max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
haptools/data/__init__.py
aryarm/admixtools
0
12793951
<gh_stars>0 from .data import Data from .genotypes import Genotypes, GenotypesRefAlt from .phenotypes import Phenotypes from .covariates import Covariates from .haplotypes import Extra, Variant, Haplotype, Haplotypes
0.984375
1
src/utils/utils.py
dsikar/sdsandbox
1
12793952
<filename>src/utils/utils.py<gh_stars>1-10 #!/usr/bin/env python # coding: utf-8 # In[40]: def sort_unity_files(path, mask): """ Create a sorted dictionary from unity (SDSandbox) files e.g. C:\\Users\\aczd097\\Downloads\\dataset\\unity\\log_sample\\logs_Mon_Jul_13_08_29_01_2020\\0_cam-image_array_.jpg Where the key in example above is 0 (first characters before underscore in 0_cam-image_array_.jpg) Parameters ---------- path : string path to files mask : string file type Returns ------- fdict: dictionary Sorted dictionary containing key and file path Example ------- path = 'C:\\Users\\aczd097\\Downloads\\dataset\\unity\\log_sample\\logs_Mon_Jul_13_08_29_01_2020\\' mask = '*.jpg' fdict = sort_unity_files(path, mask) for key in sorted(fdict): print("key: {}, value:{}".format(key,fdict[key])) Note ------- File path format is OS dependant. OrderedDict must by sorted to order files in the right order. """ import fnmatch import os from collections import OrderedDict #path = 'C:\\Users\\aczd097\\Downloads\\dataset\\unity\\log_sample\\logs_Mon_Jul_13_08_29_01_2020\\' #mask = '*.jpg' filemask = os.path.expanduser(path + mask) path, mask = os.path.split(filemask) fdict = OrderedDict() matches = [] for root, dirnames, filenames in os.walk(path): for filename in fnmatch.filter(filenames, mask): fdict[int(filename.split('_')[0])] = os.path.join(root, filename) print("Use sorted() function in your for loop to sort the output of this sort_unity_files().") return fdict # In[41]: def overlay_imgs(s_img, l_img, x_offset=50, y_offset=50): """ Overlay two numpy array images Parameters ---------- s_img: numpy array, small image l_img: numpy array, large image x_offset: left padding from large to small overlaid image y_offset: top padding from large to small overlaid image Returns ------- image_arr: numpy array containing large image with insert of small image inlaid Example -------- """ l_img[y_offset:y_offset+s_img.shape[0], x_offset:x_offset+s_img.shape[1]] = s_img return l_img # In[42]: def plot_img_hist(img, scheme='rgb'): """ Plot histogram for an rgb array Parameters ------- img: numpy array scheme: string, 'rgb' (default) or , 'yuv-rgb' If scheme is rgb, maximum number of values in a bins is expected to 3 digit, otherwise 6 digits and y-axys is plotted on log scale. Returns ------- fig: matplotlib.pyplot figure Example ------- import cv2 import numpy as np import matplotlib.pyplot as plt ipath = 'C:\\Users\\aczd097\\Downloads\\dataset\\unity\\log_sample\\logs_Mon_Jul_13_08_29_01_2020\\12893_cam-image_array_.jpg' img1 = cv2.imread(ipath) # 120x160x3 plt.rcParams["figure.figsize"] = (6,4) myfig = plot_img_hist(img) """ # from https://discuss.pytorch.org/t/plot-a-histogram-for-multiple-images-full-dataset/67600 # https://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/ from PIL import Image import numpy as np import matplotlib.pyplot as plt nb_bins = 256 count_r = np.zeros(nb_bins) count_g = np.zeros(nb_bins) count_b = np.zeros(nb_bins) #img = Image.open('16_left-2.jpeg') # Calculate manual hist x = np.array(img) x = x.transpose(2, 0, 1) hist_r = np.histogram(x[0], bins=nb_bins, range=[0, 255]) hist_g = np.histogram(x[1], bins=nb_bins, range=[0, 255]) hist_b = np.histogram(x[2], bins=nb_bins, range=[0, 255]) count_r = hist_r[0] count_g = hist_g[0] count_b = hist_b[0] # Plot manual bins = hist_r[1] fig = plt.figure() plt.bar(bins[:-1], count_r, color='r', alpha=0.5) plt.bar(bins[:-1], count_g, color='g', alpha=0.5) plt.bar(bins[:-1], count_b, color='b', alpha=0.5) return fig # In[43]: # fpath = fdict[key] def get_sdsandbox_json_steer_angle(fpath): """ Get steering angle stored in json file. The argument passed in the path for a file, that was stored with a corresponding json file containing a steering angle, looks something like: C:\\Users\\aczd097\\Downloads\\dataset\\unity\\log_sample\\logs_Mon_Jul_13_08_29_01_2020\\ \ 12893_cam-image_array_.jpg The json file with with steering angle, in the same path, will be named record_12893.json We open that file and return the steering angle. Parameters ------- fpath: string, filepath Returns ------- st_angle: steering angle Example ------- fpath = 'C:\\Users\\aczd097\\Downloads\\dataset\\unity\\log_sample\\logs_Mon_Jul_13_08_29_01_2020\\12893_cam-image_array_.jpg' jsa = get_sdsandbox_json_steer_angle(fpath) print(jsa) """ import json # split string fsplit = fpath.split('\\') # get name e.g. 12893_cam-image_array_.jpg fname = fsplit[-1] # get number e.g. 12893 fnumber = fsplit[-1].split('_') fnumber = fnumber[0] # build json file name e.g. record_12893.json fname = 'record_' + fnumber + '.json' # build file path e.g. 'C:\Users\aczd097\Downloads\dataset\unity\log_sample\logs_Mon_Jul_13_08_29_01_2020\record_12893.json' idx = fpath.rindex('\\') + 1 fname = fpath[0:idx] + fname # open and read file f = open(fname, "r") file = f.read() # load json fjson = json.loads(file) # get and return steering angle attribute st_angle = fjson['user/angle'] return st_angle # In[ ]: def overlay_imgs(s_img, l_img, x_offset=50, y_offset=50): """ Overlay two numpy array images Parameters ---------- s_img: numpy array, small image l_img: numpy array, large image x_offset: left padding from large to small overlaid image y_offset: top padding from large to small overlaid image Returns ------- image_arr: numpy array containing large image with insert of small image inlaid Example -------- """ #import cv2 #s_img = cv2.imread("smaller_image.png") #l_img = cv2.imread("larger_image.jpg") # x_offset=y_offset=50 l_img[y_offset:y_offset+s_img.shape[0], x_offset:x_offset+s_img.shape[1]] = s_img return l_img # In[ ]: # TODO, need to bring this from existing module def add_rain(image_arr, rt=None, st=0): """ Add rain to image Parameters ---------- image_arr: numpy array containing image rt: string, rain type "heavy" or "torrential" st: range to draw a random slant from Returns ------- image_arr: numpy array containing image with rain Example -------- """ import Automold as am # print("Adding rain...") if(st != 0): # draw a random number for slant st = np.random.randint(-1 * st, st) if(rt!='light'): # heavy or torrential image_arr = am.add_rain_single(image_arr, rain_type=rt, slant=st) else: # no slant image_arr = am.add_rain_single(image_arr) return image_arr # In[52]: def make_video(fdict, model, preproc=False): """ Make video from image dictionary. video.avi is written to disk Parameters ------- fdict: collections.OrderedDict, ordered dictionary of file names model: string, model name preproc: boolean, show preprocessed image next to original Returns none Example ------- path = 'C:\\Users\\aczd097\\Downloads\\dataset\\unity\\log_sample\\logs_Mon_Jul_13_08_29_01_2020\\' mask = '*.jpg' fdict = sort_unity_files(path, mask) model = 'nvidia2' make_video(fdict, model, True) # saved as nvidia2.avi """ import os import sys # append local path so we can make use # of locally defined modules module_path = os.path.abspath(os.path.join('..')) if module_path not in sys.path: sys.path.append(module_path) import argparse import fnmatch import json import os from io import BytesIO from PIL import Image import base64 import numpy as np import matplotlib.pyplot as plt import Augment_cls as Augmentation import cv2 import conf # instantiate augmentation class ag = Augmentation.Augment_cls(model) # video name video_name = model + '.avi' VIDEO_WIDTH, VIDEO_HEIGHT = 800, 600 IMAGE_WIDTH, IMAGE_HEIGHT = 800, 600 if(preproc == True): # wide angle VIDEO_WIDTH = IMAGE_WIDTH*2 video = cv2.VideoWriter(video_name, 0, 11, (VIDEO_WIDTH, VIDEO_HEIGHT)) # assumed 11fps # font font = cv2.FONT_HERSHEY_SIMPLEX # frame count fno = 1 try: for key in sorted(fdict): image = cv2.imread(fdict[key]) # 120x160x3 # get histogram myfig = plot_img_hist(image, 'rgb') myfig.savefig("temp_plot.png") image2 = cv2.imread("temp_plot.png") # save plt.close(myfig) image_copy = image # resize so we can write some info onto image image = cv2.resize(image, (IMAGE_WIDTH, IMAGE_HEIGHT), cv2.INTER_AREA) # add Info to frame cv2.putText(image, model, (50, 50), font, 1, (255, 255, 255), 2, cv2.LINE_AA) # overlay histogram image = overlay_imgs(image2, image) pst = get_sdsandbox_json_steer_angle(fdict[key]) pst *= conf.norm_const simst = "Frame: {}, Actual steering angle: {:.2f}".format(str(fno), pst) cv2.putText(image, simst, (50, 115), font, 1, (255, 255, 255), 2, cv2.LINE_AA) # create a preprocessed copy to compare what simulator generates to what network "sees" if (preproc == True): # wide angle image2 = ag.preprocess(image_copy) image2 = cv2.resize(image2, (IMAGE_WIDTH, IMAGE_HEIGHT), cv2.INTER_AREA) cv2.putText(image2, 'Network Image', (50, 50), font, 1, (255, 255, 255), 2, cv2.LINE_AA) # histogram on network image myfig = plot_img_hist(image, 'yuv-rgb') myfig.savefig("temp_plot.png") image4 = cv2.imread("temp_plot.png") # save plt.close(myfig) # overlay image2 = overlay_imgs(image4, image2) # concatenate if (preproc == True): # wide angle cimgs = np.concatenate((image, image2), axis=1) image = cimgs # write to video video.write(image); # increment frame counter fno = fno + 1 except Exception as e: print("Exception raise: " + str(e)) cv2.destroyAllWindows() video.release() # subset 100 images - should be quicker #path = 'C:\\Users\\aczd097\\Downloads\\dataset\\unity\\log_sample\\subset_100\\' #mask = '*.jpg' #fdict = sort_unity_files(path, mask) #model = 'nvidia2' #make_video(fdict, model, True) # saved as nvidia2.avi def plot_img_hist(img, scheme='rgb'): """ Plot histogram for an rgb array Parameters ------- img: numpy array scheme: string, 'rgb' (default) or , 'yuv-rgb' If scheme is rgb, maximum number of values in a bins is expected to 3 digit, otherwise 6 digits and y-axys is plotted on log scale. Returns ------- fig: matplotlib.pyplot figure Example ------- import cv2 import numpy as np import matplotlib.pyplot as plt ipath = 'C:\\Users\\aczd097\\Downloads\\dataset\\unity\\log_sample\\logs_Mon_Jul_13_08_29_01_2020\\12893_cam-image_array_.jpg' img1 = cv2.imread(ipath) # 120x160x3 plt.rcParams["figure.figsize"] = (6,4) myfig = plot_img_hist(img) """ # from https://discuss.pytorch.org/t/plot-a-histogram-for-multiple-images-full-dataset/67600 # https://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/ from PIL import Image import numpy as np import matplotlib.pyplot as plt nb_bins = 256 count_r = np.zeros(nb_bins) count_g = np.zeros(nb_bins) count_b = np.zeros(nb_bins) # Calculate manual hist x = np.array(img) x = x.transpose(2, 0, 1) hist_r = np.histogram(x[0], bins=nb_bins, range=[0, 255]) hist_g = np.histogram(x[1], bins=nb_bins, range=[0, 255]) hist_b = np.histogram(x[2], bins=nb_bins, range=[0, 255]) count_r = hist_r[0] count_g = hist_g[0] count_b = hist_b[0] # Plot manual bins = hist_r[1] fig = plt.figure() # figure() #plt.yscale('log') Rmean = "{:.2f}".format(np.mean(x[0])) plt.bar(bins[:-1], count_r, color='r', alpha=0.5, label="red (mean = " + Rmean + ")") Gmean = "{:.2f}".format(np.mean(x[1])) plt.bar(bins[:-1], count_g, color='g', alpha=0.45, label="green (mean = " + Gmean + ")") Bmean = "{:.2f}".format(np.mean(x[2])) plt.bar(bins[:-1], count_b, color='b', alpha=0.4, label="blue (mean = " + Bmean + ")") # show labels plt.legend(loc='upper right') plt.xlabel("Bins") plt.xticks(np.arange(0, 255, step=25)) plt.ylabel("Pixels") RGBmean = "{:.2f}".format(np.mean(x)) plt.title("RGB intensity value distributions (mean = " + RGBmean + ")") # add a grid plt.grid() # make y scale logarithmic # plt.yscale('log', nonposy='clip') # set y limit, may need to change # No plotting max for one off images #ymax = 10000 #plt.ylim(0, ymax) plt.savefig("temp_plot.jpg") plt.close(fig) #return fig # change rgb values # https://stackoverflow.com/questions/59320564/how-to-access-and-change-color-channels-using-pil def changeRGB(img, rv=0, gv=0, bv=0): """ Change RGB values using PIL Parameters ------- img: uint8 numpy image array rv: integer, value to be added to red channel gv: integer, value to be added to green channel bv, integer, value to be added to blue channel Output ------- myimg: uint8 numpy image array Example ------- import matplotlib.pyplot as plt import matplotlib.image as mpimg img = mpimg.imread('steph.jpeg') myimg = changeRGB(img, 60, 0, 0) plt.imshow(myimg) """ from PIL import Image import numpy as np im = Image.fromarray(np.uint8(img)) # Split into 3 channels r, g, b = im.split() # Red r = r.point(lambda i: i + rv) # Green g = g.point(lambda i: i + gv) # Blue b = b.point(lambda i: i + bv) # Recombine back to RGB image result = Image.merge('RGB', (r, g, b)) # Convert to uint8 numpy array myimg = np.asarray(result) return myimg # subset 100 images - should be quicker #path = 'C:\\Users\\aczd097\\Downloads\\dataset\\unity\\log_sample\\subset_100\\' #mask = '*.jpg' #fdict = sort_unity_files(path, mask) #model = 'nvidia2' #make_video(fdict, model, True) # saved as nvidia2.avi if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='Make Video script') parser.add_argument('--filepath', type=str, help='tcpflow log') parser.add_argument('--model', type=str, help='model name for video label') parser.add_argument('--mask', type=str, help='image file suffix') args = parser.parse_args() #fdict = sort_unity_files(args.filepath, args.mask) #make_video(fdict, model, True) # saved as nvidia2.avi #make_video(args.filepath, args.model, True) # example # python utils.py --filepath=C:\\Users\\aczd097\\Downloads\\dataset\\unity\\log_sample\\subset_100\\ \ # --model=nvidia2 --mask=*.jpg # In[ ]:
3.046875
3
a10_neutron_lbaas/tests/unit/test_a10_config.py
hthompson6/a10-neutron-lbaas
10
12793953
# Copyright 2014, <NAME> (dougwig), A10 Networks # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from a10_neutron_lbaas.tests.unit import test_base class TestA10Config(test_base.UnitTestBase): def test_verify_appliances(self): self.assertTrue(self.a.config.get('verify_appliances')) def test_num_appliances(self): # Everytime we update the test config, this test has to be updated # A better test would seem to be be parsnig the JSON structure found in the file # and comparing that against what we get in devices. # This actually tests the number of devices with status == True self.assertEqual(10, len(self.a.config.get_devices())) def test_expected_ports(self): self.assertEqual(8443, self.a.config.get_device('ax1')['port']) self.assertEqual(80, self.a.config.get_device('ax3')['port']) self.assertEqual(443, self.a.config.get_device('ax4')['port']) def test_expected_protocols(self): self.assertEqual('https', self.a.config.get_device('ax1')['protocol']) self.assertEqual('http', self.a.config.get_device('ax3')['protocol']) self.assertEqual('https', self.a.config.get_device('ax4')['protocol']) def test_v_method(self): for k, v in self.a.config.get_devices().items(): self.assertEqual('LSI', v['v_method'].upper()) def test_alternate_shared_partition(self): self.assertTrue(self.a.config.get_device('axadp-alt')['shared_partition']) def test_ip_in_ip(self): expected = True actual = False for k, v in self.a.config.get_devices().items(): if "ip_in_ip" in v: actual = v['ip_in_ip'] self.assertEqual(expected, actual) # TODO(dougwig) -- test new a10_config members # def test_image_defaults(self): # self.assertIsNotNone(self.a.config.image_defaults) # def test_image_defaults_members(self): # image_defaults = self.a.config.image_defaults # actual = image_defaults.keys() # expected = ["name", "id", "visibility", "tags", "min_disk", # "min_ram", "container_format", "protected", # "properties", "disk_format"] # self.assertListEqual(sorted(expected), sorted(actual)) # def test_instance_defaults(self): # self.assertIsNotNone(self.a.config.instance_defaults) def test_backwards_compat(self): self.assertEqual(self.a.config.get_devices(), self.a.config.devices) self.assertEqual(self.a.config.get_devices(), self.a.config.config.devices) self.assertEqual(self.a.config.get( 'database_connection'), self.a.config.database_connection) self.assertEqual(self.a.config.get('use_database'), self.a.config.use_database) self.assertEqual(self.a.config.get('verify_appliances'), self.a.config.verify_appliances) self.assertEqual(self.a.config.get( 'database_connection'), self.a.config.config.database_connection) self.assertEqual(self.a.config.get('use_database'), self.a.config.config.use_database) self.assertEqual(self.a.config.get( 'verify_appliances'), self.a.config.config.verify_appliances) self.assertEqual(self.a.config.get( 'vport_defaults'), self.a.config.get_vport_defaults()) class TestA10ConfigProvider(test_base.UnitTestBase): def setUp(self): super(TestA10ConfigProvider, self).setUp({'provider': 'prov1'}) def test_top_level(self): self.assertEqual(self.a.config.get('who_should_win'), 'the-doctor') self.assertEqual(self.a.config.get('best_spaceship'), 'tardis') def test_vthunder_api_version(self): v = self.a.config.get_vthunder_config() self.assertEqual(v['api_version'], '9.9') self.assertEqual(v['nova_flavor'], 'acos.min')
2.203125
2
overhave/cli/db/regular.py
TinkoffCreditSystems/overhave
33
12793954
<reponame>TinkoffCreditSystems/overhave import click import sqlalchemy_utils as sau from alembic.config import Config from sqlalchemy.engine.url import URL from sqlalchemy.exc import OperationalError from overhave import db as database from overhave.base_settings import DataBaseSettings def _create_all(config: Config) -> None: click.echo("Creating...") config.attributes["metadata"].create_all() click.secho("Completed.", fg="green") @click.command(short_help="Create all metadata tables") @click.pass_obj def create_all(config: Config) -> None: """ Create all metadata tables. """ _create_all(config) def _drop_all(config: Config) -> None: click.echo("Dropping...") meta = config.attributes["metadata"] engine = config.attributes["engine"] for table in meta.tables: engine.execute(f'DROP TABLE IF EXISTS "{table}" CASCADE') engine.execute("DROP TABLE IF EXISTS alembic_version") engine.execute("DROP SCHEMA IF EXISTS huey") meta.drop_all() click.secho("Completed.", fg="green") @click.command(short_help="Drop all metadata tables, attributes, schema") @click.pass_obj def drop_all(config: Config) -> None: """ Drop all metadata tables, attributes, schema. """ click.confirm("Does it really need?", abort=True) _drop_all(config) def _ensure_database_exists(db_url: URL) -> None: try: if not sau.database_exists(db_url): sau.create_database(db_url) except OperationalError as e: click.echo(e) click.echo("Catched error when trying to check database existence!") def set_config_to_context(context: click.Context, settings: DataBaseSettings) -> None: """ Set Alembic config to Click context for easy operations and migrations ability. """ _ensure_database_exists(settings.db_url) settings.setup_db() config = Config() config.attributes["engine"] = settings.create_engine() config.attributes["metadata"] = database.metadata context.obj = config
2.140625
2
basta/migrations/0018_initialize_categories.py
lorenzosp93/basta_app
1
12793955
<filename>basta/migrations/0018_initialize_categories.py from django.db import migrations, transaction, IntegrityError from django.utils.translation import gettext_lazy as _ CATEGORIES = ( ('elements', _('Chemical element')), ('petnames', _('Pet name')), ('transportation', _('Means of transportation')), ('furniture', _('Furniture')), ('disease', _('Disease / Illness')), ('genres', _('Musical genre')), ('villains', _('Villain')), ('excuses', _('Excuses not to go to a party')), ('reasonsquitjob',_('Reasons to quit your job')), ('doatdate', _('Things to do on a date')), ('hobbies', _('Hobby / Activity')), ('uniforms', _('People in uniform')), ('literary', _('Work of literature')) ) DEFAULTS = [ 'name', 'surname','plant', 'animal', 'location', 'film', 'object', 'brand' ] def initialize_categories(apps, schema_editor): Category = apps.get_model('basta', 'Category') for category in CATEGORIES: try: with transaction.atomic(): Category.objects.create( name = category[0], default = category[0] in DEFAULTS ) except IntegrityError: pass def uninitialize_categories(apps, schema_editor): Category = apps.get_model('basta', 'Category') for category in CATEGORIES: try: with transaction.atomic(): Category.objects.get( name = category[0], ).delete() except IntegrityError: pass class Migration(migrations.Migration): dependencies = [ ('basta', '0017_auto_20200503_2155') ] operations = [ migrations.RunPython( initialize_categories, uninitialize_categories ), ]
2.28125
2
ansiscape/interpreters/font.py
cariad/ansiscape
0
12793956
from ansiscape.enums import Font, InterpretationKey, SelectGraphicRendition from ansiscape.interpreter import Interpreter class FontValue(Interpreter[Font]): def __init__(self) -> None: super().__init__( key=InterpretationKey.FONT, lookup={ SelectGraphicRendition.DEFAULT: Font.DEFAULT, SelectGraphicRendition.FONT_ALT_0: Font.ALT_0, SelectGraphicRendition.FONT_ALT_1: Font.ALT_1, SelectGraphicRendition.FONT_ALT_2: Font.ALT_2, SelectGraphicRendition.FONT_ALT_3: Font.ALT_3, SelectGraphicRendition.FONT_ALT_4: Font.ALT_4, SelectGraphicRendition.FONT_ALT_5: Font.ALT_5, SelectGraphicRendition.FONT_ALT_6: Font.ALT_6, SelectGraphicRendition.FONT_ALT_7: Font.ALT_7, SelectGraphicRendition.FONT_ALT_8: Font.ALT_8, SelectGraphicRendition.FONT_DEFAULT: Font.DEFAULT, }, )
2.453125
2
wave/wave/freq_old/domain/__init__.py
jedhsu/wave
0
12793957
<gh_stars>0 from .param import * from .spectrum import *
1.203125
1
backend/apps/risks/views.py
intellisense/risks
0
12793958
<filename>backend/apps/risks/views.py<gh_stars>0 # -*- coding: utf-8 -*- from __future__ import unicode_literals from rest_framework import generics from rest_framework.views import APIView from rest_framework.response import Response from .models import RiskType, RiskField from .serializers import RiskTypeSerializer class RiskTypeList(generics.ListCreateAPIView): queryset = RiskType.objects.all() serializer_class = RiskTypeSerializer class RiskTypeDetail(generics.RetrieveUpdateDestroyAPIView): queryset = RiskType.objects.all() serializer_class = RiskTypeSerializer class FieldTypes(APIView): def get(self, request, **kwargs): """ Return a list of RiskField.FIELD_TYPES. """ data = [{'field_type': k, 'name': v} for k, v in RiskField.FIELD_TYPES] return Response(data)
2.0625
2
script/core/runner/grid5k/Grid5kRunner.py
tdurieux/RepairThemAll
49
12793959
<filename>script/core/runner/grid5k/Grid5kRunner.py import time import subprocess import json import os import re import sys from core.runner.RepairTask import RepairTask from core.runner.Runner import Runner from core.renderer.renderer import get_renderer from config import REPAIR_ROOT, OUTPUT_PATH, GRID5K_MAX_NODE, GRID5K_TIME_OUT class Grid5kRunner(Runner): def __init__(self, tasks, args): """ :type tasks: list of RepairTask """ super(Grid5kRunner, self).__init__(tasks, args) def get_running(self): cmd = 'oarstat --json -u `whoami`' devnull = open('/dev/null', 'w') try: cmd_output = subprocess.check_output(cmd, shell=True, stdin=None, stderr=devnull) jobs = json.loads(cmd_output) running_ids = [] waiting_ids = [] for job_id in jobs: if jobs[job_id]['state'] == "Running": running_ids.append(int(job_id)) else: waiting_ids.append(int(job_id)) for task in self.running: if task.id not in running_ids: self.running.remove(task) task.end_date = time.time() result_path = os.path.join(OUTPUT_PATH, task.benchmark.name, task.bug.project, str(task.bug.bug_id), task.tool.name, str(task.tool.seed), "result.json") if os.path.exists(result_path): try: with open(result_path) as fd: task.results = json.load(fd) if 'patches' in task.results and len(task.results['patches']) > 0: task.status = "PATCHED" else: task.status = "DONE" except Exception: task.status = "ERROR" pass else: task.status = "ERROR" self.finished.append(task) for task in self.waiting: if task.id not in waiting_ids: self.waiting.remove(task) if task.id in running_ids: task.status = "STARTED" task.starting_date = time.time() self.running.append(task) except subprocess.CalledProcessError: pass finally: return self.running def start_task(self, task): """ :param task: :type task: RepairTask :return: """ log_root_path = os.path.join(OUTPUT_PATH, task.benchmark.name, task.bug.project, str(task.bug.bug_id), task.tool.name, str(task.tool.seed)) stdout_log = os.path.join(log_root_path, 'grid5k.stdout.log') stderr_log = os.path.join(log_root_path, 'grid5k.stderr.log') if not os.path.exists(log_root_path): os.makedirs(log_root_path) elif os.path.exists(stderr_log): os.remove(stderr_log) if os.path.exists(stdout_log): os.remove(stdout_log) bug_id = task.bug.project if task.bug.bug_id != "" and task.bug.bug_id is not None: bug_id = "%s_%s" % (task.bug.project, task.bug.bug_id) parameters = [] current_parameter = None for a in sys.argv: if a[0] == '-': if current_parameter is not None: parameters.append(current_parameter) param = a[1:] if param[0] == '-': param = param[1:] current_parameter = { "separator": '-' if len(param) == 1 else '--', "parameter": param, "value": "" } elif current_parameter is not None: current_parameter['value'] += " " + a if current_parameter is not None: parameters.append(current_parameter) node_cmd_args = "%s %s --id %s" % ( os.path.join(REPAIR_ROOT, 'script', 'repair.py'), task.tool.name, bug_id ) for param in parameters: if param["parameter"] == "i" or param["parameter"] == "id": continue node_cmd_args += " %s%s%s" % (param["separator"], param["parameter"], param["value"]) node_cmd = "python %s" % node_cmd_args cmd = "oarsub -l nodes=1,walltime=%s -O %s -E %s \"%s\"" % ( GRID5K_TIME_OUT, stdout_log, stderr_log, node_cmd) devnull = open('/dev/null', 'w') cmd_output = subprocess.check_output(cmd, shell=True, stdin=None, stderr=devnull) m = re.search('OAR_JOB_ID=([0-9]+)', cmd_output) if m: task.id = int(m.group(1)) task.status = "WAITING" self.waiting.append(task) def execute(self): renderer = get_renderer(self) to_run = self.tasks[:] while (len(to_run) > 0 or len(self.running) > 0 or len(self.waiting) > 0) and not self.is_end_time(): if len(to_run) > 0 and len(self.running) + len(self.waiting) < GRID5K_MAX_NODE: task = to_run.pop() if task.bug is not None: self.start_task(task) time.sleep(1) renderer.render() self.get_running() renderer.render_final_result()
2.203125
2
datasets/code_x_glue_cc_cloze_testing_all/generated_definitions.py
WojciechKusa/datasets
10,608
12793960
DEFINITIONS = { "go": { "class_name": "CodeXGlueCcClozeTestingAll", "dataset_type": "Code-Code", "description": "CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all", "dir_name": "ClozeTesting-all", "name": "go", "parameters": {"language": "go"}, "project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all", "raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-all/data/cloze-all/go", "sizes": {"train": 25282}, }, "java": { "class_name": "CodeXGlueCcClozeTestingAll", "dataset_type": "Code-Code", "description": "CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all", "dir_name": "ClozeTesting-all", "name": "java", "parameters": {"language": "java"}, "project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all", "raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-all/data/cloze-all/java", "sizes": {"train": 40492}, }, "javascript": { "class_name": "CodeXGlueCcClozeTestingAll", "dataset_type": "Code-Code", "description": "CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all", "dir_name": "ClozeTesting-all", "name": "javascript", "parameters": {"language": "javascript"}, "project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all", "raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-all/data/cloze-all/javascript", "sizes": {"train": 13837}, }, "php": { "class_name": "CodeXGlueCcClozeTestingAll", "dataset_type": "Code-Code", "description": "CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all", "dir_name": "ClozeTesting-all", "name": "php", "parameters": {"language": "php"}, "project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all", "raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-all/data/cloze-all/php", "sizes": {"train": 51930}, }, "python": { "class_name": "CodeXGlueCcClozeTestingAll", "dataset_type": "Code-Code", "description": "CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all", "dir_name": "ClozeTesting-all", "name": "python", "parameters": {"language": "python"}, "project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all", "raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-all/data/cloze-all/python", "sizes": {"train": 40137}, }, "ruby": { "class_name": "CodeXGlueCcClozeTestingAll", "dataset_type": "Code-Code", "description": "CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all", "dir_name": "ClozeTesting-all", "name": "ruby", "parameters": {"language": "ruby"}, "project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all", "raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/ClozeTesting-all/data/cloze-all/ruby", "sizes": {"train": 4437}, }, }
1.460938
1
wmm/wrapper.py
ESA-VirES/WMM
1
12793961
#!/usr/bin/env python import sys import argparse import os import os.path import subprocess import numpy import gdal import osr import ogr from uuid import uuid4 import logging logger = logging.getLogger(__name__) zoomresolution = { 0.70312500:0, 0.35156250:1, 0.17578125:2, 0.08789063:3, 0.04394531:4, 0.02197266:5, 0.01098633:6, 0.00549316:7, 0.00274658:8, 0.00137329:9, 0.00068665:10 } # product names:(id, iso_interval flavor) products = { "Decl":(1, 1), "Incl":(2, 1), "F":(3, 2), "H":(4, 2), "X":(5, 2), "Y":(6, 2), "Z":(7, 2) #"GV":{8, #"Ddot":{9., #"Idot":{10, #"Fdot":{11, #"Hdot":{12, #"Xdot":{13, #"Ydot":{14, #"Zdot":{15, #"GVdot":{16 } iso_intervals = { 1:{ 0: 10, 1: 10, 2: 5, 3: 5, 4: 1, 5: 1, 6: 0.5, 7: 0.5, 8: 0.1 }, 2:{ 0: 5000, 1: 5000, 2: 2500, 3: 1000, 4: 1000, 5: 1000, 6: 500, 7: 500, 8: 100 } } def main(filename, product, bbox, pixelsize, height, time): # configuration ## resolutions (in degrees) per zoom level for EPSG 4326 exe = os.path.join(os.path.dirname(__file__), 'wmm_grid.exe') """if not os.path.exists("WMM.COF"): raise Exception( "Coefficient file missing: %s" % os.path.join(os.path.dirname(__file__), "WMM.COF") )""" proc = subprocess.Popen( [exe], 1, exe, subprocess.PIPE, open(os.devnull), subprocess.STDOUT, cwd=os.path.dirname(__file__) ) latmin, lonmin, latmax, lonmax = bbox # Step Size (in decimal degrees) #deg_interval = resolution deg_interval = (latmax-latmin)/pixelsize # Minimum Height above the WGS-84 Ellipsoid (in km) heightmax = height # Maximum Height above the WGS-84 Ellipsoid (in km) heightmin = height # height step size (in km) height_interval = 0 # decimal year starting time timestart = time # decimal year ending time timeend = time # time step size time_interval = "0" # geomagnetic element to print. Your options are : # 1. Declination 9. Ddot # 2. Inclination 10. Idot # 3. F 11. Fdot # 4. H 12. Hdot # 5. X 13. Xdot # 6. Y 14. Ydot # 7. Z 15. Zdot # 8. GV 16. GVdot product_id = products[product][0] # select output (1 for file) output = "1" # output filename tempfile = "/tmp/%s" % uuid4().hex[:10] # generate geotransform values geotransform = [ lonmin, deg_interval, 0, latmax, 0, -deg_interval ] wmmxmin = lonmin-deg_interval/2 wmmxmax = lonmax+deg_interval/2 wmmymin = latmin-deg_interval/2 wmmymax = latmax+deg_interval/2 print >>proc.stdin, wmmymin print >>proc.stdin, wmmymax print >>proc.stdin, wmmxmin print >>proc.stdin, wmmxmax print >>proc.stdin, deg_interval print >>proc.stdin, height print >>proc.stdin, heightmax print >>proc.stdin, heightmin print >>proc.stdin, height_interval print >>proc.stdin, timestart print >>proc.stdin, timeend print >>proc.stdin, time_interval print >>proc.stdin, product_id print >>proc.stdin, output print >>proc.stdin, tempfile print >>proc.stdin status = proc.wait() print "STATUS:", status proc.stdin.close() values = [] xvalues = set() yvalues = set() with open(tempfile) as f: for line in f: line_array = line.split( ) values.append(str(line_array[4])) xvalues.add(str(line_array[1])) yvalues.add(str(line_array[0])) rasterxsize = len(xvalues) rasterysize = len(yvalues) logger.info("size %d %d " %(rasterxsize, rasterysize)) os.remove(tempfile) # create 1d numpy array, reshape to 2d, and flip to correct order raster_out = numpy.fromiter(values, "float32") raster_2d = numpy.flipud(raster_out.reshape(rasterysize,rasterxsize)) #print raster_2d.shape #print rasterxsize, rasterysize driver = gdal.GetDriverByName('GTiff') ds = driver.Create( filename, rasterxsize, rasterysize, 1, gdal.GDT_Float32 ) ds.GetRasterBand(1).WriteArray(raster_2d) ds.SetGeoTransform(geotransform) srs = osr.SpatialReference() srs.ImportFromEPSG(4326) ds.SetProjection(srs.ExportToWkt()) return ds #contour_steps = parsed.interval[0] """ zoom = round(deg_interval, 8) contour_steps = iso_intervals[ products[product][1] ][zoomresolution[zoom]] #print "zoomlevel: " + zoomresolution[deg_interval] #print iso_intervals[products[parsed.product[0]][1]][zoomresolution[deg_interval]] # clean up from previous runs try: os.remove('contour.shp') except: pass try: os.remove('contour.dbf') except: pass try: os.remove('contour.shx') except: pass ogr_ds = ogr.GetDriverByName('ESRI Shapefile').CreateDataSource(filename) ogr_lyr = ogr_ds.CreateLayer('contour') field_defn = ogr.FieldDefn('ID', ogr.OFTInteger) ogr_lyr.CreateField(field_defn) field_defn = ogr.FieldDefn('elev', ogr.OFTReal) ogr_lyr.CreateField(field_defn) gdal.ContourGenerate(mem_ds.GetRasterBand(1), contour_steps, 0, [], 0, 0, ogr_lyr, 0, 1) #print min(raster_out), max(raster_out) """ if __name__ == "__main__": args = sys.argv[1:] parser = argparse.ArgumentParser() parser.add_argument("bbox", nargs=4, type=float) #parser.add_argument("resolution", nargs=1, type=float) parser.add_argument("pixelsize", nargs=1, type=int) parser.add_argument("height", nargs=1, type=int) parser.add_argument("time", nargs=1, type=float) parser.add_argument("product", nargs=1, type=str) parser.add_argument("--contour", action="store_true", default=False) #parser.add_argument("interval", nargs=1, type=float) parsed = parser.parse_args(args) main( "contour.shp", parsed.product[0], parsed.bbox, parsed.pixelsize[0], parsed.height[0], parsed.time[0], parsed.contour )
2.015625
2
epoch.py
InterImm/marclock-serverless
1
12793962
<gh_stars>1-10 from http.server import BaseHTTPRequestHandler from urllib.parse import urlparse import json import debugserver import datetime from functions.mars import CoordinatedMarsTime from functions.interimm import MartianTime class handler(BaseHTTPRequestHandler): def do_GET(self): self.send_response(200) self.send_header("Content-type", "application/json") self.end_headers() url = self.path parsed_url = urlparse(url) path = parsed_url.path epoch_time = path.split('/')[-1] epoch_time = int(float(epoch_time)) mars_time = CoordinatedMarsTime.from_unix_time(epoch_time) mars_interimm_now = MartianTime() mars_interimm_now_hms = mars_interimm_now.interimm_clock(mars_time.msd) mars_interimm_now_cal = mars_interimm_now.interimm_calendar(mars_time.msd) dt_time = datetime.datetime.fromtimestamp(epoch_time).isoformat() res = { "earth_utc_time": dt_time, "mars_timezone": 0, "mars24": { 'msd': mars_time.msd, 'day': mars_time.days, 'hour': mars_time.hours, 'minute': mars_time.minutes, 'second': mars_time.seconds, 'millisecond': mars_time.milliseconds }, "interimm": { "msd": mars_interimm_now_hms.get('msd'), "year": mars_interimm_now_cal.get('year'), "month": mars_interimm_now_cal.get('month'), "day": mars_interimm_now_cal.get('day'), "hour": mars_interimm_now_hms.get('hour'), "minute": mars_interimm_now_hms.get('minute'), "second": mars_interimm_now_hms.get('second') } } self.wfile.write(json.dumps(res).encode("utf-8")) return if __name__ == '__main__': debugserver.serve(handler)
2.75
3
docs/demo/IRE2017/RobotCAR/MLP/train_model.py
FaBoPlatform/RobotCarAI
10
12793963
