url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
by_cases c1 : y ∈ binders
case a.h.e'_3.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x y : VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v h1_left : x βˆ‰ binders β†’ Οƒ x βˆ‰ binders h1_right : y βˆ‰ binders β†’ Οƒ y βˆ‰ binders ⊒ y ∈ binders ∨ Οƒ' y βˆ‰ binders
case pos D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x y : VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v h1_left : x βˆ‰ binders β†’ Οƒ x βˆ‰ binders h1_right : y βˆ‰ binders β†’ Οƒ y βˆ‰ binders c1 : y ∈ binders ⊒ y ∈ binders ∨ Οƒ' y βˆ‰ binders case neg D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x y : VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v h1_left : x βˆ‰ binders β†’ Οƒ x βˆ‰ binders h1_right : y βˆ‰ binders β†’ Οƒ y βˆ‰ binders c1 : y βˆ‰ binders ⊒ y ∈ binders ∨ Οƒ' y βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
left
case pos D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x y : VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v h1_left : x βˆ‰ binders β†’ Οƒ x βˆ‰ binders h1_right : y βˆ‰ binders β†’ Οƒ y βˆ‰ binders c1 : y ∈ binders ⊒ y ∈ binders ∨ Οƒ' y βˆ‰ binders
case pos.h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x y : VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v h1_left : x βˆ‰ binders β†’ Οƒ x βˆ‰ binders h1_right : y βˆ‰ binders β†’ Οƒ y βˆ‰ binders c1 : y ∈ binders ⊒ y ∈ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
exact c1
case pos.h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x y : VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v h1_left : x βˆ‰ binders β†’ Οƒ x βˆ‰ binders h1_right : y βˆ‰ binders β†’ Οƒ y βˆ‰ binders c1 : y ∈ binders ⊒ y ∈ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
right
case neg D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x y : VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v h1_left : x βˆ‰ binders β†’ Οƒ x βˆ‰ binders h1_right : y βˆ‰ binders β†’ Οƒ y βˆ‰ binders c1 : y βˆ‰ binders ⊒ y ∈ binders ∨ Οƒ' y βˆ‰ binders
case neg.h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x y : VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v h1_left : x βˆ‰ binders β†’ Οƒ x βˆ‰ binders h1_right : y βˆ‰ binders β†’ Οƒ y βˆ‰ binders c1 : y βˆ‰ binders ⊒ Οƒ' y βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp only [h3 y c1]
case neg.h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x y : VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v h1_left : x βˆ‰ binders β†’ Οƒ x βˆ‰ binders h1_right : y βˆ‰ binders β†’ Οƒ y βˆ‰ binders c1 : y βˆ‰ binders ⊒ Οƒ' y βˆ‰ binders
case neg.h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x y : VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v h1_left : x βˆ‰ binders β†’ Οƒ x βˆ‰ binders h1_right : y βˆ‰ binders β†’ Οƒ y βˆ‰ binders c1 : y βˆ‰ binders ⊒ Οƒ y βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
exact h1_right c1
case neg.h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x y : VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v h1_left : x βˆ‰ binders β†’ Οƒ x βˆ‰ binders h1_right : y βˆ‰ binders β†’ Οƒ y βˆ‰ binders c1 : y βˆ‰ binders ⊒ Οƒ y βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
congr! 1
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ binders phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v ⊒ Β¬Holds D I V (head✝ :: tail✝) phi ↔ Β¬Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)
case a.h.e'_1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ binders phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v ⊒ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
exact phi_ih V V' Οƒ Οƒ' binders h1 h2 h2' h3
case a.h.e'_1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ binders phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v ⊒ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
cases h1
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) phi psi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) psi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders psi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' psi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ binders phi ∧ admitsAux Οƒ binders psi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v ⊒ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) psi) ↔ (Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' psi))
case intro D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) phi psi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) psi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders psi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' psi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v left✝ : admitsAux Οƒ binders phi right✝ : admitsAux Οƒ binders psi ⊒ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) psi) ↔ (Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' psi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
congr! 1
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) phi psi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) psi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders psi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' psi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v h1_left : admitsAux Οƒ binders phi h1_right : admitsAux Οƒ binders psi ⊒ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) psi) ↔ (Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' psi))
