementedError @cached_property def inverse(self) -> "Preconditioner": raise NotImplementedError class NordsieckLikeCoordinates(Preconditioner): """Nordsieck-like coordinates. Similar to Nordsieck coordinates (which store the Taylor coefficients instead of the derivatives), but better for ODE filtering and smoothing. Used in integrator-transitions, e.g. in :class:`IntegratedWienerTransition`. """ def __init__(self, powers, scales, dimension): # Clean way of assembling these coordinates cheaply, # because the powers and scales of the inverse # are better read off than inverted self.powers = powers self.scales = scales self.dimension = dimension @classmethod def from_order(cls, order, dimension): # used to conveniently initialise in the beginning powers = np.arange(order, -1, -1) scales = scipy.special.factorial(powers) return cls( powers=powers + 0.5, scales=scales, dimension=dimension, ) def __call__(self, step): scaling_vector = np.abs(step) ** self.powers / self.scales if config.matrix_free: return linops.Kronecker( A=linops.Identity(self.dimension), B=linops.Scaling(factors=scaling_vector), ) return np.kron(np.eye(self.dimension), np.diag(scaling_vector)) @cached_property def inverse(self) -> "NordsieckLikeCoordinates": return NordsieckLikeCoordinates( powers=-self.powers, scales=1.0 / self.scales, dimension=self.dimension, )
2.109375
2
allauth/socialaccount/providers/linkedin/provider.py
mina-gaid/scp
1
5420
<filename>allauth/socialaccount/providers/linkedin/provider.py from allauth.socialaccount import providers from allauth.socialaccount.providers.base import ProviderAccount from allauth.socialaccount.providers.oauth.provider import OAuthProvider from allauth.socialaccount import app_settings class LinkedInAccount(ProviderAccount): def get_profile_url(self): return self.account.extra_data.get('public-profile-url') def get_avatar_url(self): # try to return the higher res picture-urls::(original) first try: if self.account.extra_data.get('picture-urls', {}).get( 'picture-url'): return self.account.extra_data.get('picture-urls', {}).get( 'picture-url') except: # if we can't get higher res for any reason, we'll just return the # low res pass return self.account.extra_data.get('picture-url') def to_str(self): dflt = super(LinkedInAccount, self).to_str() name = self.account.extra_data.get('name', dflt) first_name = self.account.extra_data.get('first-name', None) last_name = self.account.extra_data.get('last-name', None) if first_name and last_name: name = first_name + ' ' + last_name return name class LinkedInProvider(OAuthProvider): id = 'linkedin' name = 'LinkedIn' account_class = LinkedInAccount def get_default_scope(self): scope = [] if app_settings.QUERY_EMAIL: scope.append('r_emailaddress') return scope def get_profile_fields(self): default_fields = ['id', 'first-name', 'last-name', 'email-address', 'picture-url', 'picture-urls::(original)', # picture-urls::(original) is higher res 'public-profile-url'] fields = self.get_settings().get('PROFILE_FIELDS', default_fields) return fields def extract_uid(self, data): return data['id'] def extract_common_fields(self, data): return dict(email=data.get('email-address'), first_name=data.get('first-name'), last_name=data.get('last-name')) providers.registry.register(LinkedInProvider)
2.484375
2
game2048/myNew.py
CCTQL/2048-api
0
5421
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets from torch.autograd import Variable from sklearn.model_selection import train_test_split import time import pandas as pd import numpy as np import csv batch_size = 128 NUM_EPOCHS = 30 LR = 0.001 TIME_STEP = 4 class CCRNN(nn.Module): def __init__(self): # 继承RNN super(CCRNN, self).__init__() self.ccLSTM = nn.LSTM( input_size=4, hidden_size=128, num_layers=4, bidirectional=True, batch_first=True ) self.ccCNN22 = nn.Conv2d( in_channels=1, out_channels=1, kernel_size=2, stride=2, padding=0 ) self.ccCNN14 = nn.Conv2d( in_channels=1, out_channels=1, kernel_size=(1, 4), stride=1, padding=0 ) self.ccCNN41 = nn.Conv2d( in_channels=1, out_channels=1, kernel_size=(4, 1), stride=1, padding=0 ) self.CNN22toFC = nn.Linear(4, 64) self.CNN41toFC = nn.Linear(4, 32) self.CNN14toFC = nn.Linear(4, 32) self.LSTMtoFC = nn.Linear(256, 128) self.FCtoOut = nn.Linear(256, 4) def forward(self, x): LSTM_out, (h_n, c_n) = self.ccLSTM(x, None) CNN_in = torch.unsqueeze(x[:, 0:4, :], 1) CNN_out22 = self.ccCNN22(CNN_in) CNN_out41 = self.ccCNN41(CNN_in) CNN_out14 = self.ccCNN14(CNN_in) CNN22_reshape = CNN_out22.view(-1, 4) CNN14_reshape = CNN_out41.view(-1, 4) CNN41_reshape = CNN_out14.view(-1, 4) CNN22toFC = self.CNN22toFC(CNN22_reshape) CNN14toFC = self.CNN14toFC(CNN14_reshape) CNN41toFC = self.CNN41toFC(CNN41_reshape) LSTMtoFC = self.LSTMtoFC(LSTM_out[:, -1, :]) CNNandLSTM = torch.cat((CNN22toFC, CNN41toFC, CNN14toFC, LSTMtoFC), 1) out = self.FCtoOut(CNNandLSTM) return out #------------------读入数据----------------------------- csv_data = pd.read_csv('./drive/My Drive/DATA.csv') csv_data = csv_data.values A = csv_data.shape[0] board_data = csv_data[:,0:16] # X = np.log2(X) X = torch.FloatTensor(board_data) X = np.int64(board_data) # 转置后拼接 X = np.reshape(X, (-1,4,4)) XT = X.transpose(0,2,1) X = np.concatenate((X,XT),axis=1) print(X.shape) direction_data = csv_data[:,16] Y = np.int64(direction_data) #------------------------------------------------------- X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2,shuffle=False) X_train = torch.FloatTensor(X_train) X_test = torch.FloatTensor(X_test) Y_train = torch.LongTensor(Y_train) Y_test = torch.LongTensor(Y_test) train_dataset = torch.utils.data.TensorDataset(X_train,Y_train) # test_dataset = torch.utils.data.TensorDataset(X_test,Y_test) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True ) # test_loader = torch.utils.data.DataLoader(dataset=test_dataset, # batch_size=batch_size, # shuffle=False # ) batch_size = 128 NUM_EPOCHS = 30 LR = 0.001 TIME_STEP = 4 #------------------读入数据----------------------------- csv_data = pd.read_csv('./drive/My Drive/DATA.csv') csv_data = csv_data.values A = csv_data.shape[0] board_data = csv_data[:,0:16] # X = np.log2(X) X = torch.FloatTensor(board_data) X = np.int64(board_data) # 转置后拼接 X = np.reshape(X, (-1,4,4)) XT = X.transpose(0,2,1) X = np.concatenate((X,XT),axis=1) print(X.shape) direction_data = csv_data[:,16] Y = np.int64(direction_data) model = CCRNN() model = model.cuda() optimizer = optim.Adam(model.parameters(), lr = 0.001) def train(epoch): for batch_idx, (data, target) in enumerate(train_loader): data, target = Variable(data).cuda(), Variable(target).cuda() data = data/11.0 optimizer.zero_grad() output = model(data) loss = F.cross_entropy(output, target) loss.backward() optimizer.step() if batch_idx % 50 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\t Loss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) torch.save(self.model, 'rnn_model_' + str(epoch) + '.pkl') if __name__ == '__main__': for epoch in range(0, NUM_EPOCHS): train(epoch)
2.6875
3
HW2/dbsys-hw2/Database.py
yliu120/dbsystem
0
5422
import json, io, os, os.path from Catalog.Schema import DBSchema, DBSchemaEncoder, DBSchemaDecoder from Query.Plan import PlanBuilder from Storage.StorageEngine import StorageEngine class Database: """ A top-level database engine class. For now, this primarily maintains a simple catalog, mapping relation names to schema objects. Also, it provides the ability to construct query plan objects, as well as wrapping the storage layer methods. """ checkpointEncoding = "latin1" checkpointFile = "db.catalog" def __init__(self, **kwargs): other = kwargs.get("other", None) if other: self.fromOther(other) else: storageArgs = {k:v for (k,v) in kwargs.items() \ if k in ["pageSize", "poolSize", "dataDir", "indexDir"]} self.relationMap = kwargs.get("relations", {}) self.defaultPageSize = kwargs.get("pageSize", io.DEFAULT_BUFFER_SIZE) self.storage = kwargs.get("storage", StorageEngine(**storageArgs)) checkpointFound = os.path.exists(os.path.join(self.storage.fileMgr.dataDir, Database.checkpointFile)) restoring = "restore" in kwargs if not restoring and checkpointFound: self.restore() def fromOther(self, other): self.relationMap = other.relationMap self.defaultPageSize = other.defaultPageSize self.storage = other.storage def close(self): if self.storage: self.storage.close() # Database internal components def storageEngine(self): return self.storage def bufferPool(self): return self.storage.bufferPool if self.storage else None def fileManager(self): return self.storage.fileMgr if self.storage else None # User API # Catalog methods def relations(self): return self.relationMap.keys() def hasRelation(self, relationName): return relationName in self.relationMap def relationSchema(self, relationName): if relationName in self.relationMap: return self.relationMap[relationName] # DDL statements def createRelation(self, relationName, relationFields): if relationName not in self.relationMap: schema = DBSchema(relationName, relationFields) self.relationMap[relationName] = schema self.storage.createRelation(relationName, schema) self.checkpoint() else: raise ValueError("Relation '" + relationName + "' already exists") def removeRelation(self, relationName): if relationName in self.relationMap: del self.relationMap[relationName] self.storage.removeRelation(relationName) self.checkpoint() else: raise ValueError("No relation '" + relationName + "' found in database") # DML statements # Returns a tuple id for the newly inserted data. def insertTuple(self, relationName, tupleData): if relationName in self.relationMap: return self.storage.insertTuple(relationName, tupleData) else: raise ValueError("Unknown relation '" + relationName + "' while inserting a tuple") def deleteTuple(self, tupleId): self.storage.deleteTuple(tupleId) def updateTuple(self, tupleId, tupleData): self.storage.updateTuple(tupleId, tupleData) # Queries # Returns an empty query builder that can access the current database. def query(self): return PlanBuilder(db=self) # Returns an iterable for query results, after initializing the given plan. def processQuery(self, queryPlan): return queryPlan.prepare(self) # Save the database internals to the data directory. def checkpoint(self): if self.storage: dbcPath = os.path.join(self.storage.fileMgr.dataDir, Database.checkpointFile) with open(dbcPath, 'w', encoding=Database.checkpointEncoding) as f: f.write(self.pack()) # Load relations and schema from an existing data directory. def restore(self): if self.storage: dbcPath = os.path.join(self.storage.fileMgr.dataDir, Database.checkpointFile) with open(dbcPath, 'r', encoding=Database.checkpointEncoding) as f: other = Database.unpack(f.read(), self.storage) self.fromOther(other) # Database schema catalog serialization def pack(self): if self.relationMap is not None: return json.dumps([self.relationMap, self.defaultPageSize], cls=DBSchemaEncoder) @classmethod def unpack(cls, buffer, storageEngine): (relationMap, pageSize) = json.loads(buffer, cls=DBSchemaDecoder) return cls(relations=relationMap, pageSize=pageSize, storage=storageEngine, restore=True) if __name__ == "__main__": import doctest doctest.testmod()
2.5625
3
tests/test_arr_add_value.py
dboyliao/TaipeiPy-pybind11-buffer-array
1
5423
<reponame>dboyliao/TaipeiPy-pybind11-buffer-array import numpy as np import mylib def test_arr_add_value(): for _ in range(10): shape = np.random.randint(1, 10, size=np.random.randint(3, 10)).tolist() in_arr = np.random.rand(*shape).astype(np.double) ok = np.allclose(mylib.array_add_value(in_arr, np.pi), in_arr + np.pi) if not ok: raise ValueError("incorrect result")
2.28125
2
moderngl_window/resources/data.py
DavideRuzza/moderngl-window
142
5424
<reponame>DavideRuzza/moderngl-window """ Registry general data files """ from typing import Any from moderngl_window.resources.base import BaseRegistry from moderngl_window.meta import DataDescription class DataFiles(BaseRegistry): """Registry for requested data files""" settings_attr = "DATA_LOADERS" def load(self, meta: DataDescription) -> Any: """Load data file with the configured loaders. Args: meta (:py:class:`~moderngl_window.meta.data.DataDescription`): the resource description Returns: Any: The loaded resource """ return super().load(meta) data = DataFiles()
1.828125
2
tests/test_units/test_mapper_str.py
frewsxcv/routes
1
5425
import unittest from routes import Mapper class TestMapperStr(unittest.TestCase): def test_str(self): m = Mapper() m.connect('/{controller}/{action}') m.connect('entries', '/entries', controller='entry', action='index') m.connect('entry', '/entries/{id}', controller='entry', action='show') expected = """\ Route name Methods Path /{controller}/{action} entries /entries entry /entries/{id}""" for expected_line, actual_line in zip(expected.splitlines(), str(m).splitlines()): assert expected_line == actual_line.rstrip()
3.375
3
quarkchain/tools/config_slave.py
HAOYUatHZ/pyquarkchain
1
5426
<gh_stars>1-10 """ python config_slave.py 127.0.0.1 38000 38006 127.0.0.2 18999 18002 will generate 4 slave server configs accordingly. will be used in deployment automation to configure a cluster. usage: python config_slave.py <host1> <port1> <port2> <host2> <port3> ... """ import argparse import collections import json import os FILE = "../../testnet/2/cluster_config_template.json" if "QKC_CONFIG" in os.environ: FILE = os.environ["QKC_CONFIG"] def main(): parser = argparse.ArgumentParser() parser.add_argument( "hostports", nargs="+", metavar="hostports", help="Host and ports for slave config", ) args = parser.parse_args() abspath = os.path.abspath(__file__) dname = os.path.dirname(abspath) os.chdir(dname) ############### # parse hosts and ports to form a slave list ############### host_port_mapping = collections.defaultdict(list) last_host = None for host_or_port in args.hostports: # type: str if not host_or_port.isdigit(): # host last_host = host_or_port else: # port host_port_mapping[last_host].append(host_or_port) assert None not in host_port_mapping slave_num = sum(len(port_list) for port_list in host_port_mapping.values()) # make sure number of slaves is power of 2 assert slave_num > 0 and (slave_num & (slave_num - 1) == 0) slave_servers, i = [], 0 for host, port_list in host_port_mapping.items(): for port in port_list: s = { "HOST": host, "PORT": int(port), "ID": "S%d" % i, "CHAIN_MASK_LIST": [i | slave_num], } slave_servers.append(s) i += 1 ############### # read config file and substitute with updated slave config ############### with open(FILE, "r+") as f: parsed_config = json.load(f) parsed_config["SLAVE_LIST"] = slave_servers f.seek(0) f.truncate() f.write(json.dumps(parsed_config, indent=4)) if __name__ == "__main__": main()
2.484375
2
python-function-files-dictionaries/week4-assignment1.py
MauMendes/python3-programming-specialization
0
5427
<filename>python-function-files-dictionaries/week4-assignment1.py #1) Write a function, sublist, that takes in a list of numbers as the parameter. In the function, use a while loop to return a sublist of the input list. # The sublist should contain the same values of the original list up until it reaches the number 5 (it should not contain the number 5). def sublist(input_lst): out_lst = list() number = 0 i = 0 print(input_lst) print(len(input_lst)) length = len(input_lst) while i<length: number = input_lst[i] i+=1 if number==5: break else : out_lst.append(number) print(out_lst) return out_lst #2) Write a function called check_nums that takes a list as its parameter, and contains a while loop that only stops once the element of the # list is the number 7. What is returned is a list of all of the numbers up until it reaches 7.def check_nums(input_lst): def check_nums(input_lst): out_lst = list() number = 0 i = 0 print(input_lst) print(len(input_lst)) length = len(input_lst) while i<length: number = input_lst[i] i+=1 if number==7: break else : out_lst.append(number) print(out_lst) return out_lst #3) Write a function, sublist, that takes in a list of strings as the parameter. In the function, use a while loop to return a sublist of the input list. # The sublist should contain the same values of the original list up until it reaches the string “STOP” (it should not contain the string “STOP”). def sublist(in_lst): out_list = list() str = "" i = 0 while str!="STOP": str = in_lst[i] i+=1 if str=="STOP": break else: out_list.append(str) return out_list #4) Write a function called stop_at_z that iterates through a list of strings. Using a while loop, append each string to a new list until the string that # appears is “z”. The function should return the new list. def stop_at_z(in_lst): out_list = list() str = "" i = 0 while str!="z": str = in_lst[i] i+=1 if str=="z": break else: out_list.append(str) return out_list #5) Below is a for loop that works. Underneath the for loop, rewrite the problem so that it does the same thing, but using a while loop instead of a for loop. # Assign the accumulated total in the while loop code to the variable sum2. Once complete, sum2 should equal sum1. lst = [65, 78, 21, 33] lenght = len(lst) i = 0 sum2 = 0 while i<lenght: sum2 += lst[i] i+=1 #6) Challenge: Write a function called beginning that takes a list as input and contains a while loop that only stops once the element of the list is the string ‘bye’. # What is returned is a list that contains up to the first 10 strings, regardless of where the loop stops. (i.e., if it stops on the 32nd element, the first 10 are # returned. If “bye” is the 5th element, the first 4 are returned.) If you want to make this even more of a challenge, do this without slicing def beginning(in_list): length = len(in_list) out_lst = list() i = 0 str = "" while i<length: str = in_list[i] i+=1 if str=="bye" or i>10: break out_lst.append(str) return out_lst
4.21875
4
saas/backend/apps/group/views.py
Canway-shiisa/bk-iam-saas
0
5428
# -*- coding: utf-8 -*- """ TencentBlueKing is pleased to support the open source community by making 蓝鲸智云-权限中心(BlueKing-IAM) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging from functools import wraps from typing import List from django.shortcuts import get_object_or_404 from django.utils.translation import gettext as _ from drf_yasg.utils import swagger_auto_schema from pydantic.tools import parse_obj_as from rest_framework import serializers, status, views from rest_framework.pagination import LimitOffsetPagination from rest_framework.response import Response from rest_framework.viewsets import GenericViewSet, mixins from backend.account.permissions import RolePermission, role_perm_class from backend.apps.application.serializers import ConditionCompareSLZ, ConditionTagSLZ from backend.apps.group import tasks # noqa from backend.apps.group.models import Group from backend.apps.policy.serializers import PolicyDeleteSLZ, PolicySLZ, PolicySystemSLZ from backend.apps.template.models import PermTemplatePolicyAuthorized from backend.audit.audit import audit_context_setter, view_audit_decorator from backend.biz.group import GroupBiz, GroupCheckBiz, GroupMemberExpiredAtBean from backend.biz.policy import PolicyBean, PolicyOperationBiz, PolicyQueryBiz from backend.biz.policy_tag import ConditionTagBean, ConditionTagBiz from backend.biz.role import RoleBiz, RoleListQuery, RoleObjectRelationChecker from backend.biz.template import TemplateBiz from backend.common.error_codes import error_codes from backend.common.filters import NoCheckModelFilterBackend from backend.common.serializers import SystemQuerySLZ from backend.common.time import PERMANENT_SECONDS from backend.service.constants import PermissionCodeEnum, RoleType, SubjectType from backend.service.models import Subject from backend.trans.group import GroupTrans from .audit import ( GroupCreateAuditProvider, GroupDeleteAuditProvider, GroupMemberCreateAuditProvider, GroupMemberDeleteAuditProvider, GroupMemberRenewAuditProvider, GroupPolicyDeleteAuditProvider, GroupPolicyUpdateAuditProvider, GroupTemplateCreateAuditProvider, GroupTransferAuditProvider, GroupUpdateAuditProvider, ) from .constants import OperateEnum from .filters import GroupFilter, GroupTemplateSystemFilter from .serializers import ( GroupAddMemberSLZ, GroupAuthoriedConditionSLZ, GroupAuthorizationSLZ, GroupCreateSLZ, GroupDeleteMemberSLZ, GroupIdSLZ, GroupMemberUpdateExpiredAtSLZ, GroupPolicyUpdateSLZ, GroupSLZ, GroupTemplateDetailSchemaSLZ, GroupTemplateDetailSLZ, GroupTemplateSchemaSLZ, GroupTemplateSLZ, GroupTransferSLZ, GroupUpdateSLZ, MemberSLZ, SearchMemberSLZ, ) permission_logger = logging.getLogger("permission") def check_readonly_group(operation): """用户组可读检测""" def decorate(func): @wraps(func) def wrapper(view, request, *args, **kwargs): group = view.get_object() readonly = group.readonly if readonly: raise error_codes.FORBIDDEN.format( message=_("只读用户组({})无法进行({})操作!").format(group.id, operation), replace=True ) response = func(view, request, *args, **kwargs) return response return wrapper return decorate class GroupQueryMixin: def get_queryset(self): request = self.request return RoleListQuery(request.role, request.user).query_group() class GroupPermissionMixin: def check_object_permissions(self, request, obj): if not RoleObjectRelationChecker(request.role).check_group(obj): self.permission_denied(request, message=f"{request.role.type} role can not access group {obj.id}") class GroupViewSet(mixins.RetrieveModelMixin, mixins.ListModelMixin, GenericViewSet): permission_classes = [RolePermission] action_permission = { "create": PermissionCodeEnum.MANAGE_GROUP.value, "update": PermissionCodeEnum.MANAGE_GROUP.value, "destroy": PermissionCodeEnum.MANAGE_GROUP.value, } queryset = Group.objects.all() serializer_class = GroupSLZ filterset_class = GroupFilter lookup_field = "id" group_biz = GroupBiz() group_check_biz = GroupCheckBiz() role_biz = RoleBiz() group_trans = GroupTrans() @swagger_auto_schema( operation_description="创建用户组", request_body=GroupCreateSLZ(label="用户组"), responses={status.HTTP_201_CREATED: GroupIdSLZ(label="用户组ID")}, tags=["group"], ) @view_audit_decorator(GroupCreateAuditProvider) def create(self, request, *args, **kwargs): """ 创建用户组 """ serializer = GroupCreateSLZ(data=request.data) serializer.is_valid(raise_exception=True) user_id = request.user.username data = serializer.validated_data # 用户组名称在角色内唯一 self.group_check_biz.check_role_group_name_unique(request.role.id, data["name"]) # 用户组数量在角色内是否超限 number_of_new_group = 1 # 接口只支持创建一个用户组,不支持批量,所以新增用户组数量为1 self.group_check_biz.check_role_group_limit(request.role, number_of_new_group) # 检测成员是否满足管理的授权范围 members = parse_obj_as(List[Subject], data["members"]) self.group_check_biz.check_role_subject_scope(request.role, members) group = self.group_biz.create_and_add_members( request.role.id, data["name"], data["description"], user_id, members, data["expired_at"] ) # 使用长时任务触发多个模板同时授权 if data["templates"]: templates = self.group_trans.from_group_grant_data(data["templates"]) self.group_biz.grant(request.role, group, templates) # 写入审计上下文 audit_context_setter(group=group) return Response({"id": group.id}, status=status.HTTP_201_CREATED) def get_queryset(self): request = self.request role = request.role username = request.user.username filter_role_id = request.query_params.get("role_id") # 如果当前角色是staff 并且 存在筛选的role_id if role.type == RoleType.STAFF.value and filter_role_id: # 检查用户是否在角色的授权范围内 filter_role = self.role_biz.get_role_scope_include_user(filter_role_id, username) if not filter_role: return Group.objects.none() # 返回角色的用户组列表 return RoleListQuery(filter_role, request.user).query_group() return RoleListQuery(role, request.user).query_group() @swagger_auto_schema( operation_description="用户组列表", responses={status.HTTP_200_OK: GroupSLZ(label="用户组", many=True)}, tags=["group"], ) def list(self, request, *args, **kwargs): return super().list(request, *args, **kwargs) @swagger_auto_schema( operation_description="用户组详情", responses={status.HTTP_200_OK: GroupSLZ(label="用户组")}, tags=["group"], ) def retrieve(self, request, *args, **kwargs): return super().retrieve(request, *args, **kwargs) @swagger_auto_schema( operation_description="修改用户组", request_body=GroupUpdateSLZ(label="用户组"), responses={status.HTTP_200_OK: GroupUpdateSLZ(label="用户组")}, tags=["group"], ) @view_audit_decorator(GroupUpdateAuditProvider) @check_readonly_group(operation=OperateEnum.GROUP_UPDATE.label) def update(self, request, *args, **kwargs): group = self.get_object() serializer = GroupUpdateSLZ(group, data=request.data) serializer.is_valid(raise_exception=True) user_id = request.user.username data = serializer.validated_data # 用户组名称在角色内唯一 self.group_check_biz.check_role_group_name_unique(request.role.id, data["name"], group.id) group = self.group_biz.update(group, data["name"], data["description"], user_id) # 写入审计上下文 audit_context_setter(group=group) return Response(serializer.data) @swagger_auto_schema( operation_description="删除用户组", responses={status.HTTP_200_OK: serializers.Serializer()}, tags=["group"], ) @view_audit_decorator(GroupDeleteAuditProvider) @check_readonly_group(operation=OperateEnum.GROUP_DELETE.label) def destroy(self, request, *args, **kwargs): group = self.get_object() self.group_biz.delete(group.id) # 写入审计上下文 audit_context_setter(group=group) return Response({}) class GroupMemberViewSet(GroupPermissionMixin, GenericViewSet): permission_classes = [RolePermission] action_permission = { "list": PermissionCodeEnum.MANAGE_GROUP.value, "create": PermissionCodeEnum.MANAGE_GROUP.value, "destroy": PermissionCodeEnum.MANAGE_GROUP.value, } queryset = Group.objects.all() lookup_field = "id" biz = GroupBiz() group_check_biz = GroupCheckBiz() @swagger_auto_schema( operation_description="用户组成员列表", query_serializer=SearchMemberSLZ(label="keyword"), responses={status.HTTP_200_OK: MemberSLZ(label="成员")}, tags=["group"], ) def list(self, request, *args, **kwargs): group = get_object_or_404(self.queryset, pk=kwargs["id"]) # 校验权限 checker = RoleObjectRelationChecker(request.role) if not checker.check_group(group): raise error_codes.FORBIDDEN.format(message=_("用户组({})不在当前用户身份可访问的范围内").format(group.id), replace=True) if request.query_params.get("keyword"): slz = SearchMemberSLZ(data=request.query_params) slz.is_valid(raise_exception=True) keyword = slz.validated_data["keyword"].lower() group_members = self.biz.search_member_by_keyword(group.id, keyword) return Response({"results": [one.dict() for one in group_members]}) pagination = LimitOffsetPagination() limit = pagination.get_limit(request) offset = pagination.get_offset(request) count, group_members = self.biz.list_paging_group_member(group.id, limit, offset) return Response({"count": count, "results": [one.dict() for one in group_members]}) @swagger_auto_schema( operation_description="用户组添加成员", request_body=GroupAddMemberSLZ(label="成员"), responses={status.HTTP_200_OK: serializers.Serializer()}, tags=["group"], ) @view_audit_decorator(GroupMemberCreateAuditProvider) @check_readonly_group(operation=OperateEnum.GROUP_MEMBER_CREATE.label) def create(self, request, *args, **kwargs): serializer = GroupAddMemberSLZ(data=request.data) serializer.is_valid(raise_exception=True) group = self.get_object() data = serializer.validated_data members_data = data["members"] expired_at = data["expired_at"] # 成员Dict结构转换为Subject结构,并去重 members = list(set(parse_obj_as(List[Subject], members_data))) # 检测成员是否满足管理的授权范围 self.group_check_biz.check_role_subject_scope(request.role, members) self.group_check_biz.check_member_count(group.id, len(members)) permission_logger.info("group %s add members %s by user %s", group.id, members, request.user.username) # 添加成员 self.biz.add_members(group.id, members, expired_at) # 写入审计上下文 audit_context_setter(group=group, members=[m.dict() for m in members]) return Response({}, status=status.HTTP_201_CREATED) @swagger_auto_schema( operation_description="用户组删除成员", request_body=GroupDeleteMemberSLZ(label="成员"), responses={status.HTTP_200_OK: serializers.Serializer()}, tags=["group"], ) @view_audit_decorator(GroupMemberDeleteAuditProvider) @check_readonly_group(operation=OperateEnum.GROUP_MEMBER_DELETE.label) def destroy(self, request, *args, **kwargs): serializer = GroupDeleteMemberSLZ(data=request.data) serializer.is_valid(raise_exception=True) group = self.get_object() data = serializer.validated_data permission_logger.info( "group %s delete members %s by user %s", group.id, data["members"], request.user.username ) self.biz.remove_members(str(group.id), parse_obj_as(List[Subject], data["members"])) # 写入审计上下文 audit_context_setter(group=group, members=data["members"]) return Response({}) class GroupMemberUpdateExpiredAtViewSet(GroupPermissionMixin, GenericViewSet): permission_classes = [role_perm_class(PermissionCodeEnum.MANAGE_GROUP.value)] queryset = Group.objects.all() lookup_field = "id" # service group_biz = GroupBiz() @swagger_auto_schema( operation_description="用户组成员续期", request_body=GroupMemberUpdateExpiredAtSLZ(label="成员"), responses={status.HTTP_200_OK: serializers.Serializer()}, tags=["group"], ) @view_audit_decorator(GroupMemberRenewAuditProvider) @check_readonly_group(operation=OperateEnum.GROUP_MEMBER_RENEW.label) def create(self, request, *args, **kwargs): serializer = GroupMemberUpdateExpiredAtSLZ(data=request.data) serializer.is_valid(raise_exception=True) group = self.get_object() data = serializer.validated_data permission_logger.info( "group %s update members %s expired_at by user %s", group.id, data["members"], request.user.username ) for m in data["members"]: m["policy_expired_at"] = m.pop("expired_at") self.group_biz.update_members_expired_at( group.id, parse_obj_as(List[GroupMemberExpiredAtBean], data["members"]) ) # 写入审计上下文 audit_context_setter(group=group, members=data["members"]) return Response({}) class GroupTemplateViewSet(GroupPermissionMixin, GenericViewSet): permission_classes = [RolePermission] action_permission = {"create": PermissionCodeEnum.MANAGE_GROUP.value} pagination_class = None # 去掉swagger中的limit offset参数 queryset = Group.objects.all() filterset_class = GroupTemplateSystemFilter filter_backends = [NoCheckModelFilterBackend] lookup_field = "id" template_biz = TemplateBiz() @swagger_auto_schema( operation_description="用户组拥有的权限模板列表", responses={status.HTTP_200_OK: GroupTemplateSchemaSLZ(label="权限模板", many=True)}, tags=["group"], ) def list(self, request, *args, **kwargs): group = get_object_or_404(self.queryset, pk=kwargs["id"]) subject = Subject(type=SubjectType.GROUP.value, id=str(group.id)) queryset = PermTemplatePolicyAuthorized.objects.filter_by_subject(subject).defer("_data") queryset = self.filter_queryset(queryset) return Response(GroupTemplateSLZ(queryset, many=True).data) @swagger_auto_schema( operation_description="用户组权限模板授权信息", responses={status.HTTP_200_OK: GroupTemplateDetailSchemaSLZ(label="授权信息")}, tags=["group"], ) def retrieve(self, request, *args, **kwargs): group = get_object_or_404(self.queryset, pk=kwargs["id"]) template_id = kwargs["template_id"] subject = Subject(type=SubjectType.GROUP.value, id=str(group.id)) authorized_template = PermTemplatePolicyAuthorized.objects.get_by_subject_template(subject, int(template_id)) return Response(GroupTemplateDetailSLZ(authorized_template).data) class GroupPolicyViewSet(GroupPermissionMixin, GenericViewSet): permission_classes = [RolePermission] action_permission = { "create": PermissionCodeEnum.MANAGE_GROUP.value, "destroy": PermissionCodeEnum.MANAGE_GROUP.value, "update": PermissionCodeEnum.MANAGE_GROUP.value, } pagination_class = None # 去掉swagger中的limit offset参数 queryset = Group.objects.all() lookup_field = "id" policy_query_biz = PolicyQueryBiz() policy_operation_biz = PolicyOperationBiz() group_biz = GroupBiz() group_trans = GroupTrans() @swagger_auto_schema( operation_description="用户组添加权限", request_body=GroupAuthorizationSLZ(label="授权信息"), responses={status.HTTP_201_CREATED: serializers.Serializer()}, tags=["group"], ) @view_audit_decorator(GroupTemplateCreateAuditProvider) @check_readonly_group(operation=OperateEnum.GROUP_POLICY_CREATE.label) def create(self, request, *args, **kwargs): serializer = GroupAuthorizationSLZ(data=request.data) serializer.is_valid(raise_exception=True) group = self.get_object() data = serializer.validated_data templates = self.group_trans.from_group_grant_data(data["templates"]) self.group_biz.grant(request.role, group, templates) # 写入审计上下文 audit_context_setter( group=group, templates=[{"system_id": t["system_id"], "template_id": t["template_id"]} for t in data["templates"]], ) return Response({}, status=status.HTTP_201_CREATED) @swagger_auto_schema( operation_description="用户组自定义权限列表", query_serializer=SystemQuerySLZ, responses={status.HTTP_200_OK: PolicySLZ(label="策略", many=True)}, tags=["group"], ) def list(self, request, *args, **kwargs): slz = SystemQuerySLZ(data=request.query_params) slz.is_valid(raise_exception=True) system_id = slz.validated_data["system_id"] group = get_object_or_404(self.queryset, pk=kwargs["id"]) subject = Subject(type=SubjectType.GROUP.value, id=str(group.id)) policies = self.policy_query_biz.list_by_subject(system_id, subject) # ResourceNameAutoUpdate updated_policies = self.policy_operation_biz.update_due_to_renamed_resource(system_id, subject, policies) return Response([p.dict() for p in updated_policies]) @swagger_auto_schema( operation_description="用户组删除自定义权限", request_body=PolicyDeleteSLZ(label="ids"), responses={status.HTTP_200_OK: serializers.Serializer()}, tags=["group"], ) @view_audit_decorator(GroupPolicyDeleteAuditProvider) @check_readonly_group(operation=OperateEnum.GROUP_POLICY_DELETE.label) def destroy(self, request, *args, **kwargs): slz = PolicyDeleteSLZ(data=request.data) slz.is_valid(raise_exception=True) system_id = slz.validated_data["system_id"] ids = slz.validated_data["ids"] group = self.get_object() subject = Subject(type=SubjectType.GROUP.value, id=str(group.id)) permission_logger.info( "subject type=%s, id=%s policy deleted by user %s", subject.type, subject.id, request.user.username ) policy_list = self.policy_query_biz.query_policy_list_by_policy_ids(system_id, subject, ids) # 删除权限 self.policy_operation_biz.delete_by_ids(system_id, subject, ids) # 写入审计上下文 audit_context_setter(group=group, system_id=system_id, policies=policy_list.policies) return Response() @swagger_auto_schema( operation_description="用户组权限修改", request_body=GroupPolicyUpdateSLZ(label="修改策略"), responses={status.HTTP_200_OK: serializers.Serializer()}, tags=["group"], ) @view_audit_decorator(GroupPolicyUpdateAuditProvider) @check_readonly_group(operation=OperateEnum.GROUP_POLICY_UPDATE.label) def update(self, request, *args, **kwargs): group = self.get_object() slz = GroupPolicyUpdateSLZ(data=request.data) slz.is_valid(raise_exception=True) data = slz.validated_data system_id = data["system_id"] template_id = data["template_id"] policies = [PolicyBean(expired_at=PERMANENT_SECONDS, **action) for action in data["actions"]] self.group_biz.update_policies(request.role, group.id, system_id, template_id, policies) # 写入审计上下文 audit_context_setter(group=group, system_id=system_id, template_id=template_id, policies=policies) return Response({}) class GroupSystemViewSet(GenericViewSet): pagination_class = None # 去掉swagger中的limit offset参数 queryset = Group.objects.all() lookup_field = "id" biz = GroupBiz() @swagger_auto_schema( operation_description="用户组有权限的所有系统列表", responses={status.HTTP_200_OK: PolicySystemSLZ(label="系统", many=True)}, tags=["group"], ) def list(self, request, *args, **kwargs): group = self.get_object() data = self.biz.list_system_counter(group.id) return Response([one.dict() for one in data]) class GroupTransferView(views.APIView): """ 用户组转出 """ permission_classes = [role_perm_class(PermissionCodeEnum.TRANSFER_GROUP.value)] role_biz = RoleBiz() @swagger_auto_schema( operation_description="用户组批量转出", request_body=GroupTransferSLZ(label="用户转移"), responses={status.HTTP_200_OK: serializers.Serializer()}, tags=["group"], ) @view_audit_decorator(GroupTransferAuditProvider) def post(self, request, *args, **kwargs): slz = GroupTransferSLZ(data=request.data, context={"role": request.role}) slz.is_valid(raise_exception=True) group_ids = slz.validated_data["group_ids"] role_id = slz.validated_data["role_id"] self.role_biz.transfer_groups_role(group_ids, role_id) audit_context_setter(group_ids=group_ids, role_id=role_id) return Response({}) class GroupTemplateConditionCompareView(GroupPermissionMixin, GenericViewSet): condition_biz = ConditionTagBiz() template_biz = TemplateBiz() queryset = Group.objects.all() lookup_field = "id" @swagger_auto_schema( operation_description="权限模板操作条件对比", request_body=GroupAuthoriedConditionSLZ(label="操作条件"), responses={status.HTTP_200_OK: ConditionTagSLZ(label="条件差异", many=True)}, tags=["group"], ) def create(self, request, *args, **kwargs): serializer = GroupAuthoriedConditionSLZ(data=request.data) serializer.is_valid(raise_exception=True) data = serializer.validated_data group = self.get_object() action_id = data["action_id"] resource_group_id = data["resource_group_id"] related_resource_type = data["related_resource_type"] new_condition = parse_obj_as(List[ConditionTagBean], related_resource_type["condition"]) # 从模板数据中查找匹配的操作, 资源类型的条件 template_id = kwargs["template_id"] subject = Subject(type=SubjectType.GROUP.value, id=str(group.id)) authorized_template = PermTemplatePolicyAuthorized.objects.get_by_subject_template(subject, int(template_id)) for action in authorized_template.data["actions"]: policy = PolicyBean.parse_obj(action) # 查询对应的操作 if policy.action_id == action_id: # 操作操作中对应于资源类型的操作 related_resource_type = policy.get_related_resource_type( resource_group_id, related_resource_type["system_id"], related_resource_type["type"] ) old_condition = related_resource_type.condition if related_resource_type else [] # 对比用户组已有的条件与用户提交的条件 conditions = self.condition_biz.compare_and_tag( new_condition, parse_obj_as(List[ConditionTagBean], old_condition), is_template=True ) return Response([c.dict() for c in conditions]) raise error_codes.VALIDATE_ERROR.format(_("模板: {} 没有操作: {} 的权限").format(template_id, action_id)) class GroupCustomPolicyConditionCompareView(GroupPermissionMixin, GenericViewSet): policy_biz = PolicyQueryBiz() condition_biz = ConditionTagBiz() queryset = Group.objects.all() lookup_field = "id" @swagger_auto_schema( operation_description="条件差异对比", request_body=ConditionCompareSLZ(label="资源条件"), responses={status.HTTP_200_OK: ConditionTagSLZ(label="条件差异", many=True)}, tags=["group"], ) def create(self, request, *args, **kwargs): serializer = ConditionCompareSLZ(data=request.data) serializer.is_valid(raise_exception=True) data = serializer.validated_data group = self.get_object() subject = Subject(type=SubjectType.GROUP.value, id=str(group.id)) # 1. 查询policy的condition related_resource_type = data["related_resource_type"] old_condition = self.policy_biz.get_policy_resource_type_conditions( subject, data["policy_id"], data["resource_group_id"], related_resource_type["system_id"], related_resource_type["type"], ) # 2. 对比合并差异 conditions = self.condition_biz.compare_and_tag( parse_obj_as(List[ConditionTagBean], related_resource_type["condition"]), parse_obj_as(List[ConditionTagBean], old_condition), is_template=True, ) return Response([c.dict() for c in conditions])
1.351563