# coding: utf-8 # MultiPerceptron # queueを使った学習 # 学習step数を記録 # 学習データはCSVの代わりにジェネレータを搭載 # 3x11x4のNNモデルに変更 # scoreを追加 import os _FILE_DIR=os.path.abspath(os.path.dirname(__file__)) import time import tensorflow as tf import threading from sklearn.utils import shuffle import sys sys.path.append(_FILE_DIR+'/..') from generator import SensorGenerator import numpy as np tf.reset_default_graph() MODEL_DIR=_FILE_DIR+"/model" SUMMARY_LOG_DIR=_FILE_DIR+"/log" if not os.path.exists(MODEL_DIR): os.makedirs(MODEL_DIR) n_nodes_hl1 = 11 data_cols = 3 # センサーの数。left45,front,right45 n_classes = 4 # 予測結果の数。stop,left,forward,right batch_size = 100 # バッチサイズは10〜100前後に chunk_size = 100 # FIFOQueueのcapacity target_step = 10000000 # ステップ数 TEST_NUM = 10000 # テストデータ件数 generator = SensorGenerator() def generate_random_train_data(batch_size): CSVDATA=[] # 10m以内の判定を学習させる #sensors = np.random.randint(0,1000,[batch_size,3]) # 前方20cm以内の判定を学習させる #LEFT45 = np.random.randint(0,1000,batch_size) #FRONT = np.random.randint(0,20,batch_size) #RIGHT45 = np.random.randint(0,1000,batch_size) # 前方20cm-100cm、左右100cm以内のの判定を学習させる #LEFT45 = np.random.randint(0,100,batch_size) #FRONT = np.random.randint(20,200,batch_size) #RIGHT45 = np.random.randint(0,100,batch_size) # 2m以内の判定を学習させる #LEFT45 = np.random.randint(0,200,batch_size) #FRONT = np.random.randint(0,200,batch_size) #RIGHT45 = np.random.randint(0,200,batch_size) # 1m以内の判定を学習させる #LEFT45 = np.random.randint(0,100,batch_size) #FRONT = np.random.randint(0,100,batch_size) #RIGHT45 = np.random.randint(0,100,batch_size) # 2m以内の判定を学習させる sensors = np.random.randint(0,200,[batch_size,3]) #sensors = np.c_[LEFT45,FRONT,RIGHT45] for i in range(batch_size): GENERATOR_RESULT = generator.driving_instruction(sensors[i]) CSVROW = np.hstack((sensors[i],GENERATOR_RESULT[0:4])) CSVDATA.append(CSVROW) CSVDATA = np.array(CSVDATA) batch_data = CSVDATA[0:batch_size,0:data_cols] batch_target = CSVDATA[0:batch_size,data_cols:] return batch_data, batch_target def load_and_enqueue(sess): while True: try: batch_data, batch_target = generate_random_train_data(batch_size) sess.run(enqueue_op, feed_dict={placeholder_input_data:batch_data, placeholder_input_target:batch_target}) except tf.errors.CancelledError as e: break print("finished enqueueing") def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) with tf.variable_scope("input"): placeholder_input_data = tf.placeholder('float', [None, data_cols], name='input_data') # for load_and_enqueue. use dequeue_data_op for prediction placeholder_input_target = tf.placeholder('float', name='input_target') # for load_and_enqueue. use dequeue_target_op for prediction placeholder_batch_size = tf.placeholder(tf.int32, name='batch_size') # need feed_dict in training sess.run(). don't need for prediction. with tf.variable_scope("step"): placeholder_step = tf.placeholder(tf.int32, name='input_step') # step値入力用 variable_step = tf.Variable(initial_value=0, name="step") # step記録用 step_op = variable_step.assign(placeholder_step) with tf.variable_scope("queue"): queue = tf.FIFOQueue( capacity=chunk_size, # enqueue size dtypes=['float', 'float'], shapes=[[data_cols], [n_classes]], name='FIFOQueue' ) # Enqueue and dequeue operations enqueue_op = queue.enqueue_many([placeholder_input_data, placeholder_input_target], name='enqueue_op') dequeue_data_op, dequeue_target_op = queue.dequeue_many(placeholder_batch_size, name='dequeue_op') # instead of data/target placeholder with tf.variable_scope('neural_network_model'): hidden_1_layer = {'weights':tf.Variable(weight_variable([data_cols, n_nodes_hl1])), 'biases':tf.Variable(bias_variable([n_nodes_hl1]))} output_layer = {'weights':tf.Variable(weight_variable([n_nodes_hl1, n_classes])), 'biases':tf.Variable(bias_variable([n_classes])),} l1 = tf.add(tf.matmul(dequeue_data_op,hidden_1_layer['weights']), hidden_1_layer['biases']) l1 = tf.nn.relu(l1) # 予測結果 prediction = tf.add(tf.matmul(l1,output_layer['weights']), output_layer['biases'], name='output_y') # スコア score = tf.nn.softmax(prediction, name='score') with tf.variable_scope('loss'): losses = tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=dequeue_target_op) loss_op = tf.reduce_mean(losses, name='cost') tf.summary.scalar('loss', loss_op) with tf.variable_scope('accuracy'): correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(dequeue_target_op, 1)) accuracy = tf.reduce_mean(tf.cast(correct, 'float'), name='accuracy') tf.summary.scalar('accuracy', accuracy) summary_op = tf.summary.merge_all() train_op = tf.train.AdamOptimizer(0.0001).minimize(loss_op, name='train_op') saver = tf.train.Saver(max_to_keep=1000) test_data, test_target =generate_random_train_data(TEST_NUM) with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(MODEL_DIR) if ckpt: # checkpointファイルから最後に保存したモデルへのパスを取得する last_model = ckpt.model_checkpoint_path print("load {0}".format(last_model)) # 学習済みモデルを読み込む saver.restore(sess, last_model) LOAD_MODEL = True else: print("initialization") # 初期化処理 init_op = tf.global_variables_initializer() sess.run(init_op) writer = tf.summary.FileWriter(SUMMARY_LOG_DIR, sess.graph) start_time, start_clock = time.time(), time.clock() # Start a thread to enqueue data asynchronously, and hide I/O latency. coord = tf.train.Coordinator() enqueue_thread = threading.Thread(target=load_and_enqueue, args=[sess]) enqueue_thread.isDaemon() enqueue_thread.start() threads = tf.train.start_queue_runners(coord=coord, sess=sess) step = 0 # 最後にstep数をモデルに記録するために変数を用意しておく try: # check the accuracy before training (without feed_dict!) print(sess.run(accuracy, feed_dict={placeholder_batch_size:chunk_size})) # check batch_size's data # step取得 _step = sess.run(variable_step) print("learned step:{}".format(_step)) for step in range(_step+1, target_step+1): batch_loss=0 w_summary=None _, batch_loss, w_summary = sess.run([train_op, loss_op, summary_op], feed_dict={placeholder_batch_size:batch_size}) if step % 1000 == 0: if not w_summary is None: writer.add_summary(w_summary, step) ac = sess.run(accuracy, feed_dict={placeholder_batch_size:chunk_size}) # check batch_size's data # テストデータでの精度を確認する test_accuracy = accuracy.eval({'queue/dequeue_op:0':test_data, 'queue/dequeue_op:1':test_target}) if step % 10000 == 0: print("Step:%d accuracy:%.8f test_accuracy:%.8f loss:%.8f time:%.8f clock:%.14f" % (step,ac,test_accuracy,batch_loss,time.time()-start_time,time.clock()-start_clock)) # 1000000 step毎にsaveする if step % 1000000 == 0: _step = sess.run(step_op,feed_dict={placeholder_step:step}) # variable_stepにstepを記録する saver.save(sess, MODEL_DIR + '/model-'+str(step)+'.ckpt') sess.run(queue.close(cancel_pending_enqueues=True)) except Exception as e: # Report exceptions to the coodinator. print(e) coord.request_stop(e) finally: coord.request_stop() coord.join(threads) # ステップ学習時、保存する if step > _step: _step = sess.run(step_op,feed_dict={placeholder_step:step}) # variable_stepにstepを記録する saver.save(sess, MODEL_DIR + '/model-'+str(step)+'.ckpt') # テストデータを新たに生成し、精度を確認する test_data, test_target =generate_random_train_data(TEST_NUM) print('Accuracy:',accuracy.eval({dequeue_data_op:test_data, dequeue_target_op:test_target})) # 総step数を表示する print('step:{}'.format(sess.run(variable_step))) print("end")
2.390625
2
tests/h/services/annotation_moderation_test.py
rickyhan/h
2
12793964
<filename>tests/h/services/annotation_moderation_test.py # -*- coding: utf-8 -*- from __future__ import unicode_literals import pytest from h import models from h.services.annotation_moderation import AnnotationModerationService from h.services.annotation_moderation import annotation_moderation_service_factory class TestAnnotationModerationServiceHide(object): def test_it_creates_annotation_moderation(self, svc, factories, db_session): annotation = factories.Annotation() svc.hide(annotation) mod = db_session.query(models.AnnotationModeration) \ .filter_by(annotation=annotation) \ .first() assert mod is not None def test_it_skips_creating_moderation_when_already_exists(self, svc, factories, db_session): existing = factories.AnnotationModeration() svc.hide(existing.annotation) count = db_session.query(models.AnnotationModeration) \ .filter_by(annotation=existing.annotation) \ .count() assert count == 1 @pytest.fixture def svc(self, db_session): return AnnotationModerationService(db_session) class TestAnnotationNipsaServiceFactory(object): def test_it_returns_service(self, pyramid_request): svc = annotation_moderation_service_factory(None, pyramid_request) assert isinstance(svc, AnnotationModerationService) def test_it_provides_request_db_as_session(self, pyramid_request): svc = annotation_moderation_service_factory(None, pyramid_request) assert svc.session == pyramid_request.db
2.109375
2
rdmo/questions/migrations/0051_sites_blank.py
ItsNotYou/rdmo
77
12793965
# Generated by Django 2.2.9 on 2020-02-14 10:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('questions', '0050_data_migration'), ] operations = [ migrations.AlterField( model_name='catalog', name='sites', field=models.ManyToManyField(blank=True, help_text='The sites this catalog belongs to (in a multi site setup).', to='sites.Site', verbose_name='Sites'), ), ]
1.773438
2
members/context_processors.py
AsinineFatuity/tukulelunch-django-python
0
12793966
<filename>members/context_processors.py from .models import Category,PledgeItem,Pledge from .views import pledge_id_fn def counter(request): item_count=0 if 'admin' in request.path: return {} else: try: pledge=Pledge.objects.filter(pledge_id=pledge_id_fn(request)) #specify cart object in the current session #find the current pledged_item in the session and return only a single pledge_items object pledge_items=PledgeItem.objects.all().filter(pledge=pledge[:1]) for pledge_item in pledge_items: item_count+=pledge_item.quantity except Pledge.DoesNotExist: item_count=0 return dict(item_count=item_count) def menu_links(request): links=Category.objects.all() return dict(links=links)
1.992188
2
tests/conftest.py
Agilicus/copper-sdk
4
12793967
import pytest from copper_sdk import COPPER_API_TOKEN, COPPER_API_EMAIL from copper_sdk.copper import Copper @pytest.fixture(scope='session') def copper(): return Copper(COPPER_API_TOKEN, COPPER_API_EMAIL)
1.742188
2
cefiro_customizations/helpers.py
saeedkola/cefiro_customizations
0
12793968
<reponame>saeedkola/cefiro_customizations import frappe from frappe.utils import get_files_path, get_site_path, get_site_base_path import openpyxl,re def get_absolute_path(file_name, is_private=False): site_name = get_site_base_path() if(file_name.startswith('/files/')): file_name = file_name[7:] return frappe.utils.get_bench_path()+ "/sites/"+site_name[2:]+"/"+ frappe.utils.get_path('private' if is_private else 'public', 'files', file_name)[1:] @frappe.whitelist() def get_column_names(file_name): excel_file_path = get_absolute_path(file_name) wb = openpyxl.load_workbook(excel_file_path) sheet = wb.active max_col = sheet.max_column column_map = [] for i in range(1,max_col+1): cell_obj = sheet.cell(row=1,column=i) column_map.append({ "excel_column" : cell_obj.value, "import_column": "" }) return column_map
2.515625
3
PaddleFSL/test/backbones/rc_init_vector_test.py
Chaoqun-Guo/FSL-Mate
0
12793969
# Copyright 2021 PaddleFSL Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddlefsl.backbones import RCInitVector vector_initializer = RCInitVector(corpus='glove-wiki', embedding_dim=50) def get_idx_list_from_words_test(): idx_list = vector_initializer.get_idx_list_from_words('[PAD]') print(idx_list) idx_list = vector_initializer.get_idx_list_from_words(['i', 'love', 'you']) print(idx_list) def search_tokens_test(): vector = vector_initializer.search_tokens(['i', 'love', 'robin', '[PAD]']) print(vector) print(vector.shape) def rc_init_vector_test(): vector = vector_initializer( tokens=['yes', 'it', 'is', '*9*', '6$'], head_position=[0], tail_position=[2], max_len=6 ) print(len(vector_initializer)) print(vector) print(vector.shape) if __name__ == '__main__': get_idx_list_from_words_test() search_tokens_test() rc_init_vector_test()
2.203125
2
docs/source/plots/var_plot_forecast.py
madhushree14/statsmodels
6,931
12793970
from var_plots import plot_forecast plot_forecast()
1.101563
1
_old/LennieTheLeaker.py
tmp63498/Lestat
13
12793971
#!/usr/bin/python3 import argparse import sys def readHashFile(hashfile): f = open(hashfile) hashes = f.read().split('\n')[:-1] ntlm ={"cracked":{}, "safe":{}} f.close() for i in hashes: try: h = i.split(':') ntlm["safe"][h[3].upper()] = h[0].lower() except Exception as e: pass return hashes, ntlm def searchLeaked(leakfile, ntlm, verbose): leak = open(leakfile,"r") cpt = 0 print("[*] Checking leaked database against hashes (long) ...", file=sys.stderr) for line in leak: if line[:-1] in ntlm["safe"]: ntlm["cracked"][line[:-1]] = ntlm["safe"][line[:-1]] cpt += 1 del(ntlm["safe"][line[:-1]]) if verbose: print(line[:-1], ntlm["cracked"][line[:-1]]) print(f"{cpt} compromised", file=sys.stderr) leak.close() def export(ntlm, john_result_file='', output=''): john = '' if john_result_file: f = open(john_result_file) john = f.read().lower() f.close() if output: f = open(output, "a+") cpt = 0 for c in ntlm["cracked"]: line = f"{ntlm['cracked'][c]}:<LeakTheWeak>:LEAK:NOLM:{c}:::" if ntlm["cracked"][c] not in john: if output : f.write(line+'\n') else: print(line) cpt += 1 if john_result_file: print(f"New {cpt} compromised") if output: f.close() def main(): parser = argparse.ArgumentParser(description='List accounts compromised in public leaked NTLMs', add_help=True) parser.add_argument('-w', '--write', action="store", dest="path", default='', help='A path to store the results. Default is stdout') parser.add_argument('HASH_FILE', action="store", help="The result file of impacket-secretsdump") parser.add_argument('-j', '--john', action="store", dest="john_file", default='', help="If used, only the accounts not cracked by john are displayed") parser.add_argument('-v', '--verbose', action="store_true", dest="verbose", default=False, help="display the cracked accounts in real time") parser.add_argument('LEAK_FILE', action="store", help="The wordlist containing the NTLM leaked") args = parser.parse_args() hashes, ntlm = readHashFile(args.HASH_FILE) searchLeaked(args.LEAK_FILE, ntlm, args.verbose) export(ntlm, args.john_file, args.path) if __name__ == '__main__': main()
2.796875
3
baseq/fastq/split_barcode.py
basedata10/baseq
1
12793972
<gh_stars>1-10 import os def write_buffer(buffer, filehandles): for key in buffer.keys(): filehandles[key].writelines(buffer[key]) buffer[key] = [] def write_and_close(buffer, filehandles): for key in buffer.keys(): filehandles[key].writelines(buffer[key]) filehandles[key].close() def split_barcode(barcode_file, fastq, outdir, suffix): """ barcode_file: tsv: samplename barcode_string... """ with open(barcode_file, 'r') as file: barcodes = file.readlines() bc_files = {} bc_buffers = {} for bc in barcodes: info = [x.strip() for x in bc.split()] if len(info) == 2: sample = info[0] barcode = info[1] print("[info] The barcode for {} is {}".format(info[0], info[1])) path = os.path.join(outdir, sample) + "." + suffix print("[info] File for '{}' is '{}'".format(sample, path)) bc_files[barcode] = open(path, "w") bc_buffers[barcode] = [] #Iterating the reads... from baseq.utils.file_reader import read_file_by_lines inlines = read_file_by_lines(fastq, 1000 * 1000 * 1000, 4) count = 0 for line in inlines: count += 1 barcode = line[0].strip().split(":")[-1] if barcode in bc_files: bc_buffers[barcode].append("".join(line)) if count % 1000000 == 1: write_buffer(bc_buffers, bc_files) write_and_close(bc_buffers, bc_files)
2.796875
3
Exercicios/ex072.py
mauroalbuquerque/Python-CursoEmVideo
0
12793973
<filename>Exercicios/ex072.py contagem = ('Zero', 'Um', 'Dois', 'Três', 'Quatro', 'Cinco', 'Seis', 'Sete', 'Oito', 'Nove', 'Dez', 'Onze', 'Doze', 'Treze', 'Quartoze', 'Quinze', 'Dezesseis', 'Dezesete', 'Dezoito', 'Dezenove', 'Vinte') selecao = input('Informe um número entre 0 ~ 20: ') while not int(selecao) >= 0 and int(selecao) <= 20: selecao = input('Tente Novamente informando um número válido. Informe um número entre 0 ~ 20: ') print(selecao)
3.9375
4
tools/blender_script.py
aspadm/DEMD-database-old
3
12793974
import os import bpy import sys # Names of folder and files args = sys.argv source_file = args[-2] convert_file = args[-1] save_type = convert_file.split(".")[-1] # Deleting all objects for scene in bpy.data.scenes: for obj in scene.objects: scene.objects.unlink(obj) for bpy_data_iter in ( bpy.data.objects, bpy.data.meshes, bpy.data.lamps, bpy.data.cameras, ): for id_data in bpy_data_iter: bpy_data_iter.remove(id_data) bpy.ops.object.select_by_type(type = "MESH") bpy.ops.object.delete(use_global=False) for item in bpy.data.meshes: for scene in bpy.data.scenes: for obj in scene.objects: scene.objects.unlink(obj) item.user_clear() bpy.data.meshes.remove(item) print("Scene cleared") # Open model and save try: try: print("Try to use plugin...") bpy.ops.import_scene.deusexmd(filepath=source_file) print("Success") except: try: print("Fail") print("Try to use outer script...") try: import import_DeusExMD except: print("Fail to import") exit(2) print("Successful module import; try to open model...") import_DeusExMD.import_DeusExMD(source_file, #filepath bpy.context, #context False, #randomize_colors True, #import_vertcolors False, #skip_blank False, #use_layers 1.0) #mesh_scale print("Success") except: print("Fail") exit(1) print("\nModel opened\n") if save_type == "obj": bpy.ops.export_scene.obj(filepath=convert_file) elif save_type == "fbx": bpy.ops.export_scene.fbx(filepath=convert_file) elif save_type == "3ds": bpy.ops.export_scene.autodesk_3ds(filepath=convert_file) elif save_type == "stl": bpy.ops.export_mesh.stl(filepath=convert_file, check_existing=False, ascii=False) else: print("Incorrect save format") print("\nConvertions done!") exit(0) # In case of error except Exception: print("\nSome errors here") exit(1)
2.265625
2
powerwatch/analysis/old_analysis_scripts/monthly_pw_dw_correlate.py
nklugman/PlugWatch
0
12793975
#!/usr/bin/env python from pyspark.sql import SparkSession from pyspark.sql.functions import col, window, asc, desc, lead, lag, udf, hour, month, dayofmonth, collect_list, lit, year, coalesce, mean import pyspark.sql.functions as F from pyspark.sql.window import Window from pyspark.sql.types import FloatType, IntegerType, DateType, TimestampType from pyspark import SparkConf import yaml import datetime import os from math import isnan conf = SparkConf() conf.set("spark.jars", os.getenv("HOME") + "/.ivy2/jars/org.postgresql_postgresql-42.1.1.jar") conf.set("spark.executor.extrajavaoptions", "-Xmx15000m") conf.set("spark.executor.memory", "15g") conf.set("spark.driver.memory", "15g") conf.set("spark.storage.memoryFraction", "0") spark = SparkSession.builder \ .config(conf=conf) \ .master("local[4]") \ .appName("SAIDI/SAIFI cluster size") \ .getOrCreate() config = open('config.yaml') config = yaml.load(config) #connect to the database pw_df = spark.read.jdbc("jdbc:postgresql://timescale.lab11.eecs.umich.edu/powerwatch", "pw_dedupe", properties={"user": config['user'], "password": config['password'],"driver":"org.postgresql.Driver"}) #read the data that we care about pw_df = pw_df.select(pw_df['core_id'],pw_df['time'],pw_df['is_powered'],pw_df['product_id'],pw_df['millis'],pw_df['last_unplug_millis'],pw_df['last_plug_millis']) pw_df = pw_df.filter("product_id = 7008 OR product_id= 7009") #now we need to created a window function that looks at the leading lagging edge of is powered and detects transitions #then we can filter out all data that is not a transition def detectTransition(value1, value2): if(value1 == value2): return 0 else: return 1 udfDetectTransition = udf(detectTransition, IntegerType()) w = Window.partitionBy("core_id").orderBy(asc("time")) is_powered_lag = lag("is_powered",1).over(w) pw_df = pw_df.withColumn("transition", udfDetectTransition("is_powered",is_powered_lag)) #filter out all transitions pw_df = pw_df.filter("transition != 0") #now count each outage (really restoration) def countOutage(value1, value2, value3): if(value1 == False and value2 == True and value3 == True): return 1 else: return 0 udfCountTransition = udf(countOutage, IntegerType()) is_powered_lead = lead("is_powered",1).over(w) is_powered_lag = lag("is_powered",1).over(w) pw_df = pw_df.withColumn("outage", udfCountTransition("is_powered", is_powered_lead, is_powered_lag)) #now find all the exact outage and restore times using millis def timeCorrect(time, millis, unplugMillis): if(unplugMillis == 0 or millis == None or unplugMillis == None or isnan(millis) or isnan(unplugMillis)): return time elif unplugMillis > millis: return time else: return time - datetime.timedelta(microseconds = (int(millis)-int(unplugMillis))*1000) udftimeCorrect = udf(timeCorrect, TimestampType()) pw_df = pw_df.withColumn("outage_time", udftimeCorrect("time","millis","last_unplug_millis")) pw_df = pw_df.withColumn("r_time", udftimeCorrect("time","millis","last_plug_millis")) #now denote the end time of the outage for saidi reasons time_lead = lead("r_time",1).over(w) pw_df = pw_df.withColumn("restore_time", time_lead) #now filter out everything that is not an outage. We should have a time and end_time for every outage pw_df = pw_df.filter("outage != 0") #record the duration of the outage def calculateDuration(startTime, endTime): delta = endTime-startTime seconds = delta.total_seconds() return int(seconds) udfcalculateDuration = udf(calculateDuration, IntegerType()) pw_df = pw_df.withColumn("outage_duration", udfcalculateDuration("outage_time","restore_time")) window_size = 150 w = Window.orderBy(asc("outage_time")).rowsBetween(-1*window_size,window_size) pw_df = pw_df.withColumn("outage_window_list",collect_list(F.struct("outage_time","core_id")).over(w)) def filterOutage(time, core_id, timeList): count = 1 used = [] used.append(core_id) for i in timeList: if abs((time - i[0]).total_seconds()) < 120 and i[1] not in used: used.append(i[1]) count += 1 if count > window_size: return window_size else: return count udfFilterTransition = udf(filterOutage, IntegerType()) pw_df = pw_df.withColumn("outage_cluster_size", udfFilterTransition("outage_time","core_id","outage_window_list")) pw_df = pw_df.filter("outage_cluster_size > 1") #now we need to collapse these individual outage events into actual outages #we can use a similar method of windowing as before but only look at the row before w = Window.orderBy(asc("outage_time")) outage_time_lag = lag("outage_time",1).over(w) def onlyOutages(time, lag_time): if(lag_time is not None): if((time - lag_time).total_seconds() < 120): return 0 else: return 1 else: return 1 udfFilterTransition = udf(onlyOutages, IntegerType()) pw_df = pw_df.withColumn("outage_cluster", udfFilterTransition("outage_time",outage_time_lag)) pw_df = pw_df.filter("outage_cluster = 1") pw_df = pw_df.select("outage_time","outage_cluster_size") #okay we now have a list of all Powerwatch outages with an outage time #now we should take all DW unplug events and for each outage see how many unplug events occur dw_df = spark.read.jdbc("jdbc:postgresql://timescale.lab11.eecs.umich.edu/powerwatch", "dumsorwatch", properties={"user": config['user'], "password": config['password'],"driver":"org.postgresql.Driver"}) #read the data that we care about dw_df = dw_df.select(dw_df['phone_imei'],dw_df['time'],dw_df['type'],dw_df['fft_cnt'],dw_df['fft_base']) dw_df = dw_df.filter(year("time") == 2018) #get the avg fft_cnt as a baseline #plugged_50_df = dw_df.filter("type = 'plugged' AND fft_cnt > -1 AND (fft_base = 50 OR fft_base = '50hz')") #plugged_50_df.select(mean('fft_cnt')).show() #print(plugged_50_df.count()) #plugged_60_df = dw_df.filter("type = 'plugged' AND fft_cnt > -1 AND (fft_base = 60 OR fft_base = '60hz')") #plugged_60_df.select(mean('fft_cnt')).show() #print(plugged_60_df.count()) # #unplugged_50_df = dw_df.filter("type = 'unplugged' AND fft_cnt > -1 AND (fft_base = 50 OR fft_base = '50hz')") #unplugged_50_df.select(mean('fft_cnt')).show() #print(unplugged_50_df.count()) #unplugged_60_df = dw_df.filter("type = 'unplugged' AND fft_cnt > -1 AND (fft_base = 60 OR fft_base = '60hz')") #unplugged_60_df.select(mean('fft_cnt')).show() #print(unplugged_60_df.count()) dw_df = dw_df.select("phone_imei","time","fft_cnt","fft_base") #dw_df = dw_df.filter("type = 'unplugged' OR type = 'plugged'") #okay now we want the fft_cnt drop between plugged and unplugged for each phone imei #we will first try per-plug differencing (although it may be better to take the averaged plug cnt for each phone) #w = Window.groupBy('phone_imei').orderBy(asc("time")) #fft_lag = lag("fft_cnt",1).over(w) dw_df = dw_df.filter("type = 'unplugged'") #now we need to join the data on time/outage time joined_df = pw_df.join(dw_df, col("outage_time") == col("time"), "fullouter") joined_df = joined_df.withColumn("agg_time",coalesce("outage_time","time")) joined_df = joined_df.select("agg_time","phone_imei","outage_cluster_size","fft_cnt","fft_base") #now run a similar metric as above #for each outage time we need to see how many DW unplug events occurred within some time window window_size = 100 w = Window.orderBy(asc("agg_time"),).rowsBetween(-1*window_size,window_size) joined_df = joined_df.withColumn("imei_list",collect_list(F.struct("agg_time","phone_imei")).over(w)) def filterOutage(time, phone_imei, imeiList): count = 0 #we want phone imei to be none if phone_imei is not None: return -1 used = [] for i in imeiList: if abs((time - i[0]).total_seconds()) < 15 and i[1] not in used: used.append(i[1]) count += 1 if count > window_size: return window_size else: return count udfFilterTransition = udf(filterOutage, IntegerType()) joined_df = joined_df.withColumn("phones_detecting", udfFilterTransition("agg_time","phone_imei","imei_list")) #For the same window size average the fft_cnt to see if there is a signal in that metric window_size = 100 w = Window.orderBy(asc("agg_time"),).rowsBetween(-1*window_size,window_size) joined_df = joined_df.withColumn("fft_list",collect_list(F.struct("agg_time","phone_imei","fft_cnt","fft_base")).over(w)) def filterOutage(time, phone_imei, imeiList, base, return_count): count = 0 fft_cnt = 0 #we want phone imei to be none if phone_imei is not None: return -1 for i in imeiList: if(base == 50): if abs((time - i[0]).total_seconds()) < 15 and i[2] is not None and (i[3] == '50' or i[3] == '50hz'): count += 1 fft_cnt += i[2] elif(base == 60): if abs((time - i[0]).total_seconds()) < 15 and i[2] is not None and (i[3] == '60' or i[3] == '60hz'): count += 1 fft_cnt += i[2] if(count == 0): return float(-1) print("{},{},{}".format(base, count, float(fft_cnt)/float(count))) if(return_count): return float(count) else: return float(float(fft_cnt)/float(count)) udfFilterTransition = udf(filterOutage, FloatType()) joined_df = joined_df.withColumn("avg_50_fft_cnt", udfFilterTransition("agg_time","phone_imei","fft_list",lit(50),lit(False))) joined_df = joined_df.withColumn("50_fft_cnt", udfFilterTransition("agg_time","phone_imei","fft_list",lit(50),lit(True))) joined_df = joined_df.withColumn("avg_60_fft_cnt", udfFilterTransition("agg_time","phone_imei","fft_list",lit(60),lit(False))) joined_df = joined_df.withColumn("60_fft_cnt", udfFilterTransition("agg_time","phone_imei","fft_list",lit(60),lit(True))) #now remove all of the phone records joined_df = joined_df.filter("phones_detecting > -1") joined_df = joined_df.select("agg_time","outage_cluster_size","phones_detecting","avg_50_fft_cnt","50_fft_cnt","avg_60_fft_cnt","60_fft_cnt") joined_df.show(1000) #now join the two datasets together so that we have a #pw_df = pw_df.select("time","outage_duration","outage_cluster_size") #pw_df = pw_df.withColumn("outage_events",lit(1)) #pw_df = pw_df.groupBy(month("time"),"outage_cluster_size").sum().orderBy(month("time"),"outage_cluster_size") #pw_df = pw_df.select("month(time)","outage_cluster_size","sum(outage_duration)","sum(outage_events)") #pw_df = pw_df.withColumn("num_outages",pw_df["sum(outage_events)"]/pw_df["outage_cluster_size"]) #pw_df.show(500) #pw_cp = pw_df # ##now filter out all single outages #pw_df = pw_df.filter("outage_cluster_size > 1") #pw_df = pw_df.select("month(time)","sum(outage_duration)","sum(outage_events)","num_outages") #pw_df = pw_df.groupBy("month(time)").sum().orderBy("month(time)") #pw_df = pw_df.show(200) # #pw_cp.repartition(1).write.format("com.databricks.spark.csv").option("header", "true").save("monthly_outages_aggregate_cluster_size_time_corrected").groupBy(month("time")).sum().orderBy(month("time"))
2.390625
2
tests/anomaly/test_default.py
cnll0075/Merlion
2,215
12793976
# # Copyright (c) 2022 salesforce.com, inc. # All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause # from abc import ABC import logging import os from os.path import abspath, dirname, join import sys import unittest import torch import random import numpy as np import pandas as pd from merlion.models.defaults import DefaultDetector, DefaultDetectorConfig from merlion.plot import plot_anoms_plotly from merlion.post_process.threshold import AggregateAlarms from merlion.utils import TimeSeries from ts_datasets.anomaly import * rootdir = dirname(dirname(dirname(abspath(__file__)))) logger = logging.getLogger(__name__) def set_random_seeds(): torch.manual_seed(12345) random.seed(12345) np.random.seed(12345) def get_train_test_splits(df: pd.DataFrame, metadata: pd.DataFrame, n: int) -> (pd.DataFrame, pd.DataFrame, np.ndarray): train_df = df[metadata.trainval] test_df = df[~metadata.trainval] test_labels = pd.DataFrame(metadata[~metadata.trainval].anomaly) return train_df.tail(n), test_df.head(n), test_labels[:n] class Mixin(ABC): def test_score(self): print("-" * 80) logger.info("test_score\n" + "-" * 80 + "\n") self.run_init() logger.info("Training model...\n") train_ts = TimeSeries.from_pd(self.train_df) self.model.train(train_ts) test_ts = TimeSeries.from_pd(self.test_df) score_ts = self.model.get_anomaly_score(test_ts) scores = score_ts.to_pd().values.flatten() min_score, max_score, sum_score = min(scores), max(scores), sum(scores) logger.info(f"scores look like: {scores[:10]}") logger.info(f"min score = {min_score}") logger.info(f"max score = {max_score}") logger.info(f"sum score = {sum_score}") def test_save_load(self): print("-" * 80) logger.info("test_save_load\n" + "-" * 80 + "\n") self.run_init() logger.info("Training model...\n") train_ts = TimeSeries.from_pd(self.train_df) self.model.train(train_ts) multi = train_ts.dim > 1 path = join(rootdir, "tmp", "default", "anom", "multi" if multi else "uni") self.model.save(dirname=path) loaded_model = DefaultDetector.load(dirname=path) test_ts = TimeSeries.from_pd(self.test_df) scores = self.model.get_anomaly_score(test_ts) scores_np = scores.to_pd().values.flatten() loaded_model_scores = loaded_model.get_anomaly_score(test_ts) loaded_model_scores = loaded_model_scores.to_pd().values.flatten() self.assertEqual(len(scores_np), len(loaded_model_scores)) alarms = self.model.post_rule(scores) loaded_model_alarms = loaded_model.post_rule(scores) self.assertSequenceEqual(list(alarms), list(loaded_model_alarms)) def test_plot(self): try: import plotly print("-" * 80) logger.info("test_plot\n" + "-" * 80 + "\n") self.run_init() logger.info("Training model...\n") train_ts = TimeSeries.from_pd(self.train_df) self.model.train(train_ts) multi = train_ts.dim > 1 savedir = join(rootdir, "tmp", "default", "anom") os.makedirs(savedir, exist_ok=True) path = join(savedir, ("multi" if multi else "uni") + ".png") test_ts = TimeSeries.from_pd(self.test_df) fig = self.model.plot_anomaly_plotly( time_series=test_ts, time_series_prev=train_ts, plot_time_series_prev=True ) plot_anoms_plotly(fig, TimeSeries.from_pd(self.test_labels)) try: import kaleido fig.write_image(path, engine="kaleido") except ImportError: logger.info("kaleido not installed, not trying to save image") except ImportError: logger.info("plotly not installed, skipping test case") class TestUnivariate(unittest.TestCase, Mixin): def run_init(self): set_random_seeds() self.model = DefaultDetector( DefaultDetectorConfig(granularity="1h", threshold=AggregateAlarms(alm_threshold=1.5)) ) # Time series with anomalies in both train split and test split df = pd.read_csv(join(rootdir, "data", "synthetic_anomaly", "horizontal_spike_anomaly.csv")) df.timestamp = pd.to_datetime(df.timestamp, unit="s") df = df.set_index("timestamp") # Get training & testing splits self.train_df = df.iloc[: -len(df) // 2, :1] self.test_df = df.iloc[-len(df) // 2 :, :1] self.test_labels = df.iloc[-len(df) // 2 :, -1:] class TestMultivariate(unittest.TestCase, Mixin): def run_init(self): set_random_seeds() self.model = DefaultDetector(DefaultDetectorConfig(threshold=AggregateAlarms(alm_threshold=2))) self.dataset = MSL(rootdir=join(rootdir, "data", "smap")) df, metadata = self.dataset[0] self.train_df, self.test_df, self.test_labels = get_train_test_splits(df, metadata, 2000) if __name__ == "__main__": logging.basicConfig( format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", stream=sys.stdout, level=logging.INFO ) unittest.main()
1.976563
2
models.py
chawlaj100/P1_Facial_Keypoints
1
12793977
## TODO: define the convolutional neural network architecture import torch from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F # can use the below import should you choose to initialize the weights of your Net import torch.nn.init as I class Net(nn.Module): def __init__(self): super(Net, self).__init__() ## TODO: Define all the layers of this CNN, the only requirements are: ## 1. This network takes in a square (same width and height), grayscale image as input ## 2. It ends with a linear layer that represents the keypoints ## it's suggested that you make this last layer output 136 values, 2 for each of the 68 keypoint (x, y) pairs # As an example, you've been given a convolutional layer, which you may (but don't have to) change: # 1 input image channel (grayscale), 32 output channels/feature maps, 5x5 square convolution kernel # Image size = 224*224 -> self.conv1 = nn.Conv2d(1, 32, 5) # (224 - 5)/1 + 1 = 220 -> (32, 220, 220) self.act = nn.ReLU() self.pool = nn.MaxPool2d(2, 2) # 46 -> (32, 110, 110) self.drop1 = nn.Dropout(p=0.2) self.conv2 = nn.Conv2d(32, 64, 4) # (110 - 4)/1 + 1 = 43 -> (64, 107, 107) self.drop2 = nn.Dropout(p=0.2) # after pooling -> (64, 53, 53) self.conv3 = nn.Conv2d(64, 128, 3) # (53 - 3)/1 + 1 = 19 -> (128, 51, 51) self.drop3 = nn.Dropout(p=0.2) # after pooling -> (128, 25, 25) self.dense1 = nn.Linear(80000,1000) # 128*25*25 = 80000 self.drop4 = nn.Dropout(p=0.2) self.dense2 = nn.Linear(1000,500) self.drop5 = nn.Dropout(p=0.2) self.dense3 = nn.Linear(500,136) def forward(self, x): ## TODO: Define the feedforward behavior of this model ## x is the input image and, as an example, here you may choose to include a pool/conv step: x = self.drop1(self.pool(self.act(self.conv1(x)))) x = self.drop2(self.pool(self.act(self.conv2(x)))) x = self.drop3(self.pool(self.act(self.conv3(x)))) x = x.view(x.size(0), -1) x = self.drop4(self.act(self.dense1(x))) x = self.drop5(self.act(self.dense2(x))) out = self.dense3(x) return out
3.65625
4
scripts/python/remoteAccessScripts/microThoughts.py
jeremiahmarks/dangerzone
1
12793978
<gh_stars>1-10 #intent: create a script that will create an HTML page and post it to my website #via python and html. The argument it will accept is the text for the newest post. # server.org/SERVERDIRECTORY/yyyyMonDayhhmmss.html SERVER='ftp.yourhost.org' USERNAME='yourFTPusername' PASSWORD='<PASSWORD>' SERVERDIRECTORY='theDirectoryOnTheServer' #this currently must be created already, but # '/' should be acceptable as well. def getContent(): import argparse parser=argparse.ArgumentParser(description="Retrieves the content and returns it to the main running process.") parser.add_argument('--c',dest='c', help="This is where the content would go") args=parser.parse_args() return args.c def getTime(): import time currentTime=time.localtime() currentTime=str(currentTime.tm_year)+'_'+str(currentTime.tm_mon)+'_'+str(currentTime.tm_mday)+'_'+str(currentTime.tm_hour)+'_'+str(currentTime.tm_min)+'_'+str(currentTime.tm_sec) return currentTime def htmlMaker(content, time): from string import Template htmlTemplate=Template('<html>\n<head>\n<title>$thetime</title>\n</head>\n<body>\n$thecontent\n</body>\n</html>') htmlTemplate=htmlTemplate.substitute(thetime=time, thecontent=content) htmlFile=file(time+'.html', 'w') htmlFile.write(htmlTemplate) htmlFile.close() return htmlFile def uploadPage(newFile): from ftplib import FTP ftp=FTP(SERVER) ftp.login(USERNAME, PASSWORD) ftp.cwd(SERVERDIRECTORY) newFile=open(newFile.name, 'rb') ftp.storbinary('STOR '+newFile.name, newFile) newFile.close() ftp.close() print "it should be live at "+SERVER+'/'+SERVERDIRECTORY+'/'+newFile.name if __name__ == '__main__': content=getContent() time=getTime() newFile=htmlMaker(content, time) uploadPage(newFile)
3.46875
3
tests/test_api/test_FCNet.py
levi131/PaddleScience
0
12793979