case a.h.e'_1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) phi psi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) psi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders psi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' psi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v h1_left : admitsAux Οƒ binders phi h1_right : admitsAux Οƒ binders psi ⊒ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi) case a.h.e'_2.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) phi psi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) psi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders psi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' psi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v h1_left : admitsAux Οƒ binders phi h1_right : admitsAux Οƒ binders psi ⊒ Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' psi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
exact phi_ih V V' Οƒ Οƒ' binders h1_left h2 h2' h3
case a.h.e'_1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) phi psi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) psi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders psi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' psi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v h1_left : admitsAux Οƒ binders phi h1_right : admitsAux Οƒ binders psi ⊒ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
exact psi_ih V V' Οƒ Οƒ' binders h1_right h2 h2' h3
case a.h.e'_2.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) phi psi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) psi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders psi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' psi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v h1_left : admitsAux Οƒ binders phi h1_right : admitsAux Οƒ binders psi ⊒ Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' psi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
first | apply forall_congr' | apply exists_congr
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v ⊒ (βˆƒ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔ βˆƒ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) (fastReplaceFree (Function.updateITE Οƒ' x x) phi)
case h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' x a) (head✝ :: tail✝) (fastReplaceFree (Function.updateITE Οƒ' x x) phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
intro d
case h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' x a) (head✝ :: tail✝) (fastReplaceFree (Function.updateITE Οƒ' x x) phi)
case h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D ⊒ Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) (fastReplaceFree (Function.updateITE Οƒ' x x) phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
apply phi_ih (Function.updateITE V x d) (Function.updateITE V' x d) Οƒ (Function.updateITE Οƒ' x x) (binders βˆͺ {x}) h1
case h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D ⊒ Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) (fastReplaceFree (Function.updateITE Οƒ' x x) phi)
case h.h2 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D ⊒ βˆ€ (v : VarName), v ∈ binders βˆͺ {x} ∨ Function.updateITE Οƒ' x x v βˆ‰ binders βˆͺ {x} β†’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v) case h.h2' D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D ⊒ βˆ€ v ∈ binders βˆͺ {x}, v = Function.updateITE Οƒ' x x v case h.h3 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D ⊒ βˆ€ v βˆ‰ binders βˆͺ {x}, Function.updateITE Οƒ' x x v = Οƒ v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
apply forall_congr'
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v ⊒ (βˆ€ (d : D), Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔ βˆ€ (d : D), Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) (fastReplaceFree (Function.updateITE Οƒ' x x) phi)
case h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' x a) (head✝ :: tail✝) (fastReplaceFree (Function.updateITE Οƒ' x x) phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
apply exists_congr
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v ⊒ (βˆƒ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔ βˆƒ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) (fastReplaceFree (Function.updateITE Οƒ' x x) phi)
case h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' x a) (head✝ :: tail✝) (fastReplaceFree (Function.updateITE Οƒ' x x) phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
intro v a1
case h.h2 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D ⊒ βˆ€ (v : VarName), v ∈ binders βˆͺ {x} ∨ Function.updateITE Οƒ' x x v βˆ‰ binders βˆͺ {x} β†’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
case h.h2 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : v ∈ binders βˆͺ {x} ∨ Function.updateITE Οƒ' x x v βˆ‰ binders βˆͺ {x} ⊒ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp only [Function.updateITE] at a1
case h.h2 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : v ∈ binders βˆͺ {x} ∨ Function.updateITE Οƒ' x x v βˆ‰ binders βˆͺ {x} ⊒ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