1
towers.py
fillest/7drl2013
1
5429
<filename>towers.py<gh_stars>1-10 import util import libtcodpy as tcod import enemies import operator class Missile (util.Entity): sym = '*' color = tcod.white class BasicMissile (Missile): color = tcod.yellow class IceMissile (Missile): color = tcod.light_blue class AoeMissile (Missile): color = tcod.red class Building (util.Entity): sym = '@' max_hp = 1 cost = 0 def __init__ (self, *args): super(Building, self).__init__(*args) self.hp = self.max_hp def hurt (self, hp): self.hp -= hp if self.hp < 1: self.die() def hit (self, e): if e in self.state.entities: e.hurt(self.damage) def die (self): if self in self.state.entities: self.delete() def put (self): assert self.state.energy > 0 self.state.entities.append(self) self.state.energy -= self.cost return self def delete (self): self.state.entities.remove(self) self.state.energy += self.cost return self class Heart (Building): sym = '&' color = tcod.darker_red max_hp = 20 def delete (self): self.state.is_paused = True return super(Heart, self).delete() class Bait (Building): sym = Heart.sym color = tcod.pink max_hp = 10 class Tower (Building): radius = 15 max_hp = 10 damage = 1 missile = None def __init__ (self, *args): super(Tower, self).__init__(*args) self.cooldown = False def update (self): if not self.cooldown: # dist_min = None # target = None # for e in self.state.entities.enemies(): # d = util.dist(self.x, self.y, e.x, e.y) # if d < (self.radius + 1) and ((dist_min is None) or (d < dist_min)): # dist_min = d # target = e preferred_targets = [] other_targets = [] for e in self.state.entities.enemies(): d = util.dist(self.x, self.y, e.x, e.y) if d < (self.radius + 1): if e in self.state.targets_towers: total_damage = sum([t.damage for t in self.state.targets_towers[e]]) if total_damage < e.hp: preferred_targets.append((d, e)) else: other_targets.append((d, e)) else: preferred_targets.append((d, e)) target = None if preferred_targets: _d, target = sorted(preferred_targets, key = operator.itemgetter(0))[0] elif other_targets: _d, target = sorted(other_targets, key = operator.itemgetter(0))[0] if target: self.state.targets_towers[target].append(self) self._shoot(target) def render (self): super(Tower, self).render() if self.mouse_over: # if True: for x in range(self.x - (self.radius + 1), self.x + (self.radius + 1)): for y in range(self.y - (self.radius + 1), self.y + (self.radius + 1)): if util.dist(self.x, self.y, x, y) < (self.radius + 1): tcod.console_set_char_background(0, x, y, tcod.Color(*[15]*3), flag = tcod.BKGND_SET) def _shoot (self, e): self.cooldown = True def clear_cd (): self.cooldown = False self.state.timers.start_run_once(1000, clear_cd) m = self.missile(self.state, self.x, self.y) self.state.entities.append(m) missile_speed = 20 self.state.timers.start(missile_speed, self.update_missile, [m, e]) def update_missile (self, m, e): tcod.line_init(m.x, m.y, e.x, e.y) x, y = tcod.line_step() if x is None: self.state.entities.remove(m) self.hit(e) return util.STOP else: m.x = x m.y = y class BasicTower (Tower): color = tcod.dark_green missile = BasicMissile cost = 1 class ResearchBuilding (Building): color = tcod.dark_sepia cost = 1 def __init__ (self, *args): super(ResearchBuilding, self).__init__(*args) self.timer = self.state.timers.start(1000, self._research) def _research (self): pass class AoeExplosion (util.Entity): sym = '*' color = tcod.dark_red def __init__ (self, radius, *args): super(AoeExplosion, self).__init__(*args) self.radius = radius def render (self): for x in range(self.x - self.radius, self.x + self.radius): for y in range(self.y - self.radius, self.y + self.radius): tcod.console_put_char(0, x, y, self.sym, tcod.BKGND_NONE) tcod.console_set_char_foreground(0, x, y, self.color) class AoeTower (Tower): color = tcod.dark_orange missile = AoeMissile cost = 2 def hit (self, target): radius = 2 for x in range(target.x - radius, target.x + radius): for y in range(target.y - radius, target.y + radius): for e in self.state.entities.enemies(): if (e.x, e.y) == (x, y): if e in self.state.entities: #TODO copypaste e.hurt(self.damage) e = AoeExplosion(radius, self.state, target.x, target.y) self.state.entities.append(e) self.state.timers.start_run_once(70, lambda: self.state.entities.remove(e)) class IceTower (Tower): damage = 0.2 color = tcod.dark_blue missile = IceMissile cost = 1 def hit (self, target): target.hurt(self.damage) if not getattr(target, 'is_debuffed', False): old_speed = target.timer.interval target.timer.interval *= 3 target.timer.time_buf *= 3 target.is_debuffed = True def rollback (): target.timer.interval = old_speed target.timer.time_buf /= 3 target.is_debuffed = False self.rollback_timer = self.state.timers.start_run_once(1000, rollback) elif getattr(self, 'rollback_timer', False): self.rollback_timer.reset()
2.890625
3
python/mandelbrot.py
lukasjoc/random
1
5430
#!/usr/bin/python3 from PIL import Image from numpy import complex, array from tqdm import tqdm import colorsys W=512 #W=142 def mandelbrot(x, y): def get_colors(i): color = 255 * array(colorsys.hsv_to_rgb(i / 255.0, 1.0, 0.5)) return tuple(color.astype(int)) c, cc = 0, complex(x, y) for i in range(1, 1000): if abs(c) > 2: return get_colors(i) c = c * c + cc return 0,0,0 if __name__ == "__main__": img = Image.new("RGB", (W, int(W / 2))) pixels = img.load() for x in tqdm(range(img.size[0])): for y in tqdm(range(img.size[1])): xx = (x - (0.75 * W)) / (W / 4) yy = (y - (W / 4)) / (W / 4) pixels[x, y] = mandelbrot(xx, yy) img.show() img.save("mandelbrot.jpg")
2.953125
3
tests/unit/commands/test_deploy.py
tonyreina/mlt
1
5431
<reponame>tonyreina/mlt # # -*- coding: utf-8 -*- # # Copyright (c) 2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: EPL-2.0 # from __future__ import print_function import uuid import pytest from mock import call, MagicMock from mlt.commands.deploy import DeployCommand from test_utils.io import catch_stdout @pytest.fixture def sleep(patch): return patch('time.sleep') @pytest.fixture def fetch_action_arg(patch): return patch('files.fetch_action_arg', MagicMock(return_value='output')) @pytest.fixture def kube_helpers(patch): return patch('kubernetes_helpers') @pytest.fixture def json_mock(patch): return patch('json') @pytest.fixture def open_mock(patch): return patch('open') @pytest.fixture def popen_mock(patch): popen_mock = MagicMock() popen_mock.return_value.poll.return_value = 0 return patch('Popen', popen_mock) @pytest.fixture def process_helpers(patch): return patch('process_helpers') @pytest.fixture def progress_bar(patch): progress_mock = MagicMock() progress_mock.duration_progress.side_effect = lambda x, y, z: print( 'Pushing ') return patch('progress_bar', progress_mock) @pytest.fixture def template(patch): return patch('Template') @pytest.fixture def verify_build(patch): return patch('build_helpers.verify_build') @pytest.fixture def verify_init(patch): return patch('config_helpers.load_config') @pytest.fixture def walk_mock(patch): return patch('os.walk', MagicMock(return_value=['foo', 'bar'])) @pytest.fixture def yaml(patch): return patch('yaml.load') def deploy(no_push, skip_crd_check, interactive, extra_config_args, retries=5): deploy = DeployCommand( {'deploy': True, '--no-push': no_push, '--skip-crd-check': skip_crd_check, '--interactive': interactive, '--retries': retries, '--logs':False}) deploy.config = {'name': 'app', 'namespace': 'namespace'} deploy.config.update(extra_config_args) with catch_stdout() as caught_output: deploy.action() output = caught_output.getvalue() return output def verify_successful_deploy(output, did_push=True, interactive=False): """assert pushing, deploying, then objs created, then pushed""" pushing = output.find('Pushing ') push_skip = output.find('Skipping image push') deploying = output.find('Deploying ') inspecting = output.find('Inspect created objects by running:\n') pushed = output.find('Pushed to ') pod_connect = output.find('Connecting to pod...') if did_push: assert all(var >= 0 for var in ( deploying, inspecting, pushing, pushed)) assert deploying < inspecting, pushing < pushed else: assert all(var == -1 for var in (pushing, pushed)) assert all(var >= 0 for var in (deploying, inspecting, push_skip)) assert push_skip < deploying, deploying < inspecting if interactive: assert pod_connect > inspecting def test_deploy_gce(walk_mock, progress_bar, popen_mock, open_mock, template, kube_helpers, process_helpers, verify_build, verify_init, fetch_action_arg, json_mock): json_mock.load.return_value = { 'last_remote_container': 'gcr.io/app_name:container_id', 'last_push_duration': 0.18889} output = deploy( no_push=False, skip_crd_check=True, interactive=False, extra_config_args={'gceProject': 'gcr://projectfoo'}) verify_successful_deploy(output) def test_deploy_docker(walk_mock, progress_bar, popen_mock, open_mock, template, kube_helpers, process_helpers, verify_build, verify_init, fetch_action_arg, json_mock): json_mock.load.return_value = { 'last_remote_container': 'gcr.io/app_name:container_id', 'last_push_duration': 0.18889} output = deploy( no_push=False, skip_crd_check=True, interactive=False, extra_config_args={'registry': 'dockerhub'}) verify_successful_deploy(output) def test_deploy_without_push(walk_mock, progress_bar, popen_mock, open_mock, template, kube_helpers, process_helpers, verify_build, verify_init, fetch_action_arg, json_mock): json_mock.load.return_value = { 'last_remote_container': 'gcr.io/app_name:container_id', 'last_push_duration': 0.18889} output = deploy( no_push=True, skip_crd_check=True, interactive=False, extra_config_args={'gceProject': 'gcr://projectfoo'}) verify_successful_deploy(output, did_push=False) def test_deploy_interactive_one_file(walk_mock, progress_bar, popen_mock, open_mock, template, kube_helpers, process_helpers, verify_build, verify_init, fetch_action_arg, sleep, yaml, json_mock): walk_mock.return_value = ['foo'] yaml.return_value = { 'template': {'foo': 'bar'}, 'containers': [{'foo': 'bar'}]} json_mock.loads.return_value = {'status': {'phase': 'Running'}} output = deploy( no_push=False, skip_crd_check=True, interactive=True, extra_config_args={'registry': 'dockerhub'}) verify_successful_deploy(output, interactive=True) # verify that kubectl commands are specifying namespace for call_args in process_helpers.run_popen.call_args_list: assert isinstance(call_args, type(call)) assert isinstance(call_args[0], tuple) assert len(call_args[0]) > 0 command = call_args[0][0] if command[0] == "kubectl": assert "--namespace" in command def test_deploy_interactive_two_files(walk_mock, progress_bar, popen_mock, open_mock, template, kube_helpers, process_helpers, verify_build, verify_init, fetch_action_arg, sleep, yaml, json_mock): json_mock.loads.return_value = {'status': {'phase': 'Running'}} yaml.return_value = { 'template': {'foo': 'bar'}, 'containers': [{'foo': 'bar'}]} output = deploy( no_push=False, skip_crd_check=True, interactive=True, extra_config_args={'registry': 'dockerhub', '<kube_spec>': 'r'}) verify_successful_deploy(output, interactive=True) def test_deploy_interactive_pod_not_run(walk_mock, progress_bar, popen_mock, open_mock, template, kube_helpers, process_helpers, verify_build, verify_init, fetch_action_arg, sleep, yaml, json_mock): json_mock.loads.return_value = {'status': {'phase': 'Error'}} yaml.return_value = { 'template': {'foo': 'bar'}, 'containers': [{'foo': 'bar'}]} with pytest.raises(ValueError): output = deploy( no_push=False, skip_crd_check=True, interactive=True, extra_config_args={'registry': 'dockerhub', '<kube_spec>': 'r'}) def test_deploy_update_app_run_id(open_mock, json_mock): run_id = str(uuid.uuid4()) json_mock_data = { 'last_remote_container': 'gcr.io/app_name:container_id', 'last_push_duration': 0.18889} json_mock.load.return_value = json_mock_data DeployCommand._update_app_run_id(run_id) assert json_mock_data['app_run_id'] == run_id def test_image_push_error(walk_mock, progress_bar, popen_mock, open_mock, template, kube_helpers, process_helpers, verify_build, verify_init, fetch_action_arg, json_mock): json_mock.load.return_value = { 'last_remote_container': 'gcr.io/app_name:container_id', 'last_push_duration': 0.18889} # setup mock to induce and error during the deploy popen_mock.return_value.poll.return_value = 1 output_str = "normal output..." error_str = "error message..." build_output = MagicMock() build_output.decode.return_value = output_str error_output = MagicMock() error_output.decode.return_value = error_str popen_mock.return_value.communicate.return_value = (build_output, error_output) deploy_cmd = DeployCommand({'deploy': True, '--skip-crd-check': True, '--no-push': False}) deploy_cmd.config = {'name': 'app', 'namespace': 'namespace'} deploy_cmd.config.update({'gceProject': 'gcr://projectfoo'}) with catch_stdout() as caught_output: with pytest.raises(SystemExit): deploy_cmd.action() output = caught_output.getvalue() # assert that we got the normal output, followed by the error message output_location = output.find(output_str) error_location = output.find(error_str) assert all(var >= 0 for var in (output_location, error_location)) assert output_location < error_location
1.875
2
packages/mccomponents/tests/mccomponentsbpmodule/sample/Broadened_E_Q_Kernel_TestCase.py
mcvine/mcvine
5
5432
#!/usr/bin/env python # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # <NAME> # California Institute of Technology # (C) 2006-2010 All Rights Reserved # # {LicenseText} # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # standalone = True import unittestX as unittest import journal debug = journal.debug( "Broadened_E_Q_Kernel_TestCase" ) warning = journal.warning( "Broadened_E_Q_Kernel_TestCase" ) import mcni from mccomposite import mccompositebp from mccomponents import mccomponentsbp class TestCase(unittest.TestCase): def test(self): E_Q = "Q*Q/3." S_Q = "1" sigma_Q = "Q/2." Qmin = 0; Qmax = 10 absorption_coefficient = scattering_coefficient = 1. kernel = mccomponentsbp.create_Broadened_E_Q_Kernel( E_Q, S_Q, sigma_Q, Qmin, Qmax, absorption_coefficient, scattering_coefficient, ) ei = 500 # meV from mcni.utils import conversion vil = conversion.e2v(ei) vi = (0,0,vil) import numpy.linalg as nl import numpy as np for i in range(10): event = mcni.neutron( r = (0,0,0), v = vi, prob = 1, time = 0 ) kernel.scatter( event ); vf = np.array(event.state.velocity) diffv = vi - vf Q = conversion.v2k(nl.norm(diffv)) ef = conversion.v2e(nl.norm(vf)) E = ei - ef # print E, Q, event E1 = eval(E_Q) continue return pass # end of TestCase def main(): unittest.main() return if __name__ == "__main__": main() # version __id__ = "$Id: TestCase.py 696 2010-11-09 06:23:06Z linjiao $" # End of file
1.976563
2
baseline/ns-vqa/reason/options/test_options.py
robinzixuan/Video-Question-Answering-HRI
52
5433
from .base_options import BaseOptions class TestOptions(BaseOptions): """Test Option Class""" def __init__(self): super(TestOptions, self).__init__() self.parser.add_argument('--load_checkpoint_path', required=True, type=str, help='checkpoint path') self.parser.add_argument('--save_result_path', required=True, type=str, help='save result path') self.parser.add_argument('--max_val_samples', default=None, type=int, help='max val data') self.parser.add_argument('--batch_size', default=256, type=int, help='batch_size') self.is_train = False
2.390625
2
Model_setup/NEISO_data_file/downsampling_generators_v1.py
keremakdemir/ISONE_UCED
0
5434
# -*- coding: utf-8 -*- """ Created on Fri Apr 24 18:45:34 2020 @author: kakdemi """ import pandas as pd #importing generators all_generators = pd.read_excel('generators2.xlsx', sheet_name='NEISO generators (dispatch)') #getting all oil generators all_oil = all_generators[all_generators['typ']=='oil'].copy() #getting all generators in every zone CT_oil = all_oil[all_oil['zone']=='CT'].copy() ME_oil = all_oil[all_oil['zone']=='ME'].copy() NEMA_oil = all_oil[all_oil['zone']=='NEMA'].copy() NH_oil = all_oil[all_oil['zone']=='NH'].copy() RI_oil = all_oil[all_oil['zone']=='RI'].copy() SEMA_oil = all_oil[all_oil['zone']=='SEMA'].copy() VT_oil = all_oil[all_oil['zone']=='VT'].copy() WCMA_oil = all_oil[all_oil['zone']=='WCMA'].copy() #defining zones zones = ['CT','ME','NEMA','NH','RI','SEMA','VT','WCMA'] #getting all slack generators all_slack = all_generators[all_generators['typ']=='slack'].copy() #getting generators other than slack and oil all_other = all_generators[(all_generators['typ']!='oil') & (all_generators['typ']!='slack')].copy() #defining a function to downsample oil generators def oil_downsampler(zone): #copying the oil generators in that zone and sorting wrt to their seg1 heat rate Selected_line_oil = globals()[zone+'_oil'].copy() sorted_df = Selected_line_oil.sort_values(by=['seg1']) sorted_df_reset = sorted_df.reset_index(drop=True) #creating 3 chunks wrt their heatrates heat_rate = list(sorted_df_reset.loc[:,'seg1']) num = int(len(heat_rate)/3) First_plant = sorted_df_reset.iloc[:num,:].copy() Second_plant = sorted_df_reset.iloc[num:num*2,:].copy() Third_plant = sorted_df_reset.iloc[num*2:,:].copy() #finding the relevant parameters for the downsampled oil plants First_cap = First_plant.loc[:,'netcap'].sum() Second_cap = Second_plant.loc[:,'netcap'].sum() Third_cap = Third_plant.loc[:,'netcap'].sum() netcap = [First_cap, Second_cap, Third_cap] ramp_1 = First_cap ramp_2 = Second_cap ramp_3 = Third_cap ramp = [ramp_1, ramp_2, ramp_3] First_min_cap = First_cap*0.35 Second_min_cap = Second_cap*0.35 Third_min_cap = Third_cap*0.35 min_cap = [First_min_cap, Second_min_cap, Third_min_cap] Min_u = [1, 1, 1] Min_d = [1, 1, 1] zones = [zone, zone, zone] types = ['oil', 'oil', 'oil'] seg_1_1 = First_plant.loc[:,'netcap'] * First_plant.loc[:,'seg1'] seg_1_1_new = seg_1_1.sum()/First_plant.loc[:,'netcap'].sum() seg_1_2 = First_plant.loc[:,'netcap'] * First_plant.loc[:,'seg2'] seg_1_2_new = seg_1_2.sum()/First_plant.loc[:,'netcap'].sum() seg_1_3 = First_plant.loc[:,'netcap'] * First_plant.loc[:,'seg3'] seg_1_3_new = seg_1_3.sum()/First_plant.loc[:,'netcap'].sum() seg_2_1 = Second_plant.loc[:,'netcap'] * Second_plant.loc[:,'seg1'] seg_2_1_new = seg_2_1.sum()/Second_plant.loc[:,'netcap'].sum() seg_2_2 = Second_plant.loc[:,'netcap'] * Second_plant.loc[:,'seg2'] seg_2_2_new = seg_2_2.sum()/Second_plant.loc[:,'netcap'].sum() seg_2_3 = Second_plant.loc[:,'netcap'] * Second_plant.loc[:,'seg3'] seg_2_3_new = seg_2_3.sum()/Second_plant.loc[:,'netcap'].sum() seg_3_1 = Third_plant.loc[:,'netcap'] * Third_plant.loc[:,'seg1'] seg_3_1_new = seg_3_1.sum()/Third_plant.loc[:,'netcap'].sum() seg_3_2 = Third_plant.loc[:,'netcap'] * Third_plant.loc[:,'seg2'] seg_3_2_new = seg_3_2.sum()/Third_plant.loc[:,'netcap'].sum() seg_3_3 = Third_plant.loc[:,'netcap'] * Third_plant.loc[:,'seg3'] seg_3_3_new = seg_3_3.sum()/Third_plant.loc[:,'netcap'].sum() seg_1 = [seg_1_1_new, seg_2_1_new, seg_3_1_new] seg_2 = [seg_1_2_new, seg_2_2_new, seg_3_2_new] seg_3 = [seg_1_3_new, seg_2_3_new, seg_3_3_new] var_om_1 = First_plant.loc[:,'netcap'] * First_plant.loc[:,'var_om'] var_om_1_new = var_om_1.sum()/First_plant.loc[:,'netcap'].sum() var_om_2 = Second_plant.loc[:,'netcap'] * Second_plant.loc[:,'var_om'] var_om_2_new = var_om_2.sum()/Second_plant.loc[:,'netcap'].sum() var_om_3 = Third_plant.loc[:,'netcap'] * Third_plant.loc[:,'var_om'] var_om_3_new = var_om_3.sum()/Third_plant.loc[:,'netcap'].sum() var_om = [var_om_1_new, var_om_2_new, var_om_3_new] no_load_1 = First_plant.loc[:,'netcap'] * First_plant.loc[:,'no_load'] no_load_1_new = no_load_1.sum()/First_plant.loc[:,'netcap'].sum() no_load_2 = Second_plant.loc[:,'netcap'] * Second_plant.loc[:,'no_load'] no_load_2_new = no_load_2.sum()/Second_plant.loc[:,'netcap'].sum() no_load_3 = Third_plant.loc[:,'netcap'] * Third_plant.loc[:,'no_load'] no_load_3_new = no_load_3.sum()/Third_plant.loc[:,'netcap'].sum() no_load = [no_load_1_new, no_load_2_new, no_load_3_new] st_cost_1 = First_plant.loc[:,'netcap'] * First_plant.loc[:,'st_cost'] st_cost_1_new = st_cost_1.sum()/First_plant.loc[:,'netcap'].sum() st_cost_2 = Second_plant.loc[:,'netcap'] * Second_plant.loc[:,'st_cost'] st_cost_2_new = st_cost_2.sum()/Second_plant.loc[:,'netcap'].sum() st_cost_3 = Third_plant.loc[:,'netcap'] * Third_plant.loc[:,'st_cost'] st_cost_3_new = st_cost_3.sum()/Third_plant.loc[:,'netcap'].sum() st_cost = [st_cost_1_new, st_cost_2_new, st_cost_3_new] name = [zone+'_agg_oil_1', zone+'_agg_oil_2', zone+'_agg_oil_3'] #creating a dataframe that includes downsampled oil generators list_labels = list(WCMA_oil.columns) list_columns = [name, types, zones, netcap, seg_1, seg_2, seg_3, min_cap, ramp, Min_u, Min_d, var_om, no_load, st_cost] zipped_list = list(zip(list_labels, list_columns)) gen_df = dict(zipped_list) df_oils = pd.DataFrame(gen_df) return df_oils #downsampling oil generators in every zone by using the defined function for z in zones: globals()[z+'_agg_oil_df'] = oil_downsampler(z) #adding downsampled oil generators to create a complete list of generators final_generators = pd.concat([all_other, CT_agg_oil_df, ME_agg_oil_df, NEMA_agg_oil_df, NH_agg_oil_df, RI_agg_oil_df, SEMA_agg_oil_df, VT_agg_oil_df, WCMA_agg_oil_df, all_slack], ignore_index=True) #exporting the generators as an Excel file final_generators.to_excel('generators.xlsx', sheet_name='NEISO generators (dispatch)', index=False)
2.546875
3
GUI1.py
otmanabdoun/IHM-Python
3
5435
<gh_stars>1-10 # -*- coding: utf-8 -*- """ Created on Tue Nov 16 19:47:41 2021 @author: User """ import tkinter as tk racine = tk . Tk () label = tk . Label ( racine , text ="J ' adore Python !") bouton = tk . Button ( racine , text =" Quitter ", command = racine . destroy ) label . pack () bouton . pack ()
2.71875
3
app/routes/v1/endpoints/clickup.py
ertyurk/bugme
0
5436
from fastapi import APIRouter, status, Body, HTTPException from fastapi.encoders import jsonable_encoder from starlette.responses import JSONResponse from app.models.common import * from app.models.clickup import * from app.database.crud.clickup import * router = APIRouter() @router.get("/", response_description="Clickup integrations are retrieved.") async def get_clickup_integrations(): clickups = await retrieve_clickups() return ( ResponseModel(clickups, "Clickup integrations data retrieved successfully") if len(clickups) > 0 else ResponseModel(clickups, "Empty list returned") ) @router.post( "/", response_description="Clickup integrations data added into the database." ) async def add_clickup_a_integration(clickup: ClickupModel = Body(...)): clickup = jsonable_encoder(clickup) new_clickup = await add_new_clickup(clickup) return ResponseModel( new_clickup, "clickup integration created successfully.", status.HTTP_201_CREATED, ) @router.get("/{id}/", response_description="Clickup data retrieved.") async def find_clickup_integration(id): clickup = await retrieve_clickup(id) return ( ResponseModel(clickup, "Clickup integrations data retrieved successfully") if clickup else ErrorResponseModel( "An error occured.", status.HTTP_404_NOT_FOUND, "Integration doesn't exist." ) ) @router.put( "/{id}/", response_description="Clickup integrations data updated in the database." ) async def update_a_clickup_integration( id: str, clickup: UpdateClickupModel = Body(...) ): clickup = jsonable_encoder(clickup) updated_clickup = await update_clickup_data(id, clickup) return ( ResponseModel({"id": id}, "Clickup integration updated successfully") if updated_clickup else ErrorResponseModel( "An error occurred", status.HTTP_404_NOT_FOUND, "There was an error updating the Clickup integration.", ) ) @router.delete("/{id}/", response_description="Delete the integration") async def delete_clickup_integration(id: str): deleted_clickup = await delete_integration(id) return ( ResponseModel( "Integration with ID: {} removed".format(id), "Integration deleted successfully", ) if deleted_clickup else ErrorResponseModel( "An error occured", status.HTTP_404_NOT_FOUND, "Integration with id {0} doesn't exist".format(id), ) )
2.5625
3
cellfinder_core/main.py
npeschke/cellfinder-core
5
5437
<filename>cellfinder_core/main.py<gh_stars>1-10 """ N.B imports are within functions to prevent tensorflow being imported before it's warnings are silenced """ import os import logging from imlib.general.logging import suppress_specific_logs tf_suppress_log_messages = [ "multiprocessing can interact badly with TensorFlow" ] def main( signal_array, background_array, voxel_sizes, start_plane=0, end_plane=-1, trained_model=None, model_weights=None, model="resnet50_tv", batch_size=32, n_free_cpus=2, network_voxel_sizes=[5, 1, 1], soma_diameter=16, ball_xy_size=6, ball_z_size=15, ball_overlap_fraction=0.6, log_sigma_size=0.2, n_sds_above_mean_thresh=10, soma_spread_factor=1.4, max_cluster_size=100000, cube_width=50, cube_height=50, cube_depth=20, network_depth="50", ): suppress_tf_logging(tf_suppress_log_messages) from cellfinder_core.detect import detect from cellfinder_core.classify import classify from cellfinder_core.tools import prep from pathlib import Path home = Path.home() install_path = home / ".cellfinder" logging.info("Detecting cell candidates") points = detect.main( signal_array, start_plane, end_plane, voxel_sizes, soma_diameter, max_cluster_size, ball_xy_size, ball_z_size, ball_overlap_fraction, soma_spread_factor, n_free_cpus, log_sigma_size, n_sds_above_mean_thresh, ) model_weights = prep.prep_classification( trained_model, model_weights, install_path, model, n_free_cpus ) if len(points) > 0: logging.info("Running classification") points = classify.main( points, signal_array, background_array, n_free_cpus, voxel_sizes, network_voxel_sizes, batch_size, cube_height, cube_width, cube_depth, trained_model, model_weights, network_depth, ) else: logging.info("No candidates, skipping classification") return points # logging.info("Saving classified cells") # save_cells(points, classified_points_path) def suppress_tf_logging(tf_suppress_log_messages): """ Prevents many lines of logs such as: "2019-10-24 16:54:41.363978: I tensorflow/stream_executor/platform/default /dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1" """ os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" for message in tf_suppress_log_messages: suppress_specific_logs("tensorflow", message)
1.71875
2
server.py
rezist-ro/rezistenta.tv
0
5438
# coding=utf-8 import dateutil.parser import flask import json import os import time import urllib import yaml EPISODES = yaml.load(open("episodes.yaml").read()) app = flask.Flask(__name__, static_path="/assets", static_folder="assets") app.jinja_env.filters["strftime"] = \ lambda str, fmt: dateutil.parser.parse(str).strftime(fmt) app.jinja_env.filters["quote_plus"] = lambda u: urllib.quote_plus(u) ASSETS = os.path.join(app.root_path, "assets") @app.route("/favicon.ico") def favicon(): return flask.send_from_directory( ASSETS, "favicon.ico", mimetype="image/icon") @app.route("/") def home(): return flask.render_template("pages/home.html", playlist=os.environ["PLAYLIST"], episodes=EPISODES, autoplay=not app.debug) @app.route("/episod/<int:number>") def episode(number): if number < 1: return "not found" elif number > len(EPISODES): return "coming soon" else: episode = EPISODES[len(EPISODES) - number] template = "pages/episode/%s.html" % ( "youtube" if "yt" in episode else "facebook" ) return flask.render_template(template, number=number, episode=episode, episodes=EPISODES)
2.546875
3
problem020.py
mazayus/ProjectEuler
0
5439
#!/usr/bin/env python3 from functools import * import operator def factorial(number): assert number >= 1 return reduce(operator.mul, range(1, number+1)) def digits(number): yield from (int(digit) for digit in str(number)) print(sum(digits(factorial(100))))
3.984375
4
transformer.py
ghafran/KerasPersonLab
0
5440
<reponame>ghafran/KerasPersonLab import numpy as np from math import cos, sin, pi import cv2 import random from config import config, TransformationParams from data_prep import map_coco_to_personlab class AugmentSelection: def __init__(self, flip=False, degree = 0., crop = (0,0), scale = 1.): self.flip = flip self.degree = degree #rotate self.crop = crop #shift actually self.scale = scale @staticmethod def random(): flip = random.uniform(0.,1.) > TransformationParams.flip_prob degree = random.uniform(-1.,1.) * TransformationParams.max_rotate_degree scale = (TransformationParams.scale_max - TransformationParams.scale_min)*random.uniform(0.,1.)+TransformationParams.scale_min \ if random.uniform(0.,1.) < TransformationParams.scale_prob else 1. x_offset = int(random.uniform(-1.,1.) * TransformationParams.center_perterb_max); y_offset = int(random.uniform(-1.,1.) * TransformationParams.center_perterb_max); return AugmentSelection(flip, degree, (x_offset,y_offset), scale) @staticmethod def unrandom(): flip = False degree = 0. scale = 1. x_offset = 0 y_offset = 0 return AugmentSelection(flip, degree, (x_offset,y_offset), scale) def affine(self, center=(config.IMAGE_SHAPE[1]//2, config.IMAGE_SHAPE[0]//2) , scale_self=1.): # the main idea: we will do all image transformations with one affine matrix. # this saves lot of cpu and make code significantly shorter # same affine matrix could be used to transform joint coordinates afterwards A = self.scale * cos(self.degree / 180. * pi ) B = self.scale * sin(self.degree / 180. * pi ) # scale_size = TransformationParams.target_dist / scale_self * self.scale scale_size = TransformationParams.target_dist / self.scale (width, height) = center center_x = width + self.crop[0] center_y = height + self.crop[1] center2zero = np.array( [[ 1., 0., -center_x], [ 0., 1., -center_y ], [ 0., 0., 1. ]] ) rotate = np.array( [[ A, B, 0 ], [ -B, A, 0 ], [ 0, 0, 1. ] ]) scale = np.array( [[ scale_size, 0, 0 ], [ 0, scale_size, 0 ], [ 0, 0, 1. ] ]) flip = np.array( [[ -1 if self.flip else 1., 0., 0. ], [ 0., 1., 0. ], [ 0., 0., 1. ]] ) center2center = np.array( [[ 1., 0., config.IMAGE_SHAPE[1]//2], [ 0., 1., config.IMAGE_SHAPE[0]//2 ], [ 0., 0., 1. ]] ) # order of combination is reversed combined = center2center.dot(flip).dot(scale).dot(rotate).dot(center2zero) return combined[0:2] class Transformer: @staticmethod def transform(img, masks, keypoints, aug=AugmentSelection.random()): # warp picture and mask M = aug.affine(center=(img.shape[1]//2, img.shape[0]//2)) cv_shape = (config.IMAGE_SHAPE[1], config.IMAGE_SHAPE[0]) # TODO: need to understand this, scale_provided[0] is height of main person divided by 368, caclulated in generate_hdf5.py # print(img.shape) # for i, img in enumerate(input_transform_targets): img = cv2.warpAffine(img, M, cv_shape, flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_CONSTANT, borderValue=(127,127,127)) # concat = np.stack(output_transform_targets, axis=-1) # fix from https://github.com/octiapp/KerasPersonLab/issues/2 # masks = cv2.warpAffine(masks, M, cv_shape, flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_CONSTANT, borderValue=0) out_masks = np.zeros(cv_shape[::-1]+(masks.shape[-1],)) for i in range(masks.shape[-1]): out_masks[:,:,i] = cv2.warpAffine(masks[:,:,i], M, cv_shape, flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_CONSTANT, borderValue=0) masks = out_masks # warp key points #TODO: joint could be cropped by augmentation, in this case we should mark it as invisible. #update: may be we don't need it actually, original code removed part sliced more than half totally, may be we should keep it keypoints = map_coco_to_personlab(keypoints) original_points = keypoints.copy() # print keypoints original_points[:,:,2]=1 # we reuse 3rd column in completely different way here, it is hack converted_points = np.matmul(M, original_points.transpose([0,2,1])).transpose([0,2,1]) keypoints[:,:,0:2]=converted_points cropped_kp = keypoints[:,:,0] >= config.IMAGE_SHAPE[1] cropped_kp = np.logical_or(cropped_kp, keypoints[:,:,1] >= config.IMAGE_SHAPE[0]) cropped_kp = np.logical_or(cropped_kp, keypoints[:,:,0] < 0) cropped_kp = np.logical_or(cropped_kp, keypoints[:,:,1] < 0) keypoints[cropped_kp, 2] = 0 # we just made image flip, i.e. right leg just became left leg, and vice versa if aug.flip: tmpLeft = keypoints[:, config.LEFT_KP, :] tmpRight = keypoints[:, config.RIGHT_KP, :] keypoints[:, config.LEFT_KP, :] = tmpRight keypoints[:, config.RIGHT_KP, :] = tmpLeft # print keypoints return img, masks, keypoints
2.796875
3
enan/__init__.py
mizuno-group/enan
0
5441
# -*- coding: utf-8 -*- """ Created on Wed Dec 25 15:46:32 2019 @author: tadahaya """ from .binom import BT from .connect import Connect from .fet import FET from .gsea import GSEA from .ssgsea import ssGSEA __copyright__ = 'Copyright (C) 2020 MIZUNO Tadahaya' __version__ = '1.0.3' __license__ = 'MIT' __author__ = '<NAME>' __author_email__ = '<EMAIL>'
1.25
1
app/helpers/__init__.py
Hacker-1202/Selfium
14
5442
<filename>app/helpers/__init__.py """ Selfium Helper Files ~~~~~~~~~~~~~~~~~~~ All Helper Files used in Selfium project; :copyright: (c) 2021 - Caillou and ZeusHay; :license: MIT, see LICENSE for more details. """ from .getUser import * from .getGuild import * from .params import * from .notify import * from .sendEmbed import * from .isStaff import *
1.070313
1
NLP/UNIMO/src/finetune/visual_entailment.py
zhangyimi/Research
1,319
5443