<reponame>levi131/PaddleScience<filename>tests/test_api/test_FCNet.py<gh_stars>0 """ # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import numpy as np import paddlescience as psci import pytest import paddle from apibase import APIBase from apibase import randtool np.random.seed(22) paddle.seed(22) def cal_FCNet(ins, num_ins, num_outs, num_layers, hidden_size, dtype='float64', activation='tanh'): """ calculate FCNet api """ net = psci.network.FCNet( num_ins=num_ins, num_outs=num_outs, num_layers=num_layers, hidden_size=hidden_size, dtype=dtype, activation=activation) for i in range(num_layers): net.weights[i] = paddle.ones_like(net.weights[i]) res = net.nn_func(ins) return res def cal_with_np(ins, num_ins, num_outs, num_layers, hidden_size, activation='tanh'): """ calculate with numpy """ w = [] for i in range(num_layers): if i == 0: lsize = num_ins rsize = hidden_size elif i == (num_layers - 1): lsize = hidden_size rsize = num_outs else: lsize = hidden_size rsize = hidden_size w.append(np.ones((lsize, rsize))) u = ins for i in range(num_layers - 1): u = np.matmul(u, w[i]) if activation == 'tanh': u = np.tanh(u) elif activation == 'sigmoid': u = 1 / (1 + np.exp(-u)) u = np.matmul(u, w[-1]) return u class TestFCNet(APIBase): """ test flatten """ def hook(self): """ implement """ self.types = [np.float64] # self.debug = True # enable check grad self.static = False obj = TestFCNet(cal_FCNet) @pytest.mark.api_network_FCNet def test_FCNet0(): """ default """ xy_data = np.array([[0.1, 0.5]]) u = cal_with_np(xy_data, 2, 1, 2, 1) obj.run(res=u, ins=xy_data, num_ins=2, num_outs=1, num_layers=2, hidden_size=1) @pytest.mark.api_network_FCNet def test_FCNet1(): """ xy shape (9, 2) """ xy_data = randtool("float", 0, 10, (9, 2)) u = cal_with_np(xy_data, 2, 1, 2, 1) obj.run(res=u, ins=xy_data, num_ins=2, num_outs=1, num_layers=2, hidden_size=1) @pytest.mark.api_network_FCNet def test_FCNet2(): """ xy shape (9, 3) """ xy_data = randtool("float", 0, 1, (9, 3)) u = cal_with_np(xy_data, 3, 1, 2, 1) obj.run(res=u, ins=xy_data, num_ins=3, num_outs=1, num_layers=2, hidden_size=1) @pytest.mark.api_network_FCNet def test_FCNet3(): """ xy shape (9, 4) """ xy_data = randtool("float", 0, 1, (9, 4)) u = cal_with_np(xy_data, 4, 1, 2, 1) obj.run(res=u, ins=xy_data, num_ins=4, num_outs=1, num_layers=2, hidden_size=1) @pytest.mark.api_network_FCNet def test_FCNet4(): """ xy shape (9, 4) num_outs: 2 """ xy_data = randtool("float", 0, 1, (9, 4)) u = cal_with_np(xy_data, 4, 2, 2, 1) obj.run(res=u, ins=xy_data, num_ins=4, num_outs=2, num_layers=2, hidden_size=1) @pytest.mark.api_network_FCNet def test_FCNet5(): """ xy shape (9, 4) num_outs: 3 """ xy_data = randtool("float", 0, 1, (9, 4)) u = cal_with_np(xy_data, 4, 3, 2, 1) obj.run(res=u, ins=xy_data, num_ins=4, num_outs=3, num_layers=2, hidden_size=1) @pytest.mark.api_network_FCNet def test_FCNet6(): """ xy shape (9, 4) num_outs: 3 hidden_size: 20 """ xy_data = randtool("float", 0, 1, (9, 4)) u = cal_with_np(xy_data, 4, 3, 2, 20) obj.run(res=u, ins=xy_data, num_ins=4, num_outs=3, num_layers=2, hidden_size=20) @pytest.mark.api_network_FCNet def test_FCNet7(): """ xy shape (9, 4) num_outs: 3 hidden_size: 20 num_layers: 5 """ xy_data = randtool("float", 0, 1, (9, 4)) u = cal_with_np(xy_data, 4, 3, 5, 20) obj.run(res=u, ins=xy_data, num_ins=4, num_outs=3, num_layers=5, hidden_size=20) @pytest.mark.api_network_FCNet def test_FCNet8(): """ xy shape (9, 4) num_outs: 3 hidden_size: 20 num_layers: 5 activation='sigmoid' """ xy_data = randtool("float", 0, 1, (9, 4)) u = cal_with_np(xy_data, 4, 3, 5, 20, activation='sigmoid') obj.run(res=u, ins=xy_data, num_ins=4, num_outs=3, num_layers=5, hidden_size=20)
2.234375
2
bitey/cpu/addressing_mode_factory.py
jgerrish/bitey
0
12793980
<reponame>jgerrish/bitey from dataclasses import dataclass from typing import ClassVar from bitey.cpu.addressing_mode import ( AddressingMode, AbsoluteAddressingMode, AbsoluteIndirectAddressingMode, AbsoluteXAddressingMode, AbsoluteYAddressingMode, AccumulatorAddressingMode, ImmediateAddressingMode, ImpliedAddressingMode, IndirectXAddressingMode, IndirectYAddressingMode, RelativeAddressingMode, ZeroPageAddressingMode, ZeroPageXAddressingMode, ZeroPageYAddressingMode, ) @dataclass class AddressingModeFactory: addressing_mode_map: ClassVar[dict[str, AddressingMode]] = { "absolute": AbsoluteAddressingMode, "absolute_indirect": AbsoluteIndirectAddressingMode, "absolute_x": AbsoluteXAddressingMode, "absolute_y": AbsoluteYAddressingMode, "accumulator": AccumulatorAddressingMode, "immediate": ImmediateAddressingMode, "implied": ImpliedAddressingMode, "indirect_x": IndirectXAddressingMode, "indirect_y": IndirectYAddressingMode, "relative": RelativeAddressingMode, "zeropage": ZeroPageAddressingMode, "zeropage_x": ZeroPageXAddressingMode, "zeropage_y": ZeroPageYAddressingMode, } def build(addressing_mode): "Build an AddressingMode instance from a string" return AddressingModeFactory.get_mode_from_str(addressing_mode)() def get_mode_from_str(addressing_mode): "Given an addressing mode string, return the addressing mode class" m = AddressingModeFactory.addressing_mode_map[addressing_mode] return m
2.921875
3
libs/simulate_robot.py
yuk6heo/GIS-RAmap
33
12793981
<reponame>yuk6heo/GIS-RAmap from __future__ import absolute_import, division from davisinteractive import logging from davisinteractive.metrics import batched_jaccard from davisinteractive.utils.operations import bezier_curve from davisinteractive.robot.interactive_robot import InteractiveScribblesRobot from davisinteractive.evaluation.service import EvaluationService import time import numpy as np ROBOT_DEFAULT_PARAMETERS = { 'kernel_size': .2, 'max_kernel_radius': 16, 'min_nb_nodes': 4, 'nb_points': 1000 } class Interactrobot(InteractiveScribblesRobot): def __init__(self, kernel_size=.2, max_kernel_radius=16, min_nb_nodes=4, nb_points=1000): """ Robot constructor """ super(Interactrobot, self).__init__() if kernel_size >= 1. or kernel_size < 0: raise ValueError('kernel_size must be a value between [0, 1).') self.kernel_size = kernel_size self.max_kernel_radius = max_kernel_radius self.min_nb_nodes = min_nb_nodes self.nb_points = nb_points def interact_singleimg(self, pred_mask, gt_mask, nb_objects=None,): """ Interaction of the Scribble robot given a prediction. Given the sequence and a mask prediction, the robot will return a scribble in the region that fails the most. # Arguments sequence: String. Name of the sequence to interact with. pred_masks: Numpy Array. Array with the prediction masks. It must be an integer array with shape (H x W), one-hot vector for multi object gt_masks: Numpy Array. Array with the ground truth of the sequence. It must have the same data type and shape as `pred_masks`, one-hot vector for multi object nb_objects: Integer. Number of objects in the ground truth mask. If `None` the value will be infered from `y_true`. Setting this value will speed up the computation. frame: Integer. Frame to generate the scribble. If not given, the worst frame given by the jaccard will be used. # Returns dict: Return a scribble (default representation). """ robot_start = time.time() predictions = np.asarray(pred_mask, dtype=np.int) annotations = np.asarray(gt_mask, dtype=np.int) if nb_objects is None: obj_ids = np.unique(annotations) obj_ids = obj_ids[(obj_ids > 0) & (obj_ids < 255)] nb_objects = len(obj_ids) obj_ids = [i for i in range(nb_objects + 1)] # Infer height and width of the sequence h, w = annotations.shape img_shape = np.asarray([w, h], dtype=np.float) pred, gt = predictions, annotations scribbles = [] for obj_id in obj_ids: logging.verbose( 'Creating scribbles from error mask at object_id={}'.format( obj_id), 2) start_time = time.time() error_mask = (gt == obj_id) & (pred != obj_id) if error_mask.sum() == 0: logging.info( 'Error mask of object ID {} is empty. Skip object ID.'. format(obj_id)) continue # Generate scribbles skel_mask = self._generate_scribble_mask(error_mask) skel_time = time.time() - start_time logging.verbose( 'Time to compute the skeleton mask: {:.3f} ms'.format( skel_time * 1000), 2) if skel_mask.sum() == 0: continue G, P = self._mask2graph(skel_mask) mask2graph_time = time.time() - start_time - skel_time logging.verbose( 'Time to transform the skeleton mask into a graph: ' + '{:.3f} ms'.format(mask2graph_time * 1000), 2) t_start = time.time() S = self._acyclics_subgraphs(G) t = (time.time() - t_start) * 1000 logging.verbose( 'Time to split into connected components subgraphs ' + 'and remove the cycles: {:.3f} ms'.format(t), 2) t_start = time.time() longest_paths_idx = [self._longest_path_in_tree(s) for s in S] longest_paths = [P[idx] for idx in longest_paths_idx] t = (time.time() - t_start) * 1000 logging.verbose( 'Time to compute the longest path on the trees: {:.3f} ms'. format(t), 2) t_start = time.time() scribbles_paths = [ bezier_curve(p, self.nb_points) for p in longest_paths ] t = (time.time() - t_start) * 1000 logging.verbose( 'Time to compute the bezier curves: {:.3f} ms'.format(t), 2) end_time = time.time() logging.verbose( 'Generating the scribble for object id {} '.format(obj_id) + 'took {:.3f} ms'.format((end_time - start_time) * 1000), 2) # Generate scribbles data file for p in scribbles_paths: p /= img_shape path_data = { 'path': p.tolist(), 'object_id': int(obj_id), 'start_time': start_time, 'end_time': end_time } scribbles.append(path_data) scribbles_data = {'scribbles': scribbles,} t = time.time() - robot_start logging.info(('The robot took {:.3f} s to generate all the ' 'scribbles for {} objects.').format( t, nb_objects)) return scribbles_data
2.09375
2
src/nti/app/pyramid_zope/traversal.py
NextThought/nti.app.pyramid_zope
1
12793982
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Support for resource tree traversal. """ from __future__ import division from __future__ import print_function from __future__ import absolute_import from pyramid import traversal from pyramid.compat import is_nonstr_iter from pyramid.compat import decode_path_info from pyramid.exceptions import URLDecodeError from pyramid.httpexceptions import HTTPNotFound from pyramid.interfaces import VH_ROOT_KEY from pyramid.interfaces import ITraverser from zope import interface from zope.component import queryMultiAdapter from zope.event import notify from zope.location.interfaces import LocationError from zope.traversing import api as ztraversing from zope.traversing.interfaces import ITraversable from zope.traversing.interfaces import BeforeTraverseEvent from zope.publisher.interfaces.browser import IBrowserRequest from zope.publisher.interfaces.browser import IDefaultBrowserLayer from zope.traversing.namespace import resource as _zresource lineage = traversal.lineage find_interface = traversal.find_interface empty = traversal.empty split_path_info = traversal.split_path_info logger = __import__('logging').getLogger(__name__) __all__ = [ 'ZopeResourceTreeTraverser', 'resource', ] def _notify_before_traverse_event(ob, request): """ Notifies a BeforeTraverseEvent, but safely: if the handlers themselves raise a location error, turn that into a HTTP 404 exception. Because handlers are deliberately doing this, we stop traversal and abort rather than try to return an information dictionary and find a view and context, etc. This is limiting, but safe. """ try: notify(BeforeTraverseEvent(ob, request)) except LocationError: # this is often a setup or programmer error logger.debug("LocationError from traverse subscribers", exc_info=True) raise HTTPNotFound("Traversal failed") @interface.implementer(ITraverser) class ZopeResourceTreeTraverser(traversal.ResourceTreeTraverser): """ A :class:`pyramid.interfaces.ITraverser` based on pyramid's default traverser, but modified to use the :mod:`zope.traversing.api` machinery instead of (only) dictionary lookups. This provides is with the flexibility of the :obj:`zope.traversing.interfaces.ITraversable` adapter pattern, plus the support of namespace lookups (:func:`zope.traversing.namespace.nsParse` and :func:`zope.traversing.namespace.namespaceLookup`). As this object traverses, it fires :obj:`~.IBeforeTraverseEvent` events. If you either load the configuration from :mod:`zope.app.publication` or manually enable the :obj:`zope.site.site.threadSiteSubscriber <zope.site.site>` to subscribe to this event, then any Zope site managers found along the way will be made the current site. """ def __init__(self, root): traversal.ResourceTreeTraverser.__init__(self, root) def __call__(self, request): # pylint:disable=too-many-locals,too-many-branches,too-many-statements """ See :meth:`pyramid.interfaces.ITraversar.__call__`. """ # JAM: Unfortunately, the superclass implementation is entirely monolithic # and we so we cannot reuse any part of it. Instead, # we copy-and-paste it. Unless otherwise noted, comments below are # original. # JAM: Note the abundance of no covers. These are for features we are # not currently using and the code is lifted directly from pyramid. environ = request.environ if request.matchdict is not None: matchdict = request.matchdict path = matchdict.get('traverse', '/') or '/' if is_nonstr_iter(path): # this is a *traverse stararg (not a {traverse}) # routing has already decoded these elements, so we just # need to join them path = '/'.join(path) or '/' subpath = matchdict.get('subpath', ()) if not is_nonstr_iter(subpath): # pragma: no cover # this is not a *subpath stararg (just a {subpath}) # routing has already decoded this string, so we just need # to split it subpath = split_path_info(subpath) else: # pragma: no cover # this request did not match a route subpath = () try: # empty if mounted under a path in mod_wsgi, for example path = decode_path_info(environ['PATH_INFO'] or '/') except KeyError: path = '/' except UnicodeDecodeError as e: raise URLDecodeError(e.encoding, e.object, e.start, e.end, e.reason) if VH_ROOT_KEY in environ: # pragma: no cover # HTTP_X_VHM_ROOT vroot_path = decode_path_info(environ[VH_ROOT_KEY]) vroot_tuple = split_path_info(vroot_path) # both will (must) be unicode or asciistr vpath = vroot_path + path vroot_idx = len(vroot_tuple) - 1 else: vroot_tuple = () vpath = path vroot_idx = -1 root = self.root ob = vroot = root if vpath == '/': # invariant: vpath must not be empty # prevent a call to traversal_path if we know it's going # to return the empty tuple vpath_tuple = () else: i = 0 view_selector = self.VIEW_SELECTOR # A list so that remaining_path can be modified vpath_tuple = list(split_path_info(vpath)) for segment in vpath_tuple: # JAM: Fire traversal events, mainly so sites get installed. See # zope.publisher.base. _notify_before_traverse_event(ob, request) # JAM: Notice that checking for '@@' is special cased, and # doesn't go through the normal namespace lookup as it would in # plain zope traversal. (XXX: Why not?) if segment.startswith(view_selector): # pragma: no cover return {'context': ob, 'view_name': segment[2:], 'subpath': vpath_tuple[i + 1:], 'traversed': vpath_tuple[:vroot_idx + i + 1], 'virtual_root': vroot, 'virtual_root_path': vroot_tuple, 'root': root} try: # JAM: This is where we differ. instead of using __getitem__, # we use the traversing machinery. # The zope app would use IPublishTraverser, which # would install security proxies along the way. We probably don't need to # do that? TODO: # NOTE: By passing the request here, we require all traversers # (including the namespace traversers) to be registered as multi-adapters. # None of the default namespaces are. See our # configure.zcml for what is. # JAM: Damn stupid implementation of traversePathElement ignores # the request argument to find a traversable /except/ when a namespace is found. # therefore, we explicitly query for the multi adapter ourself in the non-namespace case # (In the namespace case, we let traversing handle it, because it needs a named adapter # after parsing) traversable = None if segment and segment[0] not in '+@' \ and not ITraversable.providedBy(ob): try: # Use the installed component registry # instead of the request registry (which # is the global component registry if # pyramid was configured that way, or a # standalone registry) in case the act of # traversing has changed the site manager; # zope.site.site.threadSiteSubscriber will # do this for each BeforeTraverseEvent # that's fired (though that's not # registered by default). traversable = queryMultiAdapter((ob, request), ITraversable) except TypeError: # Some things are registered for "*" (DefaultTraversable) # which means they get called here. If they can't take # two arguments, then we bail. Sucks. pass remaining_path = vpath_tuple[i + 1:] next_ob = ztraversing.traversePathElement(ob, segment, remaining_path, traversable=traversable, request=request) if remaining_path != vpath_tuple[i + 1:]: # Is this if check necessary? It would be faster to # always assign vpath_tuple[i + 1:] = remaining_path except LocationError: # LocationError is a type of KeyError. The DefaultTraversable turns # plain KeyError and TypeErrors into LocationError. return {'context': ob, 'view_name': segment, 'subpath': vpath_tuple[i + 1:], 'traversed': vpath_tuple[:vroot_idx + i + 1], 'virtual_root': vroot, 'virtual_root_path': vroot_tuple, 'root': root} if i == vroot_idx: # pragma: no cover vroot = next_ob ob = next_ob i += 1 # JAM: Also fire before traversal for the actual context item, since we # won't actually traverse into it. Be sure not to fire multiple times # for this (E.g., the root). This logic is complicated by the # multi-returns above. _notify_before_traverse_event(ob, request) return {'context': ob, 'view_name': empty, 'subpath': subpath, 'traversed': vpath_tuple, 'virtual_root': vroot, 'virtual_root_path': vroot_tuple, 'root': root} class resource(_zresource): """ Handles resource lookup in a way compatible with :mod:`zope.browserresource`. This package registers resources as named adapters from :class:`.IDefaultBrowserLayer` to Interface. We connect the two by making the pyramid request implement the right thing. """ def __init__(self, context, request): request = IBrowserRequest(request) if not IDefaultBrowserLayer.providedBy(request): interface.alsoProvides(request, IDefaultBrowserLayer) # We lie super(resource, self).__init__(context, request)
2.109375
2
crsbot_source/consts.py
Qman11010101/chunithmSelectorBot
0
12793983
import json import os from os import environ as env from distutils.util import strtobool if os.path.isfile("setting.json"): with open("setting.json", "r", encoding="UTF-8_sig") as s: setting = json.load(s) else: setting = { "token": { "discord": env["discord_token"], "chunirec": env["chunirec_token"] }, "logging": { "logging": strtobool(env["logging"]), "loglevel_stdio": env["loglevel_stdio"], "loglevel_file": env["loglevel_file"], "log_filename": env["log_filename"] }, "misc": { "channel_id": int(env["channel_id"]), "timezone": env["timezone"], "api_lifetime": int(env["api_lifetime"]), "max_musics": int(env["max_musics"]), "command_prefix": env["command_prefix"] } } # URL URL_chunirec = "https://reiwa.f5.si/chunirec_all.json" URL_ONGEKI = "https://ongeki.sega.jp/assets/json/music/music.json" URL_MAIMAI = "https://maimai.sega.jp/data/DXsongs.json" URL_WACCA = "https://reiwa.f5.si/wacca_all.json" URL_ARCAEA = "https://reiwa.f5.si/arcaea_all.json" URL_PHIGROS = "https://reiwa.f5.si/phigros_all.json" # トークン CHUNIREC_TOKEN = setting["token"]["chunirec"] DISCORD_TOKEN = setting["token"]["discord"] # API関係 API_LIFETIME = int(setting["misc"]["api_lifetime"]) # logger関係 tz = setting["misc"]["timezone"] is_logging = setting["logging"]["logging"] loglevel_stdio = setting["logging"]["loglevel_stdio"] loglevel_file = setting["logging"]["loglevel_file"] log_filename = setting["logging"]["log_filename"] # その他 MAX_MUSICS = setting["misc"]["max_musics"] CMDPREF = setting["misc"]["command_prefix"] APP_VERSION = "3.0" CHANNEL_NAME = "選曲bot" # ヘルプメッセージ DECLARATION_NAME = f"**CHUNITHM Random Selector bot v{APP_VERSION}**" HIGHLOW = f"""※`(:high/low)`がついているパラメータは、後ろに『:high』もしくは『:low』を付け足すことで『以上』『以下』を表すことができます。 `:up/:down`や`:big/:small`でも可能です。""" HELPMES_CHUNITHM = f""" {DECLARATION_NAME} 【コマンド文字列】 `{CMDPREF}random [曲数] [レベル(:high/low)] [ジャンル] [アーティスト] [ノーツ数(:high/low)] [BPM(:high/low)] [難易度]` `{CMDPREF}search [レベル(:high/low)] [ジャンル] [アーティスト] [ノーツ数(:high/low)] [BPM(:high/low)] [難易度]` {HIGHLOW} 【パラメータ】 指定しないパラメータは、`-`もしくは`none`と入力してください。 **曲数** > 表示する曲数を指定します。最大{MAX_MUSICS}曲まで表示できます。 > それ以上の数字を入力した場合、ランダム選曲コマンドにおいては{MAX_MUSICS}曲として扱われ、検索コマンドではエラー扱いになります。 > 指定されなかった場合、3曲として扱われます。 > 半角数字で入力してください。 **レベル** > 楽曲のレベルを指定します。 > 『10』『13+』のようなレベル表記形式、もしくは『12.6』『13.7』のような譜面定数形式で入力してください。 **ジャンル** > 楽曲が属するジャンルを指定します。 > 『ORIGINAL』『POPS&ANIME』『niconico』『東方Project』『VARIETY』『イロドリミドリ』『ゲキマイ』から1つ選んで入力してください。 **アーティスト** > 楽曲のアーティスト名を指定します。 > アーティスト名を入力してください。 > 大文字・小文字および全角・半角を考慮しない部分一致で検索されます。 **ノーツ数** > 楽曲のノーツ数を指定します。 > 半角数字で入力してください。 **BPM** > 楽曲のBPMを指定します。 > 半角数字で入力してください。 **難易度** > 楽曲の難易度を指定します。EXPERTのみもしくはMASTERのみの検索をする場合に使用します。 > 指定する場合、『exp』もしくは『mas』と指定してください。 > 指定されないか、不正な値を指定した場合は自動的にEXPERTとMASTERの両方から検索します。 > レベルもしくはノーツ数が指定されたときのみ機能します。 【コマンド例】 `{CMDPREF}random`: 全楽曲の中からランダムに3曲選びます。 `{CMDPREF}random 5 13+:up`: レベル13+以上の楽曲の中からランダムに5曲選びます。 `{CMDPREF}random - 13 - - - - exp`: レベル13のEXPERTの楽曲をランダムに3曲選びます。 `{CMDPREF}search none 東方Project none 1000:low`: 東方Projectの楽曲の中からノーツ数が1000以下の楽曲を検索します。 `{CMDPREF}search - - - - 300:high`: 全楽曲の中からBPM300以上の楽曲を検索します。 【注意点】 - ジャンルは1つのみ指定可能です。 - WORLD'S ENDには対応していません。 - 一部の値が未登録になっている場合があります。 他、以下の楽曲の検索機能があります。 - オンゲキ: `{CMDPREF}help_ongeki` - WACCA: `{CMDPREF}help_wacca` """ HELPMES_ONGEKI = f""" {DECLARATION_NAME} **オンゲキ選曲機能** 【コマンド文字列】 `{CMDPREF}random_ongeki [曲数] [レベル(:high/low)] [ジャンル] [アーティスト] [難易度]` (`{CMDPREF}rgeki`でも可) `{CMDPREF}search_ongeki [レベル(:high/low)] [ジャンル] [アーティスト] [難易度]` (`{CMDPREF}sgeki`でも可) {HIGHLOW} 【パラメータ】 指定しないパラメータは、`-`もしくは`none`と入力してください。 **曲数** > 表示する曲数を指定します。最大{MAX_MUSICS}曲まで表示できます。 > それ以上の数字を入力した場合、ランダム選曲コマンドにおいては{MAX_MUSICS}曲として扱われ、検索コマンドではエラー扱いになります。 > 指定されなかった場合、3曲として扱われます。 > 半角数字で入力してください。 **レベル** > 楽曲のレベルを指定します。 > 『10』『13+』のようなレベル表記形式で入力してください。 > 譜面定数は使えません。 **ジャンル** > 楽曲が属するジャンルを指定します。 > 『オンゲキ』『POPS&ANIME』『niconico』『東方Project』『VARIETY』『チュウマイ』から1つ選んで入力してください。 **アーティスト** > 楽曲のアーティスト名を指定します。 > アーティスト名を入力してください。 > 大文字・小文字および全角・半角を考慮しない部分一致で検索されます。 **難易度** > 楽曲の難易度を指定します。EXPERTのみもしくはMASTERのみの検索をする場合に使用します。 > 指定する場合、『exp』もしくは『mas』と指定してください。 > 指定されないか、不正な値を指定した場合は自動的にEXPERTとMASTERの両方から検索します。 > レベルが指定されたときのみ機能します。 【コマンド例】 `{CMDPREF}random_ongeki`: 全楽曲の中からランダムに3曲選びます。 `{CMDPREF}random_ongeki 5 13+:up`: レベル13+以上の楽曲の中からランダムに5曲選びます。 `{CMDPREF}random_ongeki - 13 - - - - exp`: レベル13のEXPERTの楽曲をランダムに3曲選びます。 `{CMDPREF}search_ongeki 14 東方Project`: 東方Projectの楽曲の中からレベル14の曲を検索します。 【注意点】 - ジャンルは1つのみ指定可能です。 - LUNATICおよびボーナストラックには対応していません。 """ # 書きかけ HELPMES_MAIMAI = f""" {DECLARATION_NAME} **maimaiでらっくす選曲機能** 【コマンド文字列】 `{CMDPREF}random_maimai [曲数] [レベル(:high/low)] [ジャンル] [アーティスト] [難易度]` (`{CMDPREF}rmai`でも可) `{CMDPREF}search_maimai [レベル(:high/low)] [ジャンル] [アーティスト] [難易度]` (`{CMDPREF}smai`でも可) {HIGHLOW} 【パラメータ】 指定しないパラメータは、`-`もしくは`none`と入力してください。 **曲数** > 表示する曲数を指定します。最大{MAX_MUSICS}曲まで表示できます。 > それ以上の数字を入力した場合、ランダム選曲コマンドにおいては{MAX_MUSICS}曲として扱われ、検索コマンドではエラー扱いになります。 > 指定されなかった場合、3曲として扱われます。 > 半角数字で入力してください。 **レベル** > 楽曲のレベルを指定します。 > 『10』『13+』のようなレベル表記形式で入力してください。 > 譜面定数は使えません。 **ジャンル** > 楽曲が属するジャンルを指定します。 """ HELPMES_WACCA = f""" {DECLARATION_NAME} **WACCA選曲機能** 【コマンド文字列】 `{CMDPREF}random_wacca [曲数] [レベル(:high/low)] [ジャンル] [アーティスト] [難易度]` (`{CMDPREF}rwacca`でも可) `{CMDPREF}search_wacca [レベル(:high/low)] [ジャンル] [アーティスト] [難易度]` (`{CMDPREF}swacca`でも可) {HIGHLOW} 【パラメータ】 指定しないパラメータは、`-`もしくは`none`と入力してください。 **曲数** > 表示する曲数を指定します。最大{MAX_MUSICS}曲まで表示できます。 > それ以上の数字を入力した場合、ランダム選曲コマンドにおいては{MAX_MUSICS}曲として扱われ、検索コマンドではエラー扱いになります。 > 指定されなかった場合、3曲として扱われます。 > 半角数字で入力してください。 **レベル** > 楽曲のレベルを指定します。 > 『10』『13+』のようなレベル表記形式で入力してください。 > 譜面定数は使えません。 **ジャンル** > 楽曲が属するジャンルを指定します。 > 『アニメ/POP』『ボカロ』『東方アレンジ』『2.5次元』『バラエティ』『オリジナル』『TANO\\*C』『TANO\\*C(オリジナル)』から1つ選んで入力してください。 **アーティスト** > 楽曲のアーティスト名を指定します。 > アーティスト名を入力してください。 > 大文字・小文字および全角・半角を考慮しない部分一致で検索されます。 **難易度** > 楽曲の難易度を指定します。EXPERTのみもしくはINFERNOのみの検索をする場合に使用します。 > 指定する場合、『exp』もしくは『inf』と指定してください。 > 指定されないか、不正な値を指定した場合は自動的にEXPERTとINFERNOの両方から検索します。 > レベルが指定されたときのみ機能します。 【注意点】 - ジャンルは1つのみ指定可能です。 【不具合】 - 『オリジナル』を指定すると『TANO\\*C(オリジナル)』も同時に検索されてしまいます。 """
2.15625
2
src/models/hmc_vae.py
ipeis/HH-VAEM
2
12793984
<reponame>ipeis/HH-VAEM # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # Copyright (c) 2022 by <NAME>, UC3M. + # All rights reserved. This file is part of the HH-VAEM, and is released under + # the "MIT License Agreement". Please see the LICENSE file that should have + # been included as part of this package. + # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ from src.models.base import * from src.models.hmc import * # ============= HMCVAE ============= # class HMCVAE(BaseVAE): """ Implements a Hamiltonian VAE (HMC-VAE) as described in https://arxiv.org/abs/2202.04599 """ def __init__(self, dataset: str, dim_x: int, dim_y: int, latent_dim = 10, arch='base', dim_h=256, likelihood_x = 'gaussian', likelihood_y = 'gaussian', variance=0.1, imbalanced_y = False, categories_y = 1, prediction_metric='rmse', batch_size=128, lr=1e-3, samples_MC = 1, data_path='../data/', split_idx=0, L=5, T=10, chains=1, chains_sksd=30, sksd=1, pre_steps=2e3, lr_pre=1e-3, lr_encoder=1e-3, lr_decoder=1e-3, lr_predictor=1e-3, lr_hmc=1e-3, lr_scale = 1e-2, update_s_each=10 ): """ HMCVAE Initialization Args: dataset (str): name of the dataset (boston, mnist, ...) dim_x (int): input data dimension dim_y (int): target data dimension latent_dim (int, optional): dimension of the latent space. Defaults to 10. arch (str, optional): name of the architecture for encoder/decoder from the 'archs' file. Defaults to 'base'. dim_h (int, optional): dimension of the hidden vectors. Defaults to 256. likelihood_x (str, optional): input data likelihood type. Defaults to 'gaussian'. likelihood_y (str, optional): target data likelihood type. Defaults to 'gaussian'. variance (float, optional): fixed variance for Gaussian likelihoods. Defaults to 0.1. imbalanced_y (bool, optional): True for compensating imbalanced classification. Defaults to False. categories_y (int, optional): number of categories when the target is categorical. Defaults to 1. prediction_metric (str, optional): name of the prediction metric for validation ('rmse', 'accuracy'). Defaults to 'rmse'. batch_size (int, optional): batch size. Defaults to 128. lr (float, optional): learning rate for the parameter optimization. Defaults to 1e-3. samples_MC (int, optional): number of MC samples for computing the ELBO. Defaults to 1. data_path (str, optional): path to load/save the data. Defaults to '../data/'. split_idx (int, optional): idx of the training split. Defaults to 0. L (int, optional): number of Leapfrog steps. Defaults to 5. T (int, optional): length of the HMC chains. Defaults to 10. chains (int, optional): number of parallel HMC chains. Defaults to 1. chains_sksd (int, optional): number of parallel HMC chains for computing the SKSD. Defaults to 30. sksd (int, optional): learn a scale factor for q(eps|zy) using the SKSD regularizer (1) or not (0). Defaults to 1. pre_steps (float, optional): number of standard VI training steps (before using HMC). Defaults to 18e3. lr_pre (float, optional): learning reate for all the parameters during the VI training stage. Defaults to 1e-3. lr_encoder (float, optional): Learning rate for the encoder parameters. Defaults to 1e-3. lr_decoder (float, optional): Learning rate for the decoder (p(x|z1)). Defaults to 1e-3. lr_predictor (float, optional): Learning rate for the predictor. Defaults to 1e-3. lr_hmc (float, optional): Learning rate for the HMC hyperparameters (matrix of step sizes). Defaults to 1e-3. lr_scale (_type_, optional): Learning rate for the scale (inflation) factor Defaults to 1e-2. update_s_each (int, optional): Interval of steps for optimizing the scale factor. Defaults to 10. """ super(HMCVAE, self).__init__(dataset=dataset, dim_x=dim_x, dim_y=dim_y, latent_dim = latent_dim, arch=arch, dim_h=dim_h, likelihood_x = likelihood_x, likelihood_y = likelihood_y, variance=variance, imbalanced_y=imbalanced_y, categories_y=categories_y, prediction_metric=prediction_metric, batch_size=batch_size, lr=lr, samples_MC = samples_MC, data_path=data_path, split_idx=split_idx) self.HMC = HMC(dim=latent_dim, L=L, T=T, chains=chains, chains_sksd=chains_sksd, logp=None) self.automatic_optimization=False self.L = L self.T = T self.chains = chains self.chains_sksd = chains_sksd self.sksd = sksd self.pre_steps = pre_steps self.lr_pre = lr_pre self.lr_encoder = lr_encoder self.lr_decoder = lr_decoder self.lr_predictor = lr_predictor self.lr_hmc = lr_hmc self.lr_scale = lr_scale self.update_s_each = update_s_each self.hmc=True self.save_hyperparameters('L', 'T', 'chains', 'sksd', 'pre_steps', 'lr_pre', 'lr_encoder', 'lr_decoder', 'lr_predictor', 'lr_hmc', 'lr_scale', 'update_s_each') self.step_idx=0 # training step index # ============= Modified base functions ============= # def forward(self, batch: tuple, hmc=True, samples=1) -> tuple: """ Forward data through the model. For the pretraining stage, use the ELBO. For the rest, use HMC Args: batch (tuple): contains (data, observed_data, target, observed_target) hmc (bool): sample posterior using HMC (True). Defaults to True samples (int): number of MC samples for computing the ELBO Returns: If hmc=False, returns: loss_VI, rec_x, rec_y, kl If hmc=True, returns: loss_VI, loss_HMC, loss_SKSD, rec_x, rec_y, kl """ if hmc==True: # Activate only encoder activate(self.encoder) deactivate(self.decoder) deactivate(self.predictor) self.HMC.log_eps.requires_grad = False self.HMC.log_inflation.requires_grad = False # Get data x, observed_x, y, observed_y = batch xn = self.normalize_x(x) xt, yt, xy, observed = self.preprocess_batch(batch) # xt is the preprocessed input (xt=x if no preprocessing) # observed is observed_x OR observed_y (for not using kl if no observed data) mu_z, logvar_z = self.encoder(xy) z = self.sample_z(mu_z, logvar_z, samples=samples, hmc=False) theta_x = self.decoder(z) x_hat = self.build_x_hat(xn, observed_x, theta_x) zx = torch.cat([z,x_hat],dim=-1) rec_x = self.decoder.logp(xt, observed_x, z=z, theta=theta_x).sum(-1) rec_y = self.predictor.logp(yt, observed_y, z=zx).sum(-1) kls = self.encoder.regularizer(mu_z, logvar_z, observed) elbo = rec_x + rec_y - kls.sum(0).unsqueeze(-1) elbo = elbo[elbo!=0].mean() rec_x = rec_x[rec_x!=0].mean() rec_y = rec_y[rec_y!=0].mean() kl_mean = torch.zeros(len(kls)).to(self.device) for l, kl in enumerate(kls): kl_mean[l]= kl[kl!=0].mean() loss_3 = -elbo if hmc==False: # returns elbo return loss_3, rec_x, rec_y, kl_mean else: # returns elbo, logp and sksd # Activate decoder, predictor and hmc activate(self.decoder) activate(self.predictor) self.HMC.log_eps.requires_grad = True deactivate(self.encoder) self.HMC.log_inflation.requires_grad = False # Encoder again for not sharing gradients mu_z, logvar_z = self.encoder(xy) zT = self.sample_z(mu_z, logvar_z, samples=samples) loss_1 = -self.HMC.logp(zT) loss_1 = loss_1[loss_1!=0].mean() if self.sksd==1: # Deactivate everything except scale self.HMC.log_inflation.requires_grad = True deactivate(self.encoder) deactivate(self.decoder) deactivate(self.predictor) self.HMC.log_eps.requires_grad = False loss_2 = self.HMC.evaluate_sksd(mu_z, torch.exp(logvar_z)) else: loss_2 = None return loss_3, loss_1, loss_2 def training_step(self, batch: tuple, batch_idx: int, logging: bool=True): """ Perform a traning step following https://arxiv.org/abs/2202.04599 - For the first pre_steps, optimize parameters by maximizing the ELBO - For the rest, optimize encoder using ELBO, and the rest using HMC objective and SKSD Args: batch (tuple): contains (data, observed_data, target, observed_target) batch_idx (int): batch index from the training set logging (bool): log metrics into Tensorboard (True). Default True """ (opt_vae, opt_decoder, opt_predictor, opt_encoder, opt_hmc, opt_scale) = self.optimizers(use_pl_optimizer=True) if self.step_idx < self.pre_steps: self.hmc=False loss_3, rec_x, rec_y, kls = self.forward(batch, hmc=False, samples=self.samples_MC) opt_vae.zero_grad() self.manual_backward(loss_3) opt_vae.step() self.log('ELBO', -loss_3, on_step=False, on_epoch=True, prog_bar=True, logger=True) if logging: self.log('-rec_x', -rec_x, on_step=False, on_epoch=True, prog_bar=False, logger=True) self.log('-rec_y', -rec_y, on_step=False, on_epoch=True, prog_bar=False, logger=True) for l, kl in enumerate(kls): self.log('kl_{:d}'.format(l), kl, on_step=False, on_epoch=True, prog_bar=False, logger=True) else: self.hmc=True loss_3, loss_1, loss_2 = self.forward(batch, samples=self.chains) ##### Optimization # Optimize psi (encoder) activate(self.encoder) deactivate(self.decoder) deactivate(self.predictor) self.HMC.log_eps.requires_grad = False self.HMC.log_inflation.requires_grad = False opt_encoder.zero_grad() opt_decoder.zero_grad() opt_predictor.zero_grad() opt_hmc.zero_grad() opt_scale.zero_grad() self.manual_backward(loss_3) opt_encoder.step() # Optimize theta_x, theta_y and phi (decoders and HMC) activate(self.decoder) activate(self.predictor) self.HMC.log_eps.requires_grad = True deactivate(self.encoder) self.HMC.log_inflation.requires_grad = False opt_encoder.zero_grad() opt_decoder.zero_grad() opt_predictor.zero_grad() opt_hmc.zero_grad() opt_scale.zero_grad() self.manual_backward(loss_1)#, [opt_decoder, opt_predictor, opt_hmc]) opt_decoder.step() opt_predictor.step() opt_hmc.step() if self.sksd and self.step_idx % self.update_s_each == 0: self.HMC.log_inflation.requires_grad = True deactivate(self.encoder) deactivate(self.decoder) deactivate(self.predictor) self.HMC.log_eps.requires_grad = False opt_encoder.zero_grad() opt_decoder.zero_grad() opt_predictor.zero_grad() opt_hmc.zero_grad() opt_scale.zero_grad() self.manual_backward(loss_2)#, opt_scale) opt_scale.step() scale = torch.exp(self.HMC.log_inflation) self.log('scale', scale, on_step=False, on_epoch=True, prog_bar=True, logger=True) if logging: self.log('SKSD', loss_2, on_step=False, on_epoch=True, prog_bar=False, logger=True) self.log('HMC_objective', -loss_1, on_step=False, on_epoch=True, prog_bar=True, logger=True) self.step_idx += 1 def preprocess_batch(self, batch: tuple): """ Preprocessing operations for the batch (overrides the base class function) for defining the HMC objective p(epsilon)(x, y) Args: batch (tuple): contains (data, observed_data, target, observed_target) Returns: tuple: preprocessed batch, contains (data, observed_data, target, observed_target) """ batch = [b.to(self.device) for b in batch] x, observed_x, y, observed_y = batch x = x.view(-1, self.dim_x) # Normalize the data xn = self.normalize_x(x) xo = xn * observed_x x_tilde = torch.cat([xo, observed_x], axis=1) y = y.view(-1, self.dim_y) observed_y = observed_y.view(-1, self.dim_y) # Normalize the target yn = self.normalize_y(y) yon = yn * observed_y y_tilde = torch.cat([yon, observed_y], axis=1) xy = torch.cat([x_tilde, y_tilde], axis=1) observed = torch.logical_or(observed_x.sum(-1, keepdim=True)>0, observed_y.sum(-1, keepdim=True)>0) # Define the HMC objective self.HMC.logp = self.logp_func(xo, observed_x, yon, observed_y) return xn, yn, xy, observed def sample_z(self, mu: torch.Tensor, logvar: torch.Tensor, samples=1, hmc=True) -> torch.Tensor: """ Draw latent samples from a given approx posterior parameterized by mu and logvar Args: mu (torch.Tensor): tensor with the means (batch_size, latent_dim) logvar (torch.Tensor): tensor with the log variances (batch_size, latent_dim) samples (int, optional): number of samples. Defaults to 1. hmc (bool, optional): draw hmc samples or Gaussian samples from the proposal. Defaults to True. Returns: torch.Tensor: latent samples """ if hmc==False or self.validation and self.global_step < self.pre_steps: # Repeat samples_MC times for Monte Carlo mu = mu.repeat(samples, 1, 1).transpose(0, 1) logvar = logvar.repeat(samples, 1, 1).transpose(0, 1) # Reparametrization z = reparameterize(mu, torch.exp(logvar)) else: # sample from the true posterior z, _ = self.HMC.generate_samples_HMC(mu, torch.exp(logvar), chains=samples) return z # ============= Modified PL functions ============= # def configure_optimizers(self): opt_vae = torch.optim.Adam(list(self.decoder.parameters()) + list(self.predictor.parameters()) + list(self.encoder.parameters()), lr=self.lr_pre, weight_decay=0.01) opt_decoder = torch.optim.Adam(list(self.decoder.parameters()), lr=self.lr_decoder, weight_decay=0.01) opt_predictor = torch.optim.Adam(list(self.predictor.parameters()), lr=self.lr_predictor, weight_decay=0.01) opt_encoder = torch.optim.Adam(list(self.encoder.parameters()), lr=self.lr_encoder, weight_decay=0.01) opt_hmc = torch.optim.Adam([self.HMC.log_eps], lr=self.lr_hmc) opt_scale = torch.optim.Adam([self.HMC.log_inflation], lr=self.lr_scale) return [opt_vae, opt_decoder, opt_predictor, opt_encoder, opt_hmc, opt_scale]
1.59375
2
analyzePenalties.py
tgadf/football
0
12793985