case h.h2 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : v ∈ binders βˆͺ {x} ∨ (if v = x then x else Οƒ' v) βˆ‰ binders βˆͺ {x} ⊒ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp at a1
case h.h2 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : v ∈ binders βˆͺ {x} ∨ (if v = x then x else Οƒ' v) βˆ‰ binders βˆͺ {x} ⊒ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
case h.h2 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : (v ∈ binders ∨ v = x) ∨ (if v = x then x else Οƒ' v) βˆ‰ binders ∧ Β¬v = x ∧ ¬σ' v = x ⊒ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp only [Function.updateITE]
case h.h2 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : (v ∈ binders ∨ v = x) ∨ (if v = x then x else Οƒ' v) βˆ‰ binders ∧ Β¬v = x ∧ ¬σ' v = x ⊒ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
case h.h2 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : (v ∈ binders ∨ v = x) ∨ (if v = x then x else Οƒ' v) βˆ‰ binders ∧ Β¬v = x ∧ ¬σ' v = x ⊒ (if v = x then d else V v) = if (if v = x then x else Οƒ' v) = x then d else V' (if v = x then x else Οƒ' v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
split_ifs
case h.h2 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : (v ∈ binders ∨ v = x) ∨ (if v = x then x else Οƒ' v) βˆ‰ binders ∧ Β¬v = x ∧ ¬σ' v = x ⊒ (if v = x then d else V v) = if (if v = x then x else Οƒ' v) = x then d else V' (if v = x then x else Οƒ' v)
case pos D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : (v ∈ binders ∨ v = x) ∨ (if v = x then x else Οƒ' v) βˆ‰ binders ∧ Β¬v = x ∧ ¬σ' v = x h✝¹ : v = x h✝ : x = x ⊒ d = d case neg D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : (v ∈ binders ∨ v = x) ∨ (if v = x then x else Οƒ' v) βˆ‰ binders ∧ Β¬v = x ∧ ¬σ' v = x h✝¹ : v = x h✝ : Β¬x = x ⊒ d = V' x case pos D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : (v ∈ binders ∨ v = x) ∨ (if v = x then x else Οƒ' v) βˆ‰ binders ∧ Β¬v = x ∧ ¬σ' v = x h✝¹ : Β¬v = x h✝ : Οƒ' v = x ⊒ V v = d case neg D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : (v ∈ binders ∨ v = x) ∨ (if v = x then x else Οƒ' v) βˆ‰ binders ∧ Β¬v = x ∧ ¬σ' v = x h✝¹ : Β¬v = x h✝ : ¬σ' v = x ⊒ V v = V' (Οƒ' v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
case _ c1 c2 => rfl
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : (v ∈ binders ∨ v = x) ∨ (if v = x then x else Οƒ' v) βˆ‰ binders ∧ Β¬v = x ∧ ¬σ' v = x c1 : v = x c2 : x = x ⊒ d = d
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
case _ c1 c2 => contradiction
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : (v ∈ binders ∨ v = x) ∨ (if v = x then x else Οƒ' v) βˆ‰ binders ∧ Β¬v = x ∧ ¬σ' v = x c1 : v = x c2 : Β¬x = x ⊒ d = V' x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
case _ c1 c2 => subst c2 tauto
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : (v ∈ binders ∨ v = x) ∨ (if v = x then x else Οƒ' v) βˆ‰ binders ∧ Β¬v = x ∧ ¬σ' v = x c1 : Β¬v = x c2 : Οƒ' v = x ⊒ V v = d
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
case _ c1 c2 => simp only [if_neg c1] at a1 apply h2 tauto
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : (v ∈ binders ∨ v = x) ∨ (if v = x then x else Οƒ' v) βˆ‰ binders ∧ Β¬v = x ∧ ¬σ' v = x c1 : Β¬v = x c2 : ¬σ' v = x ⊒ V v = V' (Οƒ' v)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
rfl
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : (v ∈ binders ∨ v = x) ∨ (if v = x then x else Οƒ' v) βˆ‰ binders ∧ Β¬v = x ∧ ¬σ' v = x c1 : v = x c2 : x = x ⊒ d = d
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
contradiction
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : (v ∈ binders ∨ v = x) ∨ (if v = x then x else Οƒ' v) βˆ‰ binders ∧ Β¬v = x ∧ ¬σ' v = x c1 : v = x c2 : Β¬x = x ⊒ d = V' x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
subst c2
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : (v ∈ binders ∨ v = x) ∨ (if v = x then x else Οƒ' v) βˆ‰ binders ∧ Β¬v = x ∧ ¬σ' v = x c1 : Β¬v = x c2 : Οƒ' v = x ⊒ V v = d
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName h1 : admitsAux Οƒ (binders βˆͺ {Οƒ' v}) phi a1 : (v ∈ binders ∨ v = Οƒ' v) ∨ (if v = Οƒ' v then Οƒ' v else Οƒ' v) βˆ‰ binders ∧ Β¬v = Οƒ' v ∧ ¬σ' v = Οƒ' v c1 : Β¬v = Οƒ' v ⊒ V v = d
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
tauto
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName h1 : admitsAux Οƒ (binders βˆͺ {Οƒ' v}) phi a1 : (v ∈ binders ∨ v = Οƒ' v) ∨ (if v = Οƒ' v then Οƒ' v else Οƒ' v) βˆ‰ binders ∧ Β¬v = Οƒ' v ∧ ¬σ' v = Οƒ' v c1 : Β¬v = Οƒ' v ⊒ V v = d
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp only [if_neg c1] at a1
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : (v ∈ binders ∨ v = x) ∨ (if v = x then x else Οƒ' v) βˆ‰ binders ∧ Β¬v = x ∧ ¬σ' v = x c1 : Β¬v = x c2 : ¬σ' v = x ⊒ V v = V' (Οƒ' v)
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName c1 : Β¬v = x c2 : ¬σ' v = x a1 : (v ∈ binders ∨ v = x) ∨ Οƒ' v βˆ‰ binders ∧ Β¬v = x ∧ ¬σ' v = x ⊒ V v = V' (Οƒ' v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
apply h2
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName c1 : Β¬v = x c2 : ¬σ' v = x a1 : (v ∈ binders ∨ v = x) ∨ Οƒ' v βˆ‰ binders ∧ Β¬v = x ∧ ¬σ' v = x ⊒ V v = V' (Οƒ' v)
