url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
dft_iff
[884, 1]
[900, 50]
intro ⟨s, h1, h2⟩
case mpr α : Type inst✝ : DecidableEq α g : Graph α S : List α s' : α ⊢ (∃ s ∈ S, Relation.ReflTransGen (fun a b => ∃ l, (a, l) ∈ g ∧ b ∈ l) s s') → s' ∈ reachable_from_list g S
case mpr α : Type inst✝ : DecidableEq α g : Graph α S : List α s' s : α h1 : s ∈ S h2 : Relation.ReflTransGen (fun a b => ∃ l, (a, l) ∈ g ∧ b ∈ l) s s' ⊢ s' ∈ reachable_from_list g S
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
dft_iff
[884, 1]
[900, 50]
induction h2 with | refl => exact reachable_from_list.base _ h1 | tail _ h ih => have ⟨_, h3, h4⟩ := h exact reachable_from_list.step _ _ h3 h4 ih
case mpr α : Type inst✝ : DecidableEq α g : Graph α S : List α s' s : α h1 : s ∈ S h2 : Relation.ReflTransGen (fun a b => ∃ l, (a, l) ∈ g ∧ b ∈ l) s s' ⊢ s' ∈ reachable_from_list g S
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
dft_iff
[884, 1]
[900, 50]
exact reachable_from_list.base _ h1
case mpr.refl α : Type inst✝ : DecidableEq α g : Graph α S : List α s' s : α h1 : s ∈ S ⊢ s ∈ reachable_from_list g S
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
dft_iff
[884, 1]
[900, 50]
have ⟨_, h3, h4⟩ := h
case mpr.tail α : Type inst✝ : DecidableEq α g : Graph α S : List α s' s : α h1 : s ∈ S b✝ c✝ : α a✝ : Relation.ReflTransGen (fun a b => ∃ l, (a, l) ∈ g ∧ b ∈ l) s b✝ h : ∃ l, (b✝, l) ∈ g ∧ c✝ ∈ l ih : b✝ ∈ reachable_from_list g S ⊢ c✝ ∈ reachable_from_list g S
case mpr.tail α : Type inst✝ : DecidableEq α g : Graph α S : List α s' s : α h1 : s ∈ S b✝ c✝ : α a✝ : Relation.ReflTransGen (fun a b => ∃ l, (a, l) ∈ g ∧ b ∈ l) s b✝ h : ∃ l, (b✝, l) ∈ g ∧ c✝ ∈ l ih : b✝ ∈ reachable_from_list g S w✝ : List α h3 : (b✝, w✝) ∈ g h4 : c✝ ∈ w✝ ⊢ c✝ ∈ reachable_from_list g S
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
dft_iff
[884, 1]
[900, 50]
exact reachable_from_list.step _ _ h3 h4 ih
case mpr.tail α : Type inst✝ : DecidableEq α g : Graph α S : List α s' s : α h1 : s ∈ S b✝ c✝ : α a✝ : Relation.ReflTransGen (fun a b => ∃ l, (a, l) ∈ g ∧ b ∈ l) s b✝ h : ∃ l, (b✝, l) ∈ g ∧ c✝ ∈ l ih : b✝ ∈ reachable_from_list g S w✝ : List α h3 : (b✝, w✝) ∈ g h4 : c✝ ∈ w✝ ⊢ c✝ ∈ reachable_from_list g S
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
DA.memAccepts
[145, 1]
[151, 67]
rfl
α σ : Type D : DA α σ input : List α ⊢ D.accepts input ↔ D.evalFrom D.startingState input ∈ D.acceptingStates
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NA.memAccepts
[154, 1]
[161, 38]
rfl
α σ : Type N : NA α σ input : List α ⊢ N.accepts input ↔ ∃ s ∈ N.evalFrom N.startingStates input, s ∈ N.acceptingStates
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
ext cs
α σ : Type N : NA α σ ⊢ N.toDA.accepts = N.accepts
case h.a α σ : Type N : NA α σ cs : List α ⊢ N.toDA.accepts cs ↔ N.accepts cs
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
simp only [DA.memAccepts]
case h.a α σ : Type N : NA α σ cs : List α ⊢ N.toDA.accepts cs ↔ N.accepts cs
case h.a α σ : Type N : NA α σ cs : List α ⊢ N.toDA.evalFrom N.toDA.startingState cs ∈ N.toDA.acceptingStates ↔ N.accepts cs
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
simp only [NA.memAccepts]
case h.a α σ : Type N : NA α σ cs : List α ⊢ N.toDA.evalFrom N.toDA.startingState cs ∈ N.toDA.acceptingStates ↔ N.accepts cs
case h.a α σ : Type N : NA α σ cs : List α ⊢ N.toDA.evalFrom N.toDA.startingState cs ∈ N.toDA.acceptingStates ↔ ∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
simp only [NA.toDA]
case h.a α σ : Type N : NA α σ cs : List α ⊢ N.toDA.evalFrom N.toDA.startingState cs ∈ N.toDA.acceptingStates ↔ ∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates
case h.a α σ : Type N : NA α σ cs : List α ⊢ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs ∈ {S | ∃ s ∈ S, s ∈ N.acceptingStates} ↔ ∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
simp
case h.a α σ : Type N : NA α σ cs : List α ⊢ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs ∈ {S | ∃ s ∈ S, s ∈ N.acceptingStates} ↔ ∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates
case h.a α σ : Type N : NA α σ cs : List α ⊢ (∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates) ↔ ∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
constructor
case h.a α σ : Type N : NA α σ cs : List α ⊢ (∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates) ↔ ∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates
case h.a.mp α σ : Type N : NA α σ cs : List α ⊢ (∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates) → ∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates case h.a.mpr α σ : Type N : NA α σ cs : List α ⊢ (∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates) → ∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