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Apr 22 18:29:44 2019 @author: tgadfort """ from debug import debugclass from playTypes import noplay from playYards import playyards #from copy import deepcopy, copy # create logger import logging module_logger = logging.getLogger('log.{0}'.format(__name__)) ############################################################################################################ ## Drive Class ############################################################################################################ class analyzepenalties: def __init__(self): self.logger = logging.getLogger('log.{0}.{1}'.format(__name__, self.__class__)) self.ind = 2*" " self.sep = "======================================================" self.dc = debugclass() self.py = playyards() def isPenaltyAdditive(self, gameData): self.logger.debug("\n{0}".format(2*self.sep)) self.logger.debug("{0}Analyzing Penalty Additiveness".format(self.ind)) for idr,driveData in enumerate(gameData): drivePlays = driveData.plays for ipl,drivePlay in enumerate(drivePlays): play = drivePlay.play if play.penalty.isPenalty is False: continue penaltyyards = play.penalty.yards playyards = play.yds.yards nextYards = drivePlay.nextDiffYards if all([penaltyyards, playyards, nextYards]): if penaltyyards + playyards == nextYards: continue elif penaltyyards == playyards and penaltyyards == nextYards: play.yds.yards = 0 continue else: self.logger.debug("{0}Penalty Analysis: Penalty Yards=={1}\tPlay Yards=={2}\tNext Yards=={3}\tText=={4}".format(self.ind, penaltyyards, playyards, nextYards, play.text)) else: self.logger.debug("{0}Penalty Analysis: Penalty Yards=={1}\tPlay Yards=={2}\tNext Yards=={3}\tText=={4}".format(self.ind, penaltyyards, playyards, nextYards, play.text)) self.logger.debug("{0}Analyzing Penalty Additiveness -> Done".format(self.ind)) def penalties(self, gameData): self.logger.debug("\n{0}".format(2*self.sep)) self.logger.debug("{0}Analyzing Penalties".format(self.ind)) for idr,driveData in enumerate(gameData): drivePlays = driveData.plays for ipl,drivePlay in enumerate(drivePlays): play = drivePlay.play if play.penalty.isPenalty is False: continue penaltyyards = self.py.findPenaltyYards(play.text) nextYards = drivePlay.nextDiffYards if isinstance(play, noplay): if play.yds.yards == 0 and penaltyyards is not None: play.yds.yards = penaltyyards elif play.yds.yards == 0 and penaltyyards is None: play.yds.yards = nextYards else: if play.yds.yards is None: play.yds.yards = nextYards else: print("Not sure...") if nextYards == 0 and play.yds.yards == 0: penaltyyards = 0 if sum([x in play.text for x in ["Personal Foul", "Unsportsmanlike Conduct", "Face Mask"]]) > 0: if nextYards == 15: penaltyyards = 15 play.yds.yards = 0 elif nextYards == 15: penaltyyards = -15 play.yds.yards = 0 if nextYards == penaltyyards: if play.yds.yards == 0: play.yds.yards = nextYards play.penalty.yards = penaltyyards if nextYards == play.yds.yards and nextYards == penaltyyards: continue self.logger.debug("{0}Penalty Analysis: Penalty=={1}\tPlay=={2}\tNext=={3}\tYards=={4}\tPYards=={5}\tText=={6}".format(self.ind, play.penalty.isPenalty, play.name, nextYards, play.yds.yards, penaltyyards, play.text)) self.logger.debug("{0}Analyzing Penalties -> Done".format(self.ind)) return gameData
2.421875
2
battle.py
AvenirX/Meicraft
0
12793986
import random import time from Character import * from Item import create_item def battle(fighters, max_turn=10): """ Battle process start->loot :param max_turn: int turns for 1 battle, default 10 :param fighters: list of fighter :return: None """ # Enter battle_process print('Enter battle_process') # Begin battle_process # Init skills (for n) for fighter in fighters: fighter.init_battle() fighter.report_status() # Turns begin turn = 1 # Init turns # fighters_this_turn = list(fighters) fighters_remain = len(fighters) while turn <= max_turn and fighters_remain >= 2: # Enter Turn #turn print('\n#{t}'.format(t=turn)) # Begin Turn #turn # Init turn # Construct fighters participate in this turn # & Init fighter turn paras fighters_this_turn = [] for fighter in fighters: fighter.init_turn() if fighter.is_alive(): fighters_this_turn.append(fighter) # toimpr magical nb, in right place ? # if turn != 1: # fighter.gain_score(1) # Choose skill for fighter in fighters_this_turn: # NPC choose skill if fighter.is_npc: npc = fighter target = '' target_list = list(set(fighters_this_turn) - {npc}) key = random.choice(npc.get_available_skills()) skill = npc.BATTLESKILLBOOK[key] # If it's an A skill, choose its target if skill.phase_type == 'A': target = random.choice(target_list) # Player input skill else: player = fighter target_list = list(set(fighters_this_turn) - {player}) target = '' # dummy? target_name = '' # dummy? key = '' # dummy? while True: input_raw = input('BoLoBoLo...{s}:' .format(s=str(player.get_available_skills()))) input_args = input_raw.strip().split() key = input_args[0].upper() target_name = input_args[1] if len(input_args) > 1 else '' if key in player.get_available_skills(): break skill = player.BATTLESKILLBOOK[key] # If it's an A skill, choose its target if skill.phase_type == 'A': # Auto choose target when only 1 enemy if len(target_list) == 1: target = target_list[0] else: while True: for target_fighter in target_list: if target_fighter.name == target_name: target = target_fighter if target: break target_name = input('target...') # Cast skill = record move, create proj, deliver proj skill.cast(target) # Billing for fighter in fighters: # Start billing by order for category in ['potion', 'arrow']: for tag in ['fill', 'drain', 'heal', 'damage']: prjs = fighter.incoming_projectiles[category][tag] if prjs: for prj in prjs: prj.billing() # All billed # Check new death if fighter.is_alive() and fighter.HP <= 0: # fighter will die # fighter did die # go_die = set alive false, record turn, leave death message fighter.go_die(turn) fighters_remain -= 1 # killer gain score for killing for prj in fighter.lethal_projectiles: # toImpr move magical nb to global setting prj.caster.killed_someone() # Output turn info # Moves for fighter in fighters: print('{hp}hp {mp}mp\t[{f}]|\t{m}' .format(hp=fighter.HP, mp=fighter.MP, f=fighter.name, m=str(fighter.last_move))) time.sleep(0.2) # Deaths for fighter in fighters_this_turn: if not fighter.is_alive(): print('{f} 卒'.format(f=fighter.name)) turn += 1 continue # Exit turns print('\nExit turns') # Exit battle_process # Battle result score_board = sorted(fighters, key=lambda f: (f.score, f.died_turn), reverse=True) for index, fighter in enumerate(score_board): if fighter.is_alive(): status = '存活({hp}HP)'.format(hp=fighter.HP) else: killers = [] for pj in fighter.lethal_projectiles: killer = '{owner}的{skill}'. \ format(owner=pj.caster.name, skill=pj.skill.alias) killers.append(killer) killers_msg = '&'.join(killers) status = '卒(Turn{t}, {hp}HP, 被{killer}所杀)' \ .format(t=fighter.died_turn, hp=fighter.HP, killer=killers_msg) print('#{i}\t{f}\t\t*{score}*\t\t{status}'.format(i=index+1, f=fighter.name, score=fighter.score, status=status)) # distribute_loot(player, enemy, battle_result) # toAdd loot system # def distribute_loot(player, enemy, battle_result): # """ # Distribute enemy loot to player according to battle result # :param player: obj # :param enemy: obj # :param battle_result: string 'WIN'/'LOSE'/'TIE' # :return: None # """ # if battle_result == 'WIN': # c_money = 1 # c_exp = 1 # loot_item_dict = enemy.loot['item_dict'] # elif battle_result == 'TIE': # c_money = 0 # c_exp = 0.5 # loot_item_dict = {} # elif battle_result == 'LOSE': # c_money = 0 # c_exp = 0 # loot_item_dict = {} # # else: # return # # player.add_money(enemy.loot['money'] * c_money) # player.add_exp(enemy.loot['EXP'] * c_exp) # for loot_item in loot_item_dict.keys(): # player.get_item(loot_item, loot_item_dict[loot_item]) # toImpr separated gameplay if __name__ == "__main__": glove1 = create_item('A2') glove2 = create_item('A2') # toAdd item database # game_items = [glove1, glove2] zcx = Fighter('zcx') zcx.put_in_item(glove1) zcx.equip_item(glove1) iii = Fighter('i', is_npc=True) iii.put_in_item(glove2) iii.equip_item(glove2) j = Fighter('j', is_npc=True) k = Fighter('k', is_npc=True) allFighters = [zcx, iii, j, k] battle(allFighters) # player1.report_wealth() # print(player1.level)
3.453125
3
SA_SVM/pySVM.py
Bowenislandsong/Medical-Document-Classification-
0
12793987
<gh_stars>0 from sklearn import svm from sklearn.datasets import load_files import numpy as np import scipy.io as spio from scipy.sparse import csr_matrix from scipy.special import gammaln frommat = spio.loadmat('sbowen_woStop.mat', squeeze_me=True) xTrain = frommat['X_train_woSTOP'] # Xtest Mtx yTrain = frommat['X_test_woSTOP'] # Xtest Mtx xTest = frommat['Y_train'] # Xtest Mtx yTest = frommat['Y_test'] # Xtest Mtx vocab = frommat['vocab'] # Xtest Mtx print(len(vocab)) def RRNpreprocessing(M,tune,vocablen,special=False): u, doc_indices = np.unique(M[:,0],return_inverse=True) xProcessed = csr_matrix((M[:,2], (doc_indices,M[:,1])), shape=(len(doc_indices), vocablen)) print(xProcessed) alpha = 2*gammaln(tune+1) - gammaln(2*tune+vocablen) print(xProcessed.sum(axis=1)) rowsum = xProcessed.sum(axis=1) WordProb = xProcessed.multiply(rowsum.power(-1)) # print(WordProb) # if (special): # for idx, val in enumerate(u): # print(idx, val) # xProcessed[idx,:] = np.random.choice(xProcessed[idx,:],tune,WordProb[idx,:]) # pass return [xProcessed,alpha] #tuning = [150,200] itune = 150 print("tuning at :"+str(itune)) [xTrainProce,alpha] = RRNpreprocessing(xTrain,itune,len(vocab)) print("Alpha is: "+ str(alpha)) print("Xtrain is :"+str(xTrainProce))
2.25
2
trybs4.py
melvin0008/pythoncodestrial
0
12793988
from bs4 import BeautifulSoup import xlsxwriter workbook= xlsxwriter.Workbook("data.xlsx") worksheet = workbook.add_worksheet() f = open('rough.html',"r") data=f.read() soup=BeautifulSoup(data) div = soup.find('div', {"class":'dataTables_scroll'}) table=div.find('table') tbody=div.find('tbody') rows=tbody.find_all('tr') rowno = 0 for row in rows: a=row.find_all('a') td=row.find_all('td') worksheet.write(rowno, 1, a[2].text) worksheet.write(rowno, 2, td[3].text[td[3].text.find('P:'):]) worksheet.write(rowno, 3, a[3].text) worksheet.write(rowno, 4, a[4].text) worksheet.write(rowno, 5, a[3].text) worksheet.write(rowno, 6, td[6].text) rowno=rowno+1 workbook.close() print "Done"
3.078125
3
plugins/option.py
loktacar/wallpapermaker
1
12793989
from plugin import Plugin class Option(Plugin): """ Base class for option plugins """ # Default value, if default is None, option is required to be set to something else default = None # Option name option = None # Short command line option cmd_short = None # Command line argument name cmd_argument = None # Description, duhh description = '' @staticmethod def parse(value): return value @classmethod def folder_module(cls): return cls.__module__.split('.')[-2] @classmethod def get_doc_line(cls): s = ' '*4 if cls.cmd_short is not None: s += '-%s ' % cls.cmd_short if cls.option is not None: folder_module = cls.folder_module() if folder_module == 'options': s += '--%s' % cls.option else: s += '--%s.%s' % (folder_module, cls.option) if cls.cmd_argument is not None: s += '=%s' % cls.cmd_argument if len(s) < 30: s += ' ' * (30 - len(s)) else: s += '\n' + ' ' * 30 s += cls.description return s
2.78125
3
lang/Python/longest-common-subsequence-1.py
ethansaxenian/RosettaDecode
0
12793990
<gh_stars>0 def lcs(xstr, ystr): """ lcs('thisisatest', 'testing123testing') 'tsitest' """ if not xstr or not ystr: return "" x, xs, y, ys = xstr[0], xstr[1:], ystr[0], ystr[1:] if x == y: return x + lcs(xs, ys) else: return max(lcs(xstr, ys), lcs(xs, ystr), key=len)
3.15625
3
docandcover.py
softwaresaved/docandcover
0
12793991
#input_var='https://github.com/softwaresaved/docandcover/' input_var='https://github.com/Axelrod-Python/Axelrod' import os import shutil from pygit2 import clone_repository try: shutil.rmtree('tmp-repo') except: pass try: repo = clone_repository(input_var,'tmp-repo') except: pass from fileListGetter import fileListGetter from functionDetailGetter import functionDetailGetter #fileLists = fileListGetter('../snippets/tmp-repo/') fileLists = fileListGetter('tmp-repo') for i in functionDetailGetter(fileLists): print i #printFileLists(fileLists)
2.546875
3
galerias/migrations/0003_auto_20190806_1038.py
shiminasai/cantera
0
12793992
# Generated by Django 2.1.7 on 2019-08-06 16:38 import ckeditor_uploader.fields from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone import sorl.thumbnail.fields class Migration(migrations.Migration): dependencies = [ ('galerias', '0002_auto_20190805_1410'), ] operations = [ migrations.AddField( model_name='galeriaimagenes', name='aprobado', field=models.BooleanField(default=True), preserve_default=False, ), migrations.AddField( model_name='galeriavideos', name='aprobado', field=models.BooleanField(default=True), preserve_default=False, ), migrations.AddField( model_name='galeriavideos', name='descripcion', field=ckeditor_uploader.fields.RichTextUploadingField(default=django.utils.timezone.now), preserve_default=False, ), migrations.AddField( model_name='galeriavideos', name='portada', field=sorl.thumbnail.fields.ImageField(blank=True, null=True, upload_to='galerias/', verbose_name='Imagen'), ), migrations.AlterField( model_name='galeriaimagenes', name='usuario', field=models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to=settings.AUTH_USER_MODEL, verbose_name='Autor'), ), migrations.AlterField( model_name='galeriavideos', name='usuario', field=models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to=settings.AUTH_USER_MODEL, verbose_name='Autor'), ), ]
1.703125
2
star_resty/payload/json.py
lazy-labs/star_resty
3
12793993
<gh_stars>1-10 import types from typing import Mapping, Type, TypeVar, Union import ujson from marshmallow import EXCLUDE, Schema from starlette.requests import Request from star_resty.exceptions import DecodeError from .base import SchemaParser, set_parser __all__ = ('json_schema', 'json_payload', 'JsonParser') P = TypeVar('P') def json_schema(schema: Union[Schema, Type[Schema]], cls: P, unknown: str = EXCLUDE) -> P: return types.new_class('JsonInputParams', (cls,), exec_body=set_parser(JsonParser.create(schema, unknown=unknown))) def json_payload(schema: Union[Schema, Type[Schema]], unknown=EXCLUDE) -> Type[Mapping]: return json_schema(schema, Mapping, unknown=unknown) class JsonParser(SchemaParser): __slots__ = () @property def location(self): return 'body' @property def media_type(self): return 'application/json' async def parse(self, request: Request): body = await request.body() if body is None: data = {} else: try: data = ujson.loads(body) except (TypeError, ValueError) as e: raise DecodeError('Invalid json body') from e return self.schema.load(data, unknown=self.unknown)
2.140625
2
2-resources/_External-learning-resources/02-pyth/python-patterns-master/patterns/creational/prototype.py
eengineergz/Lambda
0
12793994
<reponame>eengineergz/Lambda """ *What is this pattern about? This patterns aims to reduce the number of classes required by an application. Instead of relying on subclasses it creates objects by copying a prototypical instance at run-time. This is useful as it makes it easier to derive new kinds of objects, when instances of the class have only a few different combinations of state, and when instantiation is expensive. *What does this example do? When the number of prototypes in an application can vary, it can be useful to keep a Dispatcher (aka, Registry or Manager). This allows clients to query the Dispatcher for a prototype before cloning a new instance. Below provides an example of such Dispatcher, which contains three copies of the prototype: 'default', 'objecta' and 'objectb'. *TL;DR Creates new object instances by cloning prototype. """ from typing import Any, Dict class Prototype: def __init__(self, value: str = "default", **attrs: Any) -> None: self.value = value self.__dict__.update(attrs) def clone(self, **attrs: Any) -> None: """Clone a prototype and update inner attributes dictionary""" # Python in Practice, <NAME>field # copy.deepcopy can be used instead of next line. obj = self.__class__(**self.__dict__) obj.__dict__.update(attrs) return obj class PrototypeDispatcher: def __init__(self): self._objects = {} def get_objects(self) -> Dict[str, Prototype]: """Get all objects""" return self._objects def register_object(self, name: str, obj: Prototype) -> None: """Register an object""" self._objects[name] = obj def unregister_object(self, name: str) -> None: """Unregister an object""" del self._objects[name] def main() -> None: """ >>> dispatcher = PrototypeDispatcher() >>> prototype = Prototype() >>> d = prototype.clone() >>> a = prototype.clone(value='a-value', category='a') >>> b = a.clone(value='b-value', is_checked=True) >>> dispatcher.register_object('objecta', a) >>> dispatcher.register_object('objectb', b) >>> dispatcher.register_object('default', d) >>> [{n: p.value} for n, p in dispatcher.get_objects().items()] [{'objecta': 'a-value'}, {'objectb': 'b-value'}, {'default': 'default'}] >>> print(b.category, b.is_checked) a True """ if __name__ == "__main__": import doctest doctest.testmod()
3.0625
3
compile.py
Brikwerk/cvpr-explorer
0
12793995
<reponame>Brikwerk/cvpr-explorer import json import time import os from urllib.parse import urljoin import argparse import requests from bs4 import BeautifulSoup from tqdm import tqdm parser = argparse.ArgumentParser() parser.add_argument('year', type=int, help="""Specifies the CVPR year to compile into a library.""") parser.add_argument('-d', '--delay', required=False, default=0.25, help="""Specifies the delay between publications requests.""") parser.add_argument('-u', '--useragent', required=False, default="CVPR-Explorer", help="""Specifies the user-agent string for publication requests.""") args = parser.parse_args() def get_paged_papers(soup, base_url): all_papers = False page_links = [] for page in soup.findAll('dd'): page_link = page.findAll("a")[0].get('href') if "all" in page_link: all_papers = page_link break else: page_links.append(page_link) if all_papers: url = urljoin(base_url, all_papers) html_text = requests.get(url).text page_soup = BeautifulSoup(html_text, 'html.parser') return page_soup.findAll('dt', {'class': 'ptitle'}) else: paper_elms = [] for page_link in page_links: url = urljoin(base_url, page_link) html_text = requests.get(url).text page_soup = BeautifulSoup(html_text, 'html.parser') paper_elms = paper_elms + page_soup.findAll('dt', {'class': 'ptitle'}) time.sleep(args.delay) return paper_elms if __name__ == "__main__": user_agent = "CVPR-Explorer" headers = { 'User-Agent': user_agent } cvpr_base_url = "https://openaccess.thecvf.com" cvpr_year = args.year cvpr_url = f"{cvpr_base_url}/CVPR{cvpr_year}" html_text = requests.get(cvpr_url).text soup = BeautifulSoup(html_text, 'html.parser') print(f"Getting the publication list for CVPR {args.year}") if "Day 1: " in soup.select_one('dd').text: paper_elms = get_paged_papers(soup, cvpr_base_url) else: paper_elms = soup.findAll('dt', {'class': 'ptitle'}) print(len(paper_elms), "publications found.") print("Compiling library...") papers = {} for i in tqdm(range(len(paper_elms))): paper_elm = paper_elms[i] try: paper_anchor = paper_elm.findAll('a')[0] paper_info_link = urljoin(cvpr_base_url, paper_anchor.get('href')) paper_title = paper_anchor.contents[0] html_text = requests.get(paper_info_link).text soup = BeautifulSoup(html_text, "html.parser") paper_abstract = soup.find('div', {'id': 'abstract'}).contents[0] paper_link = soup.findAll("a", string="pdf")[0].get('href') paper_link = urljoin(cvpr_base_url, paper_link) papers[i] = { "paper_title": paper_title, "paper_info_link": paper_info_link, "paper_link": paper_link, "paper_abstract": paper_abstract } time.sleep(args.delay) except Exception as e: print("\n\n--> ERROR <--") print(e) print("\n\n") time.sleep(args.delay) print("Writing library...") if not os.path.isdir("./libraries"): os.mkdir("./libraries") with open(f"./libraries/cvpr{cvpr_year}.json", "w") as f: f.write(json.dumps(papers, indent=4)) print("Done!")
2.90625
3
recursion/sumTriangleFromArrray.py
kushvr7/High-On-DSA
76
12793996
<gh_stars>10-100 def triangle(array, result): result.insert(0,array) array = [array[i-1]+array[i] for i in range(1, len(array))] return triangle(array , result) if len(array)>0 else result for i in triangle([1,2,3,4,5], []): print(i) ''' triangle(3,5,7,9) -> triangle (8,12,16) -> triangle (20 ,28) -> triangle (48) -> triangle () return -> print(48) -> print(20, 28) ->print(8,12,16) ->print(3,5,7,9) ->print(1,2,3,4,5) '''
3.65625
4
hal_fuzz/hal_fuzz/handlers/debug.py
diagprov/hal-fuzz
117
12793997
<gh_stars>100-1000 from unicorn.arm_const import * def stop(uc): print_context(uc) input("...") def print_context(uc): print("==== State ====") r0 = uc.reg_read(UC_ARM_REG_R0) r1 = uc.reg_read(UC_ARM_REG_R1) r2 = uc.reg_read(UC_ARM_REG_R2) r3 = uc.reg_read(UC_ARM_REG_R3) r4 = uc.reg_read(UC_ARM_REG_R4) r5 = uc.reg_read(UC_ARM_REG_R5) r7 = uc.reg_read(UC_ARM_REG_R7) sp = uc.reg_read(UC_ARM_REG_SP) pc = uc.reg_read(UC_ARM_REG_PC) print("r0: 0x{:x}\nr1: 0x{:x}\nr2: 0x{:x}\nr3: 0x{:x}\nr4: 0x{:x}\nr5: 0x{:x}\nr7: 0x{:x}\npc: 0x{:x}\nsp: 0x{:x}".format(r0, r1, r2, r3, r4, r5, r7, pc, sp)) def breakpoint(uc): import ipdb; ipdb.set_trace()
2.125
2
artellapipe/tools/welcome/widgets/frame.py
ArtellaPipe/artellapipe-tools-welcome
0
12793998
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Module that contains frame widget implementation """ from __future__ import print_function, division, absolute_import from Qt.QtCore import Qt from Qt.QtWidgets import QSizePolicy, QFrame from Qt.QtGui import QPainter, QPainterPath class WelcomeFrame(QFrame, object): def __init__(self, pixmap, parent=None): super(WelcomeFrame, self).__init__(parent) self.setAttribute(Qt.WA_TranslucentBackground) self.setFrameShape(QFrame.NoFrame) self.setFrameShadow(QFrame.Plain) self._pixmap = pixmap self.setStyleSheet('QFrame { border-radius: 10px; }') self.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) def paintEvent(self, event): """ Override base QFrame paintEvent function :param event: QPaintEvent """ painter = QPainter(self) painter.setRenderHint(QPainter.Antialiasing) path = QPainterPath() path.addRoundedRect(0, 0, self.width(), self.height(), 10, 10) painter.setClipPath(path) painter.drawPixmap(0, 0, self.width(), self.height(), self._pixmap)
2.1875
2
tests/blackbox_tests/__init__.py
stevecotton/i18nspector
1
12793999
<gh_stars>1-10 # Copyright © 2012-2021 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the “Software”), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import difflib import inspect import io import multiprocessing as mp import os import re import shlex import signal import subprocess as ipc import sys import traceback import unittest import nose import nose.plugins from .. import tools here = os.path.dirname(__file__) # ---------------------------------------- def this(): ''' Return function that called this function. (Hopefully!) ''' return globals()[inspect.stack()[1][0].f_code.co_name] # ---------------------------------------- _parse_etag = re.compile(r'([A-Z]): (([\w-]+).*)').match def parse_etag(contents, path): match = _parse_etag(contents) if match is None: return t = ETag(match.group(1), path, match.group(2)) return t def etags_from_tagstring(obj, path): try: docstring = obj.tagstring except AttributeError: return for line in docstring.splitlines(): line = line.lstrip() t = parse_etag(line, path) if t is not None: yield t def tagstring(s): def update(x): x.tagstring = s return x return update # ---------------------------------------- class ETag(): _ellipsis = '<...>' _split = re.compile('({})'.format(re.escape(_ellipsis))).split def __init__(self, code, path, rest): self._s = s = '{code}: {path}: {rest}'.format( code=code, path=path, rest=rest, ) self.tag = rest.split(None, 1)[0] regexp = ''.join( '.*' if chunk == self._ellipsis else re.escape(chunk) for chunk in self._split(s) ) self._regexp = re.compile('^{}$'.format(regexp)) def __eq__(self, other): if isinstance(other, str): return self._regexp.match(other) else: return NotImplemented def __str__(self): return self._s def __repr__(self): return repr(self._s) # ---------------------------------------- def _get_signal_names(): data = dict( (name, getattr(signal, name)) for name in dir(signal) if re.compile('^SIG[A-Z0-9]*$').match(name) ) try: if data['SIGABRT'] == data['SIGIOT']: del data['SIGIOT'] except KeyError: pass try: if data['SIGCHLD'] == data['SIGCLD']: del data['SIGCLD'] except KeyError: pass for name, n in data.items(): yield n, name _signal_names = dict(_get_signal_names()) def get_signal_name(n): try: return _signal_names[n] except KeyError: return str(n) # ---------------------------------------- test_file_extensions = ('.mo', '.po', '.pot', '.pop') # .pop is a special extension to trigger unknown-file-type class Plugin(nose.plugins.Plugin): name = 'po-plugin' enabled = True def options(self, parser, env): pass def wantFile(self, path): if path.endswith(test_file_extensions): if path.startswith(os.path.join(os.path.abspath(here), '')): return True def loadTestsFromFile(self, path): if self.wantFile(path): yield TestCase(path) def wantFunction(self, func): if getattr(func, 'redundant', False): return False class TestCase(unittest.TestCase): def __init__(self, path): super().__init__('_test') self.path = os.path.relpath(path) def _test(self): _test_file(self.path, basedir=None) def __str__(self): return self.path class SubprocessError(Exception): pass def queue_get(queue, process): ''' Remove and return an item from the queue. Block until the process terminates. ''' while True: try: return queue.get(timeout=1) # This semi-active waiting is ugly, but there doesn't seem be any # obvious better way. except mp.queues.Empty: if process.exitcode is None: continue else: raise def run_i18nspector(options, path): commandline = os.environ.get('I18NSPECTOR_COMMANDLINE') if commandline is None: # We cheat here a bit, because exec(3)ing is very expensive. # Let's load the needed Python modules, and use multiprocessing to # “emulate” the command execution. import lib.cli # pylint: disable=import-outside-toplevel assert lib.cli # make pyflakes happy prog = os.path.join(here, os.pardir, os.pardir, 'i18nspector') commandline = [sys.executable, prog] queue = mp.Queue() child = mp.Process( target=_mp_run_i18nspector, args=(prog, options, path, queue) ) child.start() [stdout, stderr] = ( s.splitlines() for s in queue_get(queue, child) ) child.join() rc = child.exitcode else: commandline = shlex.split(commandline) commandline += options commandline += [path] fixed_env = dict(os.environ, PYTHONIOENCODING='UTF-8') with ipc.Popen(commandline, stdout=ipc.PIPE, stderr=ipc.PIPE, env=fixed_env) as child: stdout, stderr = ( s.decode('UTF-8').splitlines() for s in child.communicate() ) rc = child.poll() assert isinstance(rc, int) if rc == 0: return stdout if rc < 0: message = ['command was interrupted by signal {sig}'.format(sig=get_signal_name(-rc))] # pylint: disable=invalid-unary-operand-type else: message = ['command exited with status {rc}'.format(rc=rc)] message += [''] if stdout: message += ['stdout:'] message += ['| ' + s for s in stdout] + [''] else: message += ['stdout: (empty)'] if stderr: message += ['stderr:'] message += ['| ' + s for s in stderr] else: message += ['stderr: (empty)'] raise SubprocessError('\n'.join(message)) def _mp_run_i18nspector(prog, options, path, queue): with open(prog, 'rt', encoding='UTF-8') as file: code = file.read() sys.argv = [prog] + list(options) + [path] orig_stdout = sys.stdout orig_stderr = sys.stderr code = compile(code, prog, 'exec') io_stdout = io.StringIO() io_stderr = io.StringIO() gvars = dict( __file__=prog, ) (sys.stdout, sys.stderr) = (io_stdout, io_stderr) try: try: exec(code, gvars) # pylint: disable=exec-used finally: (sys.stdout, sys.stderr) = (orig_stdout, orig_stderr) stdout = io_stdout.getvalue() stderr = io_stderr.getvalue() except SystemExit: queue.put([stdout, stderr]) raise except: # pylint: disable=bare-except exctp, exc, tb = sys.exc_info() stderr += ''.join( traceback.format_exception(exctp, exc, tb) ) queue.put([stdout, stderr]) sys.exit(1) raise # hi, pydiatra! else: queue.put([stdout, stderr]) sys.exit(0) def assert_emit_tags(path, etags, *, options=()): etags = list(etags) stdout = run_i18nspector(options, path) expected_failure = os.path.basename(path).startswith('xfail-') if stdout != etags: if expected_failure: raise nose.SkipTest('expected failure') str_etags = [str(x) for x in etags] message = ['Tags differ:', ''] diff = list( difflib.unified_diff(str_etags, stdout, n=9999) ) message += diff[3:] raise AssertionError('\n'.join(message)) elif expected_failure: raise AssertionError('unexpected success') class TestFileSyntaxError(Exception): pass def _parse_test_header_file(file, path, *, comments_only): etags = [] options = [] for n, line in enumerate(file): orig_line = line if comments_only: if n == 0 and line.startswith('#!'): continue if line.startswith('# '): line = line[2:] else: break if line.startswith('--'): options += shlex.split(line) else: etag = parse_etag(line, path) if etag is None: if comments_only: break else: raise TestFileSyntaxError(orig_line) etags += [etag] return etags, options def _parse_test_headers(path): # <path>.tags: try: file = open(path + '.tags', encoding='UTF-8') # pylint: disable=consider-using-with except FileNotFoundError: pass else: with file: return _parse_test_header_file(file, path, comments_only=False) # <path>.gen: try: file = open(path + '.gen', encoding='UTF-8', errors='ignore') # pylint: disable=consider-using-with except FileNotFoundError: pass else: with file: return _parse_test_header_file(file, path, comments_only=True) # <path>: with open(path, 'rt', encoding='UTF-8', errors='ignore') as file: return _parse_test_header_file(file, path, comments_only=True) def _test_file(path, basedir=here): if basedir is not None: path = os.path.relpath(os.path.join(basedir, path), start=os.getcwd()) options = [] etags, options = _parse_test_headers(path) assert_emit_tags(path, etags, options=options) def get_coverage_for_file(path): etags, options = _parse_test_headers(path) del options return (t.tag for t in etags) def get_coverage_for_function(fn): for etag in etags_from_tagstring(fn, ''): yield etag.tag def _get_test_filenames(): for root, dirnames, filenames in os.walk(here): del dirnames for filename in filenames: if not filename.endswith(test_file_extensions): continue yield os.path.join(root, filename) def test_file(): for filename in _get_test_filenames(): path = os.path.relpath(filename, start=here) yield _test_file, path test_file.redundant = True # not needed if the plugin is enabled @tagstring(''' E: os-error No such file or directory ''') def test_os_error_no_such_file(): with tools.temporary_directory() as tmpdir: path = os.path.join(tmpdir, 'nonexistent.po') expected = etags_from_tagstring(this(), path) assert_emit_tags(path, expected) @tagstring(''' E: os-error Permission denied ''') def test_os_error_permission_denied(): if os.getuid() == 0: raise nose.SkipTest('this test must not be run as root') with tools.temporary_directory() as tmpdir: path = os.path.join(tmpdir, 'denied.po') with open(path, 'wb'): pass os.chmod(path, 0) expected = etags_from_tagstring(this(), path) assert_emit_tags(path, expected) # ---------------------------------------- def get_coverage(): coverage = set() for filename in _get_test_filenames(): for tag in get_coverage_for_file(filename): coverage.add(tag) for objname, obj in globals().items(): if not objname.startswith('test_'): continue for tag in get_coverage_for_function(obj): coverage.add(tag) return coverage # vim:ts=4 sts=4 sw=4 et
1.78125
2
minydra/console.py
pg2455/minydra
0
12794000
<gh_stars>0 class bcolors: HEADER = "\033[95m" OKBLUE = "\033[94m" OKGREEN = "\033[92m" WARNING = "\033[93m" FAIL = "\033[91m" ENDC = "\033[0m" BOLD = "\033[1m" UNDERLINE = "\033[4m" class MinyConsole: def _end(self, key, *args): return f"{key}{' '.join(args)}{bcolors.ENDC}" def okblue(self, *args): return self._end(bcolors.OKBLUE, *args) def warn(self, *args): return self._end(bcolors.WARNING, *args) def okgreen(self, *args): return self._end(bcolors.OKGREEN, *args) def fail(self, *args): return self._end(bcolors.FAIL, *args) def bold(self, *args): return self._end(bcolors.BOLD, *args) def underline(self, *args): return self._end(bcolors.UNDERLINE, *args)
2.515625
3
imperative/python/megengine/traced_module/_passes/fuse_pass.py
Olalaye/MegEngine
1
12794001
<reponame>Olalaye/MegEngine # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import operator from collections import defaultdict from typing import Any, Callable, List from ... import functional as F from ... import module as M from ...logger import get_logger from ...tensor import Parameter, Tensor from ...utils.bn_fusion import fold_weight_bias from ..expr import Expr, is_call_function from ..utils import assign_attr, get_subattr from .matcher import PatternMatcher from .pass_base import BackwardPass, register_pass from .pattern import ExprPattern, any_node, is_const, is_op, is_var from .utils import get_const_value, register_obj logger = get_logger(__name__) @register_pass("FuseAddMul") class FuseAddMul(BackwardPass): """Fold adjacent const add or mul binary operations. For example, the following code .. code-block:: x = x + 1 x = 2 + x x = x * 4 x = x * 0.25 will be changed to .. code-block:: x = x + 3 """ name = "FuseAddMul" required_pass = ["NormElemWise"] run_once = False def __init__(self,): super().__init__() def _make_pattern(op_0, op_1) -> ExprPattern: x = is_var().check_users(False) if op_0 not in [operator.add, operator.mul]: op_0 = is_op(op_0) if op_1 not in [operator.add, operator.mul]: op_1 = is_op(op_1) pattern = op_0(x, is_const()) | op_0(x, "*") pattern = op_1(pattern, is_const()) | op_1(pattern, "*") return pattern self.pattern_dict = {} for op, func in zip([operator.add, F.pow], [self.fold_add, self.fold_pow],): self.pattern_dict[_make_pattern(op, op)] = func for op_0 in [F.neg, operator.mul]: for op_1 in [F.neg, operator.mul]: self.pattern_dict[_make_pattern(op_0, op_1)] = self.fold_mul def run_transform(self, expr: Expr): matcher = PatternMatcher() for pattern, func in self.pattern_dict.items(): res = matcher.match(pattern, expr) if res: break if not res: return expr return func(expr) def _fold_helper(self, expr: Expr, op_c: Callable, op_t: Callable): const_0 = self.get_const_value(expr) # todo: support more shape if isinstance(const_0, Tensor) and const_0._tuple_shape not in [(1,), tuple()]: return expr const_1 = self.get_const_value(expr.inputs[0].expr) if isinstance(const_1, Tensor) and const_1._tuple_shape not in [(1,), tuple()]: return expr inp_node = expr.inputs[0].expr.inputs[0] const = op_c(const_0, const_1) graph = expr.top_graph if (const == 1 and op_t in [operator.pow, operator.mul]) or ( const == 0 and op_t in [operator.add] ): graph.replace_node({expr.outputs[0]: inp_node}) graph.compile() return expr with expr.top_graph.insert_exprs(): out_node = op_t(inp_node, const) graph.replace_node({expr.outputs[0]: out_node}) graph.compile() return out_node.expr def fold_add(self, expr: Expr): return self._fold_helper(expr, operator.add, operator.add) def fold_mul(self, expr): return self._fold_helper(expr, operator.mul, operator.mul) def fold_pow(self, expr): return self._fold_helper(expr, operator.mul, F.pow) def get_const_value(self, expr: Expr): if is_call_function(expr, F.neg): return -1 if len(expr.inputs) == 2: value = get_const_value(expr.inputs[1].expr, None) assert value is not None, " " return value value = expr.const_val[0][-1] return value @register_pass("FuseConvBn") class FuseConvBn(BackwardPass): r"""Fuse BN layers into conv2d.""" name = "FuseConvBn" required_pass = ["AttrToConstant"] run_once = True def __init__(self): super().__init__() self.used_name = defaultdict(int) def run_transform(self, expr: Expr): conv_pat_0 = is_op(M.Conv2d) conv_pat_1 = is_op(F.conv2d) bn_pat_0 = is_op(M.BatchNorm2d)(conv_pat_0 | conv_pat_1) bn_pat_1 = is_op(F.batch_norm) # inp, running_mean, running_var, weight, bias bn_inps = ( conv_pat_0 | conv_pat_1, is_const(), is_const(), is_const(), is_const(), ) bn_pat = ( (bn_pat_1(*bn_inps[:3])) | (bn_pat_1(*bn_inps[:4])) | (bn_pat_1(*bn_inps)) | bn_pat_0 ) matcher = PatternMatcher() if not matcher.match(bn_pat, expr): return expr matched_exprs = matcher.matched_exprs if conv_pat_0 in matched_exprs: return self.fold_convm_bn(matched_exprs[conv_pat_0], matched_exprs[bn_pat]) else: return self.fold_convf_bn(matched_exprs[conv_pat_1], matched_exprs[bn_pat]) def fold_convm_bn(self, conv: Expr, bn: Expr): mnode, inp_node = conv.inputs[:2] self_node = mnode.expr.inputs[0] attr_name = conv.inputs[0].expr.name graph = conv.top_graph if len(mnode.users) > 1: self.used_name[mnode.qualname] += 1 attr_name = "{}_{}".format(attr_name, self.used_name[mnode.qualname]) logger.warning( "{} is used {} times and its name will be reset to {}.{}".format( mnode.qualname, len(mnode.users), graph.qualname, attr_name ) ) conv_module = mnode.owner weight, bias = conv_module.weight, conv_module.bias mean, var, gamma, beta, eps = self.get_bn_params(bn) weight, bias = fold_weight_bias(weight, bias, gamma, beta, mean, var, eps) new_conv = M.Conv2d( in_channels=conv_module.in_channels, out_channels=conv_module.out_channels, kernel_size=conv_module.kernel_size, stride=conv_module.stride, padding=conv_module.padding, dilation=conv_module.dilation, groups=conv_module.groups, bias=conv_module.bias is not None, conv_mode=conv_module.conv_mode, compute_mode=conv_module.compute_mode, name=conv_module.name, ) new_conv.weight = Parameter(weight) new_conv.bias = Parameter(bias) new_conv.training = conv_module.training assign_attr(new_conv, self_node.owner, attr_name) with graph.insert_exprs(mnode.expr): out_node = get_subattr(self_node, attr_name)(inp_node) graph.replace_node({bn.outputs[0]: out_node}) graph.compile() out_node.name = conv.outputs[0].name return out_node.expr def fold_convf_bn(self, conv: Expr, bn: Expr): named_args = conv.named_args weight = get_const_value(named_args["weight"], named_args["weight"]) bias = get_const_value(named_args["bias"], named_args["bias"]) mean, var, gamma, beta, eps = self.get_bn_params(bn) weight, bias = fold_weight_bias(weight, bias, gamma, beta, mean, var, eps) named_args["weight"] = weight named_args["bias"] = bias graph = conv.top_graph with graph.insert_exprs(): out_node = F.conv2d(**named_args) graph.replace_node({bn.outputs[0]: out_node}) graph.compile() out_node.name = conv.outputs[0].name return out_node.expr def get_bn_params(self, bn: Expr): if is_call_function(bn): named_args = bn.named_args mean = get_const_value( named_args["running_mean"], named_args["running_mean"] ) var = get_const_value(named_args["running_var"], named_args["running_var"]) gamma = get_const_value(named_args["weight"], named_args["weight"]) beta = get_const_value(named_args["bias"], named_args["bias"]) eps = named_args["eps"] return mean, var, gamma, beta, eps else: bn_module = bn.inputs[0].owner mean = bn_module.running_mean var = bn_module.running_var gamma = bn_module.weight beta = bn_module.bias eps = bn_module.eps return mean, var, gamma, beta, eps
