max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
aquitania/data_processing/indicator_pipeline.py
marcus-var/aquitania
0
12794151
<filename>aquitania/data_processing/indicator_pipeline.py ######################################################################################################################## # |||||||||||||||||||||||||||||||||||||||||||||||||| AQUITANIA ||||||||||||||||||||||||||||||||||||||||||||||||||||||| # # |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| # # |||| To be a thinker means to go by the factual evidence of a case, not by the judgment of others |||||||||||||||||| # # |||| As there is no group stomach to digest collectively, there is no group mind to think collectively. |||||||||||| # # |||| Each man must accept responsibility for his own life, each must be sovereign by his own judgment. ||||||||||||| # # |||| If a man believes a claim to be true, then he must hold to this belief even though society opposes him. ||||||| # # |||| Not only know what you want, but be willing to break all established conventions to accomplish it. |||||||||||| # # |||| The merit of a design is the only credential that you require. |||||||||||||||||||||||||||||||||||||||||||||||| # # |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| # ######################################################################################################################## """ .. moduleauthor:: <NAME> Studying Pipelines through 'Hands-On Machine Learning...' on 29/01/2018. """ class IndicatorPipeLine: def __init__(self): pass def fit(self): pass def transform(self): pass def fit_transform(self, X): X = aligned(X) X = sup_res_align(X) # X = process_dates(X) return X def aligned(df): for column in df: if 'direction' in column: df[column] = df[column] == df['signal'] for column in df: if 'tied' in column: df[column] = df.apply(lambda x: x[column] if x['signal'] else -x[column], axis=1) return df def sup_res_align(df): for column in df: if 'sup' in column: df[column + '_aligned'] = ((df[column] == df['signal']) & (df['signal'])) if 'res' in column: df[column + '_aligned'] = ((df[column] == ~df['signal']) & (~df['signal'])) return df def process_dates(df): fld = df.index pre = 'dt_' attr_list = ['Year', 'Month', 'Week', 'Day', 'Dayofweek', 'Hour', 'Minute'] for attr in attr_list: df[pre + attr] = getattr(fld.dt, attr.lower()) return df
2.171875
2
nbmessages/utils.py
ucsd-ets/nbmessages
0
12794152
"""One-off functions""" import urllib.parse, random, string def load_yaml(path): import yaml try: with open(path, 'r') as yaml_file: data = yaml.load(yaml_file, Loader=yaml.FullLoader) return data except FileNotFoundError: raise FileNotFoundError('could not load yaml at path: {path}') except Exception as e: raise e def parse_body(body): body = urllib.parse.parse_qs(body) for k, v in body.items(): if len(v) == 1: body.update({k: v[0]}) return body def unquote_plus(text): return urllib.parse.unquote_plus(text) def parse_url_path(url_path): reformat = url_path.replace('%2F', '/') reformat = reformat.replace('+', ' ') return reformat def random_string(stringLength=8): """https://pynative.com/python-generate-random-string/ Args: stringLength (int, optional): length of string. Defaults to 8. Returns: str: random string """ letters = string.ascii_lowercase return ''.join(random.choice(letters) for i in range(stringLength))
3.1875
3
controls.py
CamRoy008/AlouetteApp
0
12794153
# This file is depreciated. Controls had to be hard coded into app.py in the translate_static function. Babel could not translate from this file. from flask_babel import Babel, _ # Controls for webapp station_name_options = [ {'label': _('Resolute Bay, No. W. Territories'), 'value': 'Resolute Bay, No. W. Territories'}, {'label': _('Blossom Point, Maryland'), 'value': 'Blossom Point, Maryland'}, {'label': _('South Atlantic, Falkland Islands'), 'value': 'South Atlantic, Falkland Islands'}, {'label': _("St. John's, Newfoundland"), 'value': "St. John's, Newfoundland"}, {'label': _('Orroral Valley, Australia'), 'value': 'Orroral Valley, Australia'}, {'label': _('Prince Albert, Canada'), 'value': 'Prince Albert, Canada'}, {'label': _('Ottawa, Canada'), 'value': 'Ottawa, Canada'}, {'label': _('Byrd Station, Antartica'), 'value': 'Byrd Station, Antartica'}, {'label': _('Las Palmas, Canary Island'), 'value': 'Las Palmas, Canary Island'}, {'label': _('Winkfield, England'), 'value': 'Winkfield, England'}, {'label': _('Fort Myers, Florida'), 'value': 'Fort Myers, Florida'}, {'label': _('Antofagasta, Chile'), 'value': 'Antofagasta, Chile'}, {'label': _('East Grand Forks, Minnesota'), 'value': 'East Grand Forks, Minnesota'}, {'label': _('Rosman, No. Carolina'), 'value': 'Rosman, No. Carolina'}, {'label': _('College, Fairbanks, Alaska'), 'value': 'College, Fairbanks, Alaska'}, {'label': _('Woomera, Australia'), 'value': 'Woomera, Australia'}, {'label': _('Gilmore Creek, Fairbanks, Alaska'), 'value': 'Gilmore Creek, Fairbanks, Alaska'}, {'label': _('Tromso, Norway'), 'value': 'Tromso, Norway'}, {'label': _('University of Alaska, Fairbanks, Alaska'), 'value': 'University of Alaska, Fairbanks, Alaska'}, {'label': _('Darwin, Australia'), 'value': 'Darwin, Australia'}, {'label': _('Quito, Ecuador'), 'value': 'Quito, Ecuador'}, {'label': _('South Point, Hawaiian Islands'), 'value': 'South Point, Hawaiian Islands'}, {'label': _('Lima, Peru'), 'value': 'Lima, Peru'}, {'label': _('Johannesburg, South Africa'), 'value': 'Johannesburg, South Africa'}, {'label': _('Kano, Nigeria'), 'value': 'Kano, Nigeria'}, {'label': _('Tananarive, Madagascar'), 'value': 'Tananarive, Madagascar'}, {'label': _('Bretigny, France'), 'value': 'Bretigny, France'}, {'label': _('Singapore, Malaysia'), 'value': 'Singapore, Malaysia'}, {'label': _('Boulder, Colorado'), 'value': 'Boulder, Colorado'}, {'label': _('Mojave, California'), 'value': 'Mojave, California'}, {'label': _('Kauai, Hawaii'), 'value': 'Kauai, Hawaii'}, {'label': _('Kashima, Japan'), 'value': 'Kashima, Japan'}] # Getting only the values of the station names station_values = [] for station in station_name_options: station_values.append(station['value']) x_axis_options = [ {'label': _('Date'), 'value': ('timestamp')}, {'label': _('Latitude'), 'value': ('lat')}, {'label': _('Longitude'), 'value': ('lon')}] y_axis_options = [ {'label': _('Minimum Frequency'), 'value': ('fmin')}, {'label': _('Maximum Depth'), 'value': ('max_depth')}] year_dict = {} for year in range(1962,1974): year_dict[year] = str(year) lat_dict = {} for lat in range(-90, 90+1, 15): lat_dict[lat] = str(lat) lon_dict = {} for lon in range(-180, 180+1, 30): lon_dict[lon] = str(lon)
1.78125
2
archiv/views.py
csae8092/djtranskribus
0
12794154
<reponame>csae8092/djtranskribus # generated by appcreator from django.contrib.auth.decorators import login_required from django.utils.decorators import method_decorator from django.urls import reverse, reverse_lazy from django.views.generic.detail import DetailView from django.views.generic.edit import DeleteView from . filters import * from . forms import * from . tables import * from . models import ( TrpCollection, TrpDocument, TrpPage, TrpTranscript ) from browsing.browsing_utils import ( GenericListView, BaseCreateView, BaseUpdateView, BaseDetailView ) class TrpCollectionListView(GenericListView): model = TrpCollection filter_class = TrpCollectionListFilter formhelper_class = TrpCollectionFilterFormHelper table_class = TrpCollectionTable init_columns = [ 'id', 'name', ] enable_merge = True class TrpCollectionDetailView(BaseDetailView): model = TrpCollection template_name = 'browsing/generic_detail.html' class TrpCollectionCreate(BaseCreateView): model = TrpCollection form_class = TrpCollectionForm @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(TrpCollectionCreate, self).dispatch(*args, **kwargs) class TrpCollectionUpdate(BaseUpdateView): model = TrpCollection form_class = TrpCollectionForm @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(TrpCollectionUpdate, self).dispatch(*args, **kwargs) class TrpCollectionDelete(DeleteView): model = TrpCollection template_name = 'webpage/confirm_delete.html' success_url = reverse_lazy('archiv:trpcollection_browse') @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(TrpCollectionDelete, self).dispatch(*args, **kwargs) class TrpDocumentListView(GenericListView): model = TrpDocument filter_class = TrpDocumentListFilter formhelper_class = TrpDocumentFilterFormHelper table_class = TrpDocumentTable init_columns = [ 'id', 'title', ] enable_merge = True class TrpDocumentDetailView(BaseDetailView): model = TrpDocument template_name = 'browsing/generic_detail.html' class TrpDocumentCreate(BaseCreateView): model = TrpDocument form_class = TrpDocumentForm @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(TrpDocumentCreate, self).dispatch(*args, **kwargs) class TrpDocumentUpdate(BaseUpdateView): model = TrpDocument form_class = TrpDocumentForm @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(TrpDocumentUpdate, self).dispatch(*args, **kwargs) class TrpDocumentDelete(DeleteView): model = TrpDocument template_name = 'webpage/confirm_delete.html' success_url = reverse_lazy('archiv:trpdocument_browse') @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(TrpDocumentDelete, self).dispatch(*args, **kwargs) class TrpPageListView(GenericListView): model = TrpPage filter_class = TrpPageListFilter formhelper_class = TrpPageFilterFormHelper table_class = TrpPageTable init_columns = [ 'id', 'part_of', 'page_nr', ] enable_merge = True class TrpPageDetailView(BaseDetailView): model = TrpPage template_name = 'browsing/generic_detail.html' class TrpPageCreate(BaseCreateView): model = TrpPage form_class = TrpPageForm @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(TrpPageCreate, self).dispatch(*args, **kwargs) class TrpPageUpdate(BaseUpdateView): model = TrpPage form_class = TrpPageForm @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(TrpPageUpdate, self).dispatch(*args, **kwargs) class TrpPageDelete(DeleteView): model = TrpPage template_name = 'webpage/confirm_delete.html' success_url = reverse_lazy('archiv:trppage_browse') @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(TrpPageDelete, self).dispatch(*args, **kwargs) class TrpTranscriptListView(GenericListView): model = TrpTranscript filter_class = TrpTranscriptListFilter formhelper_class = TrpTranscriptFilterFormHelper table_class = TrpTranscriptTable init_columns = [ 'id', 'id', ] enable_merge = True class TrpTranscriptDetailView(BaseDetailView): model = TrpTranscript template_name = 'browsing/generic_detail.html' class TrpTranscriptCreate(BaseCreateView): model = TrpTranscript form_class = TrpTranscriptForm @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(TrpTranscriptCreate, self).dispatch(*args, **kwargs) class TrpTranscriptUpdate(BaseUpdateView): model = TrpTranscript form_class = TrpTranscriptForm @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(TrpTranscriptUpdate, self).dispatch(*args, **kwargs) class TrpTranscriptDelete(DeleteView): model = TrpTranscript template_name = 'webpage/confirm_delete.html' success_url = reverse_lazy('archiv:trptranscript_browse') @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(TrpTranscriptDelete, self).dispatch(*args, **kwargs)
1.90625
2
hero1/command_pb2.py
danielhwkim/Hero1
0
12794155
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: command.proto """Generated protocol buffer code.""" from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\rcommand.proto\x12\tcommander\"U\n\x03\x43md\x12\x1f\n\x03\x63md\x18\x01 \x01(\x0e\x32\x12.commander.CmdType\x12\x0c\n\x04ints\x18\x02 \x03(\x05\x12\x0e\n\x06\x66loats\x18\x03 \x03(\x02\x12\x0f\n\x07strings\x18\x04 \x03(\t*\xe3\x01\n\x07\x43mdType\x12\x0e\n\nRAWKEYDOWN\x10\x00\x12\x0c\n\x08RAWKEYUP\x10\x01\x12\x0c\n\x08\x43OMMAND2\x10\x02\x12\x0c\n\x08\x43OMMAND3\x10\x03\x12\x0c\n\x08\x43OMMAND4\x10\x04\x12\x0c\n\x08\x43OMMAND5\x10\x05\x12\x0c\n\x08\x43OMMAND6\x10\x06\x12\x0c\n\x08\x43OMMAND7\x10\x07\x12\x0c\n\x08\x43OMMAND8\x10\x08\x12\x0c\n\x08\x43OMMAND9\x10\t\x12\x0f\n\x0bMAPORIGINAL\x10\n\x12\x07\n\x03MAP\x10\x0b\x12\x07\n\x03\x41\x43K\x10\x0c\x12\x08\n\x04\x41\x43K2\x10\r\x12\x08\n\x04HERO\x10\x0e\x12\t\n\x05READY\x10\x0f\x12\x08\n\x04INIT\x10\x10\x62\x06proto3') _CMDTYPE = DESCRIPTOR.enum_types_by_name['CmdType'] CmdType = enum_type_wrapper.EnumTypeWrapper(_CMDTYPE) RAWKEYDOWN = 0 RAWKEYUP = 1 COMMAND2 = 2 COMMAND3 = 3 COMMAND4 = 4 COMMAND5 = 5 COMMAND6 = 6 COMMAND7 = 7 COMMAND8 = 8 COMMAND9 = 9 MAPORIGINAL = 10 MAP = 11 ACK = 12 ACK2 = 13 HERO = 14 READY = 15 INIT = 16 _CMD = DESCRIPTOR.message_types_by_name['Cmd'] Cmd = _reflection.GeneratedProtocolMessageType('Cmd', (_message.Message,), { 'DESCRIPTOR' : _CMD, '__module__' : 'command_pb2' # @@protoc_insertion_point(class_scope:commander.Cmd) }) _sym_db.RegisterMessage(Cmd) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None _CMDTYPE._serialized_start=116 _CMDTYPE._serialized_end=343 _CMD._serialized_start=28 _CMD._serialized_end=113 # @@protoc_insertion_point(module_scope)
1.15625
1
hoki/load.py
HeloiseS/hoki
40
12794156
<reponame>HeloiseS/hoki """ This module implements the tools to easily load BPASS data. """ import pandas as pd import hoki.hrdiagrams as hr from hoki.constants import * import os import yaml import io import pickle import pkg_resources import hoki.data_compilers import warnings from hoki.utils.exceptions import HokiDeprecationWarning, HokiKeyError # TODO: Should I allow people to chose to load the data into a numpy arrays as well or is the # data frame good enough? __all__ = ['model_input', 'model_output', 'set_models_path', 'unpickle'] data_path = pkg_resources.resource_filename('hoki', 'data') ######################## # GENERAL LOAD HELPERS # ######################## def unpickle(path): """Extract pickle files""" assert os.path.isfile(path), 'File not found.' return pickle.load(open(path, 'rb')) # TODO: Deprecation warning def set_models_path(path): """ Changes the path to the stellar models in hoki's settings Parameters ---------- path : str, Absolute path to the top level of the stellar models this could be a directory named something like bpass-v2.2-newmodels and the next level down should contain 'NEWBINMODS' and 'NEWSINMODS'. Notes ----- You are going to have to reload hoki for your new path to take effect. """ deprecation_msg = "set_models_path has been moved to the hoki.constants module -- In future versions of hoki" \ "calling set_models_path from hoki.load will fail" warnings.warn(deprecation_msg, HokiDeprecationWarning) assert os.path.isdir(path), 'HOKI ERROR: The path provided does not correspond to a valid directory' path_to_settings = data_path+'/settings.yaml' with open(path_to_settings, 'r') as stream: settings = yaml.safe_load(stream) settings['models_path'] = path with io.open(path_to_settings, 'w', encoding='utf8') as outfile: yaml.dump(settings, outfile, default_flow_style=False, allow_unicode=True) print('Looks like everything went well! You can check the path was correctly updated by looking at this file:' '\n'+path_to_settings) ######################## # LOAD DUMMY VARIABLE # ######################## def dummy_to_dataframe(filename, bpass_version=DEFAULT_BPASS_VERSION): """Reads in dummy to df from a filename""" inv_dict ={v: k for k, v in dummy_dicts[bpass_version].items()} cols = [inv_dict[key] if key in inv_dict.keys() else 'Nan'+str(key) for key in range(96)] dummy = pd.read_csv(filename, names=cols, sep=r"\s+", engine='python') return dummy ######################### # MODEL INPUT FUNCTIONS # ######################### def model_input(path): """ Loads inputs from one file and put them in a dataframe Parameters ---------- path : str Path to the file containing the input data. Returns ------- """ assert isinstance(path, str), "The location of the file is expected to be a string." assert os.path.isfile(path), f"File {path} does not exist, or its path is incorrect." lines = open(path).read().split("\n") # rows [a,b,c,d] in the BPASS manual row = [1, 0, 0, 0] # All potential input parameters and filename # If there is no corresponding value for a particular model, will append a NaN filenames = [] modelimfs = [] modeltypes = [] mixedimf = [] mixedage = [] initialBH = [] initialP = [] # This goes through the file line by line. Using .split is not possible/convenient # The vector will tell use what we should do with this line. for l in lines[1:]: # This line contains the filename. if row[0]: filenames.append(l) # The next line will contain the imf probability and the type - we reset the vector.. row = [0, 1, 0, 0] # ... and we skip the rest to read in the next line. continue # This line contains the imf probability and the type elif row[1]: elements = l.split() # we split the line into the 2 values modelimfs.append(elements[0]) # and append them modeltypes.append(elements[1]) # The next step is decided according to the value of type # To know what each value means, consult the BPASS manual if int(elements[1]) < 2: # In this case all the other potential inputs are NaNs and we go back to the # beginning to read a new file name row = [1, 0, 0, 0] mixedimf.append(0.0) mixedage.append(0.0) initialBH.append(np.nan) initialP.append(np.nan) continue elif int(elements[1]) != 4: # If type is 2 or 3, we know the initial BH and initial P will be NaN # but we also need to read the next line so we set the vector accordingly. row = [0, 0, 1, 0] initialBH.append(np.nan) initialP.append(np.nan) continue elif int(elements[1]) == 4: # If the type is 4 we need all the other outputs, so we need the next 2 lines. # We set the vector accordingly. row = [0, 0, 1, 1] continue elif row[2]: # Splitting the two values and putting them in their respective lists elements = l.split() mixedimf.append(elements[0]) mixedage.append(elements[1]) # Then depending on whether we need the next line for more inputs # we set the vector to either go back to reading a filename or to probe those inputs. if not row[3]: row = [1, 0, 0, 0] if row[3]: row[2] = 0 continue elif row[3]: # This reads the last possible pair of inputs and puts them in their rightful lists. elements = l.split() initialBH.append(elements[0]) initialP.append(elements[0]) # We then reset the vector to be reading in filenames because no more inputs are coming row = [1, 0, 0, 0] # Once we've goe through the whole file and filled our lists, we can put them in a dataframe # with some named columns and set the datatypes to strings and numbers. input_df = pd.DataFrame.from_dict({'filenames': filenames[:-1], 'model_imf': modelimfs, 'types': modeltypes, 'mixed_imf': mixedimf, 'mixed_age': mixedage, 'initial_BH': initialBH, 'initial_P': initialP}).astype({'filenames': str, 'model_imf': float, 'types': int, 'mixed_imf': float, 'mixed_age': float, 'initial_BH': float, 'initial_P': float}) return input_df ########################## # MODEL OUTPUT FUNCTIONS # ########################## def model_output(path, hr_type=None): """ Loads a BPASS output file Parameters ---------- path : str Path to the file containing the target data. hr_type : str, optional Type of HR diagram to load: 'TL', 'Tg' or 'TTG'. Returns ------- Output Data : pandas.DataFrame or hoki.hrdiagrams.HRDiagrams object """ assert isinstance(path, str), "HOKI ERROR: The location of the file is expected to be a string." assert os.path.isfile(path), "HOKI ERROR: This file does not exist, or its path is incorrect." assert hr_type in [None,'TL', 'Tg', 'TTG'], "HOKI ERROR: The HR diagram type is invalid. " \ "Available options are: 'TL', 'Tg', 'TTG'. " if "supernova" in path: return _sn_rates(path) elif "numbers" in path: return _stellar_numbers(path) elif "yields" in path: return _yields(path) elif "starmass" in path: return _stellar_masses(path) elif "spectra" in path: return _sed(path) elif "ioniz" in path: return _ionizing_flux(path) elif "colour" in path: return _colours(path) elif "hrs" in path and hr_type == 'TL': return _hrTL(path) elif "hrs" in path and hr_type == 'Tg': return _hrTg(path) elif "hrs" in path and hr_type == 'TTG': return _hrTTG(path) else: print("HOKI ERROR -- Could not load the Stellar Population output. " "\nDEBUGGING ASSISTANT:\n1) Is the filename correct?" "\n2) Trying to load an HR diagram? " "Make sure hr_type is set! Available options are: 'TL', 'Tg', 'TTG'. ") def _sn_rates(path): """ Loads One Supernova rate file into a dataframe """ return pd.read_csv(path, sep=r"\s+", names=['log_age', 'Ia', 'IIP', 'II', 'Ib', 'Ic', 'LGRB', 'PISNe', 'low_mass', 'e_Ia', 'e_IIP', 'e_II', 'e_Ib', 'e_Ic', 'e_LGRB', 'e_PISNe', 'e_low_mass', 'age_yrs'], engine='python') def _stellar_numbers(path): """ Load One stellar type number file into a dataframe """ return pd.read_csv(path, sep=r"\s+", names=['log_age', 'O_hL', 'Of_hL', 'B_hL', 'A_hL', 'YSG_hL', 'K_hL', 'M_hL', 'WNH_hL', 'WN_hL', 'WC_hL', 'O_lL', 'Of_lL', 'B_lL', 'A_lL', 'YSG_lL', 'K_lL', 'M_lL', 'WNH_lL', 'WN_lL', 'WC_lL'], engine='python') def _yields(path): """ Load One yields file into a dataframe """ return pd.read_csv(path, sep=r"\s+", names=['log_age', 'H_wind', 'He_wind', 'Z_wind', 'E_wind', 'E_sn', 'H_sn', 'He_sn', 'Z_sn'], engine='python') def _stellar_masses(path): """ Load One stellar masses file into a dataframe """ return pd.read_csv(path, sep=r"\s+", names=['log_age', 'stellar_mass', 'remnant_mass'], engine='python') def _hrTL(path): """ Load HR diagrams (TL type) """ # 'a' is just a place order which contains the whole file in an array of shape (45900,100) a = np.loadtxt(path) return hr.HRDiagram(a[0:5100,:].reshape(51,100,100), a[5100:10200,:].reshape(51,100,100), a[10200:15300,:].reshape(51,100,100), hr_type='TL') def _hrTg(path): """ Load One HR diagrams (Tg type) """ a = np.loadtxt(path) return hr.HRDiagram(a[15300:20400,:].reshape(51,100,100), a[20400:25500,:].reshape(51,100,100), a[25500:30600,:].reshape(51,100,100), hr_type='Tg') def _hrTTG(path): """ Load One HR diagrams (T/TG type) """ a = np.loadtxt(path) return hr.HRDiagram(a[30600:35700,:].reshape(51,100,100), a[35700:40800,:].reshape(51,100,100), a[40800:,:].reshape(51,100,100), hr_type='TTG') def _sed(path): """ Load One SED file """ return pd.read_csv(path, sep=r"\s+", engine='python', names=['WL', '6.0', '6.1', '6.2', '6.3', '6.4', '6.5', '6.6', '6.7', '6.8', '6.9', '7.0', '7.1', '7.2', '7.3', '7.4', '7.5', '7.6', '7.7', '7.8', '7.9', '8.0', '8.1', '8.2', '8.3', '8.4', '8.5', '8.6', '8.7', '8.8', '8.9', '9.0', '9.1', '9.2', '9.3', '9.4', '9.5', '9.6', '9.7', '9.8', '9.9', '10.0', '10.1', '10.2', '10.3', '10.4', '10.5', '10.6', '10.7', '10.8', '10.9', '11.0']) def _ionizing_flux(path): """ Load One ionizing flux file """ return pd.read_csv(path, sep=r'\s+', engine='python', names=['log_age', 'prod_rate', 'halpha', 'FUV', 'NUV']) def _colours(path): """ Load One colour file """ return pd.read_csv(path, sep=r'\s+', engine='python', names=['log_age', 'V-I', 'U', 'B', 'V', 'R', 'I', 'J', 'H', 'K', 'u', 'g', 'r', 'i', 'z', 'f300w', 'f336w', 'f435w', 'f450w', 'f555w', 'f606w', 'f814w', 'prod_rate', 'halpha', 'FUV', 'NUV']) ########################## # NEBULAR EMISSION LINES # ########################## def nebular_lines(path): """ Load the nebular line output information Parameters ---------- path Returns ------- """ assert isinstance(path, str), "HOKI ERROR: The location of the file is expected to be a string." assert os.path.isfile(path), "HOKI: ERROR This file does not exist, or its path is incorrect." if 'UV' in path: return _UV_nebular_lines(path) elif 'Optical' in path: return _optical_nebular_lines(path) def _optical_nebular_lines(path): column_opt_em_lines=['model_num', 'logU', 'log_nH', 'log_age', 'NII6548_F', 'NII6548_EW', 'NII6584_F', 'NII6584_EW', 'SiII6716_F', 'SiII6716_EW', 'SiII6731_F', 'SiII6731_EW', 'OI6300_F', 'OI6300_EW', 'OIII4959_F','OIII4959_EW','OIII5007_F','OIII5007_EW', 'Halpha_F', 'Halpha_EW', 'Hbeta_F', 'Hbeta_EW', 'HeI4686_F', 'HeI4686_EW'] return pd.read_csv(path, skiprows=1, sep=r'\s+', engine='python', names=column_opt_em_lines) def _UV_nebular_lines(path): column_UV_em_lines = ['model_num', 'logU', 'log_nH', 'log_age', 'HeII1640_F', 'HeII1640_EW', 'CIII1907_F', 'CIII1907_EW', 'CIII1910_F', 'CIII1910_EW', 'CIV1548_F', 'CIV1548_EW', 'CIV1551_F', 'CIV1551_EW', 'OI1357_F', 'OI1357_EW', 'OIII1661_F', 'OIII1661_EW', 'OIII1666_F', 'OIII1666_EW', 'SiII1263_F', 'SiII1263_EW', 'SiIII1308_F', 'SiIII1308_EW', 'SiII1531_F', 'SiII1531_EW'] return pd.read_csv(path, skiprows=1, sep=r'\s+', engine='python', names=column_UV_em_lines) ##################################### # BPASS Load over all metallicity # ##################################### def rates_all_z(data_path, imf, binary=True): """ Loads the BPASS supernova event files. Notes ----- The rates are just read from file and not normalised. Input ----- data_path : `str` The filepath to the folder containing the BPASS data binary : `bool` Use the binary files or just the single stars. Default=True imf : `str` BPASS Identifier of the IMF to be used. The accepted IMF identifiers are: - `"imf_chab100"` - `"imf_chab300"` - `"imf100_100"` - `"imf100_300"` - `"imf135_100"` - `"imf135_300"` - `"imfall_300"` - `"imf170_100"` - `"imf170_300"` Returns ------- `pandas.DataFrame` (51, (8,13)) (log_age, (event_types, metallicity) A pandas MultiIndex dataframe containing the BPASS number of events per metallicity per type. Usage: rates.loc[log_age, (type, metallicity)] Example: rates.loc[6.5, ("Ia", 0.02)] Notes ----- This dataframe has the following structure. The index is the log_age as a float. The column is a `pandas.MultiIndex` with the event types (level=0, `float`) and the metallicity (level=1, `float`) |Event Type | Ia | IIP | ... | PISNe | low_mass | |Metallicity| 0.00001 | 0.00001 | ... | 0.04 | 0.04 | | log_age |---------|----------|------|-------|----------| | 6.0 | | ... | Event Rate values | 11.0 | """ # Check population type star = "bin" if binary else "sin" # Check if the given IMF is in the accepted IMFs if imf not in BPASS_IMFS: raise HokiKeyError( f"{imf} is not a BPASS IMF. Please select a correct IMF.\n"\ "These can be found in the documentation of this function.") # Create the output DataFrame arrays = [BPASS_NUM_METALLICITIES, BPASS_EVENT_TYPES] columns = pd.MultiIndex.from_product( arrays, names=["Metallicicty", "Event Type"]) rates = pd.DataFrame(index=BPASS_TIME_BINS, columns=columns, dtype=np.float64) rates.index.name = "log_age" # load supernova count files for num, metallicity in enumerate(BPASS_METALLICITIES): data = model_output( f"{data_path}/supernova-{star}-{imf}.{metallicity}.dat" ) data = data.loc[:, slice(BPASS_EVENT_TYPES[0], BPASS_EVENT_TYPES[-1])] rates.loc[:, (BPASS_NUM_METALLICITIES[num], slice(None))] = data.to_numpy() # swap metallicity and event type return rates.swaplevel(0, 1, axis=1) def spectra_all_z(data_path, imf, binary=True): """ Load all BPASS spectra from files. Notes ----- The first time this function is ran on a folder it will generate a pickle file containing all the BPASS spectra per metallicity for faster loading in the future. It stores the file in the same folder with the name: `all_spectra-[bin/sin]-[imf].pkl` The spectra are just read from file and not normalised. Input ----- data_path : `str` The path to the folder containing the BPASS spectra. binary : `bool` Use the binary files or just the single stars. Default=True imf : `str` BPASS Identifier of the IMF to be used. The accepted IMF identifiers are: - `"imf_chab100"` - `"imf_chab300"` - `"imf100_100"` - `"imf100_300"` - `"imf135_100"` - `"imf135_300"` - `"imfall_300"` - `"imf170_100"` - `"imf170_300"` Returns ------- spectra : `numpy.ndarray` (13, 51, 100000) [(metallicity, log_age, wavelength)] A 3D numpy array containing all the BPASS spectra for a specific imf and binary or single star population. Usage: spectra[1][2][1000] (gives L_\\odot for Z=0.0001 and log_age=6.2 at 999 Angstrom) """ # Check population type star = "bin" if binary else "sin" # check IMF key if imf not in BPASS_IMFS: raise HokiKeyError( f"{imf} is not a BPASS IMF. Please select a correct IMF.") # check if data_path is a string if not isinstance(data_path, str): raise HokiTypeError("The folder location is expected to be a string.") # check if compiled file exists if os.path.isfile(f"{data_path}/all_spectra-{star}-{imf}.npy"): print("Loading precompiled file.") spectra = np.load(f"{data_path}/all_spectra-{star}-{imf}.npy") print("Done Loading.") # Otherwise compile else: print("Compiled file not found. Data will be compiled") spec = hoki.data_compilers.SpectraCompiler( data_path, data_path, imf, binary=binary ) spectra = spec.output return spectra def emissivities_all_z(data_path, imf, binary=True): """ Load all BPASS emissivities from files. Notes ----- The first time this function is run on a folder it will generate an npy file containing all the BPASS emissivities for faster loading in the future. It stores the file in the same folder with the name: `all_ionizing-[bin/sin]-[imf].npy`. The emissivities are just read from file and not normalised. Input ----- data_path : `str` The path to the folder containing the BPASS files. binary : `bool` Use the binary files or just the single stars. Default=True imf : `str` BPASS Identifier of the IMF to be used. The accepted IMF identifiers are: - `"imf_chab100"` - `"imf_chab300"` - `"imf100_100"` - `"imf100_300"` - `"imf135_100"` - `"imf135_300"` - `"imfall_300"` - `"imf170_100"` - `"imf170_300"` Returns ------- emissivities : `numpy.ndarray` (N_Z, N_age, 4) [(metallicity, log_age, band)] A 3D numpy array containing all the BPASS emissivities (Nion [1/s], L_Halpha [ergs/s], L_FUV [ergs/s/A], L_NUV [ergs/s/A]) for a specific imf and binary or single star population. Usage: spectra[1][2][0] (gives Nion for Z=0.0001 and log_age=6.2) """ # Check population type star = "bin" if binary else "sin" # check IMF key if imf not in BPASS_IMFS: raise HokiKeyError( f"{imf} is not a BPASS IMF. Please select a correct IMF.") # check if data_path is a string if not isinstance(data_path, str): raise HokiTypeError("The folder location is expected to be a string.") # Check if compiled spectra are already present in data folder if os.path.isfile(f"{data_path}/all_ionizing-{star}-{imf}.npy"): print("Load precompiled file.") emissivities = np.load(f"{data_path}/all_ionizing-{star}-{imf}.npy") print("Done Loading.") # Compile the spectra for faster reading next time otherwise else: print("Compiled file not found. Data will be compiled.") res = hoki.data_compilers.EmissivityCompiler( data_path, data_path, imf, binary=binary ) emissivities = res.output return emissivities ################# # # ################# def _do_not_use(): import webbrowser url = "https://www.youtube.com/watch?v=dQw4w9WgXcQ" webbrowser.open_new_tab(url)
2.078125
2
examples/go_to_joints_with_joint_impedances.py
iamlab-cmu/frankapy
18
12794157
import argparse import sys from frankapy import FrankaArm from frankapy import FrankaConstants as FC def wait_for_enter(): if sys.version_info[0] < 3: raw_input('Press Enter to continue:') else: input('Press Enter to continue:') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--time', '-t', type=float, default=10) parser.add_argument('--open_gripper', '-o', action='store_true') args = parser.parse_args() print('Starting robot') fa = FrankaArm() if args.open_gripper: fa.open_gripper() print('Be very careful!! Make sure the robot can safely move to HOME JOINTS Position.') wait_for_enter() fa.reset_joints() print('Using default joint impedances to move back and forth.') wait_for_enter() fa.goto_joints(FC.READY_JOINTS, joint_impedances=FC.DEFAULT_JOINT_IMPEDANCES) fa.goto_joints(FC.HOME_JOINTS) print('Now using different joint impedances to move back and forth.') wait_for_enter() fa.goto_joints(FC.READY_JOINTS, joint_impedances=[1500, 1500, 1500, 1250, 1250, 1000, 1000]) fa.goto_joints(FC.HOME_JOINTS) print('Remember to reset the joint_impedances to defaults.') fa.goto_joints(FC.HOME_JOINTS, joint_impedances=FC.DEFAULT_JOINT_IMPEDANCES)
2.9375
3
ftp.py
benny-ojeda/python-ftp-client
1
12794158
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import sys from ftplib import FTP import ftplib import argparse import getpass parser = argparse.ArgumentParser(description='FTP Client.') parser.add_argument('ftp_server') args = parser.parse_args() def cli(prompt, reminder='Please type a valid command'): command = [ 'help', 'ls', 'pwd', 'cd', 'get', 'send', 'mkdir', 'rmdir', 'delete', 'size', 'debug', 'clear' ] shell = True while shell: cmd = input(prompt) try: if cmd == command[0]: all_commands = command[:] all_commands.sort() print(*all_commands[0:6], sep='\t') print(*all_commands[6:12], sep='\t') if cmd == command[1]: ftp.dir() if cmd == command[2]: print(ftp.pwd()) if cmd.split(' ', 1)[0] == command[3] and len(cmd.split()) == 2: dirname = cmd.split(' ', 1)[1] print(ftp.cwd(dirname)) elif cmd.split(' ', 1)[0] == command[3] and len(cmd.split()) == 1: print("E: Missing argument.") if cmd.split(' ', 1)[0] == command[4] and len(cmd.split()) == 2: filename = cmd.split(' ', 1)[1] print(ftp.retrbinary("RETR " + filename, open(str(filename), 'wb').write)) elif cmd.split(' ', 1)[0] == command[4] and len(cmd.split()) == 1: print("E: Missing argument.") if cmd.split(' ', 1)[0] == command[5] and len(cmd.split()) == 2: filename = cmd.split(' ', 1)[1] print(ftp.storbinary("STOR " + filename, open(filename, 'rb'), callback=None)) elif cmd.split(' ', 1)[0] == command[5] and len(cmd.split()) == 1: print("E: Missing argument.") if cmd.split(' ', 1)[0] == command[6] and len(cmd.split()) == 2: dirname = cmd.split(' ', 1)[1] print(ftp.mkd(dirname)) elif cmd.split(' ', 1)[0] == command[6] and len(cmd.split()) == 1: print("E: Missing argument.") if cmd.split(' ', 1)[0] == command[7] and len(cmd.split()) == 2: dirname = cmd.split(' ', 1)[1] print(ftp.rmd(dirname)) elif cmd.split(' ', 1)[0] == command[7] and len(cmd.split()) == 1: print("E: Missing argument.") if cmd.split(' ', 1)[0] == command[8] and len(cmd.split()) == 2: filename = cmd.split(' ', 1)[1] print(ftp.delete(filename)) elif cmd.split(' ', 1)[0] == command[8] and len(cmd.split()) == 1: print("E: Missing argument.") if cmd.split(' ', 1)[0] == command[9] and len(cmd.split()) == 2: filename = cmd.split(' ', 1)[1] print(ftp.size(filename)) elif cmd.split(' ', 1)[0] == command[9] and len(cmd.split()) == 1: print("E: Missing argument.") if cmd.split(' ', 1)[0] == command[10] and len(cmd.split()) == 2: level = cmd.split(' ', 1)[1] print(ftp.set_debuglevel(int(level))) elif cmd.split(' ', 1)[0] == command[10] and len(cmd.split()) == 1: print("E: Missing argument.") if cmd == command[11]: os.system("clear") if cmd in ('q', 'quit', 'exit', 'bye'): print(ftp.quit()) shell = False if len(cmd.split()) and cmd.split(' ', 1)[0] not in command and cmd.split(' ', 1)[0] not in ('q', 'quit', 'exit', 'bye'): print(reminder) except ftplib.all_errors as error: print('FTP error: ', error) if args.ftp_server: try: with FTP(args.ftp_server) as ftp: username = input('Username (%s): ' % args.ftp_server ) password = <PASSWORD>(prompt='Password: ', stream=None) ftp.login(user=username, passwd=password) print(ftp.getwelcome()) cli('ftp> ') except ftplib.all_errors as error: print('FTP error: ', error)
3.171875
3
synapse/tests/test_lib_filepath.py
larrycameron80/synapse
0
12794159
<reponame>larrycameron80/synapse import io import shutil import tarfile import zipfile import tempfile from synapse.tests.common import * import synapse.exc as s_exc import synapse.lib.filepath as s_filepath class TestFilePath(SynTest): def test_filepath_glob(self): temp_dir = tempfile.mkdtemp() os.mkdir(os.path.join(temp_dir, 'dir0')) os.mkdir(os.path.join(temp_dir, 'dir1')) os.mkdir(os.path.join(temp_dir, 'dir2')) os.mkdir(os.path.join(temp_dir, 'fooD')) os.makedirs(os.path.join(temp_dir, 'bazer', 'eir0', 'dir1')) os.makedirs(os.path.join(temp_dir, 'bazer', 'eir0', 'dir2')) f0 = b'A' * 20 f0_path = os.path.join(temp_dir, 'foo0') with open(f0_path, 'wb') as fd: fd.write(f0) f1 = b'B' * 20 f1_path = os.path.join(temp_dir, 'foo1') with open(f1_path, 'wb') as fd: fd.write(f1) f2 = b'C' * 20 f2_path = os.path.join(temp_dir, 'foo2') with open(f2_path, 'wb') as fd: fd.write(f2) f3 = b'Z' * 20 f3_path = os.path.join(temp_dir, 'junk') with open(f3_path, 'wb') as fd: fd.write(f3) # same files alpha/bravo t1 = b'a' * 20 t_path = os.path.join(temp_dir, 'bazer', 'eir0', 'dir1', 'alpha') with open(t_path, 'wb') as fd: fd.write(t1) t_path = os.path.join(temp_dir, 'bazer', 'eir0', 'dir1', 'bravo') with open(t_path, 'wb') as fd: fd.write(t1) t_path = os.path.join(temp_dir, 'bazr') with open(t_path, 'wb') as fd: fd.write(t1) # files that exists path = os.path.join(temp_dir, 'foo*') self.false(s_filepath.exists(path)) self.false(s_filepath.isfile(path)) self.false(s_filepath.isdir(path)) # dirs that exist path = os.path.join(temp_dir, 'dir*') self.false(s_filepath.exists(path)) self.false(s_filepath.isfile(path)) self.false(s_filepath.isdir(path)) # open a dir fp = s_filepath.parsePath(temp_dir, 'dir0') self.none(fp.open()) # multiple open regular files path = os.path.join(temp_dir, 'foo*') fd_ct = 0 f = [fd for fd in s_filepath.openfiles(path, mode='rb', req=False)] for fd in f: buf = fd.read() self.eq(len(buf), 20) self.isin(buf, [f0, f1, f2]) fd.close() fd_ct += 1 self.eq(fd_ct, 3) # multiple open on dir path = os.path.join(temp_dir, 'dir*') def diropen(path): [f for f in s_filepath.openfiles(path, mode='rb', req=True)] self.raises(s_exc.NoSuchPath, diropen, path) path = os.path.join(temp_dir, 'dir*') def diropen(path): return [f for f in s_filepath.openfiles(path, mode='rb', req=False)] self.eq([], diropen(path)) # multiple open on dne path = os.path.join(temp_dir, 'dne*') def diropen(path): return [f for f in s_filepath.openfiles(path, mode='rb', req=True)] self.raises(s_exc.NoSuchPath, diropen, path) ret = [a for a in s_filepath.openfiles(None)] self.eq([], ret) # multiple open zip files tzfd0 = open(os.path.join(temp_dir, 'baz.zip'), 'w') tzfd1 = tempfile.NamedTemporaryFile() ttfd0 = open(os.path.join(temp_dir, 'baz.tar'), 'w') zfd0 = zipfile.ZipFile(tzfd0.name, 'w') zfd0.writestr('dir0/dir1/dir2/foo0', f0) zfd0.writestr('dir0/dir1/dir2/foo1', f1) zfd0.writestr('dir0/dir1/dir2/foo2', f2) zfd0.writestr('dir0/dir1/dir2/junk', 'Z' * 20) zfd0.writestr('eir0/dir3/z1', t1) zfd0.writestr('eir0/dir4/z2', t1) zfd0.close() tfd0 = tarfile.TarFile(ttfd0.name, 'w') tfd0.add(f0_path, arcname='dir0/dir1/dir2/foo0') tfd0.add(f1_path, arcname='dir0/dir1/dir2/foo1') tfd0.add(f2_path, arcname='dir0/dir1/dir2/foo2') tfd0.add(f3_path, arcname='dir0/dir1/dir2/junk') tfd0.add(t_path, arcname='eir0/dir5/t1') tfd0.add(t_path, arcname='eir0/dir6/t2') tfd0.close() zfd1 = zipfile.ZipFile(tzfd1.name, 'w') zfd1.writestr('dir0/dir1/dir2/bar0', f0) zfd1.writestr('dir0/dir1/dir2/bar1', f1) zfd1.writestr('dir0/dir1/dir2/bar2', f2) zfd1.writestr('dir0/dir1/dir2/junk', 'Z' * 20) zfd1.write(tzfd0.name, arcname='ndir0/nested.zip') zfd1.write(ttfd0.name, arcname='ndir0/nested.tar') zfd1.close() path = os.path.join(tzfd1.name, 'dir0/dir1/dir2/bar*') count = 0 for fd in s_filepath.openfiles(path, mode='rb'): buf = fd.read() fd.seek(0) self.eq(len(buf), 20) self.eq(buf, fd.read()) self.isin(buf, [f0, f1, f2]) fd.close() count += 1 self.eq(count, 3) path = os.path.join(temp_dir, 'baz*', 'eir0', 'dir*', '*') count = 0 for fd in s_filepath.openfiles(path, mode='rb'): buf = fd.read() self.eq(len(buf), 20) self.eq(buf, t1) fd.close() count += 1 self.eq(count, 6) tzfd0.close() tzfd1.close() ttfd0.close() shutil.rmtree(temp_dir) def test_filepath_regular(self): temp_fd = tempfile.NamedTemporaryFile() temp_dir = tempfile.mkdtemp() fbuf = b'A' * 20 temp_fd.write(fbuf) temp_fd.flush() # file and dir that exist self.true(s_filepath.exists(temp_fd.name)) self.true(s_filepath.exists(temp_dir)) self.true(s_filepath.exists('/')) self.false(s_filepath.isfile(temp_dir)) self.false(s_filepath.isdir(temp_fd.name)) # DNE in a real directory path = os.path.join(temp_dir, 'dne') self.false(s_filepath.exists(path)) self.raises(s_exc.NoSuchPath, s_filepath._pathClass, path) # open regular file fd = s_filepath.openfile(temp_fd.name, mode='rb') self.eq(fd.read(), fbuf) fd.close() # dne path self.raises(s_exc.NoSuchPath, s_filepath.openfile, '%s%s' % (temp_fd.name, '_DNE'), mode='rb') self.raises(s_exc.NoSuchPath, s_filepath.openfile, None) self.raises(s_exc.NoSuchPath, s_filepath.openfile, '') self.none(s_filepath.openfile(None, req=False)) # open a directory self.none(s_filepath.openfile('/tmp', mode='rb', req=False)) self.none(s_filepath.openfile('/', req=False)) temp_fd.close() shutil.rmtree(temp_dir) def test_filepath_zip(self): temp_fd = tempfile.NamedTemporaryFile() nested_temp_fd = tempfile.NamedTemporaryFile() zip_fd = zipfile.ZipFile(temp_fd.name, 'w') zip_fd.writestr('foo', 'A' * 20) zip_fd.writestr('dir0/bar', 'A' * 20) zip_fd.writestr('dir0/dir1/dir2/baz', 'C' * 20) zip_fd.close() zip_fd = zipfile.ZipFile(nested_temp_fd.name, 'w') zip_fd.writestr('aaa', 'A' * 20) zip_fd.writestr('ndir0/bbb', 'A' * 20) zip_fd.writestr('ndir0/ndir1/ndir2/ccc', 'C' * 20) zip_fd.write(temp_fd.name, arcname='ndir0/nested.zip') zip_fd.close() # container is path path = nested_temp_fd.name self.true(s_filepath.exists(path)) self.true(s_filepath.isfile(path)) # base directory that exists path = os.path.join(temp_fd.name, 'dir0') self.true(s_filepath.exists(path)) self.true(s_filepath.isdir(path)) # container nested dir that exists path = os.path.join(nested_temp_fd.name, 'ndir0', 'nested.zip', 'dir0') self.true(s_filepath.exists(path)) self.true(s_filepath.isdir(path)) # container nested file that exists path = os.path.join(nested_temp_fd.name, 'ndir0', 'nested.zip', 'dir0', 'bar') self.true(s_filepath.exists(path)) self.true(s_filepath.isfile(path)) # container nested DNE path path = os.path.join(nested_temp_fd.name, 'ndir0', 'nested.zip', 'dir0', 'dne') self.false(s_filepath.exists(path)) self.false(s_filepath.isfile(path)) self.false(s_filepath.isdir(path)) # base file that exists path = os.path.join(temp_fd.name, 'foo') self.true(s_filepath.exists(path)) self.true(s_filepath.isfile(path)) # file that exists in a directory path = os.path.join(temp_fd.name, 'dir0', 'bar') self.true(s_filepath.exists(path)) self.true(s_filepath.isfile(path)) # nested dir that exists path = os.path.join(temp_fd.name, 'dir0', 'dir1', 'dir2') self.true(s_filepath.isdir(path)) # DNE in a real directory path = os.path.join(temp_fd.name, 'dir0', 'dne') self.false(s_filepath.exists(path)) self.false(s_filepath.isfile(path)) self.false(s_filepath.isdir(path)) # DNE base path = os.path.join(temp_fd.name, 'dne') self.false(s_filepath.exists(path)) self.false(s_filepath.isfile(path)) self.false(s_filepath.isdir(path)) temp_fd.close() nested_temp_fd.close() def test_filepath_zip_open(self): temp_fd = tempfile.NamedTemporaryFile() zip_fd = zipfile.ZipFile(temp_fd.name, 'w') abuf = 'A' * 20 bbuf = b'A' * 20 zip_fd.writestr('dir0/foo', abuf) fbuf2 = 'B' * 20 zip_fd.writestr('bar', fbuf2) zip_fd.close() # file that exists in a directory path = os.path.join(temp_fd.name, 'dir0', 'foo') self.true(s_filepath.isfile(path)) # open zip file path = temp_fd.name fd0 = s_filepath.openfile(path, mode='rb') fd1 = open(path, mode='rb') self.eq(fd0.read(), fd1.read()) fd0.close() fd1.close() # open inner zip file path = os.path.join(temp_fd.name, 'dir0', 'foo') fd = s_filepath.openfile(path, mode='r') self.eq(fd.read(), bbuf) fd.close() temp_fd.close() temp_fd.close() def test_filepath_tar(self): # container is path path = getTestPath('nest2.tar') self.true(s_filepath.exists(path)) self.true(s_filepath.isfile(path)) # base directory that exists path = getTestPath('nest2.tar', 'nndir0') self.true(s_filepath.exists(path)) self.true(s_filepath.isdir(path)) # file that exists in a tar path = getTestPath('nest2.tar', 'nndir0', 'nnbar') self.true(s_filepath.exists(path)) self.true(s_filepath.isfile(path)) # container nested base directory that exists path = getTestPath('nest2.tar', 'nndir0', 'nndir1', 'nest1.tar', 'ndir0') self.true(s_filepath.exists(path)) self.true(s_filepath.isdir(path)) # container nested file that exists path = getTestPath('nest2.tar', 'nndir0', 'nndir1', 'nest1.tar', 'nfoo') self.true(s_filepath.exists(path)) self.true(s_filepath.isfile(path)) # container nested file that exists path = getTestPath('nest2.tar', 'nndir0', 'nndir1', 'nest1.tar', 'ndir0', 'ndir1', 'nest0.zip', 'foo') self.true(s_filepath.exists(path)) self.true(s_filepath.isfile(path)) # container nested path that DNE path = getTestPath('nest2.tar', 'nndir0', 'nndir1', 'nest1.tar', 'ndir0', 'dne') self.false(s_filepath.exists(path)) self.false(s_filepath.isdir(path)) self.false(s_filepath.isfile(path)) # DNE file in a real directory path = getTestPath('nest2.tar', 'nndir0', 'dne') self.false(s_filepath.exists(path)) self.false(s_filepath.isfile(path)) self.false(s_filepath.isdir(path)) # DNE base path = getTestPath('nest2.tar', 'dne') self.false(s_filepath.exists(path)) self.false(s_filepath.isfile(path)) self.false(s_filepath.isdir(path)) def test_filepath_tar_open(self): # open tar file path = getTestPath('nest2.tar') fd = s_filepath.openfile(path, mode='rb') fs_fd = open(getTestPath('nest2.tar'), 'rb') self.eq(fd.read(), fs_fd.read()) fs_fd.close() fd.close() # open inner tar file path = getTestPath('nest2.tar', 'nndir0', 'nndir1', 'nest1.tar') fd = s_filepath.openfile(path, mode='rb') fs_fd = open(getTestPath('nest1.tar'), 'rb') self.eq(fd.read(), fs_fd.read()) fs_fd.close() fd.close() # open inner file path = getTestPath('nest2.tar', 'nnfoo') fd = s_filepath.openfile(path, mode='rb') buf = b'A' * 20 buf += b'\n' self.eq(fd.read(), buf) fd.close()