<gh_stars>1000+ # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Model for visual_entailment.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import glob import time import numpy as np import paddle.fluid as fluid from model.unimo_finetune import UNIMOModel from eval import glue_eval from collections import OrderedDict from utils.utils import print_eval_log def kl_divergence_with_logits(q_logits, p_logits): """ symmetric KL-divergence (See SMART, Sec 3.1) q_logits: logits p_logits: delta_logits """ q = fluid.layers.softmax(input=q_logits) p = fluid.layers.softmax(input=p_logits) kl_qp = fluid.layers.reduce_sum(q * (fluid.layers.log(q) - fluid.layers.log(p)), -1) kl_pq = fluid.layers.reduce_sum(p * (fluid.layers.log(p) - fluid.layers.log(q)), -1) vat_loss = fluid.layers.mean(x=kl_qp+kl_pq) return vat_loss def create_model(args, config, pyreader_name="train_reader", is_train=True): """create_model""" shapes = [[-1, args.max_seq_len, 1], # src_ids [-1, args.max_seq_len, 1], # pos_ids [-1, args.max_seq_len, 1], # sent_ids [-1, args.max_img_len + args.max_seq_len, args.max_img_len + args.max_seq_len], # input_mask [-1, args.max_img_len, 1], # v_mask [-1, args.max_seq_len, 1], # t_mask [-1, args.max_img_len, config["image_embedding_size"]], # image_embedding [-1, args.max_img_len, 5], # image_loc [-1, 1] # labels ] dtypes = ['int64', 'int64', 'int64', 'float32', 'float32', 'float32', 'float32','float32', 'int64'] lod_levels = [0, 0, 0, 0, 0, 0, 0, 0, 0] pyreader = fluid.layers.py_reader( capacity=70, shapes=shapes, dtypes=dtypes, lod_levels=lod_levels, name=pyreader_name, use_double_buffer=True) (src_ids, pos_ids, sent_ids, input_mask, v_mask, t_mask, image_embedding, image_loc, labels) \ = fluid.layers.read_file(pyreader) emb_ids = {"word_embedding": src_ids, "sent_embedding": sent_ids, "pos_embedding": pos_ids} image_input = {"image_embedding": image_embedding, "loc_embedding": image_loc} adv_step, adv_lr, norm_type, adv_max_norm, adv_init_mag = \ args.adv_step, args.adv_lr, args.norm_type, args.adv_max_norm, args.adv_init_mag assert adv_step > 0 and adv_init_mag > 0 def get_loss_and_logits(text_feats, image_feats): feats = text_feats + image_feats cls_params_name = ["cls_out_w_0", "cls_out_b_0"] feats = fluid.layers.fc( input=feats, size=2048, param_attr=fluid.ParamAttr( name=cls_params_name[0], initializer=fluid.initializer.TruncatedNormal(scale=0.02)), bias_attr=fluid.ParamAttr( name=cls_params_name[1], initializer=fluid.initializer.Constant(0.))) feats = fluid.layers.dropout( x=feats, dropout_prob=0.1, dropout_implementation="upscale_in_train") cls_params_name = ["cls_out_w_1", "cls_out_b_1"] logits = fluid.layers.fc( input=feats, size=args.num_labels, param_attr=fluid.ParamAttr( name=cls_params_name[0], initializer=fluid.initializer.TruncatedNormal(scale=0.02)), bias_attr=fluid.ParamAttr( name=cls_params_name[1], initializer=fluid.initializer.Constant(0.))) ce_loss, probs = fluid.layers.softmax_with_cross_entropy( logits=logits, label=labels, return_softmax=True) loss = fluid.layers.mean(x=ce_loss) / adv_step return loss, logits, probs def init_delta(input, mask, shape, name='text'): real_seq_len = fluid.layers.shape(input)[1] fake = fluid.layers.data(name=name+"_fake", shape=shape, dtype='float32') mask_slice = fluid.layers.slice(mask, axes=[1], starts=[0], ends=fluid.layers.shape(mask)[1]) length = fluid.layers.reduce_sum(mask_slice, dim=1, keep_dim=True) * shape[-1] # l2 norm delta = fluid.layers.uniform_random_batch_size_like(mask, shape=fake.shape, min=-1.0, max=1.0) delta = fluid.layers.slice(delta, axes=[1], starts=[0], ends=real_seq_len) delta = delta * mask_slice mag = adv_init_mag / fluid.layers.sqrt(length) delta = delta * mag return delta if is_train: text_emb_shape = [-1, args.max_seq_len, config['hidden_size']] text_delta = init_delta(src_ids, t_mask, text_emb_shape, name='text') image_emb_shape = [-1, args.max_img_len, config['image_embedding_size']] image_delta = init_delta(image_embedding, v_mask, image_emb_shape, name='img') else: text_delta, image_delta = None, None def pgd_with_l2(loss, delta): # grad delta_grad = fluid.backward.gradients(loss, delta)[0] # l2 norm delta_norm = fluid.layers.sqrt(fluid.layers.reduce_sum(fluid.layers.pow(fluid.layers.reshape(delta_grad, \ [fluid.layers.shape(delta_grad)[0], -1]), factor=2), dim=1, keep_dim=True)) delta_norm = fluid.layers.clamp(delta_norm, min=float(1e-8)) # pgd delta = delta + adv_lr * delta_grad / delta_norm # projection if adv_max_norm > 0: exceed_mask = (delta_norm > adv_max_norm).astype('float32') reweights = (adv_max_norm / delta_norm) * exceed_mask + (1 - exceed_mask) delta = delta * reweights delta_grad.stop_gradient=True return delta loss = None for iter in range(adv_step): vl_pure = UNIMOModel( emb_ids=emb_ids, input_mask=input_mask, config=config, image_input=image_input, weight_sharing=args.weight_sharing ) vl_text = UNIMOModel( text_adv_delta=text_delta, emb_ids=emb_ids, input_mask=input_mask, config=config, image_input=image_input, weight_sharing=args.weight_sharing ) vl_image = UNIMOModel( image_adv_delta=image_delta, emb_ids=emb_ids, input_mask=input_mask, config=config, image_input=image_input, weight_sharing=args.weight_sharing ) h_pure_text, h_pure_image = vl_pure.get_pooled_output() h_text_text, h_text_image = vl_text.get_pooled_output() h_image_text, h_image_image = vl_image.get_pooled_output() loss_pure, logit_pure, probs_pure = get_loss_and_logits(h_pure_text, h_pure_image) loss_text, logit_text, probs_text = get_loss_and_logits(h_text_text, h_text_image) loss_image, logit_image, probs_image = get_loss_and_logits(h_image_text, h_image_image) if is_train: text_delta = pgd_with_l2(loss_text, text_delta) image_delta = pgd_with_l2(loss_image, image_delta) kl_adv_text_loss = kl_divergence_with_logits(logit_pure, logit_text) kl_adv_image_loss = kl_divergence_with_logits(logit_pure, logit_image) cur_loss = loss_pure + loss_text + loss_image + kl_adv_text_loss + kl_adv_image_loss loss = cur_loss if loss is None else loss + cur_loss num_seqs = fluid.layers.create_tensor(dtype='int64') accuracy = fluid.layers.accuracy(input=probs_pure, label=labels, total=num_seqs) graph_vars = { "loss": loss, "probs": probs_pure, "accuracy": accuracy, "labels": labels, "num_seqs": num_seqs } for k, v in graph_vars.items(): v.persistable = False return pyreader, graph_vars def evaluate(args, exe, test_pyreader, graph_vars, eval_phase, dev_count=1, gpu_id=0): """evaluate""" all_mat = [] test_pyreader.start() time_begin = time.time() fetch_list = [graph_vars["probs"].name, graph_vars["labels"].name] while True: try: np_probs, np_labels = exe.run(fetch_list=fetch_list) np_preds = np.argmax(np_probs, axis=1).reshape((-1, 1)) np_labels = np_labels.reshape((-1, 1)) mat = np.concatenate([np_preds, np_labels], axis=1) all_mat.extend(mat.tolist()) except fluid.core.EOFException: test_pyreader.reset() break all_mat = np.array(all_mat) time_end = time.time() save_file = "%s/%s.trainers_%d.part_%d.npy" % (args.eval_dir, eval_phase, dev_count, gpu_id) np.save(save_file, all_mat) tmp_file = "%s/%s.trainers_%d.part_%d.finish" % (args.eval_dir, eval_phase, dev_count, gpu_id) tmp_writer = open(tmp_file, "w") tmp_writer.close() if gpu_id == 0: while True: ret = os.popen('find %s -maxdepth 1 -name "%s.trainers_%d.part_*.finish"' % (args.eval_dir, eval_phase, dev_count)).readlines() if len(ret) != dev_count: time.sleep(1) continue else: break all_mats = [] save_files = glob.glob("%s/%s.trainers_%d.part_*.npy" % (args.eval_dir, eval_phase, dev_count)) for cur_save_file in save_files: mat = np.load(cur_save_file).tolist() all_mats.extend(mat) all_mats = np.array(all_mats) cur_time = str(int(time.time())) os.system("mkdir %s/%s" % (args.eval_dir, cur_time)) os.system("mv %s/%s.trainers_%d.* %s/%s" % (args.eval_dir, eval_phase, dev_count, args.eval_dir, cur_time)) ret = OrderedDict() ret['phase'] = eval_phase ret['loss'] = -1 ret['data_num'] = all_mats.shape[0] ret['used_time'] = round(time_end - time_begin, 4) metrics = OrderedDict() metrics["simple_accuracy"] = glue_eval.simple_accuracy if args.eval_mertrics in metrics: ret_metric = metrics[args.eval_mertrics](all_mats[:, 0], all_mats[:, 1]) ret.update(ret_metric) print_eval_log(ret) else: raise ValueError('unsupported metric {}'.format(args.eval_mertrics)) return ret else: return None
1.679688
2
src/records.py
oth-datapipeline/ingestion-scripts
0
5444
<filename>src/records.py from faust import Record class RssFeed(Record, serializer='json'): feed_source: str title: str link: str published: str = None author: str = None summary: str = None published_parsed: list = None authors: list = None tags: list = None comments: str = None content: list = None source: dict = None class TwitterTrend(Record, serializer='json'): pass class Tweet(Record, serializer="json"): tweet_id: str text: str created_at: str metrics: dict author: dict trend: str place: str = None hashtags: list = None class RedditPost(Record, serializer='json'): id: str title: str author: dict created: str score: int upvote_ratio: float reddit: dict domain: str = None url: str = None comments: list = None keywords: list = None
2.578125
3
leetcode/102-Medium-Binary-Tree-Level-Order-Traversal/answer.py
vaishali-bariwal/Practice-Coding-Questions
25
5445
#!/usr/bin/python3 #------------------------------------------------------------------------------ # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def levelOrder(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ if not root: return [] stack = [(root, 0)] result = [] while stack: (node, level) = stack.pop(0) if level == len(result): result.append([]) result[level].append(node.val) if node.left: stack.append((node.left, level+1)) if node.right: stack.append((node.right, level+1)) return result #------------------------------------------------------------------------------ #Testing
4.09375
4
setup.py
shirayu/fitbit-dumper
0
5446
<gh_stars>0 #!/usr/bin/env python3 from setuptools import setup, find_packages setup( name="", version="0.01", packages=find_packages(), install_requires=[ "fitbit" ], dependency_links=[ ], extras_require={ "tests": [ "flake8", "autopep8", ] } )
1.109375
1
src/main.py
mtnmunuklu/SigmaToExcel
10
5447
<filename>src/main.py import sys sys.path.append("../") from src.app.sigma import SigmaConverter if __name__ == "__main__": sigmaconverter = SigmaConverter() sigmaconverter.read_from_file() sigmaconverter.write_to_excel()
1.875
2
server/processes/migrations/0132_auto_20201108_0540.py
CloudReactor/task_manager
0
5448
# Generated by Django 2.2.14 on 2020-11-08 05:40 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('processes', '0131_auto_20201107_2316'), ] operations = [ migrations.RunSQL( "UPDATE processes_workflow SET run_environment_id = scheduling_run_environment_id WHERE run_environment_id IS NULL;", reverse_sql='', ), ]
1.523438
2
sparsely_lstmvae_main.py
pengkangzaia/usad
0
5449
<gh_stars>0 from model.sparsely_lstm_vae import * import torch.utils.data as data_utils from sklearn import preprocessing from utils.eval_methods import * device = get_default_device() # Read data # normal = pd.read_csv("data/SWaT_Dataset_Normal_v1.csv") # , nrows=1000) normal = pd.read_csv("data/SWaT/SWaT_Dataset_Normal_v1.csv", nrows=10000) # , nrows=1000) normal = normal.drop(["Timestamp", "Normal/Attack"], axis=1) # normal.shape # Transform all columns into float64 for i in list(normal): normal[i] = normal[i].apply(lambda x: str(x).replace(",", ".")) normal = normal.astype(float) # 数据预处理 min_max_scaler = preprocessing.MinMaxScaler() x = normal.values x_scaled = min_max_scaler.fit_transform(x) normal = pd.DataFrame(x_scaled) # Read data # attack = pd.read_csv("data/SWaT_Dataset_Attack_v0.csv", sep=";") # , nrows=1000) attack = pd.read_csv("data/SWaT/SWaT_Dataset_Attack_v0.csv", sep=";", nrows=10000) # , nrows=1000) labels = [float(label != 'Normal') for label in attack["Normal/Attack"].values] attack = attack.drop(["Timestamp", "Normal/Attack"], axis=1) # Transform all columns into float64 for i in list(attack): attack[i] = attack[i].apply(lambda x: str(x).replace(",", ".")) attack = attack.astype(float) x = attack.values x_scaled = min_max_scaler.transform(x) attack = pd.DataFrame(x_scaled) ############## windows ################### window_size = 12 # np.arange(window_size)[None, :] 1*12 (0,1,2,3,4,5,6,7,8,9,10,11)一行12列 # np.arange(normal.shape[0] - window_size)[:, None] (1000-12)*1 (0,1,2,3,4,5...) 988列,每列递增 # np.arange(window_size)[None, :] + np.arange(normal.shape[0] - window_size)[:, None] (1000-12)*12 windows_normal = normal.values[np.arange(window_size)[None, :] + np.arange(attack.shape[0] - window_size)[:, None]] windows_attack = attack.values[np.arange(window_size)[None, :] + np.arange(attack.shape[0] - window_size)[:, None]] ############## training ################### # BATCH_SIZE = 7919 BATCH_SIZE = 200 N_EPOCHS = 100 hidden_size = 100 latent_size = 40 # w_size = windows_normal.shape[1] * windows_normal.shape[2] # window_size * feature_size # z_size = windows_normal.shape[1] * hidden_size # window_size * hidden_size windows_normal_train = windows_normal[:int(np.floor(.8 * windows_normal.shape[0]))] windows_normal_val = windows_normal[int(np.floor(.8 * windows_normal.shape[0])):int(np.floor(windows_normal.shape[0]))] train_loader = torch.utils.data.DataLoader(data_utils.TensorDataset( torch.from_numpy(windows_normal_train).float().view(([windows_normal_train.shape[0], windows_normal_train.shape[1], windows_normal_train.shape[2]])) ), batch_size=BATCH_SIZE, shuffle=False, num_workers=0) val_loader = torch.utils.data.DataLoader(data_utils.TensorDataset( torch.from_numpy(windows_normal_val).float().view(([windows_normal_val.shape[0], windows_normal_train.shape[1], windows_normal_train.shape[2]])) ), batch_size=BATCH_SIZE, shuffle=False, num_workers=0) test_loader = torch.utils.data.DataLoader(data_utils.TensorDataset( torch.from_numpy(windows_attack).float().view(([windows_attack.shape[0], windows_attack.shape[1], windows_attack.shape[2]])) ), batch_size=BATCH_SIZE, shuffle=False, num_workers=0) model = SparselyLstmVae(BATCH_SIZE, window_size, windows_normal.shape[2], hidden_size, latent_size, former_step=3) model = to_device(model, device) val_loss, train_loss = training(N_EPOCHS, model, train_loader, val_loader) plot_simple_history(val_loss) plot_train_loss(train_loss) torch.save({'ae': model.state_dict()}, "saved_model/model.pth") ############ testing ################# checkpoint = torch.load("model.pth") model.load_state_dict(checkpoint['ae']) # 每一个batch都有一个result。组成result集合 results = testing(model, test_loader) windows_labels = [] for i in range(len(labels) - window_size): windows_labels.append(list(np.int_(labels[i:i + window_size]))) # 窗口中有误差,则为异常,表示为1 y_test = [1.0 if (np.sum(window) > 0) else 0 for window in windows_labels] # 样本太少的话,误差会很大 y_pred = np.concatenate( [torch.stack(results[:-1]).flatten().detach().cpu().numpy(), results[-1].flatten().detach().cpu().numpy()]) y_pred = (y_pred - y_pred.min()) / (y_pred.max() - y_pred.min()) threshold = ROC(y_test, y_pred) t, th = bf_search(y_pred, y_test, start=0, end=1, step_num=1000, display_freq=50)
2.375
2
src/demo/tasks.py
MexsonFernandes/AsynchronousTasks-Django-Celery-RabbitMQ-Redis
1
5450
from __future__ import absolute_import, unicode_literals from dcs.celeryconf import app import time from django.core.mail import EmailMessage @app.task(bind=True, ignore_result=False, max_retries=3) def demo_task1(self): result = { 'val1': 1, 'val2': 2, 'val3': 3, } print("hellp") from_email = '<EMAIL>' to_list = ['<EMAIL>',] sendemail = EmailMessage("Message received!!!", "Hello test", str(from_email), to_list) sendemail.send() return result
1.945313
2
pytorch_translate/models/__init__.py
Ayansam1152/translate
748
5451
<reponame>Ayansam1152/translate #!/usr/bin/env python3 import importlib import os # automatically import any Python files in the models/ directory for file in sorted(os.listdir(os.path.dirname(__file__))): if file.endswith(".py") and not file.startswith("_"): model_name = file[: file.find(".py")] importlib.import_module("pytorch_translate.models." + model_name)
2.28125
2
app/config/secure.py
mapeimapei/awesome-flask-webapp
2
5452
# -*- coding: utf-8 -*- __author__ = '带土' SQLALCHEMY_DATABASE_URI = 'mysql+pymysql://root:[email protected]:3306/awesome' SECRET_KEY = <KEY>' # Email 配置 MAIL_SERVER = 'smtp.exmail.qq.com' MAIL_PORT = 465 MAIL_USE_SSL = True MAIL_USE_TSL = False MAIL_USERNAME = '<EMAIL>' MAIL_PASSWORD = '<PASSWORD>' MAIL_SUBJECT_PREFIX = '[鱼书]' MAIL_SENDER = '鱼书 <<EMAIL>>' # 开启数据库查询性能测试 SQLALCHEMY_RECORD_QUERIES = True # 性能测试的阀值 DATABASE_QUERY_TIMEOUT = 0.5 SQLALCHEMY_TRACK_MODIFICATIONS = True WTF_CSRF_CHECK_DEFAULT = False SQLALCHEMY_ECHO = True from datetime import timedelta REMEMBER_COOKIE_DURATION = timedelta(days=30) PROXY_API = 'http://ip.yushu.im/get' # PERMANENT_SESSION_LIFETIME = 3600
2
2
src/users/migrations/0014_auto_20200801_1008.py
aliharby12/Simple-vezeeta-project
0
5453
<reponame>aliharby12/Simple-vezeeta-project<gh_stars>0 # Generated by Django 2.2 on 2020-08-01 08:08 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('users', '0013_auto_20200731_1810'), ] operations = [ migrations.AlterField( model_name='profile', name='Specialist_doctor', field=models.CharField(choices=[('جراحه اطفال', 'جراحه اططفال'), ('تخسيس', 'تخسيس'), ('عظام', 'عظام'), ('جراحه عامه', 'جراحه عامه'), ('اطفال', 'اطفال'), ('اورام', 'اورام'), ('مخ واعصاب', 'مخ واعصاب'), ('انف واذن', 'انف واذن'), ('امراض دم', 'امراض دم'), ('باطنة', 'باطنه'), ('اسنان', 'اسنان'), ('جراحه تجميل', 'جراحه تجميل'), ('حميات', 'حميات'), ('نسا وتوليد', 'نسا وتوليد')], default='باطنه', max_length=255, verbose_name='التخصص'), ), migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255, verbose_name='اسم صاحب التعليق')), ('email', models.EmailField(max_length=254, verbose_name='البريد الالكتروني')), ('body', models.TextField(verbose_name='محتوى التعليق')), ('comment_date', models.DateTimeField(auto_now_add=True)), ('active', models.BooleanField(default=False)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='comments', to='users.Profile')), ], ), ]
1.75
2
caller_v3/app/api/v1/docker.py
tienthegainz/pipeline_executor_docker_call
0
5454
from typing import Any, List, Callable from fastapi import APIRouter, HTTPException, status, BackgroundTasks from app import schemas from app.core import docker_client import json from copy import deepcopy router = APIRouter() @router.get("/images", response_model=schemas.DockerImageRespond) def get_docker_image() -> Any: images_list = docker_client.images.list(all=True) return { 'images': [{'id': image.short_id, 'tags': image.tags} for image in images_list if image.tags] } @router.get("/volumes", response_model=schemas.DockerVolumeRespond) def get_docker_volume() -> Any: volumes_list = docker_client.volumes.list() return { 'volumes': [{'id': volume.short_id, 'name': volume.name} for volume in volumes_list] }
2.3125
2
keras/models.py
kalyc/keras-apache-mxnet
300
5455
<filename>keras/models.py """Model-related utilities. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from . import backend as K from .utils.generic_utils import has_arg from .utils.generic_utils import to_list from .engine.input_layer import Input from .engine.input_layer import InputLayer from .engine.training import Model from .engine.sequential import Sequential from .engine.saving import save_model from .engine.saving import load_model from .engine.saving import model_from_config from .engine.saving import model_from_yaml from .engine.saving import model_from_json from .engine.saving import save_mxnet_model try: import h5py except ImportError: h5py = None def _clone_functional_model(model, input_tensors=None): """Clone a functional `Model` instance. Model cloning is similar to calling a model on new inputs, except that it creates new layers (and thus new weights) instead of sharing the weights of the existing layers. # Arguments model: Instance of `Model`. input_tensors: optional list of input tensors to build the model upon. If not provided, placeholders will be created. # Returns An instance of `Model` reproducing the behavior of the original model, on top of new inputs tensors, using newly instantiated weights. # Raises ValueError: in case of invalid `model` argument value. """ if not isinstance(model, Model): raise ValueError('Expected `model` argument ' 'to be a `Model` instance, got ', model) if isinstance(model, Sequential): raise ValueError('Expected `model` argument ' 'to be a functional `Model` instance, ' 'got a `Sequential` instance instead:', model) layer_map = {} # Cache for created layers. tensor_map = {} # Map {reference_tensor: (corresponding_tensor, mask)} if input_tensors is None: # Create placeholders to build the model on top of. input_layers = [] input_tensors = [] for layer in model._input_layers: input_tensor = Input(batch_shape=layer.batch_input_shape, dtype=layer.dtype, sparse=layer.sparse, name=layer.name) input_tensors.append(input_tensor) # Cache newly created input layer. newly_created_input_layer = input_tensor._keras_history[0] layer_map[layer] = newly_created_input_layer for _original, _cloned in zip(model._input_layers, input_layers): layer_map[_original] = _cloned else: # Make sure that all input tensors come from a Keras layer. # If tensor comes from an input layer: cache the input layer. input_tensors = to_list(input_tensors) _input_tensors = [] for i, x in enumerate(input_tensors): if not K.is_keras_tensor(x): name = model._input_layers[i].name input_tensor = Input(tensor=x, name='input_wrapper_for_' + name) _input_tensors.append(input_tensor) # Cache newly created input layer. original_input_layer = x._keras_history[0] newly_created_input_layer = input_tensor._keras_history[0] layer_map[original_input_layer] = newly_created_input_layer else: _input_tensors.append(x) input_tensors = _input_tensors for x, y in zip(model.inputs, input_tensors): tensor_map[x] = (y, None) # tensor, mask # Iterated over every node in the reference model, in depth order. depth_keys = list(model._nodes_by_depth.keys()) depth_keys.sort(reverse=True) for depth in depth_keys: nodes = model._nodes_by_depth[depth] for node in nodes: # Recover the corresponding layer. layer = node.outbound_layer # Get or create layer. if layer not in layer_map: # Clone layer. new_layer = layer.__class__.from_config(layer.get_config()) layer_map[layer] = new_layer layer = new_layer else: # Reuse previously cloned layer. layer = layer_map[layer] # Don't call InputLayer multiple times. if isinstance(layer, InputLayer): continue # Gather inputs to call the new layer. reference_input_tensors = node.input_tensors reference_output_tensors = node.output_tensors # If all previous input tensors are available in tensor_map, # then call node.inbound_layer on them. computed_data = [] # List of tuples (input, mask). for x in reference_input_tensors: if x in tensor_map: computed_data.append(tensor_map[x]) if len(computed_data) == len(reference_input_tensors): # Call layer. if node.arguments: kwargs = node.arguments else: kwargs = {} if len(computed_data) == 1: computed_tensor, computed_mask = computed_data[0] if has_arg(layer.call, 'mask'): if 'mask' not in kwargs: kwargs['mask'] = computed_mask output_tensors = to_list( layer(computed_tensor, **kwargs)) output_masks = to_list( layer.compute_mask(computed_tensor, computed_mask)) computed_tensors = [computed_tensor] computed_masks = [computed_mask] else: computed_tensors = [x[0] for x in computed_data] computed_masks = [x[1] for x in computed_data] if has_arg(layer.call, 'mask'): if 'mask' not in kwargs: kwargs['mask'] = computed_masks output_tensors = to_list( layer(computed_tensors, **kwargs)) output_masks = to_list( layer.compute_mask(computed_tensors, computed_masks)) # Update tensor_map. for x, y, mask in zip(reference_output_tensors, output_tensors, output_masks): tensor_map[x] = (y, mask) # Check that we did compute the model outputs, # then instantiate a new model from inputs and outputs. output_tensors = [] for x in model.outputs: assert x in tensor_map, 'Could not compute output ' + str(x) tensor, _ = tensor_map[x] output_tensors.append(tensor) return Model(input_tensors, output_tensors, name=model.name) def _clone_sequential_model(model, input_tensors=None): """Clone a `Sequential` model instance. Model cloning is similar to calling a model on new inputs, except that it creates new layers (and thus new weights) instead of sharing the weights of the existing layers. # Arguments model: Instance of `Sequential`. input_tensors: optional list of input tensors to build the model upon. If not provided, placeholders will be created. # Returns An instance of `Sequential` reproducing the behavior of the original model, on top of new inputs tensors, using newly instantiated weights. # Raises ValueError: in case of invalid `model` argument value. """ if not isinstance(model, Sequential): raise ValueError('Expected `model` argument ' 'to be a `Sequential` model instance, ' 'but got:', model) def clone(layer): return layer.__class__.from_config(layer.get_config()) layers = [clone(layer) for layer in model.layers] if input_tensors is None: return Sequential(layers=layers, name=model.name) else: if len(to_list(input_tensors)) != 1: raise ValueError('To clone a `Sequential` model, we expect ' ' at most one tensor ' 'as part of `input_tensors`.') x = to_list(input_tensors)[0] if K.is_keras_tensor(x): origin_layer = x._keras_history[0] if isinstance(origin_layer, InputLayer): return Sequential(layers=[origin_layer] + layers, name=model.name) else: raise ValueError('Cannot clone a `Sequential` model on top ' 'of a tensor that comes from a Keras layer ' 'other than an `InputLayer`. ' 'Use the functional API instead.') input_tensor = Input(tensor=x, name='input_wrapper_for_' + str(x.name)) input_layer = input_tensor._keras_history[0] return Sequential(layers=[input_layer] + layers, name=model.name) def clone_model(model, input_tensors=None): """Clone any `Model` instance. Model cloning is similar to calling a model on new inputs, except that it creates new layers (and thus new weights) instead of sharing the weights of the existing layers. # Arguments model: Instance of `Model` (could be a functional model or a Sequential model). input_tensors: optional list of input tensors to build the model upon. If not provided, placeholders will be created. # Returns An instance of `Model` reproducing the behavior of the original model, on top of new inputs tensors, using newly instantiated weights. # Raises ValueError: in case of invalid `model` argument value. """ if isinstance(model, Sequential): return _clone_sequential_model(model, input_tensors=input_tensors) else: return _clone_functional_model(model, input_tensors=input_tensors)
2.515625
3
pythonFiles/tests/testing_tools/adapter/test_functional.py
erinxocon/vscode-python
0
5456
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from __future__ import unicode_literals import json import os import os.path import subprocess import sys import unittest import pytest from ...__main__ import TESTING_TOOLS_ROOT CWD = os.getcwd() DATA_DIR = os.path.join(os.path.dirname(__file__), '.data') SCRIPT = os.path.join(TESTING_TOOLS_ROOT, 'run_adapter.py') def resolve_testroot(name): projroot = os.path.join(DATA_DIR, name) return projroot, os.path.join(projroot, 'tests') def run_adapter(cmd, tool, *cliargs): try: return _run_adapter(cmd, tool, *cliargs) except subprocess.CalledProcessError: # Re-run pytest but print out stdout & stderr this time try: return _run_adapter(cmd, tool, *cliargs, hidestdio=False) except subprocess.CalledProcessError as exc: print(exc.output) def _run_adapter(cmd, tool, *cliargs, **kwargs): hidestdio = kwargs.pop('hidestdio', True) assert not kwargs kwds = {} argv = [sys.executable, SCRIPT, cmd, tool, '--'] + list(cliargs) if not hidestdio: argv.insert(4, '--no-hide-stdio') kwds['stderr'] = subprocess.STDOUT argv.append('--cache-clear') print('running {!r}'.format(' '.join(arg.rpartition(CWD + '/')[-1] for arg in argv))) return subprocess.check_output(argv, universal_newlines=True, **kwds) def fix_path(nodeid): return nodeid.replace('/', os.path.sep) def fix_test_order(tests): if sys.version_info >= (3, 6): return tests fixed = [] curfile = None group = [] for test in tests: if (curfile or '???') not in test['id']: fixed.extend(sorted(group, key=lambda t: t['id'])) group = [] curfile = test['id'].partition('.py::')[0] + '.py' group.append(test) fixed.extend(sorted(group, key=lambda t: t['id'])) return fixed def fix_source(tests, testid, srcfile, lineno): testid = fix_path(testid) for test in tests: if test['id'] == testid: break else: raise KeyError('test {!r} not found'.format(testid)) if not srcfile: srcfile = test['source'].rpartition(':')[0] test['source'] = fix_path('{}:{}'.format(srcfile, lineno)) @pytest.mark.functional class PytestTests(unittest.TestCase): def complex(self, testroot): results = COMPLEX.copy() results['root'] = testroot return [results] def test_discover_simple(self): projroot, testroot = resolve_testroot('simple') out = run_adapter('discover', 'pytest', '--rootdir', projroot, testroot) result = json.loads(out) self.maxDiff = None self.assertEqual(result, [{ 'root': projroot, 'rootid': '.', 'parents': [ {'id': fix_path('./tests'), 'kind': 'folder', 'name': 'tests', 'parentid': '.', }, {'id': fix_path('./tests/test_spam.py'), 'kind': 'file', 'name': 'test_spam.py', 'parentid': fix_path('./tests'), }, ], 'tests': [ {'id': fix_path('./tests/test_spam.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_spam.py:2'), 'markers': [], 'parentid': fix_path('./tests/test_spam.py'), }, ], }]) def test_discover_complex_default(self): projroot, testroot = resolve_testroot('complex') expected = self.complex(projroot) expected[0]['tests'] = fix_test_order(expected[0]['tests']) if sys.version_info < (3,): decorated = [ './tests/test_unittest.py::MyTests::test_skipped', './tests/test_unittest.py::MyTests::test_maybe_skipped', './tests/test_unittest.py::MyTests::test_maybe_not_skipped', ] for testid in decorated: fix_source(expected[0]['tests'], testid, None, 0) out = run_adapter('discover', 'pytest', '--rootdir', projroot, testroot) result = json.loads(out) result[0]['tests'] = fix_test_order(result[0]['tests']) self.maxDiff = None self.assertEqual(result, expected) def test_discover_complex_doctest(self): projroot, _ = resolve_testroot('complex') expected = self.complex(projroot) # add in doctests from test suite expected[0]['parents'].insert(3, { 'id': fix_path('./tests/test_doctest.py'), 'kind': 'file', 'name': 'test_doctest.py', 'parentid': fix_path('./tests'), }) expected[0]['tests'].insert(2, { 'id': fix_path('./tests/test_doctest.py::tests.test_doctest'), 'name': 'tests.test_doctest', 'source': fix_path('./tests/test_doctest.py:1'), 'markers': [], 'parentid': fix_path('./tests/test_doctest.py'), }) # add in doctests from non-test module expected[0]['parents'].insert(0, { 'id': fix_path('./mod.py'), 'kind': 'file', 'name': 'mod.py', 'parentid': '.', }) expected[0]['tests'] = [ {'id': fix_path('./mod.py::mod'), 'name': 'mod', 'source': fix_path('./mod.py:1'), 'markers': [], 'parentid': fix_path('./mod.py'), }, {'id': fix_path('./mod.py::mod.Spam'), 'name': 'mod.Spam', 'source': fix_path('./mod.py:33'), 'markers': [], 'parentid': fix_path('./mod.py'), }, {'id': fix_path('./mod.py::mod.Spam.eggs'), 'name': 'mod.Spam.eggs', 'source': fix_path('./mod.py:43'), 'markers': [], 'parentid': fix_path('./mod.py'), }, {'id': fix_path('./mod.py::mod.square'), 'name': 'mod.square', 'source': fix_path('./mod.py:18'), 'markers': [], 'parentid': fix_path('./mod.py'), }, ] + expected[0]['tests'] expected[0]['tests'] = fix_test_order(expected[0]['tests']) if sys.version_info < (3,): decorated = [ './tests/test_unittest.py::MyTests::test_skipped', './tests/test_unittest.py::MyTests::test_maybe_skipped', './tests/test_unittest.py::MyTests::test_maybe_not_skipped', ] for testid in decorated: fix_source(expected[0]['tests'], testid, None, 0) out = run_adapter('discover', 'pytest', '--rootdir', projroot, '--doctest-modules', projroot) result = json.loads(out) result[0]['tests'] = fix_test_order(result[0]['tests']) self.maxDiff = None self.assertEqual(result, expected) def test_discover_not_found(self): projroot, testroot = resolve_testroot('notests') out = run_adapter('discover', 'pytest', '--rootdir', projroot, testroot) result = json.loads(out) self.maxDiff = None self.assertEqual(result, []) # TODO: Expect the following instead? #self.assertEqual(result, [{ # 'root': projroot, # 'rootid': '.', # 'parents': [], # 'tests': [], # }]) COMPLEX = { 'root': None, 'rootid': '.', 'parents': [ # {'id': fix_path('./tests'), 'kind': 'folder', 'name': 'tests', 'parentid': '.', }, # +++ {'id': fix_path('./tests/test_42-43.py'), 'kind': 'file', 'name': 'test_42-43.py', 'parentid': fix_path('./tests'), }, # +++ {'id': fix_path('./tests/test_42.py'), 'kind': 'file', 'name': 'test_42.py', 'parentid': fix_path('./tests'), }, # +++ {'id': fix_path('./tests/test_doctest.txt'), 'kind': 'file', 'name': 'test_doctest.txt', 'parentid': fix_path('./tests'), }, # +++ {'id': fix_path('./tests/test_foo.py'), 'kind': 'file', 'name': 'test_foo.py', 'parentid': fix_path('./tests'), }, # +++ {'id': fix_path('./tests/test_mixed.py'), 'kind': 'file', 'name': 'test_mixed.py', 'parentid': fix_path('./tests'), }, {'id': fix_path('./tests/test_mixed.py::MyTests'), 'kind': 'suite', 'name': 'MyTests', 'parentid': fix_path('./tests/test_mixed.py'), }, {'id': fix_path('./tests/test_mixed.py::TestMySuite'), 'kind': 'suite', 'name': 'TestMySuite', 'parentid': fix_path('./tests/test_mixed.py'), }, # +++ {'id': fix_path('./tests/test_pytest.py'), 'kind': 'file', 'name': 'test_pytest.py', 'parentid': fix_path('./tests'), }, {'id': fix_path('./tests/test_pytest.py::TestEggs'), 'kind': 'suite', 'name': 'TestEggs', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::TestParam'), 'kind': 'suite', 'name': 'TestParam', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::TestParam::test_param_13'), 'kind': 'function', 'name': 'test_param_13', 'parentid': fix_path('./tests/test_pytest.py::TestParam'), }, {'id': fix_path('./tests/test_pytest.py::TestParamAll'), 'kind': 'suite', 'name': 'TestParamAll', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::TestParamAll::test_param_13'), 'kind': 'function', 'name': 'test_param_13', 'parentid': fix_path('./tests/test_pytest.py::TestParamAll'), }, {'id': fix_path('./tests/test_pytest.py::TestParamAll::test_spam_13'), 'kind': 'function', 'name': 'test_spam_13', 'parentid': fix_path('./tests/test_pytest.py::TestParamAll'), }, {'id': fix_path('./tests/test_pytest.py::TestSpam'), 'kind': 'suite', 'name': 'TestSpam', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::TestSpam::TestHam'), 'kind': 'suite', 'name': 'TestHam', 'parentid': fix_path('./tests/test_pytest.py::TestSpam'), }, {'id': fix_path('./tests/test_pytest.py::TestSpam::TestHam::TestEggs'), 'kind': 'suite', 'name': 'TestEggs', 'parentid': fix_path('./tests/test_pytest.py::TestSpam::TestHam'), }, {'id': fix_path('./tests/test_pytest.py::test_fixture_param'), 'kind': 'function', 'name': 'test_fixture_param', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_01'), 'kind': 'function', 'name': 'test_param_01', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_11'), 'kind': 'function', 'name': 'test_param_11', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13'), 'kind': 'function', 'name': 'test_param_13', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_markers'), 'kind': 'function', 'name': 'test_param_13_markers', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_repeat'), 'kind': 'function', 'name': 'test_param_13_repeat', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_skipped'), 'kind': 'function', 'name': 'test_param_13_skipped', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_13'), 'kind': 'function', 'name': 'test_param_23_13', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_raises'), 'kind': 'function', 'name': 'test_param_23_raises', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_33'), 'kind': 'function', 'name': 'test_param_33', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_33_ids'), 'kind': 'function', 'name': 'test_param_33_ids', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_fixture'), 'kind': 'function', 'name': 'test_param_fixture', 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_mark_fixture'), 'kind': 'function', 'name': 'test_param_mark_fixture', 'parentid': fix_path('./tests/test_pytest.py'), }, # +++ {'id': fix_path('./tests/test_pytest_param.py'), 'kind': 'file', 'name': 'test_pytest_param.py', 'parentid': fix_path('./tests'), }, {'id': fix_path('./tests/test_pytest_param.py::TestParamAll'), 'kind': 'suite', 'name': 'TestParamAll', 'parentid': fix_path('./tests/test_pytest_param.py'), }, {'id': fix_path('./tests/test_pytest_param.py::TestParamAll::test_param_13'), 'kind': 'function', 'name': 'test_param_13', 'parentid': fix_path('./tests/test_pytest_param.py::TestParamAll'), }, {'id': fix_path('./tests/test_pytest_param.py::TestParamAll::test_spam_13'), 'kind': 'function', 'name': 'test_spam_13', 'parentid': fix_path('./tests/test_pytest_param.py::TestParamAll'), }, {'id': fix_path('./tests/test_pytest_param.py::test_param_13'), 'kind': 'function', 'name': 'test_param_13', 'parentid': fix_path('./tests/test_pytest_param.py'), }, # +++ {'id': fix_path('./tests/test_unittest.py'), 'kind': 'file', 'name': 'test_unittest.py', 'parentid': fix_path('./tests'), }, {'id': fix_path('./tests/test_unittest.py::MyTests'), 'kind': 'suite', 'name': 'MyTests', 'parentid': fix_path('./tests/test_unittest.py'), }, {'id': fix_path('./tests/test_unittest.py::OtherTests'), 'kind': 'suite', 'name': 'OtherTests', 'parentid': fix_path('./tests/test_unittest.py'), }, ## {'id': fix_path('./tests/v'), 'kind': 'folder', 'name': 'v', 'parentid': fix_path('./tests'), }, ## +++ {'id': fix_path('./tests/v/test_eggs.py'), 'kind': 'file', 'name': 'test_eggs.py', 'parentid': fix_path('./tests/v'), }, {'id': fix_path('./tests/v/test_eggs.py::TestSimple'), 'kind': 'suite', 'name': 'TestSimple', 'parentid': fix_path('./tests/v/test_eggs.py'), }, ## +++ {'id': fix_path('./tests/v/test_ham.py'), 'kind': 'file', 'name': 'test_ham.py', 'parentid': fix_path('./tests/v'), }, ## +++ {'id': fix_path('./tests/v/test_spam.py'), 'kind': 'file', 'name': 'test_spam.py', 'parentid': fix_path('./tests/v'), }, ## {'id': fix_path('./tests/w'), 'kind': 'folder', 'name': 'w', 'parentid': fix_path('./tests'), }, ## +++ {'id': fix_path('./tests/w/test_spam.py'), 'kind': 'file', 'name': 'test_spam.py', 'parentid': fix_path('./tests/w'), }, ## +++ {'id': fix_path('./tests/w/test_spam_ex.py'), 'kind': 'file', 'name': 'test_spam_ex.py', 'parentid': fix_path('./tests/w'), }, ## {'id': fix_path('./tests/x'), 'kind': 'folder', 'name': 'x', 'parentid': fix_path('./tests'), }, ### {'id': fix_path('./tests/x/y'), 'kind': 'folder', 'name': 'y', 'parentid': fix_path('./tests/x'), }, #### {'id': fix_path('./tests/x/y/z'), 'kind': 'folder', 'name': 'z', 'parentid': fix_path('./tests/x/y'), }, ##### {'id': fix_path('./tests/x/y/z/a'), 'kind': 'folder', 'name': 'a', 'parentid': fix_path('./tests/x/y/z'), }, ##### +++ {'id': fix_path('./tests/x/y/z/a/test_spam.py'), 'kind': 'file', 'name': 'test_spam.py', 'parentid': fix_path('./tests/x/y/z/a'), }, ##### {'id': fix_path('./tests/x/y/z/b'), 'kind': 'folder', 'name': 'b', 'parentid': fix_path('./tests/x/y/z'), }, ##### +++ {'id': fix_path('./tests/x/y/z/b/test_spam.py'), 'kind': 'file', 'name': 'test_spam.py', 'parentid': fix_path('./tests/x/y/z/b'), }, #### +++ {'id': fix_path('./tests/x/y/z/test_ham.py'), 'kind': 'file', 'name': 'test_ham.py', 'parentid': fix_path('./tests/x/y/z'), }, ], 'tests': [ ########## {'id': fix_path('./tests/test_42-43.