all_goals simp intro s a1 a2 apply Exists.intro s tauto
case h.a.mp α σ : Type N : NA α σ cs : List α ⊢ (∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates) → ∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates case h.a.mpr α σ : Type N : NA α σ cs : List α ⊢ (∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates) → ∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
simp
case h.a.mpr α σ : Type N : NA α σ cs : List α ⊢ (∃ s ∈ N.evalFrom N.startingStates cs, s ∈ N.acceptingStates) → ∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates
case h.a.mpr α σ : Type N : NA α σ cs : List α ⊢ ∀ x ∈ N.evalFrom N.startingStates cs, x ∈ N.acceptingStates → ∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
intro s a1 a2
case h.a.mpr α σ : Type N : NA α σ cs : List α ⊢ ∀ x ∈ N.evalFrom N.startingStates cs, x ∈ N.acceptingStates → ∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates
case h.a.mpr α σ : Type N : NA α σ cs : List α s : σ a1 : s ∈ N.evalFrom N.startingStates cs a2 : s ∈ N.acceptingStates ⊢ ∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
apply Exists.intro s
case h.a.mpr α σ : Type N : NA α σ cs : List α s : σ a1 : s ∈ N.evalFrom N.startingStates cs a2 : s ∈ N.acceptingStates ⊢ ∃ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs, s ∈ N.acceptingStates
case h.a.mpr α σ : Type N : NA α σ cs : List α s : σ a1 : s ∈ N.evalFrom N.startingStates cs a2 : s ∈ N.acceptingStates ⊢ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs ∧ s ∈ N.acceptingStates
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Compute.lean
NAtoDAisEquiv
[167, 1]
[183, 10]
tauto
case h.a.mpr α σ : Type N : NA α σ cs : List α s : σ a1 : s ∈ N.evalFrom N.startingStates cs a2 : s ∈ N.acceptingStates ⊢ s ∈ { step := N.stepSet, startingState := N.startingStates, acceptingStates := {S | ∃ s ∈ S, s ∈ N.acceptingStates} }.evalFrom N.startingStates cs ∧ s ∈ N.acceptingStates
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_prime
[136, 1]
[146, 8]
induction F
F : Formula V : VarBoolAssignment h1 : F.IsPrime ⊢ evalPrime V F = (V F = true)
case pred_const_ V : VarBoolAssignment a✝¹ : PredName a✝ : List VarName h1 : (pred_const_ a✝¹ a✝).IsPrime ⊢ evalPrime V (pred_const_ a✝¹ a✝) = (V (pred_const_ a✝¹ a✝) = true) case pred_var_ V : VarBoolAssignment a✝¹ : PredName a✝ : List VarName h1 : (pred_var_ a✝¹ a✝).IsPrime ⊢ evalPrime V (pred_var_ a✝¹ a✝) = (V (pred_var_ a✝¹ a✝) = true) case eq_ V : VarBoolAssignment a✝¹ a✝ : VarName h1 : (eq_ a✝¹ a✝).IsPrime ⊢ evalPrime V (eq_ a✝¹ a✝) = (V (eq_ a✝¹ a✝) = true) case true_ V : VarBoolAssignment h1 : true_.IsPrime ⊢ evalPrime V true_ = (V true_ = true) case false_ V : VarBoolAssignment h1 : false_.IsPrime ⊢ evalPrime V false_ = (V false_ = true) case not_ V : VarBoolAssignment a✝ : Formula a_ih✝ : a✝.IsPrime → evalPrime V a✝ = (V a✝ = true) h1 : a✝.not_.IsPrime ⊢ evalPrime V a✝.not_ = (V a✝.not_ = true) case imp_ V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : a✝¹.IsPrime → evalPrime V a✝¹ = (V a✝¹ = true) a_ih✝ : a✝.IsPrime → evalPrime V a✝ = (V a✝ = true) h1 : (a✝¹.imp_ a✝).IsPrime ⊢ evalPrime V (a✝¹.imp_ a✝) = (V (a✝¹.imp_ a✝) = true) case and_ V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : a✝¹.IsPrime → evalPrime V a✝¹ = (V a✝¹ = true) a_ih✝ : a✝.IsPrime → evalPrime V a✝ = (V a✝ = true) h1 : (a✝¹.and_ a✝).IsPrime ⊢ evalPrime V (a✝¹.and_ a✝) = (V (a✝¹.and_ a✝) = true) case or_ V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : a✝¹.IsPrime → evalPrime V a✝¹ = (V a✝¹ = true) a_ih✝ : a✝.IsPrime → evalPrime V a✝ = (V a✝ = true) h1 : (a✝¹.or_ a✝).IsPrime ⊢ evalPrime V (a✝¹.or_ a✝) = (V (a✝¹.or_ a✝) = true) case iff_ V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : a✝¹.IsPrime → evalPrime V a✝¹ = (V a✝¹ = true) a_ih✝ : a✝.IsPrime → evalPrime V a✝ = (V a✝ = true) h1 : (a✝¹.iff_ a✝).IsPrime ⊢ evalPrime V (a✝¹.iff_ a✝) = (V (a✝¹.iff_ a✝) = true) case forall_ V : VarBoolAssignment a✝¹ : VarName a✝ : Formula a_ih✝ : a✝.IsPrime → evalPrime V a✝ = (V a✝ = true) h1 : (forall_ a✝¹ a✝).IsPrime ⊢ evalPrime V (forall_ a✝¹ a✝) = (V (forall_ a✝¹ a✝) = true) case exists_ V : VarBoolAssignment a✝¹ : VarName a✝ : Formula a_ih✝ : a✝.IsPrime → evalPrime V a✝ = (V a✝ = true) h1 : (exists_ a✝¹ a✝).IsPrime ⊢ evalPrime V (exists_ a✝¹ a✝) = (V (exists_ a✝¹ a✝) = true) case def_ V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName h1 : (def_ a✝¹ a✝).IsPrime ⊢ evalPrime V (def_ a✝¹ a✝) = (V (def_ a✝¹ a✝) = true)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_prime
[136, 1]
[146, 8]