2.421875
2
award/forms.py
Ras-Kwesi/ranker
0
12794160
from django import forms from .models import * class NewProject(forms.ModelForm): class Meta: model = Project exclude = ['likes', 'profile',] class EditProfile(forms.ModelForm): class Meta: model = Profile exclude = [] fields = ['profilepic','bio','contact'] class EditUser(forms.ModelForm): class Meta: model = User exclude = [] fields = ['first_name','last_name', 'email'] class NewVote(forms.ModelForm): class Meta: model = Vote exclude = ['voter','project']
2.1875
2
gae/api/__init__.py
trevorhreed/gae-boilerplate
0
12794161
import core class Test(core.Endpoint): def get(self): self.json({'what': 'now'})
1.90625
2
src/rpdk/core/jsonutils/utils.py
zjinmei/cloudformation-cli
200
12794162
import hashlib import json import logging from collections.abc import Mapping, Sequence from typing import Any, List, Tuple from nested_lookup import nested_lookup from ordered_set import OrderedSet from .pointer import fragment_decode, fragment_encode LOG = logging.getLogger(__name__) NON_MERGABLE_KEYS = ("uniqueItems", "insertionOrder") TYPE = "type" REF = "$ref" UNPACK_SEQUENCE_IDENTIFIER = "*" class FlatteningError(Exception): pass def item_hash( item, ): # assumption -> input is only json comparable type (dict/list/scalar) """MD5 hash for an item (Dictionary/Iterable/Scalar)""" dhash = hashlib.md5() # nosec if isinstance(item, dict): item = {k: item_hash(v) for k, v in item.items()} if isinstance(item, list): item = [item_hash(i) for i in item].sort() encoded = json.dumps(item, sort_keys=True).encode() dhash.update(encoded) return dhash.hexdigest() def to_set(value: Any) -> OrderedSet: return ( OrderedSet(value) if isinstance(value, (list, OrderedSet)) else OrderedSet([value]) ) class ConstraintError(FlatteningError, ValueError): def __init__(self, message, path, *args): self.path = fragment_encode(path) message = message.format(*args, path=self.path) super().__init__(message) class BaseRefPlaceholder: """A sentinel object representing a reference inside the base document.""" def __repr__(self): """Readable representation for debugging. >>> repr(BaseRefPlaceholder()) '<BASE>' """ return "<BASE>" #: The sentinel instance representing a reference inside the base document. BASE = BaseRefPlaceholder() def rewrite_ref(ref): """Rewrite a reference to be inside of the base document. A relative JSON pointer is returned (in URI fragment identifier representation). If the reference is already inside the base document (:const:`BASE`), the parts are simply encoded into a pointer. If the reference is outside of the base document, a unique pointer inside the base document is made by namespacing the reference under the remote base name inside the remote section. >>> rewrite_ref((BASE, "foo", "bar")) '#/foo/bar' >>> rewrite_ref((BASE,)) '#' >>> rewrite_ref(("remote", "foo", "bar")) '#/remote/remote/foo/bar' >>> rewrite_ref(("remote",)) '#/remote/remote' """ base, *parts = ref if base is not BASE: parts = ["remote", base] + parts return fragment_encode(parts) def traverse(document, path_parts): """Traverse the document according to the reference. Since the document is presumed to be the reference's base, the base is discarded. There is no validation that the reference is valid. :raises ValueError, LookupError: the reference is invalid for this document >>> traverse({"foo": {"bar": [42]}}, tuple()) ({'foo': {'bar': [42]}}, (), None) >>> traverse({"foo": {"bar": [42]}}, ["foo"]) ({'bar': [42]}, ('foo',), {'foo': {'bar': [42]}}) >>> traverse({"foo": {"bar": [42]}}, ("foo", "bar")) ([42], ('foo', 'bar'), {'bar': [42]}) >>> traverse({"foo": {"bar": [42]}}, ("foo", "bar", "0")) (42, ('foo', 'bar', 0), [42]) >>> traverse({}, ["foo"]) Traceback (most recent call last): ... KeyError: 'foo' >>> traverse([], ["foo"]) Traceback (most recent call last): ... ValueError: invalid literal for int() with base 10: 'foo' >>> traverse([], [0]) Traceback (most recent call last): ... IndexError: list index out of range """ parent = None path = [] for part in path_parts: if isinstance(document, Sequence): part = int(part) parent = document document = document[part] path.append(part) return document, tuple(path), parent def _resolve_ref(sub_schema: dict, definitions: dict, last_step: bool = False): # resolve $ref ref = nested_lookup(REF, sub_schema) # should be safe (always single value) # bc sub_schema is always per paranet property # (taken from definitions) if last_step and REF not in sub_schema: # dont traverse deeper than requested # check if $ref is used directly -> # means that we need to check definition # otherwise it's an array and return subschema return sub_schema if ref: # [0] should be a single $ref in subschema on the top level # [-1] $ref must follow #/definitions/object sub_schema = definitions[fragment_decode(ref[0])[-1]] # resolve properties properties = nested_lookup("properties", sub_schema) if properties: sub_schema = properties[0] return sub_schema # pylint: disable=C0301 def traverse_raw_schema(schema: dict, path: tuple): """Traverse the raw json schema resolving $ref :raises TypeError: either schema is not of type dict :raises ConstraintError: the schema tries to override "type" or "$ref" >>> traverse_raw_schema({"properties": {"bar": [42]}}, tuple()) {'bar': [42]} >>> traverse_raw_schema({"properties": {"bar": [42]}}, ("bar",)) [42] >>> traverse_raw_schema({"definitions": {"bar": {"type": "boolean"}},"properties": {"bar": {"$ref": "#/definitions/bar"}}}, ("bar",)) {'type': 'boolean'} >>> traverse_raw_schema({"definitions":{"b":[1],"f":{"properties":{"b":{"$ref":"#/definitions/b"}}}},"properties":{"f":{"$ref":"#/definitions/f"}}},("f", "b")) # noqa: B950 [1] >>> traverse_raw_schema({}, ("foo")) {} >>> traverse_raw_schema([], ["foo"]) Traceback (most recent call last): ... TypeError: Schema must be a dictionary """ if not isinstance(schema, Mapping): raise TypeError("Schema must be a dictionary") try: properties = schema["properties"] definitions = schema.get("definitions", {}) sub_properties = properties last_step = ( len(path) - 1 ) # get amount of steps to prevent deeper traversal than requested for step in path: sub_properties = _resolve_ref( sub_properties[step], definitions, last_step=path.index(step) == last_step, ) return sub_properties except KeyError as e: LOG.debug("Malformed Schema or incorrect path provided\n%s\n%s", path, e) return {} def traverse_path_for_sequence_members( document: dict, path_parts: Sequence, path: list = None ) -> Tuple[List[object], List[tuple]]: """Traverse the paths for all sequence members in the document according to the reference. Since the document is presumed to be the reference's base, the base is discarded. There is no validation that the reference is valid. Differing from traverse, this returns a list of documents and a list of resolved paths. :parameter document: document to traverse (dict or list) :parameter path_parts: document paths to traverse :parameter path: traversed path so far :raises ValueError, LookupError: the reference is invalid for this document >>> traverse_path_for_sequence_members({"foo": {"bar": [42, 43, 44]}}, tuple()) ([{'foo': {'bar': [42, 43, 44]}}], [()]) >>> traverse_path_for_sequence_members({"foo": {"bar": [42, 43, 44]}}, ["foo"]) ([{'bar': [42, 43, 44]}], [('foo',)]) >>> traverse_path_for_sequence_members({"foo": {"bar": [42, 43, 44]}}, ("foo", "bar")) ([[42, 43, 44]], [('foo', 'bar')]) >>> traverse_path_for_sequence_members({"foo": {"bar": [42, 43, 44]}}, ("foo", "bar", "*")) ([42, 43, 44], [('foo', 'bar', 0), ('foo', 'bar', 1), ('foo', 'bar', 2)]) >>> traverse_path_for_sequence_members({"foo": {"bar": [{"baz": 1, "bin": 1}, {"baz": 2, "bin": 2}]}}, ("foo", "bar", "*")) ([{'baz': 1, 'bin': 1}, {'baz': 2, 'bin': 2}], [('foo', 'bar', 0), ('foo', 'bar', 1)]) >>> traverse_path_for_sequence_members({"foo": {"bar": [{"baz": 1, "bin": 1}, {"baz": 2, "bin": 2}]}}, ("foo", "bar", "*", "baz")) ([1, 2], [('foo', 'bar', 0, 'baz'), ('foo', 'bar', 1, 'baz')]) >>> traverse_path_for_sequence_members({}, ["foo"]) Traceback (most recent call last): ... KeyError: 'foo' >>> traverse_path_for_sequence_members([], ["foo"]) Traceback (most recent call last): ... ValueError: invalid literal for int() with base 10: 'foo' >>> traverse_path_for_sequence_members([], [0]) Traceback (most recent call last): ... IndexError: list index out of range """ if path is None: path = [] if not path_parts: return [document], [tuple(path)] path_parts = list(path_parts) if not isinstance(document, Sequence): return _handle_non_sequence_for_traverse(document, path_parts, path) return _handle_sequence_for_traverse(document, path_parts, path) def _handle_non_sequence_for_traverse( current_document: dict, current_path_parts: list, current_path: list ) -> Tuple[List[object], List[tuple]]: """ Handling a non-sequence member for `traverse_path_for_sequence_members` is like the loop block in `traverse`: The next path part is the first part in the list of path parts. The new document is obtained from the current document using the new path part as the key. The next path part is added to the traversed path. The traversal continues by recursively calling `traverse_path_for_sequence_members` """ part_to_handle = current_path_parts.pop(0) current_document = current_document[part_to_handle] current_path.append(part_to_handle) return traverse_path_for_sequence_members( current_document, current_path_parts, current_path ) def _handle_sequence_for_traverse( current_document: Sequence, current_path_parts: list, current_path: list ) -> Tuple[List[object], List[tuple]]: """ Check the new path part for the unpack sequence identifier (e.g. '*'), otherwise traverse index and continue: The new document is obtained from the current document (a sequence) using the new path part as the index. The next path part is added to the traversed path """ sequence_part = current_path_parts.pop(0) if sequence_part == UNPACK_SEQUENCE_IDENTIFIER: return _handle_unpack_sequence_for_traverse( current_document, current_path_parts, current_path ) # otherwise, sequence part should be a valid index current_sequence_part = int(sequence_part) current_document = current_document[current_sequence_part] current_path.append(current_sequence_part) return [current_document], [tuple(current_path)] def _handle_unpack_sequence_for_traverse( current_document: Sequence, current_path_parts: list, current_path: list ) -> Tuple[List[object], List[tuple]]: """ When unpacking a sequence, we need to include multiple paths and multiple documents, one for each sequence member. For each sequence member: Append the traversed paths w/ the sequence index, and get the new document. The new document is obtained by traversing the current document using the sequence index. The new document is appended to the list of new documents. For each new document: The remaining document is traversed using the remaining path parts. The list of traversed documents and traversed paths are returned. """ documents = [] resolved_paths = [] new_documents = [] new_paths = [] for sequence_index in range(len(current_document)): new_paths.append(current_path.copy() + [sequence_index]) new_document = traverse_path_for_sequence_members( current_document, [sequence_index] + current_path_parts, current_path.copy() )[0] new_documents.extend(new_document) for i in range(len(new_documents)): # pylint: disable=consider-using-enumerate new_document = new_documents[i] newer_documents, newer_paths = traverse_path_for_sequence_members( new_document, current_path_parts, new_paths[i] ) documents.extend(newer_documents) resolved_paths.extend(newer_paths) return documents, resolved_paths def schema_merge(target, src, path): # noqa: C901 # pylint: disable=R0912 """Merges the src schema into the target schema in place. If there are duplicate keys, src will overwrite target. :raises TypeError: either schema is not of type dict :raises ConstraintError: the schema tries to override "type" or "$ref" >>> schema_merge({}, {}, ()) {} >>> schema_merge({'foo': 'a'}, {}, ()) {'foo': 'a'} >>> schema_merge({}, {'foo': 'a'}, ()) {'foo': 'a'} >>> schema_merge({'foo': 'a'}, {'foo': 'b'}, ()) {'foo': 'b'} >>> schema_merge({'required': 'a'}, {'required': 'b'}, ()) {'required': ['a', 'b']} >>> a, b = {'$ref': 'a'}, {'foo': 'b'} >>> schema_merge(a, b, ('foo',)) {'$ref': 'a', 'foo': 'b'} >>> a, b = {'$ref': 'a'}, {'type': 'b'} >>> schema_merge(a, b, ('foo',)) {'type': OrderedSet(['a', 'b'])} >>> a, b = {'$ref': 'a'}, {'$ref': 'b'} >>> schema_merge(a, b, ('foo',)) {'type': OrderedSet(['a', 'b'])} >>> a, b = {'$ref': 'a'}, {'type': ['b', 'c']} >>> schema_merge(a, b, ('foo',)) {'type': OrderedSet(['a', 'b', 'c'])} >>> a, b = {'$ref': 'a'}, {'type': OrderedSet(['b', 'c'])} >>> schema_merge(a, b, ('foo',)) {'type': OrderedSet(['a', 'b', 'c'])} >>> a, b = {'type': ['a', 'b']}, {'$ref': 'c'} >>> schema_merge(a, b, ('foo',)) {'type': OrderedSet(['a', 'b', 'c'])} >>> a, b = {'type': OrderedSet(['a', 'b'])}, {'$ref': 'c'} >>> schema_merge(a, b, ('foo',)) {'type': OrderedSet(['a', 'b', 'c'])} >>> a, b = {'Foo': {'$ref': 'a'}}, {'Foo': {'type': 'b'}} >>> schema_merge(a, b, ('foo',)) {'Foo': {'type': OrderedSet(['a', 'b'])}} >>> schema_merge({'type': 'a'}, {'type': 'b'}, ()) # doctest: +NORMALIZE_WHITESPACE {'type': OrderedSet(['a', 'b'])} >>> schema_merge({'type': 'string'}, {'type': 'integer'}, ()) {'type': OrderedSet(['string', 'integer'])} """ if not (isinstance(target, Mapping) and isinstance(src, Mapping)): raise TypeError("Both schemas must be dictionaries") for key, src_schema in src.items(): try: if key in ( REF, TYPE, ): # $ref and type are treated similarly and unified target_schema = target.get(key) or target.get(TYPE) or target[REF] else: target_schema = target[key] # carry over existing properties except KeyError: target[key] = src_schema else: next_path = path + (key,) try: target[key] = schema_merge(target_schema, src_schema, next_path) except TypeError: if key in (TYPE, REF): # combining multiple $ref and types src_set = to_set(src_schema) try: target[TYPE] = to_set( target[TYPE] ) # casting to ordered set as lib # implicitly converts strings to sets target[TYPE] |= src_set except (TypeError, KeyError): target_set = to_set(target_schema) target[TYPE] = target_set | src_set try: # check if there are conflicting $ref and type # at the same sub schema. Conflicting $ref could only # happen on combiners because method merges two json # objects without losing any previous info: # e.g. "oneOf": [{"$ref": "..#1.."},{"$ref": "..#2.."}] -> # { "ref": "..#1..", "type": [{},{}] } target.pop(REF) except KeyError: pass elif key == "required": target[key] = sorted(set(target_schema) | set(src_schema)) else: if key in NON_MERGABLE_KEYS and target_schema != src_schema: msg = ( "Object at path '{path}' declared multiple values " "for '{}': found '{}' and '{}'" ) # pylint: disable=W0707 raise ConstraintError(msg, path, key, target_schema, src_schema) target[key] = src_schema return target
2.328125
2
tests/test_cli.py
jacebrowning/slackoff
0
12794163
# pylint: disable=redefined-outer-name,unused-variable,expression-not-assigned import pytest from click.testing import CliRunner from expecter import expect from slackoff.cli import main @pytest.fixture def runner(): return CliRunner() def describe_cli(): def describe_signout(): def it_can_force_signin(runner): result = runner.invoke(main, ["Foobar", "--signout"]) expect(result.exit_code) == 0 expect(result.output) == "Currently signed out of Foobar\n"
1.953125
2
main.py
albgus/fikabotten
1
12794164
<reponame>albgus/fikabotten<gh_stars>1-10 #!/usr/bin/env python3 import discord import asyncio import re import time import yaml import os import sys from sqlalchemy import func, create_engine from sqlalchemy.orm import sessionmaker from db import Base,User,Server,Trigger def load_config(configfile): """Return a dict with configuration from the supplied yaml file.""" try: with open(configfile, 'r') as ymlfile: try: config = yaml.load(ymlfile) except yaml.parser.ParserError: print('Could not parse config file: %s' % configfile) sys.exit(1) except IOError: print('Could not open config file: %s' % configfile) sys.exit(1) return config configfile = 'config.yaml' if os.getenv('FIKABOTTEN_CONFIG'): configfile = os.getenv('FIKABOTTEN_CONFIG') config = load_config(configfile) # Setup database engine = create_engine(config.get('database'), echo=True) Session = sessionmaker(bind=engine) session = Session() Base.metadata.create_all(engine) # Create client client = discord.Client() @client.event @asyncio.coroutine def on_ready(): print('Logged in as') print(client.user.name) print(client.user.id) print('------') @client.event @asyncio.coroutine def on_message(message): # Stop handling messages from this bot immediately. if message.author == client.user: return import json print(json.dumps(message.raw_mentions)) print('Recived message') user_id = message.author.id server_id = message.server.id print('UserID: {0}'.format(message.author.id)) if client.user in message.mentions and 'help' in message.content: yield from client.send_typing(message.channel) yield from asyncio.sleep(4) yield from client.send_message(message.channel, """ Jag kommer att pinga folk på fikalistan när någon pingar mig med "fika". `@fikabotten register` - registrera dig på fikalistan. `@fikabotten unregister` - bli borttagen ifrån fikalistan. `@fikabotten fika` - Trigga meddelandet till alla på fikalistan. """ ) elif client.user in message.mentions and 'unregister' in message.content: print('[on_message] Removing client ID:{0} from ID:{1}'.format(user_id, server_id)) u = session.query(User).filter(User.id==user_id).one_or_none() if u is not None: s = session.query(Server).filter(Server.id==server_id).one_or_none() if s is not None: s.users.remove(u) session.commit() yield from client.send_message(message.channel, "Du är nu borttagen") else: print('[on_message] unregister - server dont exist. waaat') else: print('[on_message] unregister - user dont exist') elif client.user in message.mentions and 'GTFO' in message.content: print('[on_message] Removing client ID:{0} from everywhere') u = session.query(User).filter(User.id==user_id).one_or_none() if u is not None: session.delete(u) session.commit() elif client.user in message.mentions and 'register' in message.content: print('[on_message] Adding client ID:{0} on ID:{1}'.format(user_id, server_id)) u = session.query(User).filter(User.id==user_id).one_or_none() if u is None: u = User(id=user_id) session.add(u) print('Added user to database') s = session.query(Server).filter(Server.id==server_id).one_or_none() if s is None: s = Server(id=server_id) session.add(s) print('Added server to database') if not s in u.servers: u.servers.append(s) session.commit() print('Added client to server') yield from client.send_message(message.channel, 'Du kommer att bli' + ' pingad när det är fika på G.') else: print('But, your already registered in this server :o') yield from client.send_message(message.channel, 'Du är redan tillagd ') yield from asyncio.sleep(3) yield from client.send_typing(message.channel) yield from asyncio.sleep(1) yield from client.send_message(message.channel, message.author.mention + ' n00b') elif (client.user in message.mentions and len(re.findall('fika', message.content,flags=re.I)) > 0): print('[on_message] TIME TO GET SOME FIKA') h = time.localtime().tm_hour # Get server and user objects as u and s. u = session.query(User).filter(User.id==user_id).one_or_none() s = session.query(Server).filter(Server.id==server_id).one_or_none() # If hen isn't, GTFO if u is None: return # Do a check for odd hours of the day. if h < 8 or h > 23: yield from client.send_message(message.channel, message.author.mention + ' :middle_finger:') return elif h > 18: yield from client.send_message(message.channel, message.author.mention + ' Lite sent för fika nu....') return #elif h == 10 or h == 11 or h == 12: # yield from client.send_message(message.channel, message.author.mention + ' Fika? Det är ju lunch...') # return # BEGIN Anti-spam section # Because people are generally assholes and will probably attempt to misuse the bot. # rate_1m = ( session.query(func.count('*')) .select_from(Trigger) .filter(Trigger.user_id==user_id) .filter(Trigger.server_id==server_id) .filter(Trigger.timestamp > time.time()-(60)) # 60s .scalar() ) rate_g_5m = ( session.query(func.count('*')) .select_from(Trigger) .filter(Trigger.server_id==server_id) .filter(Trigger.timestamp > time.time()-(5*60)) # 5*60s .scalar() ) rate_5m = ( session.query(func.count('*')) .select_from(Trigger) .filter(Trigger.user_id==user_id) .filter(Trigger.server_id==server_id) .filter(Trigger.timestamp > time.time()-(5*60)) # 5*60 s .scalar() ) #rate_30m = ( # session.query(func.count('*')) # .select_from(Trigger) # .filter(Trigger.user_id==user_id) # .filter(Trigger.server_id==server_id) # .filter(Trigger.time > ()time.time()-(30*60)) # 5*60 s # .scalar() #) rate_limit_bail = False # RTL-1 if rate_g_5m >= 1: print('RTL-1 - silent') rate_limit_bail = True # RTL-2 if rate_5m == 4: print('RTL-2 - verbose') rate_limit_bail = True yield from client.send_message(message.channel, message.author.mention + ' Förhelvete...!') if rate_1m == 7: print('RTL-3 - GTFO') rate_limit_bail = True yield from client.send_message(message.channel, message.author.mention + ' :middle_finger:') session.add(Trigger( user_id=message.author.id, server_id=server_id, timestamp=int(time.time()) )) # Gotta commit those changes to the DB. session.commit() if rate_limit_bail: return # END Anti-spam section # # Okej, ready for action. Vi har serverobjektet. if s is not None: fikare_db = s.users # En list med alla användare relaterade till servern. fikare_mentions = "" for fikare in fikare_db: #loopa över listan fikare_mentions += '<@{0.id}> '.format(fikare) # Lägg till mentions till en lång sträng. yield from client.send_message(message.channel, fikare_mentions + "FIKA!!") #Skrik. ( session.query(Trigger) .filter(Trigger.timestamp < int(time.time()-30*60)) .delete() ) elif len(re.findall('fika', message.content, flags=re.I)) > 0: print('[on_message] DEBUG: fika matched, but no trigger.') print('------') client.run(config.get('token'))
2.125
2
buffer/shard-cpp-test/common/inner_reuse/out_parser.py
zaqwes8811/coordinator-tasks
0
12794165
# coding: utf-8 import re from inner_reuse import chunks class Ptr(object): """ Contain operation data """ def __init__(self, pos, type_key): self.position = pos self.type_response = type_key self.name_test = None self.out = "" def __repr__(self): return str(dict((k, v) for k, v in self.__dict__.items() if k != 'position')) def get_data(self): """ Returns: key, value """ return self.type_response, (self.name_test, self.out) def split_test_response(self, content_value): """ Returns: (name, out) """ end_name_pos = content_value.find('\n') if end_name_pos != -1: self.name_test = content_value[:end_name_pos] # Почему-то если в строке выше, то влияет на все строку, а не только на срезанную self.name_test = self.name_test.replace('\r', '') self.out = content_value[end_name_pos:].strip() else: self.name_test = content_value def parser_out(out): """ Returns: [(name, ok/fail/deadlock, out_one), ..., ] """ OK = "\[ OK \]" RUN = "\[ RUN \]" FAILED = "\[ FAILED \]" template = [] template.extend([Ptr(a.start(), 'ok') for a in list(re.finditer(OK, out))]) template.extend([Ptr(a.start(), 'fail') for a in list(re.finditer(FAILED, out))]) template.extend([Ptr(a.end(), 'run') for a in list(re.finditer(RUN, out))]) how_split = 2 # По парам response_pairs = chunks(sorted(template, key=lambda record: record.position), how_split) result = [] for pair in response_pairs: head = pair[0] # с ключем run идет вервой if head.type_response == 'run': if len(pair) == 1: pair.append(Ptr(out.__len__(), 'deadlock')) bottom = pair[1] content = out[head.position:bottom.position].strip() bottom.split_test_response(content) yield bottom.get_data() def parse_out_not_gen(out): gen = parser_out(out) report = [] for i in gen: report.append(i) return report
2.703125
3
ml/scratch.py
Shivams9/pythoncodecamp
6
12794166
import numpy import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import r2_score x = [1,2,3,4] x=numpy.array(x) print(x.shape) x=x.reshape(2,-1) print(x.shape) print(x) x=x.reshape(-1) print(x.shape) print(x) y = [2,4,6,8] #x*2=[2,4,6,8] #x*x=[1,4,9,16] #sum(x) = 10 pf=numpy.polyfit(x,y,3) print(pf) print(type(pf)) model = numpy.poly1d(pf) drv=model.deriv() print(model([1,2,3,4])) print(type(drv)) print(model) print(drv) coeff=r2_score(y, model(x)) print(coeff)
3.1875
3
Day 52/PolygonPossibilty.py
sandeep-krishna/100DaysOfCode
0
12794167
''' You are given length of n sides, you need to answer whether it is possible to make n sided convex polygon with it. Input : - First line contains ,no .of testcases. For each test case , first line consist of single integer ,second line consist of spaced integers, size of each side. Output : - For each test case print "Yes" if it is possible to make polygon or else "No" if it is not possible. SAMPLE INPUT 2 3 4 3 2 4 1 2 1 4 SAMPLE OUTPUT Yes No ''' for _ in range(int(input())): n=int(input()) arr=list(map(int,input().split())) total=sum(arr) flag=1 for i in arr: if total-i <= i: flag=0 break print ("Yes" if flag==1 else "No")
4.09375
4
util/ConfigUtils.py
cclauss/ph0neutria
0
12794168
#!/usr/bin/python from ConfigParser import SafeConfigParser import os import string class baseObj: def __init__(self, multiProcess, userAgent, outputFolderName, outputFolder, deleteOutput, dateFormat, useTor, torIP, torPort, redirectLimit, hashCountLimit, urlCharLimit, osintDays, malShareApiKey, disableMalShare, disableOsint, otxKey, shodanKey, vtKey, vtUser, vtReqPerMin, disableVT, viperUrlAdd, viperApiToken): self.multiProcess = multiProcess self.userAgent = userAgent self.outputFolderName = outputFolderName self.outputFolder = outputFolder self.deleteOutput = deleteOutput self.dateFormat = dateFormat self.useTor = useTor self.torIP = torIP self.torPort = torPort self.redirectLimit = redirectLimit self.hashCountLimit = hashCountLimit self.urlCharLimit = urlCharLimit self.osintDays = osintDays self.malShareApiKey = malShareApiKey self.disableMalShare = disableMalShare self.disableOsint = disableOsint self.otxKey = otxKey self.shodanKey = shodanKey self.vtKey = vtKey self.vtUser = vtUser self.vtReqPerMin = vtReqPerMin self.disableVT = disableVT self.viperUrlAdd = viperUrlAdd self.viperApiToken = 'Token {0}'.format(viperApiToken) def getBaseConfig(rootDir): parser = SafeConfigParser() parser.read(os.path.join(rootDir, 'config', 'settings.conf')) multiProcess = parser.get('Core', 'multiprocess') userAgent = parser.get('Core', 'useragent') outputFolderName = parser.get('Core', 'outputfolder') outputFolder = os.path.join(rootDir, outputFolderName) deleteOutput = parser.get('Core', 'deleteoutput') dateFormat = parser.get('Core', 'dateformat') useTor = parser.get('Core', 'usetor') torIP = parser.get('Core', 'torip') torPort = parser.get('Core', 'torport') redirectLimit = parser.get('Core', 'redirectlimit') hashCountLimit = parser.get('Core', 'hashcountlimit') urlCharLimit = parser.get('Core', 'urlcharlimit') osintDays = parser.get('Core', 'osintdays') malShareApiKey = parser.get('MalShare', 'apikey') disableMalShare = parser.get('MalShare', 'disable') disableOsint = parser.get('OSINT', 'disable') otxKey = parser.get('OTX', 'apikey') shodanKey = parser.get('Shodan', 'apikey') vtKey = parser.get('VirusTotal', 'apikey') vtUser = parser.get('VirusTotal', 'username') vtReqPerMin = parser.get('VirusTotal', 'requestsperminute') disableVT = parser.get('VirusTotal', 'disable') viperUrlAdd = parser.get('Viper', 'addurl') viperApiToken = parser.get('Viper', 'apitoken') return baseObj(multiProcess, userAgent, outputFolderName, outputFolder, deleteOutput, dateFormat, useTor, torIP, torPort, redirectLimit, hashCountLimit, urlCharLimit, osintDays, malShareApiKey, disableMalShare, disableOsint, otxKey, shodanKey, vtKey, vtUser, vtReqPerMin, disableVT, viperUrlAdd, viperApiToken)
1.945313
2
dragonfire/conversational/corpus/ubuntudata.py
kameranis/Dragonfire
1
12794169
<gh_stars>1-10 import os from tqdm import tqdm """ Ubuntu Dialogue Corpus http://arxiv.org/abs/1506.08909 """ class UbuntuData: """ """ def __init__(self, dirName): """ Args: dirName (string): directory where to load the corpus """ self.MAX_NUMBER_SUBDIR = 10 self.conversations = [] __dir = os.path.join(dirName, "dialogs") number_subdir = 0 for sub in tqdm(os.scandir(__dir), desc="Ubuntu dialogs subfolders", total=len(os.listdir(__dir))): if number_subdir == self.MAX_NUMBER_SUBDIR: print("WARNING: Early stoping, only extracting {} directories".format(self.MAX_NUMBER_SUBDIR)) return if sub.is_dir(): number_subdir += 1 for f in os.scandir(sub.path): if f.name.endswith(".tsv"): self.conversations.append({"lines": self.loadLines(f.path)}) def loadLines(self, fileName): """ Args: fileName (str): file to load Return: list<dict<str>>: the extracted fields for each line """ lines = [] with open(fileName, 'r') as f: for line in f: l = line[line.rindex("\t")+1:].strip() # Strip metadata (timestamps, speaker names) lines.append({"text": l}) return lines def getConversations(self): return self.conversations
2.6875
3
yacluster.py
KrzysiekJ/yacluster
4
12794170
<filename>yacluster.py from functools import partial, reduce from itertools import chain, product from math import sqrt def distance(coords_1, coords_2): return sqrt(pow(coords_1[0] - coords_2[0], 2) + pow(coords_1[1] - coords_2[1], 2)) def get_grid_cell(x, y, threshold): return (int(x // threshold), int(y // threshold)) def get_nearby_grid_cells(grid_cell): grid_x, grid_y = grid_cell return [(i, j) for i, j in product(range(grid_x - 1, grid_x + 2), range(grid_y - 1, grid_y + 2))] def cluster_iter(clustered, point, threshold): """Add a point to a grid-like cluster structure. This allows comparing point distances only to clusters from nearby grids, not to all clusters. Useful when there are many clusters expected.""" coords, object_ = point point_grid_cell = get_grid_cell(*coords, threshold=threshold) nearby_grid_cells = get_nearby_grid_cells(point_grid_cell) possible_nearby_cluster_locations = chain( *[(location for location in clustered.get(grid_cell, {})) for grid_cell in nearby_grid_cells] ) def nearest_location(champion_with_distance, pretender, coords=coords, threshold=threshold): pretender_distance = distance(coords, pretender) if pretender_distance < threshold: if champion_with_distance and champion_with_distance[1] <= pretender_distance: return champion_with_distance else: return (pretender, pretender_distance) else: return champion_with_distance nearest_cluster_with_distance = reduce(nearest_location, possible_nearby_cluster_locations, None) if nearest_cluster_with_distance: nearest_cluster_location, _nearest_cluster_distance = nearest_cluster_with_distance else: nearest_cluster_location = None if nearest_cluster_location: cluster_grid_cell = get_grid_cell(*nearest_cluster_location, threshold=threshold) cluster = clustered[cluster_grid_cell].pop(nearest_cluster_location) cluster_object_count = len(cluster) new_cluster_location = ( (nearest_cluster_location[0] * cluster_object_count + coords[0]) / (cluster_object_count + 1), (nearest_cluster_location[1] * cluster_object_count + coords[1]) / (cluster_object_count + 1), ) else: cluster = [] new_cluster_location = coords cluster.append(point) new_cluster_grid_cell = get_grid_cell(*new_cluster_location, threshold=threshold) clustered.setdefault(new_cluster_grid_cell, {}) clustered[new_cluster_grid_cell][new_cluster_location] = cluster return clustered def cluster(points, threshold): """Cluster points using distance-based clustering algorithm. Arguments: points — an iterable of two-element point tuples, each containing: • a two-element tuple with X and Y coordinates, • the actual object being clustered; threshold — if a point is included into a cluster, it must be closer to its centroid than this value. Return value: an iterable of two-element cluster tuples, each containing: • a two-element tuple with X and Y coordinates of the cluster centroid; • a list of objects belonging to the cluster. Cluster’s centroid is defined as average coordinates of the cluster’s members. """ cluster_iter_for_threshold = partial(cluster_iter, threshold=threshold) clustered = reduce(cluster_iter_for_threshold, points, {}) return chain( *[((location, [object_ for coords, object_ in points]) for location, points in grid_clusters.items()) for grid_clusters in clustered.values()] )
3.265625
3
mock_interview/spring_mock_at_make_school.py
Sukhrobjon/leetcode
0
12794171
<filename>mock_interview/spring_mock_at_make_school.py<gh_stars>0 """Problem 2: Given an array of integers, replace each element of the array with product of every other element in the array without using the division operator. Example input 1: [1, 2, 3, 4, 5] = > should return output: [120, 60, 40, 30, 24] Example input 2: [5, 3, 4, 2, 6, 8] = > should return output: [1152, 1920, 1440, 2880, 960, 720] """ # slicing the array arr[0:self-1]+arr[self:] # start two pointers at the current num we want to ignore and expand the pointer to the sides def product_no_self(numbers): start = 0 end = 0 index = 0 pro = 1 output = [] # bound check while index < len(numbers): # [1, 2, 3, 4, 5] O(n) curr = numbers[index] start = index - 1 # 2, 1 end = index + 1 # 4, 5 pro = 1 while start > -1 or end < len(numbers): # O(n) if start > -1: pro *= numbers[start] start -= 1 if end < len(numbers): pro *= numbers[end] end += 1 output.append(pro) index += 1 return output numbers = [1, 2, 3, 4, 5] # space is O(n) # run time is O(n^2) print(product_no_self(numbers))
3.84375
4
tests/test_cli_config.py
Dallinger/Dallinger
100
12794172
<reponame>Dallinger/Dallinger from pathlib import Path import json import mock import pytest import shutil import tempfile def test_list_hosts_empty(): from dallinger.command_line.config import get_configured_hosts assert get_configured_hosts() == {} def test_list_hosts_results(tmp_appdir): from dallinger.command_line.config import get_configured_hosts (Path(tmp_appdir) / "hosts").mkdir() host1 = dict(user="test_user_1", host="test_host_1") host2 = dict(user="test_user_2", host="test_host_2") (Path(tmp_appdir) / "hosts" / "test_host_1").write_text(json.dumps(host1)) (Path(tmp_appdir) / "hosts" / "test_host_2").write_text(json.dumps(host2)) assert get_configured_hosts() == {"test_host_1": host1, "test_host_2": host2} def test_store_host(): from dallinger.command_line.config import get_configured_hosts from dallinger.command_line.config import store_host host1 = dict(user="test_user_1", host="test_host_1") host2 = dict(user="test_user_2", host="test_host_2") store_host(host1), store_host(host2) assert get_configured_hosts() == {"test_host_1": host1, "test_host_2": host2} @pytest.fixture(autouse=True) def tmp_appdir(): """Monkey patch appdirs to provede a pristine dirctory to each test""" tmp_dir = tempfile.mkdtemp() with mock.patch("dallinger.command_line.config.APPDIRS") as mock_appdirs: mock_appdirs.user_data_dir = tmp_dir yield tmp_dir shutil.rmtree(tmp_dir)
2.1875
2
energy/evaluation.py
pminervini/DeepKGC
5
12794173