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_42-43.py:2'), 'markers': [], 'parentid': fix_path('./tests/test_42-43.py'), }, ##### {'id': fix_path('./tests/test_42.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_42.py:2'), 'markers': [], 'parentid': fix_path('./tests/test_42.py'), }, ##### {'id': fix_path('./tests/test_doctest.txt::test_doctest.txt'), 'name': 'test_doctest.txt', 'source': fix_path('./tests/test_doctest.txt:1'), 'markers': [], 'parentid': fix_path('./tests/test_doctest.txt'), }, ##### {'id': fix_path('./tests/test_foo.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_foo.py:3'), 'markers': [], 'parentid': fix_path('./tests/test_foo.py'), }, ##### {'id': fix_path('./tests/test_mixed.py::test_top_level'), 'name': 'test_top_level', 'source': fix_path('./tests/test_mixed.py:5'), 'markers': [], 'parentid': fix_path('./tests/test_mixed.py'), }, {'id': fix_path('./tests/test_mixed.py::test_skipped'), 'name': 'test_skipped', 'source': fix_path('./tests/test_mixed.py:9'), 'markers': ['skip'], 'parentid': fix_path('./tests/test_mixed.py'), }, {'id': fix_path('./tests/test_mixed.py::TestMySuite::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_mixed.py:16'), 'markers': [], 'parentid': fix_path('./tests/test_mixed.py::TestMySuite'), }, {'id': fix_path('./tests/test_mixed.py::MyTests::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_mixed.py:22'), 'markers': [], 'parentid': fix_path('./tests/test_mixed.py::MyTests'), }, {'id': fix_path('./tests/test_mixed.py::MyTests::test_skipped'), 'name': 'test_skipped', 'source': fix_path('./tests/test_mixed.py:25'), 'markers': ['skip'], 'parentid': fix_path('./tests/test_mixed.py::MyTests'), }, ##### {'id': fix_path('./tests/test_pytest.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_pytest.py:6'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_failure'), 'name': 'test_failure', 'source': fix_path('./tests/test_pytest.py:10'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_runtime_skipped'), 'name': 'test_runtime_skipped', 'source': fix_path('./tests/test_pytest.py:14'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_runtime_failed'), 'name': 'test_runtime_failed', 'source': fix_path('./tests/test_pytest.py:18'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_raises'), 'name': 'test_raises', 'source': fix_path('./tests/test_pytest.py:22'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_skipped'), 'name': 'test_skipped', 'source': fix_path('./tests/test_pytest.py:26'), 'markers': ['skip'], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_maybe_skipped'), 'name': 'test_maybe_skipped', 'source': fix_path('./tests/test_pytest.py:31'), 'markers': ['skip-if'], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_known_failure'), 'name': 'test_known_failure', 'source': fix_path('./tests/test_pytest.py:36'), 'markers': ['expected-failure'], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_warned'), 'name': 'test_warned', 'source': fix_path('./tests/test_pytest.py:41'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_custom_marker'), 'name': 'test_custom_marker', 'source': fix_path('./tests/test_pytest.py:46'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_multiple_markers'), 'name': 'test_multiple_markers', 'source': fix_path('./tests/test_pytest.py:51'), 'markers': ['expected-failure', 'skip', 'skip-if'], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_dynamic_1'), 'name': 'test_dynamic_1', 'source': fix_path('./tests/test_pytest.py:62'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_dynamic_2'), 'name': 'test_dynamic_2', 'source': fix_path('./tests/test_pytest.py:62'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_dynamic_3'), 'name': 'test_dynamic_3', 'source': fix_path('./tests/test_pytest.py:62'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::TestSpam::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_pytest.py:70'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestSpam'), }, {'id': fix_path('./tests/test_pytest.py::TestSpam::test_skipped'), 'name': 'test_skipped', 'source': fix_path('./tests/test_pytest.py:73'), 'markers': ['skip'], 'parentid': fix_path('./tests/test_pytest.py::TestSpam'), }, {'id': fix_path('./tests/test_pytest.py::TestSpam::TestHam::TestEggs::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_pytest.py:81'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestSpam::TestHam::TestEggs'), }, {'id': fix_path('./tests/test_pytest.py::TestEggs::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_pytest.py:93'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestEggs'), }, {'id': fix_path('./tests/test_pytest.py::test_param_01[]'), 'name': 'test_param_01[]', 'source': fix_path('./tests/test_pytest.py:103'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_01'), }, {'id': fix_path('./tests/test_pytest.py::test_param_11[x0]'), 'name': 'test_param_11[x0]', 'source': fix_path('./tests/test_pytest.py:108'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_11'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13[x0]'), 'name': 'test_param_13[x0]', 'source': fix_path('./tests/test_pytest.py:113'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13[x1]'), 'name': 'test_param_13[x1]', 'source': fix_path('./tests/test_pytest.py:113'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13[x2]'), 'name': 'test_param_13[x2]', 'source': fix_path('./tests/test_pytest.py:113'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_repeat[x0]'), 'name': 'test_param_13_repeat[x0]', 'source': fix_path('./tests/test_pytest.py:118'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_13_repeat'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_repeat[x1]'), 'name': 'test_param_13_repeat[x1]', 'source': fix_path('./tests/test_pytest.py:118'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_13_repeat'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_repeat[x2]'), 'name': 'test_param_13_repeat[x2]', 'source': fix_path('./tests/test_pytest.py:118'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_13_repeat'), }, {'id': fix_path('./tests/test_pytest.py::test_param_33[1-1-1]'), 'name': 'test_param_33[1-1-1]', 'source': fix_path('./tests/test_pytest.py:123'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_33'), }, {'id': fix_path('./tests/test_pytest.py::test_param_33[3-4-5]'), 'name': 'test_param_33[3-4-5]', 'source': fix_path('./tests/test_pytest.py:123'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_33'), }, {'id': fix_path('./tests/test_pytest.py::test_param_33[0-0-0]'), 'name': 'test_param_33[0-0-0]', 'source': fix_path('./tests/test_pytest.py:123'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_33'), }, {'id': fix_path('./tests/test_pytest.py::test_param_33_ids[v1]'), 'name': 'test_param_33_ids[v1]', 'source': fix_path('./tests/test_pytest.py:128'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_33_ids'), }, {'id': fix_path('./tests/test_pytest.py::test_param_33_ids[v2]'), 'name': 'test_param_33_ids[v2]', 'source': fix_path('./tests/test_pytest.py:128'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_33_ids'), }, {'id': fix_path('./tests/test_pytest.py::test_param_33_ids[v3]'), 'name': 'test_param_33_ids[v3]', 'source': fix_path('./tests/test_pytest.py:128'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_33_ids'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_13[1-1-z0]'), 'name': 'test_param_23_13[1-1-z0]', 'source': fix_path('./tests/test_pytest.py:134'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_13[1-1-z1]'), 'name': 'test_param_23_13[1-1-z1]', 'source': fix_path('./tests/test_pytest.py:134'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_13[1-1-z2]'), 'name': 'test_param_23_13[1-1-z2]', 'source': fix_path('./tests/test_pytest.py:134'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_13[3-4-z0]'), 'name': 'test_param_23_13[3-4-z0]', 'source': fix_path('./tests/test_pytest.py:134'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_13[3-4-z1]'), 'name': 'test_param_23_13[3-4-z1]', 'source': fix_path('./tests/test_pytest.py:134'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_13[3-4-z2]'), 'name': 'test_param_23_13[3-4-z2]', 'source': fix_path('./tests/test_pytest.py:134'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_13[0-0-z0]'), 'name': 'test_param_23_13[0-0-z0]', 'source': fix_path('./tests/test_pytest.py:134'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_13[0-0-z1]'), 'name': 'test_param_23_13[0-0-z1]', 'source': fix_path('./tests/test_pytest.py:134'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_13[0-0-z2]'), 'name': 'test_param_23_13[0-0-z2]', 'source': fix_path('./tests/test_pytest.py:134'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_13'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_markers[x0]'), 'name': 'test_param_13_markers[x0]', 'source': fix_path('./tests/test_pytest.py:140'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_13_markers'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_markers[???]'), 'name': 'test_param_13_markers[???]', 'source': fix_path('./tests/test_pytest.py:140'), 'markers': ['skip'], 'parentid': fix_path('./tests/test_pytest.py::test_param_13_markers'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_markers[2]'), 'name': 'test_param_13_markers[2]', 'source': fix_path('./tests/test_pytest.py:140'), 'markers': ['expected-failure'], 'parentid': fix_path('./tests/test_pytest.py::test_param_13_markers'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_skipped[x0]'), 'name': 'test_param_13_skipped[x0]', 'source': fix_path('./tests/test_pytest.py:149'), 'markers': ['skip'], 'parentid': fix_path('./tests/test_pytest.py::test_param_13_skipped'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_skipped[x1]'), 'name': 'test_param_13_skipped[x1]', 'source': fix_path('./tests/test_pytest.py:149'), 'markers': ['skip'], 'parentid': fix_path('./tests/test_pytest.py::test_param_13_skipped'), }, {'id': fix_path('./tests/test_pytest.py::test_param_13_skipped[x2]'), 'name': 'test_param_13_skipped[x2]', 'source': fix_path('./tests/test_pytest.py:149'), 'markers': ['skip'], 'parentid': fix_path('./tests/test_pytest.py::test_param_13_skipped'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_raises[1-None]'), 'name': 'test_param_23_raises[1-None]', 'source': fix_path('./tests/test_pytest.py:155'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_raises'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_raises[1.0-None]'), 'name': 'test_param_23_raises[1.0-None]', 'source': fix_path('./tests/test_pytest.py:155'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_raises'), }, {'id': fix_path('./tests/test_pytest.py::test_param_23_raises[2-catch2]'), 'name': 'test_param_23_raises[2-catch2]', 'source': fix_path('./tests/test_pytest.py:155'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_23_raises'), }, {'id': fix_path('./tests/test_pytest.py::TestParam::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_pytest.py:164'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestParam'), }, {'id': fix_path('./tests/test_pytest.py::TestParam::test_param_13[x0]'), 'name': 'test_param_13[x0]', 'source': fix_path('./tests/test_pytest.py:167'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestParam::test_param_13'), }, {'id': fix_path('./tests/test_pytest.py::TestParam::test_param_13[x1]'), 'name': 'test_param_13[x1]', 'source': fix_path('./tests/test_pytest.py:167'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestParam::test_param_13'), }, {'id': fix_path('./tests/test_pytest.py::TestParam::test_param_13[x2]'), 'name': 'test_param_13[x2]', 'source': fix_path('./tests/test_pytest.py:167'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestParam::test_param_13'), }, {'id': fix_path('./tests/test_pytest.py::TestParamAll::test_param_13[x0]'), 'name': 'test_param_13[x0]', 'source': fix_path('./tests/test_pytest.py:175'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestParamAll::test_param_13'), }, {'id': fix_path('./tests/test_pytest.py::TestParamAll::test_param_13[x1]'), 'name': 'test_param_13[x1]', 'source': fix_path('./tests/test_pytest.py:175'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestParamAll::test_param_13'), }, {'id': fix_path('./tests/test_pytest.py::TestParamAll::test_param_13[x2]'), 'name': 'test_param_13[x2]', 'source': fix_path('./tests/test_pytest.py:175'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestParamAll::test_param_13'), }, {'id': fix_path('./tests/test_pytest.py::TestParamAll::test_spam_13[x0]'), 'name': 'test_spam_13[x0]', 'source': fix_path('./tests/test_pytest.py:178'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestParamAll::test_spam_13'), }, {'id': fix_path('./tests/test_pytest.py::TestParamAll::test_spam_13[x1]'), 'name': 'test_spam_13[x1]', 'source': fix_path('./tests/test_pytest.py:178'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestParamAll::test_spam_13'), }, {'id': fix_path('./tests/test_pytest.py::TestParamAll::test_spam_13[x2]'), 'name': 'test_spam_13[x2]', 'source': fix_path('./tests/test_pytest.py:178'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::TestParamAll::test_spam_13'), }, {'id': fix_path('./tests/test_pytest.py::test_fixture'), 'name': 'test_fixture', 'source': fix_path('./tests/test_pytest.py:192'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_mark_fixture'), 'name': 'test_mark_fixture', 'source': fix_path('./tests/test_pytest.py:196'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py'), }, {'id': fix_path('./tests/test_pytest.py::test_param_fixture[x0]'), 'name': 'test_param_fixture[x0]', 'source': fix_path('./tests/test_pytest.py:201'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_fixture'), }, {'id': fix_path('./tests/test_pytest.py::test_param_fixture[x1]'), 'name': 'test_param_fixture[x1]', 'source': fix_path('./tests/test_pytest.py:201'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_fixture'), }, {'id': fix_path('./tests/test_pytest.py::test_param_fixture[x2]'), 'name': 'test_param_fixture[x2]', 'source': fix_path('./tests/test_pytest.py:201'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_fixture'), }, {'id': fix_path('./tests/test_pytest.py::test_param_mark_fixture[x0]'), 'name': 'test_param_mark_fixture[x0]', 'source': fix_path('./tests/test_pytest.py:207'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_mark_fixture'), }, {'id': fix_path('./tests/test_pytest.py::test_param_mark_fixture[x1]'), 'name': 'test_param_mark_fixture[x1]', 'source': fix_path('./tests/test_pytest.py:207'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_mark_fixture'), }, {'id': fix_path('./tests/test_pytest.py::test_param_mark_fixture[x2]'), 'name': 'test_param_mark_fixture[x2]', 'source': fix_path('./tests/test_pytest.py:207'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_param_mark_fixture'), }, {'id': fix_path('./tests/test_pytest.py::test_fixture_param[spam]'), 'name': 'test_fixture_param[spam]', 'source': fix_path('./tests/test_pytest.py:216'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_fixture_param'), }, {'id': fix_path('./tests/test_pytest.py::test_fixture_param[eggs]'), 'name': 'test_fixture_param[eggs]', 'source': fix_path('./tests/test_pytest.py:216'), 'markers': [], 'parentid': fix_path('./tests/test_pytest.py::test_fixture_param'), }, ###### {'id': fix_path('./tests/test_pytest_param.py::test_param_13[x0]'), 'name': 'test_param_13[x0]', 'source': fix_path('./tests/test_pytest_param.py:8'), 'markers': [], 'parentid': fix_path('./tests/test_pytest_param.py::test_param_13'), }, {'id': fix_path('./tests/test_pytest_param.py::test_param_13[x1]'), 'name': 'test_param_13[x1]', 'source': fix_path('./tests/test_pytest_param.py:8'), 'markers': [], 'parentid': fix_path('./tests/test_pytest_param.py::test_param_13'), }, {'id': fix_path('./tests/test_pytest_param.py::test_param_13[x2]'), 'name': 'test_param_13[x2]', 'source': fix_path('./tests/test_pytest_param.py:8'), 'markers': [], 'parentid': fix_path('./tests/test_pytest_param.py::test_param_13'), }, {'id': fix_path('./tests/test_pytest_param.py::TestParamAll::test_param_13[x0]'), 'name': 'test_param_13[x0]', 'source': fix_path('./tests/test_pytest_param.py:14'), 'markers': [], 'parentid': fix_path('./tests/test_pytest_param.py::TestParamAll::test_param_13'), }, {'id': fix_path('./tests/test_pytest_param.py::TestParamAll::test_param_13[x1]'), 'name': 'test_param_13[x1]', 'source': fix_path('./tests/test_pytest_param.py:14'), 'markers': [], 'parentid': fix_path('./tests/test_pytest_param.py::TestParamAll::test_param_13'), }, {'id': fix_path('./tests/test_pytest_param.py::TestParamAll::test_param_13[x2]'), 'name': 'test_param_13[x2]', 'source': fix_path('./tests/test_pytest_param.py:14'), 'markers': [], 'parentid': fix_path('./tests/test_pytest_param.py::TestParamAll::test_param_13'), }, {'id': fix_path('./tests/test_pytest_param.py::TestParamAll::test_spam_13[x0]'), 'name': 'test_spam_13[x0]', 'source': fix_path('./tests/test_pytest_param.py:17'), 'markers': [], 'parentid': fix_path('./tests/test_pytest_param.py::TestParamAll::test_spam_13'), }, {'id': fix_path('./tests/test_pytest_param.py::TestParamAll::test_spam_13[x1]'), 'name': 'test_spam_13[x1]', 'source': fix_path('./tests/test_pytest_param.py:17'), 'markers': [], 'parentid': fix_path('./tests/test_pytest_param.py::TestParamAll::test_spam_13'), }, {'id': fix_path('./tests/test_pytest_param.py::TestParamAll::test_spam_13[x2]'), 'name': 'test_spam_13[x2]', 'source': fix_path('./tests/test_pytest_param.py:17'), 'markers': [], 'parentid': fix_path('./tests/test_pytest_param.py::TestParamAll::test_spam_13'), }, ###### {'id': fix_path('./tests/test_unittest.py::MyTests::test_dynamic_'), 'name': 'test_dynamic_', 'source': fix_path('./tests/test_unittest.py:54'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::MyTests'), }, {'id': fix_path('./tests/test_unittest.py::MyTests::test_failure'), 'name': 'test_failure', 'source': fix_path('./tests/test_unittest.py:34'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::MyTests'), }, {'id': fix_path('./tests/test_unittest.py::MyTests::test_known_failure'), 'name': 'test_known_failure', 'source': fix_path('./tests/test_unittest.py:37'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::MyTests'), }, {'id': fix_path('./tests/test_unittest.py::MyTests::test_maybe_not_skipped'), 'name': 'test_maybe_not_skipped', 'source': fix_path('./tests/test_unittest.py:17'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::MyTests'), }, {'id': fix_path('./tests/test_unittest.py::MyTests::test_maybe_skipped'), 'name': 'test_maybe_skipped', 'source': fix_path('./tests/test_unittest.py:13'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::MyTests'), }, {'id': fix_path('./tests/test_unittest.py::MyTests::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_unittest.py:6'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::MyTests'), }, {'id': fix_path('./tests/test_unittest.py::MyTests::test_skipped'), 'name': 'test_skipped', 'source': fix_path('./tests/test_unittest.py:9'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::MyTests'), }, {'id': fix_path('./tests/test_unittest.py::MyTests::test_skipped_inside'), 'name': 'test_skipped_inside', 'source': fix_path('./tests/test_unittest.py:21'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::MyTests'), }, {'id': fix_path('./tests/test_unittest.py::MyTests::test_with_nested_subtests'), 'name': 'test_with_nested_subtests', 'source': fix_path('./tests/test_unittest.py:46'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::MyTests'), }, {'id': fix_path('./tests/test_unittest.py::MyTests::test_with_subtests'), 'name': 'test_with_subtests', 'source': fix_path('./tests/test_unittest.py:41'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::MyTests'), }, {'id': fix_path('./tests/test_unittest.py::OtherTests::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/test_unittest.py:61'), 'markers': [], 'parentid': fix_path('./tests/test_unittest.py::OtherTests'), }, ########### {'id': fix_path('./tests/v/test_eggs.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/v/spam.py:2'), 'markers': [], 'parentid': fix_path('./tests/v/test_eggs.py'), }, {'id': fix_path('./tests/v/test_eggs.py::TestSimple::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/v/spam.py:8'), 'markers': [], 'parentid': fix_path('./tests/v/test_eggs.py::TestSimple'), }, ###### {'id': fix_path('./tests/v/test_ham.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/v/spam.py:2'), 'markers': [], 'parentid': fix_path('./tests/v/test_ham.py'), }, {'id': fix_path('./tests/v/test_ham.py::test_not_hard'), 'name': 'test_not_hard', 'source': fix_path('./tests/v/spam.py:2'), 'markers': [], 'parentid': fix_path('./tests/v/test_ham.py'), }, ###### {'id': fix_path('./tests/v/test_spam.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/v/spam.py:2'), 'markers': [], 'parentid': fix_path('./tests/v/test_spam.py'), }, {'id': fix_path('./tests/v/test_spam.py::test_simpler'), 'name': 'test_simpler', 'source': fix_path('./tests/v/test_spam.py:4'), 'markers': [], 'parentid': fix_path('./tests/v/test_spam.py'), }, ########### {'id': fix_path('./tests/w/test_spam.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/w/test_spam.py:4'), 'markers': [], 'parentid': fix_path('./tests/w/test_spam.py'), }, {'id': fix_path('./tests/w/test_spam_ex.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/w/test_spam_ex.py:4'), 'markers': [], 'parentid': fix_path('./tests/w/test_spam_ex.py'), }, ########### {'id': fix_path('./tests/x/y/z/test_ham.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/x/y/z/test_ham.py:2'), 'markers': [], 'parentid': fix_path('./tests/x/y/z/test_ham.py'), }, ###### {'id': fix_path('./tests/x/y/z/a/test_spam.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/x/y/z/a/test_spam.py:11'), 'markers': [], 'parentid': fix_path('./tests/x/y/z/a/test_spam.py'), }, {'id': fix_path('./tests/x/y/z/b/test_spam.py::test_simple'), 'name': 'test_simple', 'source': fix_path('./tests/x/y/z/b/test_spam.py:7'), 'markers': [], 'parentid': fix_path('./tests/x/y/z/b/test_spam.py'), }, ], }
1.914063
2
mmgp/kernels/wavelet_slice.py
axdahl/SC-MMGP
0
5457
''' Wavelet kernel slice allows kernel operation on feature subset active_dims is iterable of feature dimensions to extract input_dim must equal dimension defined by active_dims ''' import numpy as np import tensorflow as tf from .. import util from . import kernel from .kernel_extras import * class WaveletSlice(kernel.Kernel): def __init__(self, input_dim, active_dims=None, shift=0, scale = 0.01, white=0.01, input_scaling=False): if input_scaling: self.shift = tf.Variable(shift * tf.ones([input_dim])) self.scale = tf.Variable(scale * tf.ones([input_dim])) else: self.shift = tf.Variable([shift], dtype=tf.float32) self.scale = tf.Variable([scale], dtype=tf.float32) self.input_dim = input_dim self.active_dims = active_dims self.white = white def kernel(self, points1, points2=None): if points2 is None: points2 = points1 white_noise = (self.white * util.eye(tf.shape(points1)[0]) + 0.1 * self.white * tf.ones( [tf.shape(points1)[0], tf.shape(points1)[0]])) else: white_noise = 0.01 * self.white * tf.ones( [tf.shape(points1)[0], tf.shape(points2)[0]] ) points1, points2 = dim_slice(self, points1, points2) def h(x): # Zhang wavelet #return tf.cos(1.75*x)*tf.exp(-0.5*x**2) # mexican hat wavelet return (1-x**2)*tf.exp(-0.5*x**2) kern1, kern2 = h((points1 - self.shift)/tf.exp(self.scale)), h((points2 - self.shift)/tf.exp(self.scale)) kern1, kern2 = tf.reduce_prod(kern1, axis=1), tf.reduce_prod(kern2, axis=1) kern = tf.einsum('i,j->ij', kern1, kern2) return kern + white_noise def diag_kernel(self, points): def h(x): # Zhang wavelet return tf.cos(1.75*x)*tf.exp(-0.5*x**2) # mexican hat wavelet #return (1-x**2)*tf.exp(-0.5*x**2) points = dim_slice_diag(self, points) kern = tf.reduce_prod(h((points - self.shift)/tf.exp(self.scale)) , axis=1) **2 return kern + self.white def get_params(self): return [self.shift, self.scale]
2.6875
3
transform.py
latenite4/python3
0
5458
#!/usr/bin/python3 #program to parse png images and change images # cmd: python3 transform.py # you must have local input/ and output/ directories # # name: <NAME> # date: 12/27/20 # cmdline: python transform.py cmd show image='city.png' --ulx=1 --uly=2 --brx=0 --bry=9 # python transform.py show city.png # python transform.py blur city.png from image import Image import numpy as np import time, os, argparse, string #from tkinter import * import imghdr import matplotlib.image as mpimg import matplotlib.pyplot as plt def adjust_brightness(image,factor): #scale each value by some amount x_pixels, y_pixels,num_channels = image.array.shape new_im = Image(x_pixels=x_pixels,y_pixels=y_pixels,num_channels=num_channels) for x in range(x_pixels): for y in range(y_pixels): for c in range(num_channels): new_im.array[x,y,c] = image.array[x,y,c] * factor #non vectorized version #vectorized version # new_im.array = image.array * factor -# this is faster return new_im #adjust the contrast by increasing difference from user #defined midpoint def adjust_contrast(image, factor, mid=0.5): x_pixels, y_pixels,num_channels = image.array.shape new_im = Image(x_pixels=x_pixels,y_pixels=y_pixels,num_channels=num_channels) for x in range(x_pixels): for y in range(y_pixels): for c in range(num_channels): new_im.array[x,y,c] = (image.array[x,y,c] -mid)* factor + mid #non vectorized version #vectorized version # new_im.array = (image.array - mid) * factor + mid return new_im # blur and image def blur(image, k_size): #k_size is the number of pixels to use when doing the blur #k_size=3 would be above and below and left neighbor, right neighbor pixels, and diagonal #neighbor pixels. im = Image(filename = image) x_pixels, y_pixels,num_channels = im.array.shape new_im = Image(x_pixels=x_pixels,y_pixels=y_pixels,num_channels=num_channels) neighbor_range = k_size // 2 for x in range(x_pixels): for y in range(y_pixels): for c in range(num_channels): total = 0 for x_i in range(max(0,x-neighbor_range), min(new_im.x_pixels-1, x+neighbor_range)+1): for y_i in range(max(0,y-neighbor_range), min(new_im.y_pixels-1, y+neighbor_range)+1): total += image.array[x_i, y_i, c] new_im.array[x,y,c] = total / (k_size **2) # average for kernel size in image return new_im def apply_kernel(image, kernel): # the kernel should be a 2D array that represents the kernel we'll use! # for the sake of simiplicity of this implementation, let's assume that the kernel is SQUARE # for example the sobel x kernel (detecting horizontal edges) is as follows: # [1 0 -1] # [2 0 -2] # [1 0 -1] x_pixels, y_pixels, num_channels = image.array.shape # represents x, y pixels of image, # channels (R, G, B) new_im = Image(x_pixels=x_pixels, y_pixels=y_pixels, num_channels=num_channels) # making a new array to copy values to! neighbor_range = kernel.shape[0] // 2 # this is a variable that tells us how many neighbors we actually look at (ie for a 3x3 kernel, this value should be 1) for x in range(x_pixels): for y in range(y_pixels): for c in range(num_channels): total = 0 for x_i in range(max(0,x-neighbor_range), min(new_im.x_pixels-1, x+neighbor_range)+1): for y_i in range(max(0,y-neighbor_range), min(new_im.y_pixels-1, y+neighbor_range)+1): x_k = x_i + neighbor_range - x y_k = y_i + neighbor_range - y kernel_val = kernel[x_k, y_k] total += image.array[x_i, y_i, c] * kernel_val new_im.array[x, y, c] = total return new_im def combine_images(image1, image2): # let's combine two images using the squared sum of squares: value = sqrt(value_1**2, value_2**2) # size of image1 and image2 MUST be the same x_pixels, y_pixels, num_channels = image1.array.shape # represents x, y pixels of image, # channels (R, G, B) new_im = Image(x_pixels=x_pixels, y_pixels=y_pixels, num_channels=num_channels) # making a new array to copy values to! for x in range(x_pixels): for y in range(y_pixels): for c in range(num_channels): new_im.array[x, y, c] = (image1.array[x, y, c]**2 + image2.array[x, y, c]**2)**0.5 return new_im def show_image(in_image): path="input/" img = mpimg.imread(path+in_image) imgplot = plt.imshow(img) plt.show() # check for necessary parts of the runtime environment def check_env( in_image): #check to verify that output/input dirs exist: path = './output/' is_path = os.path.isdir(path) if not is_path: print('local ./output dir must exist, cannot continue...') print(quit) quit() #verify output is writeable is_w = os.access(path, os.W_OK) if not is_w: print('local ./output dir must be writeable, cannot continue...') print(quit) quit() path = './input/' is_path = os.path.isdir(path) if not is_path: print('local ./input dir must exist, cannot continue...') print(quit) quit() #verify input image if in_image: thefile = 'input/'+in_image print('file path: '+thefile) is_file = os.path.isfile(thefile) if not is_file: print(f'local ./input file {in_image} must exist, cannot continue...') print(quit) quit() if imghdr.what(thefile) != 'png': print('wrong image file type, cannot continue...') print(quit) quit() def cmd(): print("routine cmd") # setup command line args and parms # optional args have -- # fixed (required args do not have --) def arg_init(): parser = argparse.ArgumentParser(description='Process an image.') parser.add_argument("cmd",help="command to this program",type=str) parser.add_argument("image",help="input image name for the command",type=str) parser.add_argument("--ulx",action='store_true',help="upperleft x in image") parser.add_argument("--uly",action='store_true',help="upperleft y in image") parser.add_argument("--brx",action='store_true',help="bottomright x in image") parser.add_argument("--bry",action='store_true',help="bottomright y in image") group = parser.add_mutually_exclusive_group() group.add_argument('--v', action='store_true',help="add more text output") group.add_argument('--q', action='store_true',help="minimal output") args = parser.parse_args() print(args.image) #if args.cmd != "show" and args.cmd != "blur": return args #def show_image(filename): if __name__ == '__main__': args = arg_init() check_env(args.image) lake = Image(filename = 'lake.png') city = Image(filename='city.png') start_time = time.time() # brightened_im = adjust_brightness(lake, 1.7) # brightened_im.write_image('brightened.png') # darkened_im = adjust_brightness(lake, 0.3) # darkened_im.write_image('darkened.png') # incr_contrast = adjust_contrast(lake, 2,0.5) # incr_contrast.write_image('incr_contrast.png') # decr_contrast = adjust_contrast(lake, 0.5,0.5) # decr_contrast.write_image('decr_contrast.png') # blur_3 = blur(city,3) # blur_3.write_image('blur_k3.png') # blur_15 = blur(city,15) # blur_15.write_image('blur_k15.png') # let's apply a sobel kernel on the x and y axis # sobel_x = apply_kernel(city, np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])) # sobel_x.write_image('edge_x.png') # sobel_y = apply_kernel(city, np.array([[1, 0, -1], [2, 0, -2], [1, 0, -1]])) # sobel_y.write_image('edge_y.png') # # this will show x and y edges # sobel_xy = combine_images(sobel_x, sobel_y) # sobel_xy.write_image('edge_xy.png') if args.cmd == "show" and args.image: show_image(args.image) if args.cmd == "blur" and args.image: blur_15 = blur(args.image,15) blur_15.write_image(args.image+'blur_k15.png') show_image(blur_k15.png) if args.v: print(f'total execution duration: {time.time() - start_time}s')
3.5
4
plugins/wyr.py
Jeglet/pcbot
0
5459
<gh_stars>0 """ Would you rather? This plugin includes would you rather functionality """ import asyncio import random import re import discord import bot import plugins from pcbot import Config client = plugins.client # type: bot.Client db = Config("would-you-rather", data=dict(timeout=10, responses=["**{name}** would **{choice}**!"], questions=[]), pretty=True) command_pattern = re.compile(r"(.+)(?:\s+or|\s*,)\s+([^?]+)\?*") sessions = set() # All running would you rather's are in this set @plugins.argument("{open}option ...{close} or/, {open}other option ...{close}[?]", allow_spaces=True) async def options(arg): """ Command argument for receiving two options. """ match = command_pattern.match(arg) assert match assert not match.group(1).lower() == match.group(2).lower(), "**The choices cannot be the same.**" return match.group(1), match.group(2) def get_choice(choices: list, choice: str): """ Get the chosen option. This accept 1 and 2 as numbers. """ if choice == "1": return 0 if choice == "2": return 1 choices = list(map(str.lower, choices)) words = list(map(str.split, choices)) # Go through all words in the given message, and find any words unique to a choice for word in choice.lower().split(): if word in words[0] and word not in words[1]: return 0 elif word in words[1] and word not in words[0]: return 1 # Invalid choice return None @plugins.command(aliases="wyr rather either") async def wouldyourather(message: discord.Message, opt: options = None): """ Ask the bot if he would rather, or have the bot ask you. **Examples:** Registering a choice: `!wouldyourather lie or be lied to` Asking the bot: `!wouldyourather`""" # If there are no options, the bot will ask the questions (if there are any to choose from) if opt is None: assert message.channel.id not in sessions, "**A would you rather session is already in progress.**" sessions.add(message.channel.id) assert db.data["questions"], "**There are ZERO questions saved. Ask me one!**" question = random.choice(db.data["questions"]) choices = question["choices"] await client.say(message, "Would you rather **{}** or **{}**?".format(*choices)) timeout = db.data["timeout"] replied = [] # Wait for replies from anyone in the channel while True: def check(m): return m.channel == message.channel and m.author not in replied try: reply = await client.wait_for_message(timeout=timeout, check=check) # Break on timeout except asyncio.TimeoutError: break # Check if the choice is valid choice = get_choice(choices, reply.content) if choice is None: continue # Register that this author has replied replied.append(reply.author) # Update the answers in the DB # We don't care about multiples, just the amount (yes it will probably be biased) question["answers"][choice] += 1 name = reply.author.display_name response = random.choice(db.data["responses"]).format(name=name, NAME=name.upper(), choice=choices[choice]) await client.say(message, response) # Say the total tallies await client.say(message, "A total of {0} would **{2}**, while {1} would **{3}**!".format( *question["answers"], *choices)) await db.asyncsave() sessions.remove(message.channel.id) # Otherwise, the member asked a question to the bot else: db.data["questions"].append(dict( choices=list(opt), answers=[0, 0] )) await db.asyncsave() answer = random.choice(opt) await client.say(message, "**I would {}**!".format(answer)) @wouldyourather.command(aliases="delete", owner=True) async def remove(message: discord.Message, opt: options): """ Remove a wouldyourather question with the given options. """ for q in db.data["questions"]: if q["choices"][0] == opt[0] and q["choices"][1] == opt[1]: db.data["questions"].remove(q) await db.asyncsave() await client.say(message, "**Entry removed.**") break else: await client.say(message, "**Could not find the question.**")