case true_ | false_ | not_ | imp_ | and_ | or_ | iff_ => simp only [Formula.IsPrime] at h1
V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : a✝¹.IsPrime → evalPrime V a✝¹ = (V a✝¹ = true) a_ih✝ : a✝.IsPrime → evalPrime V a✝ = (V a✝ = true) h1 : (a✝¹.iff_ a✝).IsPrime ⊢ evalPrime V (a✝¹.iff_ a✝) = (V (a✝¹.iff_ a✝) = true)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_prime
[136, 1]
[146, 8]
case pred_const_ | pred_var_ | eq_ | forall_ | exists_ | def_ => rfl
V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName h1 : (def_ a✝¹ a✝).IsPrime ⊢ evalPrime V (def_ a✝¹ a✝) = (V (def_ a✝¹ a✝) = true)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_prime
[136, 1]
[146, 8]
simp only [Formula.IsPrime] at h1
V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : a✝¹.IsPrime → evalPrime V a✝¹ = (V a✝¹ = true) a_ih✝ : a✝.IsPrime → evalPrime V a✝ = (V a✝ = true) h1 : (a✝¹.iff_ a✝).IsPrime ⊢ evalPrime V (a✝¹.iff_ a✝) = (V (a✝¹.iff_ a✝) = true)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_prime
[136, 1]
[146, 8]
rfl
V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName h1 : (def_ a✝¹ a✝).IsPrime ⊢ evalPrime V (def_ a✝¹ a✝) = (V (def_ a✝¹ a✝) = true)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
induction F
F : Formula σ : Formula → Formula V : VarBoolAssignment ⊢ evalPrime V (substPrime σ F) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) F
case pred_const_ σ : Formula → Formula V : VarBoolAssignment a✝¹ : PredName a✝ : List VarName ⊢ evalPrime V (substPrime σ (pred_const_ a✝¹ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (pred_const_ a✝¹ a✝) case pred_var_ σ : Formula → Formula V : VarBoolAssignment a✝¹ : PredName a✝ : List VarName ⊢ evalPrime V (substPrime σ (pred_var_ a✝¹ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (pred_var_ a✝¹ a✝) case eq_ σ : Formula → Formula V : VarBoolAssignment a✝¹ a✝ : VarName ⊢ evalPrime V (substPrime σ (eq_ a✝¹ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (eq_ a✝¹ a✝) case true_ σ : Formula → Formula V : VarBoolAssignment ⊢ evalPrime V (substPrime σ true_) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) true_ case false_ σ : Formula → Formula V : VarBoolAssignment ⊢ evalPrime V (substPrime σ false_) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) false_ case not_ σ : Formula → Formula V : VarBoolAssignment a✝ : Formula a_ih✝ : evalPrime V (substPrime σ a✝) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝ ⊢ evalPrime V (substPrime σ a✝.not_) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝.not_ case imp_ σ : Formula → Formula V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : evalPrime V (substPrime σ a✝¹) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝¹ a_ih✝ : evalPrime V (substPrime σ a✝) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝ ⊢ evalPrime V (substPrime σ (a✝¹.imp_ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (a✝¹.imp_ a✝) case and_ σ : Formula → Formula V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : evalPrime V (substPrime σ a✝¹) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝¹ a_ih✝ : evalPrime V (substPrime σ a✝) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝ ⊢ evalPrime V (substPrime σ (a✝¹.and_ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (a✝¹.and_ a✝) case or_ σ : Formula → Formula V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : evalPrime V (substPrime σ a✝¹) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝¹ a_ih✝ : evalPrime V (substPrime σ a✝) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝ ⊢ evalPrime V (substPrime σ (a✝¹.or_ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (a✝¹.or_ a✝) case iff_ σ : Formula → Formula V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : evalPrime V (substPrime σ a✝¹) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝¹ a_ih✝ : evalPrime V (substPrime σ a✝) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝ ⊢ evalPrime V (substPrime σ (a✝¹.iff_ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (a✝¹.iff_ a✝) case forall_ σ : Formula → Formula V : VarBoolAssignment a✝¹ : VarName a✝ : Formula a_ih✝ : evalPrime V (substPrime σ a✝) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝ ⊢ evalPrime V (substPrime σ (forall_ a✝¹ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (forall_ a✝¹ a✝) case exists_ σ : Formula → Formula V : VarBoolAssignment a✝¹ : VarName a✝ : Formula a_ih✝ : evalPrime V (substPrime σ a✝) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝ ⊢ evalPrime V (substPrime σ (exists_ a✝¹ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (exists_ a✝¹ a✝) case def_ σ : Formula → Formula V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName ⊢ evalPrime V (substPrime σ (def_ a✝¹ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