case a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName c1 : Β¬v = x c2 : ¬σ' v = x a1 : (v ∈ binders ∨ v = x) ∨ Οƒ' v βˆ‰ binders ∧ Β¬v = x ∧ ¬σ' v = x ⊒ v ∈ binders ∨ Οƒ' v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
tauto
case a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName c1 : Β¬v = x c2 : ¬σ' v = x a1 : (v ∈ binders ∨ v = x) ∨ Οƒ' v βˆ‰ binders ∧ Β¬v = x ∧ ¬σ' v = x ⊒ v ∈ binders ∨ Οƒ' v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
intro v a1
case h.h2' D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D ⊒ βˆ€ v ∈ binders βˆͺ {x}, v = Function.updateITE Οƒ' x x v
case h.h2' D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : v ∈ binders βˆͺ {x} ⊒ v = Function.updateITE Οƒ' x x v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp at a1
case h.h2' D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : v ∈ binders βˆͺ {x} ⊒ v = Function.updateITE Οƒ' x x v
case h.h2' D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : v ∈ binders ∨ v = x ⊒ v = Function.updateITE Οƒ' x x v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp only [Function.updateITE]
case h.h2' D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : v ∈ binders ∨ v = x ⊒ v = Function.updateITE Οƒ' x x v
case h.h2' D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : v ∈ binders ∨ v = x ⊒ v = if v = x then x else Οƒ' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
split_ifs <;> tauto
case h.h2' D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : v ∈ binders ∨ v = x ⊒ v = if v = x then x else Οƒ' v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
intro v a1
case h.h3 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D ⊒ βˆ€ v βˆ‰ binders βˆͺ {x}, Function.updateITE Οƒ' x x v = Οƒ v
case h.h3 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ Function.updateITE Οƒ' x x v = Οƒ v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp at a1
case h.h3 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ Function.updateITE Οƒ' x x v = Οƒ v
case h.h3 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : v βˆ‰ binders ∧ Β¬v = x ⊒ Function.updateITE Οƒ' x x v = Οƒ v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp only [Function.updateITE]
case h.h3 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : v βˆ‰ binders ∧ Β¬v = x ⊒ Function.updateITE Οƒ' x x v = Οƒ v
case h.h3 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : v βˆ‰ binders ∧ Β¬v = x ⊒ (if v = x then x else Οƒ' v) = Οƒ v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
split_ifs <;> tauto
case h.h3 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree Οƒ' F)) x : VarName phi : Formula phi_ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName), admitsAux Οƒ binders phi β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree Οƒ' phi)) V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : admitsAux Οƒ (binders βˆͺ {x}) phi h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v d : D v : VarName a1 : v βˆ‰ binders ∧ Β¬v = x ⊒ (if v = x then x else Οƒ' v) = Οƒ v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
split_ifs
D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v ⊒ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)) ↔ if X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length then Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Οƒ' xs))) tl hd.q else Holds D I V' tl (def_ X (List.map Οƒ' xs))
case pos D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v h✝¹ : X = hd.name ∧ xs.length = hd.args.length h✝ : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Οƒ' xs))) tl hd.q case neg D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v h✝¹ : X = hd.name ∧ xs.length = hd.args.length h✝ : Β¬(X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length) ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ X (List.map Οƒ' xs)) case pos D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v h✝¹ : Β¬(X = hd.name ∧ xs.length = hd.args.length) h✝ : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length ⊒ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Οƒ' xs))) tl hd.q case neg D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v h✝¹ : Β¬(X = hd.name ∧ xs.length = hd.args.length) h✝ : Β¬(X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X (List.map Οƒ' xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
case _ c1 c2 => simp only [List.length_map] at c2 contradiction
D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Β¬(X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length) ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ X (List.map Οƒ' xs))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
case _ c1 c2 => simp at c2 contradiction
D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length ⊒ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Οƒ' xs))) tl hd.q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
case _ c1 c2 => specialize ih V V' Οƒ Οƒ' binders (def_ X xs) simp only [fastReplaceFree] at ih apply ih h1 h2 h2' h3
D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) c2 : Β¬(X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X (List.map Οƒ' xs))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp
D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Οƒ' xs))) tl hd.q
D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs)) tl hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