2.015625
2
treemodels.py
zgana/manatee
0
12794002
# treemodels.py from __future__ import division import gtk from debug import * import numpy as np import matplotlib.pyplot as plt class CountingActivitiesModel (gtk.GenericTreeModel): """Gtk TreeModel for CountingActivity's in a Log.""" def __init__ (self, log): gtk.GenericTreeModel.__init__ (self) self.log = log @property def n_rows (self): return len (self.log.counting_activities) # Implementation of gtk.GenericTreeModel def on_get_flags (self): return gtk.TREE_MODEL_LIST_ONLY def on_get_n_columns (self): return 2 def on_get_column_type (self, index): return str def on_get_iter (self, path): if len (self.log.counting_activities): return path[0] def on_get_path (self, rowref): return (rowref,) def on_get_value (self, row, col): if len (self.log.counting_activities) == 0: return None activity = sorted (self.log.counting_activities)[row] if col == 0: return activity.name elif col == 1: return activity.unit else: return None def on_iter_next (self, rowref): if rowref == self.n_rows - 1 or self.n_rows == 0: return None else: return rowref + 1 def on_iter_children (self, parent): return 0 # TODO: is this right? def on_iter_has_child (self, rowref): return False def on_iter_n_children (self, rowref): if rowref: return 0 else: return self.n_rows def on_iter_nth_child (self, parent, n): if parent: return None elif n < self.n_rows: return n else: return None def on_iter_parent (self, child): return None class TimingActivitiesModel (gtk.GenericTreeModel): """Gtk TreeModel for TimingActivity's in a Log.""" def __init__ (self, log): gtk.GenericTreeModel.__init__ (self) self.log = log @property def n_rows (self): return len (self.log.timing_activities) # Implementation of gtk.GenericTreeModel def on_get_flags (self): return gtk.TREE_MODEL_LIST_ONLY def on_get_n_columns (self): return 1 def on_get_column_type (self, index): return str def on_get_iter (self, path): if len (self.log.timing_activities): return path[0] def on_get_path (self, rowref): return (rowref,) def on_get_value (self, row, col): if len (self.log.timing_activities) == 0: return None activity = sorted (self.log.timing_activities)[row] if col == 0: return activity.name else: return None def on_iter_next (self, rowref): if rowref == self.n_rows - 1 or self.n_rows == 0: return None else: return rowref + 1 def on_iter_children (self, parent): return 0 # TODO: is this right? def on_iter_has_child (self, rowref): return False def on_iter_n_children (self, rowref): if rowref: return 0 else: return self.n_rows def on_iter_nth_child (self, parent, n): if parent: return None elif n < self.n_rows: return n else: return None def on_iter_parent (self, child): return None class CountingEntriesModel (gtk.GenericTreeModel): """Gtk TreeModel for CountingEntry's in a Log.""" def __init__ (self, log, activity_name): gtk.GenericTreeModel.__init__ (self) self.log = log self.activity_name = activity_name @property def entries (self): return self.log.get_entries (self.activity_name) @property def n_rows (self): return len (self.entries) # Implementation of gtk.GenericTreeModel def on_get_flags (self): return gtk.TREE_MODEL_LIST_ONLY def on_get_n_columns (self): return 3 def on_get_column_type (self, index): return str def on_get_iter (self, path): if len (self.entries): return path[0] def on_get_path (self, rowref): return (rowref,) def on_get_value (self, row, col): if self.n_rows == 0: return None entry = self.entries[row] if col == 0: return str (entry.date) elif col == 1: return str (entry.n) elif col == 2: return str (entry.error) elif col == 3: return str (entry.note) else: return None def on_iter_next (self, rowref): if rowref == self.n_rows - 1 or self.n_rows == 0: return None else: return rowref + 1 def on_iter_children (self, parent): return 0 # TODO: is this right? def on_iter_has_child (self, rowref): return False def on_iter_n_children (self, rowref): if rowref: return 0 else: return self.n_rows def on_iter_nth_child (self, parent, n): if parent: return None elif n < self.n_rows: return n else: return None def on_iter_parent (self, child): return None class TimingEntriesModel (gtk.GenericTreeModel): """Gtk TreeModel for TimingEntry's in a Log.""" def __init__ (self, log, activity_name): gtk.GenericTreeModel.__init__ (self) self.log = log self.activity_name = activity_name @property def entries (self): return self.log.get_entries (self.activity_name) @property def n_rows (self): return len (self.entries) # Implementation of gtk.GenericTreeModel def on_get_flags (self): return gtk.TREE_MODEL_LIST_ONLY def on_get_n_columns (self): return 2 def on_get_column_type (self, index): return str def on_get_iter (self, path): if len (self.entries): return path[0] def on_get_path (self, rowref): return (rowref,) def on_get_value (self, row, col): def fmt (t): return '{0:04d}-{1:02d}-{2:02d} {3:02d}:{4:02d}'.format ( t.year, t.month, t.day, t.hour, t.minute) if self.n_rows == 0: return None entry = self.entries[row] if col == 0: return fmt (entry.start_time) elif col == 1: return fmt (entry.end_time) elif col == 2: return str (entry.note) else: return None def on_iter_next (self, rowref): if rowref == self.n_rows - 1 or self.n_rows == 0: return None else: return rowref + 1 def on_iter_children (self, parent): return 0 # TODO: is this right? def on_iter_has_child (self, rowref): return False def on_iter_n_children (self, rowref): if rowref: return 0 else: return self.n_rows def on_iter_nth_child (self, parent, n): if parent: return None elif n < self.n_rows: return n else: return None def on_iter_parent (self, child): return None class ActivityDrawModel (gtk.GenericTreeModel): """Gtk TreeModel for drawing Activity's in a Log.""" def __init__ (self, activities): gtk.GenericTreeModel.__init__ (self) self.activities = sorted (activities) self.checks = [ False for activity in self.activities] n = len (self.activities) ##mpl_colors = [ ## (0.0, 0.0, 1.0), ## (0.0, 0.5, 0.0), ## (1.0, 0.0, 0.0), ## (0.0, 0.75, 0.75), ## (0.75, 0.0, 0.75), ## (0.75, 0.75, 0.0), ## (0.0, 0.0, 0.0), ## (0.0, 0.0, 1.0) ] ##n_color = len (mpl_colors) ##self.colors = [ ## gtk.gdk.Color (*mpl_colors[i % n_color]) for i in xrange (n)] cm = plt.get_cmap ('rainbow') self.colors = [ gtk.gdk.Color (*cm (i / n)[:3]) for i in xrange (n)] self.color_tuples = [ cm (i / n)[:3] for i in xrange (n)] self.alphas = [ int (.8 * 65535) for activity in self.activities] @property def n_rows (self): return len (self.activities) # toggle def toggle (self, path): row = int (path) self.checks[row] = not self.checks[row] def toggle_all (self): if np.sum (self.checks) == len (self.checks): value = False else: value = True for row in xrange (len (self.checks)): self.checks[row] = value # Implementation of gtk.GenericTreeModel def on_get_flags (self): return gtk.TREE_MODEL_LIST_ONLY def on_get_n_columns (self): return 3 def on_get_column_type (self, index): if index == 0: return bool elif index == 1: return str elif index == 2: return gtk.gdk.Pixbuf def on_get_iter (self, path): if self.n_rows: return path[0] def on_get_path (self, rowref): return (rowref,) def on_get_value (self, row, col): if self.n_rows == 0: return None activity = sorted (self.activities)[row] if col == 0: return self.checks[row] elif col == 1: return activity.name else: pb = gtk.gdk.Pixbuf ( gtk.gdk.COLORSPACE_RGB, True, 8, 16, 16) color = self.colors[row] color_str = '{0:02x}{1:02x}{2:02x}{3:02x}'.format ( *map (int, (color.red / 256, color.green / 256, color.blue / 256, self.alphas[row] / 256))) pb.fill (int (color_str, 16)) return pb def on_iter_next (self, rowref): if rowref == self.n_rows - 1 or self.n_rows == 0: return None else: return rowref + 1 def on_iter_children (self, parent): return 0 # TODO: is this right? def on_iter_has_child (self, rowref): return False def on_iter_n_children (self, rowref): if rowref: return 0 else: return self.n_rows def on_iter_nth_child (self, parent, n): if parent: return None elif n < self.n_rows: return n else: return None def on_iter_parent (self, child): return None
2.609375
3
python/interpret-core/interpret/ext/glassbox/__init__.py
prateekiiest/interpret
2,674
12794003
<reponame>prateekiiest/interpret<gh_stars>1000+ # Copyright (c) 2019 Microsoft Corporation # Distributed under the MIT software license import sys from interpret.ext.extension_utils import load_class_extensions from interpret.ext.extension import GLASSBOX_EXTENSION_KEY, _is_valid_glassbox_explainer load_class_extensions( sys.modules[__name__], GLASSBOX_EXTENSION_KEY, _is_valid_glassbox_explainer )
1.203125
1
rlo/scripts/azureml_ray.py
tomjaguarpaw/knossos-ksc
31
12794004
<reponame>tomjaguarpaw/knossos-ksc """ Quick start instructions: 1. Make sure you have access to the knossos Azure subscription. > az login > az account set -s Knossos You'll need to have at least Contributor access to the resource group (knossosamlrg). You can (not recommended) temporarily elevate yourself to Contributor using Azure Privileged Identity Management (PIM), but you will need to have said level of access _for_the_duration_of_the_run_ not just when it starts, or the run will fail to complete. Alternatively (recommended), you can temporarily elevate yourself to Owner using PIM, and give yourself permanent Contributor rights to the knossosaml resource group. 2. Install dependencies (better to do it in an isolated conda environment because it may clash) ``` pip install -r test/builds/ci-requirements.txt ``` 3. Try to run `fewer_simplify_rules` scenario ``` python scripts/azureml_ray.py fewer_simplify_rules --num_workers=2 ``` Note: any additional arguments will be passed to `ray_main.py`. """ import argparse from datetime import datetime import os import subprocess import sys from tempfile import NamedTemporaryFile from azureml.core import Workspace, Experiment, Environment from azureml.core.authentication import AzureCliAuthentication from azureml.pipeline.core import PipelineRun # Azure ML Reinforcement Learning imports from azureml.contrib.train.rl import ReinforcementLearningEstimator, Ray from azureml.contrib.train.rl import WorkerConfiguration from azureml_util import combined_source_directory sys.path.append(os.path.join(os.path.dirname(__file__), "../src")) from rlo import git_utils def get_environment(): print("Getting docker password...") password = ( subprocess.check_output(["bash", "./test/builds/docker_password.sh"]) .decode("ASCII") .strip() ) docker_tag = ( subprocess.check_output(["bash", "./test/builds/docker_tag.sh"]) .decode("ASCII") .strip() ) print("Docker tag", docker_tag) env = Environment("my_ray_env") # ws.register(env) - no, let's not env.docker.base_image = "rlo_linux_base:" + docker_tag env.docker.base_image_registry.address = "knossos.azurecr.io" env.docker.base_image_registry.password = password env.docker.base_image_registry.username = "00000000-0000-0000-0000-000000000000" env.python.user_managed_dependencies = True return env def check_params(scenario, params): # import locally so that CI can run without dependencies from rlo.flags import make_config_for_scenario from ray_main import ray_run_arguments if not os.path.isfile(scenario): scenario = os.path.join("src", "scenarios", f"{scenario}.json") make_config_for_scenario(scenario, ray_run_arguments, cmdline=params) def check_best_episodes(run): """ Checks best_episodes.kso file does not contain NaNs Regression test for #1438 """ head_run = next(rn for rn in run.get_children() if rn.id.endswith("_head")) kso_file = next( f for f in head_run.get_file_names() if f.endswith("best_episodes.kso") ) with NamedTemporaryFile(mode="r") as f: head_run.download_file(kso_file, output_file_path=f.name) content = f.read() print(f"Downloaded {kso_file} (length={len(content)})") if "NaN" in content: lines = [line for line in content.split("\n") if "NaN" in line] raise ValueError( "Expected no NaNs, but found the following lines:\n" + "\n".join(lines) ) print("Found no NaNs!") def main(): parser = argparse.ArgumentParser() parser.add_argument("scenario", type=str, help="Scenario to run") parser.add_argument( "--aml_config_file", type=str, default="aml_config.json", help="Path to the Azure ML config file", ) parser.add_argument( "--head_cluster", type=str, default="ray-head", help="Name of the headnode cluster", ) parser.add_argument( "--body_cluster", type=str, default="ray-p40", help="Name of the worker cluster", ) parser.add_argument( "--num_workers", type=int, default=10, help="Number of worker nodes", ) parser.add_argument( "--enable_cli_auth", action="store_true", help="Enable AzureCliAuthentication (for CI)", ) parser.add_argument( "--wait_for_completion", action="store_true", help="Wait for the completion of the run", ) parser.add_argument( "--no-check-params", action="store_false", dest="check_params", help="Don't check if the parameters are valid locally before submission", ) args, additional_args = parser.parse_known_args() run_id = "{}_{}".format(datetime.now().strftime("%Y-%m-%d-%H-%M-%S"), args.scenario) params = [ args.scenario, "--run_id", run_id, "--gitlog", git_utils.get_git_revision_short_hash(), ] + additional_args # Check arguments are valid if args.check_params: check_params(args.scenario, params) if args.enable_cli_auth: cli_auth = AzureCliAuthentication() else: cli_auth = None ws = Workspace.from_config(args.aml_config_file, auth=cli_auth) head_compute = ws.compute_targets[args.head_cluster] body_compute = ws.compute_targets[args.body_cluster] env = get_environment() # Specify the Ray worker configuration worker_conf = WorkerConfiguration( compute_target=body_compute, node_count=args.num_workers, use_gpu=True, environment=env, ) with combined_source_directory() as source_dir: # This defines the head configuration - note, no GPU required, the head is expected to be only a co-ordinator. est = ReinforcementLearningEstimator( source_directory=source_dir, compute_target=head_compute, environment=env, entry_script="ray_main.py", script_params=dict( [(p, "") for p in params] + [ # This tells ray_main.py to connect to an existing Ray/redis server rather than start its own ("--address", "auto"), # The command-line ray process run by the AzureML RL framework seems to default to this. # This can be seen by "pip install ray==0.8.7; ray start --head". ("--redis_token", "<PASSWORD>"), # Ensure workers are using GPUs ("--force_gpu", ""), ] ), rl_framework=Ray(version="0.8.3"), worker_configuration=worker_conf, use_gpu=False, cluster_coordination_timeout_seconds=3600, # How long to wait for whole cluster to start max_run_duration_seconds=40 * 3600, # Allow the docker container Ray runs in to make full use # of the shared memory available from the host OS. shm_size=24 * 1024 * 1024 * 1024, ) # This runs the estimator, but doesn't do anything to save the outputs (PNGs or events.json) experiment = Experiment(ws, args.scenario) run = experiment.submit(config=est) print(run) print("Run submitted!", run.get_portal_url()) if args.wait_for_completion: run.wait_for_completion() # Check no NaN in best_episodes.kso check_best_episodes(run) print("Run succeeded!") print( "Download from container azureml path ExperimentRun/dcid.{run_id}/outputs" ) print("Note: run_id is the ID of the head step:") pipeline_run = PipelineRun(experiment, run.id) child_ids = [child_run.id for child_run in pipeline_run.get_steps()] print([id for id in child_ids if "head" in id]) if __name__ == "__main__": main()
1.960938
2
awacs/devicefarm.py
alanjjenkins/awacs
358
12794005
<filename>awacs/devicefarm.py # Copyright (c) 2012-2021, <NAME> <<EMAIL>> # All rights reserved. # # See LICENSE file for full license. from .aws import Action as BaseAction from .aws import BaseARN service_name = "AWS Device Farm" prefix = "devicefarm" class Action(BaseAction): def __init__(self, action: str = None) -> None: super().__init__(prefix, action) class ARN(BaseARN): def __init__(self, resource: str = "", region: str = "", account: str = "") -> None: super().__init__( service=prefix, resource=resource, region=region, account=account ) CreateDevicePool = Action("CreateDevicePool") CreateInstanceProfile = Action("CreateInstanceProfile") CreateNetworkProfile = Action("CreateNetworkProfile") CreateProject = Action("CreateProject") CreateRemoteAccessSession = Action("CreateRemoteAccessSession") CreateTestGridProject = Action("CreateTestGridProject") CreateTestGridUrl = Action("CreateTestGridUrl") CreateUpload = Action("CreateUpload") CreateVPCEConfiguration = Action("CreateVPCEConfiguration") DeleteDevicePool = Action("DeleteDevicePool") DeleteInstanceProfile = Action("DeleteInstanceProfile") DeleteNetworkProfile = Action("DeleteNetworkProfile") DeleteProject = Action("DeleteProject") DeleteRemoteAccessSession = Action("DeleteRemoteAccessSession") DeleteRun = Action("DeleteRun") DeleteTestGridProject = Action("DeleteTestGridProject") DeleteUpload = Action("DeleteUpload") DeleteVPCEConfiguration = Action("DeleteVPCEConfiguration") GetAccountSettings = Action("GetAccountSettings") GetDevice = Action("GetDevice") GetDeviceInstance = Action("GetDeviceInstance") GetDevicePool = Action("GetDevicePool") GetDevicePoolCompatibility = Action("GetDevicePoolCompatibility") GetInstanceProfile = Action("GetInstanceProfile") GetJob = Action("GetJob") GetNetworkProfile = Action("GetNetworkProfile") GetOfferingStatus = Action("GetOfferingStatus") GetProject = Action("GetProject") GetRemoteAccessSession = Action("GetRemoteAccessSession") GetRun = Action("GetRun") GetSuite = Action("GetSuite") GetTest = Action("GetTest") GetTestGridProject = Action("GetTestGridProject") GetTestGridSession = Action("GetTestGridSession") GetUpload = Action("GetUpload") GetVPCEConfiguration = Action("GetVPCEConfiguration") InstallToRemoteAccessSession = Action("InstallToRemoteAccessSession") ListArtifacts = Action("ListArtifacts") ListDeviceInstances = Action("ListDeviceInstances") ListDevicePools = Action("ListDevicePools") ListDevices = Action("ListDevices") ListInstanceProfiles = Action("ListInstanceProfiles") ListJobs = Action("ListJobs") ListNetworkProfiles = Action("ListNetworkProfiles") ListOfferingPromotions = Action("ListOfferingPromotions") ListOfferingTransactions = Action("ListOfferingTransactions") ListOfferings = Action("ListOfferings") ListProjects = Action("ListProjects") ListRemoteAccessSessions = Action("ListRemoteAccessSessions") ListRuns = Action("ListRuns") ListSamples = Action("ListSamples") ListSuites = Action("ListSuites") ListTagsForResource = Action("ListTagsForResource") ListTestGridProjects = Action("ListTestGridProjects") ListTestGridSessionActions = Action("ListTestGridSessionActions") ListTestGridSessionArtifacts = Action("ListTestGridSessionArtifacts") ListTestGridSessions = Action("ListTestGridSessions") ListTests = Action("ListTests") ListUniqueProblems = Action("ListUniqueProblems") ListUploads = Action("ListUploads") ListVPCEConfigurations = Action("ListVPCEConfigurations") PurchaseOffering = Action("PurchaseOffering") RenewOffering = Action("RenewOffering") ScheduleRun = Action("ScheduleRun") StopJob = Action("StopJob") StopRemoteAccessSession = Action("StopRemoteAccessSession") StopRun = Action("StopRun") TagResource = Action("TagResource") UntagResource = Action("UntagResource") UpdateDeviceInstance = Action("UpdateDeviceInstance") UpdateDevicePool = Action("UpdateDevicePool") UpdateInstanceProfile = Action("UpdateInstanceProfile") UpdateNetworkProfile = Action("UpdateNetworkProfile") UpdateProject = Action("UpdateProject") UpdateTestGridProject = Action("UpdateTestGridProject") UpdateUpload = Action("UpdateUpload") UpdateVPCEConfiguration = Action("UpdateVPCEConfiguration")
2.265625
2
tools/tube.py
fsanges/glTools
165
12794006
<filename>tools/tube.py<gh_stars>100-1000 import maya.cmds as mc import glTools.tools.controlBuilder import glTools.utils.attach import glTools.utils.base import glTools.utils.attribute import glTools.utils.component import glTools.utils.stringUtils def buildProfile(radius=1,spans=8): ''' Create tube profile curve (circle) @param radius: Profile radius @type radius: float @param spans: Number of profile curve spans @type spans: int ''' crv = mc.circle(c=[0,0,0],nr=[0,0,1],sw=360,r=radius,s=spans,d=3,ch=False) return crv def buildOffsetCurve(crv): ''' ''' prefix = glTools.utils.stringUtils.stripSuffix(crv) offsetCrvShape = mc.createNode('nurbsCurve',n=prefix+'_offsetCrvShape') offsetCrv = mc.listRelatives(offsetCrvShape,p=True,pa=True)[0] mc.connectAttr(crv+'.worldSpace[0]',offsetCrvShape+'.create',f=True) return offsetCrv def buildSubCurveDetach(crv): ''' ''' # Get Prefix prefix = glTools.utils.stringUtils.stripSuffix(crv) # Prep Curve mc.rebuildCurve(crv,ch=False,rpo=True,rt=0,end=1,kr=0,kcp=1,kep=1,kt=0,s=0,d=3) mc.delete(crv,ch=True) # Detach Curve detach = mc.detachCurve(crv,p=(0.001,0.999),k=(0,1,0),rpo=False) detachCrv = detach[1] detachNode = detach[-1] mc.delete(detach[0],detach[2]) # Connect Detach Min/Max mc.addAttr(subCrv,ln='min',min=0,max=0.999,dv=0,k=True) mc.addAttr(subCrv,ln='max',min=0.001,max=1,dv=1,k=True) mc.addAttr(subCrv,ln='offset',min=-1,max=1,dv=1,k=True) minAdd = mc.createNode('addDoubleLinear',n=prefix+'_minAdd_addDoubleLinear') maxAdd = mc.createNode('addDoubleLinear',n=prefix+'_maxAdd_addDoubleLinear') minMaxClamp = mc.createNode('clamp',n=prefix+'_minMax_clamp') mc.connectAttr(subCrv+'.min',minAdd+'.input1',f=True) mc.connectAttr(subCrv+'.offset',minAdd+'.input2',f=True) mc.connectAttr(subCrv+'.max',maxAdd+'.input1',f=True) mc.connectAttr(subCrv+'.offset',maxAdd+'.input2',f=True) mc.connectAttr(minAdd+'.output',minMaxClamp+'.inputR',f=True) mc.connectAttr(maxAdd+'.output',minMaxClamp+'.inputB',f=True) mc.setAttr(minMaxClamp+'.min',0,0,0.0001) mc.setAttr(minMaxClamp+'.max',0.9999,0,0) mc.connectAttr(minMaxClamp+'.outputR',detachNode+'.parameter[0]',f=True) mc.connectAttr(minMaxClamp+'.outputB',detachNode+'.parameter[1]',f=True) # Return Result return detachCrv def buildCurveRig(crv): ''' ''' # Get Prefix prefix = glTools.utils.stringUtils.stripSuffix(crv) # Build Joints pts = glTools.utils.base.getPointArray(crv) jnts = [] mc.select(cl=True) for i in range(len(pts)): ind = glTools.utils.stringUtils.alphaIndex(i) jnt = mc.joint(p=pts[i],n=prefix+'_fk'+ind+'_jnt') mc.joint() mc.select(jnt) # Orient Joints # Build FK # Build Offset def buildSubCurve(crv): ''' ''' # Build Sub Curve prefix = glTools.utils.stringUtils.stripSuffix(crv) subCrvShape = mc.createNode('nurbsCurve',n=prefix+'_subCrvShape') subCrv = mc.listRelatives(subCrvShape,p=True,pa=True)[0] subCrvNode = mc.createNode('subCurve',n=prefix+'_subCurve') # Connect Sub Curve mc.connectAttr(crv+'.worldSpace[0]',subCrvNode+'.inputCurve',f=True) mc.connectAttr(subCrvNode+'.outputCurve',subCrvShape+'.create',f=True) # Connect Sub Curve Min/Max mc.addAttr(subCrv,ln='min',min=0,max=0.999,dv=0,k=True) mc.addAttr(subCrv,ln='max',min=0.001,max=1,dv=1,k=True) mc.connectAttr(subCrv+'.min',subCrvNode+'.minValue',f=True) mc.connectAttr(subCrv+'.max',subCrvNode+'.maxValue',f=True) mc.setAttr(subCrvNode+'.relative',1) # Return Result return subCrv def resetCV(cvs): ''' ''' # Check CVs if not cvs: return None cvList = mc.filterExpand(cvs,ex=True,sm=28) # Reset CVs for cv in cvList: crv = mc.ls(cv,o=True)[0] i = glTools.utils.component.index(cv) mc.setAttr(crv+'.controlPoints['+i+'].xValue',0) mc.setAttr(crv+'.controlPoints['+i+'].yValue',0) mc.setAttr(crv+'.controlPoints['+i+'].zValue',0) def attachCurve(base,crv,cleanup=True): ''' ''' # Get Spans spans = mc.getAttr(crv+'.spans') mc.setAttr(base+'.spans',spans) # Match Shape shapeOrig = base+'ShapeOrig' mc.setAttr(shapeOrig+'.intermediateObject',0) mc.rebuildCurve(shapeOrig,ch=True,rpo=True,rt=0,end=1,kr=0,kcp=0,kep=1,kt=0,s=spans,d=3) bs = mc.blendShape(crv,shapeOrig)[0] mc.setAttr(bs+'.w[0]',1) # Delete Orig if cleanup: mc.delete(shapeOrig,ch=True) mc.delete(crv) # Restore Intermediate Shape mc.setAttr(shapeOrig+'.intermediateObject',1) # Return Result return def attachToCurveParam(ctrl,crv): ''' ''' grp = mc.listRelatives(ctrl,p=True,pa=True)[0] param = mc.getAttr(ctrl+'.param') glTools.utils.attach.attachToCurve(crv,grp,param,uAttr='param') mc.connectAttr(ctrl+'.param',grp+'.param',f=True) def addDropoffControls(locs,prefix): ''' ''' ctrlBuilder = glTools.tools.controlBuilder.ControlBuilder() for i in range(len(locs)): pre = prefix+glTools.utils.stringUtils.stripSuffix(locs[i]) wire = mc.listConnections(locs[i]+'.param',s=False,d=True)[0] param = mc.getAttr(locs[i]+'.param') ind = glTools.utils.attribute.getConnectionIndex(locs[i]+'.param') ctrl = ctrlBuilder.create('sphere',pre+'_ctrl') grp = glTools.utils.base.group(ctrl) mc.connectAttr(locs[i]+'.worldPosition[0]',grp+'.translate',f=True) mc.addAttr(ctrl,ln='param',min=0,max=1,dv=param,k=True) mc.addAttr(ctrl,ln='bulge',min=-1,dv=0,k=True) mc.connectAttr(ctrl+'.param',locs[i]+'.param['+str(ind)+']',f=True) mc.connectAttr(ctrl+'.bulge',wire+'.wireLocatorEnvelope['+str(ind)+']',f=True) def buildTube( crv profile=None, addCage=False, prefix=None) ''' ''' # Nurbs Tube mc.extrude( ch = True, rn = False, po = 0, et = 2, ucp = 1, fpt = 1, upn = 1, rotation =0, scale = 1, rsp = 1 ) # Polygon Tube mc.extrude( ch = True, rn = False, po = 1, et = 2, ucp = 1, fpt = 1, upn = 1, rotation =0, scale =1, rsp = 1 )
2.09375
2
doba/structures/__init__.py
marverix/doba
0
12794007
from .BackupPath import BackupPath from .Container import Container from .DobaContainersConfig import DobaContainersConfig from .Image import Image from .Port import Port from .Volume import Volume
1.03125
1
utilities/data_io.py
mahmoud-al-najar/DSPEB
0
12794008
<filename>utilities/data_io.py import os import time import gdal import pyproj import tarfile import warnings import numpy as np import xarray as xr import pandas as pd import netCDF4 as nc import xml.etree.ElementTree as et import datagen_config as cfg from datetime import datetime, timedelta from utilities.common import isin_tile # from utilities.wrappers import Sentinel2Tile, Sentinel2Safe def get_cloud_coverage(path): """ Find the cloud coverage of the S2-L1C image in the xml file :param path:(str) path to the .SAFE repository of the image :return: cloud_coverage (float) """ xml = os.path.join(path, 'MTD_MSIL1C.xml') tree = et.parse(xml) root = tree.getroot() cloud_coverage = float(root[3][0].text) return cloud_coverage def get_top_left_corner_coordinates_for_image(path): """ Find the x, y coordinates of the top left corner of the S2-L1C image in the WGS84 coordinate system of the tile and its epsg reference number :param path:(str) path to the .SAFE repository of the image :return: x_corner, y_corner, epsg (int, int, str) """ xml = os.path.join(path, 'GRANULE', os.listdir(os.path.join(path, 'GRANULE'))[0], 'MTD_TL.xml') tree = et.parse(xml) root = tree.getroot() x_corner = int(root[1][0][5][0].text) y_corner = int(root[1][0][5][1].text) epsg = root[1][0][1].text return x_corner, y_corner, epsg def make_tarfile(output_filename, source_dir): with tarfile.open(output_filename, "w:gz") as tar: tar.add(source_dir, arcname=os.path.basename(source_dir)) def get_tidal_elevation_for_image(safe): date = safe[11:19] time = safe[20:26] tidal_path = cfg.in_path_tidal df = xr.open_dataset(tidal_path).to_dataframe() tid = df[df['S2_fname'] == safe[0:len(safe) - 5]] if tid['prediction_at_ERA5_point'].empty: print(f' {date} - {time}: no tidal elevation data') return None else: if np.isnan(tid['prediction_at_ERA5_point'].values[0]): delta_t = timedelta(hours=1) timing = datetime.strptime(date + time, '%Y%m%d%H%M%S') timing_start = timing - delta_t timing_end = timing + delta_t timing_start = timing_start.strftime('%Y-%m-%d %H:%M:%S') timing_end = timing_end.strftime('%Y-%m-%d %H:%M:%S') mask = (df['S2_time'] > timing_start) & (df['S2_time'] < timing_end) timing_search = df.loc[mask] b = 1 # +/- 1 degree to search for the tidal information (around the actual tile center) a = timing_search[(timing_search['S2_lon'] < (tid['S2_lon'].values[0] + b)) & (timing_search['S2_lon'] > (tid['S2_lon'].values[0] - b)) & (timing_search['S2_lat'] < (tid['S2_lat'].values[0] + b)) & (timing_search['S2_lat'] > (tid['S2_lat'].values[0] - b))] tidal = np.nanmean(a['prediction_at_ERA5_point'].values) return tidal else: tidal = tid['prediction_at_ERA5_point'].values[0] return tidal # def get_geo_transform_for_image(s2_path, tile_id, safe_id): # safe_path = os.path.join(s2_path, tile_id, safe_id) # date = safe_id[11:19] # t_time = safe_id[20:26] # a = os.listdir(os.path.join(safe_path, 'GRANULE')) # path = os.path.join(safe_path, 'GRANULE', a[0], 'IMG_DATA', f'T{tile_id}_{date}T{t_time}_') # ds = gdal.Open(path + 'B04.jp2') # return ds.GetGeoTransform() def parse_sentinel2_imagesafe_metadata(safe_path): from utilities.wrappers import Sentinel2Safe # TODO: UNCOMMENT MAIN IMPORT AND COME BACK TO THIS safe_id = safe_path.split('/')[-1] print(f'parse_sentinel2_imagesafe_metadata() safe_id: {safe_id}') date = safe_id[11:19] t_time = safe_id[20:26] tidal = get_tidal_elevation_for_image(safe_id) temp_safe = Sentinel2Safe() temp_safe.date = date temp_safe.time = t_time temp_safe.s2_path = safe_path x, y, epsg = get_top_left_corner_coordinates_for_image(safe_path) temp_safe.corners = (x, y) temp_safe.epsg = epsg if tidal: temp_safe.tidal_elevation = tidal else: warnings.warn(f'No tidal elevation data for safe: {safe_id}') temp_safe.tidal_elevation = 0 return temp_safe def parse_sentinel2_tiles_metadata(): """ This function returns the info of the nb_max_date tiles with the smallest cloud coverage :return: corners, paths, dates, epsgs: infos of the selected tiles """ from utilities.wrappers import Sentinel2Tile # TODO: UNCOMMENT MAIN IMPORT AND COME BACK TO THIS sentinel2_tiles = [] i = -1 for tile in cfg.tiles: temp_tile = Sentinel2Tile() temp_tile.id = tile print(f'--------------TILE: {temp_tile.id}') n = 0 i += 1 # tile index path_t = os.path.join(cfg.in_path_s2, tile) safes = os.listdir(path_t) temp = [] for safe in safes: if safe.endswith('SAFE'): temp.append(safe) safes = temp for safe in safes: path_s = os.path.join(path_t, safe) cloud_coverage = "{0:0.2f}".format(get_cloud_coverage(path_s)) if float(cloud_coverage) < cfg.max_cc and n < cfg.nb_max_date: temp_safe = parse_sentinel2_imagesafe_metadata(path_s) if temp_safe: temp_tile.safes.append(temp_safe) print(f'safe.corners: {temp_safe.corners}') print(f'safe.s2_path: {temp_safe.s2_path}') print(f'safe.date: {temp_safe.date}') print(f'safe.time: {temp_safe.time}') print(f'safe.epsg: {temp_safe.epsg}') print(f'safe.tidal_elevation: {temp_safe.tidal_elevation}') if temp_safe.epsg not in temp_tile.epsgs: temp_tile.epsgs.append(temp_safe.epsg) if len(temp_tile.epsgs) > 1: warnings.warn(f'==================================== Tile {temp_tile.id}: multiple epsg\'s') exit() if temp_tile.corner['x'] and temp_tile.corner['y']: if temp_safe.corners[0] != temp_tile.corner['x'] or temp_safe.corners[1] != temp_tile.corner['y']: id = temp_tile.id warnings.warn( f'============================================ Tile {id}: multiple corners') exit() else: pass # Different snapshots of the same tile should have the exact same corners else: temp_tile.corner['x'] = temp_safe.corners[0] temp_tile.corner['y'] = temp_safe.corners[1] n += 1 sentinel2_tiles.append(temp_tile) return sentinel2_tiles def parse_sentinel2_tiles_metadata_from_datalake(): """ This function returns the info of the nb_max_date tiles with the smallest cloud coverage :return: corners, paths, dates, epsgs: infos of the selected tiles """ from utilities.wrappers import Sentinel2Tile # TODO: UNCOMMENT MAIN IMPORT AND COME BACK TO THIS sentinel2_tiles = [] with open(cfg.in_path_safes_list, 'r') as file: safe_ids = file.read().splitlines() for safe_id in safe_ids: year = safe_id[11:15] month = safe_id[15:17] day = safe_id[17:19] tile_id = safe_id[39:44] temp_tile = Sentinel2Tile() temp_tile.id = tile_id if temp_tile in sentinel2_tiles: in_tiles = True temp_tile = sentinel2_tiles[sentinel2_tiles.index(temp_tile)] else: in_tiles = False print(f'--------------TILE: {temp_tile.id}') path_t = os.path.join(cfg.in_path_datalake_s2, temp_tile.id) path_s = os.path.join(path_t, year, month, day, safe_id + '.SAFE') cloud_coverage = "{0:0.2f}".format(get_cloud_coverage(path_s)) if float(cloud_coverage) < cfg.max_cc: temp_safe = parse_sentinel2_imagesafe_metadata(path_s) if temp_safe: temp_tile.safes.append(temp_safe) print(f'safe.corners: {temp_safe.corners}') print(f'safe.s2_path: {temp_safe.s2_path}') print(f'safe.date: {temp_safe.date}') print(f'safe.time: {temp_safe.time}') print(f'safe.epsg: {temp_safe.epsg}') print(f'safe.tidal_elevation: {temp_safe.tidal_elevation}') if temp_safe.epsg not in temp_tile.epsgs: temp_tile.epsgs.append(temp_safe.epsg) if len(temp_tile.epsgs) > 1: warnings.warn(f'==================================== Tile {temp_tile.id}: multiple epsg\'s') exit() if temp_tile.corner['x'] and temp_tile.corner['y']: if temp_safe.corners[0] != temp_tile.corner['x'] or temp_safe.corners[1] != temp_tile.corner['y']: id = temp_tile.id warnings.warn( f'============================================ Tile {id}: multiple corners') exit() else: pass # Different snapshots of the same tile should have the exact same corners else: temp_tile.corner['x'] = temp_safe.corners[0] temp_tile.corner['y'] = temp_safe.corners[1] if not in_tiles: sentinel2_tiles.append(temp_tile) return sentinel2_tiles def datagen_get_bathy_xyz(sentinel2tile_list): """ This function returns the useful bathy points according to 2 criteria : distance to each others (not to much redundancy) & not to close to tile borders & depth limited (+ & -) :param path: path of the bathymetry :param x: x coordinates of already kept bathy points :param y: y coordinates of already kept bathy points :param z: z coordinates of already kept bathy points :return: (x, y, z): coordinates of the bathy points kept, appended to the previous ones """ precision = 10 nb_tiles = len(cfg.tiles) # first bathy pts filtering x, y, z = [[]] * nb_tiles, [[]] * nb_tiles, [[]] * nb_tiles proj = [[]] * nb_tiles for i in range(nb_tiles): tile = sentinel2tile_list[i] if len(tile.epsgs) == 1: proj[i] = pyproj.Proj(proj='utm', init=tile.epsgs[0], ellps='WGS84') elif len(tile.epsgs) > 1: warnings.warn(f'AGAIN =================================================== Tile {tile.id}: multiple epsg\'s') exit() else: warnings.warn( f'THIS SHOULD NEVER HAPPEN ====================================== didn\'t find tile {tile.id}\'s epsg?') exit() bathy_points = pd.DataFrame() for directory in os.listdir(cfg.in_path_bathy): path = f'{os.path.join(cfg.in_path_bathy, directory, directory)}.xyz' df = pd.read_csv(path, header=2) bathy_points = bathy_points.append(df, ignore_index=True) bins = np.linspace(cfg.depth_lim_min, 100, 10) max_depth = bathy_points['depth(m - down positive - LAT)'].max() if max_depth > 100: bins = np.append(bins, max_depth) labels = np.linspace(0, len(bins) - 2, len(bins) - 1) bathy_points['depth label'] = pd.cut(bathy_points['depth(m - down positive - LAT)'], bins=bins, labels=labels) print(bathy_points['depth label'].value_counts(sort=False)) n_tot = 0 nb_tot = 0 for label in labels: bathy_label_points = bathy_points[bathy_points['depth label'] == label] if len(bathy_label_points) > 0: n = 0 nb = 0 t = time.time() while nb < cfg.nb_max_pt_per_tile and n < cfg.line_max_read: n += 1 n_tot += 1 chosen_idx = np.random.choice(len(bathy_label_points)) random_point = bathy_label_points.iloc[chosen_idx] if cfg.depth_lim_min <= random_point['depth(m - down positive - LAT)'] <= cfg.depth_lim_max: if not len(sentinel2tile_list) == 0: for i in range(nb_tiles): tile = sentinel2tile_list[i] if tile.epsgs[0] != 'EPSG:32628': # proj to the good coordinate system & round to the tenth to fit on the sentinel 2 max precision x_point, y_point = proj[i](random_point['long(DD)'], random_point['lat(DD)']) else: # bathy and s2 are already on the same coordinate system x_point, y_point = random_point['long(DD)'], random_point['lat(DD)'] x_point = int(round(x_point, -1)) y_point = int(round(y_point, -1)) # get the indices of the points to close to the actual point ind = np.where(np.abs(np.array(x[i], copy=False) - x_point) < precision) ind = np.where(np.abs(np.array(y[i], copy=False)[ind] - y_point) < precision) # keep the point only if it is not to close to others if len(ind[0]) == 0: if isin_tile(x_point, y_point, tile.corner['x'], tile.corner['y']): nb += 1 nb_tot += 1 x[i] = np.append(x[i], [x_point]) y[i] = np.append(y[i], [y_point]) z[i] = np.append(z[i], random_point['depth(m - down positive - LAT)']) if n % 1000 == 0: print(n) print('label :', label, nb, '/', n, time.time() - t) else: print(f'len(bathy_label_points) at label:{label} == 0') print('nb of lines read/selected :', n_tot, '/', nb_tot) return x, y, z def __flip_bathymetry_y_axis(arr): unique_values = np.unique(arr) flipped = np.empty(np.array(arr).shape) for i in range(len(arr)): flipped[i] = np.flipud(unique_values)[np.where(unique_values == arr[i])] return flipped def read_nc_file(path_to_nc, projection_in=None, projection_out=None): ncd = nc.Dataset(path_to_nc) print(ncd) n_x = len(ncd.variables['x']) n_y = len(ncd.variables['y']) n_k = len(ncd.variables['kKeep']) n_t = len(ncd.variables['time']) out_x = [] out_y = [] out_z = [] n_err = 0 n_good = 0 n_all = 0 n_dash = 0 for i_t in range(n_t): for i_x in range(n_x): for i_y in range(n_y): ncd_time = ncd.variables['time'][i_t] ncd_x = ncd.variables['x'][i_x] ncd_y = ncd.variables['y'][i_y] z = None for i_k in range(n_k): ncd_z = ncd['depth'][i_y, i_x, i_k, i_t] n_all += 1 if ncd_z != '--': if z is None: z = ncd_z n_good += 1 out_x.append(ncd_x) out_y.append(ncd_y) out_z.append(z) else: new_z = (z + ncd_z) / 2 z = new_z n_err += 1 else: n_dash += 1 if n_all % 5000 == 0: print(f'all: {n_all}, keep: {n_good}, errs: {n_err}, dash: {n_dash}') fn = path_to_nc.split("/")[-1] print(f'Filename: {fn}') print(f' Total: {n_all}, 1k: {n_good}, nk: {n_err}, --: {n_dash}') print(f' len(x): {len(out_x)}, len(y): {len(out_y)}, len(z): {len(out_z)}') print(f' Creating CSV file for {fn}...') out_y = __flip_bathymetry_y_axis(out_y) return out_x, out_y, out_z def read_fxyz_file(path_to_xyz, projection_in=None, projection_out=None): df = pd.read_csv(path_to_xyz, header=0) lng = np.array(df.lng) lat = np.array(df.lat) z = np.array(df.z) if projection_in and projection_out: proj = pyproj.Proj(proj='utm', init=projection_out, ellps=projection_in) lng, lat = proj(lng, lat) return lng, lat, z