case pred_const_ | pred_var_ | eq_ | forall_ | exists_ | def_ => simp only [Formula.substPrime] simp only [Formula.evalPrime] simp
σ : Formula → Formula V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName ⊢ evalPrime V (substPrime σ (def_ a✝¹ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (def_ a✝¹ a✝)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
case true_ | false_ => rfl
σ : Formula → Formula V : VarBoolAssignment ⊢ evalPrime V (substPrime σ false_) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) false_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
case not_ phi phi_ih => simp only [Formula.substPrime] simp only [Formula.evalPrime] congr! 1
σ : Formula → Formula V : VarBoolAssignment phi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi ⊢ evalPrime V (substPrime σ phi.not_) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi.not_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
case imp_ phi psi phi_ih psi_ih | and_ phi psi phi_ih psi_ih | or_ phi psi phi_ih psi_ih | iff_ phi psi phi_ih psi_ih => simp only [Formula.substPrime] simp only [Formula.evalPrime] congr! 1
σ : Formula → Formula V : VarBoolAssignment phi psi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi psi_ih : evalPrime V (substPrime σ psi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) psi ⊢ evalPrime V (substPrime σ (phi.iff_ psi)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (phi.iff_ psi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
simp only [Formula.substPrime]
σ : Formula → Formula V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName ⊢ evalPrime V (substPrime σ (def_ a✝¹ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (def_ a✝¹ a✝)
σ : Formula → Formula V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName ⊢ evalPrime V (σ (def_ a✝¹ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
simp only [Formula.evalPrime]
σ : Formula → Formula V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName ⊢ evalPrime V (σ (def_ a✝¹ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (def_ a✝¹ a✝)
σ : Formula → Formula V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName ⊢ evalPrime V (σ (def_ a✝¹ a✝)) ↔ decide (evalPrime V (σ (def_ a✝¹ a✝))) = true
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
simp
σ : Formula → Formula V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName ⊢ evalPrime V (σ (def_ a✝¹ a✝)) ↔ decide (evalPrime V (σ (def_ a✝¹ a✝))) = true
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
rfl
σ : Formula → Formula V : VarBoolAssignment ⊢ evalPrime V (substPrime σ false_) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) false_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
simp only [Formula.substPrime]
σ : Formula → Formula V : VarBoolAssignment phi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi ⊢ evalPrime V (substPrime σ phi.not_) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi.not_
σ : Formula → Formula V : VarBoolAssignment phi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi ⊢ evalPrime V (substPrime σ phi).not_ ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi.not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
simp only [Formula.evalPrime]
σ : Formula → Formula V : VarBoolAssignment phi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi ⊢ evalPrime V (substPrime σ phi).not_ ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi.not_
σ : Formula → Formula V : VarBoolAssignment phi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi ⊢ ¬evalPrime V (substPrime σ phi) ↔ ¬evalPrime (fun H => decide (evalPrime V (σ H))) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
congr! 1
σ : Formula → Formula V : VarBoolAssignment phi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi ⊢ ¬evalPrime V (substPrime σ phi) ↔ ¬evalPrime (fun H => decide (evalPrime V (σ H))) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
simp only [Formula.substPrime]
σ : Formula → Formula V : VarBoolAssignment phi psi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi psi_ih : evalPrime V (substPrime σ psi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) psi ⊢ evalPrime V (substPrime σ (phi.iff_ psi)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (phi.iff_ psi)
σ : Formula → Formula V : VarBoolAssignment phi psi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi psi_ih : evalPrime V (substPrime σ psi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) psi ⊢ evalPrime V ((substPrime σ phi).iff_ (substPrime σ psi)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (phi.iff_ psi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
