url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_16
[537, 1]
[550, 53]
case axiom_ h1_phi h1_1 => apply IsDeduct.axiom_ exact h1_1
F : Formula Δ Γ : Set Formula h2 : ∀ H ∈ Γ, IsDeduct Δ H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsDeduct Δ h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_16
[537, 1]
[550, 53]
case assume_ h1_phi h1_1 => exact h2 h1_phi h1_1
F : Formula Δ Γ : Set Formula h2 : ∀ H ∈ Γ, IsDeduct Δ H h1_phi : Formula h1_1 : h1_phi ∈ Γ ⊢ IsDeduct Δ h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_16
[537, 1]
[550, 53]
case mp_ h1_phi h1_psi _ _ h1_ih_1 h1_ih_2 => exact IsDeduct.mp_ h1_phi h1_psi h1_ih_1 h1_ih_2
F : Formula Δ Γ : Set Formula h2 : ∀ H ∈ Γ, IsDeduct Δ H h1_phi h1_psi : Formula a✝¹ : IsDeduct Γ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Γ h1_phi h1_ih_1 : IsDeduct Δ (h1_phi.imp_ h1_psi) h1_ih_2 : IsDeduct Δ h1_phi ⊢ IsDeduct Δ h1_psi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_16
[537, 1]
[550, 53]
apply IsDeduct.axiom_
F : Formula Δ Γ : Set Formula h2 : ∀ H ∈ Γ, IsDeduct Δ H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsDeduct Δ h1_phi
case a F : Formula Δ Γ : Set Formula h2 : ∀ H ∈ Γ, IsDeduct Δ H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsAxiom h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_16
[537, 1]
[550, 53]
exact h1_1
case a F : Formula Δ Γ : Set Formula h2 : ∀ H ∈ Γ, IsDeduct Δ H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsAxiom h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_16
[537, 1]
[550, 53]
exact h2 h1_phi h1_1
F : Formula Δ Γ : Set Formula h2 : ∀ H ∈ Γ, IsDeduct Δ H h1_phi : Formula h1_1 : h1_phi ∈ Γ ⊢ IsDeduct Δ h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_16
[537, 1]
[550, 53]
exact IsDeduct.mp_ h1_phi h1_psi h1_ih_1 h1_ih_2
F : Formula Δ Γ : Set Formula h2 : ∀ H ∈ Γ, IsDeduct Δ H h1_phi h1_psi : Formula a✝¹ : IsDeduct Γ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Γ h1_phi h1_ih_1 : IsDeduct Δ (h1_phi.imp_ h1_psi) h1_ih_2 : IsDeduct Δ h1_phi ⊢ IsDeduct Δ h1_psi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.C_14_17
[553, 1]
[563, 28]
simp only [IsProof] at h2
Q : Formula Γ : Set Formula h1 : IsDeduct Γ Q h2 : ∀ P ∈ Γ, IsProof P ⊢ IsProof Q
Q : Formula Γ : Set Formula h1 : IsDeduct Γ Q h2 : ∀ P ∈ Γ, IsDeduct ∅ P ⊢ IsProof Q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.C_14_17
[553, 1]
[563, 28]
simp only [IsProof]
Q : Formula Γ : Set Formula h1 : IsDeduct Γ Q h2 : ∀ P ∈ Γ, IsDeduct ∅ P ⊢ IsProof Q
Q : Formula Γ : Set Formula h1 : IsDeduct Γ Q h2 : ∀ P ∈ Γ, IsDeduct ∅ P ⊢ IsDeduct ∅ Q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.C_14_17
[553, 1]
[563, 28]
exact T_14_16 Q ∅ Γ h1 h2
Q : Formula Γ : Set Formula h1 : IsDeduct Γ Q h2 : ∀ P ∈ Γ, IsDeduct ∅ P ⊢ IsDeduct ∅ Q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.eval_not
[566, 1]
[572, 32]
simp only [Formula.evalPrime]
P : Formula V : VarBoolAssignment ⊢ evalPrime V P.not_ ↔ ¬evalPrime V P
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.eval_imp
[575, 1]
[581, 32]
simp only [Formula.evalPrime]
P Q : Formula V : VarBoolAssignment ⊢ evalPrime V (P.imp_ Q) ↔ evalPrime V P → evalPrime V Q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.eval_false
[584, 1]
[589, 32]
simp only [Formula.evalPrime]
V : VarBoolAssignment ⊢ evalPrime V false_ ↔ False
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.eval_and
[592, 1]
[598, 32]
simp only [Formula.evalPrime]
P Q : Formula V : VarBoolAssignment ⊢ evalPrime V (P.and_ Q) ↔ evalPrime V P ∧ evalPrime V Q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.eval_or
[601, 1]
[607, 32]
simp only [Formula.evalPrime]
P Q : Formula V : VarBoolAssignment ⊢ evalPrime V (P.or_ Q) ↔ evalPrime V P ∨ evalPrime V Q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.eval_iff
[610, 1]
[616, 32]
simp only [Formula.evalPrime]
P Q : Formula V : VarBoolAssignment ⊢ evalPrime V (P.iff_ Q) ↔ (evalPrime V P ↔ evalPrime V Q)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_prop_true
[619, 1]
[624, 7]
simp only [Formula.IsTautoPrime]
⊢ true_.IsTautoPrime
⊢ ∀ (V : VarBoolAssignment), evalPrime V true_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_prop_true