3.265625
3
suit_tool/argparser.py
bergzand/suit-manifest-generator
16
5460
# -*- coding: utf-8 -*- # ---------------------------------------------------------------------------- # Copyright 2019-2020 ARM Limited or its affiliates # # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ---------------------------------------------------------------------------- import sys, argparse, os from suit_tool import __version__ from suit_tool import keygen from suit_tool import get_pubkey import json import re def str_to_component(s): types = { 'file' : ('file', lambda x : str(x.strip('"'))), # 'desc' : ('component-description', lambda x : str(x.strip('"'))), 'inst' : ('install-id', lambda x : [ str(y) for y in eval(x) ]), 'uri' : ('uri', lambda x : str(x.strip('"'))) } d = {types[k][0]:types[k][1](v) for k,v in [ re.split(r'=',e, maxsplit=1) for e in re.split(r''',\s*(?=["']?[a-zA-Z0-9_-]+["']?=)''', s)]} return d class MainArgumentParser(object): def __init__(self): self.parser = self._make_parser() def _make_parser(self): parser = argparse.ArgumentParser(description = 'Create or transform a manifest.' ' Use {} [command] -h for help on each command.'.format(sys.argv[0])) # Add all top-level commands parser.add_argument('-l', '--log-level', choices=['debug','info','warning','exception'], default='info', help='Set the verbosity level of console output.') parser.add_argument('--version', action='version', version=__version__, help='display the version' ) subparsers = parser.add_subparsers(dest="action") subparsers.required = True create_parser = subparsers.add_parser('create', help='Create a new manifest') # create_parser.add_argument('-v', '--manifest-version', choices=['1'], default='1') create_parser.add_argument('-i', '--input-file', metavar='FILE', type=argparse.FileType('r'), help='An input file describing the update. The file must be formated as JSON. The overal structure is described in README.') create_parser.add_argument('-o', '--output-file', metavar='FILE', type=argparse.FileType('wb'), required=True) create_parser.add_argument('-f', '--format', metavar='FMT', choices=['suit', 'suit-debug', 'json'], default='suit') create_parser.add_argument('-s', '--severable', action='store_true', help='Convert large elements to severable fields.') create_parser.add_argument('-c', '--add-component', action='append', type=str_to_component, dest='components', default=[]) sign_parser = subparsers.add_parser('sign', help='Sign a manifest') sign_parser.add_argument('-m', '--manifest', metavar='FILE', type=argparse.FileType('rb'), required=True) sign_parser.add_argument('-k', '--private-key', metavar='FILE', type=argparse.FileType('rb'), required=True) sign_parser.add_argument('-i', '--key-id', metavar='ID', type=str) sign_parser.add_argument('-o', '--output-file', metavar='FILE', type=argparse.FileType('wb'), required=True) parse_parser = subparsers.add_parser('parse', help='Parse a manifest') parse_parser.add_argument('-m', '--manifest', metavar='FILE', type=argparse.FileType('rb'), required=True) parse_parser.add_argument('-j', '--json-output', default=False, action='store_true', dest='json') get_pubkey_parser = subparsers.add_parser('pubkey', help='Get the public key for a supplied private key.') get_pubkey_parser.add_argument('-k', '--private-key', metavar='FILE', type=argparse.FileType('rb'), required=True) get_pubkey_parser.add_argument('-f', '--output-format', choices=get_pubkey.OutputFormaters.keys(), default='pem') get_pubkey_parser.add_argument('-o', '--output-file', metavar='FILE', type=argparse.FileType('wb'), default=sys.stdout) keygen_parser = subparsers.add_parser('keygen', help='Create a signing key. Not for production use') keygen_parser.add_argument('-t', '--type', choices=keygen.KeyGenerators.keys(), default='secp256r1', help='The type of the key to generate') keygen_parser.add_argument('-o', '--output-file', metavar='FILE', type=argparse.FileType('wb'), default=sys.stdout) keygen_parser.add_argument('-f', '--output-format', choices=keygen.OutputFormaters.keys(), default='pem') keygen_parser.add_argument('-l', '--levels', help='The number of hss-lms levels', type=int, default=2) sever_parser = subparsers.add_parser('sever', help='Remove one or more severable elements from the manifest, if present.') sever_parser.add_argument('-m', '--manifest', metavar='FILE', type=argparse.FileType('rb'), required=True) sever_parser.add_argument('-o', '--output-file', metavar='FILE', type=argparse.FileType('wb'), required=True) sever_parser.add_argument('-e', '--element', action='append', type=str, dest='elements', default=[]) sever_parser.add_argument('-a', '--all', action='store_true', default=False) return parser def parse_args(self, args=None): self.options = self.parser.parse_args(args) return self
2.015625
2
python/process/process_pool.py
y2ghost/study
0
5461
<reponame>y2ghost/study import random import time from multiprocessing import Pool def worker(name: str) -> None: print(f'Started worker {name}') worker_time = random.choice(range(1, 5)) time.sleep(worker_time) print(f'{name} worker finished in {worker_time} seconds') if __name__ == '__main__': process_names = [f'computer_{i}' for i in range(15)] pool = Pool(processes=5) pool.map(worker, process_names) # pool.terminate()
3.375
3
Project/Support-NotSourced/generic_pydicom_ns.py
mazalgarab-git/OSICpypy
1
5462
# -*- coding: utf-8 -*- """ Created on Mon Sep 7 11:48:59 2020 @author: mazal """ """ ========================================= Support functions of pydicom (Not sourced) ========================================= Purpose: Create support functions for the pydicom project """ """ Test mode 1 | Basics testMode = True reportMode = False Test mode 2 | Function Report testMode = False reportMode = True Commisionning mode testMode = False reportMode = False """ testMode = False reportMode = False """ ========================================= Function 1: Aleatory Sampling ========================================= Purpose: Build an aleatory sample given a train dataset of Kaggle for competition and a sample size Raw code reference (see Tester.py): Test 5 """ def trainDatasetSampler(samplingSize,testMode,reportMode): # Set sampling size (% of the train population) samplingSize = 5 # Build a Sampling dataset | Phase 1: Determine: (1) the source path of the train data; (2) the location path of the sampling import os import pandas as pd path_source = 'Y:/Kaggle_OSIC/2-Data/train/' path_source_test = 'Y:/Kaggle_OSIC/2-Data/test/' path_destination = 'Y:/Kaggle_OSIC/4-Data (Sampling)/train/' path_destination_test = 'Y:/Kaggle_OSIC/4-Data (Sampling)/test/' path_destination_outcome = 'Y:/Kaggle_OSIC/4-Data (Sampling)/outcome/' # Build a Sampling dataset | Phase 2: Build dataset using the following features from train data: (1) ID; (2) # of DICOM files per ID (including percentage). ## Improvement: (3) # of other registers (not related to DICOM files) os.chdir(path_source) ID_list = os.listdir(path_source) ID_list_range = len(ID_list) DICOMFile_list = [] DICOMFileNumber_list = [] for i in range(0,ID_list_range): path_ID = path_source + ID_list[i] + '/' DICOMFile_list_unitary = os.listdir(path_ID) DICOMFile_list = DICOMFile_list + [DICOMFile_list_unitary] DICOMFileNumber_list_unitary = len(DICOMFile_list_unitary) DICOMFileNumber_list = DICOMFileNumber_list + [DICOMFileNumber_list_unitary] Population_Dictionary = {'ID':ID_list,'NumberDicomFiles':DICOMFileNumber_list,'DicomFIles':DICOMFile_list} Population_DataFrame = pd.DataFrame(data = Population_Dictionary) DICOMFilePercentage_list = [] TotalNumberDicomFiles = sum(Population_DataFrame.NumberDicomFiles) for j in range(0,ID_list_range): Percentage = Population_DataFrame['NumberDicomFiles'][j] / TotalNumberDicomFiles * 100 Percentage = round(Percentage,6) DICOMFilePercentage_list = DICOMFilePercentage_list + [Percentage] Population_Percentage_Dictionary = {'Percentage':DICOMFilePercentage_list} Population_Percentage_DataFrame = pd.DataFrame(data=Population_Percentage_Dictionary) Population_DataFrame = pd.concat([Population_DataFrame, Population_Percentage_DataFrame],axis=1, sort=False) filename_population = 'populationDataset.csv' path_population = path_destination_outcome Population_DataFrame.to_csv(path_population+filename_population) # Build a Sampling dataset | Phase 3: Get an aleatory grouping of IDs (just tags) import random Population_DataFrame_IndexToSample=[] Population_DataFrame_IDToSample=[] Population_DataFrame_PercentageToSample=[] samplingSizeGoal = 0 while (samplingSizeGoal <= samplingSize): randomNumberTermination = len(Population_DataFrame.ID) randomNumber = random.randrange(0,randomNumberTermination,1) if (randomNumber not in Population_DataFrame_IndexToSample): Population_DataFrame_IndexToSample = Population_DataFrame_IndexToSample + [randomNumber] ID_unitary = Population_DataFrame.ID[randomNumber] Population_DataFrame_IDToSample = Population_DataFrame_IDToSample + [ID_unitary] Percentage_unitary = Population_DataFrame.Percentage[randomNumber] Population_DataFrame_PercentageToSample = Population_DataFrame_PercentageToSample + [Percentage_unitary] samplingSize_unitary = Population_DataFrame.Percentage[randomNumber] samplingSizeGoal = samplingSizeGoal + samplingSize_unitary samplingDataset_Dictionary = {'Index':Population_DataFrame_IndexToSample,'ID':Population_DataFrame_IDToSample,'Percentage':Population_DataFrame_PercentageToSample} samplingDataset_DataFrame = pd.DataFrame(data=samplingDataset_Dictionary) filename_sampling = 'samplingDataset.csv' path_sampling = path_destination_outcome samplingDataset_DataFrame.to_csv(path_sampling+filename_sampling) # Build a Sampling dataset | Phase 3: Get train dataset (an aleatory grouping of IDs; tree-copy task) from distutils.dir_util import create_tree from distutils.dir_util import remove_tree from distutils.dir_util import copy_tree remove_tree(path_destination) create_tree(path_destination,[]) if testMode == True: print("=========================================") print("Building the Sampling Dataset given the Train Dataset of Kaggle for competition") print("=========================================") for k in Population_DataFrame_IDToSample: path_source_unitary = path_source + k + '/' path_destination_unitary = path_destination + k + '/' create_tree(path_destination_unitary,[]) copy_tree(path_source_unitary,path_destination_unitary) if testMode == True: print("ID tree copied: ",k) # Build a Sampling dataset | Phase 4: Get test dataset (tree-copy task) ## Assumption: The complete test dataset is copied. from distutils.dir_util import create_tree from distutils.dir_util import remove_tree from distutils.dir_util import copy_tree remove_tree(path_destination_test) create_tree(path_destination_test,[]) if testMode == True: print("=========================================") print("Building the Test Dataset given the Test Dataset of Kaggle for competition") print("=========================================") IDList_test = os.listdir(path_source_test) for l in IDList_test: path_source_unitary = path_source + l + '/' path_destination_unitary = path_destination_test + l + '/' create_tree(path_destination_unitary,[]) copy_tree(path_source_unitary,path_destination_unitary) if testMode == True: print("ID tree copied: ",l) if (testMode == False and reportMode == True): from datetime import date reportDate = date.today() print("=========================================") print("Function Report | Date:",reportDate.year,'/',reportDate.month,'/',reportDate.day,'/' ) print("=========================================") print("Function: trainDatasetSampler(samplingSize,testMode)") print("=========================================") print("(1) Inputs") print("=========================================") print("-Sampling Size :", samplingSize, "%") print("-Test Mode : False") print("=========================================") print("(2) Outputs") print("=========================================") print("-Type of sample: Aleatory based on IDs") print("-Train dataset percentage to sample (base): ", round(abs(samplingSize),6),"%") print("-Train dataset percentage to sample (adjustment): ", round(abs(samplingSizeGoal-samplingSize),6),"%") print("-Train dataset percentage to sample (fitted): ", round(samplingSizeGoal,6),"%") print("-Population of Train dataset (just information) available in file: ", filename_population) print("-Sample of Train dataset (just information) available in file: ", filename_sampling) print("=========================================") print("(2) Outcomes:") print("=========================================") print("Being the outcome expressed under the variable result, outcomes are as follows:") print("result[0] -> Dataframe for Population") print("result[1] -> Dataframe for Sample") print("result[2] -> Test Mode") print("result[3] -> Rerport Mode") print("=========================================") return Population_DataFrame, samplingDataset_DataFrame, testMode, reportMode if testMode == True: samplingSize = 5 resultFunction1 = trainDatasetSampler(samplingSize,testMode,reportMode) print("=========================================") print("Population dataset:") print("=========================================") print(resultFunction1[0]) print("=========================================") print("Population dataset:") print("=========================================") print(resultFunction1[1]) print("=========================================") print("Test result Function 1: Success") print("=========================================") """ ========================================= Function 2: Submission Builder ========================================= Purpose: Build a submission CSV file Raw code reference (see Tester.py): Test 8 """ def SubmissionBuilder(ProductType,filename,testMode): import os import pandas as pd # Set ProductType path_ProductType = 'Y:/Kaggle_OSIC/2-Data/' # Set productType and splitType if ProductType == 'population': path_ProductType = 'Y:/Kaggle_OSIC/2-Data/' if ProductType == 'prototype': path_ProductType = 'Y:/Kaggle_OSIC/3-Data (Prototype)/' if ProductType == 'sampling': path_ProductType = 'Y:/Kaggle_OSIC/4-Data (Sampling)/' # Set outcome path_outcome = path_ProductType + 'outcome/' # Get raw data as a DataFrame os.chdir(path_outcome) rawFile_DataFrame = pd.read_csv('submissionRawFile_2020_09_19.csv') # Get submission file template as a DataFrame os.chdir(path_ProductType) submissionFile_DataFrame = pd.read_csv('sample_submission.csv') # Get submission data as required in submission file submissionNumber_range = len(rawFile_DataFrame.index) IDcases_List = submissionFile_DataFrame.Patient_Week.copy() IDcases_List = IDcases_List[0:5] IDcases_List_range = len(IDcases_List) for i in range (0,IDcases_List_range): IDcases_List[i] = IDcases_List[i][:-4] # Get submission data as required in submission file | FVC FVCDataList = [] for k in range(0,submissionNumber_range): for j in IDcases_List: # Get datum in raw data IDlabel_rawFile = str(j)+str('_FVC') datum = rawFile_DataFrame[IDlabel_rawFile][k] datum = round(datum,0) # Set datum in submission file FVCDataList = FVCDataList + [datum] submissionFile_DataFrame['FVC'] = FVCDataList # Get submission data as required in submission file | Confidence CONDataList = [] for k in range(0,submissionNumber_range): for j in IDcases_List: # Get datum in raw data IDlabel_rawFile = str(j)+str('_CON') datum = rawFile_DataFrame[IDlabel_rawFile][k] datum = round(datum,0) # Set datum in submission file CONDataList = CONDataList + [datum] submissionFile_DataFrame['Confidence'] = CONDataList # Save file | Get directory path_destination = path_outcome+'submissions/' try: os.chdir(path_destination) GetCreation = True except FileNotFoundError: GetCreation = False if GetCreation == False: from distutils.dir_util import mkpath mkpath(path_destination) os.chdir(path_destination) submissionList = os.listdir(path_destination) number = len(submissionList) filename = 'submission_'+str(number+1)+'.csv' submissionFile_DataFrame.to_csv(filename, index=False) return submissionFile_DataFrame, filename, testMode if testMode == True: ProductType = 'population' filename = 'submissionRawFile_2020_09_19.csv' resultFunction2 = SubmissionBuilder(ProductType,filename,testMode) print("=========================================") print("Product Type:") print("=========================================") print(ProductType) print("=========================================") print("Submission File saved as:") print("=========================================") print(resultFunction2[1]) print("=========================================") print("Test result Function 2: Success") print("=========================================") """ ========================================= Function 3: Dataset builder (Stacking solution case) to process with ML models ========================================= Purpose: Build an input dataset to be processed with an stacking solution Raw code reference (see Tester.py): Test 15 """ def stacking_Dataset_Builder(ProductType, PydicomMode, reportMode, testMode): # Set Product Type and its corresponding path if ProductType == 'population': path_ProductType = 'Y:/Kaggle_OSIC/2-Data/' if ProductType == 'prototype': path_ProductType = 'Y:/Kaggle_OSIC/3-Data (Prototype)/' if ProductType == 'sampling': path_ProductType = 'Y:/Kaggle_OSIC/4-Data (Sampling)/' # Set working directory import os os.chdir(path_ProductType) # Get train dataset and test dataset import pandas as pd filename_trainDataset = 'train.csv' train_dataset = pd.read_csv(path_ProductType+filename_trainDataset) filename_testDataset = 'test.csv' test_dataset = pd.read_csv(path_ProductType+filename_testDataset) # Get submission dataset (template) import numpy as np path_resources = 'Y:/Kaggle_OSIC/3-Data (Prototype)/resources/' if (PydicomMode == False): filename_submissionDataset = 'submissionInputDataset.csv' else: filename_submissionDataset = 'submissionInputDataset_pydicom.csv' submission_dataset = pd.read_csv(path_resources+filename_submissionDataset) submission_dataset = submission_dataset.replace(np.nan,'iNaN') # Adjust train dataset | Phase 1: Get ID list of the test dataset IDList = list(test_dataset.Patient) # Adjust train dataset | Phase 2: Get submission instances from train dataset instancesPopulation = len(train_dataset.Patient) indexList = [] for i in IDList: for j in range(0,instancesPopulation): if i == train_dataset.Patient[j]: indexToInclude = train_dataset.index[j] indexList = indexList + [indexToInclude] # Adjust train dataset | Phase 3: Create an adjusted train dataset | a. Remove test instances from train dataset and reset index train_dataset_adjusted = train_dataset.drop(indexList) train_dataset_adjusted.reset_index # Adjust train dataset | Phase 3: Create an adjusted train dataset | b. Get Transferring data from train dataset instanceToTrasferList_index = [] for k in range(0,instancesPopulation): for l in IDList: if train_dataset.Patient[k] == l: instanceToTransfer_Index = train_dataset.index[k] instanceToTrasferList_index = instanceToTrasferList_index + [instanceToTransfer_Index] train_dataset_instancesToTransfer = train_dataset.take(instanceToTrasferList_index) train_dataset_instancesToTransfer.index train_dataset_instancesToTransfer = train_dataset_instancesToTransfer.reset_index() train_dataset_instancesToTransfer.drop(columns='index') # Adjust train dataset | Phase 3: Create an adjusted train dataset | c. Update the submission dataset with the transferring data in b. submission_dataset_range = len(submission_dataset.Patient) train_dataset_instancesToTransfer_range = len(train_dataset_instancesToTransfer.Patient) Patient_List = [] Week_List = [] FVC_List = [] Percent_List = [] Age_List = [] Sex_List = [] SmokingStatus_List = [] for m in range (0,submission_dataset_range): timesCopy = 0 if(submission_dataset.Patient[m] in IDList): referenceWeek = submission_dataset.Weeks[m] for n in range (0,train_dataset_instancesToTransfer_range): if(train_dataset_instancesToTransfer.Patient[n] == submission_dataset.Patient[m] and train_dataset_instancesToTransfer.Weeks[n] == referenceWeek): if (timesCopy == 0): submission_dataset.FVC[m] = train_dataset_instancesToTransfer.FVC[n] submission_dataset.Percent[m] = train_dataset_instancesToTransfer.Percent[n] submission_dataset.Age[m] = train_dataset_instancesToTransfer.Age[n] submission_dataset.Sex[m] = train_dataset_instancesToTransfer.Sex[n] submission_dataset.SmokingStatus[m] = train_dataset_instancesToTransfer.SmokingStatus[n] timesCopy = timesCopy + 1 else: # Additional instances to include Patient_List = Patient_List + [train_dataset_instancesToTransfer.Patient[n]] Week_List = Week_List + [train_dataset_instancesToTransfer.Weeks[n]] FVC_List = FVC_List + [train_dataset_instancesToTransfer.FVC[n]] Percent_List = Percent_List + [train_dataset_instancesToTransfer.Percent[n]] Age_List = Age_List + [train_dataset_instancesToTransfer.Age[n]] Sex_List = Sex_List + [train_dataset_instancesToTransfer.Sex[n]] SmokingStatus_List = SmokingStatus_List + [train_dataset_instancesToTransfer.SmokingStatus[n]] # Adjust train dataset | Phase 3: Create an adjusted train dataset | d. Add common values to submission dataset given those from the test dataset (Features: Age, Sex, SmokingStatus) submission_dataset_range = len(submission_dataset.Patient) for o in range(0,submission_dataset_range): if(submission_dataset.Patient[o] in IDList): for p in range(0,train_dataset_instancesToTransfer_range): if(submission_dataset.Patient[o] == train_dataset_instancesToTransfer.Patient[p]): submission_dataset.Age[o] = train_dataset_instancesToTransfer.Age[p] submission_dataset.Sex[o] = train_dataset_instancesToTransfer.Sex[p] submission_dataset.SmokingStatus[o] = train_dataset_instancesToTransfer.SmokingStatus[p] # Scenario to replace NaN values: Average FVC for a given Patient averageFVC = train_dataset_instancesToTransfer.FVC[train_dataset_instancesToTransfer.Patient == train_dataset_instancesToTransfer.Patient[p]].mean() submission_dataset.FVC[o] = averageFVC # Adjust train dataset | Phase 4: Create an adjusted train dataset | e. Concatenate the submission dataset (and additional instance) and the adjusted train dataset additionalDictionary = {submission_dataset.columns[0]:Patient_List, submission_dataset.columns[1]:Week_List, submission_dataset.columns[2]:FVC_List, submission_dataset.columns[3]:Percent_List, submission_dataset.columns[4]:Age_List, submission_dataset.columns[5]:Sex_List, submission_dataset.columns[6]:SmokingStatus_List} additional_dataset = pd.DataFrame(data=additionalDictionary) frames = [train_dataset_adjusted,submission_dataset,additional_dataset] train_dataset_adjusted = pd.concat(frames) train_dataset_adjusted = train_dataset_adjusted.reset_index() train_dataset_adjusted = train_dataset_adjusted.drop(columns='index') # Adjust train dataset with pydicom train dataset) | Phase 1: Get pydicom train dataset if(PydicomMode == True): filename_pydicom = 'train_pydicom.csv' path_ProductType_pydicom = path_ProductType + 'outcome/' train_dataset_pydicom = pd.read_csv(path_ProductType_pydicom + filename_pydicom) # Adjust train dataset with pydicom train dataset) | Phase 2: Include values from train_adjusted_pydicom.py into adjusted train dataset if(PydicomMode == True): instancesToInclude_List = list(train_dataset_pydicom.Patient) InstanceToInclude_Patient = i newIndex = len(train_dataset_adjusted.Patient) for i in instancesToInclude_List: # Get instance to transfer InstanceToInclude_Patient = i InstanceToInclude_Week = list(train_dataset_pydicom[train_dataset_pydicom.Patient == i].Weeks)[0] InstanceToInclude_indexType1_Exhalation = list(train_dataset_pydicom[train_dataset_pydicom.Patient == i].indexType1_Exhalation)[0] InstanceToInclude_indexType1_Inhalation = list(train_dataset_pydicom[train_dataset_pydicom.Patient == i].indexType1_Inhalation)[0] InstanceToInclude_ImageType = list(train_dataset_pydicom[train_dataset_pydicom.Patient == i].ImageType)[0] # Put instance into train_dataset_adjusted DataFrame if (0 in list(train_dataset_adjusted[train_dataset_adjusted.Patient == i].Weeks)): # Get index indexToComplete = list(train_dataset_adjusted[train_dataset_adjusted.Weeks == 0].Patient[train_dataset_adjusted.Patient == i].index) # Complete instance train_dataset_adjusted.indexType1_Exhalation[indexToComplete] = InstanceToInclude_indexType1_Exhalation train_dataset_adjusted.indexType1_Inhalation[indexToComplete] = InstanceToInclude_indexType1_Inhalation train_dataset_adjusted.ImageType[indexToComplete] = str(InstanceToInclude_ImageType) else: # Add new instance ## Get repeatable instances repeatableInstance1 = list(train_dataset_adjusted[train_dataset_adjusted.Patient == i].FVC)[0] repeatableInstance2 = list(train_dataset_adjusted[train_dataset_adjusted.Patient == i].Percent)[0] repeatableInstance3 = list(train_dataset_adjusted[train_dataset_adjusted.Patient == i].Age)[0] repeatableInstance4 = list(train_dataset_adjusted[train_dataset_adjusted.Patient == i].Sex)[0] repeatableInstance5 = list(train_dataset_adjusted[train_dataset_adjusted.Patient == i].SmokingStatus)[0] ## Get Dictionary DictionaryToInclude = {} DictionaryToInclude['Patient'] = InstanceToInclude_Patient DictionaryToInclude['Weeks'] = InstanceToInclude_Week DictionaryToInclude['FVC'] = repeatableInstance1 DictionaryToInclude['Percent'] = repeatableInstance2 DictionaryToInclude['Age'] = repeatableInstance3 DictionaryToInclude['Sex'] = repeatableInstance4 DictionaryToInclude['SmokingStatus'] = repeatableInstance5 DictionaryToInclude['indexType1_Exhalation'] = InstanceToInclude_indexType1_Exhalation DictionaryToInclude['indexType1_Inhalation'] = InstanceToInclude_indexType1_Inhalation DictionaryToInclude['ImageType'] = str(InstanceToInclude_ImageType) ## Get DataFrame DataFrameToInclude = pd.DataFrame(data = DictionaryToInclude, index=[newIndex]) newIndex = newIndex + 1 ## Concatenate DataFrame train_dataset_adjusted = pd.concat([train_dataset_adjusted, DataFrameToInclude]) # nan filling train_dataset_adjusted = train_dataset_adjusted.replace('iNaN',np.nan) # Specifying dtype train_dataset_adjusted.astype({'Patient': 'O'}).dtypes train_dataset_adjusted.astype({'Weeks': 'float64'}).dtypes train_dataset_adjusted.astype({'Percent': 'float64'}).dtypes train_dataset_adjusted.astype({'Age': 'float64'}).dtypes train_dataset_adjusted.astype({'Sex': 'O'}).dtypes train_dataset_adjusted.astype({'SmokingStatus': 'O'}).dtypes train_dataset_adjusted.astype({'FVC': 'float64'}).dtypes if(PydicomMode == True): train_dataset_adjusted.astype({'indexType1_Exhalation': 'float64'}).dtypes train_dataset_adjusted.astype({'indexType1_Inhalation': 'float64'}).dtypes train_dataset_adjusted.astype({'ImageType': 'O'}).dtypes # Get CSV file path_output = path_ProductType +'outcome/' if(PydicomMode == False): filename_output = 'train_adjusted.csv' else: filename_output = 'train_adjusted_pydicom.csv' train_dataset_adjusted.to_csv(path_output+filename_output) # Function Result resultFunction = train_dataset_adjusted,path_output,filename_output # Report Mode if reportMode == True: print("=========================================") print("Function Report") print("=========================================") print("DataFrame") print("=========================================") print(resultFunction[0]) print("=========================================") print("Product Type: ", ProductType) print("=========================================") print("Pydicom Mode: ", PydicomMode) print("=========================================") print("Location of Input File:", resultFunction[1]) print("=========================================") print("Input File saved as:", resultFunction[2]) print("=========================================") print("Data type of the dataset") print("=========================================") print(resultFunction[0].dtypes) print("=========================================") print("Test result Function 3: Success") print("=========================================") return resultFunction if testMode == True: ProductType = 'prototype' PydicomMode = True reportMode = False resultFunction3 = stacking_Dataset_Builder(ProductType, PydicomMode, reportMode, testMode) print("=========================================") print("Function Report") print("=========================================") print("DataFrame") print("=========================================") print(resultFunction3[0]) print("=========================================") print("=========================================") print("Product Type: ", ProductType) print("=========================================") print("Pydicom Mode: ", PydicomMode) print("=========================================") print("Location of Input File:", resultFunction3[1]) print("=========================================") print("Input File saved as:", resultFunction3[2]) print("=========================================") print("Data type of the dataset") print("=========================================") print(resultFunction3[0].dtypes) print("=========================================") print("Test result Function 3: Success") print("=========================================") """ ========================================= Function 4: Submission dataset builder (Stacking solution case) after ML outcome ========================================= Purpose: Build a submission CSV file (Stacking solution case) Raw code reference (see Tester.py): Test 17 About the Shape Parameter: It amounts to c = 0.12607421874999922 for every instance in the oject of concern. c value has been computed deeming the following data fitting scope: (1) Data: FVC predictions; (2) Probability density function as follows (staistical function in scipy renowend as scipy.stats.loglaplace): loglaplace.pdf(x, c, loc=0, scale=1). """ def Stacking_Submission_Dataset_Builder(ProductType,shapeParameter_DataFrame,pydicomMode,testMode): # Set Product Type and its corresponding path if ProductType == 'population': path_ProductType = 'Y:/Kaggle_OSIC/2-Data/' if ProductType == 'prototype': path_ProductType = 'Y:/Kaggle_OSIC/3-Data (Prototype)/' if ProductType == 'sampling': path_ProductType = 'Y:/Kaggle_OSIC/4-Data (Sampling)/' # Set working directory import os os.chdir(path_ProductType + 'outcome/') # Get result data and test dataset import pandas as pd if(pydicomMode == True): filename_resultDataset = 'result_pydicom.csv' else: filename_resultDataset = 'result.csv' result_dataset = pd.read_csv(path_ProductType+'outcome/'+filename_resultDataset) filename_testDataset = 'test.csv' test_dataset = pd.read_csv(path_ProductType+filename_testDataset) # Get submission instances | Phase 1: Index IDList = list(test_dataset.Patient) IDList_index_dictionary = {} for i in IDList: itemToInclude = result_dataset.Patient[result_dataset.Patient==i].index IDList_index_dictionary[i] = itemToInclude # Get submission instances | Phase 2: Extract submission instances from result dataset IDList_index = [] IDList_columns = ['Patient', 'Weeks', 'Random Forest', 'Lasso', 'Gradient Boosting', 'Stacking Regressor'] for j in IDList: IDList_index = IDList_index + list(IDList_index_dictionary[j]) submission_dataset = result_dataset.loc[IDList_index] # Get submission instances | Phase 3: Extract duplicated instances submission_dataset = submission_dataset.drop_duplicates(subset=['Patient','Weeks']) # Get submission instances | Phase 4: Sort submission instances by Weeks (ascending) and reset index submission_dataset = submission_dataset.sort_values(by=['Weeks','Patient']) submission_dataset = submission_dataset.reset_index() submission_dataset = submission_dataset.drop(columns=['Unnamed: 0','index']) # Get confidence measure | Phase 1: Get shape Parameter DataFrame by default ## When shapeParameter_DataFrame==[], parameter c = 0.126074 is assigned by default per model and ID if (shapeParameter_DataFrame == []): shapeParameter_dictionary = {} shapeParameter = 0.126074 MLModelList = IDList_columns[2:] for l in MLModelList: keyShapeParameter = 'c Parameter_'+l shapeParameter_dictionary[keyShapeParameter] = [shapeParameter,shapeParameter,shapeParameter,shapeParameter,shapeParameter] shapeParameter_DataFrame = pd.DataFrame(data = shapeParameter_dictionary, index = IDList) # Get confidence measure | Phase 2: Get standard-deviation-clipped per instance ## Metric - Part 1: standard_deviation_clipped = max(standard_deviation, 70) ## Build a DataFrame with standard-deviation-clipped values given an ID and a ML Model: standardDeviationClipped_DataFrame standardDeviationClipped_DataFrame = shapeParameter_DataFrame.copy() columnLabels = list(standardDeviationClipped_DataFrame.columns) columnLabels_SDC_dictionary = {} for i in columnLabels: columnLabels_item ='SD_Clipped'+i[11:] columnLabels_SDC_dictionary[i]=columnLabels_item standardDeviationClipped_DataFrame = standardDeviationClipped_DataFrame.rename(columns=columnLabels_SDC_dictionary) import numpy as np standardDeviationClipped_DataFrame = standardDeviationClipped_DataFrame.replace(3,np.nan) ID_List = list(standardDeviationClipped_DataFrame.index) SDModel_List = list(standardDeviationClipped_DataFrame.columns) CParameter_List = list(shapeParameter_DataFrame.columns) numy = 0 from scipy.stats import loglaplace for j in ID_List: for k in SDModel_List: itemToInclude = CParameter_List[numy] c = shapeParameter_DataFrame[itemToInclude][j] sd_LL = loglaplace.std(c, loc=0, scale=100) standardDeviationClipped_DataFrame[k][j] = max(70,sd_LL) # j: index is ID | k: SD_Clipped_(ML Model) numy = numy + 1 numy = 0 # Get confidence measure | Phase 3: Get metric axe per model: |FVC_true - FVC_predicted| ## Metric - Part 1: |FVC_true - FVC_pred| if(pydicomMode == True): variableNumber = 10 else: variableNumber = 7 MLModelList = list(submission_dataset.columns[variableNumber:]) metric_dictionary = {} for j in MLModelList: metric_differential = abs(submission_dataset.FVC - submission_dataset[j]) metric_differential = list(metric_differential) keyToInclude = 'metric_'+j metric_dictionary[keyToInclude] = metric_differential metric_DataFrame = pd.DataFrame(data=metric_dictionary) # Get confidence measure | Phase 4: Get metric axe per model: min(|FVC_true - FVC_predicted|, 1000) ## metric per instance ## Metric - Part 2: min(|FVC_true - FVC_pred|,1000) metricLabels = list(metric_DataFrame.columns) instancesNumber = len(submission_dataset.index) for i in metricLabels: j = 0 while (j<instancesNumber): metric_DataFrame[i][j] = min(metric_DataFrame[i][j],1000) j = j+1 submission_dataset = submission_dataset.join(metric_DataFrame) # Get