simp only [Formula.evalPrime]
σ : Formula → Formula V : VarBoolAssignment phi psi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi psi_ih : evalPrime V (substPrime σ psi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) psi ⊢ evalPrime V ((substPrime σ phi).iff_ (substPrime σ psi)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (phi.iff_ psi)
σ : Formula → Formula V : VarBoolAssignment phi psi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi psi_ih : evalPrime V (substPrime σ psi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) psi ⊢ (evalPrime V (substPrime σ phi) ↔ evalPrime V (substPrime σ psi)) ↔ (evalPrime (fun H => decide (evalPrime V (σ H))) phi ↔ evalPrime (fun H => decide (evalPrime V (σ H))) psi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
congr! 1
σ : Formula → Formula V : VarBoolAssignment phi psi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi psi_ih : evalPrime V (substPrime σ psi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) psi ⊢ (evalPrime V (substPrime σ phi) ↔ evalPrime V (substPrime σ psi)) ↔ (evalPrime (fun H => decide (evalPrime V (σ H))) phi ↔ evalPrime (fun H => decide (evalPrime V (σ H))) psi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.isTautoPrime_imp_isTautoPrime_substPrime
[221, 1]
[232, 11]
simp only [Formula.IsTautoPrime] at h1
P : Formula h1 : P.IsTautoPrime σ : Formula → Formula ⊢ (substPrime σ P).IsTautoPrime
P : Formula h1 : ∀ (V : VarBoolAssignment), evalPrime V P σ : Formula → Formula ⊢ (substPrime σ P).IsTautoPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.isTautoPrime_imp_isTautoPrime_substPrime
[221, 1]
[232, 11]
simp only [Formula.IsTautoPrime]
P : Formula h1 : ∀ (V : VarBoolAssignment), evalPrime V P σ : Formula → Formula ⊢ (substPrime σ P).IsTautoPrime
P : Formula h1 : ∀ (V : VarBoolAssignment), evalPrime V P σ : Formula → Formula ⊢ ∀ (V : VarBoolAssignment), evalPrime V (substPrime σ P)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.isTautoPrime_imp_isTautoPrime_substPrime
[221, 1]
[232, 11]
intro V
P : Formula h1 : ∀ (V : VarBoolAssignment), evalPrime V P σ : Formula → Formula ⊢ ∀ (V : VarBoolAssignment), evalPrime V (substPrime σ P)
P : Formula h1 : ∀ (V : VarBoolAssignment), evalPrime V P σ : Formula → Formula V : VarBoolAssignment ⊢ evalPrime V (substPrime σ P)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.isTautoPrime_imp_isTautoPrime_substPrime
[221, 1]
[232, 11]
simp only [evalPrime_substPrime_eq_evalPrime_evalPrime P σ V]
P : Formula h1 : ∀ (V : VarBoolAssignment), evalPrime V P σ : Formula → Formula V : VarBoolAssignment ⊢ evalPrime V (substPrime σ P)
P : Formula h1 : ∀ (V : VarBoolAssignment), evalPrime V P σ : Formula → Formula V : VarBoolAssignment ⊢ evalPrime (fun H => decide (evalPrime V (σ H))) P
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.isTautoPrime_imp_isTautoPrime_substPrime
[221, 1]
[232, 11]
apply h1
P : Formula h1 : ∀ (V : VarBoolAssignment), evalPrime V P σ : Formula → Formula V : VarBoolAssignment ⊢ evalPrime (fun H => decide (evalPrime V (σ H))) P
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_5
[253, 1]
[265, 30]
simp only [IsProof]
P : Formula ⊢ IsProof (P.imp_ P)
P : Formula ⊢ IsDeduct ∅ (P.imp_ P)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_5
[253, 1]
[265, 30]
apply IsDeduct.mp_ (P.imp_ (P.imp_ P))
P : Formula ⊢ IsDeduct ∅ (P.imp_ P)
case a P : Formula ⊢ IsDeduct ∅ ((P.imp_ (P.imp_ P)).imp_ (P.imp_ P)) case a P : Formula ⊢ IsDeduct ∅ (P.imp_ (P.imp_ P))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_5
[253, 1]
[265, 30]
apply IsDeduct.mp_ (P.imp_ ((P.imp_ P).imp_ P))
case a P : Formula ⊢ IsDeduct ∅ ((P.imp_ (P.imp_ P)).imp_ (P.imp_ P))
case a.a P : Formula ⊢ IsDeduct ∅ ((P.imp_ ((P.imp_ P).imp_ P)).imp_ ((P.imp_ (P.imp_ P)).imp_ (P.imp_ P))) case a.a P : Formula ⊢ IsDeduct ∅ (P.imp_ ((P.imp_ P).imp_ P))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_5
[253, 1]
[265, 30]
apply IsDeduct.axiom_
case a.a P : Formula ⊢ IsDeduct ∅ ((P.imp_ ((P.imp_ P).imp_ P)).imp_ ((P.imp_ (P.imp_ P)).imp_ (P.imp_ P)))
case a.a.a P : Formula ⊢ IsAxiom ((P.imp_ ((P.imp_ P).imp_ P)).imp_ ((P.imp_ (P.imp_ P)).imp_ (P.imp_ P)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_5
[253, 1]
[265, 30]
exact IsAxiom.prop_2_ P (P.imp_ P) P
case a.a.a P : Formula ⊢ IsAxiom ((P.imp_ ((P.imp_ P).imp_ P)).imp_ ((P.imp_ (P.imp_ P)).imp_ (P.imp_ P)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_5
[253, 1]
[265, 30]
apply IsDeduct.axiom_
case a.a P : Formula ⊢ IsDeduct ∅ (P.imp_ ((P.imp_ P).imp_ P))