[619, 1]
[624, 7]
simp only [Formula.evalPrime]
⊢ ∀ (V : VarBoolAssignment), evalPrime V true_
⊢ VarBoolAssignment → True
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_prop_true
[619, 1]
[624, 7]
simp
⊢ VarBoolAssignment → True
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_prop_1
[627, 1]
[632, 8]
simp only [Formula.IsTautoPrime]
P Q : Formula ⊢ (P.imp_ (Q.imp_ P)).IsTautoPrime
P Q : Formula ⊢ ∀ (V : VarBoolAssignment), evalPrime V (P.imp_ (Q.imp_ P))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_prop_1
[627, 1]
[632, 8]
tauto
P Q : Formula ⊢ ∀ (V : VarBoolAssignment), evalPrime V (P.imp_ (Q.imp_ P))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_prop_2
[635, 1]
[640, 8]
simp only [Formula.IsTautoPrime]
P Q R : Formula ⊢ ((P.imp_ (Q.imp_ R)).imp_ ((P.imp_ Q).imp_ (P.imp_ R))).IsTautoPrime
P Q R : Formula ⊢ ∀ (V : VarBoolAssignment), evalPrime V ((P.imp_ (Q.imp_ R)).imp_ ((P.imp_ Q).imp_ (P.imp_ R)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_prop_2
[635, 1]
[640, 8]
tauto
P Q R : Formula ⊢ ∀ (V : VarBoolAssignment), evalPrime V ((P.imp_ (Q.imp_ R)).imp_ ((P.imp_ Q).imp_ (P.imp_ R)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_prop_3
[643, 1]
[649, 8]
simp only [Formula.IsTautoPrime]
P Q : Formula ⊢ ((P.not_.imp_ Q.not_).imp_ (Q.imp_ P)).IsTautoPrime
P Q : Formula ⊢ ∀ (V : VarBoolAssignment), evalPrime V ((P.not_.imp_ Q.not_).imp_ (Q.imp_ P))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_prop_3
[643, 1]
[649, 8]
simp only [eval_not, eval_imp]
P Q : Formula ⊢ ∀ (V : VarBoolAssignment), evalPrime V ((P.not_.imp_ Q.not_).imp_ (Q.imp_ P))
P Q : Formula ⊢ ∀ (V : VarBoolAssignment), (¬evalPrime V P → ¬evalPrime V Q) → evalPrime V Q → evalPrime V P
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_prop_3
[643, 1]
[649, 8]
tauto
P Q : Formula ⊢ ∀ (V : VarBoolAssignment), (¬evalPrime V P → ¬evalPrime V Q) → evalPrime V Q → evalPrime V P
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_mp
[652, 1]
[663, 8]
simp only [Formula.IsTautoPrime] at h1
P Q : Formula h1 : (P.imp_ Q).IsTautoPrime h2 : P.IsTautoPrime ⊢ Q.IsTautoPrime
P Q : Formula h1 : ∀ (V : VarBoolAssignment), evalPrime V (P.imp_ Q) h2 : P.IsTautoPrime ⊢ Q.IsTautoPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_mp
[652, 1]
[663, 8]
simp only [eval_imp] at h1
P Q : Formula h1 : ∀ (V : VarBoolAssignment), evalPrime V (P.imp_ Q) h2 : P.IsTautoPrime ⊢ Q.IsTautoPrime
P Q : Formula h2 : P.IsTautoPrime h1 : ∀ (V : VarBoolAssignment), evalPrime V P → evalPrime V Q ⊢ Q.IsTautoPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_mp
[652, 1]
[663, 8]
simp only [Formula.IsTautoPrime] at h2
P Q : Formula h2 : P.IsTautoPrime h1 : ∀ (V : VarBoolAssignment), evalPrime V P → evalPrime V Q ⊢ Q.IsTautoPrime
P Q : Formula h2 : ∀ (V : VarBoolAssignment), evalPrime V P h1 : ∀ (V : VarBoolAssignment), evalPrime V P → evalPrime V Q ⊢ Q.IsTautoPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_mp
[652, 1]
[663, 8]
tauto
P Q : Formula h2 : ∀ (V : VarBoolAssignment), evalPrime V P h1 : ∀ (V : VarBoolAssignment), evalPrime V P → evalPrime V Q ⊢ Q.IsTautoPrime
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_false
[666, 1]
[671, 8]
simp only [Formula.IsTautoPrime]
⊢ (false_.iff_ true_.not_).IsTautoPrime
⊢ ∀ (V : VarBoolAssignment), evalPrime V (false_.iff_ true_.not_)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_false
[666, 1]
[671, 8]
simp only [eval_not, eval_iff]
⊢ ∀ (V : VarBoolAssignment), evalPrime V (false_.iff_ true_.not_)
⊢ ∀ (V : VarBoolAssignment), evalPrime V false_ ↔ ¬evalPrime V true_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_false
[666, 1]
[671, 8]
tauto
⊢ ∀ (V : VarBoolAssignment), evalPrime V false_ ↔ ¬evalPrime V true_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_and
[673, 1]
[679, 8]
simp only [Formula.IsTautoPrime]
P Q : Formula ⊢ ((P.and_ Q).iff_ (P.imp_ Q.not_).not_).IsTautoPrime
P Q : Formula ⊢ ∀ (V : VarBoolAssignment), evalPrime V ((P.and_ Q).iff_ (P.imp_ Q.not_).not_)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_and
[673, 1]
[679, 8]
simp only [eval_and, eval_not, eval_imp, eval_iff]
P Q : Formula ⊢ ∀ (V : VarBoolAssignment), evalPrime V ((P.and_ Q).iff_ (P.imp_ Q.not_).not_)