confidence measure | Phase 5: Get metric axe per model: (-1 * differential * 2^0.5 / SDC ) - ln(2^0.5 * SCD) ## metric per instance ## differential = min(|FVC_true - FVC_predicted|, 1000) ## SDC: Standard Deviation Clipped ## Metric - Part 2: min(|FVC_true - FVC_pred|,1000) IDList = list(test_dataset.Patient) SDModel_List = list(standardDeviationClipped_DataFrame.columns) SDModel_index_List = list(standardDeviationClipped_DataFrame.index) metric_lists = list(metric_DataFrame.columns) metric_index_lists = list(metric_DataFrame.index) submission_dataset_index_List = list(submission_dataset.index) instancesNumber = len(submission_dataset_index_List) indexPerID_dictionary = {} ### Step 1: Get index per ID to compute for i in IDList: listToInclude = list(submission_dataset.Patient[submission_dataset.Patient == i].index) indexPerID_dictionary[i] = listToInclude indexPerID_DataFrame = pd.DataFrame(data=indexPerID_dictionary) ### Step 3: Compute metric import math from math import log1p for k in IDList: for i in metric_lists: for j in list(indexPerID_DataFrame[k]): differential = submission_dataset[i][j] SDC_Label = 'SD_Clipped_' + i[7:] SDC = standardDeviationClipped_DataFrame[SDC_Label][k] metric_part1 = -1* 2**0.5 * differential / SDC metric_part2 = -1 * math.log1p(2**0.5 * SDC) metric = metric_part1 + metric_part2 submission_dataset[i][j] = metric # Result function specification resultFunction = submission_dataset,shapeParameter_DataFrame,standardDeviationClipped_DataFrame # Get submission files | Phase 1: Get submission file template filename = 'sample_submission.csv' submissionFile = pd.read_csv(path_ProductType+filename) ## Get submission files | Phase 2: Create directory try: path_output = path_ProductType + 'submission/' os.chdir(path_output) except FileNotFoundError: import distutils.ccompiler path_output = path_ProductType + 'submission/' distutils.dir_util.mkpath(path_output) ## Get submission files | Phase 3: Get correlative files_list = os.listdir(path_output) try: maxNumber = max(files_list) maxNumber = maxNumber[:-4] maxNumber = int(maxNumber) nextNumber = maxNumber+1 except ValueError: nextNumber = 0 ## Get submission files | Phase 4: Get models to include and their corresponding metrics ModelToInclude = IDList_columns[2:] ## Get submission files | Phase 5: Build Files for i in ModelToInclude: filename = 'sample_submission.csv' submissionFile = pd.read_csv(path_ProductType+filename) submissionFile_columns = list(submissionFile.columns) fvc_array = np.array(submission_dataset[i]) confidence_array = np.array(submission_dataset['metric_'+i]) submissionFile['FVC'] = fvc_array submissionFile['Confidence'] = confidence_array filename_output = str(nextNumber)+'.csv' path_output = path_ProductType +'submission/' submissionFile.to_csv(path_output+filename_output,columns=submissionFile_columns,index=False) nextNumber = nextNumber + 1 return resultFunction if testMode == True: # Set Product type ProductType = 'prototype' # ShapeParameter_Dataframe example = False if (example == True): import pandas as pd shapeParameter_IDList = ['ID00419637202311204720264','ID00421637202311550012437','ID00422637202311677017371','ID00423637202312137826377','ID00426637202313170790466'] c_List1 = [3,3,3,3,3] c_List2 = [3,3,3,3,3] c_List3 = [3,3,3,3,3] c_List4 = [3,3,3,3,3] shapeParameter_dictionary = {'Random Forest':c_List1, 'Lasso':c_List2, 'Gradient Boosting':c_List3, 'Stacking Regressor':c_List4} shapeParameter_DataFrame = pd.DataFrame(data = shapeParameter_dictionary, index = shapeParameter_IDList) else: shapeParameter_DataFrame = [] # Set Pydicom mode pydicomMode = True resultFunction4 = Stacking_Submission_Dataset_Builder(ProductType,shapeParameter_DataFrame,pydicomMode,testMode) print("=========================================") print("Shape Parameter - Laplace Log Likelihood:") print("=========================================") print(resultFunction4[1]) print("Standard Deviation Clipped - Laplace Log Likelihood:") print("=========================================") print(resultFunction4[2]) print("=========================================") print("Test result Function 4: Success") print("=========================================") """ ========================================= Function 5: Get parameters given a must-usage of a log-laplace distribution (i.e. Laplace Log Likelihood) ========================================= Purpose: Get shape parameter visualization for loglaplace Raw code reference (see Tester.py): Test 17 """ def shapeParameter_visualizer(ProductType,testMode): import numpy as np from scipy.stats import loglaplace import matplotlib.pyplot as plt fig, ax = plt.subplots(4, 5, sharex=False, sharey=False, figsize=(32, 24)) ## Get IDs to test import os import pandas as pd ## Set Product Type and its corresponding path if ProductType == 'population': path_ProductType = 'Y:/Kaggle_OSIC/2-Data/' if ProductType == 'prototype': path_ProductType = 'Y:/Kaggle_OSIC/3-Data (Prototype)/' if ProductType == 'sampling': path_ProductType = 'Y:/Kaggle_OSIC/4-Data (Sampling)/' ## Get probabilities from predicted values grouping by ID and Model path = path_ProductType + 'outcome/' filename = 'result.csv' y_pred = pd.read_csv(path+filename) ## Get IDs to test path = path_ProductType filename = 'test.csv' test_dataset = pd.read_csv(path+filename) ID_List = list(test_dataset.Patient) ## Get models model_List = ['Random Forest', 'Lasso', 'Gradient Boosting', 'Stacking Regressor'] ## Grouping task k = 0 l = 0 for i in ID_List: k = 0 for j in model_List: # Data Fit task #r = y_pred[y_pred.Patient==i][j]/sum(y_pred[y_pred.Patient==i][j]) r = y_pred[y_pred.Patient==i][j] r = np.array(r) c1, loc1, scale1 = loglaplace.fit(r,floc=0,fscale=1) c = c1 # # Calculate a few first moments # mean, var, skew, kurt = loglaplace.stats(c, moments='mvsk') # Display the probability density function (pdf): x = np.linspace(loglaplace.ppf(0.01, c), loglaplace.ppf(0.99, c), num=100) ax[k,l].plot(x, loglaplace.pdf(x, c),'r-', lw=5, alpha=0.6, label='loglaplace pdf') # Freeze the distribution and display the frozen pdf: rv = loglaplace(c) ax[k,l].plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf') # Generate random numbers: r = loglaplace.rvs(c1, loc=0, scale=1, size=1000) # And compare the histogram: #ax[k,l].hist(r, density=True, histtype='stepfilled', alpha=0.2) ax[k,l].legend(loc='best', frameon=False) # Set limits #ax[k,l].set_xlim(0,0.1) #ax[k,l].set_ylim(0,4) ax[k,l].set_xlabel('x') ax[k,l].set_ylabel('f(x,c)') # Check Accuracy vals = loglaplace.ppf([0.001, 0.5, 0.999], c) accuracy = np.allclose([0.001, 0.5, 0.999], loglaplace.cdf(vals, c)) # Returns True if two arrays are element-wise equal within a tolerance. if(accuracy == True): accuracy = 'Equal case' else: accuracy = 'Unequal case' # Set title title = str('Probability density function for loglaplace'+'\n'+i + '\n' + j + ' | Accuracy:'+accuracy) ax[k,l].set_title(title) k = k + 1 l = l + 1 plt.tight_layout() plt.show() resultFunction = c return resultFunction if testMode == True: # Set Product type ProductType = 'prototype' # ShapeParameter_Dataframe resultFunction5 = shapeParameter_visualizer(ProductType, testMode = True) print("=========================================") print("Shape Parameter - Laplace Log Likelihood:") print("=========================================") print(resultFunction5) print("=========================================") print("Test result Function 4: Success") print("=========================================") # """ # ========================================= # Function : Dataset builder 2 (Stacking solution case) to process with ML models # ========================================= # Purpose: Build an input dataset to be processed with an stacking solution but including Pydicom image-processing solution # Raw code reference (see Tester.py): 15 # """ # def stacking_Dataset_Builder_PydicomSolution(productType, testMode): # # Set Product Type and its corresponding path # if ProductType == 'population': # path_ProductType = 'Y:/Kaggle_OSIC/2-Data/' # if ProductType == 'prototype': # path_ProductType = 'Y:/Kaggle_OSIC/3-Data (Prototype)/' # if ProductType == 'sampling': # path_ProductType = 'Y:/Kaggle_OSIC/4-Data (Sampling)/'
2.484375
2
paperscraper/scrapers/keywords.py
ahmed-shariff/scraper
1
5463
<gh_stars>1-10 import re regex = re.compile(r'[\n\r\t]') def acm_digital_library(soup): try: keywords = set() keywords_parent_ol = soup.find('ol', class_="rlist organizational-chart") keywords_divs = keywords_parent_ol.findChildren('div', recursive=True) for kw_parent in keywords_divs: kw = kw_parent.text keywords.add(regex.sub("", kw.split(",")[0])) return list(keywords) except Exception as e: print(e) return None def graphics_interface_proceedings(soup): return None def ieee_explore(soup): try: keywords = set() ggp_ul = soup.find('ul', class_="doc-keywords-list stats-keywords-list") gp_li = ggp_ul.findChildren("li", class_="doc-keywords-list-item", recursive=False) for p_li in gp_li: if p_li.find('strong').text in ["IEEE Keywords", "INSPEC: Controlled Indexing", "INSPEC: Non-Controlled Indexing", "MeSH Terms"]: for keywords_l in p_li.find('ul').findChildren("li", recursive=False): a_tag = keywords_l.find("a", class_="stats-keywords-list-item") if a_tag is not None: keywords.add(str(regex.sub("", a_tag.text.split(",")[0]))) else: keywords.add(str(regex.sub("", str(keywords_l.text).split(",")[0]))) return list(keywords) except Exception as e: print(e) return None def eurographics_digital_library(soup): try: keywords_set = set() p_tablebody = soup.find('table', class_="detailtable").find("tbody") p_trs = p_tablebody.findChildren('tr') for tr in p_trs: label = tr.find("td", class_="label-cell") if label.text == "dc.subject": keywords = tr.find("td", class_="word-break") # e.g. CASE 1: ['Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Image Processing and Computer Vision]: Enhancement-Filtering I.3.3 [Computer Graphics]: Picture/Image Generation-Bitmap and framebuffer operations'] # e.g. CASE 2 [TODO: Not taken care of yet] Categories and Subject Descriptors (according to ACM CCS): Information Interfaces And Presentation (e.g., HCI) [H.5.2]: User Interfaces-Graphical user interfaces (GUI) # Step 1: Remove annoying substrings # Step 2: Choose to take ONLY Categories, not the Subject Descriptors > Write a REGEX to take substrings between []. # Step 3: Split the string by , or ; or : to_replaces = ["CCS Concepts", "Categories and Subject Descriptors", "Categories and subject descriptors", "Categories and Subject Descriptors (according to ACM CCS)", "according to ACM CCS"] keywords_str = keywords.text for to_replace in to_replaces: keywords_str = keywords_str.replace(to_replace, "") keywords_extracted = re.findall(r'\[(.*?)\]', keywords_str) if keywords_extracted: keywords_set.update(keywords_extracted) else: keywords_set.update(re.split(',|:|;', keywords_str)) return list(keywords_set) except Exception as e: print(e) return None def springer_v2(soup): try: keywords = set() keywords_parent_div = soup.find('div', class_="KeywordGroup") keywords_span = keywords_parent_div.findChildren("span", class_="Keyword") for k in keywords_span: keywords.add(k.text) return list(keywords) except Exception as e: print(e) return None def dagstuhl(soup): try: keywords_label = soup.find('b', text="Keywords:") keywords_parent_font = keywords_label.parent keywords_parent_td = keywords_parent_font.parent keywords_font = keywords_parent_td.find_next('td').find_next('td').find("font") if keywords_font is not None: return re.split(',', keywords_font.text) except Exception as e: print(e) return None def springer_v1(soup): try: keywords = set() keywords_parent_section = soup.find('ul', class_="c-article-subject-list") keywords_li = keywords_parent_section.findChildren("li", class_="c-article-subject-list__subject") for k in keywords_li: kw = k.find("span").text keywords.add(str(regex.sub("", kw)).strip()) return list(keywords) except Exception as e: print(e) return None def wiley_online_library(soup): try: keywords_parent_section = soup.find('section', class_="keywords") keywords_ul = keywords_parent_section.find('ul') keywords_lis = keywords_ul.findChildren("li") keywords_set = set() for keywords_li in keywords_lis: # e.g. Case 1: "[3.1.1] Human-Centered Computing" and so on # e.g. Case 2: CCS Concepts don't have '[' and ']' but they have strings such as "• Human‐centered computing → Graph drawings" # Step 1: Remove annoying substrings # Step 2: Choose to take ONLY Categories, not the Subject Descriptors > Write a REGEX to take substrings between []. # Step 3: Split the string by , or ; or : to_replaces = ["CCS Concepts", "Categories and Subject Descriptors", "Categories and subject descriptors", "Categories and Subject Descriptors (according to ACM CCS)", "according to ACM CCS"] keywords_str = keywords_li.find("a").text for to_replace in to_replaces: keywords_str = keywords_str.replace(to_replace, "") keywords_extracted = re.findall(r'\[(.*?)\]', keywords_str) if keywords_extracted: keywords_set.update(keywords_extracted) else: # CCS Concepts don't have '[' and ']' but they have strings such as "• Human‐centered computing → Graph drawings" regex_find = r'•(.*)→(.*)' regex_replace = r'\1;\2' # set the delimiter to either , : ; (as is used below to split) keywords_str = re.sub(regex_find, regex_replace, keywords_str) keywords_set.update(re.split(',|:|;', keywords_str)) return list(keywords_set) except Exception as e: print(e) return None def cogsci(soup): return None def scitepress(soup): try: keywords_set = set() keywords_span = soup.find('span', id="ContentPlaceHolder1_LinkPaperPage_LinkPaperContent_LabelPublicationDetailKeywords") for kw in keywords_span.text.split(","): keywords_set.add(kw) return list(keywords_set) except Exception as e: print(e) return None def scienceopen(soup): try: keywords_set = set() for span_label in soup.find_all('span', class_="so-metadata-label"): if "Keywords" in span_label.text: for keyword_a in span_label.find_next_siblings('a'): keywords_set.add(keyword_a.text) return list(keywords_set) except Exception as e: pass return None def aaai(soup): return None def get_keywords(publisher, soup): keywords_list = None if publisher == "acm_digital_library": keywords_list = acm_digital_library(soup) elif publisher == "graphics_interface_proceedings": keywords_list = graphics_interface_proceedings(soup) elif publisher == "ieee_explore": keywords_list = ieee_explore(soup) elif publisher == "cogsci": keywords_list = cogsci(soup) elif publisher == "springer_v1": keywords_list = springer_v1(soup) elif publisher == "springer_v2": keywords_list = springer_v2(soup) elif publisher == "scitepress": keywords_list = scitepress(soup) elif publisher == "scienceopen": keywords_list = scienceopen(soup) elif publisher == "eurographics_digital_library": keywords_list = eurographics_digital_library(soup) elif publisher == "wiley_online_library": keywords_list = wiley_online_library(soup) elif publisher == "dagstuhl": keywords_list = dagstuhl(soup) elif publisher == "aaai": keywords_list = aaai(soup) return None if len(keywords_list) == 0 else keywords_list
2.703125
3
topobank/publication/models.py
ContactEngineering/TopoBank
3
5464
from django.db import models from django.urls import reverse from django.utils import timezone from django.utils.safestring import mark_safe from django.conf import settings MAX_LEN_AUTHORS_FIELD = 512 CITATION_FORMAT_FLAVORS = ['html', 'ris', 'bibtex', 'biblatex'] DEFAULT_KEYWORDS = ['surface', 'topography'] class UnknownCitationFormat(Exception): def __init__(self, flavor): self._flavor = flavor def __str__(self): return f"Unknown citation format flavor '{self._flavor}'." class Publication(models.Model): LICENSE_CHOICES = [(k, settings.CC_LICENSE_INFOS[k]['option_name']) for k in ['cc0-1.0', 'ccby-4.0', 'ccbysa-4.0']] short_url = models.CharField(max_length=10, unique=True, null=True) surface = models.OneToOneField("manager.Surface", on_delete=models.PROTECT, related_name='publication') original_surface = models.ForeignKey("manager.Surface", on_delete=models.SET_NULL, null=True, related_name='derived_publications') publisher = models.ForeignKey("users.User", on_delete=models.PROTECT) publisher_orcid_id = models.CharField(max_length=19, default='') # 16 digits including 3 dashes version = models.PositiveIntegerField(default=1) datetime = models.DateTimeField(auto_now_add=True) license = models.CharField(max_length=12, choices=LICENSE_CHOICES, blank=False, default='') authors = models.CharField(max_length=MAX_LEN_AUTHORS_FIELD) container = models.FileField(max_length=50, default='') def get_absolute_url(self): return reverse('publication:go', args=[self.short_url]) def get_full_url(self, request): return request.build_absolute_uri(self.get_absolute_url()) def get_citation(self, flavor, request): if flavor not in CITATION_FORMAT_FLAVORS: raise UnknownCitationFormat(flavor) method_name = '_get_citation_as_'+flavor return getattr(self, method_name)(request) def _get_citation_as_html(self, request): s = '{authors}. ({year}). contact.engineering. <em>{surface.name} (Version {version})</em>.' s += ' <a href="{publication_url}">{publication_url}</a>' s = s.format( authors=self.authors, year=self.datetime.year, version=self.version, surface=self.surface, publication_url=self.get_full_url(request), ) return mark_safe(s) def _get_citation_as_ris(self, request): # see http://refdb.sourceforge.net/manual-0.9.6/sect1-ris-format.html # or https://en.wikipedia.org/wiki/RIS_(file_format) # or https://web.archive.org/web/20120526103719/http://refman.com/support/risformat_intro.asp # https://web.archive.org/web/20120717122530/http://refman.com/support/direct%20export.zip s = "" def add(key, value): nonlocal s s += f"{key} - {value}\n" # Electronic citation / Website add('TY', 'ELEC') # Title add('TI', f"{self.surface.name} (Version {self.version})") # Authors for author in self.authors.split(','): add('AU', author.strip()) # Publication Year add('PY', format(self.datetime, '%Y/%m/%d/')) # URL add('UR', self.get_full_url(request)) # Name of Database add('DB', 'contact.engineering') # Notes add('N1', self.surface.description) # add keywords, defaults ones and tags for kw in DEFAULT_KEYWORDS: add('KW', kw) for t in self.surface.tags.all(): add('KW', t.name) # End of record, must be empty and last tag add('ER', '') return s.strip() def _get_citation_as_bibtex(self, request): title = f"{self.surface.name} (Version {self.version})" shortname = f"{self.surface.name}_v{self.version}".lower().replace(' ','_') keywords = ",".join(DEFAULT_KEYWORDS) if self.surface.tags.count()>0: keywords += ","+",".join(t.name for t in self.surface.tags.all()) s = """ @misc{{ {shortname}, title = {{{title}}}, author = {{{author}}}, year = {{{year}}}, note = {{{note}}}, keywords = {{{keywords}}}, howpublished = {{{publication_url}}}, }} """.format(title=title, author=self.authors.replace(', ', ' and '), year=self.datetime.year, note=self.surface.description, publication_url=self.get_full_url(request), keywords=keywords, shortname=shortname, ) return s.strip() def _get_citation_as_biblatex(self, request): shortname = f"{self.surface.name}_v{self.version}".lower().replace(' ','_') keywords = ",".join(DEFAULT_KEYWORDS) if self.surface.tags.count()>0: keywords += ","+",".join(t.name for t in self.surface.tags.all()) s = """ @online{{ {shortname}, title = {{{title}}}, version = {{{version}}}, author = {{{author}}}, year = {{{year}}}, month = {{{month}}}, date = {{{date}}}, note = {{{note}}}, keywords = {{{keywords}}}, url = {{{url}}}, urldate = {{{urldate}}} }} """.format(title=self.surface.name, version=self.version, author=self.authors.replace(', ', ' and '), year=self.datetime.year, month=self.datetime.month, date=format(self.datetime, "%Y-%m-%d"), note=self.surface.description, url=self.get_full_url(request), urldate=format(timezone.now(), "%Y-%m-%d"), keywords=keywords, shortname=shortname, ) return s.strip() @property def storage_prefix(self): """Return prefix used for storage. https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.FileField.upload_to Looks like a relative path to a directory. If storage is on filesystem, the prefix should correspond to a real directory. """ return "publications/{}/".format(self.short_url) @property def container_storage_path(self): """Return relative path of container in storage.""" return f"{self.storage_prefix}container.zip"
2.109375
2
vendor/migrations/0003_store_password.py
rayhu-osu/vcube
1
5465
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-07-24 19:36 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('vendor', '0002_store_image'), ] operations = [ migrations.AddField( model_name='store', name='password', field=models.CharField(default=1, max_length=30), preserve_default=False, ), ]
1.570313
2
lec2.py
widnerlr/isat252
0
5466
<gh_stars>0 """ Your module description """ """ this is my second py code for my second lecture """ #print ('hello world') # this is a single line commment # this is my second line comment #print(type("123.")) #print ("Hello World".upper()) #print("Hello World".lower()) #print("hello" + "world" + ".") #print(2**3) #my_str = "hello world" #print(my_str) #my_str = "Tom" #print(my_str) my_int = 2 my_float = 3.0 print(my_int + my_float)
3.3125
3
day_22_b.py
Gyaha/AOC2020
0
5467
<reponame>Gyaha/AOC2020<filename>day_22_b.py def play_recursively_combat(p1: list, p2: list) -> bool: rounds = set() winner = None while len(p1) > 0 and len(p2) > 0: r = tuple(p1 + [-1] + p2) if r in rounds: return True else: rounds.add(r) c1 = p1.pop(0) c2 = p2.pop(0) if c1 <= len(p1) and c2 <= len(p2): winner = play_recursively_combat(p1[:c1], p2[:c2]) else: winner = c1 > c2 if winner: p1.append(c1) p1.append(c2) else: p2.append(c2) p2.append(c1) return winner def play_combat(s: str): p1, p2 = s.strip().split("\n\n") p1, p2 = convert_cards(p1), convert_cards(p2) winner = play_recursively_combat(p1, p2) w = p1 if winner else p2 s = 0 for i, c in enumerate(reversed(w), 1): s += c * i return s def convert_cards(s: str) -> list: c = [] for p in s.splitlines()[1:]: c.append(int(p)) return c def run_tests(): test_input = """Player 1: 9 2 6 3 1 Player 2: 5 8 4 7 10""" test_output = 291 assert play_combat(test_input) == test_output test_input = """Player 1: 43 19 Player 2: 2 29 14""" assert play_combat(test_input) def run() -> int: with open("inputs/input_22.txt") as file: data = file.read() return play_combat(data) if __name__ == "__main__": run_tests() import time time_start = time.perf_counter() print(run()) time_end = time.perf_counter() - time_start print(f"Time: {time_end:0.4f} sec")
3.375
3
Auth/Constants/LoginOpCode.py
sundayz/idewave-core
0
5468
<reponame>sundayz/idewave-core from enum import Enum class LoginOpCode(Enum): ''' Opcodes during login process ''' LOGIN_CHALL = 0x00 LOGIN_PROOF = 0x01 RECON_CHALL = 0x02 # currently do not in use RECON_PROOF = 0x03 # currently do not in use REALMLIST = 0x10 class LoginResult(Enum): ''' Error codes ''' SUCCESS = 0x00
2.203125
2
LINETOKEN/__init__.py
pratannaimjoi/tokenIpad
0
5469
<reponame>pratannaimjoi/tokenIpad # -*- coding: utf-8 -*- from .LineApi import LINE from .lib.Gen.ttypes import *
0.839844
1
main.py
seton-develops/PDF-Camelot-Folder-Executable
0
5470
<filename>main.py ''' Created on Jun 17, 2021 @author: Sean ''' import PDF2CSV_GUI def main(): j = PDF2CSV_GUI.Convert_GUI() if __name__ == "__main__": main()
1.9375
2
Part1/bot_read.py
Mildlyoffbeat/RedditBot-1
0
5471
#!/usr/bin/python import praw reddit = praw.Reddit('mob-secondbot') subreddit = reddit.subreddit("learnpython") for submission in subreddit.hot(limit=5): print("Title: ", submission.title) print("Text: ", submission.selftext) print("Score: ", submission.score) print("---------------------------------\n")
2.90625
3
17/kazuate_liar.cpp.py
Siketyan/Programming-I
0
5472
<filename>17/kazuate_liar.cpp.py from subprocess import Popen, PIPE, call name = "kazuate_liar.o" src = """ #include <iostream> #include <random> using namespace std; int main() { random_device rd; mt19937 mt(rd()); uniform_int_distribution<int> randfive(0, 4); uniform_int_distribution<int> randint(1, 100); int count = 0; int num = randint(mt); while (1) { int i; cout << "数を当ててみて "; cin >> i; if (i < 1 || i > 100) { cout << "不正な入力です。" << endl; continue; } count++; bool liar = randfive(mt) == 0; if (i == num) { cout << "正解です。おめでとう。 (" << count << " 回目)" << endl; break; } else if ((liar && i > num) || i < num) { cout << "もっと大きいよ。" << endl; } else { cout << "もっと小さいよ。" << endl; } } return 0; } """; proc = Popen(["g++", "-o", name, "-x", "c++", "-"], stdin = PIPE); proc.communicate(src.encode()); call(["./" + name]);
2.671875
3
src/terrafort/main.py
silvercar/terrafort
1
5473
<gh_stars>1-10 """ Terrafort Generate terraform templates for specific resources """ import click from .providers.aws import Aws @click.group() @click.option('--commands', is_flag=True, help="Output import commands instead of a terraform template") @click.version_option() @click.pass_context def cli(ctx, commands=False): ctx.obj = {'commands': commands} cli.add_command(Aws.aws_db_instance) cli.add_command(Aws.aws_iam_instance_profile) cli.add_command(Aws.aws_instance) cli.add_command(Aws.aws_security_group) if __name__ == "__main__": # pylint: disable=unexpected-keyword-arg,no-value-for-parameter cli(obj={})
1.960938
2
src/ping.py
jnsougata/rich-embed
0
5474
<gh_stars>0 import discord import app_util class Ping(app_util.Cog): def __init__(self, bot: app_util.Bot): self.bot = bot @app_util.Cog.command( command=app_util.SlashCommand( name='ping', description='shows avg ping of client' ), guild_id=877399405056102431 ) async def command(self, ctx: app_util.Context): await ctx.send_response(embed=discord.Embed(title=f'{self.bot.latency * 1000:.2f}ms')) def setup(bot: app_util.Bot): bot.add_application_cog(Ping(bot))
2.53125
3
2020/24/visualization.py
AlbertVeli/AdventOfCode
0
5475
#!/usr/bin/env python3 import sys import re import numpy as np from PIL import Image moves = { 'e': (2, 0), 'se': (1, 2), 'sw': (-1, 2), 'w': (-2, 0), 'nw': (-1, -2), 'ne': (1, -2) } # Save (x, y): True/False in tiles. True = black, False = white. tiles = {} for line in open(sys.argv[1]).read().splitlines(): pos = np.array((0, 0)) for d in re.findall(r'e|se|sw|w|nw|ne', line): pos += moves[d] t = tuple(pos) if t in tiles: tiles[t] = not tiles[t] else: tiles[t] = True # Part 1 print('black:', sum(val == True for val in tiles.values())) # -- Part 2 -- # take a chance on how wide it needs to be width = 300 heigth = 300 board = np.zeros(width * heigth, dtype=np.int8) board = board.reshape(heigth, width) # Fill in tiles, move to center for key, value in tiles.items(): x, y = key x += width // 2 y += heigth // 2 board[y][x] = value def black_neighbours(y, x, b): num = 0 for m in moves.values(): num += b[(y + m[1], x + m[0])] return num def game(): board_copy = np.copy(board) w, h = board.shape # Don't do outer edge (to avoid special cases) for y in range(2, h - 2): for x in range(2, w - 2): tile = board_copy[(y, x)] n = black_neighbours(y, x, board_copy) if tile: # black if n == 0 or n > 2: board[(y, x)] = False else: # white if n == 2: board[(y, x)] = True def save_image(day): colours = [(0, 0, 0), (255, 255, 255)] im = Image.new('RGB', (width, heigth)) for y in range(heigth): for x in range(width): c = colours[board[y][x]] im.putpixel((x, y), c) im.save('img%03d.png' % (day)) save_image(0) for day in range(1, 101): game() save_image(day) print('Day %d: %d' % (day, len(np.where(board == True)[0]))) ys, xs = np.where(board) print(min(ys), max(ys), min(xs), max(xs))
3.0625
3
experimental/tracing/bin/diff_heap_profiler.py
BearerPipelineTest/catapult
1,894
5476
#!/usr/bin/env python # Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from __future__ import absolute_import from __future__ import print_function import argparse import gzip import json import os import shutil import six from six.moves import zip _OUTPUT_DIR = 'output' _OUTPUT_GRAPH_DIR = os.path.join(_OUTPUT_DIR, 'graph') class Process(object): def __init__(self): self.pid = None self.name = None self.labels = None self.types = {} self.strings = {} self.stackframes = {} self.allocators = None self.version = None class Entry(object): def __init__(self): self.count = None self.size = None self.type = None self.stackframe = None class GraphDump(object): def __init__(self): self.pid = None self.name = None self.labels = None self.heap = None self.root = '' self.leaks = '' self.leak_stackframes = 0 self.leak_objects = 0 def OpenTraceFile(file_path, mode): if file_path.endswith('.gz'): return gzip.open(file_path, mode + 'b') return open(file_path, mode + 't') def FindMemoryDumps(filename): processes = {} with OpenTraceFile(filename, 'r') as f: data = json.loads(f.read().decode('utf-8')) for event in data['traceEvents']: pid = event['pid'] if pid not in processes: processes[pid] = Process() processes[pid].pid = pid process = processes[pid] # Retrieve process informations. if event['ph'] == 'M': if event['name'] == 'process_name' and 'name' in event['args']: process.name = event['args']['name'] if event['name'] == 'process_labels' and 'labels' in event['args']: process.labels = event['args']['labels'] if event['name'] == 'typeNames': process.types = {} for type_id, t in six.iteritems(event['args']['typeNames']): process.types[int(type_id)] = t if event['name'] == 'stackFrames': process.stackframes = {} for stack_id, s in six.iteritems(event['args']['stackFrames']): new_stackframe = {} new_stackframe['name'] = s['name'] if 'parent' in s: new_stackframe['parent'] = int(s['parent']) process.stackframes[int(stack_id)] = new_stackframe # Look for a detailed memory dump event. if not ((event['name'] == 'periodic_interval' or event['name'] == 'explicitly_triggered') and event['args']['dumps']['level_of_detail'] == 'detailed'): continue # Check for a memory dump V1. if u'heaps' in event['args']['dumps']: # Get the first memory dump. if not process.allocators: process.version = 1 process.allocators = event['args']['dumps']['heaps'] # Check for a memory dump V2. # See format: [chromium] src/base/trace_event/heap_profiler_event_writer.h if u'heaps_v2' in event['args']['dumps']: # Memory dump format V2 is dumping information incrementally. Update # the cumulated indexes. maps = event['args']['dumps']['heaps_v2']['maps'] for string in maps['strings']: process.strings[string['id']] = string['string'] for node in maps['nodes']: node_v1 = {} node_v1['name'] = process.strings[node['name_sid']] if 'parent' in node: node_v1['parent'] = node['parent'] process.stackframes[node['id']] = node_v1 for t in maps['types']: process.types[t['id']] = process.strings[t['name_sid']] # Get the first memory dump. if not process.allocators: dump = event['args']['dumps'] process.version = 2 process.allocators = dump['heaps_v2']['allocators'] # Remove processes with incomplete memory dump. for pid, process in processes.items(): if not (process.allocators and process.stackframes and process.types): del processes[pid] return processes def ResolveMemoryDumpFields(entries, stackframes, types): def ResolveStackTrace(stack_id, stackframes): stackframe = stackframes[stack_id] tail = () if 'parent' in stackframe: tail = ResolveStackTrace(stackframe['parent'], stackframes) name = stackframe['name'].replace('\r', '').replace('\n', '') return (name,) + tail def ResolveType(type_id, types): return types[type_id] for entry in entries: # Stackframe may be -1 (18446744073709551615L) when not stackframe are # available. if entry.stackframe not in stackframes: entry.stackframe = [] else: entry.stackframe = ResolveStackTrace(entry.stackframe, stackframes) entry.type = ResolveType(entry.type, types) def IncrementHeapEntry(stack, count, size, typename, root): if not stack: root['count'] += count root['size'] += size if typename not in root['count_by_type']: root['count_by_type'][typename] = 0 root['count_by_type'][typename] += count else: top = stack[-1] tail = stack[:-1] if top not in root['children']: new_node = {} new_node['count'] = 0 new_node['size'] = 0 new_node['children'] = {} new_node['count_by_type'] = {} root['children'][top] = new_node IncrementHeapEntry(tail, count, size, typename, root['children'][top]) def CanonicalHeapEntries(root): total_count = 0 total_size = 0 for child in six.itervalues(root['children']): total_count += child['count'] total_size += child['size'] root['count'] -= total_count root['size'] -= total_size for typename in root['count_by_type']: total_count_for_type = 0 for child in six.itervalues(root['children']): if typename in child['count_by_type']: total_count_for_type += child['count_by_type'][typename] root['count_by_type'][typename] -= total_count_for_type for child in six.itervalues(root['children']): CanonicalHeapEntries(child) def FindLeaks(root, stack, leaks, threshold, size_threshold): for frame in root['children']: FindLeaks(root['children'][frame], [frame] + stack, leaks, threshold, size_threshold) if root['count'] > threshold and root['size'] > size_threshold: leaks.append({'count': root['count'], 'size': root['size'], 'count_by_type': root['count_by_type'], 'stackframes': stack}) def DumpTree(root, frame, output, threshold, size_threshold): output.write('\n{ \"name\": \"%s\",' % frame) if root['count'] > threshold and root['count'] > size_threshold: output.write(' \"size\": \"%s\",' % root['size']) output.write(' \"count\": \"%s\",' % root['count']) output.write(' \"children\": [') is_first = True for child_frame, child in root['children'].items(): if is_first: is_first = False else: output.write(',') DumpTree(child, child_frame, output, threshold, size_threshold) output.write(']') output.write('}') def GetEntries(heap, process): """ Returns all entries in a heap, after filtering out unknown entries, and doing some post processing to extract the relevant fields. """ if not process: return [] entries = [] if process.version == 1: for raw_entry in process.allocators[heap]['entries']: # Cumulative sizes and types are skipped. see: # https://chromium.googlesource.com/chromium/src/+/a990af190304be5bf38b120799c594df5a293518/base/trace_event/heap_profiler_heap_dump_writer.cc#294 if 'type' not in raw_entry or not raw_entry['bt']: continue entry = Entry() entry.count = int(raw_entry['count'], 16) entry.size = int(raw_entry['size'], 16) entry.type = int(raw_entry['type']) entry.stackframe = int(raw_entry['bt']) entries.append(entry) elif process.version == 2: raw_entries = list(zip(process.allocators[heap]['counts'], process.allocators[heap]['sizes'], process.allocators[heap]['types'], process.allocators[heap]['nodes'])) for (raw_count, raw_size, raw_type, raw_stackframe) in raw_entries: entry = Entry() entry.count = raw_count entry.size = raw_size entry.type = raw_type entry.stackframe = raw_stackframe entries.append(entry) # Resolve fields by looking into indexes ResolveMemoryDumpFields(entries, process.stackframes, process.types) return entries def FilterProcesses(processes, filter_by_name, filter_by_labels): remaining_processes = {} for pid, process in six.iteritems(processes): if filter_by_name and process.name != filter_by_name: continue if (filter_by_labels and (not process.labels or filter_by_labels not in process.labels)): continue remaining_processes[pid] = process return remaining_processes def FindRelevantProcesses(start_trace, end_trace, filter_by_name, filter_by_labels, match_by_labels): # Retrieve the processes and the associated memory dump. end_processes = FindMemoryDumps(end_trace) end_processes = FilterProcesses(end_processes, filter_by_name, filter_by_labels) start_processes = None if start_trace: start_processes = FindMemoryDumps(start_trace) start_processes = FilterProcesses(start_processes, filter_by_name, filter_by_labels) # Build a sequence of pair of processes to be compared. processes = [] if not start_processes: # Only keep end-processes. for _, end_process in six.iteritems(end_processes): processes.append((None, end_process)) elif match_by_labels: # Processes are paired based on name/labels. for _, end_process in six.iteritems(end_processes): matching_start_process = None for _, start_process in six.iteritems(start_processes): if (start_process.name == end_process.name and (start_process.name in ['Browser', 'GPU'] or start_process.labels == end_process.labels)): matching_start_process = start_process if matching_start_process: processes.append((matching_start_process, end_process)) else: # Processes are paired based on their PID. relevant_pids = set(end_processes.keys()) & set(start_processes.keys()) for pid in relevant_pids: start_process = start_processes[pid] end_process = end_processes[pid] processes.append((start_process, end_process)) return processes def BuildGraphDumps(processes, threshold, size_threshold): """ Build graph for a sequence of pair of processes. If start_process is None, counts objects in end_trace. Otherwise, counts objects present in end_trace, but not in start_process. """ graph_dumps = [] for (start_process, end_process) in processes: pid = end_process.pid name = end_process.name if end_process.name else '' labels = end_process.labels if end_process.labels else '' print('Process[%d] %s: %s' % (pid, name, labels)) for heap in end_process.allocators: start_entries = GetEntries(heap, start_process) end_entries = GetEntries(heap, end_process) graph = GraphDump() graph.pid = pid graph.name = name graph.labels = labels graph.heap = heap graph_dumps.append(graph) # Do the math: diffing start and end memory dumps. root = {} root['count'] = 0 root['size'] = 0 root['children'] = {} root['count_by_type'] = {} for entry in start_entries: if entry.type: IncrementHeapEntry(entry.stackframe, - entry.count, - entry.size, entry.type, root) for entry in end_entries: if entry.type: IncrementHeapEntry(entry.stackframe, entry.count, entry.size, entry.type, root) CanonicalHeapEntries(root) graph.root = root # Find leaks leaks = [] FindLeaks(root, [], leaks, threshold, size_threshold) leaks.sort(reverse=True, key=lambda k: k['size']) if leaks: print(' %s: %d potential leaks found.' % (heap, len(leaks))) graph.leaks = leaks graph.leak_stackframes = len(leaks) for leak in leaks: graph.leak_objects += leak['count'] return graph_dumps def WritePotentialLeaks(graph_dumps): for graph in graph_dumps: if graph.leaks: filename = 'process_%d_%s-leaks.json' % (graph.pid, graph.heap) output_filename = os.path.join(_OUTPUT_DIR, filename) with open(output_filename, 'w') as output: json.dump(graph.leaks, output) def WriteGrahDumps(graph_dumps, threshold, size_threshold): for graph in graph_dumps: # Dump the remaining allocated objects tree. filename = 'process_%d_%s-objects.json' % (graph.pid, graph.heap) output_filename = os.path.join(_OUTPUT_GRAPH_DIR, filename) if graph.root: with open(output_filename, 'w') as output: DumpTree(graph.root, '.', output, threshold, size_threshold) graph.root = filename def WriteIndex(graph_dumps): output_filename = os.path.join(_OUTPUT_GRAPH_DIR, 'index.json') with open(output_filename, 'w') as output: json.dump([ {'pid': graph.pid, 'heap': graph.heap, 'name': graph.name, 'labels': graph.labels, 'objects': graph.root, 'potential leaks': graph.leak_stackframes, 'objects leaked': graph.leak_objects, } for graph in graph_dumps], output) def WriteHTML(): # Copy the HTML page. source = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'diff_heap_profiler.html') destination = os.path.join(_OUTPUT_GRAPH_DIR, 'index.html') shutil.copyfile(source, destination) # Copy the D3 library file. source = os.path.join(os.path.dirname(os.path.abspath(__file__)), os.path.pardir, os.path.pardir, os.path.pardir, 'tracing', 'third_party', 'd3', 'd3.min.js') destination = os.path.join(_OUTPUT_GRAPH_DIR, 'd3.min.js') shutil.copyfile(source, destination) def Main(): parser = argparse.ArgumentParser() parser.add_argument( '--flame-graph', action='store_true', help='Output a flame graph based on stackframe allocations') parser.add_argument( '--threshold', type=int, default=0, help='Objects threshold for being a potential memory leak') parser.add_argument( '--size-threshold', type=int, default=0, help='Size threshold for being a potential memory leak') parser.add_argument( '--filter-by-name', type=str, help='Only keep processes with name (i.e. Browser, Renderer, ...)') parser.add_argument( '--filter-by-labels', type=str, help='Only keep processes with matching labels') parser.add_argument( '--match-by-labels', action='store_true', help='Match processes between runs by labels') parser.add_argument( 'trace', nargs='+', help='Trace files to be processed') options = parser.parse_args() if options.threshold == 0 and options.size_threshold == 0: options.threshold = 1000 if len(options.trace) == 1: end_trace = options.trace[0] start_trace = None else: start_trace = options.trace[0] end_trace = options.trace[1] if not os.path.exists(_OUTPUT_DIR): os.makedirs(_OUTPUT_DIR) # Find relevant processes to be processed. processes = FindRelevantProcesses(start_trace, end_trace, options.filter_by_name, options.filter_by_labels, options.match_by_labels) graph_dumps = BuildGraphDumps(processes, options.threshold, options.size_threshold) WritePotentialLeaks(graph_dumps) if options.flame_graph: if not os.path.exists(_OUTPUT_GRAPH_DIR): os.makedirs(_OUTPUT_GRAPH_DIR) WriteGrahDumps(graph_dumps, options.threshold, options.size_threshold) WriteIndex(graph_dumps) WriteHTML() if __name__ == '__main__': Main()