case a.a.a P : Formula ⊢ IsAxiom (P.imp_ ((P.imp_ P).imp_ P))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_5
[253, 1]
[265, 30]
exact IsAxiom.prop_1_ P (P.imp_ P)
case a.a.a P : Formula ⊢ IsAxiom (P.imp_ ((P.imp_ P).imp_ P))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_5
[253, 1]
[265, 30]
apply IsDeduct.axiom_
case a P : Formula ⊢ IsDeduct ∅ (P.imp_ (P.imp_ P))
case a.a P : Formula ⊢ IsAxiom (P.imp_ (P.imp_ P))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_5
[253, 1]
[265, 30]
exact IsAxiom.prop_1_ P P
case a.a P : Formula ⊢ IsAxiom (P.imp_ (P.imp_ P))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsDeduct.mp_ (P.not_.imp_ (Q.not_.imp_ P.not_))
P Q : Formula ⊢ IsProof (P.not_.imp_ (P.imp_ Q))
case a P Q : Formula ⊢ IsDeduct ∅ ((P.not_.imp_ (Q.not_.imp_ P.not_)).imp_ (P.not_.imp_ (P.imp_ Q))) case a P Q : Formula ⊢ IsDeduct ∅ (P.not_.imp_ (Q.not_.imp_ P.not_))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsDeduct.mp_ (P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q)))
case a P Q : Formula ⊢ IsDeduct ∅ ((P.not_.imp_ (Q.not_.imp_ P.not_)).imp_ (P.not_.imp_ (P.imp_ Q)))
case a.a P Q : Formula ⊢ IsDeduct ∅ ((P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))).imp_ ((P.not_.imp_ (Q.not_.imp_ P.not_)).imp_ (P.not_.imp_ (P.imp_ Q)))) case a.a P Q : Formula ⊢ IsDeduct ∅ (P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsDeduct.axiom_
case a.a P Q : Formula ⊢ IsDeduct ∅ ((P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))).imp_ ((P.not_.imp_ (Q.not_.imp_ P.not_)).imp_ (P.not_.imp_ (P.imp_ Q))))
case a.a.a P Q : Formula ⊢ IsAxiom ((P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))).imp_ ((P.not_.imp_ (Q.not_.imp_ P.not_)).imp_ (P.not_.imp_ (P.imp_ Q))))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsAxiom.prop_2_
case a.a.a P Q : Formula ⊢ IsAxiom ((P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))).imp_ ((P.not_.imp_ (Q.not_.imp_ P.not_)).imp_ (P.not_.imp_ (P.imp_ Q))))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsDeduct.mp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))
case a.a P Q : Formula ⊢ IsDeduct ∅ (P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q)))
case a.a.a P Q : Formula ⊢ IsDeduct ∅ (((Q.not_.imp_ P.not_).imp_ (P.imp_ Q)).imp_ (P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q)))) case a.a.a P Q : Formula ⊢ IsDeduct ∅ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsDeduct.axiom_
case a.a.a P Q : Formula ⊢ IsDeduct ∅ (((Q.not_.imp_ P.not_).imp_ (P.imp_ Q)).imp_ (P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))))
case a.a.a.a P Q : Formula ⊢ IsAxiom (((Q.not_.imp_ P.not_).imp_ (P.imp_ Q)).imp_ (P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsAxiom.prop_1_
case a.a.a.a P Q : Formula ⊢ IsAxiom (((Q.not_.imp_ P.not_).imp_ (P.imp_ Q)).imp_ (P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsDeduct.axiom_
case a.a.a P Q : Formula ⊢ IsDeduct ∅ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))
case a.a.a.a P Q : Formula ⊢ IsAxiom ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsAxiom.prop_3_
case a.a.a.a P Q : Formula ⊢ IsAxiom ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsDeduct.axiom_
case a P Q : Formula ⊢ IsDeduct ∅ (P.not_.imp_ (Q.not_.imp_ P.not_))
case a.a P Q : Formula ⊢ IsAxiom (P.not_.imp_ (Q.not_.imp_ P.not_))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsAxiom.prop_1_
case a.a P Q : Formula ⊢ IsAxiom (P.not_.imp_ (Q.not_.imp_ P.not_))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
intro Γ
F : Formula Δ : Set Formula h1 : IsDeduct Δ F ⊢ ∀ (Γ : Set Formula), IsDeduct (Δ ∪ Γ) F
F : Formula Δ : Set Formula h1 : IsDeduct Δ F Γ : Set Formula ⊢ IsDeduct (Δ ∪ Γ) F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
induction h1
F : Formula Δ : Set Formula h1 : IsDeduct Δ F Γ : Set Formula ⊢ IsDeduct (Δ ∪ Γ) F
case axiom_ F : Formula Δ Γ : Set Formula phi✝ : Formula a✝ : IsAxiom phi✝ ⊢ IsDeduct (Δ ∪ Γ) phi✝ case assume_ F : Formula Δ Γ : Set Formula phi✝ : Formula a✝ : phi✝ ∈ Δ ⊢ IsDeduct (Δ ∪ Γ) phi✝ case mp_ F : Formula Δ Γ : Set Formula phi✝ psi✝ : Formula a✝¹ : IsDeduct Δ (phi✝.imp_ psi✝) a✝ : IsDeduct Δ phi✝ a_ih✝¹ : IsDeduct (Δ ∪ Γ) (phi✝.imp_ psi✝) a_ih✝ : IsDeduct (Δ ∪ Γ) phi✝ ⊢ IsDeduct (Δ ∪ Γ) psi✝
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
case axiom_ h1_phi h1_1 => apply IsDeduct.axiom_ exact h1_1
F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsDeduct (Δ ∪ Γ) h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
case assume_ h1_phi h1_1 => apply IsDeduct.assume_ simp left exact h1_1
F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsDeduct (Δ ∪ Γ) h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