P Q : Formula ⊢ ∀ (V : VarBoolAssignment), evalPrime V P ∧ evalPrime V Q ↔ ¬(evalPrime V P → ¬evalPrime V Q)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_and
[673, 1]
[679, 8]
tauto
P Q : Formula ⊢ ∀ (V : VarBoolAssignment), evalPrime V P ∧ evalPrime V Q ↔ ¬(evalPrime V P → ¬evalPrime V Q)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_or
[681, 1]
[687, 8]
simp only [Formula.IsTautoPrime]
P Q : Formula ⊢ ((P.or_ Q).iff_ (P.not_.imp_ Q)).IsTautoPrime
P Q : Formula ⊢ ∀ (V : VarBoolAssignment), evalPrime V ((P.or_ Q).iff_ (P.not_.imp_ Q))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_or
[681, 1]
[687, 8]
simp only [eval_or, eval_not, eval_imp, eval_iff]
P Q : Formula ⊢ ∀ (V : VarBoolAssignment), evalPrime V ((P.or_ Q).iff_ (P.not_.imp_ Q))
P Q : Formula ⊢ ∀ (V : VarBoolAssignment), evalPrime V P ∨ evalPrime V Q ↔ ¬evalPrime V P → evalPrime V Q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_or
[681, 1]
[687, 8]
tauto
P Q : Formula ⊢ ∀ (V : VarBoolAssignment), evalPrime V P ∨ evalPrime V Q ↔ ¬evalPrime V P → evalPrime V Q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_iff
[689, 1]
[695, 8]
simp only [Formula.IsTautoPrime]
P Q : Formula ⊢ (((P.iff_ Q).imp_ ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ (((P.imp_ Q).imp_ (Q.imp_ P).not_).not_.imp_ (P.iff_ Q)).not_).not_.IsTautoPrime
P Q : Formula ⊢ ∀ (V : VarBoolAssignment), evalPrime V (((P.iff_ Q).imp_ ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ (((P.imp_ Q).imp_ (Q.imp_ P).not_).not_.imp_ (P.iff_ Q)).not_).not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_iff
[689, 1]
[695, 8]
simp only [eval_iff, eval_not, eval_imp]
P Q : Formula ⊢ ∀ (V : VarBoolAssignment), evalPrime V (((P.iff_ Q).imp_ ((P.imp_ Q).imp_ (Q.imp_ P).not_).not_).imp_ (((P.imp_ Q).imp_ (Q.imp_ P).not_).not_.imp_ (P.iff_ Q)).not_).not_
P Q : Formula ⊢ ∀ (V : VarBoolAssignment), ¬(((evalPrime V P ↔ evalPrime V Q) → ¬((evalPrime V P → evalPrime V Q) → ¬(evalPrime V Q → evalPrime V P))) → ¬(¬((evalPrime V P → evalPrime V Q) → ¬(evalPrime V Q → evalPrime V P)) → (evalPrime V P ↔ evalPrime V Q)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.is_tauto_def_iff
[689, 1]
[695, 8]
tauto
P Q : Formula ⊢ ∀ (V : VarBoolAssignment), ¬(((evalPrime V P ↔ evalPrime V Q) → ¬((evalPrime V P → evalPrime V Q) → ¬(evalPrime V Q → evalPrime V P))) → ¬(¬((evalPrime V P → evalPrime V Q) → ¬(evalPrime V Q → evalPrime V P)) → (evalPrime V P ↔ evalPrime V Q)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
induction F
F F' : Formula h1 : F' ∈ F.primeSet ⊢ F'.IsPrime
case pred_const_ F' : Formula a✝¹ : PredName a✝ : List VarName h1 : F' ∈ (pred_const_ a✝¹ a✝).primeSet ⊢ F'.IsPrime case pred_var_ F' : Formula a✝¹ : PredName a✝ : List VarName h1 : F' ∈ (pred_var_ a✝¹ a✝).primeSet ⊢ F'.IsPrime case eq_ F' : Formula a✝¹ a✝ : VarName h1 : F' ∈ (eq_ a✝¹ a✝).primeSet ⊢ F'.IsPrime case true_ F' : Formula h1 : F' ∈ true_.primeSet ⊢ F'.IsPrime case false_ F' : Formula h1 : F' ∈ false_.primeSet ⊢ F'.IsPrime case not_ F' a✝ : Formula a_ih✝ : F' ∈ a✝.primeSet → F'.IsPrime h1 : F' ∈ a✝.not_.primeSet ⊢ F'.IsPrime case imp_ F' a✝¹ a✝ : Formula a_ih✝¹ : F' ∈ a✝¹.primeSet → F'.IsPrime a_ih✝ : F' ∈ a✝.primeSet → F'.IsPrime h1 : F' ∈ (a✝¹.imp_ a✝).primeSet ⊢ F'.IsPrime case and_ F' a✝¹ a✝ : Formula a_ih✝¹ : F' ∈ a✝¹.primeSet → F'.IsPrime a_ih✝ : F' ∈ a✝.primeSet → F'.IsPrime h1 : F' ∈ (a✝¹.and_ a✝).primeSet ⊢ F'.IsPrime case or_ F' a✝¹ a✝ : Formula a_ih✝¹ : F' ∈ a✝¹.primeSet → F'.IsPrime a_ih✝ : F' ∈ a✝.primeSet → F'.IsPrime h1 : F' ∈ (a✝¹.or_ a✝).primeSet ⊢ F'.IsPrime case iff_ F' a✝¹ a✝ : Formula a_ih✝¹ : F' ∈ a✝¹.primeSet → F'.IsPrime a_ih✝ : F' ∈ a✝.primeSet → F'.IsPrime h1 : F' ∈ (a✝¹.iff_ a✝).primeSet ⊢ F'.IsPrime case forall_ F' : Formula a✝¹ : VarName a✝ : Formula a_ih✝ : F' ∈ a✝.primeSet → F'.IsPrime h1 : F' ∈ (forall_ a✝¹ a✝).primeSet ⊢ F'.IsPrime case exists_ F' : Formula a✝¹ : VarName a✝ : Formula a_ih✝ : F' ∈ a✝.primeSet → F'.IsPrime h1 : F' ∈ (exists_ a✝¹ a✝).primeSet ⊢ F'.IsPrime case def_ F' : Formula a✝¹ : DefName a✝ : List VarName h1 : F' ∈ (def_ a✝¹ a✝).primeSet ⊢ F'.IsPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
