url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | simp only [Holds] | Ξ : List Formula
F : Formula
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
aβ : β H β [], Holds D I V E H
β’ Holds D I V E (false_.iff_ true_.not_) | Ξ : List Formula
F : Formula
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
aβ : β H β [], Holds D I V E H
β’ False β Β¬True |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | tauto | Ξ : List Formula
F : Formula
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
aβ : β H β [], Holds D I V E H
β’ False β Β¬True | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | intro D I V E _ | Ξ : List Formula
F phi psi : Formula
β’ β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env),
(β H β [], Holds D I V E H) β Holds D I V E ((phi.and_ psi).iff_ (phi.imp_ psi.not_).not_) | Ξ : List Formula
F phi psi : Formula
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
aβ : β H β [], Holds D I V E H
β’ Holds D I V E ((phi.and_ psi).iff_ (phi.imp_ psi.not_).not_) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | simp only [Holds] | Ξ : List Formula
F phi psi : Formula
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
aβ : β H β [], Holds D I V E H
β’ Holds D I V E ((phi.and_ psi).iff_ (phi.imp_ psi.not_).not_) | Ξ : List Formula
F phi psi : Formula
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
aβ : β H β [], Holds D I V E H
β’ Holds D I V E phi β§ Holds D I V E psi β Β¬(Holds D I V E phi β Β¬Holds D I V E psi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | tauto | Ξ : List Formula
F phi psi : Formula
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
aβ : β H β [], Holds D I V E H
β’ Holds D I V E phi β§ Holds D I V E psi β Β¬(Holds D I V E phi β Β¬Holds D I V E psi) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | intro D I V E _ | Ξ : List Formula
F phi psi : Formula
β’ β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env),
(β H β [], Holds D I V E H) β Holds D I V E ((phi.or_ psi).iff_ (phi.not_.imp_ psi)) | Ξ : List Formula
F phi psi : Formula
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
aβ : β H β [], Holds D I V E H
β’ Holds D I V E ((phi.or_ psi).iff_ (phi.not_.imp_ psi)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | simp only [Holds] | Ξ : List Formula
F phi psi : Formula
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
aβ : β H β [], Holds D I V E H
β’ Holds D I V E ((phi.or_ psi).iff_ (phi.not_.imp_ psi)) | Ξ : List Formula
F phi psi : Formula
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
aβ : β H β [], Holds D I V E H
β’ Holds D I V E phi β¨ Holds D I V E psi β Β¬Holds D I V E phi β Holds D I V E psi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | tauto | Ξ : List Formula
F phi psi : Formula
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
aβ : β H β [], Holds D I V E H
β’ Holds D I V E phi β¨ Holds D I V E psi β Β¬Holds D I V E phi β Holds D I V E psi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | intro D I V E _ | Ξ : List Formula
F phi psi : Formula
β’ β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env),
(β H β [], Holds D I V E H) β
Holds D I V E
(((phi.iff_ psi).imp_ ((phi.imp_ psi).imp_ (psi.imp_ phi).not_).not_).imp_
(((phi.imp_ psi).imp_ (psi.imp_ phi).not_).not_.imp_ (phi.iff_ psi)).not_).not_ | Ξ : List Formula
F phi psi : Formula
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
aβ : β H β [], Holds D I V E H
β’ Holds D I V E
(((phi.iff_ psi).imp_ ((phi.imp_ psi).imp_ (psi.imp_ phi).not_).not_).imp_
(((phi.imp_ psi).imp_ (psi.imp_ phi).not_).not_.imp_ (phi.iff_ psi)).not_).not_ |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | simp only [Holds] | Ξ : List Formula
F phi psi : Formula
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
aβ : β H β [], Holds D I V E H
β’ Holds D I V E
(((phi.iff_ psi).imp_ ((phi.imp_ psi).imp_ (psi.imp_ phi).not_).not_).imp_
(((phi.imp_ psi).imp_ (psi.imp_ phi).not_).not_.imp_ (phi.iff_ psi)).not_).not_ | Ξ : List Formula
F phi psi : Formula
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
aβ : β H β [], Holds D I V E H
β’ Β¬(((Holds D I V E phi β Holds D I V E psi) β
Β¬((Holds D I V E phi β Holds D I V E psi) β Β¬(Holds D I V E psi β Holds D I V E phi))) β
Β¬(Β¬((Holds D I V E phi β Holds D I V E psi) β Β¬(Holds D I V E psi β Holds D I V E phi)) β
(Holds D I V E phi β Holds D I V E psi))) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | tauto | Ξ : List Formula
F phi psi : Formula
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
aβ : β H β [], Holds D I V E H
β’ Β¬(((Holds D I V E phi β Holds D I V E psi) β
Β¬((Holds D I V E phi β Holds D I V E psi) β Β¬(Holds D I V E psi β Holds D I V E phi))) β
Β¬(Β¬((Holds D I V E phi β Holds D I V E psi) β Β¬(Holds D I V E psi β Holds D I V E phi)) β
(Holds D I V E phi β Holds D I V E psi))) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | intro D I V E _ | Ξ : List Formula
F : Formula
v : VarName
phi : Formula
β’ β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env),
(β H β [], Holds D I V E H) β Holds D I V E ((exists_ v phi).iff_ (forall_ v phi.not_).not_) | Ξ : List Formula
F : Formula
v : VarName
phi : Formula
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
aβ : β H β [], Holds D I V E H
β’ Holds D I V E ((exists_ v phi).iff_ (forall_ v phi.not_).not_) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | simp only [Holds] | Ξ : List Formula
F : Formula
v : VarName
phi : Formula
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
aβ : β H β [], Holds D I V E H