apply IsDeduct.axiom_
F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsDeduct (Δ ∪ Γ) h1_phi
case a F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsAxiom h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
exact h1_1
case a F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsAxiom h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
apply IsDeduct.assume_
F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsDeduct (Δ ∪ Γ) h1_phi
case a F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ h1_phi ∈ Δ ∪ Γ
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
simp
case a F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ h1_phi ∈ Δ ∪ Γ
case a F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ h1_phi ∈ Δ ∨ h1_phi ∈ Γ
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
left
case a F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ h1_phi ∈ Δ ∨ h1_phi ∈ Γ
case a.h F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ h1_phi ∈ Δ
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
exact h1_1
case a.h F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ h1_phi ∈ Δ
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
apply IsDeduct.mp_ h1_phi
F : Formula Δ Γ : Set Formula h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct (Δ ∪ Γ) (h1_phi.imp_ h1_psi) h1_ih_2 : IsDeduct (Δ ∪ Γ) h1_phi ⊢ IsDeduct (Δ ∪ Γ) h1_psi
case a F : Formula Δ Γ : Set Formula h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct (Δ ∪ Γ) (h1_phi.imp_ h1_psi) h1_ih_2 : IsDeduct (Δ ∪ Γ) h1_phi ⊢ IsDeduct (Δ ∪ Γ) (h1_phi.imp_ h1_psi) case a F : Formula Δ Γ : Set Formula h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct (Δ ∪ Γ) (h1_phi.imp_ h1_psi) h1_ih_2 : IsDeduct (Δ ∪ Γ) h1_phi ⊢ IsDeduct (Δ ∪ Γ) h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
exact h1_ih_1
case a F : Formula Δ Γ : Set Formula h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct (Δ ∪ Γ) (h1_phi.imp_ h1_psi) h1_ih_2 : IsDeduct (Δ ∪ Γ) h1_phi ⊢ IsDeduct (Δ ∪ Γ) (h1_phi.imp_ h1_psi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
exact h1_ih_2
case a F : Formula Δ Γ : Set Formula h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct (Δ ∪ Γ) (h1_phi.imp_ h1_psi) h1_ih_2 : IsDeduct (Δ ∪ Γ) h1_phi ⊢ IsDeduct (Δ ∪ Γ) h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10_comm
[309, 1]
[316, 23]
simp only [Set.union_comm]
Q : Formula Δ : Set Formula h1 : IsDeduct Δ Q ⊢ ∀ (Γ : Set Formula), IsDeduct (Γ ∪ Δ) Q
Q : Formula Δ : Set Formula h1 : IsDeduct Δ Q ⊢ ∀ (Γ : Set Formula), IsDeduct (Δ ∪ Γ) Q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10_comm
[309, 1]
[316, 23]
exact T_14_10 Q Δ h1
Q : Formula Δ : Set Formula h1 : IsDeduct Δ Q ⊢ ∀ (Γ : Set Formula), IsDeduct (Δ ∪ Γ) Q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.C_14_11
[319, 1]
[327, 11]
intro Δ
P : Formula h1 : IsProof P ⊢ ∀ (Δ : Set Formula), IsDeduct Δ P
P : Formula h1 : IsProof P Δ : Set Formula ⊢ IsDeduct Δ P
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.C_14_11
[319, 1]
[327, 11]
obtain s1 := T_14_10 P ∅ h1 Δ
P : Formula h1 : IsProof P Δ : Set Formula ⊢ IsDeduct Δ P
P : Formula h1 : IsProof P Δ : Set Formula s1 : IsDeduct (∅ ∪ Δ) P ⊢ IsDeduct Δ P
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.C_14_11
[319, 1]
[327, 11]
simp at s1
P : Formula h1 : IsProof P Δ : Set Formula s1 : IsDeduct (∅ ∪ Δ) P ⊢ IsDeduct Δ P
P : Formula h1 : IsProof P Δ : Set Formula s1 : IsDeduct Δ P ⊢ IsDeduct Δ P
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.C_14_11
[319, 1]
[327, 11]
exact s1
P : Formula h1 : IsProof P Δ : Set Formula s1 : IsDeduct Δ P ⊢ IsDeduct Δ P
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_3
[333, 1]
[366, 20]
induction h1
P Q : Formula Δ : Set Formula h1 : IsDeduct (Δ ∪ {P}) Q ⊢ IsDeduct Δ (P.imp_ Q)
case axiom_ P Q : Formula Δ : Set Formula phi✝ : Formula a✝ : IsAxiom phi✝ ⊢ IsDeduct Δ (P.imp_ phi✝) case assume_ P Q : Formula Δ : Set Formula phi✝ : Formula a✝ : phi✝ ∈ Δ ∪ {P} ⊢ IsDeduct Δ (P.imp_ phi✝) case mp_ P Q : Formula Δ : Set Formula phi✝ psi✝ : Formula a✝¹ : IsDeduct (Δ ∪ {P}) (phi✝.imp_ psi✝) a✝ : IsDeduct (Δ ∪ {P}) phi✝ a_ih✝¹ : IsDeduct Δ (P.imp_ (phi✝.imp_ psi✝)) a_ih✝ : IsDeduct Δ (P.imp_ phi✝) ⊢ IsDeduct Δ (P.imp_ psi✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_3
[333, 1]
[366, 20]
apply IsDeduct.mp_ h1_phi
P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsDeduct Δ (P.imp_ h1_phi)
case a P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsDeduct Δ (h1_phi.imp_ (P.imp_ h1_phi)) case a P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsDeduct Δ h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_3