case pred_const_ | pred_var_ => simp only [Formula.primeSet] at h1 simp at h1 subst h1 simp only [Formula.IsPrime]
F' : Formula a✝¹ : PredName a✝ : List VarName h1 : F' ∈ (pred_var_ a✝¹ a✝).primeSet ⊢ F'.IsPrime
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
case true_ | false_ => simp only [Formula.primeSet] at h1 simp at h1
F' : Formula h1 : F' ∈ false_.primeSet ⊢ F'.IsPrime
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
case eq_ x y => simp only [Formula.primeSet] at h1 simp at h1 subst h1 simp only [Formula.IsPrime]
F' : Formula x y : VarName h1 : F' ∈ (eq_ x y).primeSet ⊢ F'.IsPrime
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
case not_ phi phi_ih => simp only [Formula.primeSet] at h1 exact phi_ih h1
F' phi : Formula phi_ih : F' ∈ phi.primeSet → F'.IsPrime h1 : F' ∈ phi.not_.primeSet ⊢ F'.IsPrime
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
case imp_ phi psi phi_ih psi_ih | and_ phi psi phi_ih psi_ih | or_ phi psi phi_ih psi_ih | iff_ phi psi phi_ih psi_ih => simp only [Formula.primeSet] at h1 simp at h1 tauto
F' phi psi : Formula phi_ih : F' ∈ phi.primeSet → F'.IsPrime psi_ih : F' ∈ psi.primeSet → F'.IsPrime h1 : F' ∈ (phi.iff_ psi).primeSet ⊢ F'.IsPrime
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
case forall_ x phi | exists_ x phi => simp only [Formula.primeSet] at h1 simp at h1 subst h1 simp only [Formula.IsPrime]
F' : Formula a✝ : VarName x : Formula phi : F' ∈ x.primeSet → F'.IsPrime h1 : F' ∈ (exists_ a✝ x).primeSet ⊢ F'.IsPrime
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
case def_ => simp only [Formula.primeSet] at h1 simp at h1 subst h1 simp only [Formula.IsPrime]
F' : Formula a✝¹ : DefName a✝ : List VarName h1 : F' ∈ (def_ a✝¹ a✝).primeSet ⊢ F'.IsPrime
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.primeSet] at h1
F' : Formula a✝¹ : PredName a✝ : List VarName h1 : F' ∈ (pred_var_ a✝¹ a✝).primeSet ⊢ F'.IsPrime
F' : Formula a✝¹ : PredName a✝ : List VarName h1 : F' ∈ {pred_var_ a✝¹ a✝} ⊢ F'.IsPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp at h1
F' : Formula a✝¹ : PredName a✝ : List VarName h1 : F' ∈ {pred_var_ a✝¹ a✝} ⊢ F'.IsPrime
F' : Formula a✝¹ : PredName a✝ : List VarName h1 : F' = pred_var_ a✝¹ a✝ ⊢ F'.IsPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
subst h1
F' : Formula a✝¹ : PredName a✝ : List VarName h1 : F' = pred_var_ a✝¹ a✝ ⊢ F'.IsPrime
a✝¹ : PredName a✝ : List VarName ⊢ (pred_var_ a✝¹ a✝).IsPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.IsPrime]
a✝¹ : PredName a✝ : List VarName ⊢ (pred_var_ a✝¹ a✝).IsPrime
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.primeSet] at h1
F' : Formula h1 : F' ∈ false_.primeSet ⊢ F'.IsPrime
F' : Formula h1 : F' ∈ ∅ ⊢ F'.IsPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp at h1
F' : Formula h1 : F' ∈ ∅ ⊢ F'.IsPrime
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.primeSet] at h1
F' : Formula x y : VarName h1 : F' ∈ (eq_ x y).primeSet ⊢ F'.IsPrime
F' : Formula x y : VarName h1 : F' ∈ {eq_ x y} ⊢ F'.IsPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp at h1
F' : Formula x y : VarName h1 : F' ∈ {eq_ x y} ⊢ F'.IsPrime
F' : Formula x y : VarName h1 : F' = eq_ x y ⊢ F'.IsPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
subst h1
F' : Formula x y : VarName h1 : F' = eq_ x y ⊢ F'.IsPrime
x y : VarName ⊢ (eq_ x y).IsPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.IsPrime]
x y : VarName ⊢ (eq_ x y).IsPrime
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.primeSet] at h1
F' phi : Formula phi_ih : F' ∈ phi.primeSet → F'.IsPrime h1 : F' ∈ phi.not_.primeSet ⊢ F'.IsPrime
F' phi : Formula phi_ih : F' ∈ phi.primeSet → F'.IsPrime h1 : F' ∈ phi.primeSet ⊢ F'.IsPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
exact phi_ih h1
F' phi : Formula phi_ih : F' ∈ phi.primeSet → F'.IsPrime h1 : F' ∈ phi.primeSet ⊢ F'.IsPrime
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.primeSet] at h1
F' phi psi : Formula phi_ih : F' ∈ phi.primeSet → F'.IsPrime psi_ih : F' ∈ psi.primeSet → F'.IsPrime h1 : F' ∈ (phi.iff_ psi).primeSet ⊢ F'.IsPrime
F' phi psi : Formula phi_ih : F' ∈ phi.primeSet → F'.IsPrime psi_ih : F' ∈ psi.primeSet → F'.IsPrime h1 : F' ∈ phi.primeSet ∪ psi.primeSet ⊢ F'.IsPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp at h1