β’ Holds D I V E ((exists_ v phi).iff_ (forall_ v phi.not_).not_) | Ξ : List Formula
F : Formula
v : VarName
phi : Formula
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
aβ : β H β [], Holds D I V E H
β’ (β d, Holds D I (Function.updateITE V v d) E phi) β Β¬β (d : D), Β¬Holds D I (Function.updateITE V v d) E phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | simp | Ξ : List Formula
F : Formula
v : VarName
phi : Formula
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
aβ : β H β [], Holds D I V E H
β’ (β d, Holds D I (Function.updateITE V v d) E phi) β Β¬β (d : D), Β¬Holds D I (Function.updateITE V v d) E phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | intro D I V E a1 | Ξ : List Formula
F : Formula
Ξ' : List Formula
phi : Formula
Ο : PredName β β β Option (List VarName Γ Formula)
aβ : IsDeduct Ξ' phi
ih_2 :
β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (β H β Ξ', Holds D I V E H) β Holds D I V E phi
β’ β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env),
(β H β List.map (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο) Ξ', Holds D I V E H) β
Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο phi) | Ξ : List Formula
F : Formula
Ξ' : List Formula
phi : Formula
Ο : PredName β β β Option (List VarName Γ Formula)
aβ : IsDeduct Ξ' phi
ih_2 :
β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (β H β Ξ', Holds D I V E H) β Holds D I V E phi
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
a1 : β H β List.map (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο) Ξ', Holds D I V E H
β’ Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | simp at a1 | Ξ : List Formula
F : Formula
Ξ' : List Formula
phi : Formula
Ο : PredName β β β Option (List VarName Γ Formula)
aβ : IsDeduct Ξ' phi
ih_2 :
β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (β H β Ξ', Holds D I V E H) β Holds D I V E phi
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
a1 : β H β List.map (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο) Ξ', Holds D I V E H
β’ Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο phi) | Ξ : List Formula
F : Formula
Ξ' : List Formula
phi : Formula
Ο : PredName β β β Option (List VarName Γ Formula)
aβ : IsDeduct Ξ' phi
ih_2 :
β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (β H β Ξ', Holds D I V E H) β Holds D I V E phi
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
a1 : β a β Ξ', Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο a)
β’ Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | obtain s1 := Sub.Pred.All.Rec.Option.Fresh.substitution_theorem D I V E freshChar Ο | Ξ : List Formula
F : Formula
Ξ' : List Formula
phi : Formula
Ο : PredName β β β Option (List VarName Γ Formula)
aβ : IsDeduct Ξ' phi
ih_2 :
β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (β H β Ξ', Holds D I V E H) β Holds D I V E phi
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
a1 : β a β Ξ', Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο a)
β’ Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο phi) | Ξ : List Formula
F : Formula
Ξ' : List Formula
phi : Formula
Ο : PredName β β β Option (List VarName Γ Formula)
aβ : IsDeduct Ξ' phi
ih_2 :
β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (β H β Ξ', Holds D I V E H) β Holds D I V E phi
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
a1 : β a β Ξ', Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο a)
s1 :
β (F : Formula),
Holds D (Sub.Pred.All.Rec.Option.Fresh.I' D I V E Ο) V E F β
Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο F)
β’ Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | simp only [β s1] at a1 | Ξ : List Formula
F : Formula
Ξ' : List Formula
phi : Formula
Ο : PredName β β β Option (List VarName Γ Formula)
aβ : IsDeduct Ξ' phi
ih_2 :
β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (β H β Ξ', Holds D I V E H) β Holds D I V E phi
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
a1 : β a β Ξ', Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο a)
s1 :
β (F : Formula),
Holds D (Sub.Pred.All.Rec.Option.Fresh.I' D I V E Ο) V E F β
Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο F)
β’ Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο phi) | Ξ : List Formula
F : Formula
Ξ' : List Formula
phi : Formula
Ο : PredName β β β Option (List VarName Γ Formula)
aβ : IsDeduct Ξ' phi
ih_2 :
β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (β H β Ξ', Holds D I V E H) β Holds D I V E phi
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
s1 :
β (F : Formula),
Holds D (Sub.Pred.All.Rec.Option.Fresh.I' D I V E Ο) V E F β
Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο F)
a1 : β a β Ξ', Holds D (Sub.Pred.All.Rec.Option.Fresh.I' D I V E Ο) V E a
β’ Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | simp only [β s1] | Ξ : List Formula
F : Formula
Ξ' : List Formula
phi : Formula
Ο : PredName β β β Option (List VarName Γ Formula)
aβ : IsDeduct Ξ' phi
ih_2 :
β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (β H β Ξ', Holds D I V E H) β Holds D I V E phi
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
s1 :
β (F : Formula),
Holds D (Sub.Pred.All.Rec.Option.Fresh.I' D I V E Ο) V E F β
Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο F)
a1 : β a β Ξ', Holds D (Sub.Pred.All.Rec.Option.Fresh.I' D I V E Ο) V E a
β’ Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο phi) | Ξ : List Formula
F : Formula
Ξ' : List Formula
phi : Formula
Ο : PredName β β β Option (List VarName Γ Formula)
aβ : IsDeduct Ξ' phi
ih_2 :