2.203125
2
mne_bids/commands/mne_bids_raw_to_bids.py
kingjr/mne-bids
0
5477
"""Write raw files to BIDS format. example usage: $ mne_bids raw_to_bids --subject_id sub01 --task rest --raw data.edf --bids_root new_path """ # Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # License: BSD (3-clause) import mne_bids from mne_bids import write_raw_bids, BIDSPath from mne_bids.read import _read_raw def run(): """Run the raw_to_bids command.""" from mne.commands.utils import get_optparser parser = get_optparser(__file__, usage="usage: %prog options args", prog_prefix='mne_bids', version=mne_bids.__version__) parser.add_option('--subject_id', dest='subject_id', help=('subject name in BIDS compatible format ' '(01, 02, etc.)')) parser.add_option('--task', dest='task', help='name of the task the data is based on') parser.add_option('--raw', dest='raw_fname', help='path to the raw MEG file') parser.add_option('--bids_root', dest='bids_root', help='The path of the BIDS compatible folder.') parser.add_option('--session_id', dest='session_id', help='session name in BIDS compatible format') parser.add_option('--run', dest='run', help='run number for this dataset') parser.add_option('--acq', dest='acq', help='acquisition parameter for this dataset') parser.add_option('--events_data', dest='events_data', help='events file (events.tsv)') parser.add_option('--event_id', dest='event_id', help='event id dict', metavar='eid') parser.add_option('--hpi', dest='hpi', help='path to the MEG marker points') parser.add_option('--electrode', dest='electrode', help='path to head-native digitizer points') parser.add_option('--hsp', dest='hsp', help='path to headshape points') parser.add_option('--config', dest='config', help='path to the configuration file') parser.add_option('--overwrite', dest='overwrite', help="whether to overwrite existing data (BOOLEAN)") parser.add_option('--line_freq', dest='line_freq', help="The frequency of the line noise in Hz " "(e.g. 50 or 60). If unknown, pass None") opt, args = parser.parse_args() if len(args) > 0: parser.print_help() parser.error('Do not specify arguments without flags. Found: "{}".\n' .format(args)) if not all([opt.subject_id, opt.task, opt.raw_fname, opt.bids_root]): parser.print_help() parser.error('Arguments missing. You need to specify at least the' 'following: --subject_id, --task, --raw, --bids_root.') bids_path = BIDSPath( subject=opt.subject_id, session=opt.session_id, run=opt.run, acquisition=opt.acq, task=opt.task, root=opt.bids_root) allow_maxshield = False if opt.raw_fname.endswith('.fif'): allow_maxshield = True raw = _read_raw(opt.raw_fname, hpi=opt.hpi, electrode=opt.electrode, hsp=opt.hsp, config=opt.config, allow_maxshield=allow_maxshield) if opt.line_freq is not None: line_freq = None if opt.line_freq == "None" else opt.line_freq raw.info['line_freq'] = line_freq write_raw_bids(raw, bids_path, event_id=opt.event_id, events_data=opt.events_data, overwrite=opt.overwrite, verbose=True) if __name__ == '__main__': run()
2.390625
2
lab1oop.py
NastiaK/NewRepository
0
5478
<gh_stars>0 class Calculations: def __init__(self, first, second): self.first = first self.second = second def add(self): print(self.first + self.second) def subtract(self): print(self.first - self.second) def multiply(self): print(self.first * self.second) def divide(self): if second == 0: print("Can't divide by zero") else: print(self.first / self.second) def main(): print("Calculator has started") while True: a = float(input("Enter first number ")) b = float(input("Enter second number ")) chooseop = 1 calc=Calculations(a, b) while (chooseop == 1) | (chooseop == 2) | (chooseop == 3) | (chooseop == 4): chooseop = int(input("Enter 1 for addition, 2 for subtraction, 3 for multiplication and 4 for division ")) print(chooseop) if chooseop == 1: calc.add() break elif chooseop == 2: calc.subtract() break elif chooseop == 3: calc.multiply() break elif chooseop == 4: calc.divide() break elif (chooseop != 1) & (chooseop != 2) & (chooseop != 3) & (chooseop != 4): print("Invalid operation number") if __name__ == "__main__": main()
3.984375
4
Arrays/cyclic_rotation.py
Jeans212/codility-dev-training
0
5479
<reponame>Jeans212/codility-dev-training # you can write to stdout for debugging purposes, e.g. # print("this is a debug message") ''' Rotate an array A to the right by a given number of steps K. Covert the array to a deque Apply the rotate() method the rotate the deque in positive K steps Convert the deque to array ''' from collections import deque def solution(A, K): # write your code in Python 3.6 deq_A = deque(A) deq_A.rotate(K) return list(deq_A)
3.859375
4
tests/test_apis.py
hatzel/markdown-spoilers
2
5480
# -*- coding: utf-8 -*- """ Python Markdown A Python implementation of <NAME>'s Markdown. Documentation: https://python-markdown.github.io/ GitHub: https://github.com/Python-Markdown/markdown/ PyPI: https://pypi.org/project/Markdown/ Started by <NAME> (http://www.dwerg.net/). Maintained for a few years by <NAME> (http://www.freewisdom.org). Currently maintained by <NAME> (https://github.com/waylan), <NAME> (https://github.com/mitya57) and <NAME> (https://github.com/facelessuser). Copyright 2007-2018 The Python Markdown Project (v. 1.7 and later) Copyright 2004, 2005, 2006 <NAME> (v. 0.2-1.6b) Copyright 2004 <NAME> (the original version) License: BSD (see LICENSE.md for details). Python-Markdown Regression Tests ================================ Tests of the various APIs with the python markdown lib. """ from __future__ import unicode_literals import unittest import sys import os import markdown import warnings from markdown.__main__ import parse_options from logging import DEBUG, WARNING, CRITICAL import yaml import tempfile from io import BytesIO from xml.etree.ElementTree import ProcessingInstruction PY3 = sys.version_info[0] == 3 if not PY3: def bytes(string, encoding): return string.encode(encoding) class TestMarkdownBasics(unittest.TestCase): """ Tests basics of the Markdown class. """ def setUp(self): """ Create instance of Markdown. """ self.md = markdown.Markdown() def testBlankInput(self): """ Test blank input. """ self.assertEqual(self.md.convert(''), '') def testWhitespaceOnly(self): """ Test input of only whitespace. """ self.assertEqual(self.md.convert(' '), '') def testSimpleInput(self): """ Test simple input. """ self.assertEqual(self.md.convert('foo'), '<p>foo</p>') def testInstanceExtension(self): """ Test Extension loading with a class instance. """ from markdown.extensions.footnotes import FootnoteExtension markdown.Markdown(extensions=[FootnoteExtension()]) def testEntryPointExtension(self): """ Test Extension loading with an entry point. """ markdown.Markdown(extensions=['footnotes']) def testDotNotationExtension(self): """ Test Extension loading with Name (`path.to.module`). """ markdown.Markdown(extensions=['markdown.extensions.footnotes']) def testDotNotationExtensionWithClass(self): """ Test Extension loading with class name (`path.to.module:Class`). """ markdown.Markdown(extensions=['markdown.extensions.footnotes:FootnoteExtension']) class TestConvertFile(unittest.TestCase): """ Tests of ConvertFile. """ def setUp(self): self.saved = sys.stdin, sys.stdout sys.stdin = BytesIO(bytes('foo', encoding='utf-8')) sys.stdout = BytesIO() def tearDown(self): sys.stdin, sys.stdout = self.saved def getTempFiles(self, src): """ Return the file names for two temp files. """ infd, infile = tempfile.mkstemp(suffix='.txt') with os.fdopen(infd, 'w') as fp: fp.write(src) outfd, outfile = tempfile.mkstemp(suffix='.html') return infile, outfile, outfd def testFileNames(self): infile, outfile, outfd = self.getTempFiles('foo') markdown.markdownFromFile(input=infile, output=outfile) with os.fdopen(outfd, 'r') as fp: output = fp.read() self.assertEqual(output, '<p>foo</p>') def testFileObjects(self): infile = BytesIO(bytes('foo', encoding='utf-8')) outfile = BytesIO() markdown.markdownFromFile(input=infile, output=outfile) outfile.seek(0) self.assertEqual(outfile.read().decode('utf-8'), '<p>foo</p>') def testStdinStdout(self): markdown.markdownFromFile() sys.stdout.seek(0) self.assertEqual(sys.stdout.read().decode('utf-8'), '<p>foo</p>') class TestBlockParser(unittest.TestCase): """ Tests of the BlockParser class. """ def setUp(self): """ Create instance of BlockParser. """ self.parser = markdown.Markdown().parser def testParseChunk(self): """ Test BlockParser.parseChunk. """ root = markdown.util.etree.Element("div") text = 'foo' self.parser.parseChunk(root, text) self.assertEqual( markdown.serializers.to_xhtml_string(root), "<div><p>foo</p></div>" ) def testParseDocument(self): """ Test BlockParser.parseDocument. """ lines = ['#foo', '', 'bar', '', ' baz'] tree = self.parser.parseDocument(lines) self.assertIsInstance(tree, markdown.util.etree.ElementTree) self.assertIs(markdown.util.etree.iselement(tree.getroot()), True) self.assertEqual( markdown.serializers.to_xhtml_string(tree.getroot()), "<div><h1>foo</h1><p>bar</p><pre><code>baz\n</code></pre></div>" ) class TestBlockParserState(unittest.TestCase): """ Tests of the State class for BlockParser. """ def setUp(self): self.state = markdown.blockparser.State() def testBlankState(self): """ Test State when empty. """ self.assertEqual(self.state, []) def testSetSate(self): """ Test State.set(). """ self.state.set('a_state') self.assertEqual(self.state, ['a_state']) self.state.set('state2') self.assertEqual(self.state, ['a_state', 'state2']) def testIsSate(self): """ Test State.isstate(). """ self.assertEqual(self.state.isstate('anything'), False) self.state.set('a_state') self.assertEqual(self.state.isstate('a_state'), True) self.state.set('state2') self.assertEqual(self.state.isstate('state2'), True) self.assertEqual(self.state.isstate('a_state'), False) self.assertEqual(self.state.isstate('missing'), False) def testReset(self): """ Test State.reset(). """ self.state.set('a_state') self.state.reset() self.assertEqual(self.state, []) self.state.set('state1') self.state.set('state2') self.state.reset() self.assertEqual(self.state, ['state1']) class TestHtmlStash(unittest.TestCase): """ Test Markdown's HtmlStash. """ def setUp(self): self.stash = markdown.util.HtmlStash() self.placeholder = self.stash.store('foo') def testSimpleStore(self): """ Test HtmlStash.store. """ self.assertEqual(self.placeholder, self.stash.get_placeholder(0)) self.assertEqual(self.stash.html_counter, 1) self.assertEqual(self.stash.rawHtmlBlocks, ['foo']) def testStoreMore(self): """ Test HtmlStash.store with additional blocks. """ placeholder = self.stash.store('bar') self.assertEqual(placeholder, self.stash.get_placeholder(1)) self.assertEqual(self.stash.html_counter, 2) self.assertEqual( self.stash.rawHtmlBlocks, ['foo', 'bar'] ) def testReset(self): """ Test HtmlStash.reset. """ self.stash.reset() self.assertEqual(self.stash.html_counter, 0) self.assertEqual(self.stash.rawHtmlBlocks, []) class Item(object): """ A dummy Registry item object for testing. """ def __init__(self, data): self.data = data def __repr__(self): return repr(self.data) def __eq__(self, other): return self.data == other class RegistryTests(unittest.TestCase): """ Test the processor registry. """ def testCreateRegistry(self): r = markdown.util.Registry() r.register(Item('a'), 'a', 20) self.assertEqual(len(r), 1) self.assertIsInstance(r, markdown.util.Registry) def testRegisterWithoutPriority(self): r = markdown.util.Registry() with self.assertRaises(TypeError): r.register(Item('a')) def testSortRegistry(self): r = markdown.util.Registry() r.register(Item('a'), 'a', 20) r.register(Item('b'), 'b', 21) r.register(Item('c'), 'c', 20.5) self.assertEqual(len(r), 3) self.assertEqual(list(r), ['b', 'c', 'a']) def testIsSorted(self): r = markdown.util.Registry() self.assertIs(r._is_sorted, False) r.register(Item('a'), 'a', 20) list(r) self.assertIs(r._is_sorted, True) r.register(Item('b'), 'b', 21) self.assertIs(r._is_sorted, False) r['a'] self.assertIs(r._is_sorted, True) r._is_sorted = False r.get_index_for_name('a') self.assertIs(r._is_sorted, True) r._is_sorted = False repr(r) self.assertIs(r._is_sorted, True) def testDeregister(self): r = markdown.util.Registry() r.register(Item('a'), 'a', 20) r.register(Item('b'), 'b', 30) r.register(Item('c'), 'c', 40) self.assertEqual(len(r), 3) r.deregister('b') self.assertEqual(len(r), 2) r.deregister('c', strict=False) self.assertEqual(len(r), 1) # deregister non-existant item with strict=False r.deregister('d', strict=False) self.assertEqual(len(r), 1) with self.assertRaises(ValueError): # deregister non-existant item with strict=True r.deregister('e') self.assertEqual(list(r), ['a']) def testRegistryContains(self): r = markdown.util.Registry() item = Item('a') r.register(item, 'a', 20) self.assertIs('a' in r, True) self.assertIn(item, r) self.assertNotIn('b', r) def testRegistryIter(self): r = markdown.util.Registry() r.register(Item('a'), 'a', 20) r.register(Item('b'), 'b', 30) self.assertEqual(list(r), ['b', 'a']) def testRegistryGetItemByIndex(self): r = markdown.util.Registry() r.register(Item('a'), 'a', 20) r.register(Item('b'), 'b', 30) self.assertEqual(r[0], 'b') self.assertEqual(r[1], 'a') with self.assertRaises(IndexError): r[3] def testRegistryGetItemByItem(self): r = markdown.util.Registry() r.register(Item('a'), 'a', 20) r.register(Item('b'), 'b', 30) self.assertEqual(r['a'], 'a') self.assertEqual(r['b'], 'b') with self.assertRaises(KeyError): r['c'] def testRegistrySetItem(self): r = markdown.util.Registry() with self.assertRaises(TypeError): r[0] = 'a' # TODO: restore this when deprecated __setitem__ is removed. # with self.assertRaises(TypeError): # r['a'] = 'a' # TODO: remove this when deprecated __setitem__ is removed. with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") r['a'] = Item('a') self.assertEqual(list(r), ['a']) r['b'] = Item('b') self.assertEqual(list(r), ['a', 'b']) r['a'] = Item('a1') self.assertEqual(list(r), ['a1', 'b']) # Check the warnings self.assertEqual(len(w), 3) self.assertTrue(all(issubclass(x.category, DeprecationWarning) for x in w)) def testRegistryDelItem(self): r = markdown.util.Registry() r.register(Item('a'), 'a', 20) with self.assertRaises(TypeError): del r[0] # TODO: restore this when deprecated __del__ is removed. # with self.assertRaises(TypeError): # del r['a'] # TODO: remove this when deprecated __del__ is removed. with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") r.register(Item('b'), 'b', 15) r.register(Item('c'), 'c', 10) del r['b'] self.assertEqual(list(r), ['a', 'c']) del r['a'] self.assertEqual(list(r), ['c']) with self.assertRaises(TypeError): del r['badname'] del r['c'] self.assertEqual(list(r), []) # Check the warnings self.assertEqual(len(w), 3) self.assertTrue(all(issubclass(x.category, DeprecationWarning) for x in w)) def testRegistrySlice(self): r = markdown.util.Registry() r.register(Item('a'), 'a', 20) r.register(Item('b'), 'b', 30) r.register(Item('c'), 'c', 40) slc = r[1:] self.assertEqual(len(slc), 2) self.assertIsInstance(slc, markdown.util.Registry) self.assertEqual(list(slc), ['b', 'a']) def testGetIndexForName(self): r = markdown.util.Registry() r.register(Item('a'), 'a', 20) r.register(Item('b'), 'b', 30) self.assertEqual(r.get_index_for_name('a'), 1) self.assertEqual(r.get_index_for_name('b'), 0) with self.assertRaises(ValueError): r.get_index_for_name('c') def testRegisterDupplicate(self): r = markdown.util.Registry() r.register(Item('a'), 'a', 20) r.register(Item('b1'), 'b', 10) self.assertEqual(list(r), ['a', 'b1']) self.assertEqual(len(r), 2) r.register(Item('b2'), 'b', 30) self.assertEqual(len(r), 2) self.assertEqual(list(r), ['b2', 'a']) def testRegistryDeprecatedAdd(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") r = markdown.util.Registry() # Add first item r.add('c', Item('c'), '_begin') self.assertEqual(list(r), ['c']) # Added to beginning r.add('b', Item('b'), '_begin') self.assertEqual(list(r), ['b', 'c']) # Add before first item r.add('a', Item('a'), '<b') self.assertEqual(list(r), ['a', 'b', 'c']) # Add before non-first item r.add('a1', Item('a1'), '<b') self.assertEqual(list(r), ['a', 'a1', 'b', 'c']) # Add after non-last item r.add('b1', Item('b1'), '>b') self.assertEqual(list(r), ['a', 'a1', 'b', 'b1', 'c']) # Add after last item r.add('d', Item('d'), '>c') self.assertEqual(list(r), ['a', 'a1', 'b', 'b1', 'c', 'd']) # Add to end r.add('e', Item('e'), '_end') self.assertEqual(list(r), ['a', 'a1', 'b', 'b1', 'c', 'd', 'e']) with self.assertRaises(ValueError): r.add('f', Item('f'), 'badlocation') # Check the warnings self.assertEqual(len(w), 7) self.assertTrue(all(issubclass(x.category, DeprecationWarning) for x in w)) class TestErrors(unittest.TestCase): """ Test Error Reporting. """ def setUp(self): # Set warnings to be raised as errors warnings.simplefilter('error') def tearDown(self): # Reset warning behavior back to default warnings.simplefilter('default') def testNonUnicodeSource(self): """ Test falure on non-unicode source text. """ if not PY3: source = "foo".encode('utf-16') self.assertRaises(UnicodeDecodeError, markdown.markdown, source) def testBadOutputFormat(self): """ Test failure on bad output_format. """ self.assertRaises(KeyError, markdown.Markdown, output_format='invalid') def testLoadExtensionFailure(self): """ Test failure of an extension to load. """ self.assertRaises( ImportError, markdown.Markdown, extensions=['non_existant_ext'] ) def testLoadBadExtension(self): """ Test loading of an Extension with no makeExtension function. """ self.assertRaises(AttributeError, markdown.Markdown, extensions=['markdown.util']) def testNonExtension(self): """ Test loading a non Extension object as an extension. """ self.assertRaises(TypeError, markdown.Markdown, extensions=[object]) def testDotNotationExtensionWithBadClass(self): """ Test Extension loading with non-existant class name (`path.to.module:Class`). """ self.assertRaises( AttributeError, markdown.Markdown, extensions=['markdown.extensions.footnotes:MissingExtension'] ) def testBaseExtention(self): """ Test that the base Extension class will raise NotImplemented. """ self.assertRaises( NotImplementedError, markdown.Markdown, extensions=[markdown.extensions.Extension()] ) class testETreeComments(unittest.TestCase): """ Test that ElementTree Comments work. These tests should only be a concern when using cElementTree with third party serializers (including markdown's (x)html serializer). While markdown doesn't use ElementTree.Comment itself, we should certainly support any third party extensions which may. Therefore, these tests are included to ensure such support is maintained. """ def setUp(self): # Create comment node self.comment = markdown.util.etree.Comment('foo') if hasattr(markdown.util.etree, 'test_comment'): self.test_comment = markdown.util.etree.test_comment else: self.test_comment = markdown.util.etree.Comment def testCommentIsComment(self): """ Test that an ElementTree Comment passes the `is Comment` test. """ self.assertIs(self.comment.tag, markdown.util.etree.test_comment) def testCommentIsBlockLevel(self): """ Test that an ElementTree Comment is recognized as BlockLevel. """ md = markdown.Markdown() self.assertIs(md.is_block_level(self.comment.tag), False) def testCommentSerialization(self): """ Test that an ElementTree Comment serializes properly. """ self.assertEqual( markdown.serializers.to_html_string(self.comment), '<!--foo-->' ) def testCommentPrettify(self): """ Test that an ElementTree Comment is prettified properly. """ pretty = markdown.treeprocessors.PrettifyTreeprocessor(markdown.Markdown()) pretty.run(self.comment) self.assertEqual( markdown.serializers.to_html_string(self.comment), '<!--foo-->\n' ) class testElementTailTests(unittest.TestCase): """ Element Tail Tests """ def setUp(self): self.pretty = markdown.treeprocessors.PrettifyTreeprocessor(markdown.Markdown()) def testBrTailNoNewline(self): """ Test that last <br> in tree has a new line tail """ root = markdown.util.etree.Element('root') br = markdown.util.etree.SubElement(root, 'br') self.assertEqual(br.tail, None) self.pretty.run(root) self.assertEqual(br.tail, "\n") class testSerializers(unittest.TestCase): """ Test the html and xhtml serializers. """ def testHtml(self): """ Test HTML serialization. """ el = markdown.util.etree.Element('div') el.set('id', 'foo<&">') p = markdown.util.etree.SubElement(el, 'p') p.text = 'foo <&escaped>' p.set('hidden', 'hidden') markdown.util.etree.SubElement(el, 'hr') non_element = markdown.util.etree.SubElement(el, None) non_element.text = 'non-element text' script = markdown.util.etree.SubElement(non_element, 'script') script.text = '<&"test\nescaping">' el.tail = "tail text" self.assertEqual( markdown.serializers.to_html_string(el), '<div id="foo&lt;&amp;&quot;&gt;">' '<p hidden>foo &lt;&amp;escaped&gt;</p>' '<hr>' 'non-element text' '<script><&"test\nescaping"></script>' '</div>tail text' ) def testXhtml(self): """" Test XHTML serialization. """ el = markdown.util.etree.Element('div') el.set('id', 'foo<&">') p = markdown.util.etree.SubElement(el, 'p') p.text = 'foo<&escaped>' p.set('hidden', 'hidden') markdown.util.etree.SubElement(el, 'hr') non_element = markdown.util.etree.SubElement(el, None) non_element.text = 'non-element text' script = markdown.util.etree.SubElement(non_element, 'script') script.text = '<&"test\nescaping">' el.tail = "tail text" self.assertEqual( markdown.serializers.to_xhtml_string(el), '<div id="foo&lt;&amp;&quot;&gt;">' '<p hidden="hidden">foo&lt;&amp;escaped&gt;</p>' '<hr />' 'non-element text' '<script><&"test\nescaping"></script>' '</div>tail text' ) def testMixedCaseTags(self): """" Test preservation of tag case. """ el = markdown.util.etree.Element('MixedCase') el.text = 'not valid ' em = markdown.util.etree.SubElement(el, 'EMPHASIS') em.text = 'html' markdown.util.etree.SubElement(el, 'HR') self.assertEqual( markdown.serializers.to_xhtml_string(el), '<MixedCase>not valid <EMPHASIS>html</EMPHASIS><HR /></MixedCase>' ) def testProsessingInstruction(self): """ Test serialization of ProcessignInstruction. """ pi = ProcessingInstruction('foo', text='<&"test\nescaping">') self.assertIs(pi.tag, ProcessingInstruction) self.assertEqual( markdown.serializers.to_xhtml_string(pi), '<?foo &lt;&amp;"test\nescaping"&gt;?>' ) def testQNameTag(self): """ Test serialization of QName tag. """ div = markdown.util.etree.Element('div') qname = markdown.util.etree.QName('http://www.w3.org/1998/Math/MathML', 'math') math = markdown.util.etree.SubElement(div, qname) math.set('display', 'block') sem = markdown.util.etree.SubElement(math, 'semantics') msup = markdown.util.etree.SubElement(sem, 'msup') mi = markdown.util.etree.SubElement(msup, 'mi') mi.text = 'x' mn = markdown.util.etree.SubElement(msup, 'mn') mn.text = '2' ann = markdown.util.etree.SubElement(sem, 'annotations') ann.text = 'x^2' self.assertEqual( markdown.serializers.to_xhtml_string(div), '<div>' '<math display="block" xmlns="http://www.w3.org/1998/Math/MathML">' '<semantics>' '<msup>' '<mi>x</mi>' '<mn>2</mn>' '</msup>' '<annotations>x^2</annotations>' '</semantics>' '</math>' '</div>' ) def testQNameAttribute(self): """ Test serialization of QName attribute. """ div = markdown.util.etree.Element('div') div.set(markdown.util.etree.QName('foo'), markdown.util.etree.QName('bar')) self.assertEqual( markdown.serializers.to_xhtml_string(div), '<div foo="bar"></div>' ) def testBadQNameTag(self): """ Test serialization of QName with no tag. """ qname = markdown.util.etree.QName('http://www.w3.org/1998/Math/MathML') el = markdown.util.etree.Element(qname) self.assertRaises(ValueError, markdown.serializers.to_xhtml_string, el) def testQNameEscaping(self): """ Test QName escaping. """ qname = markdown.util.etree.QName('<&"test\nescaping">', 'div') el = markdown.util.etree.Element(qname) self.assertEqual( markdown.serializers.to_xhtml_string(el), '<div xmlns="&lt;&amp;&quot;test&#10;escaping&quot;&gt;"></div>' ) def testQNamePreEscaping(self): """ Test QName that is already partially escaped. """ qname = markdown.util.etree.QName('&lt;&amp;"test&#10;escaping"&gt;', 'div') el = markdown.util.etree.Element(qname) self.assertEqual( markdown.serializers.to_xhtml_string(el), '<div xmlns="&lt;&amp;&quot;test&#10;escaping&quot;&gt;"></div>' ) def buildExtension(self): """ Build an extension which registers fakeSerializer. """ def fakeSerializer(elem): # Ignore input and return hardcoded output return '<div><p>foo</p></div>' class registerFakeSerializer(markdown.extensions.Extension): def extendMarkdown(self, md): md.output_formats['fake'] = fakeSerializer return registerFakeSerializer() def testRegisterSerializer(self): self.assertEqual( markdown.markdown( 'baz', extensions=[self.buildExtension()], output_format='fake' ), '<p>foo</p>' ) def testXHTMLOutput(self): self.assertEqual( markdown.markdown('foo \nbar', output_format='xhtml'), '<p>foo<br />\nbar</p>' ) def testHTMLOutput(self): self.assertEqual( markdown.markdown('foo \nbar', output_format='html'), '<p>foo<br>\nbar</p>' ) class testAtomicString(unittest.TestCase): """ Test that AtomicStrings are honored (not parsed). """ def setUp(self): md = markdown.Markdown() self.inlineprocessor = md.treeprocessors['inline'] def testString(self): """ Test that a regular string is parsed. """ tree = markdown.util.etree.Element('div') p = markdown.util.etree.SubElement(tree, 'p') p.text = 'some *text*' new = self.inlineprocessor.run(tree) self.assertEqual( markdown.serializers.to_html_string(new), '<div><p>some <em>text</em></p></div>' ) def testSimpleAtomicString(self): """ Test that a simple AtomicString is not parsed. """ tree = markdown.util.etree.Element('div') p = markdown.util.etree.SubElement(tree, 'p') p.text = markdown.util.AtomicString('some *text*') new = self.inlineprocessor.run(tree) self.assertEqual( markdown.serializers.to_html_string(new), '<div><p>some *text*</p></div>' ) def testNestedAtomicString(self): """ Test that a nested AtomicString is not parsed. """ tree = markdown.util.etree.Element('div') p = markdown.util.etree.SubElement(tree, 'p') p.text = markdown.util.AtomicString('*some* ') span1 = markdown.util.etree.SubElement(p, 'span') span1.text = markdown.util.AtomicString('*more* ') span2 = markdown.util.etree.SubElement(span1, 'span') span2.text = markdown.util.AtomicString('*text* ') span3 = markdown.util.etree.SubElement(span2, 'span') span3.text = markdown.util.AtomicString('*here*') span3.tail = markdown.util.AtomicString(' *to*') span2.tail = markdown.util.AtomicString(' *test*') span1.tail = markdown.util.AtomicString(' *with*') new = self.inlineprocessor.run(tree) self.assertEqual( markdown.serializers.to_html_string(new), '<div><p>*some* <span>*more* <span>*text* <span>*here*</span> ' '*to*</span> *test*</span> *with*</p></div>' ) class TestConfigParsing(unittest.TestCase): def assertParses(self, value, result): self.assertIs(markdown.util.parseBoolValue(value, False), result) def testBooleansParsing(self): self.assertParses(True, True) self.assertParses('novalue', None) self.assertParses('yES', True) self.assertParses('FALSE', False) self.assertParses(0., False) self.assertParses('none', False) def testPreserveNone(self): self.assertIsNone(markdown.util.parseBoolValue('None', preserve_none=True)) self.assertIsNone(markdown.util.parseBoolValue(None, preserve_none=True)) def testInvalidBooleansParsing(self): self.assertRaises(ValueError, markdown.util.parseBoolValue, 'novalue') class TestCliOptionParsing(unittest.TestCase): """ Test parsing of Command Line Interface Options. """ def setUp(self): self.default_options = { 'input': None, 'output': None, 'encoding': None, 'output_format': 'xhtml', 'lazy_ol': True, 'extensions': [], 'extension_configs': {}, } self.tempfile = '' def tearDown(self): if os.path.isfile(self.tempfile): os.remove(self.tempfile) def testNoOptions(self): options, logging_level = parse_options([]) self.assertEqual(options, self.default_options) self.assertEqual(logging_level, CRITICAL) def testQuietOption(self): options, logging_level = parse_options(['-q']) self.assertGreater(logging_level, CRITICAL) def testVerboseOption(self): options, logging_level = parse_options(['-v']) self.assertEqual(logging_level, WARNING) def testNoisyOption(self): options, logging_level = parse_options(['--noisy']) self.assertEqual(logging_level, DEBUG) def testInputFileOption(self): options, logging_level = parse_options(['foo.txt']) self.default_options['input'] = 'foo.txt' self.assertEqual(options, self.default_options) def testOutputFileOption(self): options, logging_level = parse_options(['-f', 'foo.html']) self.default_options['output'] = 'foo.html' self.assertEqual(options, self.default_options) def testInputAndOutputFileOptions(self): options, logging_level = parse_options(['-f', 'foo.html', 'foo.txt']) self.default_options['output'] = 'foo.html' self.default_options['input'] = 'foo.txt' self.assertEqual(options, self.default_options) def testEncodingOption(self): options, logging_level = parse_options(['-e', 'utf-8']) self.default_options['encoding'] = 'utf-8' self.assertEqual(options, self.default_options) def testOutputFormatOption(self): options, logging_level = parse_options(['-o', 'html']) self.default_options['output_format'] = 'html' self.assertEqual(options, self.default_options) def testNoLazyOlOption(self): options, logging_level = parse_options(['-n']) self.default_options['lazy_ol'] = False self.assertEqual(options, self.default_options) def testExtensionOption(self): options, logging_level = parse_options(['-x', 'markdown.extensions.footnotes']) self.default_options['extensions'] = ['markdown.extensions.footnotes'] self.assertEqual(options, self.default_options) def testMultipleExtensionOptions(self): options, logging_level = parse_options([ '-x', 'markdown.extensions.footnotes', '-x', 'markdown.extensions.smarty' ]) self.default_options['extensions'] = [ 'markdown.extensions.footnotes', 'markdown.extensions.smarty' ] self.assertEqual(options, self.default_options) def create_config_file(self, config): """ Helper to create temp config files. """ if not isinstance(config, markdown.util.string_type): # convert to string config = yaml.dump(config) fd, self.tempfile = tempfile.mkstemp('.yml') with os.fdopen(fd, 'w') as fp: fp.write(config) def testExtensionConfigOption(self): config = { 'markdown.extensions.wikilinks': { 'base_url': 'http://example.com/', 'end_url': '.html', 'html_class': 'test', }, 'markdown.extensions.footnotes:FootnotesExtension': { 'PLACE_MARKER': '~~~footnotes~~~' } } self.create_config_file(config) options, logging_level = parse_options(['-c', self.tempfile]) self.default_options['extension_configs'] = config self.assertEqual(options, self.default_options) def textBoolExtensionConfigOption(self): config = { 'markdown.extensions.toc': { 'title': 'Some Title', 'anchorlink': True, 'permalink': True } } self.create_config_file(config) options, logging_level = parse_options(['-c', self.tempfile]) self.default_options['extension_configs'] = config self.assertEqual(options, self.default_options) def testExtensionConfigOptionAsJSON(self): config = { 'markdown.extensions.wikilinks': { 'base_url': 'http://example.com/', 'end_url': '.html', 'html_class': 'test', }, 'markdown.extensions.footnotes:FootnotesExtension': { 'PLACE_MARKER': '~~~footnotes~~~' } } import json self.create_config_file(json.dumps(config)) options, logging_level = parse_options(['-c', self.tempfile]) self.default_options['extension_configs'] = config self.assertEqual(options, self.default_options) def testExtensionConfigOptionMissingFile(self): self.assertRaises(IOError, parse_options, ['-c', 'missing_file.yaml']) def testExtensionConfigOptionBadFormat(self): config = """ [footnotes] PLACE_MARKER= ~~~footnotes~~~ """ self.create_config_file(config) self.assertRaises(yaml.YAMLError, parse_options, ['-c', self.tempfile]) class TestEscapeAppend(unittest.TestCase): """ Tests escape character append. """ def testAppend(self): """ Test that appended escapes are only in the current instance. """ md = markdown.Markdown() md.ESCAPED_CHARS.append('|') self.assertEqual('|' in md.ESCAPED_CHARS, True) md2 = markdown.Markdown() self.assertEqual('|' not in md2.ESCAPED_CHARS, True) class TestBlockAppend(unittest.TestCase): """ Tests block kHTML append. """ def testBlockAppend(self): """ Test that appended escapes are only in the current instance. """ md = markdown.Markdown() md.block_level_elements.append('test') self.assertEqual('test' in md.block_level_elements, True) md2 = markdown.Markdown() self.assertEqual('test' not in md2.block_level_elements, True) class TestAncestorExclusion(unittest.TestCase): """ Tests exclusion of tags in ancestor list. """ class AncestorExample(markdown.inlinepatterns.SimpleTagInlineProcessor): """ Ancestor Test. """ ANCESTOR_EXCLUDES = ('a',) def handleMatch(self, m, data): """ Handle match. """ el = markdown.util.etree.Element(self.tag) el.text = m.group(2) return el, m.start(0), m.end(0) class AncestorExtension(markdown.Extension): def __init__(self, *args, **kwargs): """Initialize.""" self.config = {} def extendMarkdown(self, md): """Modify inline patterns.""" pattern = r'(\+)([^\+]+)\1' md.inlinePatterns.register(TestAncestorExclusion.AncestorExample(pattern, 'strong'), 'ancestor-test', 0) def setUp(self): """Setup markdown object.""" self.md = markdown.Markdown(extensions=[TestAncestorExclusion.AncestorExtension()]) def test_ancestors(self): """ Test that an extension can exclude parent tags. """ test = """ Some +test+ and a [+link+](http://test.com) """ result = """<p>Some <strong>test</strong> and a <a href="http://test.com">+link+</a></p>""" self.md.reset() self.assertEqual(self.md.convert(test), result) def test_ancestors_tail(self): """ Test that an extension can exclude parent tags when dealing with a tail. """ test = """ [***+em+*+strong+**](http://test.com) """ result = """<p><a href="http://test.com"><strong><em>+em+</em>+strong+</strong></a></p>""" self.md.reset() self.assertEqual(self.md.convert(test), result) class TestGeneralDeprecations(unittest.TestCase): """Test general deprecations.""" def test_version_deprecation(self): """Test that version is deprecated.""" with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. version = markdown.version # Verify some things self.assertEqual(len(w), 1) self.assertTrue(issubclass(w[-1].category, DeprecationWarning)) self.assertEqual(version, markdown.__version__) def test_version_info_deprecation(self): """Test that version info is deprecated.""" with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. version_info = markdown.version_info # Verify some things self.assertEqual(len(w), 1) self.assertTrue(issubclass(w[-1].category, DeprecationWarning)) self.assertEqual(version_info, markdown.__version_info__) def test_deprecation_wrapper_dir(self): """Tests the `__dir__` attribute of the class as it replaces the module's.""" dir_attr = dir(markdown) self.assertNotIn('version', dir_attr) self.assertIn('__version__', dir_attr) self.assertNotIn('version_info', dir_attr) self.assertIn('__version_info__', dir_attr)
2.1875