F' phi psi : Formula phi_ih : F' ∈ phi.primeSet → F'.IsPrime psi_ih : F' ∈ psi.primeSet → F'.IsPrime h1 : F' ∈ phi.primeSet ∪ psi.primeSet ⊢ F'.IsPrime
F' phi psi : Formula phi_ih : F' ∈ phi.primeSet → F'.IsPrime psi_ih : F' ∈ psi.primeSet → F'.IsPrime h1 : F' ∈ phi.primeSet ∨ F' ∈ psi.primeSet ⊢ F'.IsPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
tauto
F' phi psi : Formula phi_ih : F' ∈ phi.primeSet → F'.IsPrime psi_ih : F' ∈ psi.primeSet → F'.IsPrime h1 : F' ∈ phi.primeSet ∨ F' ∈ psi.primeSet ⊢ F'.IsPrime
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.primeSet] at h1
F' : Formula a✝ : VarName x : Formula phi : F' ∈ x.primeSet → F'.IsPrime h1 : F' ∈ (exists_ a✝ x).primeSet ⊢ F'.IsPrime
F' : Formula a✝ : VarName x : Formula phi : F' ∈ x.primeSet → F'.IsPrime h1 : F' ∈ {exists_ a✝ x} ⊢ F'.IsPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp at h1
F' : Formula a✝ : VarName x : Formula phi : F' ∈ x.primeSet → F'.IsPrime h1 : F' ∈ {exists_ a✝ x} ⊢ F'.IsPrime
F' : Formula a✝ : VarName x : Formula phi : F' ∈ x.primeSet → F'.IsPrime h1 : F' = exists_ a✝ x ⊢ F'.IsPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
subst h1
F' : Formula a✝ : VarName x : Formula phi : F' ∈ x.primeSet → F'.IsPrime h1 : F' = exists_ a✝ x ⊢ F'.IsPrime
a✝ : VarName x : Formula phi : exists_ a✝ x ∈ x.primeSet → (exists_ a✝ x).IsPrime ⊢ (exists_ a✝ x).IsPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.IsPrime]
a✝ : VarName x : Formula phi : exists_ a✝ x ∈ x.primeSet → (exists_ a✝ x).IsPrime ⊢ (exists_ a✝ x).IsPrime
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.primeSet] at h1
F' : Formula a✝¹ : DefName a✝ : List VarName h1 : F' ∈ (def_ a✝¹ a✝).primeSet ⊢ F'.IsPrime
F' : Formula a✝¹ : DefName a✝ : List VarName h1 : F' ∈ {def_ a✝¹ a✝} ⊢ F'.IsPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp at h1
F' : Formula a✝¹ : DefName a✝ : List VarName h1 : F' ∈ {def_ a✝¹ a✝} ⊢ F'.IsPrime
F' : Formula a✝¹ : DefName a✝ : List VarName h1 : F' = def_ a✝¹ a✝ ⊢ F'.IsPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
subst h1
F' : Formula a✝¹ : DefName a✝ : List VarName h1 : F' = def_ a✝¹ a✝ ⊢ F'.IsPrime
a✝¹ : DefName a✝ : List VarName ⊢ (def_ a✝¹ a✝).IsPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.mem_primeSet_isPrime
[731, 1]
[770, 32]
simp only [Formula.IsPrime]
a✝¹ : DefName a✝ : List VarName ⊢ (def_ a✝¹ a✝).IsPrime
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
subst h2
F F' : Formula Δ_U : Set Formula V : VarBoolAssignment Δ_U' : Set Formula h1 : ↑F.primeSet ⊆ Δ_U h2 : Δ_U' = evalPrimeFfToNot V '' Δ_U h3 : F' = evalPrimeFfToNot V F ⊢ IsDeduct Δ_U' F'
F F' : Formula Δ_U : Set Formula V : VarBoolAssignment h1 : ↑F.primeSet ⊆ Δ_U h3 : F' = evalPrimeFfToNot V F ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) F'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
subst h3
F F' : Formula Δ_U : Set Formula V : VarBoolAssignment h1 : ↑F.primeSet ⊆ Δ_U h3 : F' = evalPrimeFfToNot V F ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) F'
F : Formula Δ_U : Set Formula V : VarBoolAssignment h1 : ↑F.primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V F)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
induction F
F : Formula Δ_U : Set Formula V : VarBoolAssignment h1 : ↑F.primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V F)
case pred_const_ Δ_U : Set Formula V : VarBoolAssignment a✝¹ : PredName a✝ : List VarName h1 : ↑(pred_const_ a✝¹ a✝).primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (pred_const_ a✝¹ a✝)) case pred_var_ Δ_U : Set Formula V : VarBoolAssignment a✝¹ : PredName a✝ : List VarName h1 : ↑(pred_var_ a✝¹ a✝).primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (pred_var_ a✝¹ a✝)) case eq_ Δ_U : Set Formula V : VarBoolAssignment a✝¹ a✝ : VarName h1 : ↑(eq_ a✝¹ a✝).primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (eq_ a✝¹ a✝)) case true_ Δ_U : Set Formula V : VarBoolAssignment h1 : ↑true_.primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V true_) case false_ Δ_U : Set Formula V : VarBoolAssignment h1 : ↑false_.primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V