<reponame>pminervini/DeepKGC # -*- coding: utf-8 -*- import numpy as np import theano import theano.tensor as T import logging from sklearn import metrics from sparse.learning import parse_embeddings def auc_pr(predictions=[], labels=[]): '''Computes the Area Under the Precision-Recall Curve (AUC-PR)''' predictions, labels = np.asarray(predictions), np.asarray(labels) precision, recall, threshold = metrics.precision_recall_curve(labels, predictions) auc = metrics.auc(recall, precision) return auc def auc_roc(predictions=[], labels=[]): '''Computes the Area Under the Receiver Operating Characteristic Curve (AUC-ROC)''' predictions, labels = np.asarray(predictions), np.asarray(labels) precision, recall, threshold = metrics.roc_curve(labels, predictions) auc = metrics.auc(recall, precision) return auc # # COMPUTING PERFORMANCE METRICS ON RANKINGS # # # Evaluation summary (as in FB15k): # def ranking_summary(res, idxo=None, n=10, tag='raw'): resg = res[0] + res[1] dres = {} dres.update({'microlmean': np.mean(res[0])}) dres.update({'microlmedian': np.median(res[0])}) dres.update({'microlhits@n': np.mean(np.asarray(res[0]) <= n) * 100}) dres.update({'micrormean': np.mean(res[1])}) dres.update({'micrormedian': np.median(res[1])}) dres.update({'microrhits@n': np.mean(np.asarray(res[1]) <= n) * 100}) resg = res[0] + res[1] dres.update({'microgmean': np.mean(resg)}) dres.update({'microgmedian': np.median(resg)}) dres.update({'microghits@n': np.mean(np.asarray(resg) <= n) * 100}) logging.info('### MICRO (%s):' % (tag)) logging.info('\t-- left >> mean: %s, median: %s, hits@%s: %s%%' % ( round(dres['microlmean'], 5), round(dres['microlmedian'], 5), n, round(dres['microlhits@n'], 3))) logging.info('\t-- right >> mean: %s, median: %s, hits@%s: %s%%' % ( round(dres['micrormean'], 5), round(dres['micrormedian'], 5), n, round(dres['microrhits@n'], 3))) logging.info('\t-- global >> mean: %s, median: %s, hits@%s: %s%%' % ( round(dres['microgmean'], 5), round(dres['microgmedian'], 5), n, round(dres['microghits@n'], 3))) if idxo is not None: listrel = set(idxo) dictrelres = {} dictrellmean = {} dictrelrmean = {} dictrelgmean = {} dictrellmedian = {} dictrelrmedian = {} dictrelgmedian = {} dictrellrn = {} dictrelrrn = {} dictrelgrn = {} for i in listrel: dictrelres.update({i: [[], []]}) for i, j in enumerate(res[0]): dictrelres[idxo[i]][0] += [j] for i, j in enumerate(res[1]): dictrelres[idxo[i]][1] += [j] for i in listrel: dictrellmean[i] = np.mean(dictrelres[i][0]) dictrelrmean[i] = np.mean(dictrelres[i][1]) dictrelgmean[i] = np.mean(dictrelres[i][0] + dictrelres[i][1]) dictrellmedian[i] = np.median(dictrelres[i][0]) dictrelrmedian[i] = np.median(dictrelres[i][1]) dictrelgmedian[i] = np.median(dictrelres[i][0] + dictrelres[i][1]) dictrellrn[i] = np.mean(np.asarray(dictrelres[i][0]) <= n) * 100 dictrelrrn[i] = np.mean(np.asarray(dictrelres[i][1]) <= n) * 100 dictrelgrn[i] = np.mean(np.asarray(dictrelres[i][0] + dictrelres[i][1]) <= n) * 100 dres.update({'dictrelres': dictrelres}) dres.update({'dictrellmean': dictrellmean}) dres.update({'dictrelrmean': dictrelrmean}) dres.update({'dictrelgmean': dictrelgmean}) dres.update({'dictrellmedian': dictrellmedian}) dres.update({'dictrelrmedian': dictrelrmedian}) dres.update({'dictrelgmedian': dictrelgmedian}) dres.update({'dictrellrn': dictrellrn}) dres.update({'dictrelrrn': dictrelrrn}) dres.update({'dictrelgrn': dictrelgrn}) dres.update({'macrolmean': np.mean(dictrellmean.values())}) dres.update({'macrolmedian': np.mean(dictrellmedian.values())}) dres.update({'macrolhits@n': np.mean(dictrellrn.values())}) dres.update({'macrormean': np.mean(dictrelrmean.values())}) dres.update({'macrormedian': np.mean(dictrelrmedian.values())}) dres.update({'macrorhits@n': np.mean(dictrelrrn.values())}) dres.update({'macrogmean': np.mean(dictrelgmean.values())}) dres.update({'macrogmedian': np.mean(dictrelgmedian.values())}) dres.update({'macroghits@n': np.mean(dictrelgrn.values())}) logging.info('### MACRO (%s):' % (tag)) logging.info('\t-- left >> mean: %s, median: %s, hits@%s: %s%%' % ( round(dres['macrolmean'], 5), round(dres['macrolmedian'], 5), n, round(dres['macrolhits@n'], 3))) logging.info('\t-- right >> mean: %s, median: %s, hits@%s: %s%%' % ( round(dres['macrormean'], 5), round(dres['macrormedian'], 5), n, round(dres['macrorhits@n'], 3))) logging.info('\t-- global >> mean: %s, median: %s, hits@%s: %s%%' % ( round(dres['macrogmean'], 5), round(dres['macrogmedian'], 5), n, round(dres['macroghits@n'], 3))) return dres # # RANKING FUNCTIONS # def RankRightFnIdx(fnsim, embeddings, leftop, rightop, subtensorspec=None): """ This function returns a Theano function to measure the similarity score of all 'right' entities given couples of relation and 'left' entities (as index values). :param fnsim: similarity function (on Theano variables). :param embeddings: an Embeddings instance. :param leftop: class for the 'left' operator. :param rightop: class for the 'right' operator. :param subtensorspec: only measure the similarity score for the entities corresponding to the first subtensorspec (int) entities of the embedding matrix (default None: all entities). """ embedding, relationl, relationr = parse_embeddings(embeddings) # Inputs idxl, idxo = T.iscalar('idxl'), T.iscalar('idxo') # Graph lhs = (embedding.E[:, idxl]).reshape((1, embedding.D)) # lhs: 1xD vector containing the embedding of idxl if subtensorspec is not None: # We compute the score only for a subset of entities rhs = (embedding.E[:, :subtensorspec]).T else: rhs = embedding.E.T # rhs: NxD embedding matrix rell = (relationl.E[:, idxo]).reshape((1, relationl.D)) # rell: 1xD vector containing the embedding of idxo (relationl) relr = (relationr.E[:, idxo]).reshape((1, relationr.D)) # relr: 1xD vector containing the embedding of idxo (relationr) tmp = leftop(lhs, rell) # a = rell(lhs) # b = relr(rhs) simi = fnsim(tmp.reshape((1, tmp.shape[1])), rightop(rhs, relr)) # simi = fnsim(a, b) """ Theano function inputs. :input idxl: index value of the 'left' member. :input idxo: index value of the relation member. Theano function output. :output simi: vector of score values. """ return theano.function([idxl, idxo], [simi], on_unused_input='ignore') def RankLeftFnIdx(fnsim, embeddings, leftop, rightop, subtensorspec=None): """ This function returns a Theano function to measure the similarity score of all 'left' entities given couples of relation and 'right' entities (as index values). :param fnsim: similarity function (on Theano variables). :param embeddings: an Embeddings instance. :param leftop: class for the 'left' operator. :param rightop: class for the 'right' operator. :param subtensorspec: only measure the similarity score for the entities corresponding to the first subtensorspec (int) entities of the embedding matrix (default None: all entities). """ embedding, relationl, relationr = parse_embeddings(embeddings) # Inputs idxr, idxo = T.iscalar('idxr'), T.iscalar('idxo') # Graph if subtensorspec is not None: # We compute the score only for a subset of entities lhs = (embedding.E[:, :subtensorspec]).T else: lhs = embedding.E.T rhs = (embedding.E[:, idxr]).reshape((1, embedding.D)) rell = (relationl.E[:, idxo]).reshape((1, relationl.D)) relr = (relationr.E[:, idxo]).reshape((1, relationr.D)) tmp = rightop(rhs, relr) simi = fnsim(leftop(lhs, rell), tmp.reshape((1, tmp.shape[1]))) """ Theano function inputs. :input idxr: index value of the 'right' member. :input idxo: index value of the relation member. Theano function output. :output simi: vector of score values. """ return theano.function([idxr, idxo], [simi], on_unused_input='ignore') def RankingScoreIdx(sl, sr, idxl, idxr, idxo): """ This function computes the rank list of the lhs and rhs, over a list of lhs, rhs and rel indexes. :param sl: Theano function created with RankLeftFnIdx(). :param sr: Theano function created with RankRightFnIdx(). :param idxl: list of 'left' indices. :param idxr: list of 'right' indices. :param idxo: list of relation indices. """ errl = [] errr = [] for l, o, r in zip(idxl, idxo, idxr): errl += [np.argsort(np.argsort((sl(r, o)[0]).flatten())[::-1]).flatten()[l] + 1] errr += [np.argsort(np.argsort((sr(l, o)[0]).flatten())[::-1]).flatten()[r] + 1] return errl, errr def FilteredRankingScoreIdx(sl, sr, idxl, idxr, idxo, true_triples): """ This function computes the rank list of the lhs and rhs, over a list of lhs, rhs and rel indexes. :param sl: Theano function created with RankLeftFnIdx(). :param sr: Theano function created with RankRightFnIdx(). :param idxl: list of 'left' indices. :param idxr: list of 'right' indices. :param idxo: list of relation indices. """ errl = [] errr = [] for l, o, r in zip(idxl, idxo, idxr): il=np.argwhere(true_triples[:,0]==l).reshape(-1,) io=np.argwhere(true_triples[:,1]==o).reshape(-1,) ir=np.argwhere(true_triples[:,2]==r).reshape(-1,) inter_l = [i for i in ir if i in io] rmv_idx_l = [true_triples[i,0] for i in inter_l if true_triples[i,0] != l] scores_l = (sl(r, o)[0]).flatten() scores_l[rmv_idx_l] = -np.inf errl += [np.argsort(np.argsort(-scores_l)).flatten()[l] + 1] inter_r = [i for i in il if i in io] rmv_idx_r = [true_triples[i,2] for i in inter_r if true_triples[i,2] != r] scores_r = (sr(l, o)[0]).flatten() scores_r[rmv_idx_r] = -np.inf errr += [np.argsort(np.argsort(-scores_r)).flatten()[r] + 1] return errl, errr def RankingScoreIdx_sub(sl, sr, idxl, idxr, idxo, selection=[]): """ Similar to RankingScoreIdx, but works on a subset of examples, defined in the 'selection' parameter. """ errl, errr = [], [] for l, o, r in [(idxl[i], idxo[i], idxr[i]) for i in selection]: errl += [np.argsort(np.argsort((sl(r, o)[0]).flatten())[::-1]).flatten()[l] + 1] errr += [np.argsort(np.argsort((sr(l, o)[0]).flatten())[::-1]).flatten()[r] + 1] return errl, errr def RankingScoreRightIdx(sr, idxl, idxr, idxo): """ This function computes the rank list of the rhs, over a list of lhs, rhs and rel indexes. :param sr: Theano function created with RankRightFnIdx(). :param idxl: list of 'left' indices. :param idxr: list of 'right' indices. :param idxo: list of relation indices. """ errr = [] for l, o, r in zip(idxl, idxo, idxr): errr += [np.argsort(np.argsort((sr(l, o)[0]).flatten())[::-1]).flatten()[r] + 1] return errr # # COMPUTING PERFORMANCE METRICS ON CLASSIFICATIONS # def classification_summary(energyfn, validlidx, validridx, validoidx, valid_targets, testlidx, testridx, testoidx, test_targets): # Find unique relation indexes relidxs = np.unique(validoidx) valid_matches, test_matches = [], [] # Iterate over unique relation indexes for relidx in relidxs: # Select the validation triples containing the 'relidx' predicate, and the corresponding target values valid_idxs = np.where(validoidx == relidx) r_validlidx, r_validridx, r_validoidx = validlidx[valid_idxs], validridx[valid_idxs], validoidx[valid_idxs] r_valid_targets = valid_targets[valid_idxs] # Evaluate the energies of those triples r_valid_energies = energyfn(r_validlidx, r_validridx, r_validoidx)[0] r_valid_cutpoint = find_classification_threshold(r_valid_energies, r_valid_targets) valid_matches += classification_matches(r_valid_energies, r_valid_targets, r_valid_cutpoint) # Select the test triples containing the 'relidx' predicate, and the corresponding target values test_idxs = np.where(testoidx == relidx) r_testlidx, r_testridx, r_testoidx = testlidx[test_idxs], testridx[test_idxs], testoidx[test_idxs] r_test_targets = test_targets[test_idxs] r_test_energies = energyfn(r_testlidx, r_testridx, r_testoidx)[0] test_matches += classification_matches(r_test_energies, r_test_targets, r_valid_cutpoint) logging.info('Validation Accuracy: %s -- Test Accuracy: %s' % ((np.mean(valid_matches) * 100.0), (np.mean(test_matches) * 100.0))) def find_classification_threshold(energies, targets): x = np.unique(np.sort(energies)) cutpoints = np.concatenate(([x[0]], (x[1:] + x[:-1]) / 2., [x[-1]])) accuracies = [np.mean(classification_matches(energies, targets, cutpoint)) * 100.0 for cutpoint in cutpoints] best_cutpoint = cutpoints[np.argmax(np.asarray(accuracies))] return best_cutpoint def classification_matches(energies, targets, threshold): classifications = classify(energies, threshold) comparisons = (targets == classifications) ret = [1. if comparison == True else 0. for comparison in comparisons] return ret def classify(energies, threshold): classifications = np.asarray([1 if energy < threshold else 0 for energy in energies]) return classifications # # CLASSIFICATION FUNCTIONS # def EnergyFn(fnsim, embeddings, leftop, rightop): embedding, relationl, relationr = parse_embeddings(embeddings) idxl, idxo, idxr = T.iscalar('idxl'), T.iscalar('idxo'), T.iscalar('idxr') lhs = (embedding.E[:, idxl]).reshape((1, embedding.D)) rhs = (embedding.E[:, idxr]).reshape((1, embedding.D)) rell = (relationl.E[:, idxo]).reshape((1, relationl.D)) relr = (relationr.E[:, idxo]).reshape((1, relationr.D)) energy = - fnsim(leftop(lhs, rell), rightop(rhs, relr)) return theano.function([idxl, idxr, idxo], [energy], on_unused_input='ignore') def EnergyVecFn(fnsim, embeddings, leftop, rightop): embedding, relationl, relationr = parse_embeddings(embeddings) idxl, idxo, idxr = T.ivector('idxl'), T.ivector('idxo'), T.ivector('idxr') lhs, rhs = embedding.E[:, idxl].T, embedding.E[:, idxr].T rell, relr = relationl.E[:, idxo].T, relationr.E[:, idxo].T energy = - fnsim(leftop(lhs, rell), rightop(rhs, relr)) return theano.function([idxl, idxr, idxo], [energy], on_unused_input='ignore') # # LEVERAGING RANGE AND DOMAIN RELATIONS DURING LEARNING # def FilteredRankingScoreIdx_DR(sl, sr, idxl, idxr, idxo, rel2domain, rel2range, illegal_dr_penalty=1e6, true_triples=None): errl, errr = [], [] relidxs = np.unique(idxo) for relidx in relidxs: dr_domain, dr_range = rel2domain[relidx], rel2range[relidx] dr_domain = set(dr_domain) dr_range = set(dr_range) test_triples = [(l, o, r) for (l, o, r) in zip(idxl, idxo, idxr) if o == relidx] for l, o, r in test_triples: rmv_idx_l, rmv_idx_r = [], [] # Remove triples from true_triples from ranking results if true_triples is not None: il = np.argwhere(true_triples[:, 0] == l).reshape(-1,) io = np.argwhere(true_triples[:, 1] == o).reshape(-1,) ir = np.argwhere(true_triples[:, 2] == r).reshape(-1,) inter_l = [i for i in ir if i in io] rmv_idx_l += [true_triples[i, 0] for i in inter_l if true_triples[i, 0] != l] inter_r = [i for i in il if i in io] rmv_idx_r += [true_triples[i, 2] for i in inter_r if true_triples[i, 2] != r] scores_l = (sl(r, o)[0]).flatten() scores_r = (sr(l, o)[0]).flatten() # Remove triples not in domain and range from ranking results pen_idx_l = [cl for cl in range(len(scores_l)) if cl not in dr_domain] pen_idx_r = [cr for cr in range(len(scores_r)) if cr not in dr_range] scores_l[rmv_idx_l] = -np.inf scores_r[rmv_idx_r] = -np.inf scores_l[pen_idx_l] -= illegal_dr_penalty scores_r[pen_idx_r] -= illegal_dr_penalty errl += [np.argsort(np.argsort(- scores_l)).flatten()[l] + 1] errr += [np.argsort(np.argsort(- scores_r)).flatten()[r] + 1] return errl, errr # # SCHEMA-AWARE RANKING FUNCTIONS # # # RANKING FUNCTIONS # def RankRightFnIdx_Schema(fnsim, embeddings, prior, leftop, rightop, subtensorspec=None): embedding, relationl, relationr = parse_embeddings(embeddings) # Inputs idxl, idxo = T.iscalar('idxl'), T.iscalar('idxo') g = T.matrix('g') # Graph lhs = (embedding.E[:, idxl]).reshape((1, embedding.D)) # lhs: 1xD vector containing the embedding of idxl if subtensorspec is not None: # We compute the score only for a subset of entities rhs = (embedding.E[:, :subtensorspec]).T else: rhs = embedding.E.T # rhs: NxD embedding matrix rell = (relationl.E[:, idxo]).reshape((1, relationl.D)) # rell: 1xD vector containing the embedding of idxo (relationl) relr = (relationr.E[:, idxo]).reshape((1, relationr.D)) # relr: 1xD vector containing the embedding of idxo (relationr) tmp = leftop(lhs, rell) # a = rell(lhs) # b = relr(rhs) # Negative Energy simi = fnsim(tmp.reshape((1, tmp.shape[1])), rightop(rhs, relr)) # simi = fnsim(a, b) pen_simi = g[0, :].T * prior.P[idxo, 0].T + g[1, :].T * prior.P[idxo, 1].T simi = simi - pen_simi return theano.function([idxl, idxo, g], [simi], on_unused_input='ignore') def RankLeftFnIdx_Schema(fnsim, embeddings, prior, leftop, rightop, subtensorspec=None): embedding, relationl, relationr = parse_embeddings(embeddings) # Inputs idxr, idxo = T.iscalar('idxr'), T.iscalar('idxo') g = T.matrix('g') # Graph if subtensorspec is not None: # We compute the score only for a subset of entities lhs = (embedding.E[:, :subtensorspec]).T else: lhs = embedding.E.T rhs = (embedding.E[:, idxr]).reshape((1, embedding.D)) rell = (relationl.E[:, idxo]).reshape((1, relationl.D)) relr = (relationr.E[:, idxo]).reshape((1, relationr.D)) tmp = rightop(rhs, relr) simi = fnsim(leftop(lhs, rell), tmp.reshape((1, tmp.shape[1]))) pen_simi = g[0, :].T * prior.P[idxo, 0].T + g[1, :].T * prior.P[idxo, 1].T simi = simi - pen_simi return theano.function([idxr, idxo, g], [simi], on_unused_input='ignore') #@profile def RankingScoreIdx_Schema(sl, sr, idxl, idxr, idxo, relation2domainSet, relation2rangeSet, schemaPenalty, l_subtensorspec=None, r_subtensorspec=None): errl = [] errr = [] for l, o, r in zip(idxl, idxo, idxr): gl = schemaPenalty.schema_penalties_lr_fast(range(l_subtensorspec), [r] * l_subtensorspec, [o] * l_subtensorspec) gr = schemaPenalty.schema_penalties_lr_fast([l] * r_subtensorspec, range(r_subtensorspec), [o] * r_subtensorspec) slro = sl(r, o, gl)[0] srlo = sr(l, o, gr)[0] errl += [np.argsort(np.argsort((slro).flatten())[::-1]).flatten()[l] + 1] errr += [np.argsort(np.argsort((srlo).flatten())[::-1]).flatten()[r] + 1] return errl, errr def FilteredRankingScoreIdx_Schema(sl, sr, idxl, idxr, idxo, true_triples, relation2domainSet, relation2rangeSet, schemaPenalty, l_subtensorspec=None, r_subtensorspec=None): errl = [] errr = [] for l, o, r in zip(idxl, idxo, idxr): il=np.argwhere(true_triples[:,0]==l).reshape(-1,) io=np.argwhere(true_triples[:,1]==o).reshape(-1,) ir=np.argwhere(true_triples[:,2]==r).reshape(-1,) gl = schemaPenalty.schema_penalties_lr_fast(range(l_subtensorspec), [r] * l_subtensorspec, [o] * l_subtensorspec) gr = schemaPenalty.schema_penalties_lr_fast([l] * r_subtensorspec, range(r_subtensorspec), [o] * r_subtensorspec) slro = sl(r, o, gl)[0] srlo = sr(l, o, gr)[0] inter_l = [i for i in ir if i in io] rmv_idx_l = [true_triples[i, 0] for i in inter_l if true_triples[i, 0] != l] scores_l = (slro).flatten() scores_l[rmv_idx_l] = -np.inf errl += [np.argsort(np.argsort(-scores_l)).flatten()[l] + 1] inter_r = [i for i in il if i in io] rmv_idx_r = [true_triples[i, 2] for i in inter_r if true_triples[i, 2] != r] scores_r = (srlo).flatten() scores_r[rmv_idx_r] = -np.inf errr += [np.argsort(np.argsort(-scores_r)).flatten()[r] + 1] return errl, errr
2.046875
2
tests/test_markup.py
Kiran-Raj-Dev/ManimPango
0
12794174
# -*- coding: utf-8 -*- from pathlib import Path import pytest import manimpango from . import CASES_DIR from ._manim import MarkupText from .svg_tester import SVGStyleTester ipsum_text = ( "<b>Lorem ipsum dolor</b> sit amet, <i>consectetur</i> adipiscing elit," "sed do eiusmod tempor incididunt ut labore et dolore" "magna aliqua. Ut enim <b>ad</b> minim veniam, quis nostrud" "exercitation ullamco laboris nisi ut aliquip" "ex ea commodo consequat. Duis aute irure dolor" "in reprehenderit in voluptate velit esse cillum" "dolore eu fugiat nulla pariatur. Excepteur sint" "occaecat cupidatat non proident, sunt in culpa qui" "officia deserunt mollit anim id est laborum." ) @pytest.mark.parametrize("text", ["foo", "<b>bar</b>", "வணக்கம்"]) def test_good_markup(text): assert not manimpango.MarkupUtils.validate( text, ), f"{text} should not fail validation" @pytest.mark.parametrize("text", ["<b>foo", "<xyz>foo</xyz>"]) def test_bad_markup(text): assert manimpango.MarkupUtils.validate( text ), f"{text} should fail validation (unbalanced tags)" @pytest.mark.parametrize( "text,error", [ ( "<b>foo", "Error on line 1 char 23: Element “markup” was closed, " "but the currently open element is “b”", ), ( "<xyz>foo</xyz>", "Unknown tag 'xyz' on line 1 char 14", ), ], ) def test_bad_markup_error_message(text, error): assert manimpango.MarkupUtils.validate(text) == error def test_markup_text(tmpdir): loc = Path(tmpdir, "test.svg") assert not loc.exists() MarkupText( '<span underline="error"><b><i>Hello Manim</i></b></span>', filename=str(loc) ) assert loc.exists() def test_markup_justify(tmpdir): # don't know how to verify this correctly # it varies upon diffent system so, we are # just check whether it runs loc = Path(tmpdir, "test.svg") assert not loc.exists() MarkupText(ipsum_text, justify=True, filename=str(loc)) assert loc.exists() def test_markup_indent(tmpdir): # don't know how to verify this correctly # it varies upon diffent system so, we are # just check whether it runs loc = Path(tmpdir, "test.svg") assert not loc.exists() MarkupText(ipsum_text, indent=10, filename=str(loc)) assert loc.exists() def test_markup_alignment(tmpdir): # don't know how to verify this correctly # it varies upon diffent system so, we are # just check whether it runs loc = Path(tmpdir, "test.svg") assert not loc.exists() MarkupText( ipsum_text, alignment=manimpango.Alignment.CENTER, filename=str(loc), ) assert loc.exists() def test_markup_style(tmpdir): test_case = CASES_DIR / "hello_blue_world_green.svg" expected = tmpdir / "expected.svg" text = "<span foreground='BLUE'>Hello</span>\n<span foreground='GREEN'>World</span>" MarkupText( text, filename=str(expected), ) s = SVGStyleTester(gotSVG=expected, expectedSVG=test_case) assert len(s.got_svg_style) == len(s.expected_svg_style) assert s.got_svg_style == s.expected_svg_style def test_wrap_text(tmpdir): tmpdir = Path(tmpdir) wrapped = tmpdir / "wrap.svg" nowrap = tmpdir / "nowarap.svg" MarkupText(ipsum_text, wrap_text=False, filename=str(nowrap)) MarkupText(ipsum_text, filename=str(wrapped)) assert wrapped.read_text() != nowrap.read_text()
2.34375
2
orb_simulator/orbsim_language/orbsim_ast/bitwise_shift_right_node.py
dmguezjaviersnet/IA-Sim-Comp-Project
1
12794175
<filename>orb_simulator/orbsim_language/orbsim_ast/bitwise_shift_right_node.py from orbsim_language.orbsim_ast.binary_expr_node import BinaryExprNode # >> class BitwiseShiftRightNode(BinaryExprNode): pass
1.695313
2
pylabnet/network/client_server/dio_breakout.py
wi11dey/pylabnet
10
12794176
<gh_stars>1-10 from pylabnet.network.core.service_base import ServiceBase from pylabnet.network.core.client_base import ClientBase class Service(ServiceBase): def exposed_measure_voltage(self, board, channel): return self._module.measure_voltage(board, channel) def exposed_set_high_voltage(self, board, channel, voltage): return self._module.set_high_voltage(board, channel, voltage) def exposed_set_low_voltage(self, board, channel, voltage): return self._module.set_low_voltage(board, channel, voltage) def exposed_get_high_voltage(self, board, channel): return self._module.get_high_voltage(board, channel) def exposed_get_low_voltage(self, board, channel): return self._module.get_low_voltage(board, channel) def exposed_save(self): return self._module.save() def exposed_override(self, board, channel, state=True): return self._module.override(board, channel, state) def exposed_disable_override(self, board, channel): return self._module.disable_override(board, channel) def close_server(self): """ Closes the server for which the service is running Overwrites parent class method """ self._module.close() super().close_server() class Client(ClientBase): def measure_voltage(self, board, channel): return self._service.exposed_measure_voltage(board, channel) def set_high_voltage(self, board, channel, voltage): return self._service.exposed_set_high_voltage(board, channel, voltage) def set_low_voltage(self, board, channel, voltage): return self._service.exposed_set_low_voltage(board, channel, voltage) def get_high_voltage(self, board, channel): return self._service.exposed_get_high_voltage(board, channel) def get_low_voltage(self, board, channel): return self._service.exposed_get_low_voltage(board, channel) def save(self): return self._service.exposed_save() def override(self, board, channel, state=True): return self._service.exposed_override(board, channel, state) def disable_override(self, board, channel): return self._service.exposed_disable_override(board, channel)
2.46875
2
api/__init__.py
adenilsonElias/Gerenciador_Casa_Aluguel
0
12794177
""" API do Gerenciador de Casas de Aluguel ====================================== """ # https://www.pythoncentral.io/introduction-to-sqlite-in-python/ import sqlite3 import config def make_connection(): return sqlite3.connect(config.DATABASE_URL) class InquilinoException(Exception): ... class CasaException(Exception): ... class DAO(): def __init__(self, conn): self.conn = conn class Casa_DAO(DAO): def adiciona_casa(self, nome=None, valor_aluguel=None, agua=None, instalacao_eletrica=None, commit=False, rollback=False): if nome is None: raise Exception("Necessário prover nome.") if valor_aluguel is None: raise Exception("Necessário prover um valor para o aluguel.") try: cursor = self.conn.cursor() cursor.execute(""" INSERT INTO casa(nome_casa, valor_aluguel_casa, agua_casa, num_instalacao) VALUES (?,?,?,?) """, (nome, valor_aluguel, agua, instalacao_eletrica)) if commit: self.conn.commit() return { 'id_casa': cursor.lastrowid, 'nome_casa': nome, 'valor_aluguel': valor_aluguel, 'agua_casa': agua, 'num_instalacao_eletrica': instalacao_eletrica } except sqlite3.Error as e: if rollback: self.conn.rollback() return None def todas_casas(self, vazias=False): cursor = self.conn.cursor() if vazias: cursor.execute(""" SELECT c.id_casa, nome_casa, valor_aluguel_casa, agua_casa, i.num_instalacao, cpf_titular FROM casa c LEFT JOIN instalacao_eletrica i ON c.num_instalacao = i.num_instalacao WHERE c.id_casa NOT IN ( SELECT casa.id_casa from casa JOIN contrato ON contrato.id_casa= casa.id_casa WHERE ativo ) GROUP BY c.id_casa; """) else: cursor.execute(""" SELECT c.id_casa, nome_casa, valor_aluguel_casa, agua_casa, i.num_instalacao, cpf_titular FROM casa c LEFT JOIN instalacao_eletrica i ON c.num_instalacao = i.num_instalacao; """) casas = cursor.fetchall() return [{ 'id_casa': x[0], 'nome_casa': x[1], 'valor_aluguel': x[2], 'agua_casa': x[3], 'num_instalacao_eletrica': x[4], 'cpf': x[5] } for x in casas] def altera_casa(self, id=None, commit=False, rollback=False, **kwargs): if id is None: raise Exception("Necessário prover um ID") if not len(kwargs): raise Exception("Necessário prover novas informações para o Inquilino") query = f'''UPDATE casa SET {', '.join([f"{key}{'_casa' if key != 'num_instalacao' else '' } = ?" for key in kwargs.keys()])} WHERE id_casa = ?''' # return None try: cursor = self.conn.cursor() cursor.execute(query, tuple((kwargs[k] for k in kwargs.keys())) + tuple([id])) if commit: self.conn.commit() except sqlite3.Error as e: if rollback: self.conn.rollback() class Instalacao_Eletrica_DAO(DAO): def adiciona_instalacao_eletrica(self, num_instalacao=None, cpf=None, commit=False, rollback=False): if num_instalacao is None: raise Exception("Necessário prover um número de instalação") if cpf is None: raise Exception("Necessário prover um número de CPF") try: cursor = self.conn.cursor() cursor.execute(""" INSERT INTO instalacao_eletrica VALUES (?, ?) """, (num_instalacao, cpf)) if commit: self.conn.commit() return { 'num_instalacao': num_instalacao, 'cpf_titular': cpf } except sqlite3.Error as e: # e if rollback: self.conn.rollback() return None def altera_instalacao(self, num_instalacao, cpf, commit=False, rollback=False): query = f'''UPDATE instalacao_eletrica SET cpf_titular = ? WHERE num_instalacao = ? ''' # return None try: cursor = self.conn.cursor() cursor.execute(query, (cpf, num_instalacao)) if commit: self.conn.commit() except sqlite3.Error as e: if rollback: self.conn.rollback() def todas_instalacoes(self): cursor = self.conn.cursor() cursor.execute(""" SELECT * FROM instalacao_eletrica; """) instalcoes = cursor.fetchall() return [{ 'num_instalacao': x[0], 'cpf_titular': x[1] } for x in instalacoes] class Inquilino_DAO(DAO): def adiciona_inquilino(self, cpf=None, nome=None, rg=None, commit=False, rollback=False): if cpf is None: raise Exception("Necessário prover um número de CPF") if nome is None: raise Exception("Necessário prover um Nome") if rg is None: raise Exception("Necessário prover um RG") try: cursor = self.conn.cursor() cursor.execute(""" INSERT INTO inquilino(cpf_inq, nome_inq, rg_inq) VALUES (?, ?, ?) """, (cpf, nome, rg)) if commit: self.conn.commit() return { 'id_inq': cursor.lastrowid, 'cpf_inq': cpf, 'nome_inq': nome, 'rg_inq': rg } except sqlite3.Error as e: if rollback: self.conn.rollback() return None def todos_inquilinos(self, ativos=False, inativos=False): cursor = self.conn.cursor() if ativos and inativos: raise Exception("Conflito") elif ativos: cursor.execute(""" select * from inquilino where id_inq in (select DISTINCT id_inq from contrato where ativo); """) elif inativos: cursor.execute(""" select * from inquilino where id_inq not in (select DISTINCT id_inq from contrato where ativo); """) else: cursor.execute(""" SELECT * from inquilino; """) inquilinos = cursor.fetchall() return [{ 'id_inq': x[0], 'cpf_inq': x[1], 'nome_inq': x[2], 'rg_inq': x[3] } for x in inquilinos] def altera_inquilino(self, id=None, commit=False, rollback=False, **kwargs): if id is None: raise Exception("Necessário prover um ID") if not len(kwargs): raise Exception("Necessário prover novas informações para o Inquilino") query = f'''UPDATE inquilino SET {', '.join([f'{key}_inq = ?' for key in kwargs.keys()])} WHERE id_inq = ?''' try: cursor = self.conn.cursor() cursor.execute(query, tuple((kwargs[k] for k in kwargs.keys())) + tuple([id])) if commit: self.conn.commit() except sqlite3.Error as e: if rollback: self.conn.rollback() class Contrato_DAO(DAO): def adiciona_contrato(self, valor=None, ativo=True, dia_vencimento=None, fim_contrato=None, casa=None, inq=None, commit=False, rollback=False): if valor is None: raise Exception("Necessário prover um valor de aluguel para o contrato") if dia_vencimento is None: raise Exception("Necessário prover uma data de vencimento") if casa is None: raise Exception("Necessário escolher uma casa") if inq is None: raise Exception("Necessário escolher um inquilino") try: cursor = self.conn.cursor() self._valida(inq, casa) cursor.execute(""" INSERT INTO contrato(valor, ativo, dt_fim_contrato, dia_venc_aluguel, id_casa, id_inq) VALUES (?,?,?,?,?,?) """, (valor, ativo,fim_contrato, dia_vencimento, casa, inq)) if commit: self.conn.commit() return { 'id_contrato': cursor.lastrowid, 'valor': valor, 'ativo': ativo, 'dt_fim_contrato': fim_contrato, 'dia_venc_aluguel': dia_vencimento, 'id_casa': casa, 'id_inq': inq } except sqlite3.Error as e: if rollback: self.conn.rollback() return None def _valida(self, id_inq=None, id_casa=None): c = Contrato_DAO(make_connection()) if id_inq and id_inq in [x['id_inq'] for x in c.todos_contratos() if x['ativo']]: raise InquilinoException() if id_casa and id_casa in [x['id_casa'] for x in c.todos_contratos() if x['ativo']]: raise CasaException() def todos_contratos(self): cursor = self.conn.cursor() cursor.execute(""" SELECT * FROM contrato; """) contratos = cursor.fetchall() return [{ 'id_contrato': x[0], 'valor': x[1], 'ativo': x[2], 'dt_fim_contrato': x[3], 'dia_venc_aluguel': x[4], 'id_casa': x[5], 'id_inq': x[6] } for x in contratos] def altera_valor_contrato(self, id=None, valor=None, commit=False, rollback=False): if id is None: raise Exception("Necessário prover um ID") if valor is None: raise Exception("Necessário prover um valor") query = f'''UPDATE contrato SET valor = ? WHERE id_contrato = ?''' print(query) try: cursor = self.conn.cursor() cursor.execute(query, (valor, id)) if commit: self.conn.commit() except sqlite3.Error as e: if rollback: self.conn.rollback() def inativa_contrato(self, id=None, commit=False, rollback=False): if id is None: raise Exception("Necessário prover um ID") query = '''UPDATE contrato SET ativo = 0 WHERE id_contrato = ?''' try: cursor = self.conn.cursor() cursor.execute(query, (id, )) if commit: self.conn.commit() except sqlite3.Error as e: if rollback: self.conn.rollback() def ativa_contrato(self, id=None, commit=False, rollback=False): if id is None: raise Exception("Necessário prover um ID") C = self.get_contrato(id) self._valida(C['id_inq'], C['id_casa'] ) query = '''UPDATE contrato SET ativo = 1 WHERE id_contrato = ?''' try: cursor = self.conn.cursor() cursor.execute(query, (id,)) if commit: self.conn.commit() except sqlite3.Error as e: if rollback: self.conn.rollback() def get_contrato(self, id): cursor = self.conn.cursor() cursor.execute(""" SELECT * FROM contrato WHERE id_contrato = ?; """, tuple([id])) contratos = cursor.fetchall() return [{ 'id_contrato': x[0], 'valor': x[1], 'ativo': x[2], 'dt_fim_contrato': x[3], 'dia_venc_aluguel': x[4], 'id_casa': x[5], 'id_inq': x[6] } for x in contratos][0] class PagamentoDAO(DAO): def realiza_pagamento(self, id_contrato=None, dt_pag=None, dt_venc=None, deposito=False, commit=False, rollback=False): if id_contrato is None: raise Exception("Necessário prover um contrato") if dt_venc is None: raise Exception("Necessário prover uma data de vencimento") if dt_pag is None: raise Exception("Necessário prover uma data de pagamento") try: cursor = self.conn.cursor() cursor.execute(""" INSERT INTO pagamento(dt_venc, dt_pag, deposito, id_contrato) VALUES (?, ?, ?, ?) """, (dt_venc, dt_pag, deposito, id_contrato)) if commit: self.conn.commit() return { 'id_pag': cursor.lastrowid , 'dt_venc': dt_venc , 'dt_pag': dt_pag , 'deposito': deposito , 'id_contrato': id_contrato } except sqlite3.Error as e: if rollback: self.conn.rollback() return None def todos_pagamentos(self): cursor = self.conn.cursor() cursor.execute(""" SELECT * FROM pagamento; """) pagamentos = cursor.fetchall() return [{ 'id_pag': x[0] , 'dt_venc': x[1] , 'dt_pag': x[2] , 'deposito': x[3] , 'id_contrato': x[4] } for x in pagamentos] def todos_pagamentos_contrato(self, id_contrato): cursor = self.conn.cursor() cursor.execute(""" SELECT * FROM pagamento WHERE pagamento.id_contrato = ?; """, (id_contrato)) pagamentos = cursor.fetchall() return [{ 'id_pag': x[0] , 'dt_venc': x[1] , 'dt_pag': x[2] , 'deposito': x[3] , 'id_contrato': x[4] } for x in pagamentos] def start_db(conn): cursor = conn.cursor() cursor.executescript(""" CREATE TABLE IF NOT EXISTS instalacao_eletrica ( num_instalacao VARCHAR(20) NOT NULL PRIMARY KEY, cpf_titular VARCHAR(11) NOT NULL UNIQUE ); CREATE TABLE IF NOT EXISTS casa( id_casa INTEGER NOT NULL PRIMARY KEY, nome_casa INTEGER NOT NULL, valor_aluguel_casa INTEGER NOT NULL, agua_casa VARCHAR(10), num_instalacao VARCHAR(11) UNIQUE, FOREIGN KEY (num_instalacao) REFERENCES instalacao_eletrica(num_instalacao) ); CREATE TABLE IF NOT EXISTS inquilino( id_inq INTEGER NOT NULL PRIMARY KEY, cpf_inq VARCHAR(11) NOT NULL UNIQUE, nome_inq VARCHAR(40) NOT NULL, rg_inq VARCHAR(10) NOT NULL ); CREATE TABLE IF NOT EXISTS contrato( id_contrato INTEGER NOT NULL PRIMARY KEY, valor REAL NOT NULL, ativo INTEGER NOT NULL, dt_fim_contrato DATE NOT NULL, dia_venc_aluguel INTEGER NOT NULL, id_casa INTEGER NOT NULL, id_inq INTEGER NOT NULL ); CREATE TABLE IF NOT EXISTS pagamento( id_pag INTEGER NOT NULL PRIMARY KEY, dt_venc VARCHAR(23) NOT NULL, dt_pag VARCHAR(23), deposito INTEGER NOT NULL, id_contrato INTEGER , FOREIGN KEY (id_contrato) REFERENCES contrato(id_contrato) ); """)
4.09375
4
wisdem/orbit/phases/install/cable_install/__init__.py
ptrbortolotti/WISDEM
81
12794178
<reponame>ptrbortolotti/WISDEM """Initialize cable installation functionality""" __author__ = "<NAME>" __copyright__ = "Copyright 2020, National Renewable Energy Laboratory" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" from .array import ArrayCableInstallation from .common import SimpleCable from .export import ExportCableInstallation
0.984375
1
src/nsupdate/utils/_tests/test_mail.py
mirzazulfan/nsupdate.info
774
12794179
<reponame>mirzazulfan/nsupdate.info """ Tests for mail module. """ from django.contrib.auth import get_user_model from django.utils.translation import ugettext_lazy as _ from ..mail import translate_for_user class TestTransUser(object): def test(self): User = get_user_model() user = User.objects.get(username='test') user.profile.language = 'de' msgs = [_('German'), _('English')] msgs = translate_for_user(user, *msgs) assert msgs == ['Deutsch', 'Englisch']
2.1875
2
tool_sdk/api/basic/list_tool_pb2.py
easyopsapis/easyops-api-python
5
12794180
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: list_tool.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from tool_sdk.model.tool import tool_pb2 as tool__sdk_dot_model_dot_tool_dot_tool__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='list_tool.proto', package='basic', syntax='proto3', serialized_options=None, serialized_pb=_b('\n\x0flist_tool.proto\x12\x05\x62\x61sic\x1a\x1etool_sdk/model/tool/tool.proto\"\x95\x01\n\x0fListToolRequest\x12\x0e\n\x06\x64\x65tail\x18\x01 \x01(\x08\x12\x0e\n\x06plugin\x18\x02 \x01(\x08\x12\x10\n\x08\x63\x61tegory\x18\x03 \x01(\t\x12\x13\n\x0bpermissions\x18\x04 \x01(\t\x12\x16\n\x0eonlyProduction\x18\x05 \x01(\x08\x12\x15\n\rshowInvisible\x18\x06 \x01(\x08\x12\x0c\n\x04tags\x18\x07 \x01(\t\"\\\n\x10ListToolResponse\x12\x0c\n\x04page\x18\x01 \x01(\x05\x12\x11\n\tpage_size\x18\x02 \x01(\x05\x12\r\n\x05total\x18\x03 \x01(\x05\x12\x18\n\x04list\x18\x04 \x03(\x0b\x32\n.tool.Tool\"r\n\x17ListToolResponseWrapper\x12\x0c\n\x04\x63ode\x18\x01 \x01(\x05\x12\x13\n\x0b\x63odeExplain\x18\x02 \x01(\t\x12\r\n\x05\x65rror\x18\x03 \x01(\t\x12%\n\x04\x64\x61ta\x18\x04 \x01(\x0b\x32\x17.basic.ListToolResponseb\x06proto3') , dependencies=[tool__sdk_dot_model_dot_tool_dot_tool__pb2.DESCRIPTOR,]) _LISTTOOLREQUEST = _descriptor.Descriptor( name='ListToolRequest', full_name='basic.ListToolRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='detail', full_name='basic.ListToolRequest.detail', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='plugin', full_name='basic.ListToolRequest.plugin', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='category', full_name='basic.ListToolRequest.category', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='permissions', full_name='basic.ListToolRequest.permissions', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='onlyProduction', full_name='basic.ListToolRequest.onlyProduction', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='showInvisible', full_name='basic.ListToolRequest.showInvisible', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tags', full_name='basic.ListToolRequest.tags', index=6, number=7, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=59, serialized_end=208, ) _LISTTOOLRESPONSE = _descriptor.Descriptor( name='ListToolResponse', full_name='basic.ListToolResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='page', full_name='basic.ListToolResponse.page', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='page_size', full_name='basic.ListToolResponse.page_size', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='total', full_name='basic.ListToolResponse.total', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='list', full_name='basic.ListToolResponse.list', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=210, serialized_end=302, ) _LISTTOOLRESPONSEWRAPPER = _descriptor.Descriptor( name='ListToolResponseWrapper', full_name='basic.ListToolResponseWrapper', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='code', full_name='basic.ListToolResponseWrapper.code', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='codeExplain', full_name='basic.ListToolResponseWrapper.codeExplain', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='error', full_name='basic.ListToolResponseWrapper.error', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='basic.ListToolResponseWrapper.data', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=304, serialized_end=418, ) _LISTTOOLRESPONSE.fields_by_name['list'].message_type = tool__sdk_dot_model_dot_tool_dot_tool__pb2._TOOL _LISTTOOLRESPONSEWRAPPER.fields_by_name['data'].message_type = _LISTTOOLRESPONSE DESCRIPTOR.message_types_by_name['ListToolRequest'] = _LISTTOOLREQUEST DESCRIPTOR.message_types_by_name['ListToolResponse'] = _LISTTOOLRESPONSE DESCRIPTOR.message_types_by_name['ListToolResponseWrapper'] = _LISTTOOLRESPONSEWRAPPER _sym_db.RegisterFileDescriptor(DESCRIPTOR) ListToolRequest = _reflection.GeneratedProtocolMessageType('ListToolRequest', (_message.Message,), { 'DESCRIPTOR' : _LISTTOOLREQUEST, '__module__' : 'list_tool_pb2' # @@protoc_insertion_point(class_scope:basic.ListToolRequest) }) _sym_db.RegisterMessage(ListToolRequest) ListToolResponse = _reflection.GeneratedProtocolMessageType('ListToolResponse', (_message.Message,), { 'DESCRIPTOR' : _LISTTOOLRESPONSE, '__module__' : 'list_tool_pb2' # @@protoc_insertion_point(class_scope:basic.ListToolResponse) }) _sym_db.RegisterMessage(ListToolResponse) ListToolResponseWrapper = _reflection.GeneratedProtocolMessageType('ListToolResponseWrapper', (_message.Message,), { 'DESCRIPTOR' : _LISTTOOLRESPONSEWRAPPER, '__module__' : 'list_tool_pb2' # @@protoc_insertion_point(class_scope:basic.ListToolResponseWrapper) }) _sym_db.RegisterMessage(ListToolResponseWrapper) # @@protoc_insertion_point(module_scope)