have s1 : List.map V xs = List.map (V' ∘ Οƒ') xs
D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs)) tl hd.q
case s1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length ⊒ List.map V xs = List.map (V' ∘ Οƒ') xs D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length s1 : List.map V xs = List.map (V' ∘ Οƒ') xs ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs)) tl hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp only [s1]
D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length s1 : List.map V xs = List.map (V' ∘ Οƒ') xs ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs)) tl hd.q
D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length s1 : List.map V xs = List.map (V' ∘ Οƒ') xs ⊒ Holds D I (Function.updateListITE V hd.args (List.map (V' ∘ Οƒ') xs)) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs)) tl hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
apply Holds_coincide_Var
D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length s1 : List.map V xs = List.map (V' ∘ Οƒ') xs ⊒ Holds D I (Function.updateListITE V hd.args (List.map (V' ∘ Οƒ') xs)) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs)) tl hd.q
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length s1 : List.map V xs = List.map (V' ∘ Οƒ') xs ⊒ βˆ€ (v : VarName), isFreeIn v hd.q β†’ Function.updateListITE V hd.args (List.map (V' ∘ Οƒ') xs) v = Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
intro v a1
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length s1 : List.map V xs = List.map (V' ∘ Οƒ') xs ⊒ βˆ€ (v : VarName), isFreeIn v hd.q β†’ Function.updateListITE V hd.args (List.map (V' ∘ Οƒ') xs) v = Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs) v
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length s1 : List.map V xs = List.map (V' ∘ Οƒ') xs v : VarName a1 : isFreeIn v hd.q ⊒ Function.updateListITE V hd.args (List.map (V' ∘ Οƒ') xs) v = Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
apply Function.updateListITE_mem_eq_len
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length s1 : List.map V xs = List.map (V' ∘ Οƒ') xs v : VarName a1 : isFreeIn v hd.q ⊒ Function.updateListITE V hd.args (List.map (V' ∘ Οƒ') xs) v = Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs) v
case h1.h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length s1 : List.map V xs = List.map (V' ∘ Οƒ') xs v : VarName a1 : isFreeIn v hd.q ⊒ v ∈ hd.args case h1.h2 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length s1 : List.map V xs = List.map (V' ∘ Οƒ') xs v : VarName a1 : isFreeIn v hd.q ⊒ hd.args.length = (List.map (V' ∘ Οƒ') xs).length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp only [List.map_eq_map_iff]
case s1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length ⊒ List.map V xs = List.map (V' ∘ Οƒ') xs
case s1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length ⊒ βˆ€ x ∈ xs, V x = (V' ∘ Οƒ') x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
intro x a1
case s1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length ⊒ βˆ€ x ∈ xs, V x = (V' ∘ Οƒ') x
case s1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length x : VarName a1 : x ∈ xs ⊒ V x = (V' ∘ Οƒ') x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp
case s1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length x : VarName a1 : x ∈ xs ⊒ V x = (V' ∘ Οƒ') x
case s1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length x : VarName a1 : x ∈ xs ⊒ V x = V' (Οƒ' x)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
apply h2
case s1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length x : VarName a1 : x ∈ xs ⊒ V x = V' (Οƒ' x)
case s1.a D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length x : VarName a1 : x ∈ xs ⊒ x ∈ binders ∨ Οƒ' x βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
by_cases c3 : x ∈ binders
case s1.a D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length x : VarName a1 : x ∈ xs ⊒ x ∈ binders ∨ Οƒ' x βˆ‰ binders
case pos D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length x : VarName a1 : x ∈ xs c3 : x ∈ binders ⊒ x ∈ binders ∨ Οƒ' x βˆ‰ binders case neg D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length x : VarName a1 : x ∈ xs c3 : x βˆ‰ binders ⊒ x ∈ binders ∨ Οƒ' x βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
left
case pos D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length x : VarName a1 : x ∈ xs c3 : x ∈ binders ⊒ x ∈ binders ∨ Οƒ' x βˆ‰ binders
case pos.h D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length x : VarName a1 : x ∈ xs c3 : x ∈ binders ⊒ x ∈ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
exact c3
case pos.h D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length x : VarName a1 : x ∈ xs c3 : x ∈ binders ⊒ x ∈ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
right
case neg D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length x : VarName a1 : x ∈ xs c3 : x βˆ‰ binders ⊒ x ∈ binders ∨ Οƒ' x βˆ‰ binders
case neg.h D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length x : VarName a1 : x ∈ xs c3 : x βˆ‰ binders ⊒ Οƒ' x βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp only [h3 x c3]
case neg.h D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length x : VarName a1 : x ∈ xs c3 : x βˆ‰ binders ⊒ Οƒ' x βˆ‰ binders