false_) case not_ Δ_U : Set Formula V : VarBoolAssignment a✝ : Formula a_ih✝ : ↑a✝.primeSet ⊆ Δ_U → IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V a✝) h1 : ↑a✝.not_.primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V a✝.not_) case imp_ Δ_U : Set Formula V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : ↑a✝¹.primeSet ⊆ Δ_U → IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V a✝¹) a_ih✝ : ↑a✝.primeSet ⊆ Δ_U → IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V a✝) h1 : ↑(a✝¹.imp_ a✝).primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (a✝¹.imp_ a✝)) case and_ Δ_U : Set Formula V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : ↑a✝¹.primeSet ⊆ Δ_U → IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V a✝¹) a_ih✝ : ↑a✝.primeSet ⊆ Δ_U → IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V a✝) h1 : ↑(a✝¹.and_ a✝).primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (a✝¹.and_ a✝)) case or_ Δ_U : Set Formula V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : ↑a✝¹.primeSet ⊆ Δ_U → IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V a✝¹) a_ih✝ : ↑a✝.primeSet ⊆ Δ_U → IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V a✝) h1 : ↑(a✝¹.or_ a✝).primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (a✝¹.or_ a✝)) case iff_ Δ_U : Set Formula V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : ↑a✝¹.primeSet ⊆ Δ_U → IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V a✝¹) a_ih✝ : ↑a✝.primeSet ⊆ Δ_U → IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V a✝) h1 : ↑(a✝¹.iff_ a✝).primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (a✝¹.iff_ a✝)) case forall_ Δ_U : Set Formula V : VarBoolAssignment a✝¹ : VarName a✝ : Formula a_ih✝ : ↑a✝.primeSet ⊆ Δ_U → IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V a✝) h1 : ↑(forall_ a✝¹ a✝).primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (forall_ a✝¹ a✝)) case exists_ Δ_U : Set Formula V : VarBoolAssignment a✝¹ : VarName a✝ : Formula a_ih✝ : ↑a✝.primeSet ⊆ Δ_U → IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V a✝) h1 : ↑(exists_ a✝¹ a✝).primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (exists_ a✝¹ a✝)) case def_ Δ_U : Set Formula V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName h1 : ↑(def_ a✝¹ a✝).primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (def_ a✝¹ a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
case pred_const_ X xs => let F := pred_const_ X xs simp only [Formula.primeSet] at h1 simp at h1 simp only [evalPrimeFfToNot] simp only [Formula.evalPrime] apply IsDeduct.assume_ simp apply Exists.intro F tauto
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_const_ X xs).primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (pred_const_ X xs))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
case pred_var_ X xs => let F := pred_var_ X xs simp only [Formula.primeSet] at h1 simp at h1 simp only [evalPrimeFfToNot] simp only [Formula.evalPrime] apply IsDeduct.assume_ simp apply Exists.intro F tauto
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_var_ X xs).primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (pred_var_ X xs))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
case eq_ x y => let F := eq_ x y simp only [Formula.primeSet] at h1 simp at h1 simp only [evalPrimeFfToNot] simp only [Formula.evalPrime] apply IsDeduct.assume_ simp apply Exists.intro F tauto
Δ_U : Set Formula V : VarBoolAssignment x y : VarName h1 : ↑(eq_ x y).primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (eq_ x y))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
case true_ => apply IsDeduct.axiom_ apply IsAxiom.prop_true_
Δ_U : Set Formula V : VarBoolAssignment h1 : ↑true_.primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V true_)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
case false_ => simp only [Formula.primeSet] at h1 simp at h1 simp only [evalPrimeFfToNot] simp only [Formula.evalPrime] simp sorry
Δ_U : Set Formula V : VarBoolAssignment h1 : ↑false_.primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V false_)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