2
nervous/utility/config.py
csxeba/nervous
1
5481
import os class StressedNetConfig: def __init__(self, synaptic_environmental_constraint=0.8, group_environmental_constraint=0.6, stress_factor=0.8, save_folder=os.path.expanduser("~/.nervous/models/")): self._synaptic_environmental_constraint = synaptic_environmental_constraint self._group_environmental_constraint = group_environmental_constraint self._stress_factor = stress_factor self._save_folder = save_folder self._sanitize() def _sanitize(self): if 1. < self._group_environmental_constraint <= 0.: raise ValueError("Group environmental constraint has to be in the range [0. - 1.)") if 1. < self._synaptic_environmental_constraint <= 0.: raise ValueError("Synaptic environmental constraint has to be in the range [0. - 1.)") if 1. < self._stress_factor <= 0.: raise ValueError("Stress factor has to be in the range [0. - 1.)") if not os.path.exists(self._save_folder): os.makedirs(self._save_folder) @property def synaptic_environmental_constraint(self): return self._synaptic_environmental_constraint @synaptic_environmental_constraint.setter def synaptic_environmental_constraint(self, value): self._synaptic_environmental_constraint = value self._sanitize() @property def group_environmental_constraint(self): return self._group_environmental_constraint @group_environmental_constraint.setter def group_environmental_constraint(self, value): self._group_environmental_constraint = value self._sanitize() @property def stress_factor(self): return self._stress_factor @stress_factor.setter def stress_factor(self, value): self._stress_factor = value self._sanitize() @property def save_folder(self): return self._save_folder @save_folder.setter def save_folder(self, value): self._save_folder = value self._sanitize() def __getitem__(self, item): if item == "self": raise ValueError("Hahaha") return self.__dict__[item]
2.5625
3
mindspore/nn/optim/ftrl.py
XinYao1994/mindspore
2
5482
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """FTRL""" from mindspore.ops import functional as F, composite as C, operations as P from mindspore.common.parameter import Parameter from mindspore.common import Tensor import mindspore.common.dtype as mstype from mindspore._checkparam import Validator as validator from mindspore._checkparam import Rel from .optimizer import Optimizer, apply_decay, grad_scale ftrl_opt = C.MultitypeFuncGraph("ftrl_opt") @ftrl_opt.register("Function", "Tensor", "Number", "Number", "Number", "Tensor", "Tensor", "Tensor", "Tensor") def _tensor_run_opt(opt, learning_rate, l1, l2, lr_power, linear, gradient, weight, moment): """Apply ftrl optimizer to the weight parameter.""" success = True success = F.depend(success, opt(weight, moment, linear, gradient, learning_rate, l1, l2, lr_power)) return success def _check_param(initial_accum, learning_rate, lr_power, l1, l2, use_locking, loss_scale=1.0, weight_decay=0.0, prim_name=None): """Check param.""" validator.check_value_type("initial_accum", initial_accum, [float], prim_name) validator.check_number("initial_accum", initial_accum, 0.0, Rel.GE, prim_name) validator.check_value_type("learning_rate", learning_rate, [float], prim_name) validator.check_number("learning_rate", learning_rate, 0.0, Rel.GT, prim_name) validator.check_value_type("lr_power", lr_power, [float], prim_name) validator.check_number("lr_power", lr_power, 0.0, Rel.LE, prim_name) validator.check_value_type("l1", l1, [float], prim_name) validator.check_number("l1", l1, 0.0, Rel.GE, prim_name) validator.check_value_type("l2", l2, [float], prim_name) validator.check_number("l2", l2, 0.0, Rel.GE, prim_name) validator.check_value_type("use_locking", use_locking, [bool], prim_name) validator.check_value_type("loss_scale", loss_scale, [float], prim_name) validator.check_number("loss_scale", loss_scale, 1.0, Rel.GE, prim_name) validator.check_value_type("weight_decay", weight_decay, [float], prim_name) validator.check_number("weight_decay", weight_decay, 0.0, Rel.GE, prim_name) class FTRL(Optimizer): """ Implement the FTRL algorithm with ApplyFtrl Operator. FTRL is an online convex optimization algorithm that adaptively chooses its regularization function based on the loss functions. Refer to paper `Adaptive Bound Optimization for Online Convex Optimization <https://arxiv.org/abs/1002.4908>`_. Refer to paper `Ad Click Prediction: a View from the Trenches <https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf>`_ for engineering document. Args: params (list[Parameter]): A list of parameter, which will be updated. The element in `params` should be Parameter. initial_accum (float): The starting value for accumulators, must be zero or positive values. Default: 0.1. learning_rate (float): The learning rate value, should be positive. Default: 0.001. lr_power (float): Learning rate power controls how the learning rate decreases during training, must be less than or equal to zero. Use fixed learning rate if lr_power is zero. Default: -0.5. l1 (float): l1 regularization strength, must be greater than or equal to zero. Default: 0.0. l2 (float): l2 regularization strength, must be greater than or equal to zero. Default: 0.0. use_locking (bool): If True use locks for update operation. Default: False. loss_scale (float): Value for the loss scale. It should be equal to or greater than 1.0. Default: 1.0. wegith_decay (float): Weight decay value to multiply weight, must be zero or positive value. Default: 0.0. Inputs: - **grads** (tuple[Tensor]) - The gradients of `params` in optimizer, the shape is as same as the `params` in optimizer. Outputs: tuple[Parameter], the updated parameters, the shape is the same as `params`. Examples: >>> net = Net() >>> loss = nn.SoftmaxCrossEntropyWithLogits() >>> opt = nn.FTRL(net.trainable_params()) >>> model = Model(net, loss_fn=loss, optimizer=opt, metrics=None) """ def __init__(self, params, initial_accum=0.1, learning_rate=0.001, lr_power=-0.5, l1=0.0, l2=0.0, use_locking=False, loss_scale=1.0, weight_decay=0.0): super(FTRL, self).__init__(learning_rate, params) _check_param(initial_accum, learning_rate, lr_power, l1, l2, use_locking, loss_scale, weight_decay, self.cls_name) self.moments = self.parameters.clone(prefix="moments", init=initial_accum) self.linear = self.parameters.clone(prefix="linear", init='zeros') self.l1 = l1 self.l2 = l2 self.lr_power = lr_power self.reciprocal_scale = 1.0 / loss_scale self.weight_decay = weight_decay self.decay_tf = tuple((lambda: True)() for x in self.parameters) self.hyper_map = C.HyperMap() self.opt = P.ApplyFtrl(use_locking=use_locking) self.one = Tensor(1, mstype.int32) def construct(self, grads): params = self.parameters moments = self.moments linear = self.linear if self.weight_decay > 0.0: grads = self.hyper_map(F.partial(apply_decay, self.weight_decay), self.decay_tf, params, grads) if self.reciprocal_scale != 1.0: grads = self.hyper_map(F.partial(grad_scale, self.reciprocal_scale), grads) lr = self.learning_rate success = self.hyper_map(F.partial(ftrl_opt, self.opt, lr, self.l1, self.l2, self.lr_power), linear, grads, params, moments) return success
1.929688
2
aws_utils/region_selector.py
skimhub/aws-utils
0
5483
<gh_stars>0 import datetime import boto3 US_EAST_REGION = {'us-east-1'} US_EAST_AVAILABILITY_ZONES = {'us-east-1a', 'us-east-1b', 'us-east-1c', 'us-east-1e'} # note d is missing INSTANCE_VERSION = 'Linux/UNIX (Amazon VPC)' def fetch_spot_prices(region, start_time, end_time, instance_type, instance_version=INSTANCE_VERSION): """Fetches prices of EC2 spot instances from AWS. Args: region (str): region to look for instances in start_time (datetime.datetime): end_time (datetime.datetime): instance_type (str): instance_version (str): the types of instances that we wish to return prices for. Returns: yield str, float: yields tuple of avialability_zone and price over the period Raises: ValueError, raised in the event that the boto3 response is empty. """ conn = boto3.client('ec2', region_name=region) res = conn.describe_spot_price_history(StartTime=start_time, EndTime=end_time, InstanceTypes=[instance_type], ProductDescriptions=[instance_version]) for item in res['SpotPriceHistory']: yield item['AvailabilityZone'], float(item['SpotPrice']) token = res['NextToken'] while token: res = conn.describe_spot_price_history(StartTime=start_time, EndTime=end_time, InstanceTypes=[instance_type], ProductDescriptions=[instance_version], NextToken=token) for item in res['SpotPriceHistory']: yield item['AvailabilityZone'], float(item['SpotPrice']) token = res['NextToken'] def fetch_price_stats_per_availability_zone(region, start_time, end_time, instance_type, instance_version=INSTANCE_VERSION, filter_availability_zones=None): """Groups raw prices by region, returns min, max and avg price. Args: region (str): region to look for instances in start_time (datetime.datetime): end_time (datetime.datetime): instance_type (str): instance_version (str): the types of instances that we wish to return prices for. filter_availability_zones ({str}): if set then we only return a price if the availability zone is in this list Returns: dict, {'us-east-1b': {'min': 2.01, 'max': 3.53,'avg':2.8, 'latest':3.0}} """ by_zone = {} for zone, price in fetch_spot_prices(region, start_time, end_time, instance_type, instance_version): by_zone.setdefault(zone, []).append(price) prices_per_region = {} for zone, prices in by_zone.iteritems(): if filter_availability_zones is None or zone in filter_availability_zones: region_prices = {'min': min(prices), 'max': max(prices), 'avg': sum(prices) / float(len(prices)), 'latest': prices[0]} prices_per_region[zone] = region_prices return prices_per_region def get_cheapest_availability_zone(instance_type, search_regions=US_EAST_REGION, filter_availability_zones=US_EAST_AVAILABILITY_ZONES, expected_job_length=datetime.timedelta(days=1)): """Get the cheapest availability zone from a set of regions. Cheapest is determined by 'latest price + average price' over the duration that the job is expected to run for Args: filter_availability_zones ({str}): We only return results for zones in this set instance_type (str): Type of aws instance e.g. "m2.4xlarge" search_regions ({str}): Set of regions we want to look for availability zones in. expected_job_length (datetime.timedelta): The period we expect the job to run this is used as the amount of time to look back over for the average Returns: (str, {}) : e.g. ('us-east-1b': {'min': 2.01, 'max': 3.53,'avg':2.8, 'latest':3.0}) """ if isinstance(search_regions, str): search_regions = {search_regions} aggregated_prices = {} for region in search_regions: result_stats = fetch_price_stats_per_availability_zone(region, datetime.datetime.utcnow() - expected_job_length, datetime.datetime.utcnow(), instance_type, filter_availability_zones=filter_availability_zones) if not len(result_stats): raise Exception("No valid avialability zones found for region %s" % (region,)) aggregated_prices.update(result_stats) cheapest_availability_zone, stats = min(aggregated_prices.iteritems(), key=lambda x: x[1]['avg'] + x[1]['latest']) return cheapest_availability_zone, stats
2.5
2
pynn/__init__.py
jkae/knn-exercise
0
5484
from .nearest_neighbor_index import NearestNeighborIndex from .kd_tree import *
1.039063
1
tests/test_try.py
threecifanggen/python-functional-programming
3
5485
''' Author: huangbaochen<<EMAIL>> Date: 2021-12-11 20:04:19 LastEditTime: 2021-12-11 21:46:16 LastEditors: huangbaochen<<EMAIL>> Description: 测试Try单子 No MERCY ''' import pytest from fppy.try_monad import Try, Success, Fail from fppy.option import Just, Nothing @pytest.mark.try_monad def test_try_apply(): assert Try.apply(1) == Success(1) assert Try(1) == Success(1) @pytest.mark.try_monad def test_try_unapply(): assert Success.unapply(Success(1)) == Just(1) assert Fail.unapply(Fail(TypeError(), 1)) == Nothing() with pytest.raises(TypeError): Fail.unapply(1) with pytest.raises(TypeError): Fail.unapply(Success(1)) with pytest.raises(TypeError): Success.unapply(1) with pytest.raises(TypeError): Success.unapply(Fail(Exception(), 1)) def test_try_monad_map(): assert Success(1).map(lambda x: x + 1) == Success(2) assert Success(1).map(lambda x: x / 0) ==\ Fail(ZeroDivisionError('division by zero'), 1) assert Fail(ZeroDivisionError('division by zero'), 1)\ .map(lambda x: x + 1) ==\ Fail(ZeroDivisionError('division by zero'), 1) @pytest.mark.try_monad def test_try_monad_flat_map(): assert Success(1).flat_map(lambda x: Success(2)) == Success(2) assert Fail(ZeroDivisionError('division by zero'), 1)\ .flat_map(lambda x: Success(1)) ==\ Fail(ZeroDivisionError('division by zero'), 1) with pytest.raises(TypeError): Success(1).flat_map(lambda x: x + 1) @pytest.mark.try_monad def test_try_monad_eq(): assert Fail(ZeroDivisionError('division by zero'), 1) ==\ Fail(ZeroDivisionError('division by zero'), 1) assert Fail(ZeroDivisionError('division by'), 1) !=\ Fail(ZeroDivisionError('division by zero'), 1) assert Fail(ZeroDivisionError('division by zero'), 0) !=\ Fail(ZeroDivisionError('division by zero'), 1) @pytest.mark.try_monad def test_try_monad_get(): assert Fail(ZeroDivisionError('division by zero'), 1)\ .get().args ==\ ZeroDivisionError('division by zero').args assert Success(1).get() == 1 # pylint: disable=no-member assert Try("s").get() == "s" @pytest.mark.try_monad def test_try_monad_get_or_else(): assert Fail(ZeroDivisionError('division by zero'), 1)\ .get_or_else(2) == 2 assert Success(1).get_or_else(2) == 1 @pytest.mark.try_monad def test_try_monad_get_error_input(): assert Fail(ZeroDivisionError('division by zero'), 1)\ .get_error_input() == 1
2.703125
3
app/internal/daily_quotes.py
yammesicka/calendar
0
5486
<reponame>yammesicka/calendar<filename>app/internal/daily_quotes.py from datetime import date from typing import Dict, Optional from sqlalchemy.orm import Session from sqlalchemy.sql.expression import func from app.database.models import Quote TOTAL_DAYS = 366 def create_quote_object(quotes_fields: Dict[str, Optional[str]]) -> Quote: """This function create a quote object from given fields dictionary. It is used for adding the data from the json into the db""" return Quote( text=quotes_fields['text'], author=quotes_fields['author'] ) def quote_per_day( session: Session, date: date = date.today() ) -> Optional[Quote]: """This function provides a daily quote, relevant to the current day of the year. The quote is randomally selected from a set of quotes matching to the given day""" day_num = date.timetuple().tm_yday quote = session.query(Quote).filter( Quote.id % TOTAL_DAYS == day_num).order_by(func.random()).first() return quote
3.078125
3
src/789A.py
viing937/codeforces
2
5487
n, k = map(int, input().split()) w = list(map(int, input().split())) r = sum(map(lambda x: (x+k-1)//k, w)) print((r+1)//2)
2.65625
3
platform/server/detect.py
leyyin/godot
24
5488
<reponame>leyyin/godot<gh_stars>10-100 import os import sys def is_active(): return True def get_name(): return "Server" def can_build(): if (os.name!="posix"): return False return True # enabled def get_opts(): return [ ('use_llvm','Use llvm compiler','no'), ('force_32_bits','Force 32 bits binary','no') ] def get_flags(): return [ ('builtin_zlib', 'no'), ] def configure(env): env.Append(CPPPATH=['#platform/server']) if (env["use_llvm"]=="yes"): env["CC"]="clang" env["CXX"]="clang++" env["LD"]="clang++" if (env["colored"]=="yes"): if sys.stdout.isatty(): env.Append(CXXFLAGS=["-fcolor-diagnostics"]) is64=sys.maxsize > 2**32 if (env["bits"]=="default"): if (is64): env["bits"]="64" else: env["bits"]="32" #if (env["tools"]=="no"): # #no tools suffix # env['OBJSUFFIX'] = ".nt"+env['OBJSUFFIX'] # env['LIBSUFFIX'] = ".nt"+env['LIBSUFFIX'] if (env["target"]=="release"): env.Append(CCFLAGS=['-O2','-ffast-math','-fomit-frame-pointer']) elif (env["target"]=="release_debug"): env.Append(CCFLAGS=['-O2','-ffast-math','-DDEBUG_ENABLED']) elif (env["target"]=="debug"): env.Append(CCFLAGS=['-g2', '-Wall','-DDEBUG_ENABLED','-DDEBUG_MEMORY_ENABLED']) env.Append(CPPFLAGS=['-DSERVER_ENABLED','-DUNIX_ENABLED']) env.Append(LIBS=['pthread','z']) #TODO detect linux/BSD! if (env["CXX"]=="clang++"): env.Append(CPPFLAGS=['-DTYPED_METHOD_BIND']) env["CC"]="clang" env["LD"]="clang++"
2.1875
2
telemetry/Truck.py
SnipsMine/ETS2-Speedrun-Tool
0
5489
<reponame>SnipsMine/ETS2-Speedrun-Tool<filename>telemetry/Truck.py from telemetry.TruckConstants import ConstantValues from telemetry.TruckCurrent import CurrentValues from telemetry.TruckPositioning import Positioning class TruckValues: constant_values = None current_values = None positioning = None def __init__(self): self.current_values = CurrentValues() self.constant_values = ConstantValues() self.positioning = Positioning()
2.234375
2
IntroToSpark/Assign4_Q1-6_action.py
petersontylerd/spark-courses
0
5490
import csv from pyspark.sql import SparkSession from pyspark.sql.types import IntegerType spark = SparkSession.builder.appName("Assignment4").getOrCreate() sc = spark.sparkContext # load data to dataframe path = 'fake_data.csv' df = spark.read.format('csv').option('header','true').load(path) # cast income as an integer df = df.withColumn('Income', df['Income'].cast(IntegerType())) # Question 1 print('*' * 30) print('\nQuestion 1\n') print(df.rdd.map(lambda x: (x[1], x[0])).groupByKey().mapValues(lambda vals: len(set(vals))).sortBy(lambda a: a[1], ascending = False).take(1)) print('\n\n') # Question 2 print('*' * 30) print('\nQuestion 2\n') print(df.rdd.filter(lambda v: v[1] == 'United States of America').map(lambda x: (x[1], x[4])).groupByKey().mapValues(lambda x: sum(x) / len(x)).collect()) print('\n\n') # Question 3 print('*' * 30) print('\nQuestion 3\n') print(df.rdd.filter(lambda v: v[4] > 100000).filter(lambda v: v[7] == 'FALSE').count()) print('\n\n') # Question 4 print('*' * 30) print('\nQuestion 4\n') print(df.rdd.filter(lambda v: v[1] == 'United States of America').sortBy(lambda x: x[4], ascending = False).map(lambda x: (x[3], x[6], x[4], x[5])).take(10)) print('\n\n') # Question 5 print('*' * 30) print('\nQuestion 5\n') print(df.rdd.groupBy(lambda x: x[5]).count()) print('\n\n') # Question 6 print('*' * 30) print('\nQuestion 6\n') print(df.rdd.filter(lambda v: v[5] == 'Writer').filter(lambda x: x[4] < 100000).count()) print('\n\n')
3.484375
3
src/firebot/tests/factories.py
zipmex/fire
52
5491
<reponame>zipmex/fire<gh_stars>10-100 import factory from django.contrib.auth import get_user_model class UserFactory(factory.DjangoModelFactory): class Meta: model = get_user_model() first_name = factory.Faker('name') last_name = factory.Faker('name') email = factory.Faker('email')
1.992188
2
reamber/o2jam/O2JHold.py
Bestfast/reamberPy
0
5492
<filename>reamber/o2jam/O2JHold.py from dataclasses import dataclass, field from reamber.base.Hold import Hold, HoldTail from reamber.o2jam.O2JNoteMeta import O2JNoteMeta @dataclass class O2JHoldTail(HoldTail, O2JNoteMeta): pass @dataclass class O2JHold(Hold, O2JNoteMeta): """ Defines the O2Jam Bpm Object The O2Jam Bpm Object is stored in binary file .ojn """ _tail: O2JHoldTail = field(init=False) def _upcastTail(self, **kwargs) -> O2JHoldTail: return O2JHoldTail(**kwargs)
2.796875
3
peacebot/core/plugins/Miscellaneous/__init__.py
Peacebot-Development/Peacebot-v2
3
5493
<filename>peacebot/core/plugins/Miscellaneous/__init__.py<gh_stars>1-10 import lightbulb from apscheduler.schedulers.asyncio import AsyncIOScheduler from peacebot.core.utils.time import TimeConverter def fetch_scheduler(ctx: lightbulb.Context) -> AsyncIOScheduler: return ctx.bot.d.scheduler async def convert_time(ctx: lightbulb.Context, time: str) -> float: seconds = await TimeConverter.convert(TimeConverter, ctx, time) return seconds async def send_remainder(ctx: lightbulb.Context, text: str) -> None: await ctx.respond( f"{ctx.author.mention} Remainder: `{text}`", user_mentions=True, )
2.0625
2
example/android/python/msite_simple_default_browser.py
laichimirum/docker-appium-emulator
8
5494
import unittest from appium import webdriver class MSiteDefaultBrowserAndroidUITests(unittest.TestCase): def setUp(self): # Default browser does not exist for android >= 6.0 desired_caps = { 'platformName': 'Android', 'deviceName': 'Android Emulator', 'appPackage': 'com.android.browser', 'appActivity': 'com.android.browser.BrowserActivity', 'avd': 'samsung_galaxy_s6_6.0' } self.driver = webdriver.Remote('http://127.0.0.1:4723/wd/hub', desired_caps) def test_open_url(self): self.driver.get('http://targeturl.com') def tearDown(self): self.driver.quit() if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(MSiteDefaultBrowserAndroidUITests) unittest.TextTestRunner(verbosity=2).run(suite)
2.71875
3
src/nn/dataset_utils/types_processing.py
sola-st/Nalin
0
5495
<gh_stars>0 """ Created on 17-June-2020 @author <NAME> The types extracted during runtime usually look something like --> <class 'numpy.ndarray'> or <class 'seaborn.palettes._ColorPalette'> change them to --> ndarray, ColorPalette """ import re remove_chars = re.compile(r'>|\'|<|(class )|_|(type)') def process_types(tp: str) -> str: cleaned_type = remove_chars.sub('', tp) cleaned_type = cleaned_type.split('.')[-1].strip() return cleaned_type
2.640625
3
src/canvas.py
soootaleb/spare
1
5496
<filename>src/canvas.py<gh_stars>1-10 from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import * from matplotlib import pyplot as plt from matplotlib.figure import Figure from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas import matplotlib.ticker as ticker import numpy as np import random, matplotlib.pyplot as plt class PlotCanvas(FigureCanvas): def __init__(self, parent=None, width=5, height=4, dpi=100): fig = Figure(figsize=(width, height), dpi=dpi) self.axes = fig.add_subplot(111) FigureCanvas.__init__(self, fig) self.setParent(parent) FigureCanvas.setSizePolicy(self, QSizePolicy.Expanding, QSizePolicy.Expanding) FigureCanvas.updateGeometry(self) self.plot() def plot(self): data = [random.random() for i in range(25)] ax = self.figure.add_subplot(111) ax.plot(data, 'r-') ax.set_title('PyQt Matplotlib Example') class ImageCanvas(FigureCanvas): def __init__(self, parent = None, width = 5, height = 4, dpi=100): fig = Figure(figsize = (width, height), dpi = dpi, frameon = False) fig.subplots_adjust(bottom=0, top=1, left=0, right=1) FigureCanvas.__init__(self, fig) self.setParent(parent) self.axes = fig.add_subplot(111) FigureCanvas.setSizePolicy(self, QSizePolicy.Expanding, QSizePolicy.Expanding) FigureCanvas.updateGeometry(self) def plot(self, image): self.axes.axis('off') display = image.image display[display == 1] = 255 if image.color: self.axes.imshow(image.image) else : self.axes.imshow(display, cmap = "gray") self.show() class HistogramCanvas(FigureCanvas): ''' This class is used to plt the histogram of the two objects in the main module. the values are computed in one of the descriptors. ''' def __init__(self, parent = None, is_polar = True, width = 8, height = 5, dpi = 100): self.fig = Figure(figsize=(width, height), dpi=dpi) FigureCanvas.__init__(self, self.fig) self.is_polar = is_polar self.setParent(parent) if self.is_polar: self.axes = self.fig.add_subplot(111, projection='polar') else : self.axes = self.fig.add_subplot(111) self.axes.grid(True) #TODO : Add the names of the objects (fname - extention ?) FigureCanvas.updateGeometry(self) def plot(self, histogram, color = None): self.axes.set_title("Spatial relations between A and B", va='bottom') if self.is_polar: self.axes.set_rlim(0,1) theta = [float(k)/ 180 * np.pi for k in histogram.values.keys()] #TODO : refractor this ugly-but-working code if len(theta) > 16: i = 0 theta_major_name = [] for k in histogram.values.keys(): if i % 3 == 0: theta_major_name.append(float(k)/ 180 * np.pi) i+=1 self.axes.xaxis.set_major_locator(ticker.FixedLocator(theta_major_name)) else : self.axes.xaxis.set_major_locator(ticker.LinearLocator(len(theta))) self.axes.xaxis.set_minor_locator(ticker.LinearLocator(len(theta))) self.axes.grid(b = True, which='major', linestyle='-') self.axes.grid(b = True, which='minor', linestyle='--') self.axes.plot(theta, list(histogram.values.values())) else: self.axes.plot(list(histogram.values.keys()), list(histogram.values.values())) # self.axes.plot(list(histogram.values.keys()), list(histogram.gaussian), color="red", ls='--') self.draw() def clear(self): self.axes.clear() def lin_or_polar(self, new_value : bool): ''' set the type of the histogram to be polar or linear. ''' self.is_polar = new_value self.fig.clear() if self.is_polar: self.axes = self.fig.add_subplot(111, projection='polar') else : self.axes = self.fig.add_subplot(111) FigureCanvas.updateGeometry(self)
2.515625
3
src/cpg_scpi/test/__init__.py
GeorgBraun/cpg_scpi_python
0
5497
'''Functional tests for CPG''' from .. import CircuitPlayground from .. import __version__ as CircuitPlaygroundVersion import time def funcTest(timestamps: bool = False) -> None: cpg = CircuitPlayground() if timestamps: _printFuncTestHeadingWithDeliLine(f'cpg_scpi v{CircuitPlaygroundVersion}\nRUNNING SOME FUNCTIONAL-TESTS WITH THE CPG with timestamps ...\n') else: _printFuncTestHeadingWithDeliLine(f'cpg_scpi v{CircuitPlaygroundVersion}\nRUNNING SOME FUNCTIONAL-TESTS WITH THE CPG without timestamps ...\n') # test_led(cpg) # test_buttonAny(cpg, timestamps) # test_switch(cpg, timestamps) test_temp(cpg, timestamps) test_light(cpg, timestamps) test_acc(cpg, timestamps) test_touch(cpg, timestamps) _printFuncTestHeadingWithDeliLine('DONE WITH FUNCTIONAL-TESTS') _printFuncTestDeliLine() def _printCountdown(start: int = 3) -> None: for i in range(start, 0, -1): print(i, end=" ", flush=True) time.sleep(1) print('', flush=True) def _printFuncTestDeliLine() -> None: print('XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX') def _printFuncTestHeadingWithDeliLine(heading) -> None: _printFuncTestDeliLine() print(heading) def test_buttonAny(cpg, timestamps) -> None: if timestamps: outHeading = '| count | timestamp | any button |' outFormat = '| {:5} | {:12.3f} | {!s:10} |' else: outHeading = '| count | any button |' outFormat = '| {:5} | {!s:10} |' _printFuncTestHeadingWithDeliLine('Button-Test: Press left or right button...') print(outHeading) _printCountdown(3) count = 10 for i in range(count): result = (count-i, *cpg.buttonAny_wts()) if timestamps else (count-i, cpg.buttonAny()) print(outFormat.format(*result)) cpg.wait(0.5) def test_switch(cpg, timestamps) -> None: if timestamps: outHeading = '| count | timestamp | switch |' outFormat = '| {:5} | {:12.3f} | {!s:6} |' else: outHeading = '| count | switch |' outFormat = '| {:5} | {!s:6} |' _printFuncTestHeadingWithDeliLine('Switch-Test: Change slider switch position...') print(outHeading) _printCountdown(3) count = 10 for i in range(count): result = (count-i, *cpg.switch_wts()) if timestamps else (count-i, cpg.switch()) print(outFormat.format(*result)) cpg.wait(0.5) def test_temp(cpg, timestamps) -> None: if timestamps: outHeading = '| count | timestamp | temp °C |' outFormat = '| {:5} | {:12.3f} | {:7.2f} |' else: outHeading = '| count | temp °C |' outFormat = '| {:5} | {:7.2f} |' _printFuncTestHeadingWithDeliLine('Temp-Sensor-Test ...') print(outHeading) _printCountdown(3) count = 20 for i in range(count): result = (count-i, *cpg.temp_wts()) if timestamps else (count-i, cpg.temp()) print(outFormat.format(*result)) cpg.wait(0.5) def test_light(cpg, timestamps) -> None: if timestamps: outHeading = '| count | timestamp | light |' outFormat = '| {:5} | {:12.3f} | {:5} |' else: outHeading = '| count | light |' outFormat = '| {:5} | {:5} |' _printFuncTestHeadingWithDeliLine('Light-Sensor-Test: Move hand over light sensor...') print(outHeading) _printCountdown(3) count = 20 for i in range(count): result = (count-i, *cpg.light_wts()) if timestamps else (count-i, cpg.light()) print(outFormat.format(*result)) cpg.wait(0.5) def test_acc(cpg, timestamps) -> None: if timestamps: outHeading = '| count | timestamp | x m/s^2 | y m/s^2 | z m/s^2 |' outFormat = '| {:5} | {:12.3f} | {:7.2f} | {:7.2f} | {:7.2f} |' testFunction = cpg.acc_wts else: outHeading = '| count | x m/s^2 | y m/s^2 | z m/s^2 |' outFormat = '| {:5} | {:7.2f} | {:7.2f} | {:7.2f} |' testFunction = cpg.acc _printFuncTestHeadingWithDeliLine('Accelerometer-Test: Tilt the CPG board...') print(outHeading) _printCountdown(3) count = 60 for i in range(count): print(outFormat.format(count-i, *testFunction())) cpg.wait(0.2) def test_touch(cpg, timestamps) -> None: if timestamps: outHeading = '| count | timestamp | touch | binary |' outFormat = '| {0:5} | {1:12.3f} | {2:5} | {2:08b} |' else: outHeading = '| count | touch | binary |' outFormat = '| {0:5} | {1:5} | {1:08b} |' _printFuncTestHeadingWithDeliLine('Touch-Sensor-Test: Touch capacitive sensor pads...') print(outHeading) _printCountdown(3) count = 30 for i in range(count): result = (count-i, *cpg.touch_wts()) if timestamps else (count-i, cpg.touch()) print(outFormat.format(*result)) cpg.wait(0.5) def test_led(cpg) -> None: '''Flash LEDs and run a short chasing light.''' _printFuncTestHeadingWithDeliLine('LED-Test: Flash LEDs and run a short chasing light...') print('flashing LEDs...') test_ledDemo(cpg) value=1 # print('| val | LEDs |') for i in range(10): # print(f'| {value:4} | {value:010b} |') cpg.led(value) cpg.wait(0.2) value <<= 1 # shift 1 bit to the left for i in range(10): value >>= 1 # shift 1 bit to the right # print(f'| {value:4} | {value:010b} |') cpg.led(value) cpg.wait(0.2) print('flashing LEDs...') test_ledDemo(cpg) def test_ledDemo(cpg) -> None: '''Flash LEDs three times.''' for i in range(3): cpg.ledDemo() cpg.wait(0.2) def testAccSpeed(cpg, iterations: int = 100) -> None: '''Measure how long it takes to do an accelerometer measurement.''' print(f'Testing acc measurement speed with {iterations} iterations. Please wait ...') import timeit result = timeit.Timer(stmt=lambda: cpg.acc(), setup='pass').timeit(number=iterations) print(f'Total time: {result:.1f} seconds.') print(f'On average {(result*1000/iterations):.1f} ms per measurement.') def testLightSpeed(cpg, iterations: int = 100) -> None: '''Measure how long it takes to do a light sensor measurement.''' print(f'Testing light measurement speed with {iterations} iterations. Please wait ...') import timeit result = timeit.Timer(stmt=lambda: cpg.light(), setup='pass').timeit(number=iterations) print(f'Total time: {result:.1f} seconds.') print(f'On average {(result*1000/iterations):.1f} ms per measurement.') def _testResponseWaitTime(cpg, iterations: int = 10000) -> None: '''Test it the wait time for additional, unexpected responses is long enough.''' print(f'Testing Response-Wait-Time with {iterations} iterations ...') for i in range(iterations): if i%100==0: print('try-count', i) try: # Request acc measurement values, but do not expect any response, even if the CPG will send one. cpg._query('MEAS:ACC?', 0) # If we are still here, we did not get a response. This is bad. print('XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX') print('ERROR in testResponseWaitTime(): CPG-Response was too late.') print('XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX') except Exception: # The normal behavior is a response, resulting in an exception. # This is what we expected. Therefore, just continue. pass
2.609375
3
main/models.py
yejun1060/SbjctSclctn
0
5498
from django.db import models class Account(models.Model): clsNb = models.IntegerField() Name = models.CharField(max_length=10) pw = models.IntegerField() def __str__(self): return self.Name
2.421875
2
test/utils/test_geodesic.py
shrey-bansal/pytorch_geometric
2
5499
from math import sqrt import torch from torch_geometric.utils import geodesic_distance def test_geodesic_distance(): pos = torch.Tensor([[0, 0, 0], [2, 0, 0], [0, 2, 0], [2, 2, 0]]) face = torch.tensor([[0, 1, 3], [0, 2, 3]]).t() out = geodesic_distance(pos, face) expected = [ [0, 1, 1, sqrt(2)], [1, 0, sqrt(2), 1], [1, sqrt(2), 0, 1], [sqrt(2), 1, 1, 0], ] assert torch.allclose(out, torch.tensor(expected)) assert torch.allclose(out, geodesic_distance(pos, face, num_workers=-1)) out = geodesic_distance(pos, face, norm=False) expected = [ [0, 2, 2, 2 * sqrt(2)], [2, 0, 2 * sqrt(2), 2], [2, 2 * sqrt(2), 0, 2], [2 * sqrt(2), 2, 2, 0], ] assert torch.allclose(out, torch.tensor(expected)) src = torch.tensor([0, 0, 0, 0]) dest = torch.tensor([0, 1, 2, 3]) out = geodesic_distance(pos, face, src=src, dest=dest) expected = [0, 1, 1, sqrt(2)] assert torch.allclose(out, torch.tensor(expected)) out = geodesic_distance(pos, face, src=src[0:1]) expected = [0, 1, 1, sqrt(2)] assert torch.allclose(out, torch.tensor(expected)) out = geodesic_distance(pos, face, dest=dest) expected = [0, 0, 0, 0] assert torch.allclose(out, torch.Tensor(expected))
2.5
2