1.179688
1
hrdf-tools/hrdf_db_reporter_cli.py
vasile/OJP-Showcase
0
12794181
import argparse import os import re import sys from inc.HRDF.Stops_Reporter.stops_reporter import HRDF_Stops_Reporter from inc.HRDF.HRDF_Parser.hrdf_helpers import compute_formatted_date_from_hrdf_db_path from inc.HRDF.db_helpers import compute_db_tables_report parser = argparse.ArgumentParser(description = 'Generate stops report from HRDF DB') parser.add_argument('-p', '--path', help='Path to HRDF DB') args = parser.parse_args() db_path = args.path if db_path is None: print("ERROR, use with --path") sys.exit(1) compute_db_tables_report(db_path=db_path)
2.578125
3
AnnotationTools/ui_mainwindow.py
upzheng/Electrocardio-Panorama
33
12794182
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'mainwindow.ui' # # Created by: PyQt5 UI code generator 5.13.0 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(800, 600) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.gridLayout_2 = QtWidgets.QGridLayout(self.centralwidget) self.gridLayout_2.setObjectName("gridLayout_2") self.gridLayout = QtWidgets.QGridLayout() self.gridLayout.setObjectName("gridLayout") self.buttonLayout = QtWidgets.QGridLayout() self.gridLayout.addLayout(self.buttonLayout, 0, 0) self.openfileButton = QtWidgets.QPushButton(self.centralwidget) self.openfileButton.setObjectName("openfileButton") self.buttonLayout.addWidget(self.openfileButton, 0, 0, 1, 1) self.saveButton = QtWidgets.QPushButton(self.centralwidget) self.saveButton.setObjectName('saveButton') self.buttonLayout.addWidget(self.saveButton, 1, 0, 1, 1) self.nextButton = QtWidgets.QPushButton(self.centralwidget) self.nextButton.setObjectName('nextButton') self.buttonLayout.addWidget(self.nextButton, 2, 0, 1, 1) self.clearButton = QtWidgets.QPushButton(self.centralwidget) self.clearButton.setObjectName('clearButton') self.buttonLayout.addWidget(self.clearButton, 4, 0, 1, 1) self.lastButton = QtWidgets.QPushButton(self.centralwidget) self.lastButton.setObjectName('lastButton') self.buttonLayout.addWidget(self.lastButton, 3, 0, 1, 1) self.gridLayout_2.addLayout(self.gridLayout, 0, 0, 1, 1) MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 18)) self.menubar.setObjectName("menubar") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.label_pos = QtWidgets.QLabel() self.buttonLayout.addWidget(self.label_pos, 0, 1) self.label_state = QtWidgets.QLabel() self.buttonLayout.addWidget(self.label_state, 1, 1) self.label_file_name = QtWidgets.QLabel() self.buttonLayout.addWidget(self.label_file_name, 2, 1) self.label_annotation_points = QtWidgets.QLabel() self.buttonLayout.addWidget(self.label_annotation_points, 4, 1) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) self.openfileButton.setText(_translate("MainWindow", "open")) self.saveButton.setText('save') self.nextButton.setText('next') self.clearButton.setText('clear') self.lastButton.setText('previous')
2.109375
2
typeidea/blog/admin.py
IchLiebeDeutsch/typeidea
0
12794183
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib import admin from .models import Post, Category, Tag from typeidea.custom_site import custom_site from django.utils.html import format_html from django.core.urlresolvers import reverse from .adminforms import PostAdminForm from typeidea.custom_admin import BaseOwnerAdmin # Register your models here. @admin.register(Post, site=custom_site) class PostAdmin(BaseOwnerAdmin): form = PostAdminForm list_display = ['title', 'category', 'status', 'owner', 'created_time', 'operator'] list_display_links = ['category', 'status'] search_fields = ['title', 'category__name', 'owner__first_name'] save_on_top = False show_full_result_count = False # 优化显示结果 list_filter = ['title'] actions_on_top = True date_hierarchy = 'created_time' list_editable = ['title', ] # 编辑页面 fieldsets = ( # 跟fields互斥 ('基础配置', { 'fields': (('category', 'title'), 'desc', 'status', 'content') }), ('高级配置', { 'classes': ('collapse', 'addon'), 'fields': ('tag',), }), ) # 布局作用 filter_horizontal = ('tag',) def operator(self, obj): return format_html( '<a href="{}">编辑</a>', reverse('cus_site:blog_post_change', args=(obj.id,)) ) operator.show_description = '操作' operator.empty_value_display = '???' class PostInlineAdmin(admin.TabularInline): fields = ('title', 'status') extra = 1 model = Post @admin.register(Category, site=custom_site) class CategoryAdmin(BaseOwnerAdmin): list_display = ['name', 'status','is_nav', 'created_time'] inlines = [PostInlineAdmin,] fields = ('name', 'status', 'is_nav',) @admin.register(Tag, site=custom_site) class TagAdmin(BaseOwnerAdmin): list_display = ['name', 'status', 'owner', 'created_time']
1.90625
2
src/optimizer.py
Chizuchizu/riadd
1
12794184
from adabelief_pytorch import AdaBelief import torch_optimizer from torch import optim from src.sam import SAM __OPTIMIZERS__ = { "AdaBelief": AdaBelief, "RAdam": torch_optimizer.RAdam, "SAM": SAM } def get_optimizer(cfg, model): optimizer_name = cfg.optimizer.name if optimizer_name == "SAM": base_optimizer_name = cfg.optimizer.base if __OPTIMIZERS__.get(base_optimizer_name) is not None: base_optimizer = __OPTIMIZERS__[base_optimizer_name] else: base_optimizer = optim.__getattribute__(base_optimizer_name) return SAM(model.parameters(), base_optimizer, **cfg.optimizer.param) if __OPTIMIZERS__.get(optimizer_name) is not None: return __OPTIMIZERS__[optimizer_name](model.parameters(), **cfg.optimizer.param) else: return optim.__getattribute__(optimizer_name)(model.parameters(), **cfg.optimizer.param)
2.375
2
eval/keras_v1/utils.py
zifanw/smoothed_geometry
5
12794185
import numpy as np import tensorflow as tf import random import _pickle as pkl import matplotlib.pyplot as plt from pylab import rcParams import scipy import scipy.stats as stats from tensorflow.python.ops import gen_nn_ops config_gpu = tf.ConfigProto() config_gpu.gpu_options.allow_growth = True MEAN_IMAGE = np.zeros((1, 227, 227, 3)).astype(np.float32) MEAN_IMAGE[:, :, :, 0] = 103.939 MEAN_IMAGE[:, :, :, 1] = 116.779 MEAN_IMAGE[:, :, :, 2] = 123.68 EPSILON = 1e-12 MIN_INPUT = -MEAN_IMAGE MAX_INPUT = 255 * np.ones_like(MEAN_IMAGE).astype(np.float32) - MEAN_IMAGE def dataReader(): X = np.zeros((100, 227, 227, 3)) y = np.zeros(100) for num in range(4): with open( "./ImagenetValidationSamples/imagenet_sample_{}.pkl".format( num), "rb") as inputs: dic_temp = pkl.load(inputs) X[num * 20:num * 20 + 20] = dic_temp["X"] y[num * 20:num * 20 + 20] = dic_temp["y"] labels = dic_temp["labels"] return X, y.astype(int), labels class SimpleGradientAttack(object): def __init__(self, mean_image, sess, test_image, original_label, NET, NET2=None, k_top=1000, target_map=None, pixel_max=255.): """ Args: mean_image: The mean image of the data set(The assumption is that the images are mean subtracted) sess: Session containing model(and surrogate model's) graphs test_image: Mean subtracted test image original_label: True label of the image NET: Original neural network. It's assumed that NET.saliency is the saliency map tensor and NET.saliency_flatten is its flatten version. NET2: Surrogate neural network with the same structure and weights of the orignal network but with activations replaced by softplus function (necessary only when the activation function of the original function does not have second order gradients, ex: ReLU). It's assumed that NET.saliency is the saliency map tensor and NET2.saliency_flatten is its flatten version. k_top: the topK parameter of the attack (refer to the original paper) pixel_max: the maximum pixel value in the image. """ self.pixel_max = pixel_max if len(test_image.shape) != 3: raise ValueError("Invalid Test Image Dimensions") if NET.input.get_shape()[-3]!=test_image.shape[-3] or NET.input.get_shape()[-2]!=test_image.shape[-2] or\ NET.input.get_shape()[-1]!=test_image.shape[-1]: raise ValueError( "Model's input dimensions is not Compatible with the provided test image!" ) if self.check_prediction(sess, original_label, test_image, NET): return self.sess = sess self.target_map = target_map self.create_extra_ops(NET, test_image.shape[-3], test_image.shape[-2], k_top) if NET2 is None: NET2 = NET else: self.create_extra_ops(NET2, test_image.shape[-3], test_image.shape[-2], k_top) if NET2.input.get_shape()[-3]!=test_image.shape[-3] or NET2.input.get_shape()[-2]!=test_image.shape[-2] or\ NET2.input.get_shape()[-1]!=test_image.shape[-1]: raise ValueError( "Surrogate model's input dimensions is not Compatible with the provided test image!" ) self.NET = NET self.NET2 = NET2 self.test_image = test_image self.original_label = original_label self.mean_image = mean_image self.k_top = k_top w, h, c = self.mean_image.shape self.topk_ph = tf.placeholder(tf.float32, shape=[w * h], name='topk_ph') self.mass_center_ph = tf.placeholder(tf.float32, shape=[2], name='mass_center_ph') self.target_map_ph = tf.placeholder(tf.float32, shape=[w, h], name='target_map_ph') self.original_output = self.NET.predict(test_image[None, :]) _, num_class = self.original_output.shape self.original_output_ph = tf.placeholder( tf.float32, shape=[None, num_class], name='original_output_ph') # only for the manipulation attack self.beta_0_ph = tf.placeholder(tf.float32, name='beta_0') self.beta_1_ph = tf.placeholder(tf.float32, name='beta_1') self.create_attack_ops(NET2, test_image.shape[-3], test_image.shape[-2]) self.update_new_image(test_image, original_label) def update_new_image(self, test_image, original_label, target_map=None): w, h, c = test_image.shape self.test_image = test_image self.original_label = original_label assert self.check_prediction(self.sess, original_label, test_image, self.NET) == False if target_map is not None: self.target_map = target_map self.original_output = self.NET2.predict(test_image[None, :]) self.saliency1, self.topK = self.run_model( self.sess, [self.NET.saliency, self.NET.top_idx], self.test_image, self.NET) self.saliency1_flatten = np.reshape( self.saliency1, [test_image.shape[-3] * test_image.shape[-2]]) elem1 = np.argsort(np.reshape(self.saliency1, [w * h]))[-self.k_top:] self.elements1 = np.zeros(w * h) self.elements1[elem1] = 1 self.original_topk = self.elements1 self.mass_center1 = self.run_model(self.sess, self.NET.mass_center, self.test_image, self.NET).astype(int) self.original_mass_center = self.mass_center1 def check_prediction(self, sess, original_label, image, NET): """ If the network's prediction is incorrect in the first place, attacking has no meaning.""" predicted_scores = sess.run( NET.output, feed_dict={NET.input: image if len(image.shape) == 4 else [image]}) if np.argmax(predicted_scores, 1) != original_label: print("Network's Prediction is Already Incorrect!") return True else: self.original_confidence = np.max(predicted_scores) return False def create_extra_ops(self, NET, w, h, k_top): top_val, NET.top_idx = tf.nn.top_k(NET.saliency_flatten, k_top) y_mesh, x_mesh = np.meshgrid(np.arange(h), np.arange(w)) NET.mass_center = tf.stack([ tf.reduce_sum(NET.saliency * x_mesh) / (w * h), tf.reduce_sum(NET.saliency * y_mesh) / (w * h) ]) def create_attack_ops(self, NET, w, h): topK_loss = tf.reduce_sum((NET.saliency_flatten * self.topk_ph)) self.topK_direction = -tf.gradients(topK_loss, NET.input)[0] mass_center_loss = -tf.reduce_sum( (NET.mass_center - self.mass_center_ph)**2) self.mass_center_direction = -tf.gradients(mass_center_loss, NET.input)[0] if self.target_map is not None: target_dis = tf.keras.losses.MSE(self.target_map_ph, NET.saliency) output_dis = tf.keras.losses.MSE(self.original_output_ph, NET.output) target_loss = tf.reduce_mean( target_dis) * self.beta_0_ph + self.beta_1_ph * tf.reduce_mean( output_dis) self.debug = target_loss self.target_direction = -tf.gradients(target_loss, NET.input)[0] def run_model(self, sess, operation, feed, NET): if len(feed.shape) == 3: if hasattr(self, "original_topk") and hasattr( self, "original_mass_center"): if hasattr(self, "use_target") and self.use_target: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.beta_0_ph: self.beta_0, self.beta_1_ph: self.beta_1, self.original_output_ph: self.original_output, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center }) else: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, }) elif len(feed.shape) == 4: if hasattr(self, "original_topk") and hasattr( self, "original_mass_center"): if hasattr(self, "use_target") and self.use_target: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.beta_0_ph: self.beta_0, self.beta_1_ph: self.beta_1, self.original_output_ph: self.original_output, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center }) else: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, }) else: raise RuntimeError("Input image shape invalid!") def give_simple_perturbation(self, attack_method, in_image): w, h, c = self.test_image.shape if attack_method == "random": perturbation = np.random.normal(size=(w, h, c)) elif attack_method == "topK": perturbation = self.run_model(self.sess, self.topK_direction, in_image, self.NET2) perturbation = np.reshape(perturbation, [w, h, c]) elif attack_method == "mass_center": perturbation = self.run_model(self.sess, self.mass_center_direction, in_image, self.NET2) perturbation = np.reshape(perturbation, [w, h, c]) elif attack_method == "target": self.use_target = True if self.target_map is None: raise ValueError("No target region determined!") else: perturbation = self.run_model(self.sess, self.target_direction, in_image, self.NET2) debug = self.run_model(self.sess, self.debug, in_image, self.NET2) print("MSE: ", debug) perturbation = np.reshape(perturbation, [w, h, c]) return np.sign(perturbation) def apply_perturb(self, in_image, pert, alpha, bound=8 / 255, ord=np.inf): if self.mean_image is None: self.mean_image = np.zeros_like(in_image) # out_image = self.test_image + np.clip( # in_image + alpha * np.sign(pert) - self.test_image, -bound, bound) d = in_image + alpha * np.sign(pert) - self.test_image d_norm = np.linalg.norm(d.flatten(), ord=ord) if d_norm > bound: proj_ratio = bound / np.linalg.norm(d.flatten(), ord=ord) else: proj_ratio = 1 out_image = self.test_image + d * proj_ratio out_image = np.clip(out_image, -self.mean_image, self.pixel_max - self.mean_image) return out_image def check_measure(self, test_image_pert, measure): prob = self.run_model(self.sess, self.NET.output, test_image_pert, self.NET) if np.argmax(prob, 1) == self.original_label: if measure == "intersection": top2 = self.run_model(self.sess, self.NET.top_idx, test_image_pert, self.NET) criterion = float(len(np.intersect1d(self.topK, top2))) / self.k_top elif measure == "correlation": saliency2_flatten = self.run_model(self.sess, self.NET.saliency_flatten, test_image_pert, self.NET) criterion = scipy.stats.spearmanr(self.saliency1_flatten, saliency2_flatten)[0] elif measure == "mass_center": center2 = self.run_model(self.sess, self.NET.mass_center, test_image_pert, self.NET).astype(int) criterion = -np.linalg.norm(self.mass_center1 - center2) elif measure == "cosine": saliency2_flatten = self.run_model(self.sess, self.NET.saliency_flatten, test_image_pert, self.NET) criterion = scipy.spatial.distance.cosine( self.saliency1_flatten, saliency2_flatten) else: raise ValueError("Invalid measure!") return criterion else: return 1. def iterative_attack(self, attack_method, epsilon, iters=100, alpha=1, beta_0=1e11, beta_1=1e6, measure="intersection", target=None): """ Args: attack_method: One of "mass_center", "topK" or "random" epsilon: Allowed maximum $ell_infty$ of perturbations, eg:8 iters: number of maximum allowed attack iterations alpha: perturbation size in each iteration of the attack measure: measure for success of the attack (one of "correlation", "mass_center" or "intersection") beta_0: parameter for manipulate (target) attack beta_1: parameter for manipulate (target) attack Returns: intersection: The portion of the top K salient pixels in the original picture that are in the top K salient pixels of the perturbed image devided correlation: The rank correlation between saliency maps of original and perturbed image center_dislocation: The L2 distance between saliency map mass centers in original and perturbed images confidence: The prediction confidence of the perturbed image """ self.beta_0 = beta_0 self.beta_1 = beta_1 w, h, c = self.test_image.shape test_image_pert = self.test_image.copy() min_criterion = 1. perturb_size = 0. last_image = None for counter in range(iters): pert = self.give_simple_perturbation(attack_method, test_image_pert) test_image_pert = self.apply_perturb(test_image_pert, pert, alpha, epsilon) criterion = self.check_measure(test_image_pert, measure) if criterion < min_criterion: min_criterion = criterion self.perturbed_image = test_image_pert.copy() perturb_size = np.max( np.abs(self.test_image - self.perturbed_image)) else: pass if criterion == 1.: return None predicted_scores = self.run_model(self.sess, self.NET.output, self.perturbed_image, self.NET) confidence = np.max(predicted_scores) self.saliency2, self.top2, self.mass_center2= self.run_model\ (self.sess, [self.NET.saliency, self.NET.top_idx, self.NET.mass_center], self.perturbed_image, self.NET) correlation = scipy.stats.spearmanr( self.saliency1_flatten, np.reshape(self.saliency2, [w * h]))[0] intersection = float(len(np.intersect1d(self.topK, self.top2))) / self.k_top center_dislocation = np.linalg.norm(self.mass_center1 - self.mass_center2.astype(int)) cos_distance = scipy.spatial.distance.cosine( self.saliency1_flatten, np.reshape(self.saliency2, [w * h])) return intersection, correlation, center_dislocation, confidence, perturb_size, cos_distance class IntegratedGradientsAttack(object): def __init__(self, sess, mean_image, test_image, original_label, NET, NET2=None, k_top=1000, num_steps=100, reference_image=None, target_map=None, pixel_max=255.): """ Args: mean_image: The mean image of the data set(The assumption is that the images are mean subtracted) sess: Session containing model(and surrogate model's) graphs test_image: Mean subtracted test image original_label: True label of the image NET: Original neural network. It's assumed that NET.saliency is the saliency map tensor and NET.saliency_flatten is its flatten version. NET2: Surrogate neural network with the same structure and weights of the orignal network but with activations replaced by softplus function (necessary only when the activation function of the original function does not have second order gradients, ex: ReLU). It's assumed that NET.saliency is the saliency map tensor and NET2.saliency_flatten is its flatten version. k_top: the topK parameter of the attack (refer to the original paper) num_steps: Number of steps in Integrated Gradients Algorithm reference_image: Mean subtracted reference image of Integrated Gradients Algorithm pixel_max: the maximum pixel value in the image. """ self.pixel_max = pixel_max if len(test_image.shape) != 3: raise ValueError("Invalid Test Image Dimensions") if sum([ NET.input.get_shape()[-i] != test_image.shape[-i] for i in [1, 2, 3] ]): raise ValueError( "Model's input dimensions is not Compatible with the provided test image!" ) if self.check_prediction(sess, original_label, test_image, NET): return self.sess = sess self.target_map = target_map self.create_extra_ops(NET, test_image.shape[-3], test_image.shape[-2], k_top) if NET2 is None: NET2 = NET else: self.create_extra_ops(NET2, test_image.shape[-3], test_image.shape[-2], k_top) if sum([ NET2.input.get_shape()[-i] != test_image.shape[-i] for i in [1, 2, 3] ]): raise ValueError( "Surrogate model's input dimensions is not Compatible with the provided test image!" ) self.NET = NET self.NET2 = NET2 self.test_image = test_image self.original_label = original_label self.mean_image = mean_image self.k_top = k_top self.num_steps = num_steps self.reference_image = np.zeros_like( test_image) if reference_image is None else reference_image w, h, c = self.mean_image.shape self.topk_ph = tf.placeholder(tf.float32, shape=[w * h], name='topk_ph') self.mass_center_ph = tf.placeholder(tf.float32, shape=[2], name='mass_center_ph') self.target_map_ph = tf.placeholder(tf.float32, shape=[w, h], name='target_map_ph') self.beta_0_ph = tf.placeholder(tf.float32, name='beta_0') self.beta_1_ph = tf.placeholder(tf.float32, name='beta_1') self.original_output = self.NET.predict(test_image[None, :]) _, num_class = self.original_output.shape self.original_output_ph = tf.placeholder( tf.float32, shape=[None, num_class], name='original_output_ph') # only for the manipulation attack self.create_attack_ops(self.NET2, test_image.shape[-3], test_image.shape[-2]) def check_prediction(self, sess, original_label, image, NET): """ If the network's prediction is incorrect in the first place, attacking has no meaning.""" predicted_scores = sess.run( NET.output, feed_dict={NET.input: image if len(image.shape) == 4 else [image]}) if np.argmax(predicted_scores, 1) != original_label: print("Network's Prediction is Already Incorrect!") return True else: self.original_confidence = np.max(predicted_scores) return False def update_new_image(self, test_image, original_label, target_map=None): w, h, c = test_image.shape self.test_image = test_image self.original_label = original_label assert self.check_prediction(self.sess, original_label, test_image, self.NET) == False if target_map is not None: self.target_map = target_map self.original_output = self.NET2.predict(test_image[None, :]) counterfactuals = self.create_counterfactuals(test_image) self.saliency1, self.topK = self.run_model( self.sess, [self.NET.saliency, self.NET.top_idx], counterfactuals, self.NET) self.saliency1_flatten = np.reshape( self.saliency1, [test_image.shape[-3] * test_image.shape[-2]]) elem1 = np.argsort(np.reshape(self.saliency1, [w * h]))[-self.k_top:] self.elements1 = np.zeros(w * h) self.elements1[elem1] = 1 self.original_topk = self.elements1 self.mass_center1 = self.run_model(self.sess, self.NET.mass_center, counterfactuals, self.NET).astype(int) self.original_mass_center = self.mass_center1 def create_extra_ops(self, NET, w, h, k_top): top_val, NET.top_idx = tf.nn.top_k(NET.saliency_flatten, k_top) y_mesh, x_mesh = np.meshgrid(np.arange(h), np.arange(w)) NET.mass_center = tf.stack([ tf.reduce_sum(NET.saliency * x_mesh) / (w * h), tf.reduce_sum(NET.saliency * y_mesh) / (w * h) ]) def create_attack_ops(self, NET, w, h): topK_loss = tf.reduce_sum((NET.saliency_flatten * self.topk_ph)) self.debug = topK_loss NET.topK_direction = -tf.gradients(topK_loss, NET.input)[0] mass_center_loss = -tf.reduce_sum( (NET.mass_center - self.mass_center_ph)**2) NET.mass_center_direction = -tf.gradients(mass_center_loss, NET.input)[0] if self.target_map is not None: target_dis = tf.keras.losses.MSE(self.target_map_ph, NET.saliency) output_dis = tf.keras.losses.MSE(self.original_output_ph, NET.output) target_loss = tf.reduce_mean( target_dis) * self.beta_0_ph + self.beta_1_ph * tf.reduce_mean( output_dis) self.debug = target_loss self.target_direction = -tf.gradients(target_loss, NET.input)[0] def create_counterfactuals(self, in_image): ref_subtracted = in_image - self.reference_image counterfactuals = np.array([(float(i+1)/self.num_steps) * ref_subtracted + self.reference_image\ for i in range(self.num_steps)]) return np.array(counterfactuals) def run_model(self, sess, operation, feed, NET): if len(feed.shape) == 3: if hasattr(self, "original_topk") and hasattr( self, "original_mass_center"): if hasattr(self, "use_target") and self.use_target: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, self.topk_ph: self.original_topk, NET.reference_image: self.reference_image, self.mass_center_ph: self.original_mass_center, self.beta_0_ph: self.beta_0, self.beta_1_ph: self.beta_1, self.original_output_ph: self.original_output, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, NET.reference_image: self.reference_image, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: [feed], NET.reference_image: self.reference_image, NET.label_ph: self.original_label, self.target_map_ph: self.target_map }) elif len(feed.shape) == 4: if hasattr(self, "original_topk") and hasattr( self, "original_mass_center"): if hasattr(self, "use_target") and self.use_target: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, NET.reference_image: self.reference_image, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.beta_0_ph: self.beta_0, self.beta_1_ph: self.beta_1, self.original_output_ph: self.original_output, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, NET.reference_image: self.reference_image, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: feed, NET.reference_image: self.reference_image, NET.label_ph: self.original_label, }) else: raise RuntimeError("Input image shape invalid!") def give_simple_perturbation(self, attack_method, in_image): counterfactuals = self.create_counterfactuals(in_image) w, h, c = self.test_image.shape if attack_method == "random": perturbation = np.random.normal(size=(self.num_steps, w, h, c)) elif attack_method == "topK": perturbation = self.run_model(self.sess, self.NET2.topK_direction, counterfactuals, self.NET2) perturbation = np.reshape(perturbation, [self.num_steps, w, h, c]) elif attack_method == "mass_center": perturbation = self.run_model(self.sess, self.NET2.mass_center_direction, counterfactuals, self.NET2) perturbation = np.reshape(perturbation, [self.num_steps, w, h, c]) elif attack_method == "target": self.use_target = True if self.target_map is None: raise ValueError("No target region determined!") else: perturbation = self.run_model(self.sess, self.target_direction, counterfactuals, self.NET2) perturbation = np.reshape(perturbation, [self.num_steps, w, h, c]) perturbation_summed = np.sum(np.array([float(i+1)/self.num_steps*perturbation[i]\ for i in range(self.num_steps)]),0) return np.sign(perturbation_summed) def apply_perturb(self, in_image, pert, alpha, bound=8 / 255, ord=np.inf): if self.mean_image is None: self.mean_image = np.zeros_like(in_image) # out_image = self.test_image + np.clip( # in_image + alpha * np.sign(pert) - self.test_image, -bound, bound) d = in_image + alpha * np.sign(pert) - self.test_image d_norm = np.linalg.norm(d.flatten(), ord=ord) if d_norm > bound: proj_ratio = bound / np.linalg.norm(d.flatten(), ord=ord) else: proj_ratio = 1 out_image = self.test_image + d * proj_ratio out_image = np.clip(out_image, -self.mean_image, self.pixel_max - self.mean_image) return out_image def check_measure(self, test_image_pert, measure): prob = self.run_model(self.sess, self.NET.output, test_image_pert, self.NET) if np.argmax(prob, 1) == self.original_label: counterfactuals = self.create_counterfactuals(test_image_pert) if measure == "intersection": top2 = self.run_model(self.sess, self.NET.top_idx, counterfactuals, self.NET) criterion = float(len(np.intersect1d(self.topK, top2))) / self.k_top elif measure == "correlation": saliency2_flatten = self.run_model(self.sess, self.NET.saliency_flatten, counterfactuals, self.NET) criterion = scipy.stats.spearmanr(self.saliency1_flatten, saliency2_flatten)[0] elif measure == "mass_center": center2 = self.run_model(self.sess, self.NET.mass_center, counterfactuals, self.NET).astype(int) criterion = -np.linalg.norm(self.mass_center1 - center2) elif measure == "cosine": saliency2_flatten = self.run_model(self.sess, self.NET.saliency_flatten, test_image_pert, self.NET) criterion = scipy.spatial.distance.cosine( self.saliency1_flatten, saliency2_flatten) else: raise ValueError("Invalid measure!") return criterion else: return 1 def iterative_attack(self, attack_method, epsilon, iters=100, alpha=1, beta_0=1e11, beta_1=1e6, measure="intersection"): """ Args: attack_method: One of "mass_center", "topK" or "random" epsilon: set of allowed maximum $ell_infty$ of perturbations, eg:[2,4] iters: number of maximum allowed attack iterations alpha: perturbation size in each iteration of the attack measure: measure for success of the attack (one of "correlation", "mass_center" or "intersection") Returns: intersection: The portion of the top K salient pixels in the original picture that are in the top K salient pixels of the perturbed image devided correlation: The rank correlation between saliency maps of original and perturbed image center_dislocation: The L2 distance between saliency map mass centers in original and perturbed images confidence: The prediction confidence of the perturbed image """ self.beta_0 = beta_0 self.beta_1 = beta_1 w, h, c = self.test_image.shape test_image_pert = self.test_image.copy() min_criterion = 1. for counter in range(iters): # if counter % int(iters / 5) == 0: # print("Iteration : {}".format(counter)) pert = self.give_simple_perturbation(attack_method, test_image_pert) # print(pert.sum()) test_image_pert = self.apply_perturb(test_image_pert, pert, alpha, epsilon) criterion = self.check_measure(test_image_pert, measure) if criterion < min_criterion: # print("attack") min_criterion = criterion self.perturbed_image = test_image_pert.copy() perturb_size = np.max( np.abs(self.test_image - self.perturbed_image)) else: # print("labels is changed") pass if min_criterion == 1.: # print( # "The attack was not successfull for maximum allowed perturbation size equal to {}" # .format(epsilon)) # return 1., 1., self.original_confidence, 0. return None # print( # '''For maximum allowed perturbation size equal to {}, the resulting perturbation size was equal to {} # '''.format(epsilon, # np.max(np.abs(self.test_image - self.perturbed_image)))) predicted_scores = self.run_model(self.sess, self.NET.output, self.perturbed_image, self.NET) confidence = np.max(predicted_scores) counterfactuals = self.create_counterfactuals(self.perturbed_image) self.saliency2, self.top2, self.mass_center2= self.run_model\ (self.sess, [self.NET.saliency, self.NET.top_idx, self.NET.mass_center], counterfactuals, self.NET) correlation = scipy.stats.spearmanr( self.saliency1_flatten, np.reshape(self.saliency2, [w * h]))[0] intersection = float(len(np.intersect1d(self.topK, self.top2))) / self.k_top center_dislocation = np.linalg.norm(self.mass_center1 - self.mass_center2.astype(int)) cos_distance = scipy.spatial.distance.cosine( self.saliency1_flatten, np.reshape(self.saliency2, [w * h])) return intersection, correlation, center_dislocation, confidence, perturb_size, cos_distance class SmoothGradientsAttack(object): def __init__(self, sess, mean_image, test_image, original_label, NET, NET2=None, k_top=1000, num_steps=100, reference_image=None, target_map=None, pixel_max=255.): """ Args: mean_image: The mean image of the data set(The assumption is that the images are mean subtracted) sess: Session containing model(and surrogate model's) graphs test_image: Mean subtracted test image original_label: True label of the image NET: Original neural network. It's assumed that NET.saliency is the saliency map tensor and NET.saliency_flatten is its flatten version. NET2: Surrogate neural network with the same structure and weights of the orignal network but with activations replaced by softplus function (necessary only when the activation function of the original function does not have second order gradients, ex: ReLU). It's assumed that NET.saliency is the saliency map tensor and NET2.saliency_flatten is its flatten version. k_top: the topK parameter of the attack (refer to the original paper) num_steps: Number of steps in Integrated Gradients Algorithm reference_image: not used pixel_max: maximum pixel value in the input image """ self.pixel_max = pixel_max if len(test_image.shape) != 3: raise ValueError("Invalid Test Image Dimensions") if sum([ NET.input.get_shape()[-i] != test_image.shape[-i] for i in [1, 2, 3] ]): raise ValueError( "Model's input dimensions is not Compatible with the provided test image!" ) if self.check_prediction(sess, original_label, test_image, NET): return self.sess = sess self.target_map = target_map self.create_extra_ops(NET, test_image.shape[-3], test_image.shape[-2], k_top) if NET2 is None: NET2 = NET else: self.create_extra_ops(NET2, test_image.shape[-3], test_image.shape[-2], k_top) if sum([ NET2.input.get_shape()[-i] != test_image.shape[-i] for i in [1, 2, 3] ]): raise ValueError( "Surrogate model's input dimensions is not Compatible with the provided test image!" ) self.NET = NET self.NET2 = NET2 self.test_image = test_image self.original_label = original_label self.mean_image = mean_image self.k_top = k_top self.num_steps = num_steps self.reference_image = np.zeros_like( test_image) if reference_image is None else reference_image w, h, c = self.mean_image.shape self.topk_ph = tf.placeholder(tf.float32, shape=[w * h], name='topk_ph') self.mass_center_ph = tf.placeholder(tf.float32, shape=[2], name='mass_center_ph') self.target_map_ph = tf.placeholder(tf.float32, shape=[w, h], name='target_map_ph') self.beta_0_ph = tf.placeholder(tf.float32, name='beta_0') self.beta_1_ph = tf.placeholder(tf.float32, name='beta_1') self.original_output = self.NET.predict(test_image[None, :]) _, num_class = self.original_output.shape self.original_output_ph = tf.placeholder( tf.float32, shape=[None, num_class], name='original_output_ph') # only for the manipulation attack self.create_attack_ops(self.NET2, test_image.shape[-3], test_image.shape[-2]) self.update_new_image(test_image, original_label) def update_new_image(self, test_image, original_label, target_map=None): w, h, c = test_image.shape self.test_image = test_image self.original_label = original_label assert self.check_prediction(self.sess, original_label, test_image, self.NET) == False if target_map is not None: self.target_map = target_map self.original_output = self.NET2.predict(test_image[None, :]) counterfactuals = self.create_counterfactuals(test_image) self.saliency1, self.topK = self.run_model( self.sess, [self.NET.saliency, self.NET.top_idx], counterfactuals, self.NET) self.saliency1_flatten = np.reshape( self.saliency1, [test_image.shape[-3] * test_image.shape[-2]]) elem1 = np.argsort(np.reshape(self.saliency1, [w * h]))[-self.k_top:] self.elements1 = np.zeros(w * h) self.elements1[elem1] = 1 self.original_topk = self.elements1 self.mass_center1 = self.run_model(self.sess, self.NET.mass_center, counterfactuals, self.NET).astype(int) self.original_mass_center = self.mass_center1 def check_prediction(self, sess, original_label, image, NET): """ If the network's prediction is incorrect in the first place, attacking has no meaning.""" predicted_scores = sess.run( NET.output, feed_dict={NET.input: image if len(image.shape) == 4 else [image]}) if np.argmax(predicted_scores, 1) != original_label: print("Network's Prediction is Already Incorrect!") print("Pred: ", np.argmax(predicted_scores, 1)) print("Label: ", original_label) return True else: self.original_confidence = np.max(predicted_scores) return False def create_extra_ops(self, NET, w, h, k_top): top_val, NET.top_idx = tf.nn.top_k(NET.saliency_flatten, k_top) y_mesh, x_mesh = np.meshgrid(np.arange(h), np.arange(w)) NET.mass_center = tf.stack([ tf.reduce_sum(NET.saliency * x_mesh) / (w * h), tf.reduce_sum(NET.saliency * y_mesh) / (w * h) ]) def create_attack_ops(self, NET, w, h): topK_loss = tf.reduce_sum((NET.saliency_flatten * self.topk_ph)) self.debug = topK_loss NET.topK_direction = -tf.gradients(topK_loss, NET.input)[0] mass_center_loss = -tf.reduce_sum( (NET.mass_center - self.mass_center_ph)**2) NET.mass_center_direction = -tf.gradients(mass_center_loss, NET.input)[0] if self.target_map is not None: target_dis = tf.keras.losses.MSE(self.target_map_ph, NET.saliency) output_dis = tf.keras.losses.MSE(self.original_output_ph, NET.output) target_loss = tf.reduce_mean( target_dis) * self.beta_0_ph + self.beta_1_ph * tf.reduce_mean( output_dis) self.debug = target_loss self.target_direction = -tf.gradients(target_loss, NET.input)[0] def create_counterfactuals(self, in_image, noise_ratio=0.1): counterfactuals = np.array([ in_image + np.random.normal(scale=0.1 * (in_image.max() - in_image.min()), size=in_image.shape) for _ in range(self.num_steps) ]) return np.array(counterfactuals) def run_model(self, sess, operation, feed, NET): if len(feed.shape) == 3: if hasattr(self, "original_topk") and hasattr( self, "original_mass_center"): if hasattr(self, "use_target") and self.use_target: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.beta_0_ph: self.beta_0, self.beta_1_ph: self.beta_1, self.original_output_ph: self.original_output, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, self.target_map_ph: self.target_map }) elif len(feed.shape) == 4: if hasattr(self, "original_topk") and hasattr( self, "original_mass_center"): if hasattr(self, "use_target") and self.use_target: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.beta_0_ph: self.beta_0, self.beta_1_ph: self.beta_1, self.original_output_ph: self.original_output, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, }) else: raise RuntimeError("Input image shape invalid!") def give_simple_perturbation(self, attack_method, in_image): counterfactuals = self.create_counterfactuals(in_image) w, h, c = self.test_image.shape if attack_method == "random": perturbation = np.random.normal(size=(self.num_steps, w, h, c)) elif attack_method == "topK": perturbation = self.run_model(self.sess, self.NET2.topK_direction, counterfactuals, self.NET2) perturbation = np.reshape(perturbation, [self.num_steps, w, h, c]) elif attack_method == "mass_center": perturbation = self.run_model(self.sess, self.NET2.mass_center_direction, counterfactuals, self.NET2) perturbation = np.reshape(perturbation, [self.num_steps, w, h, c]) elif attack_method == "target": if self.target_map is None: raise ValueError("No target region determined!") else: perturbation = self.run_model(self.sess, self.target_direction, counterfactuals, self.NET2) perturbation = np.reshape(perturbation, [self.num_steps, w, h, c]) perturbation_summed = np.mean(perturbation, 0) return np.sign(perturbation_summed) def apply_perturb(self, in_image, pert, alpha, bound=8 / 255, ord=np.inf): if self.mean_image is None: self.mean_image = np.zeros_like(in_image) # out_image = self.test_image + np.clip( # in_image + alpha * np.sign(pert) - self.test_image, -bound, bound) d = in_image + alpha * pert - self.test_image d_norm = np.linalg.norm(d.flatten(), ord=ord) if d_norm > bound: proj_ratio = bound / np.linalg.norm(d.flatten(), ord=ord) else: proj_ratio = 1 out_image = self.test_image + d * proj_ratio out_image = np.clip(out_image, -self.mean_image, self.pixel_max - self.mean_image) return out_image def check_measure(self, test_image_pert, measure): prob = self.run_model(self.sess, self.NET.output, test_image_pert, self.NET) if np.argmax(prob, 1) == self.original_label: counterfactuals = self.create_counterfactuals(test_image_pert) if measure == "intersection": top2 = self.run_model(self.sess, self.NET.top_idx, counterfactuals, self.NET) criterion = float(len(np.intersect1d(self.topK, top2))) / self.k_top elif measure == "correlation": saliency2_flatten = self.run_model(self.sess, self.NET.saliency_flatten, counterfactuals, self.NET) criterion = scipy.stats.spearmanr(self.saliency1_flatten, saliency2_flatten)[0] elif measure == "mass_center": center2 = self.run_model(self.sess, self.NET.mass_center, counterfactuals, self.NET).astype(int) criterion = -np.linalg.norm(self.mass_center1 - center2) elif measure == "cosine": saliency2_flatten = self.run_model(self.sess, self.NET.saliency_flatten, test_image_pert, self.NET) criterion = scipy.spatial.distance.cosine( self.saliency1_flatten, saliency2_flatten) else: raise ValueError("Invalid measure!") return criterion else: return 1. def iterative_attack(self, attack_method, epsilon, iters=100, alpha=1, beta_0=1e11, beta_1=1e6, measure="intersection"): """ Args: attack_method: One of "mass_center", "topK" or "random" epsilon: set of allowed maximum $ell_infty$ of perturbations, eg:[2,4] iters: number of maximum allowed attack iterations alpha: perturbation size in each iteration of the attack measure: measure for success of the attack (one of "correlation", "mass_center" or "intersection") Returns: intersection: The portion of the top K salient pixels in the original picture that are in the top K salient pixels of the perturbed image devided correlation: The rank correlation between saliency maps of original and perturbed image center_dislocation: The L2 distance between saliency map mass centers in original and perturbed images confidence: The prediction confidence of the perturbed image """ w, h, c = self.test_image.shape test_image_pert = self.test_image.copy() self.original = self.test_image.copy() if attack_method == 'target': self.use_target = True else: self.use_target = False self.beta_0 = beta_0 self.beta_1 = beta_1 min_criterion = 1. last_image = None for counter in range(iters): pert = self.give_simple_perturbation(attack_method, test_image_pert) test_image_pert = self.apply_perturb(test_image_pert, pert, alpha, epsilon) criterion = self.check_measure(test_image_pert, measure) if criterion < min_criterion: min_criterion = criterion self.perturbed_image = test_image_pert.copy() perturb_size = np.max( np.abs(self.test_image - self.perturbed_image)) else: pass if criterion == 1.: return None predicted_scores = self.run_model(self.sess, self.NET.output, self.perturbed_image, self.NET) confidence = np.max(predicted_scores) counterfactuals = self.create_counterfactuals(self.perturbed_image) self.saliency2, self.top2, self.mass_center2= self.run_model\ (self.sess, [self.NET.saliency, self.NET.top_idx, self.NET.mass_center], counterfactuals, self.NET) correlation = scipy.stats.spearmanr( self.saliency1_flatten, np.reshape(self.saliency2, [w * h]))[0] intersection = float(len(np.intersect1d(self.topK, self.top2))) / self.k_top center_dislocation = np.linalg.norm(self.mass_center1 - self.mass_center2.astype(int)) cos_distance = scipy.spatial.distance.cosine( self.saliency1_flatten, np.reshape(self.saliency2, [w * h])) return intersection, correlation, center_dislocation, confidence, perturb_size, cos_distance class UniGradientsAttack(SmoothGradientsAttack): def __init__(self, sess, mean_image, test_image, original_label, NET, NET2=None, k_top=1000, num_steps=100, radii=4, reference_image=None, target_map=None, pixel_max=255.): self.radii = radii / (255. / pixel_max) super(UniGradientsAttack, self).__init__(sess, mean_image, test_image, original_label, NET, NET2=NET2, k_top=1000, num_steps=num_steps, reference_image=reference_image, target_map=target_map, pixel_max=255.) def create_counterfactuals(self, in_image): counterfactuals = np.array([ in_image + np.random.uniform(-1, 1, size=in_image.shape) * self.radii for _ in range(self.num_steps) ]) return np.array(counterfactuals)