2.34375
2
photon/stats.py
logarithm/photon-python
2
12794009
<reponame>logarithm/photon-python<gh_stars>1-10 """ Copyright 2015 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ class TrafficStats: def __init__(self): self.packageHeaderSize = 0 self.reliableCommandCount = 0 self.unreliableCommandCount = 0 self.fragmentCommandCount = 0 self.controlCommandCount = 0 self.totalPacketCount = 0 self.totalCommandsInPackets = 0 self.reliableCommandBytes = 0 self.unreliableCommandBytes = 0 self.fragmentCommandBytes = 0 self.controlCommandBytes = 0 def total_command_count(self): return self.reliableCommandCount + self.unreliableCommandCount + \ self.fragmentCommandCount + self.controlCommandCount def total_command_bytes(self): return self.reliableCommandBytes + self.unreliableCommandBytes + \ self.fragmentCommandBytes + self.controlCommandBytes def total_packet_bytes(self): return self.total_command_bytes() + self.totalPacketCount * self.packageHeaderSize def count_control_command(self, size): self.controlCommandBytes += size self.controlCommandCount += 1 def count_reliable_op_command(self, size): self.reliableCommandBytes += size self.reliableCommandCount += 1 def count_unreliable_op_command(self, size): self.unreliableCommandBytes += size self.unreliableCommandCount += 1 def count_fragment_op_command(self, size): self.fragmentCommandBytes += size self.fragmentCommandCount += 1 def __str__(self, *args, **kwargs): return "TotalPacketBytes: {}\nTotalCommandBytes: {}\nTotalPacketCount: {}\nTotalCommandsInPackets: {}" \ .format(self.total_packet_bytes(), self.total_command_bytes(), self.totalPacketCount, self.totalCommandsInPackets)
1.992188
2
11-20/11-20/_11_20.py
JuYoon-Kim/leaning_python
0
12794010
<gh_stars>0 num ={2,1,3} for x in num: print(x,end="",) for j in num: print(j,end="") for k in num: print(k,end="") s = 'Never put off till tomorrow what you can do today.' print(s.split()) print(s.isalpha()) print(s.isdigit()) print(s.upper()) print(s.lower()) print(s.replace('put','off')) print(s.startswith('Never')) a = input() b = len(a) c = '' for i in range(b - 1, -1, -1): c = c + a[i] if c == a : print("회문 입니다.") else: print("회문이 아닙니다.") class Counter: def reset(self): self.count = 0 def incr(self): self.count += 1 def get(self): return self.count a = Counter() a.reset() for i in range(5): a.incr() print(a.get())
3.53125
4
bosm2015/events/__init__.py
dvm-bitspilani/BITS-BOSM-2015
1
12794011
default_app_config = 'events.apps.EventConfig'
1.148438
1
pipda/operator.py
vishalbelsare/pipda
21
12794012
<gh_stars>10-100 """Provide the Operator class""" import operator from enum import Enum from functools import wraps from typing import Any, Callable, Mapping, Tuple, ClassVar, Type from .context import ContextAnnoType, ContextBase from .function import Function class Operator(Function): """Operator class, defining how the operators in verb/function arguments should be evaluated Args: op: The operator context: Should be None while initialization. It depends on the verb or the function that uses it as an argument args: The arguments of the operator kwargs: The keyword arguments of the operator datarg: Should be False. No data argument for the operator function. Attributes: REGISTERED: The registered Operator class. It's this class by default Use `register_operator` as a decorator to register a operator class """ REGISTERED: ClassVar[Type["Operator"]] = None def __init__( self, op: str, args: Tuple, kwargs: Mapping[str, Any], datarg: bool = False, ) -> None: self.op = op self.data = None op_func = self._get_op_func() super().__init__(op_func, args, kwargs, datarg) @staticmethod def set_context( context: ContextAnnoType, extra_contexts: Mapping[str, ContextAnnoType] = None, ) -> Callable[[Callable], Callable]: """Set custom context for a operator method""" def wrapper(func): func.context = ( context.value if isinstance(context, Enum) else context ) extra_contexts2 = extra_contexts or {} func.extra_contexts = { key: ctx.value if isinstance(ctx, Enum) else ctx for key, ctx in extra_contexts2.items() } return func return wrapper def _pipda_eval( self, data: Any, context: ContextBase = None ) -> Any: """Evaluate the operator No data passed to the operator function. It should be used to evaluate the arguments. """ # set the context and data in case they need to be used # inside the function. self.data = data return super()._pipda_eval(data, context) def _get_op_func(self) -> Callable: """Get the operator function from the operator module by name""" def _opfunc(opname: str) -> Callable: self_op_name = f"_op_{opname}" if hasattr(self.__class__, self_op_name): return getattr(self, self_op_name) return getattr(operator, opname, None) op_func = _opfunc(self.op) if op_func: return op_func if self.op[0] == 'r': # if we get radd, swap left and right operands op_func = _opfunc(self.op[1:]) if op_func: @wraps(op_func) def left_op_func(arg_a, arg_b, *args, **kwargs): return op_func(arg_b, arg_a, *args, **kwargs) return left_op_func raise ValueError( f"No operator function defined for {self.op!r}" )
3.203125
3
run_pptx_tagging.py
kmkurn/uxtspwsd
0
12794013
<reponame>kmkurn/uxtspwsd<filename>run_pptx_tagging.py #!/usr/bin/env python # Copyright (c) 2021 <NAME> from itertools import chain from pathlib import Path import math import os import pickle from einops import rearrange from gensim.models.keyedvectors import KeyedVectors from rnnr import Event, Runner from rnnr.attachments import EpochTimer, MeanReducer, ProgressBar, SumReducer from sacred import Experiment from sacred.observers import MongoObserver from sacred.utils import apply_backspaces_and_linefeeds from text2array import BucketIterator, ShuffleIterator from tqdm import tqdm import torch from aatrn import compute_ambiguous_tag_pairs_mask from callbacks import compute_l2_loss, log_grads, log_stats, save_state_dict, update_params from crf import LinearCRF from ingredients.corpus import ing as corpus_ing, read_tagging_samples from serialization import dump, load from utils import extend_word_embedding ex = Experiment("xduft-pptx-tagging-testrun", ingredients=[corpus_ing]) ex.captured_out_filter = apply_backspaces_and_linefeeds # Setup mongodb observer mongo_url = os.getenv("SACRED_MONGO_URL") db_name = os.getenv("SACRED_DB_NAME") if None not in (mongo_url, db_name): ex.observers.append(MongoObserver.create(url=mongo_url, db_name=db_name)) @ex.config def default(): # directory to save finetuning artifacts artifacts_dir = "" # discard train/dev/test samples with length greater than these numbers max_length = {"train": 60} # load source models from these directories and parameters {key: (load_from, load_params)} load_src = {} # whether to treat keys in load_src as lang codes src_key_as_lang = False # the main source to start finetuning from main_src = "" # device to run on [cpu, cuda] device = "cuda" if torch.cuda.is_available() else "cpu" # path to word embedding in word2vec format word_emb_path = "wiki.en.vec" # cumulative prob threshold thresh = 0.95 # batch size batch_size = 80 # learning rate lr = 1e-5 # coefficient of L2 regularization against initial parameters l2_coef = 1.0 # max number of epochs max_epoch = 10 # whether to save the final samples as an artifact save_samples = False # load samples from this file (*.pkl) load_samples_from = "" # how to combine PPTX charts combine = "union" # whether to evaluate on train set at every epoch end eval_on_train = False # load src2ws from this path load_src2ws_from = "" @ex.named_config def prag(): l2_coef = 0.1 lr = 5.9e-5 combine = "union" @ex.named_config def prag_gmean(): l2_coef = 4.7e-3 lr = 2.6e-4 combine = "geom_mean" @ex.named_config def prag_lopw(): l2_coef = 0.062 lr = 4.7e-4 combine = "geom_mean" @ex.named_config def testrun(): seed = 12345 max_epoch = 2 corpus = dict(portion=0.05) @ex.capture def run_eval(model, vocab, samples, device="cpu", batch_size=16, compute_loss=True): runner = Runner() SumReducer("corr", value="bcorr").attach_on(runner) SumReducer("total", value="btotal").attach_on(runner) ProgressBar(total=sum(len(s["words"]) for s in samples), unit="tok", leave=False).attach_on( runner ) if compute_loss: MeanReducer("mean_pptx_loss", value="pptx_loss").attach_on(runner) @runner.on(Event.BATCH) def evaluate_batch(state): batch = state["batch"].to_array() words = torch.from_numpy(batch["words"]).to(device) tags = torch.from_numpy(batch["tags"]).to(device) mask = words != vocab["words"].index(vocab.PAD_TOKEN) assert mask.all(), "must not have masking at test time" model.eval() scores = model(words) ptags = LinearCRF(scores).argmax() assert ptags.shape == tags.shape if (tags[:, 0] == vocab["tags"].index("<s>")).all(): tags, ptags = tags[:, 1:], ptags[:, 1:] if (tags[:, -1] == vocab["tags"].index("</s>")).all(): tags, ptags = tags[:, :-1], ptags[:, :-1] state["bcorr"] = (ptags == tags).long().sum().item() state["btotal"] = tags.numel() state["n_items"] = words.numel() if compute_loss: state["scores"] = scores state["pptx_mask"] = torch.from_numpy(batch["pptx_mask"]).to(device).bool() @runner.on(Event.BATCH) def maybe_compute_loss(state): if not compute_loss: return masked_scores = state["scores"].masked_fill(~state["pptx_mask"], -1e9) crf = LinearCRF(masked_scores.contiguous()) crf_z = LinearCRF(state["scores"].contiguous()) pptx_loss = -crf.log_partitions().sum() + crf_z.log_partitions().sum() state["pptx_loss"] = pptx_loss.item() state["size"] = masked_scores.size(0) with torch.no_grad(): runner.run(BucketIterator(samples, lambda s: len(s["words"]), batch_size)) return runner.state["corr"] / runner.state["total"], runner.state.get("mean_pptx_loss") @ex.automain def finetune( corpus, _log, _run, _rnd, max_length=None, load_src=None, main_src=None, load_src2ws_from=None, artifacts_dir=None, load_samples_from=None, word_emb_path="wiki.id.vec", src_key_as_lang=False, device="cpu", combine="union", thresh=0.95, batch_size=16, save_samples=False, lr=1e-5, l2_coef=1.0, eval_on_train=False, max_epoch=10, ): """Finetune/adapt a trained tagger with PPTX.""" if max_length is None: max_length = {} if load_src is None: load_src = {"src": ("artifacts", "model.pth")} main_src = "src" elif main_src not in load_src: raise ValueError(f"{main_src} not found in load_src") if artifacts_dir: artifacts_dir = Path(artifacts_dir) if load_samples_from: _log.info("Loading samples from %s", load_samples_from) with open(load_samples_from, "rb") as f: samples = pickle.load(f) else: samples = { wh: list(read_tagging_samples(wh, max_length.get(wh))) for wh in ["train", "dev", "test"] } for wh in samples: n_toks = sum(len(s["words"]) - 2 for s in samples[wh]) # don't count BOS/EOS tokens _log.info("Read %d %s samples and %d tokens", len(samples[wh]), wh, n_toks) kv = KeyedVectors.load_word2vec_format(word_emb_path) if load_samples_from: _log.info("Skipping non-main src because samples are processed and loaded") srcs = [] else: srcs = [src for src in load_src if src != main_src] if src_key_as_lang and corpus["lang"] in srcs: _log.info("Removing %s from src parsers because it's the tgt", corpus["lang"]) srcs.remove(corpus["lang"]) srcs.append(main_src) if load_src2ws_from: _log.info("Loading src weights from %s", load_src2ws_from) src2ws = load(Path(load_src2ws_from).read_text(encoding="utf8")) if any(src not in src2ws for src in srcs): _log.warning("Some srcs have no weights, will be set to zero") if any(src not in srcs for src in src2ws): _log.warning("Too many srcs in src2ws, weights won't sum to one") _log.info("Sources: %s", list(srcs)) _log.info("Weights: %s", [src2ws[src] for src in srcs]) else: src2ws = {src: 1 / len(srcs) for src in srcs} for src_i, src in enumerate(srcs): _log.info("Processing src %s [%d/%d]", src, src_i + 1, len(srcs)) load_from, load_params = load_src[src] path = Path(load_from) / "vocab.yml" _log.info("Loading %s vocabulary from %s", src, path) vocab = load(path.read_text(encoding="utf8")) for name in vocab: _log.info("Found %d %s", len(vocab[name]), name) _log.info("Extending %s vocabulary with target words", src) vocab.extend(chain(*samples.values()), ["words"]) _log.info("Found %d words now", len(vocab["words"])) samples_ = {wh: list(vocab.stoi(samples[wh])) for wh in samples} path = Path(load_from) / "model.yml" _log.info("Loading %s model from metadata %s", src, path) model = load(path.read_text(encoding="utf8")) path = Path(load_from) / load_params _log.info("Loading %s model parameters from %s", src, path) model.load_state_dict(torch.load(path, "cpu")) _log.info("Creating %s extended word embedding layer", src) assert model.word_emb.embedding_dim == kv.vector_size with torch.no_grad(): model.word_emb = torch.nn.Embedding.from_pretrained( extend_word_embedding( model.word_emb.weight, vocab["words"], kv, vocab["words"].index(vocab.UNK_TOKEN), ) ) model.to(device) for wh in ["train", "dev"]: if load_samples_from: assert all("pptx_mask" in s for s in samples[wh]) continue for i, s in enumerate(samples_[wh]): s["_id"] = i runner = Runner() runner.state["_ids"] = [] if combine == "geom_mean": runner.state.update({"log_marginals": [], "pred_tags": []}) elif combine == "union": runner.state["pptx_masks"] = [] else: raise ValueError(f"unknown value for combine: {combine}") @runner.on(Event.BATCH) def compute_pptx_ambiguous_tag_pairs_mask(state): batch = state["batch"].to_array() words = torch.from_numpy(batch["words"]).to(device) mask = words != vocab["words"].index(vocab.PAD_TOKEN) assert mask.all(), "must not have masking at test time" model.eval() scores = model(words) if combine == "geom_mean": crf = LinearCRF(scores) state["log_marginals"].extend((crf.marginals() + 1e-9).log()) state["pred_tags"].extend(crf.argmax()) else: pptx_mask = compute_ambiguous_tag_pairs_mask(scores, thresh) state["pptx_masks"].extend(pptx_mask) state["_ids"].extend(batch["_id"].tolist()) state["n_items"] = words.numel() n_toks = sum(len(s["words"]) for s in samples_[wh]) ProgressBar(total=n_toks, unit="tok").attach_on(runner) if combine == "geom_mean": _log.info( "Computing marginals and best tags for %s set with source %s", wh, src ) else: _log.info( "Computing PPTX ambiguous tag pairs mask for %s set with source %s", wh, src ) with torch.no_grad(): runner.run(BucketIterator(samples_[wh], lambda s: len(s["words"]), batch_size)) for x in "pptx_masks log_marginals pred_tags".split(): assert x not in runner.state or len(runner.state[x]) == len(samples_[wh]) assert len(runner.state["_ids"]) == len(samples_[wh]) if "pptx_masks" in runner.state: for i, pptx_mask in zip(runner.state["_ids"], runner.state["pptx_masks"]): samples_[wh][i]["pptx_mask"] = pptx_mask.tolist() else: zips = [runner.state[x] for x in "log_marginals pred_tags".split()] for i, lms, pts in zip(runner.state["_ids"], *zips): samples_[wh][i]["log_marginals"] = lms samples_[wh][i]["pred_tags"] = pts if combine != "geom_mean": _log.info("Computing median number of tag sequences in chart on %s set", wh) log_ntags = [] for s in tqdm(samples_[wh], unit="sample", leave=False): mask = torch.tensor(s["pptx_mask"]).unsqueeze(0) cnt_scores = torch.zeros_like(mask).float().masked_fill(~mask, -1e9) log_ntags.append(LinearCRF(cnt_scores).log_partitions().item()) log_ntags.sort() mid = len(log_ntags) // 2 if len(log_ntags) % 2: log_med = log_ntags[mid] else: max_ = max(log_ntags[mid - 1], log_ntags[mid]) log_med = ( max_ + math.log( math.exp(log_ntags[mid - 1] - max_) + math.exp(log_ntags[mid] - max_) ) - math.log(2) ) _log.info("Median number of tag sequences in chart: %.1e", math.exp(log_med)) assert len(samples_[wh]) == len(samples[wh]) if combine == "geom_mean": _log.info("Combining the marginals") for i in tqdm(range(len(samples_[wh])), unit="sample", leave=False): lms = samples[wh][i].get("log_marginals", 0) pts = samples[wh][i].get("pred_tags", []) lms = torch.tensor(lms, device=device) + src2ws[src] * samples_[wh][i]["log_marginals"] pts.append(samples_[wh][i]["pred_tags"].tolist()) samples[wh][i]["log_marginals"] = lms.tolist() samples[wh][i]["pred_tags"] = pts else: _log.info("Combining the ambiguous tag pairs mask") for i in tqdm(range(len(samples_[wh])), unit="sample", leave=False): pptx_mask = torch.tensor(samples_[wh][i]["pptx_mask"]) assert pptx_mask.dim() == 3 if "pptx_mask" in samples[wh][i]: old_mask = torch.tensor(samples[wh][i]["pptx_mask"]) else: old_mask = torch.zeros(1, 1, 1).bool() samples[wh][i]["pptx_mask"] = (old_mask | pptx_mask).tolist() if not load_samples_from and combine == "geom_mean": for wh in ["train", "dev"]: _log.info("Computing the ambiguous tag pairs mask on %s set", wh) for s in tqdm(samples[wh], unit="sample", leave=False): lms = torch.tensor(s["log_marginals"]) assert lms.dim() == 3 and lms.size(1) == lms.size(2) # Renormalise the marginal probabilities lms = rearrange(lms, "slen nntags ntags -> slen (nntags ntags)") lms = lms.log_softmax(dim=1) lms = rearrange( lms, "slen (nntags ntags) -> slen nntags ntags", ntags=len(vocab["tags"]) ) lms = lms.unsqueeze(0) mask = compute_ambiguous_tag_pairs_mask(lms, thresh, is_log_marginals=True) assert mask.shape == lms.shape mask = mask.squeeze(0) for pts in s["pred_tags"]: for j in range(1, len(pts)): mask[j - 1, pts[j], pts[j - 1]] = True s["pptx_mask"] = mask.tolist() for k in "log_marginals pred_tags".split(): s.pop(k) assert src == main_src _log.info("Main source is %s", src) if artifacts_dir: path = artifacts_dir / "vocab.yml" _log.info("Saving vocabulary to %s", path) path.write_text(dump(vocab), encoding="utf8") path = artifacts_dir / "model.yml" _log.info("Saving model metadata to %s", path) path.write_text(dump(model), encoding="utf8") if artifacts_dir and save_samples: path = artifacts_dir / "samples.pkl" _log.info("Saving samples to %s", path) with open(path, "wb") as f: pickle.dump(samples, f) samples = {wh: list(vocab.stoi(samples[wh])) for wh in samples} for wh in ["train", "dev"]: _log.info("Computing median number of tag sequences in chart on %s set", wh) log_ntags = [] for s in tqdm(samples[wh], unit="sample", leave=False): mask = torch.tensor(s["pptx_mask"]).unsqueeze(0) cnt_scores = torch.zeros_like(mask).float().masked_fill(~mask, -1e9) log_ntags.append(LinearCRF(cnt_scores).log_partitions().item()) log_ntags.sort() mid = len(log_ntags) // 2 if len(log_ntags) % 2: log_med = log_ntags[mid] else: max_ = max(log_ntags[mid - 1], log_ntags[mid]) log_med = ( max_ + math.log( math.exp(log_ntags[mid - 1] - max_) + math.exp(log_ntags[mid] - max_) ) - math.log(2) ) _log.info("Median number of tag sequences in chart: %.1e", math.exp(log_med)) _log.info("Creating optimizer") opt = torch.optim.Adam(model.parameters(), lr=lr) finetuner = Runner() EpochTimer().attach_on(finetuner) ProgressBar( stats="stats", total=sum(len(s["words"]) for s in samples["train"]), unit="tok" ).attach_on(finetuner) origin_params = {name: p.clone().detach() for name, p in model.named_parameters()} finetuner.on(Event.BATCH, compute_l2_loss(model, origin_params)) @finetuner.on(Event.BATCH) def compute_loss(state): batch = state["batch"].to_array() words = torch.from_numpy(batch["words"]).to(device) pptx_mask = torch.from_numpy(batch["pptx_mask"]).to(device).bool() mask = words != vocab["words"].index(vocab.PAD_TOKEN) model.train() scores = model(words, mask) bsz, slen = words.shape assert scores.shape == (bsz, slen - 1, len(vocab["tags"]), len(vocab["tags"])) assert pptx_mask.shape == scores.shape masked_scores = scores.masked_fill(~pptx_mask, -1e9) lengths = mask.long().sum(dim=1) mask[torch.arange(bsz).to(mask.device), lengths - 1] = False # exclude last position crf = LinearCRF( masked_scores.contiguous(), mask[:, :-1] ) # exclude last position from mask crf_z = LinearCRF(scores.contiguous(), mask[:, :-1]) # exclude last position from mask pptx_loss = (-crf.log_partitions().sum() + crf_z.log_partitions().sum()) / bsz loss = pptx_loss + l2_coef * state["l2_loss"] state["loss"] = loss state["stats"] = { "pptx_loss": pptx_loss.item(), "l2_loss": state["l2_loss"].item(), } state["extra_stats"] = {"loss": loss.item()} state["n_items"] = lengths.sum().item() finetuner.on(Event.BATCH, [update_params(opt), log_grads(_run, model), log_stats(_run)]) @finetuner.on(Event.EPOCH_FINISHED) def maybe_eval_on_train(state): if not eval_on_train: return _log.info("Evaluating on train") acc, pptx_loss = run_eval(model, vocab, samples["train"]) _log.info("train_acc: %.1f%%", 100 * acc) _run.log_scalar("train_acc", acc, step=state["n_iters"]) assert pptx_loss is not None _log.info("train_pptx_loss: %.4f", pptx_loss) _run.log_scalar("train_pptx_loss", pptx_loss, step=state["n_iters"]) @finetuner.on(Event.EPOCH_FINISHED) def eval_on_dev(state): _log.info("Evaluating on dev") acc, pptx_loss = run_eval(model, vocab, samples["dev"]) _log.info("dev_acc: %.1f%%", 100 * acc) _run.log_scalar("dev_acc", acc, step=state["n_iters"]) assert pptx_loss is not None _log.info("dev_pptx_loss: %.4f", pptx_loss) _run.log_scalar("dev_pptx_loss", pptx_loss, step=state["n_iters"]) state["dev_acc"] = acc @finetuner.on(Event.EPOCH_FINISHED) def maybe_eval_on_test(state): if state["epoch"] != max_epoch: return _log.info("Evaluating on test") acc, _ = run_eval(model, vocab, samples["test"], compute_loss=False) _log.info("test_acc: %.1f%%", 100 * acc) _run.log_scalar("test_acc", acc, step=state["n_iters"]) if artifacts_dir: finetuner.on(Event.EPOCH_FINISHED, save_state_dict("model", model, under=artifacts_dir)) samples["train"].sort(key=lambda s: len(s["words"])) trn_iter = ShuffleIterator( BucketIterator(samples["train"], lambda s: len(s["words"]) // 10, batch_size), rng=_rnd ) _log.info("Starting finetuning") try: finetuner.run(trn_iter, max_epoch) except KeyboardInterrupt: _log.info("Interrupt detected, training will abort") else: return finetuner.state.get("dev_acc")
1.898438
2
cfod/analysis/filterbank/sigproc.py
chime-frb-open-data/chime-frb-data
6
12794014
"""Sigproc header definitions and tools. Slightly modified version of: https://github.com/scottransom/presto/blob/master/lib/python/sigproc.py by <NAME>. <NAME>, <EMAIL> """ import struct header_params = { "HEADER_START": "flag", "telescope_id": "i", "machine_id": "i", "data_type": "i", "rawdatafile": "str", "source_name": "str", "barycentric": "i", "pulsarcentric": "i", "az_start": "d", "za_start": "d", "src_raj": "d", "src_dej": "d", "tstart": "d", "tsamp": "d", "nbits": "i", "nsamples": "i", "nbeams": "i", "ibeam": "i", "fch1": "d", "foff": "d", "FREQUENCY_START": "flag", "fchannel": "d", "FREQUENCY_END": "flag", "nchans": "i", "nifs": "i", "refdm": "d", "period": "d", "npuls": "q", "nbins": "i", "HEADER_END": "flag", } def prep_string(string): return struct.pack("i", len(string)) + string def prep_double(name, value): return prep_string(name) + struct.pack("d", float(value)) def prep_int(name, value): return prep_string(name) + struct.pack("i", int(value)) def addto_hdr(parameter, value): """Prepare parameter and value for writing to binary file.""" if header_params[parameter] == "d": return prep_double(parameter, value) elif header_params[parameter] == "i": return prep_int(parameter, value) elif header_params[parameter] == "str": return prep_string(parameter) + prep_string(value) elif header_params[parameter] == "flag": return prep_string(parameter) else: print(f"WARNING key '{parameter}' is unknown!")
2.421875
2
dataloader.py
sha2nkt/dvs_super_slomo
3
12794015
<reponame>sha2nkt/dvs_super_slomo import torch import torch.utils.data as data import numpy as np import cv2 from PIL import Image import glob import os, pdb import random def populateTrainList(folderPath): folderList_pre = [x[0] for x in os.walk(folderPath)] folderList = [] trainList = [] for folder in folderList_pre: if folder[-3:] == '240': folderList.append(folder + "/" + folder.split("/")[-2]) for folder in folderList: imageList = sorted(glob.glob(folder + '/' + '*.jpg')) for i in range(0, len(imageList), 12): tmp = imageList[i:i+12] if len(tmp) == 12: trainList.append(imageList[i:i+12]) return trainList def populateTrainList2(rgbPath, dvsPath): folderListRgb = [x[0] for x in os.walk(rgbPath)] folderListDvs = [x[0] for x in os.walk(dvsPath)] trainList_rgb = [] trainList_dvs = [] for im_folder, dvs_folder in zip(folderListRgb, folderListDvs): imageList = sorted(glob.glob(im_folder + '/' + '*.jpg')) dvsList = sorted(glob.glob(dvs_folder + '/' + '*.png')) minLen = min(len(imageList), len(dvsList)) imageList = imageList[:minLen] dvsList = dvsList[:minLen] for i in range(0, len(imageList), 12): tmp_rgb = imageList[i:i+12] tmp_dvs = dvsList[i:i+12] if len(tmp_rgb) == 12: trainList_rgb.append(imageList[i:i+12]) trainList_dvs.append(dvsList[i:i+12]) return trainList_rgb, trainList_dvs def populateTrainList2Rgb(folderPath): folderList = [x[0] for x in os.walk(folderPath)] trainList = [] for folder in folderList: imageList = sorted(glob.glob(folder + '/' + '*.jpg')) for i in range(0, len(imageList), 12): tmp = imageList[i:i+12] if len(tmp) == 12: trainList.append(imageList[i:i+12]) return trainList def populateValList2Rgb(folderPath): folderList = [x[0] for x in os.walk(folderPath)] trainList = [] for folder in folderList: imageList = sorted(glob.glob(folder + '/' + '*.jpg')) for i in range(0, len(imageList), 9): tmp = imageList[i:i+9] if len(tmp) == 9: trainList.append(imageList[i:i+9]) return trainList # def populateDvsList2(folderPath): # folderList = [x[0] for x in os.walk(folderPath)] # trainList = [] # for folder in folderList: # imageList = sorted(glob.glob(folder + '/' + '*.jpg')) # for i in range(0, len(imageList), 12): # tmp = imageList[i:i+12] # if len(tmp) == 12: # trainList.append(imageList[i:i+12]) # return trainList def populateTestList2(folderPath): folderList = [x[0] for x in os.walk(folderPath)] trainList = [] for folder in folderList: imageList = sorted(glob.glob(folder + '/' + '*.jpg')) for i in range(0, len(imageList), 2): tmp = imageList[i:i+2] if len(tmp) == 2: trainList.append(imageList[i:i+2]) return trainList def fixedCropOnList(image_list, output_size): cropped_img_list = [] h,w = output_size height, width, _ = image_list[0].shape i = 100 j = 0 st_y = 0 ed_y = w st_x = 0 ed_x = h or_st_y = i or_ed_y = i + w or_st_x = j or_ed_x = j + h #print(st_x, ed_x, st_y, ed_y) #print(or_st_x, or_ed_x, or_st_y, or_ed_y) for img in image_list: new_img = np.empty((h,w,3), dtype=np.float32) new_img.fill(128) new_img[st_y: ed_y, st_x: ed_x, :] = img[or_st_y: or_ed_y, or_st_x: or_ed_x, :].copy() cropped_img_list.append(np.ascontiguousarray(new_img)) return cropped_img_list def randomCropOnList(image_list, output_size): cropped_img_list = [] h,w = output_size height, width, _ = image_list[0].shape #print(h,w,height,width) i = random.randint(0, height - h) j = random.randint(0, width - w) st_y = 0 ed_y = w st_x = 0 ed_x = h or_st_y = i or_ed_y = i + w or_st_x = j or_ed_x = j + h #print(st_x, ed_x, st_y, ed_y) #print(or_st_x, or_ed_x, or_st_y, or_ed_y) for img in image_list: new_img = np.empty((h,w,3), dtype=np.float32) new_img.fill(128) new_img[st_y: ed_y, st_x: ed_x, :] = img[or_st_y: or_ed_y, or_st_x: or_ed_x, :].copy() cropped_img_list.append(np.ascontiguousarray(new_img)) return cropped_img_list def randomCropOnListDvs(image_list, dvs_list, output_size): cropped_img_list = [] cropped_dvs_list = [] h,w = output_size height, width, _ = image_list[0].shape dvs_h, dvs_w = dvs_list[0].shape #print(h,w,height,width) i = random.randint(0, height - h) j = random.randint(0, width - w) st_y = 0 ed_y = w st_x = 0 ed_x = h or_st_y = i or_ed_y = i + w or_st_x = j or_ed_x = j + h #print(st_x, ed_x, st_y, ed_y) #print(or_st_x, or_ed_x, or_st_y, or_ed_y) for img,dvs in zip(image_list, dvs_list): new_img = np.empty((h,w,3), dtype=np.float32) new_dvs = np.empty((h,w), dtype=np.float32) new_img.fill(128) new_img[st_y: ed_y, st_x: ed_x, :] = img[or_st_y: or_ed_y, or_st_x: or_ed_x, :].copy() new_dvs[st_y: ed_y, st_x: ed_x] = dvs[or_st_y: or_ed_y, or_st_x: or_ed_x].copy() cropped_img_list.append(np.ascontiguousarray(new_img)) cropped_dvs_list.append(np.ascontiguousarray(new_dvs)) return cropped_img_list, cropped_dvs_list #print(len(populateTrainList('/home/user/data/nfs/'))) class expansionLoader(data.Dataset): def __init__(self, folderPath, mode='train'): self.trainList = populateTrainList2Rgb(folderPath) self.mode = mode print("# of training samples:", len(self.trainList)) def __getitem__(self, index): img_path_list = self.trainList[index] start = random.randint(0,3) h,w,c = cv2.imread(img_path_list[0]).shape image = cv2.imread(img_path_list[0]) #print(h,w,c) if h > w: scaleX = int(360*(h/w)) scaleY = 360 elif h <= w: scaleX = 360 scaleY = int(360*(w/h)) img_list = [] flip = random.randint(0,1) if flip: for img_path in img_path_list[start:start+9]: tmp = cv2.resize(cv2.imread(img_path), (scaleX,scaleY))[:,:,(2,1,0)] img_list.append(np.array(cv2.flip(tmp,1), dtype=np.float32)) else: for img_path in img_path_list[start:start+9]: tmp = cv2.resize(cv2.imread(img_path), (scaleX, scaleY))[:,:,(2,1,0)] img_list.append(np.array(tmp,dtype=np.float32)) #cv2.imshow("j",tmp) #cv2.waitKey(0) & 0xff #brak for i in range(len(img_list)): #print(img_list[i].shape) #brak img_list[i] /= 255 img_list[i][:,:,0] -= 0.485#(img_list[i]/127.5) - 1 img_list[i][:,:,1] -= 0.456 img_list[i][:,:,2] -= 0.406 img_list[i][:,:,0] /= 0.229 img_list[i][:,:,1] /= 0.224 img_list[i][:,:,2] /= 0.225 cropped_img_list = randomCropOnList(img_list,(352,352)) for i in range(len(cropped_img_list)): cropped_img_list[i] = torch.from_numpy(cropped_img_list[i].transpose((2, 0, 1))) return cropped_img_list def __len__(self): return len(self.trainList) class testLoader(data.Dataset): def __init__(self, folderPath, mode='test'): self.trainList = populateTestList2(folderPath) self.mode = mode print("# of training samples:", len(self.trainList)) def __getitem__(self, index): img_path_list = self.trainList[index] start = 0 h,w,c = cv2.imread(img_path_list[0]).shape image = cv2.imread(img_path_list[0]) #print(h,w,c) if h > w: scaleX = int(360*(h/w)) scaleY = 360 elif h <= w: scaleX = 360 scaleY = int(360*(w/h)) img_list = [] for img_path in img_path_list[start:start+2]: tmp = cv2.resize(cv2.imread(img_path), (scaleX, scaleY))[:,:,(2,1,0)] img_list.append(np.array(tmp,dtype=np.float32)) #cv2.imshow("j",tmp) #cv2.waitKey(0) & 0xff #brak for i in range(len(img_list)): #print(img_list[i].shape) #brak img_list[i] /= 255 img_list[i][:,:,0] -= 0.485#(img_list[i]/127.5) - 1 img_list[i][:,:,1] -= 0.456 img_list[i][:,:,2] -= 0.406 img_list[i][:,:,0] /= 0.229 img_list[i][:,:,1] /= 0.224 img_list[i][:,:,2] /= 0.225 cropped_img_list = fixedCropOnList(img_list, (352, 352)) for i in range(len(cropped_img_list)): cropped_img_list[i] = torch.from_numpy(cropped_img_list[i].transpose((2, 0, 1))) return cropped_img_list def __len__(self): return len(self.trainList) class valLoader(data.Dataset): def __init__(self, folderPath, mode='test'): self.trainList = populateValList2Rgb(folderPath) self.mode = mode print("# of training samples:", len(self.trainList)) def __getitem__(self, index): img_path_list = self.trainList[index] start = 0 h,w,c = cv2.imread(img_path_list[0]).shape image = cv2.imread(img_path_list[0]) #print(h,w,c) if h > w: scaleX = int(360*(h/w)) scaleY = 360 elif h <= w: scaleX = 360 scaleY = int(360*(w/h)) img_list = [] for img_path in img_path_list[start:start+9]: tmp = cv2.resize(cv2.imread(img_path), (scaleX, scaleY))[:,:,(2,1,0)] img_list.append(np.array(tmp,dtype=np.float32)) #cv2.imshow("j",tmp) #cv2.waitKey(0) & 0xff #brak for i in range(len(img_list)): #print(img_list[i].shape) #brak img_list[i] /= 255 img_list[i][:,:,0] -= 0.485#(img_list[i]/127.5) - 1 img_list[i][:,:,1] -= 0.456 img_list[i][:,:,2] -= 0.406 img_list[i][:,:,0] /= 0.229 img_list[i][:,:,1] /= 0.224 img_list[i][:,:,2] /= 0.225 cropped_img_list = fixedCropOnList(img_list, (352, 352)) for i in range(len(cropped_img_list)): cropped_img_list[i] = torch.from_numpy(cropped_img_list[i].transpose((2, 0, 1))) return cropped_img_list def __len__(self): return len(self.trainList) class dvsLoader(data.Dataset): def __init__(self, imFolderPath, dvsFolderPath, mode='train'): self.trainList, self.dvsList = populateTrainList2(imFolderPath, dvsFolderPath) # self.dvsList = populateTrainList2Dvs(dvsFolderPath) self.mode = mode print("# of training samples:", len(self.trainList)) print("# of dvs samples:", len(self.dvsList)) def __getitem__(self, index): img_path_list = self.trainList[index] dvs_path_list = self.dvsList[index] start = random.randint(0,3) h,w,c = cv2.imread(img_path_list[0]).shape h,w = cv2.imread(dvs_path_list[0], cv2.COLOR_BGR2GRAY).shape image = cv2.imread(img_path_list[0]) dvs = cv2.imread(dvs_path_list[0], cv2.COLOR_BGR2GRAY) #print(h,w,c) if h > w: scaleX = int(360*(h/w)) scaleY = 360 elif h <= w: scaleX = 360 scaleY = int(360*(w/h)) img_list = [] dvs_list = [] flip = random.randint(0,1) if flip: for img_path in img_path_list[start:start+9]: tmp = cv2.resize(cv2.imread(img_path), (scaleX,scaleY))[:,:,(2,1,0)] img_list.append(np.array(cv2.flip(tmp,1), dtype=np.float32)) for dvs_path in dvs_path_list[start:start+9]: tmp = cv2.resize(cv2.imread(dvs_path, cv2.COLOR_BGR2GRAY), (scaleX,scaleY)) thresh = 127 tmp = cv2.threshold(tmp, thresh, 1, cv2.THRESH_BINARY)[1] dvs_list.append(np.array(cv2.flip(tmp,1), dtype=np.float32)) else: for img_path in img_path_list[start:start+9]: tmp = cv2.resize(cv2.imread(img_path), (scaleX, scaleY))[:,:,(2,1,0)] img_list.append(np.array(tmp,dtype=np.float32)) for dvs_path in dvs_path_list[start:start+9]: tmp = cv2.resize(cv2.imread(dvs_path, cv2.COLOR_BGR2GRAY), (scaleX, scaleY)) thresh = 127 tmp = cv2.threshold(tmp, thresh, 1, cv2.THRESH_BINARY)[1] dvs_list.append(np.array(tmp,dtype=np.float32)) #cv2.imshow("j",tmp) #cv2.waitKey(0) & 0xff #brak for i in range(len(img_list)): #print(img_list[i].shape) #brak img_list[i] /= 255 img_list[i][:,:,0] -= 0.485#(img_list[i]/127.5) - 1 img_list[i][:,:,1] -= 0.456 img_list[i][:,:,2] -= 0.406 img_list[i][:,:,0] /= 0.229 img_list[i][:,:,1] /= 0.224 img_list[i][:,:,2] /= 0.225 cropped_img_list, cropped_dvs_list = randomCropOnListDvs(img_list, dvs_list ,(352,352)) for i in range(len(cropped_img_list)): cropped_img_list[i] = torch.from_numpy(cropped_img_list[i].transpose((2, 0, 1))) for i in range(len(cropped_dvs_list)): cropped_dvs_list[i] = torch.from_numpy(cropped_dvs_list[i]) return cropped_img_list, cropped_dvs_list def __len__(self): return len(self.trainList)
2.328125
2
step2_train_rewarder.py
felixba93/summary-reward-no-reference-master
0
12794016