β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (β H β Ξ', Holds D I V E H) β Holds D I V E phi
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
s1 :
β (F : Formula),
Holds D (Sub.Pred.All.Rec.Option.Fresh.I' D I V E Ο) V E F β
Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο F)
a1 : β a β Ξ', Holds D (Sub.Pred.All.Rec.Option.Fresh.I' D I V E Ο) V E a
β’ Holds D (Sub.Pred.All.Rec.Option.Fresh.I' D I V E Ο) V E phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | apply ih_2 | Ξ : List Formula
F : Formula
Ξ' : List Formula
phi : Formula
Ο : PredName β β β Option (List VarName Γ Formula)
aβ : IsDeduct Ξ' phi
ih_2 :
β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (β H β Ξ', Holds D I V E H) β Holds D I V E phi
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
s1 :
β (F : Formula),
Holds D (Sub.Pred.All.Rec.Option.Fresh.I' D I V E Ο) V E F β
Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο F)
a1 : β a β Ξ', Holds D (Sub.Pred.All.Rec.Option.Fresh.I' D I V E Ο) V E a
β’ Holds D (Sub.Pred.All.Rec.Option.Fresh.I' D I V E Ο) V E phi | case a
Ξ : List Formula
F : Formula
Ξ' : List Formula
phi : Formula
Ο : PredName β β β Option (List VarName Γ Formula)
aβ : IsDeduct Ξ' phi
ih_2 :
β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (β H β Ξ', Holds D I V E H) β Holds D I V E phi
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
s1 :
β (F : Formula),
Holds D (Sub.Pred.All.Rec.Option.Fresh.I' D I V E Ο) V E F β
Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο F)
a1 : β a β Ξ', Holds D (Sub.Pred.All.Rec.Option.Fresh.I' D I V E Ο) V E a
β’ β H β Ξ', Holds D (Sub.Pred.All.Rec.Option.Fresh.I' D I V E Ο) V E H |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.soundness | [793, 1] | [979, 13] | exact a1 | case a
Ξ : List Formula
F : Formula
Ξ' : List Formula
phi : Formula
Ο : PredName β β β Option (List VarName Γ Formula)
aβ : IsDeduct Ξ' phi
ih_2 :
β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (β H β Ξ', Holds D I V E H) β Holds D I V E phi
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
s1 :
β (F : Formula),
Holds D (Sub.Pred.All.Rec.Option.Fresh.I' D I V E Ο) V E F β
Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο F)
a1 : β a β Ξ', Holds D (Sub.Pred.All.Rec.Option.Fresh.I' D I V E Ο) V E a
β’ β H β Ξ', Holds D (Sub.Pred.All.Rec.Option.Fresh.I' D I V E Ο) V E H | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.not_IsDeduct_false | [982, 1] | [988, 26] | intro contra | β’ Β¬IsDeduct [] false_ | contra : IsDeduct [] false_
β’ False |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.not_IsDeduct_false | [982, 1] | [988, 26] | obtain s1 := soundness [] false_ contra Unit default default default | contra : IsDeduct [] false_
β’ False | contra : IsDeduct [] false_
s1 : (β H β [], Holds Unit default default default H) β Holds Unit default default default false_
β’ False |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.not_IsDeduct_false | [982, 1] | [988, 26] | simp at s1 | contra : IsDeduct [] false_
s1 : (β H β [], Holds Unit default default default H) β Holds Unit default default default false_
β’ False | contra : IsDeduct [] false_
s1 : Holds Unit default default default false_
β’ False |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Program/Backend.lean | FOL.NV.Program.Backend.not_IsDeduct_false | [982, 1] | [988, 26] | simp only [Holds] at s1 | contra : IsDeduct [] false_
s1 : Holds Unit default default default false_
β’ False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | induction F generalizing V | D : Type
I : Interpretation D
V : VarAssignment D
E : Env
F : Formula
Ο : VarName β VarName
h1 : Function.Injective Ο
β’ Holds D I (V β Ο) E F β Holds D I V E (replaceAll Ο F) | case pred_const_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : PredName
aβ : List VarName
V : VarAssignment D
β’ Holds D I (V β Ο) E (pred_const_ aβΒΉ aβ) β Holds D I V E (replaceAll Ο (pred_const_ aβΒΉ aβ))
case pred_var_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : PredName
aβ : List VarName
V : VarAssignment D
β’ Holds D I (V β Ο) E (pred_var_ aβΒΉ aβ) β Holds D I V E (replaceAll Ο (pred_var_ aβΒΉ aβ))
case eq_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : VarName
V : VarAssignment D
β’ Holds D I (V β Ο) E (eq_ aβΒΉ aβ) β Holds D I V E (replaceAll Ο (eq_ aβΒΉ aβ))
case true_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
V : VarAssignment D
β’ Holds D I (V β Ο) E true_ β Holds D I V E (replaceAll Ο true_)
case false_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
V : VarAssignment D
β’ Holds D I (V β Ο) E false_ β Holds D I V E (replaceAll Ο false_)
case not_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβ : Formula
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E aβ.not_ β Holds D I V E (replaceAll Ο aβ.not_)
case imp_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : Formula
a_ihβΒΉ : β (V : VarAssignment D), Holds D I (V β Ο) E aβΒΉ β Holds D I V E (replaceAll Ο aβΒΉ)
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (aβΒΉ.imp_ aβ) β Holds D I V E (replaceAll Ο (aβΒΉ.imp_ aβ))
case and_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : Formula
a_ihβΒΉ : β (V : VarAssignment D), Holds D I (V β Ο) E aβΒΉ β Holds D I V E (replaceAll Ο aβΒΉ)
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (aβΒΉ.and_ aβ) β Holds D I V E (replaceAll Ο (aβΒΉ.and_ aβ))
case or_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : Formula
a_ihβΒΉ : β (V : VarAssignment D), Holds D I (V β Ο) E aβΒΉ β Holds D I V E (replaceAll Ο aβΒΉ)