2.4375
2
pulse/uix/menu/widgets/plotWidget.py
open-pulse/OpenPulse
23
12794186
<reponame>open-pulse/OpenPulse from os.path import isfile from PyQt5.QtWidgets import QWidget, QLabel, QLineEdit, QPushButton, QFormLayout, QMessageBox, QCheckBox class PlotWidget(QWidget): """MenuInfo Widget This class is responsible for building a small area below of the item menu when some item is clicked. This has been replaced for QDialog windows and currently isn't used. """ def __init__(self, main_window): super().__init__() self.main_window = main_window self._create_widgets() self._add_widget_to_layout() def _create_widgets(self): self.plot_button = QPushButton('Plot') self.wireframe = QCheckBox('Wireframe') self.deformation = QCheckBox('Deformation') self.animate = QCheckBox('Animate') self.plot_button.clicked.connect(self._plot_function) def _add_widget_to_layout(self): self.layout = QFormLayout() self.setLayout(self.layout) self.layout.addRow(self.wireframe) self.layout.addRow(self.deformation) self.layout.addRow(self.animate) self.layout.addRow(self.plot_button) def _plot_function(self): self.main_window.draw()
2.78125
3
setuptools_pyecore/command.py
pyecore/setuptools-pyecore
4
12794187
"""Implementation of the setuptools command 'pyecore'.""" import collections import contextlib import distutils.log as logger import logging import pathlib import shlex import pyecore.resources import pyecoregen.ecore import setuptools class PyEcoreCommand(setuptools.Command): """A setuptools command for generating Python code from Ecore models. An extra command for setuptools to generate static Python classes from Ecore models. The pyecore command wraps pyecoregen - the real Python code generator for Ecore models. It searches for Ecore models starting from the base directory and generates a Python package for each found Ecore model. :cvar _ECORE_FILE_EXT: File extension of Ecore XMI file :cvar description: Description of ecore command :cvar user_options: Options which can be passed by the user :cvar boolean_options: Subset of user options which are binary """ _ECORE_FILE_EXT = 'ecore' description = 'generate Python code from Ecore models' user_options = [ ('ecore-models=', 'e', 'specify Ecore models to generate code for'), ('output=', 'o', 'specify directories where output is generated'), ('user-modules=', None, 'dotted names of modules with user-provided mixins to import from ' 'generated classes'), ('auto-register-package', None, 'Generate package auto-registration for the PyEcore ' '\'global_registry\''), ] boolean_options = ['auto-register-package'] def initialize_options(self): """Set default values for all the options that this command supports. Note that these defaults may be overridden by other commands, by the setup script, by config files, or by the command-line. """ self.ecore_models = None self.output = '' self.user_modules = '' self.auto_register_package = 0 def finalize_options(self): """Set final values for all the options that this command supports. This is always called as late as possible, ie. after any option assignments from the command-line or from other commands have been done. """ # parse ecore-models option if self.ecore_models: self.ecore_models = shlex.split(self.ecore_models, comments=True) # parse output option tokens = shlex.split(self.output, comments=True) self.output = collections.defaultdict(lambda: None) for token in tokens: model, output = token.split('=', 1) # check if model and output are specified if model and output: # add relative output path to dictionary output_path = pathlib.Path(output).relative_to('.') if model == 'default': self.output.default_factory = lambda: output_path else: self.output[model] = output_path else: logger.warn('Ignoring invalid output specifier {!r}.', token) # parse user-modules option tokens = shlex.split(self.user_modules, comments=True) self.user_modules = {} for token in tokens: model, user_module = token.split('=', 1) # check if model and user module are specified if model and user_module: self.user_modules[model] = user_module else: logger.warn('Ignoring invalid user module specifier {!r}.', token) def _configure_logging(self): """Configure logging using global verbosity level of distutils.""" loglevel_map = collections.defaultdict(lambda: logging.WARNING) loglevel_map.update({ 0: logging.WARNING, 1: logging.INFO, 2: logging.DEBUG }) logging.basicConfig( format='%(asctime)s %(levelname)s [%(name)s] %(message)s', level=loglevel_map[self.distribution.verbose] ) def _find_ecore_xmi_files(self, base_path=pathlib.Path('.')): """Search for all Ecore XMI files starting from base directory and returns a list of them. :param base_path: base path to search for Ecore XMI files :return: a list of all found Ecore XMI files """ pattern = '*.{}'.format(self._ECORE_FILE_EXT) logger.debug('searching for Ecore XMI files in \'{!s}\''.format(str(base_path))) return sorted(base_path.rglob(pattern)) @staticmethod @contextlib.contextmanager def _load_ecore_model(ecore_model_path): """Load a single Ecore model from a Ecore XMI file and return the root package. :param ecore_model_path: path to Ecore XMI file :return: root package of the Ecore model """ rset = pyecore.resources.ResourceSet() try: logger.debug('loading \'{!s}\''.format(str(ecore_model_path))) resource = rset.get_resource(ecore_model_path.as_posix()) yield resource.contents[0] except Exception: raise else: rset.remove_resource(resource) def run(self): """Perform all tasks necessary to generate Python packages representing the classes from Ecore models. This process is controlled by the user options passed on the command line or set internally to default values. """ self._configure_logging() # find Ecore XMI files ecore_xmi_files = self._find_ecore_xmi_files() # load each Ecore model for ecore_xmi_file in ecore_xmi_files: with self._load_ecore_model(ecore_xmi_file) as resource: if self.ecore_models is None or resource.name in self.ecore_models: # configure EcoreGenerator kwargs = {} if self.auto_register_package: kwargs['auto_register_package'] = True if resource.name in self.user_modules: kwargs['user_module'] = self.user_modules[resource.name] if self.output[resource.name]: output_dir = self.output[resource.name] else: output_dir = ecore_xmi_file.parent # generate Python classes logger.info( 'running pyecoregen to generate code for {!r} metamodel'.format(resource.name) ) pyecoregen.ecore.EcoreGenerator(**kwargs).generate( resource, output_dir.as_posix() ) else: logger.debug('skipping {!r} metamodel'.format(resource.name))
2.34375
2
terseparse/root_parser.py
jthacker/terseparse
1
12794188
<reponame>jthacker/terseparse import sys import logging from argparse import ArgumentParser, RawTextHelpFormatter, _SubParsersAction, SUPPRESS from collections import namedtuple, OrderedDict def is_subparser(action_group): for a in action_group._group_actions: if isinstance(a, _SubParsersAction): return True return False class CustomHelpFormatter(RawTextHelpFormatter): def __init__(self, *args, **kwargs): super(CustomHelpFormatter, self).__init__(*args, **kwargs) self._action_max_length = 10 class Lazy(object): """Lazily load a default argument after the args have been parsed""" def __init__(self, val): """Initialize a lazy object. Args: val -- if object is callable, it should take one parameter. The arguments namespace object is passed if callable. """ self.val = val def __call__(self, parsed_args_namespace): if callable(self.val): return self.val(parsed_args_namespace) return self.val class ParsedArgsNamespace(object): def __init__(self, keywords, defaults): self._keywords = keywords self._defaults = defaults or {} self._fields = set(list(self._keywords.keys()) + list(self._defaults.keys())) def __getattr__(self, key): if key not in self._fields: raise AttributeError('%r object has not attribute %r' % (type(self), key)) val = self._keywords.get(key) if val is not None: if isinstance(val, Lazy): val = val(self) self._keywords[key] = val return val val = self._defaults.get(key) if val is not None: if callable(val): val = val(self) self._keywords[key] = val return val def __contains__(self, key): return key in self._fields def __getitem__(self, key): return self.__getattr__(key) def __iter__(self): return iter((k, self[k]) for k in self._fields) def __dir__(self): return sorted(set(dir(type(self)) + self._fields)) def __repr__(self): return 'ParsedArgsNamespace(%r, %r)' % (self._keywords, self._defaults) class ParsedArgs(object): def __init__(self, keywords, defaults): self.ns = ParsedArgsNamespace(keywords, defaults) def names(self): return self.ns._fields def pprint(self): spacer = ' ' * 4 names = self.names() arg_len = max(3, max(map(len, names))) hfmt = '{:{}}'+spacer+'{}' lfmt = '{:{}}'+spacer+'{!r}' msg = '\n'.join(lfmt.format(name, arg_len, self.ns[name]) for name in names) title = 'Parsed Arguments:' header = hfmt.format('arg', arg_len, 'value') + '\n' header += hfmt.format('---', arg_len, '-----') print(title) print('=' * len(title)) print(header) print(msg) class RootParser(ArgumentParser): """Private Class.""" @staticmethod def add_parser(*args, **kwargs): return RootParser(*args, **kwargs) def __init__(self, *args, **kwargs): kwargs['formatter_class'] = CustomHelpFormatter super(RootParser, self).__init__(*args, **kwargs) self._debug = False def error(self, message): """Overrides error to control printing output""" if self._debug: import pdb _, _, tb = sys.exc_info() if tb: pdb.post_mortem(tb) else: pdb.set_trace() self.print_usage(sys.stderr) self.exit(2, ('\nERROR: {}\n').format(message)) def format_help(self): """Overrides format_help to not print subparsers""" formatter = self._get_formatter() # usage formatter.add_usage(self.usage, self._actions, self._mutually_exclusive_groups) # description formatter.add_text(self.description) # positionals, optionals and user-defined groups, except SubParsers for action_group in self._action_groups: if is_subparser(action_group): continue formatter.start_section(action_group.title) formatter.add_text(action_group.description) formatter.add_arguments(action_group._group_actions) formatter.end_section() # epilog formatter.add_text(self.epilog) # determine help from format above return formatter.format_help() def parse_args(self, args=None, namespace=None, defaults=None): if not args: args = sys.argv[1:] if len(args) > 0 and args[0] == '--terseparse-debug': self._debug = True logging.getLogger().setLevel(logging.DEBUG) logging.basicConfig() args = args[1:] parser = super(RootParser, self) ns = parser.parse_args(args, namespace) parsed_args = ParsedArgs(OrderedDict(ns._get_kwargs()), defaults) if self._debug: parsed_args.pprint() return parser, parsed_args
2.46875
2
pytautulli/models/home_stats.py
bdraco/pytautulli
2
12794189
"""PyTautulliApiHomeStats.""" from __future__ import annotations from pytautulli.models.user import PyTautulliApiUser from .base import APIResponseType, PyTautulliApiBaseModel class PyTautulliApiHomeStatsRow(PyTautulliApiUser, PyTautulliApiBaseModel): """PyTautulliApiHomeStatsRow""" _responsetype = APIResponseType.DICT art: str | None = None content_rating: str | None = None count: int | None = None friendly_name: str | None = None grandparent_rating_key: str | None = None grandparent_thumb: str | None = None guid: str | None = None labels: list[str] | None = None last_play: str | None = None live: bool | None = None media_type: str | None = None platform: str | None = None platform_name: str | None = None rating_key: int | None = None row_id: int | None = None section_id: int | None = None started: str | None = None stopped: str | None = None thumb: str | None = None title: str | None = None total_duration: int | None = None total_plays: int | None = None user: str | None = None users_watched: str | None = None year: int | None = None class PyTautulliApiHomeStats(PyTautulliApiBaseModel): """PyTautulliApiHomeStats.""" _responsetype = APIResponseType.LIST stat_id: str | None = None stat_type: str | None = None stat_title: str | None = None rows: list[PyTautulliApiHomeStatsRow] = None def __post_init__(self): super().__post_init__() self.rows = [PyTautulliApiHomeStatsRow(row) for row in self.rows or []]
2.359375
2
TextCNN_Siamese/cnn_loaddata_v2.py
Wang-Yikai/Final-Project-for-Natural-Language-Processing-FDU
6
12794190
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Jan 21 15:05:24 2018 @author: Hendry """ from read_data import * from TokenizeSentences import * import numpy as np def onehot(data,nClass): data2 = np.zeros([len(data),nClass]) for i in range(nClass): data2[np.where(data==i),i]= 1 return data2 def get_text_idx(text,vocab,max_document_length): text_array = np.zeros([len(text), max_document_length],dtype=np.int32) for i,x in enumerate(text): words = x for j, w in enumerate(words): if w in vocab: text_array[i, j] = vocab[w] else : text_array[i, j] = vocab['the'] return text_array def loaddata(w2v_model,typeOfClassify = 0,useTextsum= 1): train_bodies = readRawData('train_bodies.csv') if useTextsum == 0: trainDocs = TokenizeSentences(splitData(train_bodies,1)) else: f = open('./fnc_data/train_1.txt','r') data = f.readlines() f.close() trainDocs = TokenizeSentences(data) trainDocsIdx = np.array(splitData(train_bodies,0)).astype('int') train_stances = readRawData('train_stances.csv') trainTitle = TokenizeSentences(splitData(train_stances,0)) trainTitleIdx = np.array(splitData(train_stances,1)).astype('int') trainRes = np.array(splitData(train_stances,2)) trainRes[np.where(trainRes=='unrelated')]='0' trainRes[np.where(trainRes=='agree')]='1' trainRes[np.where(trainRes=='disagree')]='2' trainRes[np.where(trainRes=='discuss')]='3' trainRes =trainRes.astype('int') maxDocLength = 0 for i in range(len(trainDocs)): maxDocLength = max(maxDocLength,len(trainDocs[i])) maxTitleLength = 0 for i in range(len(trainTitle)): maxTitleLength = max(maxTitleLength,len(trainTitle[i])) trainDocs = get_text_idx(trainDocs,w2v_model.vocab_hash,maxDocLength) trainTitle = get_text_idx(trainTitle,w2v_model.vocab_hash,maxTitleLength) trainTitleDocs = [[] for i in range(len(trainTitle))] for i in range(len(trainTitle)): idx = np.where(trainDocsIdx==trainTitleIdx[i]) trainTitleDocs[i]=trainDocs[int(idx[0])] trainTitleDocs = np.array(trainTitleDocs) trainDocs = np.array(trainDocs) trainTitle = np.array(trainTitle) uniIdx = np.unique(trainTitleIdx) uniIdxTest = uniIdx[round(0.95*len(uniIdx)):] validIdx = np.argwhere(trainTitleIdx == uniIdxTest[0]) for i in range(len(uniIdxTest)-1): validIdx = np.append(validIdx,np.argwhere(trainTitleIdx == uniIdxTest[i+1])) validIdx = sorted(validIdx) fullIdx = list(range(len(trainTitleIdx))) trainIdx = list(set(fullIdx).difference(set(validIdx))) x1Train = trainTitleDocs[trainIdx] x2Train = trainTitle[trainIdx] trainRes = np.array(trainRes) y0Train = trainRes[trainIdx] x1Valid = trainTitleDocs[validIdx] x2Valid = trainTitle[validIdx] y0Valid = trainRes[validIdx] if typeOfClassify==0: yValid = onehot(y0Valid,4) yTrain = onehot(y0Train,4) elif typeOfClassify==1: y0Train[y0Train>0]=1 y0Valid[y0Valid>0]=1 yValid = onehot(y0Valid,2) yTrain = onehot(y0Train,2) elif typeOfClassify==2: x1Train = x1Train[y0Train>0] x2Train = x2Train[y0Train>0] y0Train = y0Train[y0Train>0]-1 x1Valid = x1Valid[y0Valid>0] x2Valid = x2Valid[y0Valid>0] y0Valid = y0Valid[y0Valid>0]-1 yValid = onehot(y0Valid,3) yTrain = onehot(y0Train,3) vocab_size = len(w2v_model.vocab_hash) return x1Train, x1Valid, x2Train, x2Valid, yTrain, yValid, vocab_size
2.5625
3
tests/context.py
mrcagney/googlemaps_helpers
1
12794191
import os import sys from pathlib import Path sys.path.insert(0, os.path.abspath('..')) import googlemaps_helpers ROOT = Path('.') DATA_DIR = Path('tests/data')
1.789063
2
HW2/dataset_setup.py
yusufdalva/CS550_Assignments
1
12794192
<filename>HW2/dataset_setup.py import os import shutil import wget import numpy as np DATA_FILE_NAMES = ["train1", "test1", "train2", "test2"] BASE_URL = "http://www.cs.bilkent.edu.tr/~gunduz/teaching/cs550/documents" FILE_URLS = [os.path.join(BASE_URL, file_name) for file_name in DATA_FILE_NAMES] def download_data(file_names, file_urls): cwd = os.getcwd() if os.path.isdir(os.path.join(cwd, "data")): shutil.rmtree(os.path.join(cwd, "data")) folder_path = os.path.join(cwd, "data") os.mkdir(folder_path) file_paths = [] for file_idx in range(len(file_names)): file_path = os.path.join(folder_path, file_names[file_idx] + ".txt") file_paths.append(file_path) wget.download(file_urls[file_idx], file_path) print("\nDOWNLOAD COMPLETED") return file_paths class Dataset: def __init__(self, train_data_path, test_data_path): self.train_data = self.read_data(train_data_path) self.test_data = self.read_data(test_data_path) self.train_mean = np.mean(self.train_data, axis=0) self.train_std = np.std(self.train_data, axis=0) @staticmethod def read_data(data_path): train_file = open(data_path, "r") samples = train_file.readlines() sample_data = [list(map(float, sample.split())) for sample in samples] return np.array(sample_data) def normalize_data(self): train_data = (self.train_data - self.train_mean) / self.train_std test_data = (self.test_data - self.train_mean) / self.train_std return train_data, test_data def denormalize_samples(self, samples): denormalized = samples * self.train_std + self.train_mean return denormalized def denormalize_labels(self, labels): denormalized = labels * self.train_std[1] + self.train_mean[1] return denormalized
2.90625
3
pfp/fuzz/__init__.py
bannsec/pfp
1
12794193
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This module contains the base classes used when defining mutation strategies for pfp """ import glob import os import six get_strategy = None StratGroup = None FieldStrat = None def init(): global get_strategy global StratGroup global FieldStrat import pfp.fuzz.strats get_strategy = pfp.fuzz.strats.get_strategy StratGroup = pfp.fuzz.strats.StratGroup FieldStrat = pfp.fuzz.strats.FieldStrat # load all of the built-in strategies for strat_file in glob.glob(os.path.join(os.path.dirname(__file__), "*.py")): filename = os.path.basename(strat_file) if filename in ["__init__.py", "base.py"]: continue mod_name = filename.replace(".py", "").replace(".pyc", "") __import__("pfp.fuzz." + mod_name) def mutate(field, strat_name_or_cls, num=100, at_once=1, yield_changed=False): """Mutate the provided field (probably a Dom or struct instance) using the strategy specified with ``strat_name_or_class``, yielding ``num`` mutations that affect up to ``at_once`` fields at once. This function will yield back the field after each mutation, optionally also yielding a ``set`` of fields that were mutated in that iteration (if ``yield_changed`` is ``True``). It should also be noted that the yielded set of changed fields *can* be modified and is no longer needed by the mutate() function. :param pfp.fields.Field field: The field to mutate (can be anything, not just Dom/Structs) :param strat_name_or_class: Can be the name of a strategy, or the actual strategy class (not an instance) :param int num: The number of mutations to yield :param int at_once: The number of fields to mutate at once :param bool yield_changed: Yield a list of fields changed along with the mutated dom :returns: generator """ import pfp.fuzz.rand as rand init() strat = get_strategy(strat_name_or_cls) to_mutate = strat.which(field) with_strats = [] for to_mutate_field in to_mutate: field_strat = strat.get_field_strat(to_mutate_field) if field_strat is not None: with_strats.append((to_mutate_field, field_strat)) # we don't need these ones anymore del to_mutate # save the current value of all subfields without # triggering events field._pfp__snapshot(recurse=True) count = 0 for x in six.moves.range(num): chosen_fields = set() idx_pool = set([x for x in six.moves.xrange(len(with_strats))]) # modify `at_once` number of fields OR len(with_strats) number of fields, # whichever is lower for at_onces in six.moves.xrange(min(len(with_strats), at_once)): # we'll never pull the same idx from idx_pool more than once # since we're removing the idx after choosing it rand_idx = rand.sample(idx_pool, 1)[0] idx_pool.remove(rand_idx) rand_field,field_strat = with_strats[rand_idx] chosen_fields.add(rand_field) field_strat.mutate(rand_field) if yield_changed: yield field, chosen_fields else: # yield back the original field yield field # restore the saved value of all subfields without # triggering events field._pfp__restore_snapshot(recurse=True)
2.484375
2
library/source1/mdl/v44/__init__.py
anderlli0053/SourceIO
0
12794194
from .mdl_file import MdlV44
1.09375
1
Course/functions/example_19.py
zevgenia/Python_shultais
0
12794195
<filename>Course/functions/example_19.py # -*- coding: utf-8 -*- def func(b): b[0] = 1 def func2(b): b = b[:] b[0] = 2 def func3(b): b = b.copy() b[0] = 3 l = ['one', 'two', 'three'] func(l[:]) print("l1:", l) func2(l) print("l2:", l) func3(l) print("l3:", l)
3.5625
4
eeyore/linalg/is_pos_def.py
papamarkou/eeyore
6
12794196
import torch def is_pos_def(x): if torch.equal(x, x.t()): try: torch.linalg.cholesky(x) return True except RuntimeError: return False else: return False
2.671875
3
QSQuantifier/DataConnection.py
lizhuangzi/QSQuantificationCode
2
12794197
<gh_stars>1-10 #!/usr/bin python # coding=utf-8 from pymongo import MongoClient def startConnection(ip = 'localhost',port = 27017,dbname = 'StockDatas'): client = MongoClient(ip,port) # try: # client.admin.command('ismaster') # except Exception as e: # print('Server not available') db = client[dbname] # print(db.collection_names(False)) if db == None: print("db not exist") else: print("connect success") return db
2.703125
3
barbeque/shortcuts.py
moccu/barbeque
5
12794198
<reponame>moccu/barbeque from django.shortcuts import _get_queryset def get_object_or_none(klass, *args, **kwargs): """Return an object or ``None`` if the object doesn't exist.""" queryset = _get_queryset(klass) try: return queryset.get(*args, **kwargs) except queryset.model.DoesNotExist: return None
2.140625
2
problems/DivisionTwo_Practice/solution.py
Pactionly/SpringComp2019
1
12794199
print("Hello World from Division Two!")
1.328125
1
story/serializers.py
mshirdel/socialnews
0
12794200
from rest_framework import serializers from accounts.serializers import UserSerializer from .models import Story class StorySerializer(serializers.ModelSerializer): user = UserSerializer(read_only=True) class Meta: model = Story fields = [ "id", "title", "slug", "story_url", "story_body_text", "number_of_comments", "number_of_votes", "url_domain_name", "rank", "user", ] read_only_fields = [ "number_of_comments", "number_of_votes", "url_domain_name", "rank", "slug", ] def validate(self, data): story_url = data.get("story_url", None) story_body_text = data.get("story_body_text", None) if story_url is None and story_body_text is None: raise serializers.ValidationError( "One of story_url or story_body_text is required." ) return data def create(self, validated_data): user = self.context.get("user") story = Story.objects.create(user=user, **validated_data) return story
2.671875
3
development/server/algorithm/tf_faster_rcnn/data_processing/small_tools/get_you_need_label_img.py
FMsunyh/re_com
0
12794201
<filename>development/server/algorithm/tf_faster_rcnn/data_processing/small_tools/get_you_need_label_img.py<gh_stars>0 # -*- coding: utf-8 -*- # @Time : 5/24/2018 # @Author : CarrieChen # @File : get_you_need_label_img.py # @Software: ZJ_AI # this code is for read some labels from excel and find according imgs and put the imgs into a word. import xlrd import docx from PIL import Image import os import xlwt import io_utils from PIL import ImageDraw from PIL import ImageFont #some paths parent_path="C:\\Users\\Administrator\\Desktop\\data_processing_carriechen\\count_all_annotations" excel_path=parent_path+"\\本批商品列表.xls" img_path=parent_path+"\\pic+lab166" refer_166classes=parent_path+"\\166_classes_list.xls" this_batch_imgs_path=parent_path+"\\本批商品图例" def get_labels(input_path): data=xlrd.open_workbook(input_path) table=data.sheets()[0] labels=table.col_values(0) return labels def get_chinese(input_path,pointlabel): #excel data=xlrd.open_workbook(input_path) table=data.sheets()[0] labels=table.col_values(4) if pointlabel in labels: #else row=labels.index(pointlabel) product=table.cell(row,0).value taste = table.cell(row, 1).value weight=table.cell(row,2).value package=table.cell(row,3).value return product,taste,weight,package def find_imgs_and_write_word(labels,parent_path): file=docx.Document() for i in range(len(labels)): img=img_path+"\\"+labels[i]+".jpg" product,taste,weight,package=get_chinese(refer_166classes,labels[i]) file.add_picture(img) file.add_paragraph(product+taste+weight+package+" "+labels[i]) file.add_paragraph("\n") file.save(parent_path+"\\"+"本批商品图例.doc") #这是生成的word文档的名字 def find_imgs_and_save_as_imgs(labels, parent_path): io_utils.mkdir(this_batch_imgs_path) for i in range(len(labels)): background = Image.open("C:\\Users\\Administrator\\Desktop\\data_processing_carriechen\\count_all_annotations\\pure_white_background.jpg") img = img_path + "\\" + labels[i] + ".jpg" product, taste, weight, package = get_chinese(refer_166classes, labels[i]) img=Image.open(img) background.paste(img,[100,50]) draw = ImageDraw.Draw(background) width, height = background.size setFont = ImageFont.truetype('C:\Windows\Fonts\\simfang.ttf', 30) fillColor = "black" draw.text((10, height - 100), u"\""+labels[i]+"\"", font=setFont, fill=fillColor) draw.text((10, height - 50), u"\"" + product+taste+weight+package + "\"", font=setFont, fill=fillColor) background.save(this_batch_imgs_path+"\\"+labels[i]+".jpg") if __name__ =="__main__": labels=get_labels(excel_path) #find_imgs_and_write_word(labels,parent_path) find_imgs_and_save_as_imgs(labels,parent_path)
2.5625
3
xy_python_utils/image_utils.py
yxiong/xy_python_utils
0
12794202
#!/usr/bin/env python # # Author: <NAME>. # Created: Dec 11, 2014. """Some utility functions to handle images.""" import math import numpy as np import PIL.Image from PIL.Image import ROTATE_180, ROTATE_90, ROTATE_270, FLIP_TOP_BOTTOM, FLIP_LEFT_RIGHT import skimage.transform def imcast(img, dtype, color_space="default"): """Cast the input image to a given data type. Parameters ---------- img: ndarray The input image. dtype: np.dtype The type that output image to be cast into. color_space: string, optional The color space of the input image, which affects the casting operation. Returns ------- The output image that is cast into `dtype`. Notes ----- * For `color_space=="default"`, we perform a linear scaling with following range conventions: * `np.uint8`: `[0, 255]`; * `np.uint16`: `[0, 65535]`; * `np.float32` and `np.float64`: `[0.0, 1.0]`. For example, if the input `img` is of `np.uint8` type and the expected `dtype` is `np.float32`, then the output will be `np.asarray(img / 255., np.float32)`. * For `color_space=="CIE-L*a*b*"`, the "normal" value ranges are `0 <= L <= 100, -127 <= a, b <= 127`, and we perform the following cast: * `np.uint8`: `L <- L * 255 / 100, a <- a + 128, b <- b + 128`; * `np.uint16`: currently not supported; * `np.float32` and `np.float64`: left as is. """ if img.dtype == dtype: return img if color_space == "default": if dtype == np.uint8: if img.dtype == np.uint16: return np.asarray(img / 257, np.uint8) elif img.dtype == np.float32 or img.dtype == np.float64: return np.asarray(img * 255., np.uint8) elif dtype == np.uint16: if img.dtype == np.uint8: return np.asarray(img, np.uint16) * 257 elif img.dtype == np.float32 or img.dtype == np.float64: return np.asarray(img * 65535., np.uint16) elif dtype == np.float32 or dtype == np.float64: if img.dtype == np.uint8: return np.asarray(img, dtype) / 255. elif img.dtype == np.uint16: return np.asarray(img, dtype) / 65535. elif img.dtype == np.float32 or img.dtype == np.float64: return np.asarray(img, dtype) elif color_space == "CIE-L*a*b*": if dtype == np.uint8: if img.dtype == np.float32 or img.dtype == np.float64: dst = np.empty(img.shape, np.uint8) dst[:,:,0] = img[:,:,0] * 255. / 100. dst[:,:,1] = img[:,:,1] + 128. dst[:,:,2] = img[:,:,2] + 128. return dst elif dtype == np.float32 or dtype == np.float64: if img.dtype == np.uint8: dst = np.empty(img.shape, dtype) dst[:,:,0] = np.asarray(img[:,:,0], dtype) / 255. * 100. dst[:,:,1] = np.asarray(img[:,:,1], dtype) - 128. dst[:,:,2] = np.asarray(img[:,:,2], dtype) - 128. return dst raise Exception( "Unexpected conversion from '%s' to '%s' with '%s' color space" % \ (img.dtype, dtype, color_space)) def imread(filename, dtype=np.uint8, color_space="default"): """Read the image followed by an :py:func:`imcast`.""" img = PIL.Image.open(filename) if img.mode != "RGB": img = img.convert("RGB") if hasattr(img, "_getexif"): try: exif = img._getexif() or {} except IOError: exif = {} orientation = exif.get(0x0112) if orientation: # see http://park2.wakwak.com/~tsuruzoh/Computer/Digicams/exif-e.html # for explanation of the magical constants # or see http://jpegclub.org/exif_orientation.html for a nice visual explanation # also, rotations are counter-clockwise in PIL orientation = int(orientation) rotation = [None, None, ROTATE_180, None, ROTATE_270, ROTATE_270, ROTATE_90, ROTATE_90] flip = [None, FLIP_LEFT_RIGHT, None, FLIP_TOP_BOTTOM, FLIP_LEFT_RIGHT, None, FLIP_LEFT_RIGHT, None] orientation0 = orientation - 1 # it's 1-indexed per the EXIF spec if 0 <= orientation0 < len(rotation): if rotation[orientation0] is not None: img = img.transpose(rotation[orientation0]) if flip[orientation0] is not None: img = img.transpose(flip[orientation0]) return imcast(np.array(img), dtype, color_space) def imwrite(filename, img, dtype=np.uint8, color_space="default"): """Perform an :py:func:`imcast` before writing to the output file.""" import scipy.misc return scipy.misc.imsave(filename, imcast(img, dtype, color_space)) def imresize(img, size): """Resize the input image. Parameters ---------- img: ndarray The input image to be resized. size: a scalar for `scale` or a 2-tuple for `(num_rows, num_cols)` One of the `num_rows` or `num_cols` can be -1, which will be inferred such that the output image has the same aspect ratio as the input. Returns ------- The resized image. """ if hasattr(size, "__len__"): num_rows, num_cols = size assert (num_rows > 0) or (num_cols > 0) if num_rows < 0: num_rows = num_cols * img.shape[0] / img.shape[1] if num_cols < 0: num_cols = num_rows * img.shape[1] / img.shape[0] else: num_rows = int(round(img.shape[0] * size)) num_cols = int(round(img.shape[1] * size)) return skimage.transform.resize(img, (num_rows, num_cols)) def create_icon_mosaic(icons, icon_shape=None, border_size=1, border_color=None, empty_color=None, mosaic_shape=None, mosaic_dtype=np.float): """Create a mosaic of image icons. Parameters ---------- icons: a list of `ndarray`s A list of icons to be put together for mosaic. Currently we require all icons to be multi-channel images of the same size. icon_shape: 3-tuple, optional The shape of icons in the output mosaic as `(num_rows, num_cols, num_channels)`. If not specified, use the shape of first image in `icons`. border_size: int, optional The size of border. border_color: 3-tuple, optional The color of border, black if not specified. empty_color: 3-tuple, optional The color for empty cells, black if not specified. mosaic_shape: 2-tuple, optional The shape of output mosaic as `(num_icons_per_row, num_icons_per_col)`. If not specified, try to make a square mosaic according to number of icons. mosaic_dtype: dtype The data type of output mosaic. Returns ------- The created mosaic image. """ # Set default parameters. num_icons = len(icons) assert num_icons > 0 if icon_shape is None: icon_shape = icons[0].shape assert len(icon_shape) == 3 num_channels = icon_shape[2] if border_color is None: border_color = np.zeros(num_channels) if empty_color is None: empty_color = np.zeros(num_channels) if mosaic_shape is None: num_cols = int(math.ceil(math.sqrt(num_icons))) num_rows = int(math.ceil(float(num_icons) / num_cols)) mosaic_shape = (num_rows, num_cols) mosaic_image_shape = ( mosaic_shape[0] * icon_shape[0] + (mosaic_shape[0]-1) * border_size, mosaic_shape[1] * icon_shape[1] + (mosaic_shape[1]-1) * border_size, icon_shape[2]) # Create mosaic image and fill with border color. mosaic_image = np.empty(mosaic_image_shape, dtype=mosaic_dtype) for c in xrange(mosaic_image.shape[2]): mosaic_image[:,:,c] = border_color[c] # Fill in the input icons. for idx in xrange(num_icons): i = idx / mosaic_shape[1] j = idx % mosaic_shape[1] iStart = i * (icon_shape[0] + border_size) jStart = j * (icon_shape[1] + border_size) mosaic_image[iStart:iStart+icon_shape[0], jStart:jStart+icon_shape[1],:] = icons[idx] # Fill the empty icons with empty colors. for idx in xrange(num_icons, mosaic_shape[0]*mosaic_shape[1]): i = idx / mosaic_shape[1] j = idx % mosaic_shape[1] iStart = i * (icon_shape[0] + border_size) jStart = j * (icon_shape[1] + border_size) for c in xrange(mosaic_image.shape[2]): mosaic_image[iStart:iStart+icon_shape[0], jStart:jStart+icon_shape[1],c] = empty_color[c] return mosaic_image def image_size_from_file(filename): """Read the image size from a file. This function only loads but the image header (rather than the whole rasterized data) in order to determine its dimension. Parameters ---------- filename: string The input image file. Returns ------- The 2-tuple for image size `(num_rows, num_cols)`. """ with PIL.Image.open(filename) as img: width, height = img.size return height, width
3.390625
3
main.py
takat0m0/test_solve_easy_maze_with_Q
0
12794203
# -*- coding:utf-8 -*- import os import sys import numpy as np from simulater import Simulater from play_back import PlayBack, PlayBacks COMMAND = ['UP', 'DOWN', 'LEFT', 'RIGHT'] def get_max_command(target_dict): return max([(v,k) for k,v in target_dict.items()])[1] def simplify(command): return command[0] def print_Q(Q, x, y): ret = [] for i in range(y): ret.append(['0' for _ in range(x)]) for k in Q: ret[k[1]][k[0]] = simplify(get_max_command(Q[k])) for this_line in ret: print(''.join(this_line)) if __name__ == '__main__': # parameters file_name = 'default.txt' epoch_num = 1000 max_trial = 5000 gamma = 0.1 alpha = 0.1 epsilon = 0.5 # make simulater sim = Simulater(file_name) # initialize Q value x, y = sim.map_size() Q = {} for i in range(x): for j in range(y): Q[(i, j)] = {_:np.random.normal() for _ in COMMAND} #Q[(i, j)] = {_:0.0 for _ in COMMAND} # main minimum_pbs = None for epoch in range(epoch_num): sim.reset() this_pbs = PlayBacks() for i in range(max_trial): # get current current_x, current_y = sim.get_current() # select_command tmp_Q = Q[(current_x, current_y)] command = get_max_command(tmp_Q) if np.random.uniform() > epsilon else np.random.choice(COMMAND) current_value = tmp_Q[command] # reward reward = sim(command) # update next_x, next_y = sim.get_current() next_max_command = get_max_command(Q[(next_x, next_y)]) next_value = Q[(next_x, next_y)][next_max_command] tmp_Q[command] += alpha * (reward + gamma * next_value - current_value) # play back this_pbs.append(PlayBack((current_x, current_y), command, (next_x, next_y), reward)) # end check if sim.end_episode(): print('find goal') epsilon *= 0.95 if epsilon < 0.05: epsilon = 0.05 if minimum_pbs is None: minimum_pbs = this_pbs elif len(minimum_pbs) > len(this_pbs): minimum_pbs = this_pbs print(epsilon) break # update with minimum_pbs if minimum_pbs is not None: for pb in minimum_pbs: tmp_Q = Q[pb.state] current_value = tmp_Q[pb.action] next_Q = Q[pb.next_state] next_max_command = get_max_command(next_Q) next_value = next_Q[next_max_command] tmp_Q[pb.action] += alpha * (pb.reward + gamma * next_value - current_value) sim.printing() print('---') print_Q(Q, x, y) print('---')
2.71875
3
pyvac/helpers/holiday.py
sayoun/pyvac
21
12794204
<reponame>sayoun/pyvac # import time import logging import calendar from datetime import datetime from workalendar.europe import France, Luxembourg from workalendar.usa import California from workalendar.asia import Taiwan log = logging.getLogger(__file__) conv_table = { 'fr': France, 'us': California, 'zh': Taiwan, 'lu': Luxembourg, } override = {} def init_override(content): """Load a yaml file for holidays override. You can override holidays for a country and a year through usage of a configuration setting: pyvac.override_holidays_file = %(here)s/conf/holidays.yaml here is a sample: zh: 2016: '2016-01-01': 'New Years Day' '2016-02-07': 'Chinese New Years Eve' """ if not content: return override.update(content) def utcify(date): """ return an UTC datetime from a Date object """ return calendar.timegm(date.timetuple()) * 1000 def get_holiday(user, year=None, use_datetime=False): """ return holidays for user country format is unixtime for javascript """ klass = conv_table[user.country] cal = klass() current_year = year or datetime.now().year next_year = current_year + 1 # retrieve Dates from workalendar holiday_current_raw = [dt for dt, _ in cal.holidays(current_year)] holiday_next_raw = [dt for dt, _ in cal.holidays(next_year)] if user.country in override and current_year in override[user.country]: holiday_current_raw = [datetime.strptime(dt, '%Y-%m-%d') for dt in override[user.country][current_year]] if user.country in override and next_year in override[user.country]: holiday_next_raw = [datetime.strptime(dt, '%Y-%m-%d') for dt in override[user.country][next_year]] if not use_datetime: # must cast to javascript timestamp holiday_current = [utcify(dt) for dt in holiday_current_raw] holiday_next = [utcify(dt) for dt in holiday_next_raw] else: # must cast to datetime as workalendar returns only Date objects holiday_current = [datetime(dt.year, dt.month, dt.day) for dt in holiday_current_raw] holiday_next = [datetime(dt.year, dt.month, dt.day) for dt in holiday_next_raw] return holiday_current + holiday_next
2.5625
3
utils.py
wuch15/Sentiment-debiasing
0
12794205