case neg.h D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length x : VarName a1 : x ∈ xs c3 : x βˆ‰ binders ⊒ Οƒ x βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
exact h1 x a1 c3
case neg.h D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length x : VarName a1 : x ∈ xs c3 : x βˆ‰ binders ⊒ Οƒ x βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp only [isFreeIn_iff_mem_freeVarSet] at a1
case h1.h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length s1 : List.map V xs = List.map (V' ∘ Οƒ') xs v : VarName a1 : isFreeIn v hd.q ⊒ v ∈ hd.args
case h1.h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length s1 : List.map V xs = List.map (V' ∘ Οƒ') xs v : VarName a1 : v ∈ hd.q.freeVarSet ⊒ v ∈ hd.args
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp only [← List.mem_toFinset]
case h1.h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length s1 : List.map V xs = List.map (V' ∘ Οƒ') xs v : VarName a1 : v ∈ hd.q.freeVarSet ⊒ v ∈ hd.args
case h1.h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length s1 : List.map V xs = List.map (V' ∘ Οƒ') xs v : VarName a1 : v ∈ hd.q.freeVarSet ⊒ v ∈ hd.args.toFinset
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
apply Finset.mem_of_subset hd.h1 a1
case h1.h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length s1 : List.map V xs = List.map (V' ∘ Οƒ') xs v : VarName a1 : v ∈ hd.q.freeVarSet ⊒ v ∈ hd.args.toFinset
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp
case h1.h2 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length s1 : List.map V xs = List.map (V' ∘ Οƒ') xs v : VarName a1 : isFreeIn v hd.q ⊒ hd.args.length = (List.map (V' ∘ Οƒ') xs).length
case h1.h2 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length s1 : List.map V xs = List.map (V' ∘ Οƒ') xs v : VarName a1 : isFreeIn v hd.q ⊒ hd.args.length = xs.length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
tauto
case h1.h2 D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length s1 : List.map V xs = List.map (V' ∘ Οƒ') xs v : VarName a1 : isFreeIn v hd.q ⊒ hd.args.length = xs.length
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp only [List.length_map] at c2
D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Β¬(X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length) ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ X (List.map Οƒ' xs))
D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ X (List.map Οƒ' xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
contradiction
D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ X (List.map Οƒ' xs))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp at c2
D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) c2 : X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length ⊒ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Οƒ' xs))) tl hd.q
D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) c2 : X = hd.name ∧ xs.length = hd.args.length ⊒ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Οƒ' xs))) tl hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
contradiction
D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) c2 : X = hd.name ∧ xs.length = hd.args.length ⊒ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Οƒ' xs))) tl hd.q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
specialize ih V V' Οƒ Οƒ' binders (def_ X xs)
D : Type I : Interpretation D hd : Definition tl : List Definition ih : βˆ€ (V V' : VarAssignment D) (Οƒ Οƒ' : VarName β†’ VarName) (binders : Finset VarName) (F : Formula), admitsAux Οƒ binders F β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl F ↔ Holds D I V' tl (fastReplaceFree Οƒ' F)) X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) c2 : Β¬(X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X (List.map Οƒ' xs))
D : Type I : Interpretation D hd : Definition tl : List Definition X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) c2 : Β¬(X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length) ih : admitsAux Οƒ binders (def_ X xs) β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (fastReplaceFree Οƒ' (def_ X xs))) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X (List.map Οƒ' xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp only [fastReplaceFree] at ih
D : Type I : Interpretation D hd : Definition tl : List Definition X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) c2 : Β¬(X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length) ih : admitsAux Οƒ binders (def_ X xs) β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (fastReplaceFree Οƒ' (def_ X xs))) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X (List.map Οƒ' xs))
D : Type I : Interpretation D hd : Definition tl : List Definition X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) c2 : Β¬(X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length) ih : admitsAux Οƒ binders (def_ X xs) β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X (List.map Οƒ' xs))) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X (List.map Οƒ' xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
apply ih h1 h2 h2' h3