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (aβΒΉ.or_ aβ) β Holds D I V E (replaceAll Ο (aβΒΉ.or_ aβ))
case iff_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : Formula
a_ihβΒΉ : β (V : VarAssignment D), Holds D I (V β Ο) E aβΒΉ β Holds D I V E (replaceAll Ο aβΒΉ)
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (aβΒΉ.iff_ aβ) β Holds D I V E (replaceAll Ο (aβΒΉ.iff_ aβ))
case forall_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : VarName
aβ : Formula
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (forall_ aβΒΉ aβ) β Holds D I V E (replaceAll Ο (forall_ aβΒΉ aβ))
case exists_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : VarName
aβ : Formula
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (exists_ aβΒΉ aβ) β Holds D I V E (replaceAll Ο (exists_ aβΒΉ aβ))
case def_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : DefName
aβ : List VarName
V : VarAssignment D
β’ Holds D I (V β Ο) E (def_ aβΒΉ aβ) β Holds D I V E (replaceAll Ο (def_ aβΒΉ aβ)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | all_goals
simp only [replaceAll] | case pred_const_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : PredName
aβ : List VarName
V : VarAssignment D
β’ Holds D I (V β Ο) E (pred_const_ aβΒΉ aβ) β Holds D I V E (replaceAll Ο (pred_const_ aβΒΉ aβ))
case pred_var_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : PredName
aβ : List VarName
V : VarAssignment D
β’ Holds D I (V β Ο) E (pred_var_ aβΒΉ aβ) β Holds D I V E (replaceAll Ο (pred_var_ aβΒΉ aβ))
case eq_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : VarName
V : VarAssignment D
β’ Holds D I (V β Ο) E (eq_ aβΒΉ aβ) β Holds D I V E (replaceAll Ο (eq_ aβΒΉ aβ))
case true_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
V : VarAssignment D
β’ Holds D I (V β Ο) E true_ β Holds D I V E (replaceAll Ο true_)
case false_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
V : VarAssignment D
β’ Holds D I (V β Ο) E false_ β Holds D I V E (replaceAll Ο false_)
case not_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβ : Formula
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E aβ.not_ β Holds D I V E (replaceAll Ο aβ.not_)
case imp_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : Formula
a_ihβΒΉ : β (V : VarAssignment D), Holds D I (V β Ο) E aβΒΉ β Holds D I V E (replaceAll Ο aβΒΉ)
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (aβΒΉ.imp_ aβ) β Holds D I V E (replaceAll Ο (aβΒΉ.imp_ aβ))
case and_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : Formula
a_ihβΒΉ : β (V : VarAssignment D), Holds D I (V β Ο) E aβΒΉ β Holds D I V E (replaceAll Ο aβΒΉ)
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (aβΒΉ.and_ aβ) β Holds D I V E (replaceAll Ο (aβΒΉ.and_ aβ))
case or_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : Formula
a_ihβΒΉ : β (V : VarAssignment D), Holds D I (V β Ο) E aβΒΉ β Holds D I V E (replaceAll Ο aβΒΉ)
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (aβΒΉ.or_ aβ) β Holds D I V E (replaceAll Ο (aβΒΉ.or_ aβ))
case iff_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : Formula
a_ihβΒΉ : β (V : VarAssignment D), Holds D I (V β Ο) E aβΒΉ β Holds D I V E (replaceAll Ο aβΒΉ)
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (aβΒΉ.iff_ aβ) β Holds D I V E (replaceAll Ο (aβΒΉ.iff_ aβ))
case forall_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : VarName
aβ : Formula
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (forall_ aβΒΉ aβ) β Holds D I V E (replaceAll Ο (forall_ aβΒΉ aβ))
case exists_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : VarName
aβ : Formula
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (exists_ aβΒΉ aβ) β Holds D I V E (replaceAll Ο (exists_ aβΒΉ aβ))
case def_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : DefName
aβ : List VarName
V : VarAssignment D
β’ Holds D I (V β Ο) E (def_ aβΒΉ aβ) β Holds D I V E (replaceAll Ο (def_ aβΒΉ aβ)) | case pred_const_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : PredName
aβ : List VarName
V : VarAssignment D
β’ Holds D I (V β Ο) E (pred_const_ aβΒΉ aβ) β Holds D I V E (pred_const_ aβΒΉ (List.map Ο aβ))
case pred_var_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : PredName
aβ : List VarName
V : VarAssignment D
β’ Holds D I (V β Ο) E (pred_var_ aβΒΉ aβ) β Holds D I V E (pred_var_ aβΒΉ (List.map Ο aβ))
case eq_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : VarName
V : VarAssignment D
β’ Holds D I (V β Ο) E (eq_ aβΒΉ aβ) β Holds D I V E (eq_ (Ο aβΒΉ) (Ο aβ))
case true_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
V : VarAssignment D
β’ Holds D I (V β Ο) E true_ β Holds D I V E true_
case false_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
V : VarAssignment D
β’ Holds D I (V β Ο) E false_ β Holds D I V E false_
case not_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβ : Formula
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E aβ.not_ β Holds D I V E (replaceAll Ο aβ).not_
case imp_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : Formula
a_ihβΒΉ : β (V : VarAssignment D), Holds D I (V β Ο) E aβΒΉ β Holds D I V E (replaceAll Ο aβΒΉ)
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (aβΒΉ.imp_ aβ) β Holds D I V E ((replaceAll Ο aβΒΉ).imp_ (replaceAll Ο aβ))
case and_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : Formula
a_ihβΒΉ : β (V : VarAssignment D), Holds D I (V β Ο) E aβΒΉ β Holds D I V E (replaceAll Ο aβΒΉ)
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (aβΒΉ.and_ aβ) β Holds D I V E ((replaceAll Ο aβΒΉ).and_ (replaceAll Ο aβ))