from numpy.linalg import cholesky import numpy as np def senti2cate(x): if x<=-0.6: return 0 elif x>-0.6 and x<=-0.2: return 1 elif x>-0.2 and x<0.2: return 2 elif x>=0.2 and x<0.6: return 3 elif x>=0.6: return 4 def dcg_score(y_true, y_score, k=10): order = np.argsort(y_score)[::-1] y_true = np.take(y_true, order[:k]) gains = 2 ** y_true - 1 discounts = np.log2(np.arange(len(y_true)) + 2) return np.sum(gains / discounts) def ndcg_score(y_true, y_score, k=10): best = dcg_score(y_true, y_true, k) actual = dcg_score(y_true, y_score, k) return actual / best def mrr_score(y_true, y_score): order = np.argsort(y_score)[::-1] y_true = np.take(y_true, order) rr_score = y_true / (np.arange(len(y_true)) + 1) return np.sum(rr_score) / np.sum(y_true) def auc(label,score): label=np.array(label) score=np.array(score) false_score = score[label==0] positive_score = score[label==1] num_positive = (label==1).sum() num_negative = (label==0).sum() positive_score = positive_score.reshape((num_positive,1)) positive_score = np.repeat(positive_score,num_negative,axis=1) false_score = false_score.reshape((1,num_negative)) false_score = np.repeat(false_score,num_positive,axis=0) return 1-((positive_score<false_score).mean()+0.5*(positive_score==false_score).mean()) def embedding(embfile,word_dict): emb_dict = {} with open(embfile,'rb')as f: while True: line = f.readline() if len(line) == 0: break data = line.split() word = data[0].decode() if len(word) != 0: vec = [float(x) for x in data[1:]] if word in word_dict: emb_dict[word] = vec emb_table = [0]*len(word_dict) dummy = np.zeros(300,dtype='float32') all_emb = [] for i in emb_dict: emb_table[word_dict[i][0]] = np.array(emb_dict[i],dtype='float32') all_emb.append(emb_table[word_dict[i][0]]) all_emb = np.array(all_emb,dtype='float32') mu = np.mean(all_emb, axis=0) Sigma = np.cov(all_emb.T) norm = np.random.multivariate_normal(mu, Sigma, 1) for i in range(len(emb_table)): if type(emb_table[i]) == int: emb_table[i] = np.reshape(norm, 300) emb_table[0] = np.random.uniform(-0.03,0.03,size=(300,)) emb_table = np.array(emb_table,dtype='float32') return emb_table
2.703125
3
sjb/hack/determine_install_upgrade_version_test.py
brenton/aos-cd-jobs
45
12794206
<reponame>brenton/aos-cd-jobs import unittest from determine_install_upgrade_version import * class TestPackage(object): def __init__(self, name, version, release, epoch, vra, pkgtup): self.name = name self.version = version self.release = release self.epoch = epoch self.vra = vra self.pkgtup = pkgtup def __eq__(self, other): return self.__dict__ == other.__dict__ @classmethod def create_test_packages(self, test_pkgs): test_pkgs_objs = [] for pkg in test_pkgs: pkg_name, pkg_version, pkg_release, pkg_epoch, pkg_arch = rpmutils.splitFilename(pkg) pkg_vra = pkg_version + "-" + pkg_release + "." + pkg_arch pkg_tup = (pkg_name , pkg_arch, pkg_epoch, pkg_version, pkg_release) test_pkgs_objs.append(TestPackage(pkg_name, pkg_version, pkg_release, pkg_epoch, pkg_vra, pkg_tup)) return test_pkgs_objs class RemoveDuplicatePackages(unittest.TestCase): "Test for `determine_install_upgrade_version.py`" def test_removing_single_duplicate_package(self): """ when is multiple duplicate packages, return only one """ test_pkgs = ["origin-1.4.1-1.el7.x86_64", "origin-1.5.0-0.4.el7.x86_64", "origin-1.5.0-0.4.el7.x86_64"] test_pkgs_objs = TestPackage.create_test_packages(test_pkgs) result_pkgs_objs = test_pkgs_objs[:2] self.assertEqual(remove_duplicate_pkgs(test_pkgs_objs), result_pkgs_objs) def test_removing_no_duplicate_package(self): """ when there is no duplicate package, return the single one """ test_pkgs = ["origin-1.4.1-1.el7.x86_64", "origin-1.5.0-0.4.el7.x86_64"] test_pkgs_objs = TestPackage.create_test_packages(test_pkgs) result_pkgs_objs = test_pkgs_objs[:2] self.assertEqual(remove_duplicate_pkgs(test_pkgs_objs), result_pkgs_objs) class GetMatchingVersionTestCase(unittest.TestCase): "Test for `determine_install_upgrade_version.py`" def test_get_matching_versions(self): """ when only one matching version exist and its pre-release, it is returned """ test_pkgs = ["origin-1.4.1-1.el7.x86_64", "origin-1.5.0-0.4.el7.x86_64"] test_pkgs_objs = TestPackage.create_test_packages(test_pkgs) self.assertEqual(get_matching_versions('origin', test_pkgs_objs, '1.5'), ['1.5.0-0.4.el7']) def test_with_single_pre_release(self): """ when only one pre-release version exist, it is returned """ test_pkgs = ["origin-1.5.0-0.4.el7.x86_64"] test_pkgs_objs = TestPackage.create_test_packages(test_pkgs) self.assertEqual(get_matching_versions('origin', test_pkgs_objs, '1.5'), ['1.5.0-0.4.el7']) def test_with_multiple_pre_release(self): """ when only one pre-release version exist, it is returned """ test_pkgs = ["origin-1.5.0-0.4.el7.x86_64", "origin-1.5.2-0.1.el7.x86_64"] test_pkgs_objs = TestPackage.create_test_packages(test_pkgs) self.assertEqual(get_matching_versions('origin', test_pkgs_objs, '1.5'), ['1.5.0-0.4.el7', '1.5.2-0.1.el7']) def test_with_single_release(self): """ when both release and pre-release versions exist, only release versions are returned """ test_pkgs = ["origin-1.5.0-0.4.el7.x86_64", "origin-1.5.0-1.1.el7.x86_64"] test_pkgs_objs = TestPackage.create_test_packages(test_pkgs) self.assertEqual(get_matching_versions('origin', test_pkgs_objs, '1.5'), ["1.5.0-1.1.el7"]) def test_with_muptiple_release(self): """ when both release and pre-release versions exist, only release version is returned """ test_pkgs = ["origin-1.5.0-0.4.el7.x86_64", "origin-1.5.0-1.1.el7.x86_64", "origin-1.5.2-1.1.el7.x86_64"] test_pkgs_objs = TestPackage.create_test_packages(test_pkgs) self.assertEqual(get_matching_versions('origin', test_pkgs_objs, '1.5'), ["1.5.0-1.1.el7", "1.5.2-1.1.el7"]) def test_with_no_matches(self): test_pkgs = ["origin-1.2.0-0.4.el7.x86_64", "origin-1.3.0-1.1.el7.x86_64", "origin-1.4.2-1.1.el7.x86_64"] test_pkgs_objs = TestPackage.create_test_packages(test_pkgs) self.assertRaises(SystemExit, get_matching_versions, 'origin', test_pkgs_objs, '1.5') class DetermineSearchVersionTestCase(unittest.TestCase): "Test for `determine_install_upgrade_version.py`" def test_origin_with_standard_versioning_schema(self): """ when the origin version is higher then the first version of the new origin versioning schema - origin-3.6 """ self.assertEqual(determine_search_versions("origin", "3.7.0"), ("3.6", "3.7")) def test_origin_with_short_standard_versioning_schema(self): """ when the origin version is in short format and higher then the first version of the new origin versioning schema - origin-3.6 """ self.assertEqual(determine_search_versions("origin", "3.7"), ("3.6", "3.7")) def test_origin_with_standard_to_legacy_versioning_schema(self): """ when the origin version is the first from the new origin versioning schema - origin-3.6 """ self.assertEqual(determine_search_versions("origin", "3.6.0"), ("1.5", "3.6")) def test_origin_with_short_standard_to_legacy_versioning_schema(self): """ when the origin version is in short format and first from the new origin versioning schema - origin-3.6 """ self.assertEqual(determine_search_versions("origin", "3.6"), ("1.5", "3.6")) def test_origin_with_legacy_schema(self): """ when the origin version is in the old versioning schema """ self.assertEqual(determine_search_versions("origin", "1.5.0"), ("1.4", "1.5")) def test_origin_with_short_legacy_schema(self): """ when the origin version is in short and old versioning schema """ self.assertEqual(determine_search_versions("origin", "1.5"), ("1.4", "1.5")) def test_openshift_ansible_with_standard_versioning_schema(self): """ when openshift-ansible, which doesnt have different versioning schema, is in 3.7 version """ self.assertEqual(determine_search_versions("openshift-ansible", "3.7.0"), ("3.6", "3.7")) def test_openshift_ansible_with_standard_to_legacy_versioning_schema(self): """ when openshift-ansible, which doesnt have different versioning schema is in 3.6 version """ self.assertEqual(determine_search_versions("openshift-ansible", "3.6.0"), ("3.5", "3.6")) def test_openshift_ansible_with_short_standard_to_legacy_versioning_schema(self): """ when openshift-ansible, which doesnt have different versioning schema, is in short format and in 3.6 version """ self.assertEqual(determine_search_versions("openshift-ansible", "3.6"), ("3.5", "3.6")) def test_openshift_ansible_with_legacy_versioning_schema(self): """ when openshift-ansible, which doesnt have different versioning schema is in 3.4 version """ self.assertEqual(determine_search_versions("openshift-ansible", "3.5.0"), ("3.4", "3.5")) class SchemaChangeCheckTestCase(unittest.TestCase): "Test for `determine_install_upgrade_version.py`" def test_origin_package_with_new_schema(self): """ when origin package is in 3.6 version """ self.assertEqual(schema_change_check("origin", "3", "6"), "3.6") def test_origin_package_with_old_schema(self): """ when origin package is in 1.5 version """ self.assertEqual(schema_change_check("origin", "3", "5"), "1.5") def test_non_origin_package_with_new_schema(self): """ when origin package is in 3.6 version """ self.assertEqual(schema_change_check("openshift-ansible", "3", "6"), "3.6") def test_non_origin_package_with_old_schema(self): """ when origin package is in 3.5 version """ self.assertEqual(schema_change_check("openshift-ansible", "3", "5"), "3.5") class GetLastVersionTestCase(unittest.TestCase): "Test for `determine_install_upgrade_version.py`" def test_with_multiple_matching_release_versions(self): """ when multiple matching version are present in released versions """ matching_versions = ["1.2.0-1.el7", "1.2.2-1.el7", "1.2.5-1.el7"] install_version = "1.2.5-1.el7" self.assertEqual(get_last_version(matching_versions), install_version) def test_with_single_matching_release_version(self): """ when only a single matching version is present in released versions """ matching_versions = ["1.5.0-1.4.el7"] install_version = "1.5.0-1.4.el7" self.assertEqual(get_last_version(matching_versions), install_version) def test_with_multiple_matching_pre_release_versions(self): """ when multiple matching pre-release version are present in pre-released versions """ matching_versions = ["1.2.0-0.el7", "1.2.2-0.el7", "1.2.5-0.el7"] install_version = "1.2.5-0.el7" self.assertEqual(get_last_version(matching_versions), install_version) def test_with_single_matching_pre_release_version(self): """ when only single matching pre-release version is present in pre-released versions """ matching_versions = ["1.5.0-0.4.el7"] install_version = "1.5.0-0.4.el7" self.assertEqual(get_last_version(matching_versions), install_version) class SortPackagesTestCase(unittest.TestCase): "Test for `determine_install_upgrade_version.py`" def test_sort_packages_with_exceptional_origin_pkg(self): """ when sorting origin packages with exceptional origin-3.6.0-0.0.alpha.0.1 package """ test_pkgs = ["origin-3.6.0-0.0.alpha.0.1.el7", "origin-3.6.0-0.alpha.0.2.el7"] properly_sorted_pkgs = ["origin-3.6.0-0.alpha.0.2.el7"] test_pkgs_obj = TestPackage.create_test_packages(test_pkgs) properly_sorted_pkgs_obj = TestPackage.create_test_packages(properly_sorted_pkgs) sorted_test_pkgs_obj = sort_pkgs(test_pkgs_obj) self.assertEqual(sorted_test_pkgs_obj, properly_sorted_pkgs_obj) def test_sort_packages_with_same_minor_version(self): """ when sorting origin packages within the same minor version """ test_pkgs = ["origin-1.5.1-1.el7", "origin-1.5.0-1.el7"] properly_sorted_pkgs = ["origin-1.5.0-1.el7", "origin-1.5.1-1.el7"] test_pkgs_obj = TestPackage.create_test_packages(test_pkgs) properly_sorted_pkgs_obj = TestPackage.create_test_packages(properly_sorted_pkgs) sorted_test_pkgs_obj = sort_pkgs(test_pkgs_obj) self.assertEqual(sorted_test_pkgs_obj, properly_sorted_pkgs_obj) def test_sort_packages_with_different_minor_version(self): """ when sorting origin packages with different minor version """ test_pkgs = ["origin-1.5.1-1.el7", "origin-1.4.0-1.el7"] properly_sorted_pkgs = ["origin-1.4.0-1.el7", "origin-1.5.1-1.el7"] test_pkgs_obj = TestPackage.create_test_packages(test_pkgs) properly_sorted_pkgs_obj = TestPackage.create_test_packages(properly_sorted_pkgs) sorted_test_pkgs_obj = sort_pkgs(test_pkgs_obj) self.assertEqual(sorted_test_pkgs_obj, properly_sorted_pkgs_obj) if __name__ == '__main__': unittest.main()
2.390625
2
radionica-petak/hamster.py
Levara/pygame-hamster
0
12794207
<reponame>Levara/pygame-hamster # ukljucivanje biblioteke pygame import pygame import random #inicijalizacija pygame pygame.init() #inicijalizacije fontova pygame.font.init() # definiranje konstanti za velicinu prozora WIDTH = 1024 HEIGHT = 600 # tuple velicine prozora size = (WIDTH, HEIGHT) #definiranje boja - guglaj colorpicker WHITE= ( 255, 255, 255) BLACK= ( 0, 0, 0 ) BLUE = (0, 0, 255) #Renderiranje pozdravnog teksta myfont = pygame.font.SysFont('Arial', 30) welcome_text = myfont.render("Dobrodosli!", \ False, BLUE) #daj mi velicinu welcome teksta welcome_text_size = welcome_text.get_rect() welcome_image = pygame.image.load( \ "shark.jpg") hamster = pygame.image.load("hamster.png") hamster = pygame.transform.scale(hamster, \ (100, 100) ) #definiranje novog ekrana za igru screen = pygame.display.set_mode(size) #definiranje naziva prozora pygame.display.set_caption("Nasa kul igra") clock = pygame.time.Clock() game_state = "welcome" done = False hit = False hamster_time = 3000 hamster_x, hamster_y = 100, 100 score = 0 while not done: #event petlja for event in pygame.event.get(): if event.type == pygame.QUIT: done = True elif event.type == pygame.KEYDOWN: if event.key == pygame.K_SPACE: game_state = "game" elif event.type == pygame.MOUSEBUTTONDOWN: if game_state == "game": pos = event.pos if hamster_pos.collidepoint(pos): hit = True if game_state == "welcome": screen.fill(WHITE) screen.blit(welcome_image, (0,0) ) screen.blit(welcome_text, ( 100, 100) ) elif game_state == "game": if hit: hamster_time = 3000 hamster_x = random.randint(20, WIDTH) hamster_y = random.randint(20, HEIGHT) hit = False score += 1 if hamster_time < 0 : game_state = "game_over" screen.fill(WHITE) hamster_pos = screen.blit(hamster, \ (hamster_x, hamster_y)) score_text = \ myfont.render("Score: %d!"%score, \ False, BLUE) screen.blit(score_text, (10, 10) ) hamster_time = hamster_time - clock.get_time() elif game_state == "game_over": screen.fill(BLACK) pygame.display.flip() #ukoliko je potrebno ceka do iscrtavanja #iduceg framea kako bi imao 60fpsa clock.tick(60)
3.109375
3
mizarlabs/tests/transformers/test_average_uniqueness.py
MizarAI/mizar-labs
18
12794208
<gh_stars>10-100 import pandas as pd import pytest from mizarlabs.static import CLOSE from mizarlabs.transformers.sampling.average_uniqueness import AverageUniqueness from mizarlabs.transformers.targets.labeling import TripleBarrierMethodLabeling @pytest.mark.usefixtures("dollar_bar_dataframe") def test_average_uniqueness(dollar_bar_dataframe: pd.DataFrame): """ Check whether average uniqueness is the same as the manual calculation. """ triple_barrier = TripleBarrierMethodLabeling( num_expiration_bars=3, profit_taking_factor=0.1, stop_loss_factor=0.1 ) target_labels = triple_barrier.fit_transform(dollar_bar_dataframe[[CLOSE]]) target_labels = target_labels.dropna() avg_uniqueness_transformer = AverageUniqueness() avg_uniqueness = avg_uniqueness_transformer.transform(target_labels) assert avg_uniqueness.iloc[22] == 13 / 36 if __name__ == "__main__": pytest.main([__file__])
2.34375
2
ingestion/8.ingest_qualifying_file.py
iamrahulsen/formula-1-data-analysis
0
12794209
# Databricks notebook source # MAGIC %md # MAGIC ### Ingest qualifying json files # COMMAND ---------- dbutils.widgets.text("p_data_source", "") v_data_source = dbutils.widgets.get("p_data_source") # COMMAND ---------- dbutils.widgets.text("p_file_date", "2021-03-21") v_file_date = dbutils.widgets.get("p_file_date") # COMMAND ---------- # MAGIC %run "../includes/configuration" # COMMAND ---------- # MAGIC %run "../includes/common_functions" # COMMAND ---------- # MAGIC %md # MAGIC ##### Step 1 - Read the JSON file using the spark dataframe reader API # COMMAND ---------- from pyspark.sql.types import StructType, StructField, IntegerType, StringType # COMMAND ---------- qualifying_schema = StructType(fields=[StructField("qualifyId", IntegerType(), False), StructField("raceId", IntegerType(), True), StructField("driverId", IntegerType(), True), StructField("constructorId", IntegerType(), True), StructField("number", IntegerType(), True), StructField("position", IntegerType(), True), StructField("q1", StringType(), True), StructField("q2", StringType(), True), StructField("q3", StringType(), True), ]) # COMMAND ---------- qualifying_df = spark.read \ .schema(qualifying_schema) \ .option("multiLine", True) \ .json(f"{raw_folder_path}/{v_file_date}/qualifying") # COMMAND ---------- # MAGIC %md # MAGIC ##### Step 2 - Rename columns and add new columns # MAGIC 1. Rename qualifyingId, driverId, constructorId and raceId # MAGIC 1. Add ingestion_date with current timestamp # COMMAND ---------- qualifying_with_ingestion_date_df = add_ingestion_date(qualifying_df) # COMMAND ---------- from pyspark.sql.functions import lit # COMMAND ---------- final_df = qualifying_with_ingestion_date_df.withColumnRenamed("qualifyId", "qualify_id") \ .withColumnRenamed("driverId", "driver_id") \ .withColumnRenamed("raceId", "race_id") \ .withColumnRenamed("constructorId", "constructor_id") \ .withColumn("ingestion_date", current_timestamp()) \ .withColumn("data_source", lit(v_data_source)) \ .withColumn("file_date", lit(v_file_date)) # COMMAND ---------- # MAGIC %md # MAGIC ##### Step 3 - Write to output to processed container in parquet format # COMMAND ---------- #overwrite_partition(final_df, 'f1_processed', 'qualifying', 'race_id') # COMMAND ---------- merge_condition = "tgt.qualify_id = src.qualify_id AND tgt.race_id = src.race_id" merge_delta_data(final_df, 'f1_processed', 'qualifying', processed_folder_path, merge_condition, 'race_id') # COMMAND ---------- dbutils.notebook.exit("Success") # COMMAND ----------
2.8125
3
pool/cmd.py
jan-g/pool-balls
0
12794210
<filename>pool/cmd.py<gh_stars>0 from __future__ import print_function import argparse import os import sys import pool.demo def main(): print(os.getcwd()) print(os.listdir(".")) print(os.listdir("tools")) parser = argparse.ArgumentParser( description='ball locator') parser.add_argument('input', type=argparse.FileType('r')) parser.add_argument('output', nargs='?', type=argparse.FileType('w'), default=sys.stdout) args = parser.parse_args() assert args.input is not None assert args.output is not None pool.demo.demo(args.input) return 0 if __name__ == '__main__': main()
2.515625
3
src/ctc/protocols/curve_utils/pool_lists.py
fei-protocol/checkthechain
94
12794211
from __future__ import annotations import typing from typing_extensions import TypedDict from ctc import evm from ctc import rpc from ctc import spec old_pool_factory = '0x0959158b6040d32d04c301a72cbfd6b39e21c9ae' pool_factory = '0xb9fc157394af804a3578134a6585c0dc9cc990d4' eth_address = '0xeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee' creation_blocks = { '0x0959158b6040d32d04c301a72cbfd6b39e21c9ae': 11942404, '0xb9fc157394af804a3578134a6585c0dc9cc990d4': 12903979, } # # # call based # async def async_get_factory_pool_data( factory: spec.Address, include_balances: bool = False, ) -> list[CurvePoolData]: import asyncio n_pools = await rpc.async_eth_call( to_address=factory, function_name='pool_count', ) coroutines = [ _async_get_pool_data(p, factory, include_balances=include_balances) for p in range(n_pools) ] return await asyncio.gather(*coroutines) class CurvePoolData(TypedDict): address: spec.Address tokens: typing.Sequence[spec.Address] symbols: typing.Sequence[str] balances: typing.Sequence[int | float | None] async def _async_get_pool_data( p: int, factory: spec.Address, include_balances: bool = False, ) -> CurvePoolData: pool = await rpc.async_eth_call( to_address=factory, function_name='pool_list', function_parameters=[p], ) coins = await rpc.async_eth_call( to_address=factory, function_name='get_coins', function_parameters=[pool], ) coins = [coin for coin in coins if coin not in [eth_address]] valid_coins = [ coin for coin in coins if coin not in ['0x0000000000000000000000000000000000000000', eth_address] ] symbols = await evm.async_get_erc20s_symbols( valid_coins, ) if eth_address in coins: index = coins.index(eth_address) symbols.insert(index, 'ETH') if include_balances: balances: typing.MutableSequence[int | float | None] = ( await evm.async_get_erc20s_balance_of( # type: ignore tokens=valid_coins, address=pool, ) ) if eth_address in coins: eth_balance = await evm.async_get_eth_balance(pool) balances.insert(index, eth_balance) else: balances = [None for coin in coins] return { 'address': pool, 'tokens': coins, 'symbols': symbols, 'balances': balances, } # # # event based # async def async_get_base_pools( start_block: typing.Optional[spec.BlockNumberReference] = None, end_block: typing.Optional[spec.BlockNumberReference] = None, provider: spec.ProviderSpec = None, verbose: bool = False, ) -> spec.DataFrame: import asyncio import pandas as pd if start_block is None: start_block = 12903979 # gather data coroutines = [] for factory in [old_pool_factory, pool_factory]: if start_block is None: factory_start_block = creation_blocks[factory] else: factory_start_block = start_block coroutine = evm.async_get_events( contract_address=factory, event_name='BasePoolAdded', start_block=factory_start_block, end_block=end_block, provider=provider, verbose=verbose, ) coroutines.append(coroutine) dfs = await asyncio.gather(*coroutines) events = pd.concat(dfs) # format data events = events.sort_index() events = events[['contract_address', 'transaction_hash', 'arg__base_pool']] events = events.rename( columns={ 'contract_address': 'factory', 'arg__base_pool': 'pool', } ) return events async def async_get_plain_pools( start_block: typing.Optional[spec.BlockNumberReference] = None, end_block: typing.Optional[spec.BlockNumberReference] = None, provider: spec.ProviderSpec = None, verbose: bool = False, ) -> spec.DataFrame: if start_block is None: start_block = 12903979 events = await evm.async_get_events( contract_address=pool_factory, event_name='PlainPoolDeployed', start_block=start_block, end_block=end_block, provider=provider, verbose=verbose, ) events = events[ [ 'transaction_hash', 'contract_address', 'arg__coins', 'arg__A', 'arg__fee', 'arg__deployer', ] ] events = events.rename( columns={ 'contract_address': 'factory', 'arg__coins': 'coins', 'arg__A': 'A', 'arg__fee': 'fee', 'arg__deployer': 'deployer', } ) return events async def async_get_meta_pools( start_block: typing.Optional[spec.BlockNumberReference] = None, end_block: typing.Optional[spec.BlockNumberReference] = None, provider: spec.ProviderSpec = None, verbose: bool = False, ) -> spec.DataFrame: import asyncio import pandas as pd # gather data coroutines = [] for factory in [old_pool_factory, pool_factory]: if start_block is None: factory_start_block: spec.BlockNumberReference = creation_blocks[ factory ] else: factory_start_block = start_block coroutine = evm.async_get_events( contract_address=factory, event_name='MetaPoolDeployed', start_block=factory_start_block, end_block=end_block, provider=provider, verbose=verbose, ) coroutines.append(coroutine) dfs = await asyncio.gather(*coroutines) events = pd.concat(dfs) # format data events = events.sort_index() events = events[ [ 'transaction_hash', 'contract_address', 'arg__coin', 'arg__base_pool', 'arg__A', 'arg__fee', 'arg__deployer', ] ] events = events.rename( columns={ 'contract_address': 'factory', 'arg__coin': 'coin', 'arg__base_pool': 'base_pool', 'arg__A': 'A', 'arg__fee': 'fee', 'arg__deployer': 'deployer', } ) return events
2.125
2
Advent2015/6.py
SSteve/AdventOfCode
0
12794212
import numpy as np import re lineRegex = re.compile(r"(turn on|turn off|toggle) (\d+),(\d+) through (\d+),(\d+)") def day6(fileName): lights = np.zeros((1000, 1000), dtype=bool) with open(fileName) as infile: for line in infile: match = lineRegex.match(line) if match: for x in range(int(match[2]), int(match[4]) + 1): for y in range(int(match[3]), int(match[5]) + 1): if match[1] == "turn on": lights[y, x] = True elif match[1] == "turn off": lights[y, x] = False elif match[1] == "toggle": lights[y, x] = not lights[y, x] else: raise ValueError(f"Unknown directive: {match[1]}") print(f"There are {lights.sum()} lights!") def day6b(fileName): lights = np.zeros((1000, 1000), dtype=int) with open(fileName) as infile: for line in infile: match = lineRegex.match(line) if match: x1 = int(match[2]) x2 = int(match[4]) y1 = int(match[3]) y2 = int(match[5]) if match[1] == "turn on": lights[y1:y2 + 1, x1:x2 + 1] += 1 elif match[1] == "turn off": for x in range(x1, x2 + 1): for y in range(y1, y2 + 1): lights[y, x] = max(lights[y, x] - 1, 0) elif match[1] == "toggle": lights[y1:y2 + 1, x1:x2 + 1] += 2 else: raise ValueError(f"Unknown directive: {match[1]}") print(f"Brightness: {lights.sum()}") #day6("6test.txt") #day6("6.txt") day6b("6btest.txt") day6b("6.txt") #15343601
3.0625
3
client/configuration_monitor.py
fabiomassimo/pyre-check
1
12794213
<gh_stars>1-10 # Copyright (c) 2016-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # pyre-unsafe import logging import os from logging import Logger from typing import Any, Dict, List from .analysis_directory import AnalysisDirectory from .commands import stop from .configuration import CONFIGURATION_FILE from .filesystem import is_parent from .watchman_subscriber import Subscription, WatchmanSubscriber LOG: Logger = logging.getLogger(__name__) class ConfigurationMonitor(WatchmanSubscriber): """ The ConfigurationMonitor watches only for .pyre_configuration(.local) files, and will kill the corresponding server and ProjectFileMonitor when a configuration changes. Logs are found in .pyre/configuration_monitor/configuration_monitor.log To kill a monitor, get pid from .pyre/configuration_monitor/configuration_monitor.pid ; kill <pid>. """ def __init__( self, arguments, configuration, analysis_directory: AnalysisDirectory ) -> None: super(ConfigurationMonitor, self).__init__(configuration, analysis_directory) self.arguments = arguments self.configuration = configuration self.analysis_directory = analysis_directory @property def _name(self) -> str: return "configuration_monitor" @property def _subscriptions(self) -> List[Subscription]: roots = self._watchman_client.query("watch-list")["roots"] names = ["pyre_monitor_{}".format(os.path.basename(root)) for root in roots] subscription = { "expression": [ "allof", ["type", "f"], ["not", "empty"], [ "anyof", ["suffix", "pyre_configuration.local"], ["suffix", "pyre_configuration"], ], ], "fields": ["name"], } return [ Subscription(root, name, subscription) for (root, name) in zip(roots, names) ] def _handle_response(self, response: Dict[str, Any]) -> None: LOG.info( "Update to configuration at %s", os.path.join(response["root"], ",".join(response["files"])), ) absolute_path = [ os.path.join(response["root"], file) for file in response["files"] ] # Find the path to the project configuration file and compare it with the # list of changed configuration files. project_configuration = os.path.join(response["root"], CONFIGURATION_FILE) if any((project_configuration == file) for file in absolute_path): LOG.info("Pyre configuration changed. Stopping pyre server.") stop.Stop(self.arguments, self.configuration, self.analysis_directory).run() # TODO(T54088045): Find all local pyre servers running underneath # and stop them. else: LOG.info("None of the changed paths correspond to pyre configuration.") if self.arguments.local_configuration: if any( is_parent(self.arguments.local_configuration, file) for file in absolute_path ): LOG.info("Local configuration changed. Stopping pyre server.") stop.Stop( self.arguments, self.configuration, self.analysis_directory ).run() else: LOG.info( "None of the changed paths correspond to the current local" "configuration." )
1.96875
2
Data.py
happylittlecat2333/travel_simulation
0
12794214
<filename>Data.py city_dangers = {'南京': 0.5, '北京': 0.9, '成都': 0.5, '杭州': 0.2, '广州': 0.5, '武汉': 0.9, '上海': 0.9, '重庆': 0.2, '青岛': 0.9, '深圳': 0.2, '郑州': 0.5, '西安': 0.2} # 在城市停留的风险值 trans_dangers = {"汽车": 2, "火车": 5, "飞机": 9} # 交通工具的风险值 time_table_values = [] # 所有班次时间表 map_values = [] # 所有城市的经纬度信息 map_geo = {} # 所有城市的经纬度,字典性的结构 all_place = [] # 所有航班里的城市 def load_data(cursor): # 从数据库加载数据 global time_table_values, map_values, map_geo, all_place # 定义变量为全局变量,实现在函数内部改变变量值 cursor.execute("select * from time_table where Tran=? ORDER BY RANDOM() limit 30", ('火车',)) # 30班次的火车 time_table_values = cursor.fetchall() cursor.execute("select * from time_table where Tran=? ORDER BY RANDOM() limit 30", ('飞机',)) # 10班次的飞机 tmp = cursor.fetchall() for i in tmp: time_table_values.append(i) cursor.execute("select * from time_table where Tran!=? and Tran!=?", ('飞机', '火车')) # 所有汽车班次 tmp = cursor.fetchall() for i in tmp: time_table_values.append(i) for i in time_table_values: if i[0] not in all_place: all_place.append(i[0]) # 全部班次的城市的集合 cursor.execute("select * from map") # 城市位置:经纬坐标 map_values = cursor.fetchall() for i in map_values: if i[0] in all_place: map_geo[i[0]] = [i[1], i[2]] print(map_geo)
2.703125
3
readthedocs/config/utils.py
tkoyama010/readthedocs.org
4,054
12794215
"""Shared functions for the config module.""" def to_dict(value): """Recursively transform a class from `config.models` to a dict.""" if hasattr(value, 'as_dict'): return value.as_dict() if isinstance(value, list): return [ to_dict(v) for v in value ] if isinstance(value, dict): return { k: to_dict(v) for k, v in value.items() } return value def list_to_dict(list_): """Transform a list to a dictionary with its indices as keys.""" dict_ = { str(i): element for i, element in enumerate(list_) } return dict_
2.984375
3
qiandao.py
gyje/tieba_qiandao
7
12794216
import requests,time,gevent,gevent.monkey,re,os from threading import Thread import schedule from pyquery import PyQuery as pq gevent.monkey.patch_socket() url="http://tieba.baidu.com/mo/q---F55A5B1F58548A7A5403ABA7602FEBAE%3AFG%3D1--1-1-0--2--wapp_1510665393192_464/sign?tbs=af62312bf49309c61510669752&fid=152744&kw=" ba_cookie='把cookie放到这' headers={ 'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8', 'Accept-Encoding':'gzip, deflate', 'Accept-Language':'zh-CN,zh;q=0.8', 'Cookie':ba_cookie, 'Host':'tieba.baidu.com', 'Proxy-Connection':'keep-alive', 'Upgrade-Insecure-Requests':'1', 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36' } s=requests.Session() def run(ba_url,ba_name): qian_url=ba_url+ba_name s.get(qian_url,headers=headers) def go(): taske=[gevent.spawn(run,url,i) for i in ba_name_tuple] gevent.joinall(taske) rebuild=re.compile(r"已签到") def check(ba_name): content=s.get(url+ba_name,headers=headers).text return_list=rebuild.findall(content) if str(return_list)=="['已签到']": pass else: print (ba_name+"-->Error") def checkth(): for g in ba_name_tuple: m=Thread(target=check,args=(g,)) m.start() def writeconfig(): temp=pq(requests.get("http://wapp.baidu.com/",headers={'Cookie':ba_cookie}).content) ba_all_url="http://"+str([i.attr("href") for i in temp(".my_love_bar").children().items()][-1])[2:] retemp=re.compile(r">\w*</a>") ba_name_list=[] for i in retemp.findall(requests.get(ba_all_url,headers={'Cookie':ba_cookie}).text)[1:-2]: ba_name_list.append(i[1:-4]) with open("qd_config.ini","w+",encoding="utf-8") as fob: fob.write(str(tuple(ba_name_list))) def checkconfig(): if "qd_config.ini" in os.listdir(os.getcwd()): pass else: writeconfig() def readconfig(): global ba_name_tuple with open("qd_config.ini","r",encoding="utf-8") as fob: ba_name_tuple=eval(fob.read()) def serun(): checkconfig() readconfig() go() if __name__=="__main__": schedule.every().day.at("00:10").do(serun) #每天的签到时间 while 1: schedule.run_pending() time.sleep(1)
2.375
2
setup.py
magamba/dreamerv2
97
12794217
<reponame>magamba/dreamerv2 import setuptools setuptools.setup( name="dreamerv2", version="1.0.0", description=( "Mastering Atari with Discrete World Models" ), license="MIT License", url="https://github.com/RajGhugare19/dreamerv2", packages=setuptools.find_packages(), )
1.101563
1
lib/spack/spack/util/web.py
koning/spack
0
12794218
# Copyright 2013-2019 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from __future__ import print_function import codecs import errno import re import os import os.path import shutil import ssl import sys import traceback from itertools import product import six from six.moves.urllib.request import urlopen, Request from six.moves.urllib.error import URLError import multiprocessing.pool try: # Python 2 had these in the HTMLParser package. from HTMLParser import HTMLParser, HTMLParseError except ImportError: # In Python 3, things moved to html.parser from html.parser import HTMLParser # Also, HTMLParseError is deprecated and never raised. class HTMLParseError(Exception): pass from llnl.util.filesystem import mkdirp import llnl.util.tty as tty import spack.cmd import spack.config import spack.error import spack.url import spack.util.crypto import spack.util.s3 as s3_util import spack.util.url as url_util from spack.util.compression import ALLOWED_ARCHIVE_TYPES # Timeout in seconds for web requests _timeout = 10 # See docstring for standardize_header_names() _separators = ('', ' ', '_', '-') HTTP_HEADER_NAME_ALIASES = { "Accept-ranges": set( ''.join((A, 'ccept', sep, R, 'anges')) for A, sep, R in product('Aa', _separators, 'Rr')), "Content-length": set( ''.join((C, 'ontent', sep, L, 'ength')) for C, sep, L in product('Cc', _separators, 'Ll')), "Content-type": set( ''.join((C, 'ontent', sep, T, 'ype')) for C, sep, T in product('Cc', _separators, 'Tt')), "Date": set(('Date', 'date')), "Last-modified": set( ''.join((L, 'ast', sep, M, 'odified')) for L, sep, M in product('Ll', _separators, 'Mm')), "Server": set(('Server', 'server')) } class LinkParser(HTMLParser): """This parser just takes an HTML page and strips out the hrefs on the links. Good enough for a really simple spider. """ def __init__(self): HTMLParser.__init__(self) self.links = [] def handle_starttag(self, tag, attrs): if tag == 'a': for attr, val in attrs: if attr == 'href': self.links.append(val) class NonDaemonProcess(multiprocessing.Process): """Process that allows sub-processes, so pools can have sub-pools.""" @property def daemon(self): return False @daemon.setter def daemon(self, value): pass if sys.version_info[0] < 3: class NonDaemonPool(multiprocessing.pool.Pool): """Pool that uses non-daemon processes""" Process = NonDaemonProcess else: class NonDaemonContext(type(multiprocessing.get_context())): Process = NonDaemonProcess class NonDaemonPool(multiprocessing.pool.Pool): """Pool that uses non-daemon processes""" def __init__(self, *args, **kwargs): kwargs['context'] = NonDaemonContext() super(NonDaemonPool, self).__init__(*args, **kwargs) def uses_ssl(parsed_url): if parsed_url.scheme == 'https': return True if parsed_url.scheme == 's3': endpoint_url = os.environ.get('S3_ENDPOINT_URL') if not endpoint_url: return True if url_util.parse(endpoint_url, scheme='https').scheme == 'https': return True return False __UNABLE_TO_VERIFY_SSL = ( lambda pyver: ( (pyver < (2, 7, 9)) or ((3,) < pyver < (3, 4, 3)) ))(sys.version_info) def read_from_url(url, accept_content_type=None): url = url_util.parse(url) context = None verify_ssl = spack.config.get('config:verify_ssl') # Don't even bother with a context unless the URL scheme is one that uses # SSL certs. if uses_ssl(url): if verify_ssl: if __UNABLE_TO_VERIFY_SSL: # User wants SSL verification, but it cannot be provided. warn_no_ssl_cert_checking() else: # User wants SSL verification, and it *can* be provided. context = ssl.create_default_context() else: # User has explicitly indicated that they do not want SSL # verification. context = ssl._create_unverified_context() req = Request(url_util.format(url)) content_type = None is_web_url = url.scheme in ('http', 'https') if accept_content_type and is_web_url: # Make a HEAD request first to check the content type. This lets # us ignore tarballs and gigantic files. # It would be nice to do this with the HTTP Accept header to avoid # one round-trip. However, most servers seem to ignore the header # if you ask for a tarball with Accept: text/html. req.get_method = lambda: "HEAD" resp = _urlopen(req, timeout=_timeout, context=context) content_type = resp.headers.get('Content-type') # Do the real GET request when we know it's just HTML. req.get_method = lambda: "GET" response = _urlopen(req, timeout=_timeout, context=context) if accept_content_type and not is_web_url: content_type = response.headers.get('Content-type') reject_content_type = ( accept_content_type and ( content_type is None or not content_type.startswith(accept_content_type))) if reject_content_type: tty.debug("ignoring page {0}{1}{2}".format( url_util.format(url), " with content type " if content_type is not None else "", content_type or "")) return None, None, None return response.geturl(), response.headers, response def warn_no_ssl_cert_checking(): tty.warn("Spack will not check SSL certificates. You need to update " "your Python to enable certificate verification.") def push_to_url(local_file_path, remote_path, **kwargs): keep_original = kwargs.get('keep_original', True) remote_url = url_util.parse(remote_path) verify_ssl = spack.config.get('config:verify_ssl') if __UNABLE_TO_VERIFY_SSL and verify_ssl and uses_ssl(remote_url): warn_no_ssl_cert_checking() remote_file_path = url_util.local_file_path(remote_url) if remote_file_path is not None: mkdirp(os.path.dirname(remote_file_path)) if keep_original: shutil.copy(local_file_path, remote_file_path) else: try: os.rename(local_file_path, remote_file_path) except OSError as e: if e.errno == errno.EXDEV: # NOTE(opadron): The above move failed because it crosses # filesystem boundaries. Copy the file (plus original # metadata), and then delete the original. This operation # needs to be done in separate steps. shutil.copy2(local_file_path, remote_file_path) os.remove(local_file_path) elif remote_url.scheme == 's3': extra_args = kwargs.get('extra_args', {}) remote_path = remote_url.path while remote_path.startswith('/'): remote_path = remote_path[1:] s3 = s3_util.create_s3_session(remote_url) s3.upload_file(local_file_path, remote_url.netloc, remote_path, ExtraArgs=extra_args) if not keep_original: os.remove(local_file_path) else: raise NotImplementedError( 'Unrecognized URL scheme: {SCHEME}'.format( SCHEME=remote_url.scheme)) def url_exists(url): url = url_util.parse(url) local_path = url_util.local_file_path(url) if local_path: return os.path.exists(local_path) if url.scheme == 's3': s3 = s3_util.create_s3_session(url) from botocore.exceptions import ClientError try: s3.get_object(Bucket=url.netloc, Key=url.path) return True except ClientError as err: if err.response['Error']['Code'] == 'NoSuchKey': return False raise err # otherwise, just try to "read" from the URL, and assume that *any* # non-throwing response contains the resource represented by the URL try: read_from_url(url) return True except URLError: return False def remove_url(url): url = url_util.parse(url) local_path = url_util.local_file_path(url) if local_path: os.remove(local_path) return if url.scheme == 's3': s3 = s3_util.create_s3_session(url) s3.delete_object(Bucket=url.s3_bucket, Key=url.path) return # Don't even try for other URL schemes. def _list_s3_objects(client, url, num_entries, start_after=None): list_args = dict( Bucket=url.netloc, Prefix=url.path, MaxKeys=num_entries) if start_after is not None: list_args['StartAfter'] = start_after result = client.list_objects_v2(**list_args) last_key = None if result['IsTruncated']: last_key = result['Contents'][-1]['Key'] iter = (key for key in ( os.path.relpath(entry['Key'], url.path) for entry in result['Contents'] ) if key != '.') return iter, last_key def _iter_s3_prefix(client, url, num_entries=1024): key = None while True: contents, key = _list_s3_objects( client, url, num_entries, start_after=key) for x in contents: yield x if not key: break def list_url(url): url = url_util.parse(url) local_path = url_util.local_file_path(url) if local_path: return os.listdir(local_path) if url.scheme == 's3': s3 = s3_util.create_s3_session(url) return list(set( key.split('/', 1)[0] for key in _iter_s3_prefix(s3, url))) def _spider(url, visited, root, depth, max_depth, raise_on_error): """Fetches URL and any pages it links to up to max_depth. depth should initially be zero, and max_depth is the max depth of links to follow from the root. Prints out a warning only if the root can't be fetched; it ignores errors with pages that the root links to. Returns a tuple of: - pages: dict of pages visited (URL) mapped to their full text. - links: set of links encountered while visiting the pages. """ pages = {} # dict from page URL -> text content. links = set() # set of all links seen on visited pages. try: response_url, _, response = read_from_url(url, 'text/html') if not response_url or not response: return pages, links page = codecs.getreader('utf-8')(response).read() pages[response_url] = page # Parse out the links in the page link_parser = LinkParser() subcalls = [] link_parser.feed(page) while link_parser.links: raw_link = link_parser.links.pop() abs_link = url_util.join( response_url, raw_link.strip(), resolve_href=True) links.add(abs_link) # Skip stuff that looks like an archive if any(raw_link.endswith(suf) for suf in ALLOWED_ARCHIVE_TYPES): continue # Skip things outside the root directory if not abs_link.startswith(root): continue # Skip already-visited links if abs_link in visited: continue # If we're not at max depth, follow links. if depth < max_depth: subcalls.append((abs_link, visited, root, depth + 1, max_depth, raise_on_error)) visited.add(abs_link) if subcalls: pool = NonDaemonPool(processes=len(subcalls)) try: results = pool.map(_spider_wrapper, subcalls) for sub_pages, sub_links in results: pages.update(sub_pages) links.update(sub_links) finally: pool.terminate() pool.join() except URLError as e: tty.debug(e) if hasattr(e, 'reason') and isinstance(e.reason, ssl.SSLError): tty.warn("Spack was unable to fetch url list due to a certificate " "verification problem. You can try running spack -k, " "which will not check SSL certificates. Use this at your " "own risk.") if raise_on_error: raise NoNetworkConnectionError(str(e), url) except HTMLParseError as e: # This error indicates that Python's HTML parser sucks. msg = "Got an error parsing HTML." # Pre-2.7.3 Pythons in particular have rather prickly HTML parsing. if sys.version_info[:3] < (2, 7, 3): msg += " Use Python 2.7.3 or newer for better HTML parsing." tty.warn(msg, url, "HTMLParseError: " + str(e)) except Exception as e: # Other types of errors are completely ignored, except in debug mode. tty.debug("Error in _spider: %s:%s" % (type(e), e), traceback.format_exc()) return pages, links def _spider_wrapper(args): """Wrapper for using spider with multiprocessing.""" return _spider(*args) def _urlopen(req, *args, **kwargs): """Wrapper for compatibility with old versions of Python.""" url = req try: url = url.get_full_url() except AttributeError: pass # We don't pass 'context' parameter because it was only introduced starting # with versions 2.7.9 and 3.4.3 of Python. if 'context' in kwargs: del kwargs['context'] opener = urlopen if url_util.parse(url).scheme == 's3': import spack.s3_handler opener = spack.s3_handler.open return opener(req, *args, **kwargs) def spider(root, depth=0): """Gets web pages from a root URL. If depth is specified (e.g., depth=2), then this will also follow up to <depth> levels of links from the root. This will spawn processes to fetch the children, for much improved performance over a sequential fetch. """ root = url_util.parse(root) pages, links = _spider(root, set(), root, 0, depth, False) return pages, links def find_versions_of_archive(archive_urls, list_url=None, list_depth=0): """Scrape web pages for new versions of a tarball. Arguments: archive_urls (str or list or tuple): URL or sequence of URLs for different versions of a package. Typically these are just the tarballs from the package file itself. By default, this searches the parent directories of archives. Keyword Arguments: list_url (str or None): URL for a listing of archives. Spack will scrape these pages for download links that look like the archive URL. list_depth (int): Max depth to follow links on list_url pages. Defaults to 0. """ if not isinstance(archive_urls, (list, tuple)): archive_urls = [archive_urls] # Generate a list of list_urls based on archive urls and any # explicitly listed list_url in the package list_urls = set() if list_url is not None: list_urls.add(list_url) for aurl in archive_urls: list_urls |= spack.url.find_list_urls(aurl) # Add '/' to the end of the URL. Some web servers require this. additional_list_urls = set() for lurl in list_urls: if not lurl.endswith('/'): additional_list_urls.add(lurl + '/') list_urls |= additional_list_urls # Grab some web pages to scrape. pages = {} links = set() for lurl in list_urls: pg, lnk = spider(lurl, depth=list_depth) pages.update(pg) links.update(lnk) # Scrape them for archive URLs regexes = [] for aurl in archive_urls: # This creates a regex from the URL with a capture group for # the version part of the URL. The capture group is converted # to a generic wildcard, so we can use this to extract things # on a page that look like archive URLs. url_regex = spack.url.wildcard_version(aurl) # We'll be a bit more liberal and just look for the archive # part, not the full path. url_regex = os.path.basename(url_regex) # We need to add a / to the beginning of the regex to prevent # Spack from picking up similarly named packages like: # https://cran.r-project.org/src/contrib/pls_2.6-0.tar.gz # https://cran.r-project.org/src/contrib/enpls_5.7.tar.gz # https://cran.r-project.org/src/contrib/autopls_1.3.tar.gz # https://cran.r-project.org/src/contrib/matrixpls_1.0.4.tar.gz url_regex = '/' + url_regex # We need to add a $ anchor to the end of the regex to prevent # Spack from picking up signature files like: # .asc # .md5 # .sha256 # .sig # However, SourceForge downloads still need to end in '/download'. url_regex += r'(\/download)?