[333, 1]
[366, 20]
apply IsDeduct.axiom_
case a P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsDeduct Δ (h1_phi.imp_ (P.imp_ h1_phi))
case a.a P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsAxiom (h1_phi.imp_ (P.imp_ h1_phi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_3
[333, 1]
[366, 20]
exact IsAxiom.prop_1_ h1_phi P
case a.a P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsAxiom (h1_phi.imp_ (P.imp_ h1_phi))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_3
[333, 1]
[366, 20]
apply IsDeduct.axiom_
case a P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsDeduct Δ h1_phi
case a.a P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsAxiom h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_3
[333, 1]
[366, 20]
exact h1_1
case a.a P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsAxiom h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_3
[333, 1]
[366, 20]
simp at h1_1
P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ∪ {P} ⊢ IsDeduct Δ (P.imp_ h1_phi)
P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : h1_phi = P ∨ h1_phi ∈ Δ ⊢ IsDeduct Δ (P.imp_ h1_phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_3
[333, 1]
[366, 20]
cases h1_1
P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : h1_phi = P ∨ h1_phi ∈ Δ ⊢ IsDeduct Δ (P.imp_ h1_phi)
case inl P Q : Formula Δ : Set Formula h1_phi : Formula h✝ : h1_phi = P ⊢ IsDeduct Δ (P.imp_ h1_phi) case inr P Q : Formula Δ : Set Formula h1_phi : Formula h✝ : h1_phi ∈ Δ ⊢ IsDeduct Δ (P.imp_ h1_phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_3
[333, 1]
[366, 20]
case inl h1_1 => subst h1_1 apply proof_imp_deduct exact prop_id h1_phi
P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : h1_phi = P ⊢ IsDeduct Δ (P.imp_ h1_phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_3
[333, 1]
[366, 20]
subst h1_1
P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : h1_phi = P ⊢ IsDeduct Δ (P.imp_ h1_phi)
Q : Formula Δ : Set Formula h1_phi : Formula ⊢ IsDeduct Δ (h1_phi.imp_ h1_phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_3
[333, 1]
[366, 20]
apply proof_imp_deduct
Q : Formula Δ : Set Formula h1_phi : Formula ⊢ IsDeduct Δ (h1_phi.imp_ h1_phi)
case h1 Q : Formula Δ : Set Formula h1_phi : Formula ⊢ IsProof (h1_phi.imp_ h1_phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_3
[333, 1]
[366, 20]
exact prop_id h1_phi
case h1 Q : Formula Δ : Set Formula h1_phi : Formula ⊢ IsProof (h1_phi.imp_ h1_phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_3
[333, 1]
[366, 20]
apply IsDeduct.mp_ h1_phi
P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsDeduct Δ (P.imp_ h1_phi)
case a P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsDeduct Δ (h1_phi.imp_ (P.imp_ h1_phi)) case a P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsDeduct Δ h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_3
[333, 1]
[366, 20]
apply IsDeduct.axiom_
case a P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsDeduct Δ (h1_phi.imp_ (P.imp_ h1_phi))
case a.a P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsAxiom (h1_phi.imp_ (P.imp_ h1_phi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_3
[333, 1]
[366, 20]
exact IsAxiom.prop_1_ h1_phi P
case a.a P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsAxiom (h1_phi.imp_ (P.imp_ h1_phi))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_3
[333, 1]
[366, 20]
apply IsDeduct.assume_
case a P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsDeduct Δ h1_phi
case a.a P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ h1_phi ∈ Δ
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_3
[333, 1]
[366, 20]
exact h1_1
case a.a P Q : Formula Δ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ h1_phi ∈ Δ
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_3
[333, 1]
[366, 20]
apply IsDeduct.mp_ (P.imp_ h1_phi)
P Q : Formula Δ : Set Formula h1_phi h1_psi : Formula a✝¹ : IsDeduct (Δ ∪ {P}) (h1_phi.imp_ h1_psi) a✝ : IsDeduct (Δ ∪ {P}) h1_phi h1_ih_1 : IsDeduct Δ (P.imp_ (h1_phi.imp_ h1_psi)) h1_ih_2 : IsDeduct Δ (P.imp_ h1_phi) ⊢ IsDeduct Δ (P.imp_ h1_psi)
case a P Q : Formula Δ : Set Formula h1_phi h1_psi : Formula a✝¹ : IsDeduct (Δ ∪ {P}) (h1_phi.imp_ h1_psi) a✝ : IsDeduct (Δ ∪ {P}) h1_phi h1_ih_1 : IsDeduct Δ (P.imp_ (h1_phi.imp_ h1_psi)) h1_ih_2 : IsDeduct Δ (P.imp_ h1_phi) ⊢ IsDeduct Δ ((P.imp_ h1_phi).imp_ (P.imp_ h1_psi)) case a P Q : Formula Δ : Set Formula h1_phi h1_psi : Formula a✝¹ : IsDeduct (Δ ∪ {P}) (h1_phi.imp_ h1_psi) a✝ : IsDeduct (Δ ∪ {P}) h1_phi h1_ih_1 : IsDeduct Δ (P.imp_ (h1_phi.imp_ h1_psi)) h1_ih_2 : IsDeduct Δ (P.imp_ h1_phi) ⊢ IsDeduct Δ (P.imp_ h1_phi)