case or_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : Formula
a_ihβΒΉ : β (V : VarAssignment D), Holds D I (V β Ο) E aβΒΉ β Holds D I V E (replaceAll Ο aβΒΉ)
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (aβΒΉ.or_ aβ) β Holds D I V E ((replaceAll Ο aβΒΉ).or_ (replaceAll Ο aβ))
case iff_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : Formula
a_ihβΒΉ : β (V : VarAssignment D), Holds D I (V β Ο) E aβΒΉ β Holds D I V E (replaceAll Ο aβΒΉ)
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (aβΒΉ.iff_ aβ) β Holds D I V E ((replaceAll Ο aβΒΉ).iff_ (replaceAll Ο aβ))
case forall_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : VarName
aβ : Formula
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (forall_ aβΒΉ aβ) β Holds D I V E (forall_ (Ο aβΒΉ) (replaceAll Ο aβ))
case exists_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : VarName
aβ : Formula
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (exists_ aβΒΉ aβ) β Holds D I V E (exists_ (Ο aβΒΉ) (replaceAll Ο aβ))
case def_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : DefName
aβ : List VarName
V : VarAssignment D
β’ Holds D I (V β Ο) E (def_ aβΒΉ aβ) β Holds D I V E (def_ aβΒΉ (List.map Ο aβ)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | any_goals
simp only [Holds] | case pred_const_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : PredName
aβ : List VarName
V : VarAssignment D
β’ Holds D I (V β Ο) E (pred_const_ aβΒΉ aβ) β Holds D I V E (pred_const_ aβΒΉ (List.map Ο aβ))
case pred_var_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : PredName
aβ : List VarName
V : VarAssignment D
β’ Holds D I (V β Ο) E (pred_var_ aβΒΉ aβ) β Holds D I V E (pred_var_ aβΒΉ (List.map Ο aβ))
case eq_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : VarName
V : VarAssignment D
β’ Holds D I (V β Ο) E (eq_ aβΒΉ aβ) β Holds D I V E (eq_ (Ο aβΒΉ) (Ο aβ))
case true_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
V : VarAssignment D
β’ Holds D I (V β Ο) E true_ β Holds D I V E true_
case false_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
V : VarAssignment D
β’ Holds D I (V β Ο) E false_ β Holds D I V E false_
case not_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβ : Formula
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E aβ.not_ β Holds D I V E (replaceAll Ο aβ).not_
case imp_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : Formula
a_ihβΒΉ : β (V : VarAssignment D), Holds D I (V β Ο) E aβΒΉ β Holds D I V E (replaceAll Ο aβΒΉ)
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (aβΒΉ.imp_ aβ) β Holds D I V E ((replaceAll Ο aβΒΉ).imp_ (replaceAll Ο aβ))
case and_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : Formula
a_ihβΒΉ : β (V : VarAssignment D), Holds D I (V β Ο) E aβΒΉ β Holds D I V E (replaceAll Ο aβΒΉ)
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (aβΒΉ.and_ aβ) β Holds D I V E ((replaceAll Ο aβΒΉ).and_ (replaceAll Ο aβ))
case or_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : Formula
a_ihβΒΉ : β (V : VarAssignment D), Holds D I (V β Ο) E aβΒΉ β Holds D I V E (replaceAll Ο aβΒΉ)
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (aβΒΉ.or_ aβ) β Holds D I V E ((replaceAll Ο aβΒΉ).or_ (replaceAll Ο aβ))
case iff_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : Formula
a_ihβΒΉ : β (V : VarAssignment D), Holds D I (V β Ο) E aβΒΉ β Holds D I V E (replaceAll Ο aβΒΉ)
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (aβΒΉ.iff_ aβ) β Holds D I V E ((replaceAll Ο aβΒΉ).iff_ (replaceAll Ο aβ))
case forall_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : VarName
aβ : Formula
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (forall_ aβΒΉ aβ) β Holds D I V E (forall_ (Ο aβΒΉ) (replaceAll Ο aβ))
case exists_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : VarName
aβ : Formula
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (exists_ aβΒΉ aβ) β Holds D I V E (exists_ (Ο aβΒΉ) (replaceAll Ο aβ))
case def_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : DefName
aβ : List VarName
V : VarAssignment D
β’ Holds D I (V β Ο) E (def_ aβΒΉ aβ) β Holds D I V E (def_ aβΒΉ (List.map Ο aβ)) | case pred_const_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : PredName
aβ : List VarName
V : VarAssignment D
β’ I.pred_const_ aβΒΉ (List.map (V β Ο) aβ) β I.pred_const_ aβΒΉ (List.map V (List.map Ο aβ))
case pred_var_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : PredName
aβ : List VarName
V : VarAssignment D
β’ I.pred_var_ aβΒΉ (List.map (V β Ο) aβ) β I.pred_var_ aβΒΉ (List.map V (List.map Ο aβ))
case eq_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : VarName
V : VarAssignment D
β’ (V β Ο) aβΒΉ = (V β Ο) aβ β V (Ο aβΒΉ) = V (Ο aβ)
case not_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβ : Formula
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Β¬Holds D I (V β Ο) E aβ β Β¬Holds D I V E (replaceAll Ο aβ)
case imp_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : Formula
a_ihβΒΉ : β (V : VarAssignment D), Holds D I (V β Ο) E aβΒΉ β Holds D I V E (replaceAll Ο aβΒΉ)
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E aβΒΉ β Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβΒΉ) β Holds D I V E (replaceAll Ο aβ)
case and_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : Formula
a_ihβΒΉ : β (V : VarAssignment D), Holds D I (V β Ο) E aβΒΉ β Holds D I V E (replaceAll Ο aβΒΉ)
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E aβΒΉ β§ Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβΒΉ) β§ Holds D I V E (replaceAll Ο aβ)