case not_ phi phi_ih => simp only [Formula.primeSet] at h1 simp only [evalPrimeFfToNot] at phi_ih simp only [evalPrimeFfToNot] simp only [evalPrime] simp split_ifs case _ c1 => simp only [c1] at phi_ih simp at phi_ih apply IsDeduct.mp_ phi apply proof_imp_deduct apply T_14_6 exact phi_ih h1 case _ c1 => simp only [c1] at phi_ih simp at phi_ih exact phi_ih h1
Δ_U : Set Formula V : VarBoolAssignment phi : Formula phi_ih : ↑phi.primeSet ⊆ Δ_U → IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V phi) h1 : ↑phi.not_.primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V phi.not_)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
case forall_ x phi phi_ih => let F := forall_ x phi simp only [Formula.primeSet] at h1 simp at h1 simp only [evalPrimeFfToNot] simp only [Formula.evalPrime] apply IsDeduct.assume_ simp apply Exists.intro F tauto
Δ_U : Set Formula V : VarBoolAssignment x : VarName phi : Formula phi_ih : ↑phi.primeSet ⊆ Δ_U → IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V phi) h1 : ↑(forall_ x phi).primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (forall_ x phi))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
case def_ X xs => let F := def_ X xs simp only [Formula.primeSet] at h1 simp at h1 simp only [evalPrimeFfToNot] simp only [Formula.evalPrime] apply IsDeduct.assume_ simp apply Exists.intro F tauto
Δ_U : Set Formula V : VarBoolAssignment X : DefName xs : List VarName h1 : ↑(def_ X xs).primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (def_ X xs))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
case and_ | or_ | iff_ | exists_ => sorry
Δ_U : Set Formula V : VarBoolAssignment a✝¹ : VarName a✝ : Formula a_ih✝ : ↑a✝.primeSet ⊆ Δ_U → IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V a✝) h1 : ↑(exists_ a✝¹ a✝).primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (exists_ a✝¹ a✝))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
let F := pred_const_ X xs
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_const_ X xs).primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (pred_const_ X xs))
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_const_ X xs).primeSet ⊆ Δ_U F : Formula := pred_const_ X xs ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (pred_const_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
simp only [Formula.primeSet] at h1
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_const_ X xs).primeSet ⊆ Δ_U F : Formula := pred_const_ X xs ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (pred_const_ X xs))
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑{pred_const_ X xs} ⊆ Δ_U F : Formula := pred_const_ X xs ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (pred_const_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
simp at h1
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑{pred_const_ X xs} ⊆ Δ_U F : Formula := pred_const_ X xs ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (pred_const_ X xs))
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (pred_const_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
simp only [evalPrimeFfToNot]
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (pred_const_ X xs))
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Δ_U ⊢ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Δ_U) (if evalPrime V (pred_const_ X xs) then pred_const_ X xs else (pred_const_ X xs).not_)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
simp only [Formula.evalPrime]
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Δ_U ⊢ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Δ_U) (if evalPrime V (pred_const_ X xs) then pred_const_ X xs else (pred_const_ X xs).not_)
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Δ_U ⊢ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Δ_U) (if V (pred_const_ X xs) = true then pred_const_ X xs else (pred_const_ X xs).not_)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
apply IsDeduct.assume_
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Δ_U ⊢ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Δ_U) (if V (pred_const_ X xs) = true then pred_const_ X xs else (pred_const_ X xs).not_)