D : Type I : Interpretation D hd : Definition tl : List Definition X : DefName xs : List VarName V V' : VarAssignment D Οƒ Οƒ' : VarName β†’ VarName binders : Finset VarName h1 : βˆ€ v ∈ xs, v βˆ‰ binders β†’ Οƒ v βˆ‰ binders h2 : βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v) h2' : βˆ€ v ∈ binders, v = Οƒ' v h3 : βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) c2 : Β¬(X = hd.name ∧ (List.map Οƒ' xs).length = hd.args.length) ih : admitsAux Οƒ binders (def_ X xs) β†’ (βˆ€ (v : VarName), v ∈ binders ∨ Οƒ' v βˆ‰ binders β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders, v = Οƒ' v) β†’ (βˆ€ v βˆ‰ binders, Οƒ' v = Οƒ v) β†’ (Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X (List.map Οƒ' xs))) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X (List.map Οƒ' xs))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem
[210, 1]
[224, 9]
apply substitution_theorem_aux D I (V ∘ Οƒ) V E Οƒ Οƒ βˆ… F h1
D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F : Formula h1 : admits Οƒ F ⊒ Holds D I (V ∘ Οƒ) E F ↔ Holds D I V E (fastReplaceFree Οƒ F)
case h2 D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F : Formula h1 : admits Οƒ F ⊒ βˆ€ (v : VarName), v ∈ βˆ… ∨ Οƒ v βˆ‰ βˆ… β†’ (V ∘ Οƒ) v = V (Οƒ v) case h2' D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F : Formula h1 : admits Οƒ F ⊒ βˆ€ v ∈ βˆ…, v = Οƒ v case h3 D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F : Formula h1 : admits Οƒ F ⊒ βˆ€ v βˆ‰ βˆ…, Οƒ v = Οƒ v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem
[210, 1]
[224, 9]
simp
case h2 D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F : Formula h1 : admits Οƒ F ⊒ βˆ€ (v : VarName), v ∈ βˆ… ∨ Οƒ v βˆ‰ βˆ… β†’ (V ∘ Οƒ) v = V (Οƒ v)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem
[210, 1]
[224, 9]
simp
case h2' D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F : Formula h1 : admits Οƒ F ⊒ βˆ€ v ∈ βˆ…, v = Οƒ v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem
[210, 1]
[224, 9]
simp
case h3 D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F : Formula h1 : admits Οƒ F ⊒ βˆ€ v βˆ‰ βˆ…, Οƒ v = Οƒ v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_is_valid
[227, 1]
[239, 25]
simp only [IsValid] at h2
Οƒ : VarName β†’ VarName F : Formula h1 : admits Οƒ F h2 : F.IsValid ⊒ (fastReplaceFree Οƒ F).IsValid
Οƒ : VarName β†’ VarName F : Formula h1 : admits Οƒ F h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ (fastReplaceFree Οƒ F).IsValid
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_is_valid
[227, 1]
[239, 25]
simp only [IsValid]
Οƒ : VarName β†’ VarName F : Formula h1 : admits Οƒ F h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ (fastReplaceFree Οƒ F).IsValid
Οƒ : VarName β†’ VarName F : Formula h1 : admits Οƒ F h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (fastReplaceFree Οƒ F)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_is_valid
[227, 1]
[239, 25]
intro D I V E
Οƒ : VarName β†’ VarName F : Formula h1 : admits Οƒ F h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (fastReplaceFree Οƒ F)
Οƒ : VarName β†’ VarName F : Formula h1 : admits Οƒ F h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I V E (fastReplaceFree Οƒ F)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_is_valid
[227, 1]
[239, 25]
simp only [← substitution_theorem D I V E Οƒ F h1]
Οƒ : VarName β†’ VarName F : Formula h1 : admits Οƒ F h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I V E (fastReplaceFree Οƒ F)
Οƒ : VarName β†’ VarName F : Formula h1 : admits Οƒ F h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I (V ∘ Οƒ) E F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_is_valid
[227, 1]
[239, 25]
exact h2 D I (V ∘ Οƒ) E
Οƒ : VarName β†’ VarName F : Formula h1 : admits Οƒ F h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I (V ∘ Οƒ) E F
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
list_cons_to_set_union
[9, 1]
[17, 9]
ext a
Ξ± : Type inst : DecidableEq Ξ± ys : List Ξ± x : Ξ± ⊒ ↑(x :: ys).toFinset = {x} βˆͺ ↑ys.toFinset
case h Ξ± : Type inst : DecidableEq Ξ± ys : List Ξ± x a : Ξ± ⊒ a ∈ ↑(x :: ys).toFinset ↔ a ∈ {x} βˆͺ ↑ys.toFinset
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
list_cons_to_set_union
[9, 1]
[17, 9]
simp
case h Ξ± : Type inst : DecidableEq Ξ± ys : List Ξ± x a : Ξ± ⊒ a ∈ ↑(x :: ys).toFinset ↔ a ∈ {x} βˆͺ ↑ys.toFinset
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
list_append_to_set_union
[19, 1]
[26, 9]
ext a
Ξ± : Type inst : DecidableEq Ξ± xs ys : List Ξ± ⊒ ↑(xs ++ ys).toFinset = ↑xs.toFinset βˆͺ ↑ys.toFinset
case h Ξ± : Type inst : DecidableEq Ξ± xs ys : List Ξ± a : Ξ± ⊒ a ∈ ↑(xs ++ ys).toFinset ↔ a ∈ ↑xs.toFinset βˆͺ ↑ys.toFinset
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
list_append_to_set_union
[19, 1]
[26, 9]
simp
case h Ξ± : Type inst : DecidableEq Ξ± xs ys : List Ξ± a : Ξ± ⊒ a ∈ ↑(xs ++ ys).toFinset ↔ a ∈ ↑xs.toFinset βˆͺ ↑ys.toFinset
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
induction g
Node : Type inst✝ : DecidableEq Node g : Graph Node ⊒ βˆ€ (x y : Node), y ∈ direct_succ_list g x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ g
case nil Node : Type inst✝ : DecidableEq Node ⊒ βˆ€ (x y : Node), y ∈ direct_succ_list [] x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ [] case cons Node : Type inst✝ : DecidableEq Node head✝ : Node Γ— List Node tail✝ : List (Node Γ— List Node) tail_ih✝ : βˆ€ (x y : Node), y ∈ direct_succ_list tail✝ x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tail✝ ⊒ βˆ€ (x y : Node), y ∈ direct_succ_list (head✝ :: tail✝) x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ head✝ :: tail✝