case or_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : Formula
a_ihβΒΉ : β (V : VarAssignment D), Holds D I (V β Ο) E aβΒΉ β Holds D I V E (replaceAll Ο aβΒΉ)
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E aβΒΉ β¨ Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβΒΉ) β¨ Holds D I V E (replaceAll Ο aβ)
case iff_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ aβ : Formula
a_ihβΒΉ : β (V : VarAssignment D), Holds D I (V β Ο) E aβΒΉ β Holds D I V E (replaceAll Ο aβΒΉ)
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ (Holds D I (V β Ο) E aβΒΉ β Holds D I (V β Ο) E aβ) β
(Holds D I V E (replaceAll Ο aβΒΉ) β Holds D I V E (replaceAll Ο aβ))
case forall_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : VarName
aβ : Formula
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ (β (d : D), Holds D I (Function.updateITE (V β Ο) aβΒΉ d) E aβ) β
β (d : D), Holds D I (Function.updateITE V (Ο aβΒΉ) d) E (replaceAll Ο aβ)
case exists_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : VarName
aβ : Formula
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ (β d, Holds D I (Function.updateITE (V β Ο) aβΒΉ d) E aβ) β
β d, Holds D I (Function.updateITE V (Ο aβΒΉ) d) E (replaceAll Ο aβ)
case def_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : DefName
aβ : List VarName
V : VarAssignment D
β’ Holds D I (V β Ο) E (def_ aβΒΉ aβ) β Holds D I V E (def_ aβΒΉ (List.map Ο aβ)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | case pred_const_ X xs | pred_var_ X xs =>
simp | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
X : PredName
xs : List VarName
V : VarAssignment D
β’ I.pred_var_ X (List.map (V β Ο) xs) β I.pred_var_ X (List.map V (List.map Ο xs)) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | case eq_ x y =>
simp | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x y : VarName
V : VarAssignment D
β’ (V β Ο) x = (V β Ο) y β V (Ο x) = V (Ο y) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | case not_ phi phi_ih =>
congr! 1
exact phi_ih V | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
β’ Β¬Holds D I (V β Ο) E phi β Β¬Holds D I V E (replaceAll Ο phi) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | case forall_ x phi phi_ih | exists_ x phi phi_ih =>
first | apply forall_congr' | apply exists_congr
intro a
have s1 : Function.updateITE V (Ο x) a β Ο = Function.updateITE (V β Ο) x a
apply Function.updateITE_comp_right_injective
apply h1
simp only [β s1]
exact phi_ih (Function.updateITE V (Ο x) a) | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
β’ (β d, Holds D I (Function.updateITE (V β Ο) x d) E phi) β
β d, Holds D I (Function.updateITE V (Ο x) d) E (replaceAll Ο phi) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | simp only [replaceAll] | case def_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : DefName
aβ : List VarName
V : VarAssignment D
β’ Holds D I (V β Ο) E (def_ aβΒΉ aβ) β Holds D I V E (replaceAll Ο (def_ aβΒΉ aβ)) | case def_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : DefName
aβ : List VarName
V : VarAssignment D
β’ Holds D I (V β Ο) E (def_ aβΒΉ aβ) β Holds D I V E (def_ aβΒΉ (List.map Ο aβ)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | simp only [Holds] | case exists_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : VarName
aβ : Formula
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ Holds D I (V β Ο) E (exists_ aβΒΉ aβ) β Holds D I V E (exists_ (Ο aβΒΉ) (replaceAll Ο aβ)) | case exists_
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
aβΒΉ : VarName
aβ : Formula
a_ihβ : β (V : VarAssignment D), Holds D I (V β Ο) E aβ β Holds D I V E (replaceAll Ο aβ)
V : VarAssignment D
β’ (β d, Holds D I (Function.updateITE (V β Ο) aβΒΉ d) E aβ) β
β d, Holds D I (Function.updateITE V (Ο aβΒΉ) d) E (replaceAll Ο aβ) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | simp | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
X : PredName
xs : List VarName
V : VarAssignment D
β’ I.pred_var_ X (List.map (V β Ο) xs) β I.pred_var_ X (List.map V (List.map Ο xs)) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | simp | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x y : VarName
V : VarAssignment D
β’ (V β Ο) x = (V β Ο) y β V (Ο x) = V (Ο y) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | congr! 1 | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
β’ Β¬Holds D I (V β Ο) E phi β Β¬Holds D I V E (replaceAll Ο phi) | case a.h.e'_1.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
β’ Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | exact phi_ih V | case a.h.e'_1.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
β’ Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | congr! 1 | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
phi psi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
psi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E psi β Holds D I V E (replaceAll Ο psi)
V : VarAssignment D
β’ (Holds D I (V β Ο) E phi β Holds D I (V β Ο) E psi) β
(Holds D I V E (replaceAll Ο phi) β Holds D I V E (replaceAll Ο psi)) | case a.h.e'_1.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
phi psi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
psi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E psi β Holds D I V E (replaceAll Ο psi)
V : VarAssignment D
β’ Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
case a.h.e'_2.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
phi psi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