case a Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Δ_U ⊢ (if V (pred_const_ X xs) = true then pred_const_ X xs else (pred_const_ X xs).not_) ∈ (fun a => if evalPrime V a then a else a.not_) '' Δ_U
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
simp
case a Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Δ_U ⊢ (if V (pred_const_ X xs) = true then pred_const_ X xs else (pred_const_ X xs).not_) ∈ (fun a => if evalPrime V a then a else a.not_) '' Δ_U
case a Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Δ_U ⊢ ∃ x ∈ Δ_U, (if evalPrime V x then x else x.not_) = if V (pred_const_ X xs) = true then pred_const_ X xs else (pred_const_ X xs).not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
apply Exists.intro F
case a Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Δ_U ⊢ ∃ x ∈ Δ_U, (if evalPrime V x then x else x.not_) = if V (pred_const_ X xs) = true then pred_const_ X xs else (pred_const_ X xs).not_
case a Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Δ_U ⊢ F ∈ Δ_U ∧ (if evalPrime V F then F else F.not_) = if V (pred_const_ X xs) = true then pred_const_ X xs else (pred_const_ X xs).not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
tauto
case a Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_const_ X xs h1 : pred_const_ X xs ∈ Δ_U ⊢ F ∈ Δ_U ∧ (if evalPrime V F then F else F.not_) = if V (pred_const_ X xs) = true then pred_const_ X xs else (pred_const_ X xs).not_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
let F := pred_var_ X xs
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_var_ X xs).primeSet ⊆ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (pred_var_ X xs))
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_var_ X xs).primeSet ⊆ Δ_U F : Formula := pred_var_ X xs ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (pred_var_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
simp only [Formula.primeSet] at h1
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑(pred_var_ X xs).primeSet ⊆ Δ_U F : Formula := pred_var_ X xs ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (pred_var_ X xs))
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑{pred_var_ X xs} ⊆ Δ_U F : Formula := pred_var_ X xs ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (pred_var_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
simp at h1
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName h1 : ↑{pred_var_ X xs} ⊆ Δ_U F : Formula := pred_var_ X xs ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (pred_var_ X xs))
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_var_ X xs h1 : pred_var_ X xs ∈ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (pred_var_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
simp only [evalPrimeFfToNot]
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_var_ X xs h1 : pred_var_ X xs ∈ Δ_U ⊢ IsDeduct (evalPrimeFfToNot V '' Δ_U) (evalPrimeFfToNot V (pred_var_ X xs))
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_var_ X xs h1 : pred_var_ X xs ∈ Δ_U ⊢ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Δ_U) (if evalPrime V (pred_var_ X xs) then pred_var_ X xs else (pred_var_ X xs).not_)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
simp only [Formula.evalPrime]
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_var_ X xs h1 : pred_var_ X xs ∈ Δ_U ⊢ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Δ_U) (if evalPrime V (pred_var_ X xs) then pred_var_ X xs else (pred_var_ X xs).not_)
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_var_ X xs h1 : pred_var_ X xs ∈ Δ_U ⊢ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Δ_U) (if V (pred_var_ X xs) = true then pred_var_ X xs else (pred_var_ X xs).not_)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.L_15_7
[773, 1]
[916, 10]
apply IsDeduct.assume_
Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_var_ X xs h1 : pred_var_ X xs ∈ Δ_U ⊢ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Δ_U) (if V (pred_var_ X xs) = true then pred_var_ X xs else (pred_var_ X xs).not_)
case a Δ_U : Set Formula V : VarBoolAssignment X : PredName xs : List VarName F : Formula := pred_var_ X xs h1 : pred_var_ X xs ∈ Δ_U ⊢ (if V (pred_var_ X xs) = true then pred_var_ X xs else (pred_var_ X xs).not_) ∈ (fun a => if evalPrime V a then a else a.not_) '' Δ_U