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
case nil => simp only [direct_succ_list] simp
Node : Type inst✝ : DecidableEq Node ⊒ βˆ€ (x y : Node), y ∈ direct_succ_list [] x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ []
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
simp only [direct_succ_list]
Node : Type inst✝ : DecidableEq Node ⊒ βˆ€ (x y : Node), y ∈ direct_succ_list [] x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ []
Node : Type inst✝ : DecidableEq Node ⊒ βˆ€ (x y : Node), y ∈ [] ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ []
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
simp
Node : Type inst✝ : DecidableEq Node ⊒ βˆ€ (x y : Node), y ∈ [] ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ []
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
simp only [direct_succ_list]
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl ⊒ βˆ€ (x y : Node), y ∈ direct_succ_list (hd :: tl) x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ hd :: tl
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl ⊒ βˆ€ (x y : Node), (y ∈ if hd.1 = x then hd.2 ++ direct_succ_list tl x else direct_succ_list tl x) ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ hd :: tl
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
intro x y
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl ⊒ βˆ€ (x y : Node), (y ∈ if hd.1 = x then hd.2 ++ direct_succ_list tl x else direct_succ_list tl x) ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ hd :: tl
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl x y : Node ⊒ (y ∈ if hd.1 = x then hd.2 ++ direct_succ_list tl x else direct_succ_list tl x) ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ hd :: tl
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
split_ifs
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl x y : Node ⊒ (y ∈ if hd.1 = x then hd.2 ++ direct_succ_list tl x else direct_succ_list tl x) ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ hd :: tl
case pos Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl x y : Node h✝ : hd.1 = x ⊒ y ∈ hd.2 ++ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ hd :: tl case neg Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl x y : Node h✝ : Β¬hd.1 = x ⊒ y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ hd :: tl
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
subst c1
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl x y : Node c1 : hd.1 = x ⊒ y ∈ hd.2 ++ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ hd :: tl
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node ⊒ y ∈ hd.2 ++ direct_succ_list tl hd.1 ↔ βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ hd :: tl
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
simp
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node ⊒ y ∈ hd.2 ++ direct_succ_list tl hd.1 ↔ βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ hd :: tl
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node ⊒ y ∈ hd.2 ∨ y ∈ direct_succ_list tl hd.1 ↔ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
simp only [ih]
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node ⊒ y ∈ hd.2 ∨ y ∈ direct_succ_list tl hd.1 ↔ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node ⊒ (y ∈ hd.2 ∨ βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ tl) ↔ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
constructor
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node ⊒ (y ∈ hd.2 ∨ βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ tl) ↔ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)
case mp Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node ⊒ (y ∈ hd.2 ∨ βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ tl) β†’ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl) case mpr Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node ⊒ (βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)) β†’ y ∈ hd.2 ∨ βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ tl
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
intro a1
case mp Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node ⊒ (y ∈ hd.2 ∨ βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ tl) β†’ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)
case mp Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node a1 : y ∈ hd.2 ∨ βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ tl ⊒ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
cases a1
case mp Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node a1 : y ∈ hd.2 ∨ βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ tl ⊒ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)
case mp.inl Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node h✝ : y ∈ hd.2 ⊒ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl) case mp.inr Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node h✝ : βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ tl ⊒ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
case _ left => apply Exists.intro hd.snd tauto
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node left : y ∈ hd.2 ⊒ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)
no goals