psi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E psi β Holds D I V E (replaceAll Ο psi)
V : VarAssignment D
β’ Holds D I (V β Ο) E psi β Holds D I V E (replaceAll Ο psi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | exact phi_ih V | case a.h.e'_1.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
phi psi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
psi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E psi β Holds D I V E (replaceAll Ο psi)
V : VarAssignment D
β’ Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | exact psi_ih V | case a.h.e'_2.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
phi psi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
psi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E psi β Holds D I V E (replaceAll Ο psi)
V : VarAssignment D
β’ Holds D I (V β Ο) E psi β Holds D I V E (replaceAll Ο psi) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | first | apply forall_congr' | apply exists_congr | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
β’ (β d, Holds D I (Function.updateITE (V β Ο) x d) E phi) β
β d, Holds D I (Function.updateITE V (Ο x) d) E (replaceAll Ο phi) | case h
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
β’ β (a : D),
Holds D I (Function.updateITE (V β Ο) x a) E phi β Holds D I (Function.updateITE V (Ο x) a) E (replaceAll Ο phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | intro a | case h
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
β’ β (a : D),
Holds D I (Function.updateITE (V β Ο) x a) E phi β Holds D I (Function.updateITE V (Ο x) a) E (replaceAll Ο phi) | case h
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
a : D
β’ Holds D I (Function.updateITE (V β Ο) x a) E phi β Holds D I (Function.updateITE V (Ο x) a) E (replaceAll Ο phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | have s1 : Function.updateITE V (Ο x) a β Ο = Function.updateITE (V β Ο) x a | case h
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
a : D
β’ Holds D I (Function.updateITE (V β Ο) x a) E phi β Holds D I (Function.updateITE V (Ο x) a) E (replaceAll Ο phi) | case s1
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
a : D
β’ Function.updateITE V (Ο x) a β Ο = Function.updateITE (V β Ο) x a
case h
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
a : D
s1 : Function.updateITE V (Ο x) a β Ο = Function.updateITE (V β Ο) x a
β’ Holds D I (Function.updateITE (V β Ο) x a) E phi β Holds D I (Function.updateITE V (Ο x) a) E (replaceAll Ο phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | apply Function.updateITE_comp_right_injective | case s1
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
a : D
β’ Function.updateITE V (Ο x) a β Ο = Function.updateITE (V β Ο) x a
case h
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
a : D
s1 : Function.updateITE V (Ο x) a β Ο = Function.updateITE (V β Ο) x a
β’ Holds D I (Function.updateITE (V β Ο) x a) E phi β Holds D I (Function.updateITE V (Ο x) a) E (replaceAll Ο phi) | case s1.h1
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
a : D
β’ Function.Injective Ο
case h
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
a : D
s1 : Function.updateITE V (Ο x) a β Ο = Function.updateITE (V β Ο) x a
β’ Holds D I (Function.updateITE (V β Ο) x a) E phi β Holds D I (Function.updateITE V (Ο x) a) E (replaceAll Ο phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | apply h1 | case s1.h1
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
a : D
β’ Function.Injective Ο
case h
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
a : D
s1 : Function.updateITE V (Ο x) a β Ο = Function.updateITE (V β Ο) x a
β’ Holds D I (Function.updateITE (V β Ο) x a) E phi β Holds D I (Function.updateITE V (Ο x) a) E (replaceAll Ο phi) | case h
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
a : D
s1 : Function.updateITE V (Ο x) a β Ο = Function.updateITE (V β Ο) x a
β’ Holds D I (Function.updateITE (V β Ο) x a) E phi β Holds D I (Function.updateITE V (Ο x) a) E (replaceAll Ο phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | simp only [β s1] | case h
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
a : D
s1 : Function.updateITE V (Ο x) a β Ο = Function.updateITE (V β Ο) x a
β’ Holds D I (Function.updateITE (V β Ο) x a) E phi β Holds D I (Function.updateITE V (Ο x) a) E (replaceAll Ο phi) | case h
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
a : D
s1 : Function.updateITE V (Ο x) a β Ο = Function.updateITE (V β Ο) x a
β’ Holds D I (Function.updateITE V (Ο x) a β Ο) E phi β Holds D I (Function.updateITE V (Ο x) a) E (replaceAll Ο phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | exact phi_ih (Function.updateITE V (Ο x) a) | case h
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
a : D
s1 : Function.updateITE V (Ο x) a β Ο = Function.updateITE (V β Ο) x a
β’ Holds D I (Function.updateITE V (Ο x) a β Ο) E phi β Holds D I (Function.updateITE V (Ο x) a) E (replaceAll Ο phi) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | apply forall_congr' | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
β’ (β (d : D), Holds D I (Function.updateITE (V β Ο) x d) E phi) β
β (d : D), Holds D I (Function.updateITE V (Ο x) d) E (replaceAll Ο phi) | case h
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
β’ β (a : D),
Holds D I (Function.updateITE (V β Ο) x a) E phi β Holds D I (Function.updateITE V (Ο x) a) E (replaceAll Ο phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | apply exists_congr | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