$' regexes.append(url_regex) # Build a dict version -> URL from any links that match the wildcards. # Walk through archive_url links first. # Any conflicting versions will be overwritten by the list_url links. versions = {} for url in archive_urls + sorted(links): if any(re.search(r, url) for r in regexes): try: ver = spack.url.parse_version(url) versions[ver] = url except spack.url.UndetectableVersionError: continue return versions def standardize_header_names(headers): """Replace certain header names with standardized spellings. Standardizes the spellings of the following header names: - Accept-ranges - Content-length - Content-type - Date - Last-modified - Server Every name considered is translated to one of the above names if the only difference between the two is how the first letters of each word are capitalized; whether words are separated; or, if separated, whether they are so by a dash (-), underscore (_), or space ( ). Header names that cannot be mapped as described above are returned unaltered. For example: The standard spelling of "Content-length" would be substituted for any of the following names: - Content-length - content_length - contentlength - content_Length - contentLength - content Length ... and any other header name, such as "Content-encoding", would not be altered, regardless of spelling. If headers is a string, then it (or an appropriate substitute) is returned. If headers is a non-empty tuple, headers[0] is a string, and there exists a standardized spelling for header[0] that differs from it, then a new tuple is returned. This tuple has the same elements as headers, except the first element is the standardized spelling for headers[0]. If headers is a sequence, then a new list is considered, where each element is its corresponding element in headers, but mapped as above if a string or tuple. This new list is returned if at least one of its elements differ from their corrsponding element in headers. If headers is a mapping, then a new dict is considered, where the key in each item is the key of its corresponding item in headers, mapped as above if a string or tuple. The value is taken from the corresponding item. If the keys of multiple items in headers map to the same key after being standardized, then the value for the resulting item is undefined. The new dict is returned if at least one of its items has a key that differs from that of their corresponding item in headers, or if the keys of multiple items in headers map to the same key after being standardized. In all other cases headers is returned unaltered. """ if isinstance(headers, six.string_types): for standardized_spelling, other_spellings in ( HTTP_HEADER_NAME_ALIASES.items()): if headers in other_spellings: if headers == standardized_spelling: return headers return standardized_spelling return headers if isinstance(headers, tuple): if not headers: return headers old = headers[0] if isinstance(old, six.string_types): new = standardize_header_names(old) if old is not new: return (new,) + headers[1:] return headers try: changed = False new_dict = {} for key, value in headers.items(): if isinstance(key, (tuple, six.string_types)): old_key, key = key, standardize_header_names(key) changed = changed or key is not old_key new_dict[key] = value return new_dict if changed else headers except (AttributeError, TypeError, ValueError): pass try: changed = False new_list = [] for item in headers: if isinstance(item, (tuple, six.string_types)): old_item, item = item, standardize_header_names(item) changed = changed or item is not old_item new_list.append(item) return new_list if changed else headers except TypeError: pass return headers class SpackWebError(spack.error.SpackError): """Superclass for Spack web spidering errors.""" class NoNetworkConnectionError(SpackWebError): """Raised when an operation can't get an internet connection.""" def __init__(self, message, url): super(NoNetworkConnectionError, self).__init__( "No network connection: " + str(message), "URL was: " + str(url)) self.url = url
2.015625
2
hydrocarbon_problem/api/aspen_api.py
ADChristos/Aspen-RL
0
12794219
from typing import Tuple from Simulation import Simulation from hydrocarbon_problem.api.api_base import BaseAspenDistillationAPI from hydrocarbon_problem.api.types import StreamSpecification, ColumnInputSpecification, \ ColumnOutputSpecification, ProductSpecification, PerCompoundProperty PATH = 'C:/Users/s2199718/Desktop/RL_PD/AspenSimulation/HydrocarbonMixture.bkp' class AspenAPI(BaseAspenDistillationAPI): def __init__(self): self._flowsheet: Simulation = Simulation(PATH=PATH, VISIBILITY=False) self._feed_name: str = "S1" self._tops_name: str = "S2" self._bottoms_name: str = "S3" self._name_to_aspen_name = PerCompoundProperty(ethane="ETHANE", propane="PROPANE", isobutane="I-BUTANE", n_butane="N-BUTANE", isopentane="I-PENTAN", n_pentane="N-PENTAN") def set_input_stream_specification(self, stream_specification: StreamSpecification) -> None: """Sets the input stream to a column to fit the stream specification""" # Defining the Thermodynamic Properties self._flowsheet.STRM_Temperature(self._feed_name, stream_specification.temperature) self._flowsheet.STRM_Pressure(self._feed_name, stream_specification.pressure) # Defining the Stream Composition for the Feed self._flowsheet.STRM_Flowrate(self._feed_name, self._name_to_aspen_name.ethane, stream_specification.molar_flows.ethane) self._flowsheet.STRM_Flowrate(self._feed_name, self._name_to_aspen_name.propane, stream_specification.molar_flows.propane) self._flowsheet.STRM_Flowrate(self._feed_name, self._name_to_aspen_name.isobutane, stream_specification.molar_flows.isobutane) self._flowsheet.STRM_Flowrate(self._feed_name, self._name_to_aspen_name.n_butane, stream_specification.molar_flows.n_butane) self._flowsheet.STRM_Flowrate(self._feed_name, self._name_to_aspen_name.isopentane, stream_specification.molar_flows.isopentane) self._flowsheet.STRM_Flowrate(self._feed_name, self._name_to_aspen_name.n_pentane, stream_specification.molar_flows.n_pentane) def get_output_stream_specifications(self) -> Tuple[StreamSpecification, StreamSpecification]: # Getting the physical values of Top streams tops_temperature = self._flowsheet.STRM_Get_Temperature(self._tops_name) tops_pressure = self._flowsheet.STRM_Get_Pressure(self._tops_name) # Acquiring the outputs out of the Destillate (Top Stream) tops_ethane = self._flowsheet.STRM_Get_Outputs(self._tops_name, self._name_to_aspen_name.ethane) tops_propane = self._flowsheet.STRM_Get_Outputs(self._tops_name, self._name_to_aspen_name.propane) tops_isobutane = self._flowsheet.STRM_Get_Outputs(self._tops_name, self._name_to_aspen_name.isobutane) tops_n_butane = self._flowsheet.STRM_Get_Outputs(self._tops_name, self._name_to_aspen_name.n_butane) tops_isopentane = self._flowsheet.STRM_Get_Outputs(self._tops_name, self._name_to_aspen_name.isopentane) tops_n_pentane = self._flowsheet.STRM_Get_Outputs(self._tops_name, self._name_to_aspen_name.n_pentane) # Passing all the variables to their respective "slot" tops_specifications = StreamSpecification(temperature=tops_temperature, pressure=tops_pressure, molar_flows=PerCompoundProperty(ethane=tops_ethane, propane=tops_propane, isobutane=tops_isobutane, n_butane=tops_n_butane, isopentane=tops_isopentane, n_pentane=tops_n_pentane)) # Getting the physical values of Top streams bots_temperature = self._flowsheet.STRM_Get_Temperature(self._bottoms_name) bots_pressure = self._flowsheet.STRM_Get_Pressure(self._bottoms_name) # Acquiring the outputs out of the Bottom (Bottom Stream) bots_ethane = self._flowsheet.STRM_Get_Outputs(self._bottoms_name, self._name_to_aspen_name.ethane) bots_propane = self._flowsheet.STRM_Get_Outputs(self._bottoms_name, self._name_to_aspen_name.propane) bots_isobutane = self._flowsheet.STRM_Get_Outputs(self._bottoms_name, self._name_to_aspen_name.isobutane) bots_n_butane = self._flowsheet.STRM_Get_Outputs(self._bottoms_name, self._name_to_aspen_name.n_butane) bots_isopentane = self._flowsheet.STRM_Get_Outputs(self._bottoms_name, self._name_to_aspen_name.isopentane) bots_n_pentane = self._flowsheet.STRM_Get_Outputs(self._bottoms_name, self._name_to_aspen_name.n_pentane) # Tubulating the Results of the Bottom Stream bots_specifications = StreamSpecification(temperature=bots_temperature, pressure=bots_pressure, molar_flows=PerCompoundProperty(ethane=bots_ethane, propane=bots_propane, isobutane=bots_isobutane, n_butane=bots_n_butane, isopentane=bots_isopentane, n_pentane=bots_n_pentane)) return tops_specifications, bots_specifications def get_simulated_column_properties(self) -> ColumnOutputSpecification: # D_F_Location = self._flowsheet.BLK_Get_FeedLocation() # D_Pressure = self._flowsheet.BLK_Get_Pressure() # D_Reflux_Ratio = self._flowsheet.BLK_Get_RefluxRatio() # D_Reboiler_Ratio = self._flowsheet.BLK_Get_ReboilerRatio() D_Cond_Duty = self._flowsheet.BLK_Get_Condenser_Duty() D_Reb_Duty = self._flowsheet.BLK_Get_Reboiler_Duty() D_Col_Diameter = self._flowsheet.BLK_Get_Column_Diameter() D_Specifications = ColumnOutputSpecification(condensor_duty=D_Cond_Duty, reboiler_duty=D_Reb_Duty, diameter=D_Col_Diameter) return D_Specifications def set_column_specification(self, column_specification: ColumnInputSpecification) -> None: self._flowsheet.BLK_NumberOfStages(column_specification.n_stages) self._flowsheet.BLK_FeedLocation(column_specification.feed_stage_location) self._flowsheet.BLK_Pressure(column_specification.condensor_pressure) self._flowsheet.BLK_RefluxRatio(column_specification.reflux_ratio) self._flowsheet.BLK_ReboilerRatio(column_specification.reboil_ratio) def solve_flowsheet(self) -> bool: self._flowsheet.Run() def get_column_cost(self, column_specification: ColumnOutputSpecification) -> float: """Calculates the TAC of the column.""" raise NotImplementedError def get_stream_value(self, stream_specification: StreamSpecification) -> float: """Calculates the value (per year) of a stream.""" raise NotImplementedError def stream_is_product(self, stream_specification: StreamSpecification, product_specification: ProductSpecification) -> bool: """Checks whether a stream meets the product specification.""" raise NotImplementedError if __name__ == '__main__': from hydrocarbon_problem.api.api_tests import test_api aspen_api = AspenAPI() test_api(aspen_api)
2.53125
3
rssparser/tests/test_convert_module.py
disp1air/rss_parser
0
12794220
<filename>rssparser/tests/test_convert_module.py import unittest from rssparser.convert_module import rss_items_to_list, rss_to_dict class TestConvertModule(unittest.TestCase): def test_rss_items_to_list(self): self.assertEqual(rss_items_to_list([{}]), [{}]) def test_rss_to_dict(self): self.assertEqual(rss_to_dict([{}]), {'item1': {}}) if __name__ == '__main__': unittest.main()
2.6875
3
SciGen/Network/utilities.py
SamuelSchmidgall/SciGen
1
12794221
import random def ReLU(x, derivative=False): """ ReLU function with corresponding derivative """ if derivative: x[x <= 0] = 0 x[x > 0] = 1 return x x[x < 0] = 0 return x def ReLU_uniform_random(): """ Ideal weight starting values for ReLU """ return random.uniform(0.005, 0.2) def uniform_random(): """ Generic uniform random from -n to n given output is multiplied by n """ return random.uniform(-1, 1)
3.875
4
ipypdf/widgets/canvas.py
JoelStansbury/ipypdf
0
12794222
from ipycanvas import MultiCanvas CANVAS_TYPE_KWARGS = { "section": {"color": "blue"}, "text": {"color": "black"}, "image": {"color": "red"}, "pdf": {"color": "black"}, # Unused "folder": {"color": "black"}, # Unused "table": {"color": "green"}, } class PdfCanvas(MultiCanvas): def __init__(self, **kwargs): super().__init__(3, **kwargs) self.add_class("ipypdf-pdf-canvas") self.bboxes = [] self.bg_layer = self[0] self.fixed_layer = self[1] self.animated_layer = self[2] self.animated_layer.on_mouse_down(self.mouse_down) self.animated_layer.on_mouse_move(self.mouse_move) self.animated_layer.on_mouse_up(self.mouse_up) self.rect = None self.mouse_is_down = False def update(self): """ I don't know why, but this is needed in order to allow animated_layer to update correctly after making a change to any other layer """ self._canvases = [self.bg_layer, self.fixed_layer, self.animated_layer] def xywh(self, coords=None): """ ipycanvas requires xywh coords, but ipyevents (and PIL) uses xyxy, so conversion is needed to draw the box on the canvas. """ x1, y1, x2, y2 = self.rect if not coords else coords x = min(x1, x2) y = min(y1, y2) w = abs(x2 - x1) h = abs(y2 - y1) return x, y, w, h def draw_rect(self): self.animated_layer.clear_rect(0, 0, self.width, self.height) self.animated_layer.stroke_rect(*self.xywh()) self.add_class("ipypdf-pdf-canvas") def clear(self): self.fixed_layer.clear_rect(0, 0, self.width, self.height) def mouse_down(self, x, y): self.mouse_is_down = True self.rect = [x, y, x + 1, y + 1] self.draw_rect() def mouse_move(self, x, y): if self.mouse_is_down: self.rect[2] = x self.rect[3] = y self.draw_rect() def mouse_up(self, x, y): self.mouse_is_down = False self.animated_layer.clear_rect(0, 0, self.width, self.height) self.fixed_layer.stroke_rect(*self.xywh()) self.update() def add_image(self, img): ":param img: raw byte data of image" self.bg_layer.draw_image(img) self.update() def draw_many(self, rects): self.clear() for coords, _type in rects: self.fixed_layer.stroke_style = CANVAS_TYPE_KWARGS[_type]["color"] self.fixed_layer.stroke_rect(*self.xywh(coords)) self.update() def set_type(self, _type: str): self._type = _type self.fixed_layer.stroke_style = CANVAS_TYPE_KWARGS[_type]["color"] self.animated_layer.stroke_style = CANVAS_TYPE_KWARGS[_type]["color"]
2.921875
3
[Kaleido-subs]/Dropped/FGO - Absolute Demonic Front - Babylonia/ac_Babylonia_03.py
tuilakhanh/Encoding-Projects
57
12794223
<filename>[Kaleido-subs]/Dropped/FGO - Absolute Demonic Front - Babylonia/ac_Babylonia_03.py #!/usr/bin/env python3 import vapoursynth as vs import audiocutter import lvsfunc as lvf from subprocess import call core = vs.core ts_in = r'03/Fate Grand Order_ Zettai Majuu Sensen Babylonia - 03 (MX).d2v' src = lvf.src(ts_in) if ts_in.endswith('d2v'): src = core.vivtc.VDecimate(src) ac = audiocutter.AudioCutter() vid = ac.split(src, [(809,3542),(5223,18815),(20256,37971)]) ac.ready_qp_and_chapters(vid) vid.set_output(0) if __name__ == "__main__": ac.cut_audio(r'Babylonia_03_cut.m4a', audio_source=r'03/Fate Grand Order_ Zettai Majuu Sensen Babylonia - 03 (MX) T112 stereo 244 kbps DELAY -356 ms.aac')
1.820313
2
test/message_test.py
gavincyi/Telex
0
12794224
#!/bin/python import unittest import logging import os import sys from src.message import message class message_test(unittest.TestCase): def test_from_message_record(self): message_record = message( msg_id=185, channel_id=82, source_id=50, source_chat_id='111111', msg='Hello world') row = message_record.str().split(',') row = [e.replace("'", "") if e.find("'") > -1 else int(e) for e in row] message_record_from_row = message.from_message_record(row, False) ## Positive test self.assertEqual(message_record.date, message_record_from_row.date) self.assertEqual(message_record.time, message_record_from_row.time) self.assertEqual(message_record.msg_id, message_record_from_row.msg_id) self.assertEqual(message_record.channel_id, message_record_from_row.channel_id) self.assertEqual(message_record.source_id, message_record_from_row.source_id) self.assertEqual(message_record.source_chat_id, message_record_from_row.source_chat_id) self.assertEqual(message_record.msg, message_record_from_row.msg) ## Negative test message_record_from_row = message.from_message_record(None) self.assertEqual(0, message_record_from_row.msg_id) self.assertEqual(0, message_record_from_row.channel_id) self.assertEqual(0, message_record_from_row.source_id) self.assertEqual('', message_record_from_row.source_chat_id) self.assertEqual('', message_record_from_row.msg) if __name__ == '__main__': unittest.main()
3.359375
3
djsubject/__init__.py
ttngu207/canonical-colony-management
0
12794225
from .subject import schema as subject
1.0625
1
backend/app/models/episode.py
flsworld/comment-rick-n-morty
0
12794226
from sqlalchemy import Column, Integer, String, Date from sqlalchemy.ext.associationproxy import association_proxy from sqlalchemy.orm import relationship from app.db.session import Base from app.models import CharacterEpisode class Episode(Base): __tablename__ = "episode" id = Column(Integer, primary_key=True, index=True) name = Column(String, unique=True) air_date = Column(Date) segment = Column(String, unique=True) characters = relationship("CharacterEpisode", back_populates="episode") comments = relationship("Comment", back_populates="episode") association_ids = association_proxy( "characters", "character_id", creator=lambda cid: CharacterEpisode(character_id=cid), )
2.625
3
BG-NBD_model/3_training_prediction_evaluation.py
les1smore/Stat-Notes
0
12794227
<filename>BG-NBD_model/3_training_prediction_evaluation.py # Fitting from lifetimes import BetaGeoFitter # instantiation of BG-NBD model bgf = BetaGeoFitter(penalizer_coef = 0.0) # fitting of BG-NBD model bgf.fit(frequency = rfm_cal_holdout['frequency_cal'], recency = rfm_cal_holdout['recency_cal'], T = rfm_cal_holdout['T_cal']) bgf.summary # Assessment of model fit # First is to compare the frequencies between our real calibration data and artificial data sampled from the distributions generated by the BG-NBD model from lifetimes.plotting import plot_period_transactions _ = plot_period_transactions(bgf) # Prediction # First we choose a sample customer sample_customer = rfm_cal_holdout.iloc[20] # Inspect this customer's frequency, recency and T both for the calibration and observation periods sample_customer # Calculate the conditional expected number of transactions in the given period n_transactions_pred = bgf.predict(t = 26, # set it to 26 weeks (the length of the observation period) frequency = sample_customer['frequency_cal'], recency = sample_customer['recency_cal'], T = sample_customer['T_cal']) n_transactions_pred # Calculate the probability of alive customers alive_prob = bgf.conditional_probability_alive(frequency = sample_customer['frequency_cal'], recency = sample_customer['recency_cal'], T = sample_customer['T_cal']) alive_prob # Compare the real and predicted number of transactions # Get the real number of transactions in the observation period, which equals frequency_holdout + 1 rfm_cal_holdout['n_transactions_holdout_real'] = rfm_cal_holdout['frequency_holdout'] + 1 # Get the predicted number of transactions in the next 26 weeks (lenght of the observation period) rfm_cal_holdout['n_transactions_holdout_pred'] = bgf.predict(t=26, frequency=rfm_cal_holdout['frequency_cal'], recency = rfm_cal_holdout['recency_cal'], T = rfm_cal_holdout['T_cal']) # Compare the real and predicted transactions rfm_cal_holdout[['n_transactions_holdout_real', 'n_transactions_holdout_pred']].head() #RMSE from sklearn.metrics import mean_squared_error RMSE = mean_squared_error(y_true = rfm_cal_holdout['n_transactions_holdout_real'], y_pred = rfm_cal_holdout['n_transactions_holdout_pred'], squared = False) RMSE
2.71875
3
blkdiscovery/lsblk.py
jaredeh/blkdiscovery
0
12794228
import json #hack for python2 support try: from .blkdiscoveryutil import * except: from blkdiscoveryutil import * class LsBlk(BlkDiscoveryUtil): def disks(self): retval = [] parent = self.details() for path, diskdetails in parent.items(): if not diskdetails.get('type') == "disk": continue retval.append(path) return retval def label_children(self,retval): if not retval.get('children'): return children = {} for child in retval['children']: self.label_children(child) if child.get('name'): name = child['name'] else: name = "UNKNOWN" children[name] = child retval['children'] = children def details(self): retval = {} rawoutput = self.subprocess_check_output(["lsblk", '--json', '-O', '-p']) parent = json.loads(rawoutput) for child in parent.get('blockdevices',[]): #print child['id'] + child['class'] path = child.get('name') retval[path] = child for disk, details in retval.items(): self.label_children(details) return self.stringify(retval) if __name__ == '__main__': import pprint pp = pprint.PrettyPrinter(indent=4) l = LsBlk() devdata = l.details() pp.pprint(devdata) disks = l.disks() pp.pprint(disks)
2.4375
2
Env/discretize.py
mikema2019/Deep-reinforcement-learning
1
12794229
import numpy as np import tensorflow as tf def discretize(value,action_dim,n_outputs): discretization = tf.round(value) discretization = tf.minimum(tf.constant(n_outputs-1, dtype=tf.float32,shape=[1,action_dim]), tf.maximum(tf.constant(0, dtype=tf.float32,shape=[1,action_dim]), tf.to_float(discretization))) return tf.to_int32(discretization) if __name__=='__main__': value=np.array((0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)) a=discretize(value,value.shape[0],2) with tf.Session() as sess: print(a.eval())
2.9375
3
developmentHub/posts/tests/test_models.py
MariiaBel/developmentHub
0
12794230
<reponame>MariiaBel/developmentHub from django.test import TestCase from django.contrib.auth import get_user_model from ..models import Post, Group User = get_user_model(); class PostModelTest(TestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.user = User.objects.create(username = "Юзер") cls.post = Post.objects.create( title="Заголовок тестовой статьи", text="Текст тестовой статьи", author = cls.user, ) cls.group = Group.objects.create( title = "Название тестовой группы", slug = "test-slug", description = "Описание тестовой группы", ) def setUp(self): self.post = PostModelTest.post self.group = PostModelTest.group def test_verbose_name_post(self): """Checks verbose names for post""" field_verboses = { "title": "Название статьи", "text": "Текст статьи", "pub_date": "Дата публикации", "group": "Название группы", "author": "Автор статьи", } for value, expected in field_verboses.items(): with self.subTest(value=value): self.assertEqual(self.post._meta.get_field(value).verbose_name, expected) def test_verbose_name_group(self): """Checks verbose names for group""" field_verboses = { "title": "Название группы", "slug": "Слаг", "description": "Описание группы", } for value, expected in field_verboses.items(): with self.subTest(value=value): self.assertEqual(self.group._meta.get_field(value).verbose_name, expected) def test_help_text_post(self): """Checks help text for post""" field_help_text = { "title": "Дайте название статье", "group": "Укажите группу для статьи", } for value, expected in field_help_text.items(): with self.subTest(value=value): self.assertEqual(self.post._meta.get_field(value).help_text, expected) def test_help_text_group(self): """Checks help text for group""" field_help_text = { "title": "Дайте назание группе", "slug": ('Укажите адрес для группы. Используйте ' 'только латиницу, цифры, дефисы и знаки ' 'подчёркивания'), } for value, expected in field_help_text.items(): with self.subTest(value=value): self.assertEqual(self.group._meta.get_field(value).help_text, expected) def test_str_post(self): """Checks __str__ for post""" expected_str = self.post.text[:15] self.assertEqual(expected_str, str(self.post)) def test_str_group(self): """Checks __str__ for group""" expected_str = self.group.title self.assertEqual(expected_str, str(self.group))
2.578125
3
ChessAI/GameController/game_board.py
PavelLebed20/chess_classic
1
12794231
import copy import sys import ChessAI.GameController.game_figures as Figures from ChessBoard.chess_board import Board from ChessBoard.chess_figure import FigureType, Side from Vector2d.Vector2d import Vector2d, Move class GameBoard: default_white_king_pos = Vector2d(4, 7) default_black_king_pos = Vector2d(4, 0) default_white_pawn_row = 6 default_black_pawn_row = 1 default_white_rook_right_pos = Vector2d(7, 7) default_white_rook_left_pos = Vector2d(0, 7) default_black_rook_right_pos = Vector2d(7, 0) default_black_rook_left_pos = Vector2d(0, 0) def __init__(self, chess_board): self.board = [[None for j in range(0, Board.ROW_SIZE)] for i in range(0, Board.COLUMN_SIZE)] for i in range(0, Board.COLUMN_SIZE): for j in range(0, Board.ROW_SIZE): if chess_board.board[j][i] is None: continue figure_type = chess_board.board[j][i].figure_type side = chess_board.board[j][i].side cur_pos = Vector2d(j, i) if figure_type == FigureType.KING: was_moved = True if side == Side.WHITE: if cur_pos == GameBoard.default_white_king_pos: was_moved = False elif side == Side.BLACK: if cur_pos == GameBoard.default_black_king_pos: was_moved = False self.board[j][i] = Figures.King(side, cur_pos, was_moved) elif figure_type == FigureType.QUEEN: self.board[j][i] = Figures.Queen(side, cur_pos) elif figure_type == FigureType.ROOK: was_moved = True if side == Side.WHITE: if cur_pos == GameBoard.default_white_rook_left_pos or cur_pos == GameBoard.default_white_rook_right_pos: was_moved = False elif side == Side.BLACK: if cur_pos == GameBoard.default_black_rook_left_pos or cur_pos == GameBoard.default_black_rook_right_pos: was_moved = False self.board[j][i] = Figures.Rook(side, cur_pos, was_moved) elif figure_type == FigureType.KNIGHT: self.board[j][i] = Figures.Knight(side, cur_pos) elif figure_type == FigureType.BISHOP: self.board[j][i] = Figures.Bishop(side, cur_pos) elif figure_type == FigureType.PAWN: was_moved = True if side == Side.WHITE: if i == GameBoard.default_white_pawn_row: was_moved = False elif side == Side.BLACK: if i == GameBoard.default_black_pawn_row: was_moved = False self.board[j][i] = Figures.Pawn(side, cur_pos, was_moved) else: continue def serialize_to_str(self): str_board = ['.' for j in range(0, Board.ROW_SIZE) for i in range(0, Board.COLUMN_SIZE)] for i in range(0, Board.COLUMN_SIZE): for j in range(0, Board.ROW_SIZE): if self.board[j][i] is None: continue str_board[i * Board.ROW_SIZE + j] = self.board[j][i].serialized_letter() res = "" for i in range(0, Board.COLUMN_SIZE * Board.ROW_SIZE): res += str_board[i] return res def deserialize_from_str(self, board_as_str): self.board = [[None for j in range(0, Board.ROW_SIZE)] for i in range(0, Board.COLUMN_SIZE)] str_board = ['.' for j in range(0, Board.ROW_SIZE) for i in range(0, Board.COLUMN_SIZE)] for i in range(0, Board.COLUMN_SIZE): for j in range(0, Board.ROW_SIZE): str_board[i * Board.ROW_SIZE + j] = str(board_as_str).__getitem__(i * Board.ROW_SIZE + j) for i in range(0, Board.COLUMN_SIZE): for j in range(0, Board.ROW_SIZE): letter = str_board[i * Board.ROW_SIZE + j] if letter.isupper(): side = Side.WHITE else: side = Side.BLACK letter = letter.lower() cur_pos = Vector2d(j, i) if letter == 'k': self.board[j][i] = Figures.King(side, cur_pos, False) elif letter == 'i': self.board[j][i] = Figures.King(side, cur_pos, True) elif letter == 'b': self.board[j][i] = Figures.Bishop(side, cur_pos) elif letter == 'r': self.board[j][i] = Figures.Rook(side, cur_pos, False) elif letter == 'o': self.board[j][i] = Figures.Rook(side, cur_pos, True) elif letter == 'n': self.board[j][i] = Figures.Knight(side, cur_pos) elif letter == 'q': self.board[j][i] = Figures.Queen(side, cur_pos) elif letter == 'p': self.board[j][i] = Figures.Pawn(side, cur_pos) elif letter == 'a': self.board[j][i] = Figures.Pawn(side, cur_pos, True) elif letter == 'w': self.board[j][i] = Figures.Pawn(side, cur_pos, False, True) def export_chess_board(self): export_board = ['.' for j in range(0, Board.ROW_SIZE) for i in range(0, Board.COLUMN_SIZE)] for i in range(0, Board.COLUMN_SIZE): for j in range(0, Board.ROW_SIZE): if self.board[j][i] is None: continue figure_type = self.board[j][i].figure_type side = self.board[j][i].side if figure_type == FigureType.KING: latter = 'k' elif figure_type == FigureType.QUEEN: latter = 'q' elif figure_type == FigureType.ROOK: latter = 'r' elif figure_type == FigureType.KNIGHT: latter = 'n' elif figure_type == FigureType.BISHOP: latter = 'b' elif figure_type == FigureType.PAWN: latter = 'p' if side == Side.WHITE: latter = latter.upper() export_board[i * Board.ROW_SIZE + j] = latter return export_board def print(self): sys.stdout.write(" ") sys.stdout.write(" ") sys.stdout.write(" ") for i in range(0, Board.ROW_SIZE): sys.stdout.write(i.__str__()) sys.stdout.write(" ") print() print() for i in range(0, Board.COLUMN_SIZE): sys.stdout.write(i.__str__()) sys.stdout.write(" ") sys.stdout.write(" ") for j in range(0, Board.ROW_SIZE): if self.board[j][i] is not None: self.board[j][i].print() sys.stdout.write(" ") else: sys.stdout.write("*") sys.stdout.write(" ") print() def print_attacked_cells(self): for i in range(0, Board.COLUMN_SIZE): for j in range(0, Board.ROW_SIZE): if self.board[j][i] is not None: attack_cells = self.board[j][i].generate_moves(self) self.board[j][i].print() sys.stdout.write(": ") for k in range(len(attack_cells)): sys.stdout.write(attack_cells[k].x.__str__()) sys.stdout.write(" ") sys.stdout.write(attack_cells[k].y.__str__()) sys.stdout.write("; ") print() def get_by_pos(self, x, y): return self.board[x][y] def get(self, position): return self.board[position.x][position.y] def set(self, position, game_object): self.board[position.x][position.y] = game_object def get_king_cell(self, side): for i in range(0, Board.COLUMN_SIZE): for j in range(0, Board.ROW_SIZE): if self.board[j][i] is not None: if isinstance(self.board[j][i], Figures.King) and self.board[j][i].side == side: return Vector2d(j, i) def get_figures_list(self, side): figures = [] for i in range(0, Board.COLUMN_SIZE): for j in range(0, Board.ROW_SIZE): if self.board[j][i] is not None: if self.board[j][i].side == side: figures.append(self.board[j][i]) return figures def make_move(self, move): self.get(move.point_from).make_move(self, move.point_to) def summary_attacked_cells(self, side): attacked_cells = [] for j in range(Board.ROW_SIZE): for i in range(Board.COLUMN_SIZE): figure = self.get_by_pos(j, i) if figure is not None and figure.side == side: if isinstance(figure, Figures.King): attacked_cells = attacked_cells + figure.generate_moves(self, False) elif isinstance(figure, Figures.Pawn): attacked_cells = attacked_cells + figure.generate_moves(self, True) else: attacked_cells = attacked_cells + figure.generate_moves(self) return attacked_cells def summary_moves(self, side, my_turn=True): summary_moves = [] attacked_cells = [] for j in range(Board.ROW_SIZE): for i in range(Board.COLUMN_SIZE): attacked_cells.clear() figure = self.get_by_pos(j, i) if figure is not None and figure.side == side: if isinstance(figure, Figures.King): attacked_cells = attacked_cells + figure.generate_moves(self, my_turn) else: attacked_cells = attacked_cells + figure.generate_moves(self) for k in range(len(attacked_cells)): summary_moves.append(Move(Vector2d(j, i), attacked_cells[k])) return summary_moves def is_that_check(self, my_side): attacked_cells = self.summary_attacked_cells(my_side) enemy_king_cell = self.get_king_cell(Side.get_oposite(my_side)) return enemy_king_cell in attacked_cells def is_that_mate(self, my_side): enemy_figures = self.get_figures_list(Side.get_oposite(my_side)) for i in range(len(enemy_figures)): cur_figure = enemy_figures[i] available_moves = cur_figure.generate_moves(self) for j in range(len(available_moves)): new_chess_board = copy.deepcopy(self) if new_chess_board.get(cur_figure.position) is None: print(cur_figure.position.x) print(cur_figure.position.y) new_chess_board.make_move(Move(cur_figure.position, available_moves[j])) if new_chess_board.is_that_check(my_side) is False: return False return True def is_that_stalemate(self, my_side): enemy_figures = self.get_figures_list(Side.get_oposite(my_side)) for i in range(len(enemy_figures)): cur_figure = enemy_figures[i] if isinstance(cur_figure, Figures.King) is not True: available_moves = cur_figure.generate_moves(self) if len(available_moves) != 0: return False else: available_moves = cur_figure.generate_moves(self) for j in range(len(available_moves)): new_chess_board = copy.deepcopy(self) if new_chess_board.get(cur_figure.position) is None: print(cur_figure.position.x) print(cur_figure.position.y) new_chess_board.make_move(Move(cur_figure.position, available_moves[j])) if new_chess_board.is_that_check(my_side) is False: return False return True def evaluate(self, side): total = 0 for j in range(Board.ROW_SIZE): for i in range(Board.COLUMN_SIZE): pos = Vector2d(j, i) figure = self.get(pos) if figure is not None: if figure.side is side: sign = 1 else: sign = -1 total = total + (figure.evaluate(j, i) * sign) return total def delete_double_move(self, side_to_del): for j in range(Board.ROW_SIZE): for i in range(Board.COLUMN_SIZE): figure = self.get_by_pos(j, i) if figure is not None and figure.side == side_to_del: if isinstance(figure, Figures.Pawn): figure.double_move = False def swap_pawn(self, position, figure_lat): side = self.board[position.x][position.y].side lower = figure_lat.lower() if lower == 'q': self.board[position.x][position.y] = Figures.Queen(side, position) if lower == 'b': self.board[position.x][position.y] = Figures.Bishop(side, position) if lower == 'n': self.board[position.x][position.y] = Figures.Knight(side, position) if lower == 'r': self.board[position.x][position.y] = Figures.Rook(side, position, True)
2.96875
3
scripts/map_price.py
allinbits/gravity-dex-stats
2
12794232
<gh_stars>1-10 import csv import sys import requests def get_pools(): url = "https://staging.demeris.io/v1/liquidity/cosmos/liquidity/v1beta1/pools" r = requests.get(url) return r.json()["pools"] def get_balance(addr): url = "https://staging.demeris.io/v1/liquidity/cosmos/bank/v1beta1/balances/" + addr r = requests.get(url) return r.json()["balances"] def get_verified_denoms(): url = "https://staging.demeris.io/v1/verified_denoms" r = requests.get(url) return r.json()["verified_denoms"] def get_prices(): url = "https://staging.demeris.io/v1/oracle/prices" r = requests.get(url) return r.json()["data"] def get_ibc_denom_info(denom): denom = denom.removeprefix("ibc/") url = "https://staging.demeris.io/v1/chain/cosmos-hub/denom/verify_trace/" + denom r = requests.get(url) if r.status_code != 200: return None return r.json()["verify_trace"] def make_denom_price_map(): denom_set = set() for pool in get_pools(): denom_set |= set(pool["reserve_coin_denoms"]) verified_denoms = get_verified_denoms() verified_denom_map = {x["name"]: x for x in verified_denoms} prices = get_prices() price_map = {x["Symbol"]: x["Price"] for x in prices["Tokens"]} denom_price_map = {} for denom in denom_set: if denom.startswith("ibc/"): info = get_ibc_denom_info(denom) if not info: continue base_denom = info["base_denom"] else: base_denom = denom denom_data = verified_denom_map[base_denom] if not denom_data["fetch_price"]: continue precision = denom_data["precision"] ticker = denom_data["ticker"] price = price_map[ticker + "USDT"] denom_price_map[denom] = price / pow(10, precision) return denom_price_map if __name__ == "__main__": if len(sys.argv) < 2: print(f"usage: python3 {sys.argv[0]} [pools file]") sys.exit(0) denom_price_map = make_denom_price_map() tvl = 0.0 for pool in get_pools(): vl = 0.0 try: for x in get_balance(pool["reserve_account_address"]): if x["denom"] in pool["reserve_coin_denoms"]: vl += int(x["amount"]) * denom_price_map[x["denom"]] except KeyError: continue tvl += vl print(f"total value locked: {tvl}") swap_amount = 0.0 fee_amount = 0.0 with open(sys.argv[1], newline="") as f: reader = csv.DictReader(f) for row in reader: try: x_price = denom_price_map[row["x_denom"]] y_price = denom_price_map[row["y_denom"]] except KeyError: continue swap_amount += int(row["offer_x"]) * x_price swap_amount += int(row["offer_y"]) * y_price fee_amount += int(row["offer_x_fee"]) * x_price fee_amount += int(row["demand_y_fee"]) * y_price fee_amount += int(row["offer_y_fee"]) * y_price fee_amount += int(row["demand_x_fee"]) * x_price print(f"total swapped amount: {swap_amount}") print(f"total fees paid: {fee_amount}")