import sys import torch from torch.autograd import Variable import numpy as np import os from os import path import argparse import random import copy from tqdm import tqdm import pickle from scorer.data_helper.json_reader import read_sorted_scores, read_pair_anno_scores, read_articles, \ read_processed_scores, read_scores from scipy.stats import spearmanr, pearsonr, kendalltau import math from torchvision import models from resources import MODEL_WEIGHT_DIR from resources import OUTPUTS_DIR from matplotlib import pyplot as plt import csv def parse_split_data(sorted_scores, train_percent, dev_percent, prompt='structure'): train = {} dev = {} test = {} all = {} topic_count = 0 for article_id, scores_list in tqdm(sorted_scores.items()): entry = {} summ_ids = [s['summ_id'] for s in scores_list] for sid in summ_ids: entry['sys_summ' + repr(sid)] = [s['scores'][prompt] for s in scores_list if s['summ_id'] == sid][ 0] # that can be done more efficiently, but who cares... rand = random.random() all[article_id] = entry if rand < train_percent: train[article_id] = entry elif rand < train_percent + dev_percent: dev[article_id] = entry else: test[article_id] = entry topic_count += 1 print("topics in parse_split_data", topic_count) return train, dev, test, all def parse_split_data_balanced(sorted_scores, train_percent, dev_percent, prompt='structure'): train = {} dev = {} test = {} all = {} topic_count = 0 article_ids = list(sorted_scores.keys()) random.shuffle(article_ids) num_articles = len(article_ids) train_ids = article_ids[0:int(train_percent * num_articles)] dev_ids = article_ids[int(train_percent * num_articles):int((train_percent + dev_percent) * num_articles)] # test_ids=article_ids[int((train_percent+dev_percent)*num_articles):] for article_id, scores_list in tqdm(sorted_scores.items()): entry = {} summ_ids = [s['summ_id'] for s in scores_list] for sid in summ_ids: entry['sys_summ' + repr(sid)] = [s['scores'][prompt] for s in scores_list if s['summ_id'] == sid][ 0] # that can be done more efficiently, but who cares... # rand = random.random() all[article_id] = entry if article_id in train_ids: train[article_id] = entry elif article_id in dev_ids: dev[article_id] = entry else: test[article_id] = entry topic_count += 1 print("topics in parse_split_data", topic_count) return train, dev, test, all def build_model(model_type, vec_length, learn_rate=None): if 'linear' in model_type: deep_model = torch.nn.Sequential( torch.nn.Linear(vec_length, 1), ) else: deep_model = torch.nn.Sequential( torch.nn.Linear(vec_length, int(vec_length / 2)), torch.nn.ReLU(), torch.nn.Linear(int(vec_length / 2), 1), ) if learn_rate is not None: optimiser = torch.optim.Adam(deep_model.parameters(), lr=learn_rate) return deep_model, optimiser else: return deep_model def deep_pair_train(vec_list, target, deep_model, optimiser, device): # print(np.array(vec_list).shape) input = Variable(torch.from_numpy(np.array(vec_list)).float()) # print(input) if 'gpu' in device: input = input.to('cuda') value_variables = deep_model(input) # print(value_variables) softmax_layer = torch.nn.Softmax(dim=1) pred = softmax_layer(value_variables) # print(pred) # print(np.array(target).shape, np.array(target).reshape(-1, 2, 1).shape) target_variables = Variable(torch.from_numpy(np.array(target)).float()).view(-1, 2, 1) # print(target_variables) if 'gpu' in device: target_variables = target_variables.to('cuda') loss_fn = torch.nn.BCELoss() loss = loss_fn(pred, target_variables) # print(loss) optimiser.zero_grad() loss.backward() optimiser.step() return loss.cpu().item() def deep_pair_train_loss_only(vec_list, target, deep_model, optimiser, device): # print(np.array(vec_list).shape) input = Variable(torch.from_numpy(np.array(vec_list)).float()) # print(input) if 'gpu' in device: input = input.to('cuda') value_variables = deep_model(input) # print(value_variables) softmax_layer = torch.nn.Softmax(dim=1) pred = softmax_layer(value_variables) # print(pred) # print(np.array(target).shape, np.array(target).reshape(-1, 2, 1).shape) target_variables = Variable(torch.from_numpy(np.array(target)).float()).view(-1, 2, 1) # print(target_variables) if 'gpu' in device: target_variables = target_variables.to('cuda') loss_fn = torch.nn.BCELoss() loss = loss_fn(pred, target_variables) # print(loss) return loss.cpu().item() def build_pairs(entries): pair_list = [] topic_count = 0 summ_count = 0 for article_id in entries: entry = entries[article_id] summ_ids = list(entry.keys()) # really iterate over all pairs. there was an error here before since j started from 1, to prevent i,j=0,0. but this also lead to i,j=x,0 never be chosen the situation i=j is solved otherwise for i in range(len(summ_ids)): for j in range(len(summ_ids)): if i == j: continue if entry[summ_ids[i]] > entry[summ_ids[j]]: pref = [1, 0] elif entry[summ_ids[i]] < entry[summ_ids[j]]: pref = [0, 1] else: pref = [0.5, 0.5] pair_list.append((article_id, summ_ids[i], summ_ids[j], pref)) # print(pair_list) topic_count += 1 summ_count = summ_count + len(summ_ids) print("topics", topic_count) print("summ", summ_count) return pair_list def build_anno_pairs(entries, pair_anno_scores): pair_list = [] topic_count = 0 summ_count = 0 for article_id in entries: entry = entries[article_id] summ_ids = list(entry.keys()) # really iterate over all pairs. there was an error here before since j started from 1, to prevent i,j=0,0. but this also lead to i,j=x,0 never be chosen the situation i=j is solved otherwise for i in range(len(summ_ids)): for j in range(len(summ_ids)): if i == j: continue # get keys from dictionary entry_keys = list(entry.keys()) # get pair preference from pair_anno_scores for pair in pair_anno_scores[article_id]: if pair['summ_id_i'] == int(entry_keys[i][8]) and pair['summ_id_j'] == int(entry_keys[j][8]): if pair['pref'] == 1: pref = [1, 0] pair_list.append((article_id, summ_ids[i], summ_ids[j], pref)) continue else: pref = [0, 1] pair_list.append((article_id, summ_ids[i], summ_ids[j], pref)) continue elif pair['summ_id_j'] == int(entry_keys[i][8]) and pair['summ_id_i'] == int(entry_keys[j][8]): if pair['pref'] == 1: pref = [0, 1] pair_list.append((article_id, summ_ids[i], summ_ids[j], pref)) continue else: pref = [1, 0] pair_list.append((article_id, summ_ids[i], summ_ids[j], pref)) continue topic_count += 1 summ_count = summ_count + len(summ_ids) print("topics", topic_count) print("summ", summ_count) # print(pair_list) return pair_list def build_human_pair_scores(pair_list): human_pair_scores = {} for entry in pair_list: article_id = str(entry[0]) sum_id_i = str(entry[1]) sum_id_j = str(entry[2]) pref = entry[3] summ_entry = {} if article_id in human_pair_scores: if pref == [1, 0]: if sum_id_i in human_pair_scores[article_id]: human_pair_scores[article_id][sum_id_i] + 1 else: human_pair_scores[article_id][sum_id_i] = 1 else: if sum_id_j in human_pair_scores[article_id]: human_pair_scores[article_id][sum_id_j] + 1 else: human_pair_scores[article_id][sum_id_j] = 1 else: if pref == [1, 0]: summ_entry[sum_id_i] = 1 summ_entry[sum_id_j] = 0 else: summ_entry[sum_id_i] = 0 summ_entry[sum_id_j] = 1 human_pair_scores[article_id] = summ_entry return human_pair_scores # randomize_pref_order and double_prefs are only relevant if the learning function learns f(s0,s1)=pref. in our case, we learn f(s0)=pref[0] and f(s1)=pref[1], so this should be set to False def build_pairs_majority_preferences(entries, sorted_scores, target_type='graded', ignore_ties=False, randomize_pref_order=False, double_prefs=False): pair_list = [] topic_count = 0 anno_count = 0 summ_count = 0 entries_text = {} # get summary text and matching id for article_id, scores_list in tqdm(sorted_scores.items()): temp_entry = {} summ_ids = [s['summ_id'] for s in scores_list] for sid in summ_ids: # get summary text s_text = [s['sys_summ'] for s in scores_list if s['summ_id'] == sid][0] temp_entry['sys_summ' + repr(sid)] = s_text # save in dictionary entries_text[article_id] = temp_entry for article_id in entries: entry = entries[article_id] summ_ids = list(entry.keys()) # mapping from summary text to last summary id with that text. that's the one we will use summ2id = {entries_text[article_id][summ_id]: summ_id for summ_id in summ_ids} # put here the prefs for this article article_prefs = {} # still run through all pairs # really iterate over all pairs. there was an error here before since j started from 1, to prevent i,j=0,0. but this also lead to i,j=x,0 never be chosen the situation i=j is solved otherwise for i in range(len(summ_ids)): for j in range(len(summ_ids)): # run through dictionary containing summ_ids and matching text # for key, value in entries_text[article_id].items(): # get text for current summaries i and j # if key == summ_ids[i]: # text_i = value # elif key == summ_ids[j]: # text_j = value text_i = entries_text[article_id][summ_ids[i]] text_j = entries_text[article_id][summ_ids[j]] # check if text is identical, if yes skip if i == j or text_i == text_j: # print("DUPLICATE FOUND: TEXT i", text_i, "TEXT j", text_i) continue # get the unique summ ids unique_summ_id_pair = [summ2id[text_i], summ2id[text_j]] # some debug output # noinspection PyUnreachableCode if False: print("%s vs. %s (IDs %s vs. %s)" % ( summ_ids[i], summ_ids[j], unique_summ_id_pair[0], unique_summ_id_pair[1])) full_entry = sorted_scores[article_id] print(" system %s with score %s (%s) vs." % ( full_entry[i]['sys_name'], full_entry[i]['scores']['redundancy'], entry[summ_ids[i]])) print(" system %s with score %s (%s)" % ( full_entry[j]['sys_name'], full_entry[j]['scores']['redundancy'], entry[summ_ids[j]])) print( " \"%s...\" vs. \"%s...\"" % (full_entry[i]['sys_summ'][:20], full_entry[j]['sys_summ'][:20])) # unique_summ_id_pair.sort() if entry[summ_ids[i]] > entry[summ_ids[j]]: pref = [1, 0] elif entry[summ_ids[i]] < entry[summ_ids[j]]: pref = [0, 1] else: pref = [0.5, 0.5] # if entry[unique_summ_id_pair[0]] > entry[unique_summ_id_pair[1]]: # pref = [1, 0] # elif entry[unique_summ_id_pair[0]] > entry[unique_summ_id_pair[1]]: # pref = [0, 1] # else: # # todo we could completely ignore ties. doesnt change much. low prio # pref = [0.5, 0.5] # sort the ids so that we get a unique key, so that (sys_summ0,sys_summ1) and (sys_summ1,sys_summ0) are the same if unique_summ_id_pair[1] < unique_summ_id_pair[0]: unique_summ_id_pair = unique_summ_id_pair[::-1] pref = pref[::-1] # convert to tuple, otherwise its not hashable for the dict unique_summ_id_pair = tuple(unique_summ_id_pair) # add up the pref to the total pref vector of the specific summary pair. create a new entry if not existing article_prefs[unique_summ_id_pair] = article_prefs.get(unique_summ_id_pair, np.array([0, 0])) + np.array(pref) # transform to target for unique_summ_id_pair, pref in article_prefs.items(): # depending on the mode, use binary target, or graded one pref = (pref / (pref[0] + pref[1])).tolist() if target_type == 'binary': if pref[0] > pref[1]: pref = [1, 0] elif pref[0] < pref[1]: pref = [1, 0] else: pref = [0.5, 0.5] # skip if it is a tie and you want to ignore ties if pref[0] != 0.5 or not ignore_ties: # include the pref two times, once in one direction and once in the other direction if double_prefs: pair_list.append((article_id, unique_summ_id_pair[1], unique_summ_id_pair[0], pref[::-1])) pair_list.append((article_id, unique_summ_id_pair[0], unique_summ_id_pair[1], pref)) else: # include the pref in the reverse order by chance. this might be necessary if there is a bias in the distribution of the score, e.g. if they are ordered if randomize_pref_order and bool(random.getrandbits(1)): pair_list.append((article_id, unique_summ_id_pair[1], unique_summ_id_pair[0], pref[::-1])) else: pair_list.append((article_id, unique_summ_id_pair[0], unique_summ_id_pair[1], pref)) topic_count += 1 anno_count += len(summ_ids) summ_count += len(summ2id) print("topics", topic_count) print("annotations", anno_count) print("summ", summ_count) print("summ pairs", len(pair_list)) return pair_list def build_pair_vecs(vecs, pairs): pair_vec_list = [] for aid, sid1, sid2, _ in pairs: article_vec = list(vecs[aid]['article']) s1_vec = list(vecs[aid][sid1]) s2_vec = list(vecs[aid][sid2]) pair_vec_list.append([article_vec + s1_vec, article_vec + s2_vec]) return pair_vec_list def pair_train_rewarder(vec_dic, pairs, deep_model, optimiser, loss_only, batch_size=32, device='cpu'): loss_list = [] shuffled_pairs = pairs[:] np.random.shuffle(shuffled_pairs) vec_pairs = build_pair_vecs(vec_dic, shuffled_pairs) # print('total number of pairs built: {}'.format(len(vec_pairs))) for pointer in range(int((len( pairs) - 1) / batch_size) + 1): # there was a bug here. when len(pairs) was a vielfaches of 32, then there was a last batch with [] causing an exception vec_batch = vec_pairs[pointer * batch_size:(pointer + 1) * batch_size] target_batch = shuffled_pairs[pointer * batch_size:(pointer + 1) * batch_size] target_batch = [ee[-1] for ee in target_batch] if loss_only: loss = deep_pair_train_loss_only(vec_batch, target_batch, deep_model, optimiser, device) else: loss = deep_pair_train(vec_batch, target_batch, deep_model, optimiser, device) loss_list.append(loss) return np.mean(loss_list) def test_rewarder(vec_list, human_scores, model, device, plot_file=None): results = {'rho': [], 'rho_p': [], 'pcc': [], 'pcc_p': [], 'tau': [], 'tau_p': [], 'rho_global': [], 'pcc_global': [], 'tau_global': []} true_scores_all = [] pred_scores_all = np.array([]) # print(human_scores) # pred_scores_all = [] for article_id in human_scores: entry = human_scores[article_id] summ_ids = list(entry.keys()) if len(summ_ids) < 2: continue concat_vecs = [] true_scores = [] for i in range(len(summ_ids)): article_vec = list(vec_list[article_id]['article']) summ_vec = list(vec_list[article_id][summ_ids[i]]) # print(np.array(concat_vecs).shape, np.array(article_vec).shape, np.array(summ_vec).shape) concat_vecs.append(article_vec + summ_vec) # print(np.array(concat_vecs).shape) # print(entry[summ_ids[i]]) true_scores.append(entry[summ_ids[i]]) true_scores_all += true_scores # add scores for topic to list of all scores input = Variable(torch.from_numpy(np.array(concat_vecs)).float()) if 'gpu' in device: input = input.to('cuda') model.eval() with torch.no_grad(): # print(true_scores) # print(np.array(true_scores).shape) # print(input) # print(input.shape) # print(model(input).data.cpu().numpy()) # print(model(input).data.cpu().numpy().shape) pred_scores = model(input).data.cpu().numpy().reshape(1, -1)[0] pred_scores_all = np.concatenate((pred_scores_all, pred_scores), axis=0) # pred_scores_all += pred_scores.tolist() rho, rho_p = spearmanr(true_scores, pred_scores) pcc, pcc_p = pearsonr(true_scores, pred_scores) tau, tau_p = kendalltau(true_scores, pred_scores) if not (math.isnan(rho) or math.isnan(pcc) or math.isnan(tau)): results['rho'].append(rho) results['rho_p'].append(rho_p) results['pcc'].append(pcc) results['pcc_p'].append(pcc_p) results['tau'].append(tau) results['tau_p'].append(tau_p) rho = spearmanr(true_scores_all, pred_scores_all)[0] pcc = pearsonr(true_scores_all, pred_scores_all)[0] tau = kendalltau(true_scores_all, pred_scores_all)[0] if not (math.isnan(rho) or math.isnan(pcc) or math.isnan(tau)): results['rho_global'].append(rho) results['pcc_global'].append(pcc) results['tau_global'].append(tau) if plot_file is not None: fig, ax = plt.subplots() # true_scores_all=np.array(true_scores_all) # pred_scores_all=np.array(pred_scores_all) unique = np.sort(np.unique(true_scores_all)) data_to_plot = [pred_scores_all[true_score == true_scores_all] for true_score in unique] # bw_methods determines how soft the distribution curve will be. lower values are more sharp ax.violinplot(data_to_plot, showmeans=True, showmedians=True, bw_method=0.2) ax.scatter(true_scores_all + np.random.normal(0, 0.1, pred_scores_all.shape[0]), pred_scores_all, marker=".", s=3, alpha=0.5) ax.set_title('Comparison and distributions of true values to predicted score') ax.set_xlabel('true scores') ax.set_ylabel('predicted scores') xticklabels = true_scores_all ax.set_xticks(true_scores_all) print("violin plot written to: %s" % plot_file) plt.savefig(plot_file) return results def parse_args(argv): ap = argparse.ArgumentParser("arguments for summary sampler") ap.add_argument('-e', '--epoch_num', type=int, default=50) ap.add_argument('-b', '--batch_size', type=int, default=32) ap.add_argument('-tt', '--train_type', type=str, help='pairwise or regression', default='pairwise') ap.add_argument('-tp', '--train_percent', type=float, help='how many data used for training', default=.64) ap.add_argument('-dp', '--dev_percent', type=float, help='how many data used for dev', default=.16) ap.add_argument('-lr', '--learn_rate', type=float, help='learning rate', default=3e-4) ap.add_argument('-mt', '--model_type', type=str, help='deep/linear', default='linear') ap.add_argument('-dv', '--device', type=str, help='cpu/gpu', default='gpu') ap.add_argument('-se', '--seed', type=int, help='random seed number', default='1') ap.add_argument('-fn', '--file_name', type=str, help='file name for csv output', default='BetterRewardsStatistics_test.csv') args = ap.parse_args(argv) return args.epoch_num, args.batch_size, args.train_type, args.train_percent, args.dev_percent, args.learn_rate, args.model_type, args.device, args.seed, args.file_name def main(argv): epoch_num, batch_size, train_type, train_percent, dev_percent, learn_rate, model_type, device, seed, file_name = parse_args( argv[1:]) print('\n=====Arguments====') print('epoch num {}'.format(epoch_num)) print('batch size {}'.format(batch_size)) print('train type {}'.format(train_type)) print('train percent {}'.format(train_percent)) print('dev percent {}'.format(dev_percent)) print('learn rate {}'.format(learn_rate)) print('model type {}'.format(model_type)) print('device {}'.format(device)) print('seed {}'.format(seed)) print('file name {}'.format(file_name)) print('=====Arguments====\n') csv_column_names = ['seed', 'learn_rate', 'model_type', 'train_pairs', 'dev_pairs', 'test_pairs', 'epoch_num', 'loss_train', 'loss_dev', 'loss_test', 'rho_train', 'rho_p_train', 'pcc_train', 'pcc_p_train', 'tau_train', 'tau_p_train', 'rho_train_global', 'pcc_train_global', 'tau_train_global', 'rho_dev', 'rho_p_dev', 'pcc_dev', 'pcc_p_dev', 'tau_dev', 'tau_p_dev', 'rho_dev_global', 'pcc_dev_global', 'tau_dev_global', 'rho_test', 'rho_p_test', 'pcc_test', 'pcc_p_test', 'tau_test', 'tau_p_test', 'rho_test_global', 'pcc_test_global', 'tau_test_global'] # check if csv_file exists if path.exists(file_name): csv_exists = True else: csv_exists = False with open(file_name, 'a', newline='') as csv_file: writer = csv.writer(csv_file) # if a new csv_file is generated, write column names if csv_exists is False: writer.writerow(csv_column_names) np.random.seed(seed=seed) random.seed(seed) torch.random.manual_seed(seed) torch.manual_seed(seed) if train_percent + dev_percent >= 1.: print('ERROR! Train data percentage plus dev data percentage is {}! Make sure the sum is below 1.0!'.format( train_percent + dev_percent)) exit(1) BERT_VEC_LENGTH = 1024 # change this to 768 if you use bert-base deep_model, optimiser = build_model(model_type, BERT_VEC_LENGTH * 2, learn_rate) if 'gpu' in device: deep_model.to('cuda') torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # read human scores and vectors for summaries/docs, and split the train/dev/test set sorted_scores = read_sorted_scores() # read pair anno scores pair_anno_scores = read_pair_anno_scores() # train, dev, test, all = parse_split_data(sorted_scores, train_percent, dev_percent) train, dev, test, all = parse_split_data_balanced(sorted_scores, train_percent, dev_percent) # without majority preferences # train_pairs = build_pairs(train) # dev_pairs = build_pairs(dev) # test_pairs = build_pairs(test) # without majority preferences but with pair anno train_pairs = build_anno_pairs(train, pair_anno_scores) dev_pairs = build_anno_pairs(dev, pair_anno_scores) test_pairs = build_anno_pairs(test, pair_anno_scores) # with majority preferences # train_pairs = build_pairs_majority_preferences(train, sorted_scores) # dev_pairs = build_pairs_majority_preferences(dev, sorted_scores) # test_pairs = build_pairs_majority_preferences(test, sorted_scores) # with majority preferences and pair anno # train_pairs = build_anno_pairs_majority_preferences(train, sorted_scores, pair_anno_scores) # dev_pairs = build_anno_pairs_majority_preferences(dev, sorted_scores, pair_anno_scores) # test_pairs = build_anno_pairs_majority_preferences(test, sorted_scores, pair_anno_scores) # build human pair scores for pairs train_anno = build_human_pair_scores(train_pairs) dev_anno = build_human_pair_scores(dev_pairs) test_anno = build_human_pair_scores(test_pairs) print(len(train_pairs), len(dev_pairs), len(test_pairs)) # read bert vectors with open('data/doc_summ_bert_vectors.pkl', 'rb') as ff: all_vec_dic = pickle.load(ff) pcc_list = [] weights_list = [] for ii in range(epoch_num + 1): print('\n=====EPOCH {}====='.format(ii)) if ii == 0: # do not train in epoch 0, just evaluate the performance of the randomly initialized model (sanity check and baseline) loss_train = pair_train_rewarder(all_vec_dic, train_pairs, deep_model, optimiser, True, batch_size, device) else: # from epoch 1 on, receive the data and learn from it. the loss is still the loss before fed with the training examples loss_train = pair_train_rewarder(all_vec_dic, train_pairs, deep_model, optimiser, False, batch_size, device) loss_dev = pair_train_rewarder(all_vec_dic, dev_pairs, deep_model, optimiser, True, batch_size, device) loss_test = pair_train_rewarder(all_vec_dic, test_pairs, deep_model, optimiser, True, batch_size, device) csv_row = [seed, learn_rate, model_type, len(train_pairs), len(dev_pairs), len(test_pairs), ii, loss_train, loss_dev, loss_test] print('--> losses (train,dev,test)', loss_train, loss_dev, loss_test) # Train-Data only print("==Train==") # results_train = test_rewarder(all_vec_dic, train, deep_model, device) results_train = test_rewarder(all_vec_dic, train_anno, deep_model, device) for metric in results_train: print('{}\t{}'.format(metric, np.mean(results_train[metric]))) csv_row.append(np.mean(results_train[metric])) print("==Dev==") # results = test_rewarder(all_vec_dic, dev, deep_model, device) results = test_rewarder(all_vec_dic, dev_anno, deep_model, device) for metric in results: print('{}\t{}'.format(metric, np.mean(results[metric]))) csv_row.append(np.mean(results[metric])) # Test-Data only print("==Test==") # results_test = test_rewarder(all_vec_dic, test, deep_model, device) results_test = test_rewarder(all_vec_dic, test_anno, deep_model, device) for metric in results_test: print('{}\t{}'.format(metric, np.mean(results_test[metric]))) csv_row.append(np.mean(results_test[metric])) writer.writerow(csv_row) pcc_list.append(np.mean(results['pcc'])) weights_list.append(copy.deepcopy(deep_model.state_dict())) idx = np.argmax(pcc_list) best_result = pcc_list[idx] print('\n======Best results come from epoch no. {}====='.format(idx)) deep_model.load_state_dict(weights_list[idx]) output_pattern = 'batch{}_{}_trainPercent{}_seed{}_lrate{}_{}_epoch{}'.format( batch_size, train_type, train_percent, seed, learn_rate, model_type, epoch_num ) test_results = test_rewarder(all_vec_dic, test, deep_model, device, os.path.join(OUTPUTS_DIR, output_pattern + '_onTest.pdf')) test_rewarder(all_vec_dic, train, deep_model, device, os.path.join(OUTPUTS_DIR, output_pattern + '_onTrain.pdf')) test_rewarder(all_vec_dic, dev, deep_model, device, os.path.join(OUTPUTS_DIR, output_pattern + '_onDev.pdf')) print('Its performance on the test set is:') for metric in test_results: print('{}\t{}'.format(metric, np.mean(test_results[metric]))) model_weight_name = 'pcc{0:.4f}_'.format(np.mean(test_results['pcc'])) model_weight_name += 'seed{}_epoch{}_batch{}_{}_trainPercent{}_lrate{}_{}.model'.format( seed, epoch_num, batch_size, train_type, train_percent, learn_rate, model_type ) torch.save(weights_list[idx], os.path.join(MODEL_WEIGHT_DIR, model_weight_name)) print('\nbest model weight saved to: {}'.format(os.path.join(MODEL_WEIGHT_DIR, model_weight_name))) if __name__ == '__main__': main(sys.argv)
2.234375
2
config.py
koivunen/connvis
0
12794017
import argparse parser = argparse.ArgumentParser(prog="connvis",description='Web-based conntrack that tries to simplify the data for privacy research') parser.add_argument('--nodnsseed', help='do not seed domains from dnsmasq history',action='store_true') parser.add_argument('--shell', help='Enable interactive shell',action='store_true') args = parser.parse_args() import ipaddress homenetwork = ipaddress.ip_network('192.168.0.0/24') homenetwork_router = ipaddress.ip_address('192.168.0.1') aggregate_google=True # That is a lot of domains ignored_domains=["osoite.local"]
2.125
2
program_synthesis/karel/scripts/eval_refinement.py
kavigupta/program_synthesis
123
12794018
import collections import cPickle as pickle import glob import itertools import json import operator import os import re import sys from program_synthesis.karel.dataset import dataset from program_synthesis.karel.dataset import executor from program_synthesis.karel.dataset.karel_runtime import KarelRuntime from program_synthesis.karel.models import karel_model from program_synthesis.common.tools.saver import restore_args BASE_DIR = "" with open(BASE_DIR + "text2code-models/karel-sgd-cl1-lr1-lds100k-ldr0.5/report-dev-00100100.jsonl") as f: baseline_report = [] print(f.readline()) for line in f: baseline_report.append(json.loads(line)) class Args(object): model_dir = BASE_DIR + 'program_synthesis-models/karel-lgrl-ref-m123-sgd-cl1-lr0.1-lds100k-ldr0.5' step = 250100 args = Args() restore_args(args) args.word_vocab = ',,/data/karel/word.vocab' m = karel_model.KarelLGRLRefineModel(args) batch_processor = m.batch_processor(for_eval=True) m.args.max_beam_trees = 64 m.args.max_eval_trials = 64 i = 0 result = [] while i < len(baseline_report): batch = [] while len(batch) < 32 and i < len(baseline_report): if baseline_report[i]['code']['info']['trees_checked'] == 1: i += 1 continue e = dataset.KarelExample.from_dict(baseline_report[i]['example']) ref_code_sequence = baseline_report[i]['code']['info']['candidates'][0] e.ref_example = dataset.KarelExample(idx=None, guid=None, code_sequence=ref_code_sequence, input_tests=e.input_tests, tests=e.tests) batch.append(e) i += 1 print("Starting batch (%d)..." % i) res = m.inference(batch_processor(batch)) for example, infer in zip(batch, res): result.append((example, infer)) # if i > 100: # break print(len(result), len(baseline_report)) the_executor = executor.KarelExecutor() stats = {'total': len(result), 'fixed': 0} refinement_results = [] for example, infer in result: if not infer.code_sequence: continue correct = True for test in example.input_tests + example.tests: try: log = the_executor.execute(infer.code_sequence, None, test['input']) if log.result != test['output']: correct = False break except (executor.ExecutorRuntimeException, executor.ExecutorSyntaxException) as e: correct = False break refinement_results.append(correct) if correct: stats['fixed'] += 1 print(float(stats['fixed']) / stats['total'], stats['fixed'], stats['total'])
1.953125
2
tests/unit_tests/test_CythonInterfaceMaps.py
HTenkanen/cykhash
0
12794019
import pyximport; pyximport.install(setup_args = {"script_args" : ["--force"]}, language_level=3) import unittest import uttemplate import cymapinterfacetester as cyt from cykhash import Int64to64Map, Int32to32Map, Float64to64Map, Float32to32Map, PyObjectMap AS_LIST = {'int64' : cyt.as_py_list_int64, 'int32' : cyt.as_py_list_int32, 'float64' : cyt.as_py_list_int64_float64, 'float32' : cyt.as_py_list_int32_float32, 'object' : cyt.as_py_list_pyobject, } USE_INT = {'int64' : cyt.use_int64, 'int32' : cyt.use_int32, 'float64' : cyt.use_int64_float64, 'float32' : cyt.use_int32_float32, 'object' : cyt.use_pyobject, } USE_FLOAT = {'int64' : cyt.use_float64, 'int32' : cyt.use_float32, 'float64' : cyt.use_float64_float64, 'float32' : cyt.use_float32_float32, 'object' : cyt.use_pyobject, } MAP = {'int64' : Int64to64Map, 'int32' : Int32to32Map, 'float64' : Float64to64Map, 'float32' : Float32to32Map, 'object' : PyObjectMap, } #just making sure the interface can be accessed: @uttemplate.from_templates(['int64', 'int32', 'float64', 'float32', ]) class CyMypInterfaceTester(unittest.TestCase): def template_cimport_use_int(self, map_type): received=USE_INT[map_type]([1,2,3,4], [5,6,7,8], [2,3]) expected=[6,7] self.assertEqual(received, expected) def template_cimport_use_float(self, map_type): received=USE_FLOAT[map_type]([1,2,3,4], [5.5,6.5,7.5,8.5], [2,3]) expected=[6.5,7.5] self.assertEqual(received, expected) def template_as_py_list(self, map_type): cy_map = MAP[map_type]() cy_map[3] = 20 lst = AS_LIST[map_type](cy_map) self.assertEqual(lst, [3,20]) def template_as_py_list_2(self, map_type): cy_map = MAP[map_type]() cy_map[3] = 5 cy_map[4] = 6 lst = AS_LIST[map_type](cy_map) self.assertEqual(set(lst), set([3,4,5,6]))
1.929688
2
application/data_entry_review.py
PaulineLc/OpenDoorData
0
12794020
<reponame>PaulineLc/OpenDoorData<gh_stars>0 # -*- coding: utf-8 -*- """ Created on Wed Jul 27 17:41:41 2016 @author: <NAME> """ import models import data_entry_functions import linear_model def main(): # insert tables into database tables = ['room', 'User', 'module', 'wifi_log', 'timetable', 'survey', 'regressionModel'] data_entry_functions.createTables(models, tables) # insert room data into room table in db data_entry_functions.roomCap(models, 'room', 'room_num', 'room_cap', 'building', 2, 90, 'school of computer science') data_entry_functions.roomCap(models, 'room', 'room_num', 'room_cap', 'building', 3, 90, 'school of computer science') data_entry_functions.roomCap(models, 'room', 'room_num', 'room_cap', 'building', 4, 220, 'school of computer science') # create admin user data_entry_functions.createAdmin(models, 'User', 'username', 'password', 'email', 'first_name', 'last_name', 'admin', 'password', "<PASSWORD> <EMAIL>", 'Don', 'Blaine') # set user password data_entry_functions.setPassword(models, 'User', 'username', 'admin', 'password') # insert data into database from csv file file = "cleaned_data/timetable.csv" data_entry_functions.insertModCode(file, models, 'module', 'module_code', 'instructor', 'user', 'username') # setting weight to be linear model coef - create function ? models.regressionModel.create(weight = linear_model.get_linear_coef()) # insert timetable data data_entry_functions.insertTimetableData(file, models, 'timetable', 'room_id', 'building', 'mod_code', 'event_time', 'reg_stu', 'time') # insert wifi log data file = r"cleaned_data/full.csv" data_entry_functions.insertWifiData(file, models, 'wifi_log', 'room_id', 'event_time', 'assoc_devices', 'auth_devices', 'time') # insert survey data file = r"cleaned_data/survey_data.csv" data_entry_functions.insertSurveyData(file, models, 'survey', 'room_id', 'building', 'event_time', 'occupancy', 'reporter', 'time') models.db.close() print ("The database should now be available") if __name__ == '__main__': main()
2.25
2
examples/roberta/test_load_allcorpus.py
linyongnan/fairseq
0
12794021
<filename>examples/roberta/test_load_allcorpus.py from fairseq.data.infinibatch.infinibatch_dataset import extract_number_values, word_to_idx from fairseq.data import Dictionary from multiprocessing import cpu_count, Pool import os import re import sys import json import glob import math import torch from nltk import word_tokenize import sentencepiece as spm alias = "" spm_tok_files_path = f"/home/{alias}/data/linyong/cu/res/allcorpus160g_num-norm_offline" dictionary_path = f"/home/{alias}/data/linyong/cu/res/vocab/allcorpus160g_num-norm_64k/dict.txt" spm_path = f"/home/{alias}/data/linyong/cu/res/vocab/allcorpus160g_num-norm_64k/sp.num-norm.bpe.model" dictionary = Dictionary.load(dictionary_path) mask_idx = dictionary.add_symbol('<mask>') print('| Dictionary: {} types'.format(len(dictionary))) tokenizer = spm.SentencePieceProcessor(model_file=spm_path) def test_load_file(file_path): file = open(file_path, 'r', encoding='utf8') try: lines = file.read().strip().split('\n') except: print(f"File: {file_path} failed to split into lines.") file.close() tokenized_tokens = [line.strip().split(' ') for line in lines] tokenized_idx = [word_to_idx(dictionary, sent) for sent in tokenized_tokens] orig_tokens = [torch.LongTensor(item) for item in tokenized_idx] src_number_token_values = extract_number_values(orig_tokens, dictionary, tokenizer, send_log_value=False) for sent_i, bon_pos, value in src_number_token_values: if not math.isfinite(value): print(f"[transformer_numlm] value {value} is not finite!") tasks = [file_path for file_path in glob.glob(spm_tok_files_path+'/*.txt.*')] pool = Pool(cpu_count() - 1) pool.map(test_load_file, tasks)
2.203125
2
Splice/markup_gtfs.py
agladstein/RNA-Seq-in-the-Cloud
0
12794022
<reponame>agladstein/RNA-Seq-in-the-Cloud #!/usr/bin/env python3 import csv import sys import os import re infile = sys.argv[1] outfile = sys.argv[2] with open(infile, 'rt') as fi, open(outfile, 'wt') as fo: tblin = csv.reader(fi, delimiter = '\t') tblout = csv.writer(fo, delimiter = '\t', lineterminator = os.linesep, quotechar = '\xb6' ) for line in tblin: if not line[0].startswith('#'): if 'reference_id' not in line[8]: tx_id = re.search('transcript_id "STRG.(\d+).\d+"', line[8]).group(1) if int(tx_id) % 3 == 0: line[8] = line[8] + ' novel "yes";' tblout.writerow(line)
2.359375
2
tests/node/test_zmq.py
eric-volz/defichainLibrary
1
12794023
import pytest from tests.util import createNode node = createNode() @pytest.mark.query def test_getzmqnotifications(): # 01 zmq = node.zmq.getzmqnotifications() assert zmq or zmq == []
2.109375
2
digits.py
yogya-ch/pyprograms
0
12794024
# Prints the digits in a given number n=int(input("give a number ")) l=[] while n>0: a=n%10 l.append(a) n=n//10 l.reverse() for i in l: print(i)
3.75
4
src/004_join/04/answer.py
negi524/awesomebook
0
12794025
from pandas._config.config import reset_option from preprocess.load_data.data_loader import load_hotel_reserve import pandas as pd from datetime import date, datetime from dateutil.relativedelta import relativedelta def main(): """全結合処理 顧客ごとに2017年1月〜2017年3月の月間合計利用金額を計算 利用がない日は0とする 日付はチェックイン日付を利用する """ customer_tb, hotel_tb, reserve_tb = load_hotel_reserve() print(reserve_tb) print(customer_tb) # 日付マスタを生成 month_mst = pd.DataFrame({'year_month': [(date(2017, 1, 1) + relativedelta(months=x)).strftime("%Y%m") for x in range(0, 3)]}) # month_mst['year_month'] = pd.to_datetime(month_mst['year_month']) # cross_joinのためにすべて同じ値の結合キーを準備 customer_tb['join_key'] = 0 month_mst['join_key'] = 0 # 顧客テーブルと月テーブルを全結合する customer_mst = pd.merge(customer_tb[['customer_id', 'join_key']], month_mst, on='join_key') customer_mst.info() # 年月の結合キーを予約テーブルで準備 reserve_tb['year_month'] = reserve_tb['checkin_date'] \ .apply(lambda x: pd.to_datetime(x).strftime("%Y%m")) reserve_tb.info() # 予約レコードと結合し、合計予約金額を計算 # TODO: yearで結合できていない(月単位で結合されてしまっている) summary_result = pd.merge( customer_mst, reserve_tb[['customer_id', 'year_month', 'total_price']], on=['customer_id', 'year_month'], how='left' ).groupby(['customer_id', 'year_month'])['total_price'].sum().reset_index() # 予約レコードがなかった場合の合計金額を値なしから0に変換 summary_result.fillna(0, inplace=True) print(summary_result.query('customer_id == "c_1"')) print(reserve_tb.query('customer_id == "c_1"')) if __name__ == '__main__': main()
3.078125
3
app/module_load/__init__.py
B02902008/TaipeiWater
0
12794026
<gh_stars>0 from flask import Blueprint blue_load = Blueprint('load', __name__) from . import view
1.164063
1
bpmn/utils/string_utils.py
marcelobbfonseca/SFDjango-BPMN
1
12794027
<reponame>marcelobbfonseca/SFDjango-BPMN<gh_stars>1-10 from re import sub def snake_case(s): return '_'.join( sub('([A-Z][a-z]+)', r' \1', sub('([A-Z]+)', r' \1', s.replace('-', ' '))).split()).lower()
2.734375
3
adaboost.py
haidawyl/Mnist
12
12794028
<filename>adaboost.py #!/usr/bin/python # -*- coding:utf-8 -*- from sklearn.ensemble import AdaBoostClassifier, AdaBoostRegressor from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.model_selection import GridSearchCV, train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score, mean_squared_error from sklearn.decomposition import PCA from time import time import numpy as np import pandas as pd import mnist import roc if __name__ == "__main__": # 读取Mnist数据集, 测试AdaBoost的分类模型 mnistSet = mnist.loadLecunMnistSet() train_X, train_Y, test_X, test_Y = mnistSet[0], mnistSet[1], mnistSet[2], mnistSet[3] m, n = np.shape(train_X) idx = range(m) np.random.shuffle(idx) # 使用PCA降维 # num = 30000 # pca = PCA(n_components=0.9, whiten=True, random_state=0) # for i in range(int(np.ceil(1.0 * m / num))): # minEnd = min((i + 1) * num, m) # sub_idx = idx[i * num:minEnd] # train_pca_X = pca.fit_transform(train_X[sub_idx]) # print np.shape(train_pca_X) print "\n**********测试AdaBoostClassifier类**********" t = time() # model = GridSearchCV( # estimator=AdaBoostClassifier( # base_estimator=DecisionTreeClassifier(splitter='random', max_features=90, max_depth=50, min_samples_split=6, # min_samples_leaf=3), learning_rate=0.1), # param_grid={"n_estimators": range(500, 1501, 100)}, cv=3) # # 拟合训练数据集 # model.fit(train_X, train_Y) # print "最好的参数是:%s, 此时的得分是:%0.2f" % (model.best_params_, model.best_score_) model = AdaBoostClassifier( base_estimator=DecisionTreeClassifier(splitter='random', max_features=90, max_depth=50, min_samples_split=6, min_samples_leaf=3), n_estimators=1200, learning_rate=0.005) # 拟合训练数据集 model.fit(train_X, train_Y) # 预测训练集 train_Y_hat = model.predict(train_X[idx]) print "训练集精确度: ", accuracy_score(train_Y[idx], train_Y_hat) # 预测测试集 test_Y_hat = model.predict(test_X) print "测试集精确度: ", accuracy_score(test_Y, test_Y_hat) print "总耗时:", time() - t, "秒" # 绘制ROC曲线 n_class = len(np.unique(train_Y)) roc.drawROC(n_class, test_Y, test_Y_hat) # 读取CCPP数据集, 测试AdaBoost的回归模型 data = pd.read_excel("data/CCPP/Folds5x2_pp.xlsx") # AT:温度, V:压力, AP:湿度, RH:压强, PE:输出电力 # 样本特征X X = data[['AT', 'V', 'AP', 'RH']] # 数据归一化 X = StandardScaler().fit_transform(X) # 样本输出Y Y = data[['PE']] # 划分训练集和测试集,将数据集的70%划入训练集,30%划入测试集 train_X, test_X, train_Y, test_Y = train_test_split(X, Y, test_size=0.3, random_state=1) m, n = np.shape(train_X) idx = range(m) np.random.shuffle(idx) print "\n**********测试AdaBoostRegressor类**********" t = time() # model = GridSearchCV(DecisionTreeRegressor(splitter='random'), # param_grid={'max_depth': range(10, 30, 2), 'min_samples_split': range(11, 31, 2), # 'min_samples_leaf': range(2, 8, 1)}, cv=5) # model = GridSearchCV(AdaBoostRegressor( # base_estimator=DecisionTreeRegressor(splitter='random', max_depth=28, min_samples_split=11, min_samples_leaf=3), # learning_rate=0.1), param_grid={"n_estimators": range(100, 1001, 100)}, cv=3) # # 拟合训练数据集 # model.fit(train_X, train_Y.values.ravel()) # print("最好的参数是:%s, 此时的得分是:%0.2f" % (model.best_params_, model.best_score_)) model = AdaBoostRegressor( base_estimator=DecisionTreeRegressor(splitter='random', max_depth=20, min_samples_split=5, min_samples_leaf=3), n_estimators=800, learning_rate=0.1) # 拟合训练数据集 model.fit(train_X, train_Y.values.ravel()) # 预测测试集 test_Y_pred = model.predict(test_X) print "测试集MSE:", mean_squared_error(test_Y, test_Y_pred) print "测试集RMSE:", np.sqrt(mean_squared_error(test_Y, test_Y_pred)) print "总耗时:", time() - t, "秒"
2.625
3
splunk_add_on_ucc_framework/uccrestbuilder/builder.py
artemrys/addonfactory-ucc-generator
16
12794029
# # Copyright 2021 Splunk Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import os.path as op from .rest_conf import RestmapConf, WebConf __all__ = ["RestBuilderError", "RestBuilder"] class RestBuilderError(Exception): pass class _RestBuilderOutput: readme = "README" default = "default" bin = "bin" def __init__(self, path, product): self._path = path self._product = product self._root_path = op.abspath(self._path) if not op.isdir(self._root_path): os.makedirs(self._root_path) self._content = {} def put(self, subpath, file_name, content): path = op.join(self._root_path, subpath) if not op.isdir(path): os.makedirs(path) full_name = op.join(path, file_name) if full_name not in self._content: self._content[full_name] = [] self._content[full_name].append(content) def save(self): for full_name, contents in list(self._content.items()): full_content = "\n\n".join(contents) with open(full_name, "w") as f: f.writelines(full_content) class RestBuilder: def __init__(self, schema, handler, output_path, *args, **kwargs): """ :param schema: :param schema: RestSchema :param handler: :param output_path: :param args: :param kwargs: """ self._schema = schema self._handler = handler self._output_path = output_path self._args = args self._kwargs = kwargs self.output = _RestBuilderOutput( self._output_path, self._schema.product, ) @property def restmap_admin(self): return self._schema.namespace @property def restmap_admin_externals(self): return RestmapConf.admin_externals(self._schema.endpoints) def build(self): for endpoint in self._schema.endpoints: # If the endpoint is oauth, which is for getting accesstoken. Conf file entries should not get created. if endpoint._name != "oauth": if endpoint._name == "settings": self.output.put( self.output.default, endpoint.conf_name + ".conf", endpoint.generate_default_conf(), ) self.output.put( self.output.readme, endpoint.conf_name + ".conf.spec", endpoint.generate_spec(), ) # Add data input of self defined conf to inputs.conf.spec if endpoint._entities[0] and endpoint._entities[0]._conf_name: lines = [ "[" + endpoint._name + "://<name>]", "placeholder = placeholder", ] self.output.put( self.output.readme, "inputs.conf.spec", "\n".join(lines) ) self.output.put( self.output.bin, endpoint.rh_name + ".py", endpoint.generate_rh(self._handler), ) self.output.put( self.output.default, "restmap.conf", RestmapConf.build( self._schema.endpoints, self._schema.namespace, self._schema.admin_match, ), ) self.output.put( self.output.default, "web.conf", WebConf.build(self._schema.endpoints), ) self.output.save()
2.078125
2
bluechannel/customers/urls.py
davemerwin/blue-channel
4
12794030
from django.conf.urls.defaults import * urlpatterns = patterns('', url(r'^$', 'customers.views.subscribe', name='subscribe'), )
1.203125
1
ineedtiles.py
IrupeCanet/psychic-goggles
0
12794031
<filename>ineedtiles.py # This program calculates how many tiles you will need # when tilling a wall or floor (in m2). length = 3.5 width = 2.3 area = length * width needed = area * 1.05 print("You need", needed, "tiles in metres squared")
3.765625
4
custom_components/solark/config_flow.py
poldim/HA-solark-PV
11
12794032
<reponame>poldim/HA-solark-PV<filename>custom_components/solark/config_flow.py<gh_stars>10-100 import re from urllib.parse import urlparse from homeassistant import config_entries from homeassistant.const import CONF_HOST, CONF_NAME, CONF_SCAN_INTERVAL from homeassistant.core import HomeAssistant, callback import voluptuous as vol from .const import DEFAULT_NAME, DEFAULT_PORT, DEFAULT_SCAN_INTERVAL, DOMAIN DATA_SCHEMA = vol.Schema( { vol.Required(CONF_NAME, default=DEFAULT_NAME): str, vol.Required(CONF_HOST, default='localhost'): str, vol.Optional(CONF_SCAN_INTERVAL, default=DEFAULT_SCAN_INTERVAL): int, } ) @callback def solark_modbus_entries(hass: HomeAssistant): """Return the hosts already configured.""" return { entry.data[CONF_HOST] for entry in hass.config_entries.async_entries(DOMAIN) } def host_valid(netloc): parsed=urlparse(f'//{netloc}') try: #If it not a URL it might be a serial port. if (parsed.port is None) and ((parsed.hostname is None) or (parsed.hostname[0:3] == "com" )): return True #Hostname made no sense. Error return except: return False return True class SolArkModbusConfigFlow(config_entries.ConfigFlow, domain=DOMAIN): """SolArk Modbus configflow.""" VERSION = 1 CONNECTION_CLASS = config_entries.CONN_CLASS_LOCAL_POLL def _host_in_configuration_exists(self, host) -> bool: """Return True if host exists in configuration.""" if host in solark_modbus_entries(self.hass): return True return False async def async_step_user(self, user_input=None): """Handle the initial step.""" errors = {} if user_input is not None: host = user_input[CONF_HOST] if self._host_in_configuration_exists(host): errors[CONF_HOST] = "already_configured" elif not host_valid(host): errors[CONF_HOST] = "invalid host IP" else: await self.async_set_unique_id(user_input[CONF_HOST]) self._abort_if_unique_id_configured() return self.async_create_entry( title=user_input[CONF_NAME], data=user_input ) return self.async_show_form( step_id="user", data_schema=DATA_SCHEMA, errors=errors )
2.453125
2
pacote dawload/projetos progama em Python/desafio071 Simulador de caixa eletronico.py
wagnersistemalima/Mundo-2-Python-Curso-em-Video
1
12794033
#Desafio Simulador de caixa eletronico # Crie um progama que simule o funcionamento de um caixaeletrônico. No inicio, pergunte ao usuario # qual será o valor a ser sacado (número inteiro) e o progama vai informar quantas cedulas de cada valor # serão entregues. OBS: Considere o caixa possui cedulas de R$50,00 / R$20,00 / R$10,00 / R$1,00 print('{:-^40}'.format('Caixa Eletrônico')) saque = int(input('Qual o valor a ser sacado?R$')) montante = saque # dinheiro do saque maior_cedula = 50 # notas cont_cedulas = 0 # quantidades de notas usadas status = True while status: if montante >= maior_cedula: # Valor do saque da para tirar 50. tire 50 ate onde dé montante = montante - maior_cedula cont_cedulas = cont_cedulas + 1 else: #cedula de 50 passa 20 .se não de mais p tirar 50, resto do montante vai tirar 20 ate onde de if cont_cedulas > 0: # desconcidera 0 notas print(f'{cont_cedulas} nota(s) de R${maior_cedula}') if maior_cedula == 50: maior_cedula = 20 elif maior_cedula == 20: maior_cedula = 10 elif maior_cedula == 10: maior_cedula = 1 cont_cedulas = 0 # quantidade de celuas e zerada pois não ha mais o que dividir if montante == 0: # Quando o montante tiver zerado. fim status = False
3.953125
4
src/scruples/scripts/analyze/resource/human_performance.py
allenai/scruples
29
12794034
"""Estimate human performance for the scruples resource.""" import json import logging import click from ....baselines.metrics import METRICS logger = logging.getLogger(__name__) # main function @click.command() @click.argument( 'split_path', type=click.Path(exists=True, file_okay=True, dir_okay=False)) @click.argument( 'output_path', type=click.Path(exists=False, file_okay=True, dir_okay=False)) def human_performance( split_path: str, output_path: str ) -> None: """Estimate human performance on the scruples resource. Read in the split from SPLIT_PATH, then estimate human performance metrics and write them to OUTPUT_PATH. Human performance is computed by comparing the majority vote label of the human performance annotators to the majority vote label of the gold annotators. """ logger.info('Computing human performance.') human_preds = [] gold_labels = [] with click.open_file(split_path, 'r') as split_file: for ln in split_file: row = json.loads(ln) human_preds.append(row['human_perf_label']) gold_labels.append(row['gold_label']) with open(output_path, 'w') as metrics_file: json.dump({ key: metric( y_true=gold_labels, y_pred=human_preds) for key, (_, metric, scorer_kwargs) in METRICS.items() if not scorer_kwargs['needs_proba'] }, metrics_file)
2.765625
3
tests/unit/resources/test_stream_utils.py
ebit-wise/pipelinewise-target-bigquery
0
12794035
import unittest from datetime import datetime from target_bigquery import stream_utils class TestStreamUtils(unittest.TestCase): """ Unit Tests """ def test_add_metadata_values_to_record(self): """Test adding metadata""" dt = "2017-11-20T16:45:33.000Z" record = { "type": "RECORD", "stream": "foo", "time_extracted": dt, "record": {"id": "2"} } result = stream_utils.add_metadata_values_to_record(record) self.assertEqual(result.get("id"), "2") self.assertEqual(result.get("_sdc_extracted_at"), datetime.strptime(dt, '%Y-%m-%dT%H:%M:%S.%fZ')) extra_attrs = ['_sdc_batched_at', '_sdc_deleted_at'] for attr in extra_attrs: self.assertTrue(attr in result) def test_add_metadata_values_to_record_when_no_time_extracted(self): """Test adding metadata when there's no time extracted in the record message """ record = { "type": "RECORD", "stream": "foo", "record": {"id": "2"} } dt = datetime.now() result = stream_utils.add_metadata_values_to_record(record) self.assertEqual(result.get("id"), "2") self.assertGreaterEqual(result.get("_sdc_extracted_at"), dt) extra_attrs = ['_sdc_extracted_at', '_sdc_batched_at', '_sdc_deleted_at'] for attr in extra_attrs: self.assertTrue(attr in result)
2.734375
3
settings.py
GlycerinLOL/Hwa_autobuy
0
12794036
<reponame>GlycerinLOL/Hwa_autobuy<filename>settings.py URL = "https://www.huahuacomputer.com.tw/products/gigabyte-%E6%8A%80%E5%98%89-aorus-15g-yb-%E6%A9%9F%E6%A2%B0%E8%BB%B8%E9%9B%BB%E7%AB%B6%E7%AD%86%E9%9B%BB-1" DRIVER_PATH = "chromedriver.exe" CHROME_PATH = r"--user-data-dir=C:\\Users\brian\AppData\\Local\\Google\\Chrome\\User Data\Default" # 可透過網址列輸入 chrome://version/ 找到 ### Only for Mac ### # DRIVER_PATH = "/usr/local/bin/chromedriver" ### Only for Mac (End) ### # 請注意!以下皆為機密個資,請小心謹慎,勿上傳至公開平台 ACC = "<EMAIL>" PWD = "<PASSWORD>"
1.976563
2
release/stubs.min/Autodesk/Revit/DB/__init___parts/ElementStructuralTypeFilter.py
YKato521/ironpython-stubs
0
12794037
<reponame>YKato521/ironpython-stubs<filename>release/stubs.min/Autodesk/Revit/DB/__init___parts/ElementStructuralTypeFilter.py class ElementStructuralTypeFilter(ElementQuickFilter, IDisposable): """ A filter used to find elements matching a structural type. ElementStructuralTypeFilter(structuralType: StructuralType,inverted: bool) ElementStructuralTypeFilter(structuralType: StructuralType) """ def Dispose(self): """ Dispose(self: ElementFilter,A_0: bool) """ pass def ReleaseUnmanagedResources(self, *args): """ ReleaseUnmanagedResources(self: ElementFilter,disposing: bool) """ pass def __enter__(self, *args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self, *args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self, *args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self, structuralType, inverted=None): """ __new__(cls: type,structuralType: StructuralType,inverted: bool) __new__(cls: type,structuralType: StructuralType) """ pass StructuralType = property( lambda self: object(), lambda self, v: None, lambda self: None ) """The structural type. Get: StructuralType(self: ElementStructuralTypeFilter) -> StructuralType """
2.015625
2
crossbox/tests/test_session.py
acascarla/crossbox
0
12794038
<reponame>acascarla/crossbox import datetime from http import HTTPStatus from freezegun import freeze_time from django.urls import reverse from crossbox.tests.mixins import BaseTestCase from crossbox.tests.tools import with_login, create_session from crossbox.models.day import Day from crossbox.models.hour import Hour from crossbox.models.track import Track from crossbox.models.session import Session from crossbox.models.session_type import SessionType from crossbox.models.week_template import WeekTemplate from crossbox.models.capacity_limit import CapacityLimit from crossbox.models.session_template import SessionTemplate from crossbox.admin.session import SessionAdmin, SessionAdminFilter class SessionsCase(BaseTestCase): fixtures = [ 'users', 'capacity_limits', 'session_types', 'tracks', 'hours', 'days', 'week_templates', ] @with_login() def test_change_session_type(self): hour = Hour(hour=datetime.time(0, 0)) hour.save() day = datetime.date(year=2019, month=1, day=1) session = Session( date=day, hour=hour, session_type=SessionType.objects.get(pk=1), capacity_limit=CapacityLimit.objects.get(pk=1), track=Track.objects.get(pk=1), ) session.save() self._session_view_test( session_id=session.id, status_code_expected=HTTPStatus.OK, result_expected={'pk': 2, 'name': 'OPEN'}, ) self._session_view_test( session_id=session.id, status_code_expected=HTTPStatus.OK, result_expected={'pk': 3, 'name': 'ESTIRAMIENTOS'}, ) self._session_view_test( session_id=session.id, status_code_expected=HTTPStatus.OK, result_expected={'pk': 1, 'name': 'WOD'}, ) self._session_view_test( session_id=session.id, status_code_expected=HTTPStatus.OK, result_expected={'pk': 2, 'name': 'OPEN'}, ) @with_login() @freeze_time('2020-01-1') def test_session_template_view_context_data_hours(self): pass # TODO @with_login() @freeze_time('2020-01-1') def test_session_template_view_context_data_days(self): pass # TODO @with_login() @freeze_time('2020-01-1') def test_session_template_view_context_data_weeks(self): response = self.client.get(path=reverse('session-template')) weeks = response.context_data['weeks'] self.assertEqual(len(weeks), 52) self.assertEqual(weeks[0], 'Lunes 30/12/2019 - Semana 1 (actual)') self.assertEqual(weeks[51], 'Lunes 21/12/2020 - Semana 52') @with_login() @freeze_time('2020-01-1') def test_session_template_view_context_data_week_templates(self): pass # TODO @with_login() @freeze_time('2020-01-1') def test_session_template_view_context_data_current_week_template(self): pass # TODO @with_login() @freeze_time('2020-01-1') def test_session_template_view_context_data_tracks(self): pass # TODO @with_login() @freeze_time('2020-01-1') def test_session_template_view_context_data_current_track(self): pass # TODO @with_login() @freeze_time('2020-01-1') def test_session_template_view_context_data_capacity_limits(self): response = self.client.get(path=reverse('session-template')) capacity_limits = response.context_data['capacity_limits'] self.assertEqual( {cl.pk for cl in capacity_limits}, {cl.pk for cl in CapacityLimit.objects.all()} ) @with_login() def test_change_session_type_no_session(self): response = self.client.put( path=reverse('change_session_type', args=[13371337])) self.assertEquals(response.status_code, HTTPStatus.NOT_FOUND) @with_login() @freeze_time('2020-01-01') def test_change_session_type_db_types(self): """Check types are taken from database""" SessionType.objects.create(name='new_type') session = create_session() # session_type WOD path = reverse('change_session_type', args=[session.pk]) _ = self.client.put(path=path) # session_type OPEN _ = self.client.put(path=path) # session_type ESTIRAMIENTOS response = self.client.put(path=path) self.assertEquals( response.json()['session_type'], {'pk': 4, 'name': 'new_type'} ) @with_login() def test_gen_sessions_invalid_post_params(self): path = reverse('generate-sessions') kwargs = { 'page': None, 'week_template': 1, 'track': 1, 'capacity_limit': 1, } with self.assertRaises(Exception): self.client.post(path=path, data=kwargs) kwargs['page'] = 1 kwargs['week_template'] = None with self.assertRaises(Exception): self.client.post(path=path, data=kwargs) kwargs['week_template'] = 1 kwargs['track'] = None with self.assertRaises(Exception): self.client.post(path=path, data=kwargs) kwargs['track'] = 1 kwargs['capacity_limit'] = None with self.assertRaises(Exception): self.client.post(path=path, data=kwargs) kwargs['capacity_limit'] = 1 self.client.post(path=path, data=kwargs) # no raise @with_login() @freeze_time('2020-01-01') def test_gen_sessions_delete_same_track_and_same_week_sessions(self): track = Track.objects.get(pk=1) other_track = Track.objects.get(pk=2) session_same_week = Session.objects.create( date=datetime.date(2020, 1, 1), hour=Hour.objects.get(pk=1), session_type=SessionType.objects.get(pk=1), capacity_limit=CapacityLimit.objects.get(pk=1), track=track, ) Session.objects.create( # other week, same track date=datetime.date(2020, 1, 10), hour=Hour.objects.get(pk=1), session_type=SessionType.objects.get(pk=1), capacity_limit=CapacityLimit.objects.get(pk=1), track=track, ) Session.objects.create( # same week, other track date=datetime.date(2020, 1, 1), hour=Hour.objects.get(pk=1), session_type=SessionType.objects.get(pk=1), capacity_limit=CapacityLimit.objects.get(pk=1), track=other_track, ) self.assertEquals(Session.objects.count(), 3) path = reverse('generate-sessions') kwargs = { 'page': 0, 'week_template': 1, 'track': track.pk, 'capacity_limit': 1, } self.client.post(path=path, data=kwargs) self.assertEquals(Session.objects.count(), 2) with self.assertRaises(Session.DoesNotExist): Session.objects.get(pk=session_same_week.pk) @with_login() @freeze_time('2020-01-01') def test_gen_sessions_new_sessions_for_that_week(self): week_template = WeekTemplate.objects.get(pk=1) session = create_session() SessionTemplate.objects.create( day=Day.objects.get(pk=session.date.weekday() + 1), hour=session.hour, week_template=week_template, capacity_limit=session.capacity_limit, ) path = reverse('generate-sessions') kwargs = { 'page': 0, 'week_template': week_template.pk, 'track': session.track.pk, 'capacity_limit': session.capacity_limit.pk, } self.assertEquals(Session.objects.count(), 1) self.client.post(path=path, data=kwargs) self.assertEquals(Session.objects.count(), 1) with self.assertRaises(Session.DoesNotExist): Session.objects.get(pk=session.pk) new_session = Session.objects.all()[0] self.assertEquals(new_session.date, session.date) self.assertEquals(new_session.hour, session.hour) self.assertEquals(new_session.session_type, session.session_type) self.assertEquals(new_session.capacity_limit, session.capacity_limit) self.assertEquals(new_session.track, session.track) @with_login() def test_gen_sessions_redirect_created_week_page(self): page = 5 path = reverse('generate-sessions') kwargs = { 'page': page, 'week_template': 1, 'track': 1, 'capacity_limit': 1, } response = self.client.post(path=path, data=kwargs) self.assertEquals(response.url, f'/reservation/?page={page}') self.assertEquals(response.status_code, 302) def _session_view_test( self, session_id, status_code_expected, result_expected ): response = self.client.put( path=reverse('change_session_type', args=[session_id])) self.assertEquals(response.status_code, status_code_expected) self.assertEquals(response.json()['session_type'], result_expected) class SessionAdminFilterCase(BaseTestCase): fixtures = ['capacity_limits', 'session_types', 'tracks'] @freeze_time('2020-02-1') def test_queryset_depending_on_filter_selected(self): hour = Hour(hour=datetime.time(0, 0)) hour.save() kwargs = { 'hour': hour, 'session_type': SessionType.objects.get(pk=1), 'capacity_limit': CapacityLimit.objects.get(pk=1), 'track': Track.objects.get(pk=1), } day_jan = datetime.date(year=2020, month=1, day=1) day_feb = datetime.date(year=2020, month=2, day=1) day_mar = datetime.date(year=2020, month=3, day=1) Session.objects.bulk_create([ Session(date=day_jan, **kwargs), Session(date=day_feb, **kwargs), Session(date=day_mar, **kwargs), ]) session_filter = SessionAdminFilter(None, {}, Session, SessionAdmin) session_filter.used_parameters['filter'] = None from_this_week_sessions = session_filter.queryset( None, Session.objects.all()) self.assertEquals(from_this_week_sessions[0].date, day_feb) self.assertEquals(from_this_week_sessions[1].date, day_mar) self.assertEquals(from_this_week_sessions.count(), 2) session_filter.used_parameters['filter'] = 'past' past_sessions = session_filter.queryset(None, Session.objects.all()) self.assertEquals(past_sessions[0].date, day_jan) self.assertEquals(past_sessions.count(), 1) session_filter.used_parameters['filter'] = 'all_desc' all_desc_sessions = session_filter.queryset( None, Session.objects.all()) self.assertEquals(all_desc_sessions[0].date, day_mar) self.assertEquals(all_desc_sessions[1].date, day_feb) self.assertEquals(all_desc_sessions[2].date, day_jan) session_filter.used_parameters['filter'] = 'all_asc' all_asc_sessions = session_filter.queryset(None, Session.objects.all()) self.assertEquals(all_asc_sessions[0].date, day_jan) self.assertEquals(all_asc_sessions[1].date, day_feb) self.assertEquals(all_asc_sessions[2].date, day_mar)
2.03125
2
TOV_mmdetection/mmdet/models/point/dense_heads/__init__.py
ucas-vg/PointTinyBenchmark
10
12794039
from .cpr_head import CPRHead from .p2p_head import P2PHead __all__ = [ 'CPRHead', 'P2PHead', ]
1.078125
1
channels/hokutonoken.py
sodicarus/channels
0
12794040
# -*- coding: utf-8 -*- # StreamOnDemand Community Edition - Kodi Addon # ------------------------------------------------------------ # streamondemand.- XBMC Plugin # Canale per I <NAME> # http://www.mimediacenter.info/foro/viewforum.php?f=36 # ------------------------------------------------------------ import re from core import httptools from platformcode import logger from core import scrapertools from core import servertools from core.item import Item __channel__ = "hokutonoken" def mainlist(item): logger.info("[hokutonoken.py] mainlist") itemlist = [Item(channel=__channel__, title="[COLOR azure]Hokuto no Ken - Prima Serie[/COLOR]", action="episodi", url="http://pastebin.com/BUqD13hb", thumbnail="http://i.imgur.com/MGkqu7c.jpg", fanart="http://fullhdwp.com/images/wallpapers/Group-fist-of-the-north-star-wallpaper-.jpg"), Item(channel=__channel__, title="[COLOR azure]Hokuto no Ken - Seconda Serie[/COLOR]", action="episodi", url="http://pastebin.com/mHXQRBxZ", thumbnail="http://i159.photobucket.com/albums/t123/Janthem/hnk2.jpg", fanart="http://fullhdwp.com/images/wallpapers/Group-fist-of-the-north-star-wallpaper-.jpg")] return itemlist def episodi(item): logger.info("hokutonoken.py episodi") itemlist = [] # Downloads page data = httptools.downloadpage(item.url).data # Extracts the entries patron = '>&lt;br&gt;(.*?)&lt;a href=&quot;(.*?)&quot; target=&quot;_blank&quot;&gt;' matches = re.compile(patron, re.DOTALL).findall(data) for scrapedtitle, scrapedurl in matches: scrapedtitle = scrapertools.decodeHtmlentities(scrapedtitle) itemlist.append( Item(channel=__channel__, action="findvid", title=scrapedtitle, thumbnail=item.thumbnail, url=scrapedurl)) return itemlist def findvid(item): logger.info("[pastebin.py] findvideos") # Downloads page data = item.url itemlist = servertools.find_video_items(data=data) for videoitem in itemlist: videoitem.title = item.title + videoitem.title videoitem.fulltitle = item.fulltitle videoitem.thumbnail = item.thumbnail videoitem.channel = __channel__ return itemlist
2.03125
2
sns_lambda_update_ssl_rule/functions/update_ssl_rule.py
GMADLA/terraform-aws-ecs-web-app
0
12794041
import os import json, boto3 def lambda_handler(event, context): print("Trigger Event: ") print(event) region = os.environ['REGION'] elbv2_client = boto3.client('elbv2', region_name=region) available_target_groups = os.environ['AVAILABLE_TARGET_GROUPS'] arr_available_target_groups = available_target_groups.split(',') # Get HTTP Target Group. http_listener_arn = os.environ['HTTP_LISTENER_ARN'] http_listener = elbv2_client.describe_rules( ListenerArn=http_listener_arn) http_target_group_arn = get_current_http_target_group(http_listener['Rules'], arr_available_target_groups) if http_target_group_arn==False: print("Could not identify the target arn") return False print("Current HTTP target group: ") print(http_target_group_arn) # Get HTTPS listener rules. https_listener_arn = os.environ['SSL_LISTENER_ARN'] https_listener = elbv2_client.describe_rules(ListenerArn=https_listener_arn) https_listener_rules = https_listener['Rules'] print("Current HTTPS target group: ") https_target_group_arn = get_current_http_target_group(https_listener['Rules'], arr_available_target_groups) print(https_target_group_arn) results = {} i = 0 while i < len(https_listener_rules): # Skip default rule if https_listener_rules[i]['IsDefault']==True: i +=1 continue actions = https_listener_rules[i]['Actions'] actions, modify = process_actions(actions, http_target_group_arn, arr_available_target_groups) if modify==1: print("Updating SSL listener rules..") rule_arn = https_listener_rules[i]['RuleArn'] results[rule_arn] = modify_rules(elbv2_client, rule_arn, actions) i +=1 # For ECS After Allow Test Traffic hook print(results) send_codedeploy_validation_status(event, results) return results # Returns the current B/G target group from a list of lister rules. def get_current_http_target_group(http_listener_rules, arr_available_target_groups): i=0 while i < len(http_listener_rules): # Continue if default listener rule. if http_listener_rules[i]['IsDefault']==True: i +=1 continue actions = http_listener_rules[i]['Actions'] n=0 while n<len(actions): try: for tg in actions[n]['ForwardConfig']['TargetGroups']: if tg['TargetGroupArn'] in arr_available_target_groups and (tg['Weight'] is 100 or tg['Weight'] is 1) : return tg['TargetGroupArn'] except Exception as e: print(e) n +=1 i +=1 return False def process_actions(actions, http_target_group_arn, arr_available_target_groups): modify = 0 for ak, action in enumerate(actions): try: if action['Type'] == "forward" and check_target_update(action['TargetGroupArn'], arr_available_target_groups): actions[ak]['TargetGroupArn']=http_target_group_arn for tgk, target_group in enumerate(action['ForwardConfig']['TargetGroups']): if check_target_update(target_group['TargetGroupArn'], arr_available_target_groups): actions[ak]['ForwardConfig']['TargetGroups'][tgk]['TargetGroupArn']=http_target_group_arn modify=1 except Exception as e: print(e) return (actions), modify # Check old target group is associated w/out available target and different. # Be wary I found its possible the Listener rule is updated at the initial Ready Stage. # DO NOT TRY COMPARING OLD AN NEW, SIMPLY ALWAYS UPDATE TO MATCH HTTP IF ONE OF THE AVAILABLE TARGETS def check_target_update(old_target_group, arr_available_target_groups): return old_target_group in arr_available_target_groups # Sends notification to CodeDeploy on hook status... def send_codedeploy_validation_status(event, results): region = os.environ['REGION'] codedeploy_client = boto3.client('codedeploy', region_name=region) status = ('Failed', 'Succeeded')[len(results) > 0] print(status) try: return codedeploy_client.put_lifecycle_event_hook_execution_status( deploymentId=event['DeploymentId'], lifecycleEventHookExecutionId=event['LifecycleEventHookExecutionId'], status=status ) except Exception as e: print("Recoverable Exception: ") print(e) return False def modify_rules(elbv2_client, arn, actions): try: return elbv2_client.modify_rule( RuleArn=arn, Actions=actions ) except Exception as e: print(e)
2.203125
2
src/get_demographics.py
pthangaraj/Stroke-Phenotyping
0
12794042
#By <NAME> (<EMAIL>), <NAME> Lab at Columbia University Irving Medical Center #Part of manuscript: "Comparative analysis, applications, and interpretation of electronic health record-based stroke phenotyping methods" #This script prints out the demographics of all of the models' training sets import numpy as np import sys import scipy as sp from scipy.sparse import csr_matrix from collections import defaultdict demo_counts=defaultdict(lambda: defaultdict(list)) demo_freqs=defaultdict(lambda: defaultdict(list)) cases=['G','G','G','G','G','T','T','T','T','T','C','C','C','C','C'] controls=['N','I','C','CI','R','N','I','C','CI','R','N','I','C','CI','R'] for i in range(0,15): case=cases[i] control=controls[i] filename_labels={training_set labels filename}+case+control+'.npy' labels=np.load(filename_labels) filename_e2i={events2cols filename}+case+control+'.npy' e2c=np.load(filename_e2i) e2c=e2c[()] filename_all={demographics events filenames} + case + control + '.npy' demo_events=np.load(filename_all) filename_mtrain={training_set sparse matrix filename} + case + control + '.npz' matrix=sp.sparse.load_npz(filename_mtrain) demos_count=defaultdict(lambda: defaultdict(int)) case_len=np.sum(labels) ctrl_len=len(labels)-case_len print case,control,case_len,ctrl_len for t in range(0,len(labels)): label=labels[t] for d in demo_events: col=e2c[d] if d=='American Indian' or d=='Pacific Islander' or d=='Asian': demos_count[label]['other']+=matrix[t,col] elif d=='U': demos_count[label]['Unknown']+=matrix[t,col] else: demos_count[label][d]+=matrix[t,col] for d in demos_count[1].keys(): demo_counts[case+'ca'][d].append(demos_count[1][d]) demo_counts[control+'co'][d].append(demos_count[0][d]) demo_freqs[case+'ca'][d].append(demos_count[1][d]/float(case_len)) demo_freqs[control+'co'][d].append(demos_count[0][d]/float(ctrl_len)) for c in demo_counts.keys(): for d in demo_counts[c]: print c,d,demo_counts[c][d],demo_freqs[c][d]
2.046875
2
apis/worldtime.py
CantSayIHave/OllieBotCore_v3
4
12794043
# worldtime module by CantSayIHave # Created 2018/01/12 # # Fetch time and date from a location # Uses Google Geocoding API and Google Time Zone API import aiohttp import time from datetime import datetime API_GEOCODE = 'https://maps.googleapis.com/maps/api/geocode/json?' API_TIMEZONE = 'https://maps.googleapis.com/maps/api/timezone/json?' allowed_chars = [',', '%', '+', '-'] class Location: def __init__(self, address: str, lat: int = None, long: int = None): self.address = address self.latitude = lat self.longitude = long class Time: def __init__(self, time: datetime, timezone_id: str, timezone_name: str): self.time = time self.timezone_id = timezone_id self.timezone_name = timezone_name class WorldTime: def __init__(self, key: str): self.key = key async def get_location(self, query: str) -> Location: args = {'address': self.query_encode(query), 'key': self.key} url = API_GEOCODE + self.param_encode(args) search = await self.api_get(url) if search: try: result = search['results'][0] location = Location(address=result['formatted_address'], lat=result['geometry']['location']['lat'], long=result['geometry']['location']['lng']) return location except KeyError: print('WorldTime Location Key Error') raise else: return search async def get_time(self, location: Location) -> Time: unix_now = int(time.time()) args = {'location': '{},{}'.format(location.latitude, location.longitude), 'timestamp': unix_now, 'key': self.key} url = API_TIMEZONE + self.param_encode(args) search = await self.api_get(url) if search: try: location_time = unix_now + search['rawOffset'] + search['dstOffset'] return Time(time=datetime.fromtimestamp(location_time), timezone_id=search['timeZoneId'], timezone_name=search['timeZoneName']) except KeyError: print('WorldTime Time Key Error') raise else: return search @staticmethod async def api_get(url: str) -> dict: with aiohttp.ClientSession() as session: async with session.get(url) as resp: if resp.status == 200: j = await resp.json() if j['status'] == 'OK': return j elif j['status'] == 'ZERO_RESULTS': return None return False @staticmethod def query_encode(text: str) -> str: text = ' '.join(text.split()) text = text.replace(' ', '+') for c in text: if c not in allowed_chars and not c.isalnum(): text = text.replace(c, '%' + hex(ord(c))[2:]) return text @staticmethod def param_encode(options: dict) -> str: out = '' for k, v in options.items(): out += '{}={}&'.format(k, v) out = out[:-1] return out
3.296875
3
generateData.py
NumericalMax/Linear-Regression
2
12794044
import numpy as np from matplotlib import pyplot as plt n = 100 x = range(0,n) y = range(0,n) for k in range(0, n): y[k] = y[k] + 3*np.random.randn() + 100 plt.figure(figsize=(20,10)) plt.scatter(x, y) plt.savefig("./images/rawData.png") X = np.zeros([n,1]) target = np.zeros([n,1]) X[:,0] = x target[:,0] = y np.savetxt("X.txt", X, delimiter=",", fmt='%f') np.savetxt("y.txt", target, delimiter=",", fmt='%f')
3.234375
3
django_typograf/admin.py
movermeyer/django-typograf
1
12794045
<reponame>movermeyer/django-typograf from django.contrib import admin from django_typograf.utils import get_typograf_field_name, get_typograf_hash_field_name class TypografAdmin(admin.ModelAdmin): """ Admin class for hide typograf fields from admin site """ def _exclude(self, obj=None): """ Mark typograf fields as exclude """ exclude = () if obj: exclude += tuple((get_typograf_field_name(field) for field in obj._meta.typografed_fields)) exclude += tuple((get_typograf_hash_field_name(field) for field in obj._meta.typografed_fields)) return exclude def get_form(self, request, obj=None, **kwargs): exclude = self.exclude or () exclude += self._exclude(obj) kwargs.update(dict(exclude=exclude)) return super().get_form(request, obj, **kwargs)
2.015625
2
Server/Graph-Tests/generationpiechart.py
danielvanpaass/Demonstrator
0
12794046
<gh_stars>0 import plotly.graph_objects as go data = {'pv':[1,4,1,2,4,2], 'wind':[1,2,5,3,2,0], 'net':[10,2,5,0,2,0]} tot_net= sum(data['net']) tot_pv = sum(data['pv'])+tot_net*0.05 tot_wind= sum(data['wind'])*0.08 tot_gas=tot_net*0.45 tot_coal=tot_net*0.32 tot_oil=tot_net*0.04 tot_nuclear=tot_net*0.03 tot_other=tot_net*0.03 labels=['PV','Wind','Natural Gas','Coal','Oil','Nuclear','Other'] share=[tot_pv,tot_wind,tot_gas,tot_coal,tot_oil,tot_nuclear,tot_other] fig = go.Figure(data=[go.Pie(labels=labels, values=share)]) fig.show() #print(power_share) #data.update({'share': })
2.9375
3
datetime/main.py
minister19/Python_snippets
0
12794047
from time import timezone import pandas as pd from datetime import datetime # print(datetime.fromtimestamp(1603209600)) # print(datetime.fromtimestamp(1612868324294/1000)) # print(datetime.fromtimestamp(1613283396746//1000)) print(datetime.fromtimestamp(1640851200)) print(datetime.fromtimestamp(1640649600)) print(datetime.fromtimestamp(1640617020000//1000)) a = datetime.now() b = pd.Timestamp(ts_input=a, tzinfo=a.tzinfo) c = b.floor(freq='T') d = b.ceil(freq='T') e = d.timestamp() f = int(e) g = datetime.fromtimestamp(f) print(a, c, d, g) delta = datetime.now() - datetime.utcnow() print(delta.seconds / 3600)
2.765625
3
第5章/program/Chapter_5_xpath_special.py
kingname/SourceCodeOfBook
274
12794048
import lxml.html html1 = ''' <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8"> <title></title> </head> <body> <div id="test-1-k">需要的内容1</div> <div id="test-2-k">需要的内容2</div> <div id="testfault-k">需要的内容3</div> <div id="useless">这是我不需要的内容</div> </body> </html> ''' # selector = lxml.html.fromstring(html1) # content = selector.xpath('//div[ends-with(@id, "-k")]/text()') # for each in content: # print(each) html2 = ''' <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8"> <title></title> </head> <body> <div id="abc-key-x">需要的内容1</div> <div id="123-key-000">需要的内容2</div> <div id="haha-key">需要的内容3</div> <div id="useless">这是我不需要的内容</div> </body> </html> ''' # selector = lxml.html.fromstring(html2) # content = selector.xpath('//div[contains(@id, "-key")]/text()') # for each in content: # print(each) html3 = ''' <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8"> <title></title> </head> <body> <div id="test3"> 我左青龙, <span id="tiger"> 右白虎, <ul>上朱雀, <li>下玄武。</li> </ul> 老牛在当中, </span> 龙头在胸口。 </div> </body> </html> ''' #如果使用一般的办法,就会出现获取到的数据不完整的情况 selector = lxml.html.fromstring(html3) # content_1 = selector.xpath('//div[@id="test3"]/text()') # for each in content_1: # print(each) # 使用string(.)就可以把数据获取完整 data = selector.xpath('//div[@id="test3"]')[0] info = data.xpath('string(.)') print(info)
3.5625
4
tests/conftest.py
williamjmorenor/now-lms
0
12794049
import pytest from now_lms import init_app, lms_app lms_app.app_context().push() @pytest.fixture(scope="package", autouse=True) def setup_database(): init_app()
1.515625
2
week 2/datatype.py
marksikaundi/Computer-Programming-with-Python
2
12794050
<filename>week 2/datatype.py print("this is dataype")
1.492188
1