2.5
2
publicationData/paperResultsScripts/Fig2_Extended-model.py
pranasag/extendedEcoliGEM
1
12794233
import cbmpy import numpy as np import os import sys import pandas as pd import re modelLoc = sys.argv[1] growthMediumLoc = sys.argv[2] scriptLoc = sys.argv[3] proteomicsLoc = sys.argv[4] resultsFolder = sys.argv[5] model = cbmpy.CBRead.readSBML3FBC(modelLoc, scan_notes_gpr = False) growthData = pd.read_csv(growthMediumLoc) proteomicsData = pd.read_csv(proteomicsLoc) resultsPath = '%s/%s' %(scriptLoc, resultsFolder) if not (os.path.isdir(resultsPath)): os.mkdir(resultsPath) os.chdir(resultsPath) """ Total protein volume constraint for <NAME>i See the supplementary material of the paper for the derivation of the constraint """ protSum=float(0.62/0.34) pID = 'UP000000625' constraint = [] UniProtIDs = pd.read_csv('proteinMasses.txt', sep = '\t') for entry in UniProtIDs.index: constraint.append([(7.3*pow(10,-4)*float(UniProtIDs['Mass'][entry].replace(',',''))), 'P_%s_synthesis' %(UniProtIDs['Entry'][entry])]) model.addUserConstraint(pid = None, fluxes = constraint, operator = '<=', rhs = protSum) os.chdir(resultsPath) """ Here, we define the multiplier for the concentrations of nutrients in the growth medium. We will use this to perform glucose (and amino acid, for the supplemented MOPS variants) limitation simulations. """ multiplier = 1.0 #No changes in Glc abundance for i in growthData['Reaction ID']: model.setReactionLowerBound(i, multiplier * growthData['Lower Bound'].loc[growthData['Reaction ID']==i].values[0]) fbaResult = cbmpy.CBCPLEX.cplx_analyzeModel(model) fva = cbmpy.CBCPLEX.cplx_FluxVariabilityAnalysis(model, pre_opt=True) cbmpy.CBWrite.writeFVAdata(fva[0], fva[1], 'glcTitration_%s_%.2f.csv' %(os.path.split(growthMediumLoc)[1].replace('.csv', ''), j))
2.53125
3
HSPpipe/callall.py
fedhere/getlucky
0
12794234
import sys,os,time import pyfits as PF sys.path.append("../LIHSPcommon") from myutils import mygetenv,readconfig, mymkdir, mjd speedyout=mygetenv('SPEEDYOUT') def readconfig(configfile): f = open(configfile, 'r') config_string = f.read() parameters = eval(config_string) return parameters #unspool def unspool(par,outpath): from myutils import mymkdir,mygetenv from unspool import unspoolit if mymkdir(outpath)!= 0: sys.exit() if mymkdir(outpath+'/unspooled')!= 0: sys.exit() # strg = 'mkdir %s'%outpath # os.system(strg) heredir=mygetenv('SPEEDYOUT')+'/darks/' if mymkdir(heredir)!= 0: sys.exit() dodarks = [par['dodark']] if (isinstance(par['spool'],types.StringTypes)): print "only 1 file to unspool" else: for i in range(1,len(par['spool'])): if dodarks[0] == 3 or dodarks[0] == 0: dodarks.append(dodarks[0]) else: dodarks.append(2) inpath=par['impath']+'/'+par['imdir']+'/' print inpath print par['spool'], dodarks heredir=speedyout+'/darks/' if mymkdir(heredir)!= 0: sys.exit() if (isinstance(par['spool'],types.StringTypes)): nameroot=par['spool'] if nameroot.endswith('.fits'): nameroot = nameroot[:-5] fname = '%s/%s/%s.fits'%(par['impath'],par['imdir'], nameroot) if os.path.isfile(fname): ret = unspoolit(inpath, nameroot+'.fits', inpath,par['dark'],'avg', dodarks[0], heredir,outpath,0) if ret !=1: print "\n\n\n!!!!!!!!!!!!!!!PANIC: unspooling failed. exiting!!!!!!!!!!!\n\n\n" sys.exit(0) else: print 'no spool %s to be found'%fname sys.exit(0) else : for i,img in enumerate(par['spool']): if img.endswith('.fits'): img = img[:-5] fname = '%s/%s/%s.fits'%(par['impath'],par['imdir'], img) if os.path.isfile(fname): ret = unspoolit(inpath, img+'.fits', inpath,par['dark'],'avg', dodarks[i], heredir,outpath) if ret !=1: print "\n\n\n!!!!!!!!!!!!!!!PANIC: unspooling failed. exiting!!!!!!!!!!!\n\n\n" sys.exit(0) else: print 'no spool %s to be found'%fname sys.exit(0) ################### aperture photometry def myapphot(par, cosmic): from myutils import mymkdir,mygetenv from myapphot import * SPEEDYOUT=mygetenv('SPEEDYOUT') if (cosmic): if (isinstance(par['spool'],types.StringTypes)): nameroot=par['spool'] if nameroot.endswith('.fits'): nameroot = nameroot[:-5] inpath = '%s/%s//clean/'%(SPEEDYOUT,nameroot) else: nameroot=par['spool'][0] if nameroot.endswith('.fits'): nameroot = nameroot[:-5] inpath = '%s/%s_all/clean/'%(SPEEDYOUT,nameroot) else: if (isinstance(par['spool'],types.StringTypes)): nameroot=par['spool'] if nameroot.endswith('.fits'): nameroot = nameroot[:-5] inpath = '%s/%s/unspooled/'%(SPEEDYOUT,nameroot) else: nameroot=par['spool'][0] if nameroot.endswith('.fits'): nameroot = nameroot[:-5] inpath = '%s/%s_all/unspooled/'%(SPEEDYOUT,nameroot) ret =myphot(inpath, par['coords'], int(par['last']), par['ap'], par['centroid'], nameroot, par['target']) if ret !=1: print "\n\n\n!!!!!!!!!!!!!!!PANIC: photometry failed. exiting!!!!!!!!!!!\n\n\n" sys.exit(0) ###################################################################################### ################### cosmics and sextractor def runsex(par,cosmic): if (cosmic == 1): strg = 'python runcosmic.py /science/fbianco/HSPdata/unspooled/%s %s_ 0 %d'%(par['spool'],par['spool'],par['last']) os.system(strg) strg='for i in /science/fbianco/HSPdata/%s/clean/unspooled/*fits ; do python runsextractor.py $i; done'%par['spool'] os.system(strg) if (cosmic == 0): strg='for i in /science/fbianco/HSPdata/%s/unspooled/*fits ; do python runsextractor.py $i; done'%par['spool'] print strg os.system(strg) #photometry def photometry(par, cosmic): if (cosmic): strg = 'python phot.py /science/fbianco/HSPdata/%s/unspooled/clean/ %s %d %s'%(par['spool'],par['coordat'], par['last'], par['spool']) os.system(strg) else: strg = 'python phot.py /science/fbianco/HSPdata/%s/unspooled/ %s %d %s'%(par['spool'],par['coordat'], par['last'], par['spool']) os.system(strg) ###################################################################################### from myutils import mymkdir,mygetenv import types par = readconfig(sys.argv[1]) print par SPEEDYOUT=mygetenv('SPEEDYOUT') if (isinstance(par['spool'],types.StringTypes)): nameroot=par['spool'] if nameroot.endswith('.fits'): nameroot = nameroot[:-5] outpath = '%s/%s/'%(SPEEDYOUT,nameroot) else : nameroot=par['spool'][0] if nameroot.endswith('.fits'): nameroot = nameroot[:-5] outpath = '%s/%s_all/'%(SPEEDYOUT,nameroot) tmp = '%s/%s/%s.fits'%(par['impath'],par['imdir'], nameroot) image=PF.open(tmp) header=image[0].header print "last image in spool: ",par['last'] if par['last'] == 0 or par['last'] >image[0].header['NAXIS3']: par['last']=int(image[0].header['NAXIS3']) print "last image in spool: ",par['last'] if par['unspool'].startswith('y'): print "\n\n\nUNSPOOLING\n\n\n" unspool(par, outpath) cosmic = 0 if par['cosmic'].startswith('y'): print "\n\n\nremoving cosmics...\n\n\n" cosmic = 1 if par['sextract'].startswith('y'): print "\n\n\nextracting (sex)...\n\n\n" runsex(par, cosmic) if par['phot'].startswith('y'): print "\n\n\nrunning iraf photometry...\n\n\n" photometry(par, cosmic) if par['createlc'].startswith('y'): print "\n\n\ncreating lcvs...\n\n\n" if(cosmic): strg = 'python extractlc.py /science/fbianco/HSPdata/%s/unspooled/clean/ %s %s %d %d'%(nameroot,par['coordat'],nameroot,par['last'],par['ap']) os.system(strg) else: strg = 'python extractlc.py /science/fbianco/HSPdata/%s/unspooled %s %s %d %d'%(nameroot,par['coordat'],nameroot,par['last'],par['ap']) os.system(strg) if par['myapphot'].startswith('y'): print "\n\n\nrunning my aperture photometry...\n\n\n" myapphot(par, cosmic)
2.109375
2
maskrcnn/tflite_convert.py
hqbao/dlp_tf
0
12794235
<filename>maskrcnn/tflite_convert.py import numpy as np from datetime import datetime import matplotlib.pyplot as plt import tensorflow as tf from pycocotools.coco import COCO from matplotlib.patches import Rectangle from models import build_inference_maskrcnn_non_fpn from utils import genanchors, box2frame from settings import settings params = settings('non-fpn-inference') asizes = params['asizes'] ishape = params['ishape'] ssize = params['ssize'] max_num_of_rois = params['max_num_of_rois'] unified_roi_size = params['unified_roi_size'] rpn_head_dim = params['rpn_head_dim'] fc_denses = params['fc_denses'] block_settings = params['resnet'] nsm_iou_threshold = params['nsm_iou_threshold'] nsm_score_threshold = params['nsm_score_threshold'] classes = params['classes'] output_path = params['output_path'] abox4d = genanchors(isize=ishape[:2], ssize=ssize, asizes=asizes) anchor_4dtensor = tf.constant(value=abox4d, dtype='float32') rpn_model, detection_model = build_inference_maskrcnn_non_fpn( ishape=ishape, anchor_4dtensor=anchor_4dtensor, classes=classes, max_num_of_rois=max_num_of_rois, nsm_iou_threshold=nsm_iou_threshold, nsm_score_threshold=nsm_score_threshold, unified_roi_size=unified_roi_size, rpn_head_dim=rpn_head_dim, fc_denses=fc_denses, block_settings=block_settings, base_block_trainable=False) rpn_model.load_weights('{}/rpn_weights.h5'.format(output_path), by_name=True) # detection_model.load_weights('{}/detection_weights.h5'.format(output_path), by_name=True) rpn_model.save('{}/rpn_model'.format(output_path)) # detection_model.save('{}/detection_model'.format(output_path)) converter = tf.lite.TFLiteConverter.from_saved_model('{}/rpn_model'.format(output_path)) converter.experimental_new_converter = True converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS] tflite_model = converter.convert() open('{}/rpn_model.tflite'.format(output_path), 'wb').write(tflite_model) # converter = tf.lite.TFLiteConverter.from_saved_model('{}/detection_model'.format(output_path)) # converter.experimental_new_converter = True # converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS] # tflite_model = converter.convert() # open('{}/detection_model.tflite'.format(output_path), 'wb').write(tflite_model)
1.953125
2
lib/augment3D/elastic_deform.py
utayao/MedicalZooPytorch
1
12794236
import numpy as np from scipy.interpolate import RegularGridInterpolator from scipy.ndimage.filters import gaussian_filter """ Elastic deformation of images as described in <NAME>, "Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", in Proc. of the International Conference on Document Analysis and Recognition, 2003. Modified from: https://gist.github.com/chsasank/4d8f68caf01f041a6453e67fb30f8f5a https://github.com/fcalvet/image_tools/blob/master/image_augmentation.py#L62 Modified to take 3D inputs Deforms both the image and corresponding label file Label volumes are interpolated via nearest neighbour """ def elastic_transform_3d(img_numpy, labels=None, alpha=1, sigma=20, c_val=0.0, method="linear"): """ :param img_numpy: 3D medical image modality :param labels: 3D medical image labels :param alpha: scaling factor of gaussian filter :param sigma: standard deviation of random gaussian filter :param c_val: fill value :param method: interpolation method. supported methods : ("linear", "nearest") :return: deformed image and/or label """ assert img_numpy.ndim == 3 , 'Wrong img shape, provide 3D img' if labels is not None: assert img_numpy.shape == labels.shape , "Shapes of img and label do not much!" shape = img_numpy.shape # Define 3D coordinate system coords = np.arange(shape[0]), np.arange(shape[1]), np.arange(shape[2]) # Interpolated img im_intrps = RegularGridInterpolator(coords, img_numpy, method=method, bounds_error=False, fill_value=c_val) # Get random elastic deformations dx = gaussian_filter((np.random.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0.) * alpha dy = gaussian_filter((np.random.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0.) * alpha dz = gaussian_filter((np.random.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0.) * alpha # Define sample points x, y, z = np.mgrid[0:shape[0], 0:shape[1], 0:shape[2]] indices = np.reshape(x + dx, (-1, 1)), \ np.reshape(y + dy, (-1, 1)), \ np.reshape(z + dz, (-1, 1)) # Interpolate 3D image image img_numpy = im_intrps(indices).reshape(shape) # Interpolate labels if labels is not None: lab_intrp = RegularGridInterpolator(coords, labels, method="nearest", bounds_error=False, fill_value=0) labels = lab_intrp(indices).reshape(shape).astype(labels.dtype) return img_numpy, labels return img_numpy
2.8125
3
tensorflow_graphics/projects/nasa/lib/utils.py
Liang813/graphics
2,759
12794237
# Copyright 2020 The TensorFlow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """General helper functions.""" from os import path import numpy as np from skimage import measure import tensorflow.compat.v1 as tf from tensorflow_graphics.projects.cvxnet.lib.libmise import mise from tensorflow_graphics.projects.nasa.lib import datasets from tensorflow_graphics.projects.nasa.lib import models import tensorflow_probability as tfp from tqdm import trange import trimesh tf.disable_eager_execution() tfd = tfp.distributions def define_flags(): """Define command line flags.""" flags = tf.app.flags # Dataset Parameters flags.DEFINE_enum("dataset", "amass", list(k for k in datasets.dataset_dict.keys()), "Name of the dataset.") flags.DEFINE_string("data_dir", None, "Directory to load data from.") flags.mark_flag_as_required("data_dir") flags.DEFINE_integer("sample_bbox", 1024, "Number of bbox samples.") flags.DEFINE_integer("sample_surf", 1024, "Number of surface samples.") flags.DEFINE_integer("batch_size", 12, "Batch size.") flags.DEFINE_integer("motion", 0, "Index of the motion for evaluation.") flags.DEFINE_integer("subject", 0, "Index of the subject for training.") # Model Parameters flags.DEFINE_enum("model", "nasa", list(k for k in models.model_dict.keys()), "Name of the model.") flags.DEFINE_integer("n_parts", 24, "Number of parts.") flags.DEFINE_integer("total_dim", 960, "Dimension of the latent vector (in total).") flags.DEFINE_bool("shared_decoder", False, "Whether to use shared decoder.") flags.DEFINE_float("soft_blend", 5., "The constant to blend parts.") flags.DEFINE_bool("projection", True, "Whether to use projected shape features.") flags.DEFINE_float("level_set", 0.5, "The value of the level_set.") flags.DEFINE_integer("n_dims", 3, "The dimension of the query points.") # Training Parameters flags.DEFINE_float("lr", 1e-4, "Learning rate") flags.DEFINE_string("train_dir", None, "Training directory.") flags.mark_flag_as_required("train_dir") flags.DEFINE_integer("max_steps", 200000, "Number of optimization steps.") flags.DEFINE_integer("save_every", 5000, "Number of steps to save checkpoint.") flags.DEFINE_integer("summary_every", 500, "Number of steps to save checkpoint.") flags.DEFINE_float("label_w", 0.5, "Weight of labed vertices loss.") flags.DEFINE_float("minimal_w", 0.05, "Weight of minimal loss.") flags.DEFINE_bool("use_vert", True, "Whether to use vertices on the mesh for training.") flags.DEFINE_bool("use_joint", True, "Whether to use joint-based transformation.") flags.DEFINE_integer("sample_vert", 2048, "Number of vertex samples.") # Evalulation Parameters flags.DEFINE_bool("gen_mesh_only", False, "Whether to generate meshes only.") # Tracking Parameters flags.DEFINE_float("theta_lr", 5e-4, "Learning rate") flags.DEFINE_integer("max_steps_per_frame", 1792, "Number of optimization steps for tracking each frame.") flags.DEFINE_enum("gradient_type", "reparam", ["vanilla", "reparam"], "Type of gradient to use in theta optimization.") flags.DEFINE_integer("sample_track_vert", 1024, "Number of vertex samples for tracking each frame.") flags.DEFINE_integer("n_noisy_samples", 8, "Number of noisy samples per vertex") flags.DEFINE_float("bandwidth", 1e-2, "Bandwidth of the gaussian noises.") flags.DEFINE_bool( "left_trans", False, "Whether to use left side transformation (True) or right side (False).") flags.DEFINE_string("joint_data", None, "Path to load joint data.") flags.DEFINE_float("glue_w", 20., "Weight of length constraint loss.") flags.DEFINE_float("trans_range", 1., "The range of allowed translations.") def gen_mesh(sess, feed_dict, latent_holder, point_holder, latent, occ, batch_val, hparams, idx=0): """Generating meshes given a trained NASA model.""" scale = 1.1 # Scale of the padded bbox regarding the tight one. level_set = hparams.level_set latent_val = sess.run(latent, feed_dict) mesh_extractor = mise.MISE(32, 3, level_set) points = mesh_extractor.query() gt_verts = batch_val["vert"].reshape([-1, 3]) gt_bbox = np.stack([gt_verts.min(axis=0), gt_verts.max(axis=0)], axis=0) gt_center = (gt_bbox[0] + gt_bbox[1]) * 0.5 gt_scale = (gt_bbox[1] - gt_bbox[0]).max() while points.shape[0] != 0: orig_points = points points = points.astype(np.float32) points = (np.expand_dims(points, axis=0) / mesh_extractor.resolution - 0.5) * scale points = points * gt_scale + gt_center n_points = points.shape[1] values = [] for i in range(0, n_points, 100000): # Add this to prevent OOM due to points overload. feed_dict[latent_holder] = latent_val feed_dict[point_holder] = np.expand_dims(points[:, i:i + 100000], axis=1) value = sess.run(occ[:, idx], feed_dict) values.append(value) values = np.concatenate(values, axis=1) values = values[0, :, 0].astype(np.float64) mesh_extractor.update(orig_points, values) points = mesh_extractor.query() value_grid = mesh_extractor.to_dense() try: value_grid = np.pad(value_grid, 1, "constant", constant_values=-1e6) verts, faces, normals, unused_var = measure.marching_cubes_lewiner( value_grid, min(level_set, value_grid.max())) del normals verts -= 1 verts /= np.array([ value_grid.shape[0] - 3, value_grid.shape[1] - 3, value_grid.shape[2] - 3 ], dtype=np.float32) verts = scale * (verts - 0.5) verts = verts * gt_scale + gt_center faces = np.stack([faces[..., 1], faces[..., 0], faces[..., 2]], axis=-1) mesh = trimesh.Trimesh(vertices=verts, faces=faces) return mesh except: # pylint: disable=bare-except return None def save_mesh(sess, feed_dict, latent_holder, point_holder, latent, occ, batch_val, hparams, pth="meshes"): """Generate and save meshes to disk given a trained NASA model.""" name = batch_val["name"][0].decode("utf-8") subject, motion, frame = amass_name_helper(name) pth = path.join(hparams.train_dir, pth, frame) if not tf.io.gfile.isdir(pth): tf.io.gfile.makedirs(pth) start = hparams.n_parts for i in range(start, hparams.n_parts + 1): mesh_model = gen_mesh( sess, feed_dict, latent_holder, point_holder, latent, occ, batch_val, hparams, idx=i) mesh_name = "full_pred.obj" if mesh_model is not None: with tf.io.gfile.GFile(path.join(pth, mesh_name), "w") as fout: mesh_model.export(fout, file_type="obj") return subject, motion, frame, mesh_model def save_pointcloud(data, hparams, pth="pointcloud"): """Save pointcloud to disk.""" name = data["name"][0].decode("utf-8") unused_subject, unused_motion, frame = amass_name_helper(name) pth = path.join(hparams.train_dir, pth, frame) if not tf.io.gfile.isdir(pth): tf.io.gfile.makedirs(pth) mesh_name = "pointcloud.obj" with tf.io.gfile.GFile(path.join(pth, mesh_name), "w") as fout: pointcloud = data["vert"].reshape([-1, 3]) for v in pointcloud: fout.write("v {0} {1} {2}\n".format(*v.tolist())) def amass_name_helper(name): name, frame = name.split("-") subject = name[:5] motion = name[6:] return subject, motion, frame def make_summary_feed_dict( iou_hook, iou, best_hook, best_iou, ): feed_dict = {} feed_dict[iou_hook] = iou feed_dict[best_hook] = best_iou return feed_dict def parse_global_step(ckpt): basename = path.basename(ckpt) return int(basename.split("-")[-1]) def compute_iou(sess, feed_dict, latent_holder, point_holder, latent, occ, point, label, hparams): """Compute IoU.""" iou = 0. eps = 1e-9 latent_val = sess.run(latent, feed_dict) n_points = point.shape[2] preds = [] for start in range(0, n_points, 100000): feed_dict[point_holder] = point[:, :, start:start + 100000] feed_dict[latent_holder] = latent_val pred = sess.run(occ, feed_dict) preds.append(pred) pred = np.concatenate(preds, axis=2) pred = (pred >= hparams.level_set).astype(np.float32) label = (label[:, :1] >= 0.5).astype(np.float32).squeeze(axis=1) iou += np.sum(pred * label) / np.maximum(np.sum(np.maximum(pred, label)), eps) return iou def compute_glue_loss(connect, end_pts, inv_transforms, inv_first_frame_trans, joints, hparams): """Compute the prior term as a glue loss.""" n_dims = hparams.n_dims # Invert the transformation r_inv = inv_transforms[..., :n_dims, :n_dims] t_inv = inv_transforms[..., :n_dims, -1:] r = tf.transpose(r_inv, [0, 2, 1]) t = -tf.matmul(r, t_inv) transforms = tf.concat( [tf.concat([r, t], axis=-1), inv_transforms[..., -1:, :]], axis=-2) transforms = tf.matmul(transforms, inv_first_frame_trans) # Compute transformations of father joints and apply it to vectors from frame0 father_transforms = tf.reduce_sum( tf.expand_dims(transforms, axis=1) * connect.reshape([hparams.n_parts, hparams.n_parts, 1, 1]), axis=0) end_pts_homo = tf.expand_dims( tf.concat([end_pts, tf.ones_like(end_pts[..., :1])], axis=-1), axis=-1) end_pts_transformed = tf.matmul(father_transforms, end_pts_homo) end_pts_transformed = tf.squeeze(end_pts_transformed, axis=-1)[..., :n_dims] # Compute vectors in current configuration pred_links = tf.reshape(joints, [hparams.n_parts, n_dims]) # Compute distance between links and transformed vectors return tf.reduce_sum(tf.square(pred_links - end_pts_transformed)) def vanilla_theta_gradient(model_fn, batch_holder, hparams): """A vanilla gradient estimator for the pose, theta.""" latent_holder, latent, occ_eval = model_fn(batch_holder, None, None, "gen_mesh") if hparams.sample_vert > 0: points = batch_holder["point"] weights = batch_holder["weight"] n_vert = tf.shape(points)[2] sample_indices = tf.random.uniform([1, 1, hparams.sample_vert], minval=0, maxval=n_vert, dtype=tf.int32) points = tf.gather(points, sample_indices, axis=2, batch_dims=2) weights = tf.gather(weights, sample_indices, axis=2, batch_dims=2) batch_holder["point"] = points batch_holder["weight"] = weights unused_var0, unused_var1, occ = model_fn(batch_holder, None, None, "gen_mesh") return latent_holder, latent, occ_eval, tf.reduce_mean( tf.square(occ - hparams.level_set)) def reparam_theta_gradient(model_fn, batch_holder, hparams): """A gradient estimaor for the pose, theta, using the reparam trick.""" sigma = hparams.bandwidth n_samples = hparams.n_noisy_samples latent_holder, latent, occ_eval = model_fn(batch_holder, None, None, "gen_mesh") if hparams.sample_vert > 0: points = batch_holder["point"] weights = batch_holder["weight"] n_vert = tf.shape(points)[2] sample_indices = tf.random.uniform([1, 1, hparams.sample_vert], minval=0, maxval=n_vert, dtype=tf.int32) points = tf.gather(points, sample_indices, axis=2, batch_dims=2) weights = tf.gather(weights, sample_indices, axis=2, batch_dims=2) batch_holder["point"] = points batch_holder["weight"] = weights dist = tfd.Normal(loc=0., scale=sigma) n_pts = hparams.sample_vert if hparams.sample_vert > 0 else hparams.n_vert noises = dist.sample((1, hparams.n_parts, n_pts, n_samples, hparams.n_dims)) unused_var0, unused_var1, occ = model_fn(batch_holder, noises, None, "gen_mesh") occ = tf.reshape(occ, [1, hparams.n_parts + 1, -1, n_samples, 1]) occ = tf.reduce_mean(occ[:, hparams.n_parts:], axis=3) return latent_holder, latent, occ_eval, tf.reduce_mean( tf.square(occ - hparams.level_set)) def optimize_theta(feed_dict, loss, reset_op, train_op, rec_loss, glue_loss, sess, k, hparams): """Optimize the pose, theta, during tracking.""" sess.run(reset_op) loss_val = 0 glue_val = 0 with trange(hparams.max_steps_per_frame) as t: for unused_i in t: loss_val, unused_var, rec_val, glue_val = sess.run( [loss, train_op, rec_loss, glue_loss], feed_dict) t.set_description("Frame_{0} {1:.4f}|{2:.4f}".format( k, rec_val, glue_val)) return loss_val, glue_val
1.8125
2
setup.py
vermakhushboo/sedpy
16
12794238
<filename>setup.py from setuptools import setup # The text of the README file with open("README.md", 'r') as f: long_description = f.read() # This call to setup() does all the work setup(name="sedpy", version="1.0.0", description="Cross-platform stream-line editing tool", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/mritunjaysharma394/sedpy", author="<NAME>", author_email="<EMAIL>", license="MIT", classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8" ], packages=["sedpy"], include_package_data=True, entry_points={'console_scripts': ['sedpy = sedpy.__main__:main']})
1.671875
2
dht/main.py
leonkoens/dht
1
12794239
<filename>dht/main.py import argparse import asyncio import importlib import logging import random import settings import string from collections import deque from dht.node import SelfNode from dht.protocol import DHTServerProtocol, DHTClientProtocol from dht.routing import BucketTree from dht.utils import hash_string class DHT: def __init__(self, listen_port, initial_node=None): self.initial_node = initial_node self.listen_port = listen_port logging.info("Listening on {}".format(self.listen_port)) self.value_store = self.create_value_store() self.self_key = self.create_self_key() self.self_node = self.create_self_node() self.bucket_tree = self.create_bucket_tree() self.loop = asyncio.get_event_loop() self.create_server() if self.initial_node is not None: self.connect_to_initial_node() self.loop.create_task(self.refresh_nodes(key=self.self_key)) self.loop.create_task(self.connect_to_unconnected_nodes()) def create_value_store(self): """ Create a Store to store values in. """ module = importlib.import_module('value_stores.' + settings.VALUE_STORE) value_store_class = getattr(module, 'MemoryStore') return value_store_class() def create_self_key(self): """ Create a key with which we will identify ourselves. """ key = hash_string( ''.join([random.choice(string.ascii_letters) for _ in range(160)])) logging.info("Our key is {}".format(key)) return key def create_self_node(self): """ Create a Node to represent ourselves. """ self_node = SelfNode(key=self.self_key) return self_node def create_bucket_tree(self): """ Create the BucketTree to store Nodes. """ tree = BucketTree(self.self_node) return tree def create_server(self): """ Create the server to listen for incoming connections. """ listen = self.loop.create_server( lambda: DHTServerProtocol( self.self_key, self.bucket_tree, self.value_store, self.listen_port), '0.0.0.0', self.listen_port ) self.loop.run_until_complete(listen) def connect_to_initial_node(self): """ Connect to the initial node if one is known. """ logging.info("Connecting to initial node: {}".format(self.initial_node)) connect = self.loop.create_connection( lambda: DHTClientProtocol( self.self_key, self.bucket_tree, self.value_store, self.listen_port), self.initial_node[0], int(self.initial_node[1]) ) self.loop.run_until_complete(connect) async def refresh_nodes(self, key=None, wait=None): to_check = deque([key]) while True: if wait is None: wait = 3 # TODO maximum wait in the settings wait = min(wait * 2, 30) logging.debug("refresh_node sleeping {:d} seconds".format(wait)) await asyncio.sleep(wait) try: while True: search_key = to_check.pop() nodes = self.bucket_tree.find_nodes(search_key) for node in nodes: if node == self.self_node or node.protocol is None: continue node.protocol.find_node(search_key) except IndexError: for bucket_node in self.bucket_tree.get_leaf_bucket_nodes(include_self=False): bucket_node_range = bucket_node.get_range() key = hex(random.randrange(bucket_node_range[0], bucket_node_range[1]))[2:] to_check.appendleft(key) async def connect_to_unconnected_nodes(self): while True: await asyncio.sleep(1) for node in self.bucket_tree.get_unconnected_nodes(): logging.debug(node) connect = self.loop.create_connection( lambda: DHTClientProtocol( self.self_key, self.bucket_tree, self.value_store, self.listen_port), node.address, int(node.port) ) _, protocol = await connect node.protocol = protocol protocol.node = node def run(self): """ Run the loop to start everything. """ try: self.loop.run_forever() except KeyboardInterrupt: pass self.loop.close() if __name__ == "__main__": parser = argparse.ArgumentParser(description='A python DHT') parser.add_argument( '--initial-node', '-n', help='The initial node to connect to (1.2.3.4:5678).') parser.add_argument( '--listen-port', '-p', default=9999, help='The port to listen on.') parser.add_argument('-v', action='store_true', dest='verbose_info', help='Verbose') parser.add_argument('-vv', action='store_true', dest='verbose_debug', help='More verbose') args = parser.parse_args() if args.verbose_debug: logging.basicConfig(level=logging.DEBUG) logging.debug('Setting logging level to debug') if args.verbose_info: logging.basicConfig(level=logging.INFO) logging.info('Setting logging level to info') if args.initial_node is not None: initial_node = tuple(args.initial_node.split(":")) else: initial_node = None dht = DHT(args.listen_port, initial_node) dht.run()
2.3125
2
my_files_utils.py
luisst/Audio_Performance_Evaluation
0
12794240
<reponame>luisst/Audio_Performance_Evaluation<filename>my_files_utils.py<gh_stars>0 #!/usr/bin/env python3 """ Utilities functions to check and find files from UNIX-based systems This should be syncronized for all of my repos """ import glob import os import sys import shutil import re import numpy as np import pandas as pd from os.path import join as pj from os.path import exists import collections import datetime ## List of the functions: # - check_empty_folder .- ### # # # Check processes # # # def check_empty_folder(current_folder_path): """ Return true if folder is NOT empty """ if (len(os.listdir(current_folder_path)) != 0): return True else: print("Folder {} is empty".format(current_folder_path)) return False def check_ending_format(current_file_path, ending_format_substring): if current_file_path[-3:] != ending_format_substring: print("Error in the format, must end with {}!".format(ending_format_substring)) sys.exit() def check_same_length(list1, list2): if len(list1) != len(list2): print("Error, your list1 and list2 have different lengths") sys.exit() def check_csv_exists(csv_path): if exists(csv_path): print("CSV file already exists, do you want to overwrite? (y)") if input().lower() != 'y': print("File not modified") sys.exit() ### # # # Store TXT and CSV # # # def log_message(msg, log_file, mode, both=True): '''Function that prints and/or adds to log''' #Always log file with open(log_file, mode) as f: f.write(msg) #If {both} is true, print to terminal as well if both: print(msg, end='') def write_my_csv(*args, **kwargs): """ Function to write csv files. args: - Columns for the csv (matched to the names) kwargs: - cols: List of names for columns (matched to args) - path: output_path for the csv """ defaultKwargs = { 'time_format': True, 'txt_flag': False } kwargs = { **defaultKwargs, **kwargs } # my_df = pd.DataFrame(index=False) my_df = pd.DataFrame() csv_path = kwargs['path'] columns_values = kwargs['cols'] # check if csv file exists check_csv_exists(csv_path) if len(args) > 2: check_same_length(args[0], args[1]) elif len(args) > 3: check_same_length(args[1], args[2]) idx = 0 for current_list in args: my_df[columns_values[idx]] = current_list idx = idx + 1 today_date = '_' + str(datetime.date.today()) datetime_object = datetime.datetime.now() time_f = "-{:d}_{:02d}".format(datetime_object.hour, datetime_object.minute) if kwargs['time_format']: if kwargs['txt_flag']: full_output_csv_path = '/'.join(csv_path.split('/')[0:-1]) + '/' + csv_path.split('/')[-1][0:-4] + today_date + time_f + '.txt' my_df.to_csv(full_output_csv_path, header=False, sep='\t', index=False) else: full_output_csv_path = '/'.join(csv_path.split('/')[0:-1]) + '/' + csv_path.split('/')[-1][0:-4] + today_date + time_f + '.csv' my_df.to_csv(full_output_csv_path, index=False) else: if kwargs['txt_flag']: full_output_csv_path = '/'.join(csv_path.split('/')[0:-1]) + '/' + csv_path.split('/')[-1][0:-4] + '.txt' my_df.to_csv(full_output_csv_path, header=False, sep='\t', index=False) else: full_output_csv_path = '/'.join(csv_path.split('/')[0:-1]) + '/' + csv_path.split('/')[-1][0:-4] + '.csv' my_df.to_csv(full_output_csv_path, index=False) ### # # # Files processes # # # def locate_single_txt(src_dir, obj_format = 'txt'): """ Input: - Folder path Output: - Path of the only transcript found in folder """ all_texts = glob.glob("{}/*.{}".format(src_dir, obj_format)) if len(all_texts) != 1: print("Too many transcripts! Please use only 1") else: input_transcript_path = all_texts[0] print(input_transcript_path) print("\n") return input_transcript_path def get_pathsList_from_transcript(transcript_path, csv_flag=False): """ Given a transcript in txt (or csv), it returns a list of the paths of all the audios """ if csv_flag == False: check_ending_format(transcript_path, 'txt') transcript_data = pd.read_csv(transcript_path, sep="\t", header=None, index_col=False) path_list = transcript_data[0].tolist() return path_list def get_list_of_GT(folder_path, csv_flag=False, single_col=False): transcript_path = locate_single_txt(folder_path) if csv_flag == False: check_ending_format(transcript_path, 'txt') transcript_data = pd.read_csv(transcript_path, sep="\t", header=None, index_col=False) if single_col: GT_list = transcript_data[0].tolist() else: GT_list = transcript_data[1].tolist() return GT_list def get_list_of_audios(folder_path, audio_extension = 'wav', confirm_with_transcript = True, verbose = False): """ Confirm_with_transcript requires: file path in first column To-do: check if in csv file the header_none will throw count the header as the first row. To-do: Add a function to only compare the filename, not the entire path """ all_audios = sorted(glob.glob("{}/*.{}".format(folder_path, audio_extension))) ### To double check with transcript paths if confirm_with_transcript: transcript_path = locate_single_txt(folder_path) # Obtain list of paths from transcript transcript_lists = sorted(get_pathsList_from_transcript(transcript_path)) # Compare 2 lists, full path or only names if collections.Counter(all_audios) == collections.Counter(transcript_lists): if verbose: print("Transcript and audios are consistent") else: print("Transcript paths and names of files does not match") sys.exit() return all_audios
2.6875
3
MNIST/mnist_keras.py
im0qianqian/ML_demo
2
12794241
import keras import numpy as np from keras.models import Sequential from keras.layers import Dense from keras.datasets import mnist x_train = None y_train = None x_test = None y_test = None def init(): global x_train, y_train, x_test, y_test (x_train_tmp, y_train_tmp), (x_test_tmp, y_test_tmp) = mnist.load_data() x_train = x_train_tmp.reshape(-1, 784) x_test = x_test_tmp.reshape(-1, 784) train_size = x_train.shape[0] test_size = x_test.shape[0] y_train = np.zeros((train_size, 10)) for i in range(train_size): y_train[i][y_train_tmp[i]] = 1 y_test = np.zeros((test_size, 10)) for i in range(test_size): y_test[i][y_test_tmp[i]] = 1 pass if __name__ == '__main__': import time init() model = Sequential() model.add(Dense(units=1000, activation='sigmoid', input_dim=784)) model.add(Dense(units=500, activation='sigmoid')) model.add(Dense(units=10, activation='softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) start_time = time.time() model.fit(x_train, y_train, epochs=10, batch_size=1000) loss_and_metrics = model.evaluate(x_test, y_test, batch_size=1000) print(loss_and_metrics) print('Total Time: ', (time.time() - start_time))
3.09375
3
examples/exception.py
pawelmhm/scrapy-playwright
155
12794242
import logging from pathlib import Path from scrapy import Spider, Request from scrapy.crawler import CrawlerProcess from scrapy_playwright.page import PageCoroutine class HandleTimeoutMiddleware: def process_exception(self, request, exception, spider): logging.info("Caught exception: %s", exception.__class__) return Request( url="https://httpbin.org/get", meta={ "playwright": True, "playwright_page_coroutines": [ PageCoroutine( "screenshot", path=Path(__file__).parent / "recovered.png", full_page=True ), ], }, ) class HandleExceptionSpider(Spider): """ Handle exceptions in the Playwright downloader, such as TimeoutError """ name = "awesome" custom_settings = { "PLAYWRIGHT_DEFAULT_NAVIGATION_TIMEOUT": 1000, "DOWNLOADER_MIDDLEWARES": { HandleTimeoutMiddleware: 100, }, } def start_requests(self): yield Request( url="https://httpbin.org/delay/300", meta={"playwright": True}, ) def parse(self, response): yield {"url": response.url} if __name__ == "__main__": process = CrawlerProcess( settings={ "TWISTED_REACTOR": "twisted.internet.asyncioreactor.AsyncioSelectorReactor", "DOWNLOAD_HANDLERS": { "https": "scrapy_playwright.handler.ScrapyPlaywrightDownloadHandler", # "http": "scrapy_playwright.handler.ScrapyPlaywrightDownloadHandler", }, "RETRY_TIMES": 0, } ) process.crawl(HandleExceptionSpider) process.start()
2.515625
3
Labs/Lab-3.1/fan.py
Josverl/MicroPython-Bootcamp
4
12794243
from machine import Pin, PWM # Initialization pwmFan = PWM(Pin(21), duty=0) reverseFan = Pin(22, Pin.OUT) # Turn Fan forward 70% speed reverseFan.value(0) pwmFan.duty(70) # Decrease speed pwmFan.duty(50) # Decrease speed further (it might stop) pwmFan.duty(30) # Turn Fan backwards 70% speed reverseFan.value(1) pwmFan.duty(30) # Decrease speed pwmFan.duty(50) # Decrease speed further (it might stop) pwmFan.duty(70) # Clean up reverseFan(0) pwmFan.deinit()
3.265625
3
submissions/aising2019/b.py
m-star18/atcoder
1
12794244
import sys read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines sys.setrecursionlimit(10 ** 7) n = int(readline()) a, b = map(int, readline().split()) p = list(map(int, readline().split())) memo = [0, 0, 0] for check in p: if check <= a: memo[0] += 1 elif a < check <= b: memo[1] += 1 else: memo[2] += 1 print(min(memo))
2.6875
3
flog/user/__init__.py
mutalisk999/Flog
1
12794245
""" MIT License Copyright (c) 2020 <NAME> """ from flask import Blueprint user_bp = Blueprint("user", __name__) from . import views
1.4375
1
examples/icml_2018_experiments/scripts/generate_all_cave_reports.py
kaddynator/BOAH
58
12794246
<gh_stars>10-100 import os from cave.cavefacade import CAVE def analyze_all(): for dirpath, dirnames, filenames in os.walk('../opt_results/'): if not dirnames: print(dirpath) cave = CAVE(folders=[dirpath], output_dir=os.path.join("../CAVE_reports", dirpath[15:]), # output for debug/images/etc ta_exec_dir=["."], # Only important for SMAC-results file_format='BOHB' if os.path.exists(os.path.join(dirpath, 'configs.json')) else 'SMAC3', #verbose_level='DEV_DEBUG', verbose_level='OFF', show_jupyter=False, ) cave.analyze() if __name__ == '__main__': analyze_all()
2.578125
3
Pacote download/Exercicios/tabuada com while.py
Henrique-GM/Exercicios_de_Python
0
12794247
while True: numero = int(input('Digite um número: ')) i = 0 while i <= 10: print(f'{numero} x {i} = {numero * i}') i += 1 resposta = str(input('Deseja continuar[S/N]: ')).strip().upper()[0] if resposta == 'N': break
3.890625
4
tests.py
cooperlees/69
2
12794248
#!/usr/bin/env python3 import asyncio import unittest import sixtynine class TestSixtynine(unittest.TestCase): def setUp(self): self.loop = asyncio.get_event_loop() def tearDown(self): self.loop.close() def test_mouthful(self): self.assertEqual(self.loop.run_until_complete(sixtynine.mouthful()), 69)
2.625
3
GoingMerry/__init__.py
Luffin/ThousandSunny
0
12794249
<gh_stars>0 import os from tornado import web from settings import * from handlers import handlers theme_path = os.path.join(os.path.dirname(__file__), 'themes', theme_name) class Application(web.Application): def __init__(self): settings = dict( static_path = os.path.join(theme_path, 'static'), template_path = os.path.join(theme_path, 'template'), debug = True, title = title, email = email, login_url = '/onepeice', cookie_secret = '<KEY> ) super(Application, self).__init__(handlers, **settings)
1.9375
2
number_reader.py
CoffeeCodeRpt/python-crash-course
0
12794250
<reponame>CoffeeCodeRpt/python-crash-course<filename>number_reader.py from fileinput import filename import json filename = 'chapter_10/numbers.json' with open(filename) as f_object: numbers = json.load(f_object) print(numbers)
3.3125
3