β’ (β d, Holds D I (Function.updateITE (V β Ο) x d) E phi) β
β d, Holds D I (Function.updateITE V (Ο x) d) E (replaceAll Ο phi) | case h
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
x : VarName
phi : Formula
phi_ih : β (V : VarAssignment D), Holds D I (V β Ο) E phi β Holds D I V E (replaceAll Ο phi)
V : VarAssignment D
β’ β (a : D),
Holds D I (Function.updateITE (V β Ο) x a) E phi β Holds D I (Function.updateITE V (Ο x) a) E (replaceAll Ο phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | induction E | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
β’ Holds D I (V β Ο) E (def_ X xs) β Holds D I V E (def_ X (List.map Ο xs)) | case nil
D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
β’ Holds D I (V β Ο) [] (def_ X xs) β Holds D I V [] (def_ X (List.map Ο xs))
case cons
D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
headβ : Definition
tailβ : List Definition
tail_ihβ : Holds D I (V β Ο) tailβ (def_ X xs) β Holds D I V tailβ (def_ X (List.map Ο xs))
β’ Holds D I (V β Ο) (headβ :: tailβ) (def_ X xs) β Holds D I V (headβ :: tailβ) (def_ X (List.map Ο xs)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | case nil =>
simp only [Holds] | D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
β’ Holds D I (V β Ο) [] (def_ X xs) β Holds D I V [] (def_ X (List.map Ο xs)) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | simp only [Holds] | D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
β’ Holds D I (V β Ο) [] (def_ X xs) β Holds D I V [] (def_ X (List.map Ο xs)) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | simp only [Holds] | D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
β’ Holds D I (V β Ο) (E_hd :: E_tl) (def_ X xs) β Holds D I V (E_hd :: E_tl) (def_ X (List.map Ο xs)) | D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
β’ (if X = E_hd.name β§ xs.length = E_hd.args.length then
Holds D I (Function.updateListITE (V β Ο) E_hd.args (List.map (V β Ο) xs)) E_tl E_hd.q
else Holds D I (V β Ο) E_tl (def_ X xs)) β
if X = E_hd.name β§ (List.map Ο xs).length = E_hd.args.length then
Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Ο xs))) E_tl E_hd.q
else Holds D I V E_tl (def_ X (List.map Ο xs)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | simp | D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
β’ (if X = E_hd.name β§ xs.length = E_hd.args.length then
Holds D I (Function.updateListITE (V β Ο) E_hd.args (List.map (V β Ο) xs)) E_tl E_hd.q
else Holds D I (V β Ο) E_tl (def_ X xs)) β
if X = E_hd.name β§ (List.map Ο xs).length = E_hd.args.length then
Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Ο xs))) E_tl E_hd.q
else Holds D I V E_tl (def_ X (List.map Ο xs)) | D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
β’ (if X = E_hd.name β§ xs.length = E_hd.args.length then
Holds D I (Function.updateListITE (V β Ο) E_hd.args (List.map (V β Ο) xs)) E_tl E_hd.q
else Holds D I (V β Ο) E_tl (def_ X xs)) β
if X = E_hd.name β§ xs.length = E_hd.args.length then
Holds D I (Function.updateListITE V E_hd.args (List.map (V β Ο) xs)) E_tl E_hd.q
else Holds D I V E_tl (def_ X (List.map Ο xs)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | split_ifs | D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
β’ (if X = E_hd.name β§ xs.length = E_hd.args.length then
Holds D I (Function.updateListITE (V β Ο) E_hd.args (List.map (V β Ο) xs)) E_tl E_hd.q
else Holds D I (V β Ο) E_tl (def_ X xs)) β
if X = E_hd.name β§ xs.length = E_hd.args.length then
Holds D I (Function.updateListITE V E_hd.args (List.map (V β Ο) xs)) E_tl E_hd.q
else Holds D I V E_tl (def_ X (List.map Ο xs)) | case pos
D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
hβ : X = E_hd.name β§ xs.length = E_hd.args.length
β’ Holds D I (Function.updateListITE (V β Ο) E_hd.args (List.map (V β Ο) xs)) E_tl E_hd.q β
Holds D I (Function.updateListITE V E_hd.args (List.map (V β Ο) xs)) E_tl E_hd.q
case neg
D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
hβ : Β¬(X = E_hd.name β§ xs.length = E_hd.args.length)
β’ Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | case _ c1 =>
apply E_ih | D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
c1 : Β¬(X = E_hd.name β§ xs.length = E_hd.args.length)
β’ Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs)) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | cases c1 | D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
c1 : X = E_hd.name β§ xs.length = E_hd.args.length
β’ Holds D I (Function.updateListITE (V β Ο) E_hd.args (List.map (V β Ο) xs)) E_tl E_hd.q β
Holds D I (Function.updateListITE V E_hd.args (List.map (V β Ο) xs)) E_tl E_hd.q | case intro
D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
leftβ : X = E_hd.name
rightβ : xs.length = E_hd.args.length
β’ Holds D I (Function.updateListITE (V β Ο) E_hd.args (List.map (V β Ο) xs)) E_tl E_hd.q β
Holds D I (Function.updateListITE V E_hd.args (List.map (V β Ο) xs)) E_tl E_hd.q |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | apply Holds_coincide_Var | D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
c1_left : X = E_hd.name
c1_right : xs.length = E_hd.args.length
β’ Holds D I (Function.updateListITE (V β Ο) E_hd.args (List.map (V β Ο) xs)) E_tl E_hd.q β
Holds D I (Function.updateListITE V E_hd.args (List.map (V β Ο) xs)) E_tl E_hd.q | case h1
D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
c1_left : X = E_hd.name
c1_right : xs.length = E_hd.args.length
β’ β (v : VarName),
isFreeIn v E_hd.q β
Function.updateListITE (V β Ο) E_hd.args (List.map (V β Ο) xs) v =
Function.updateListITE V E_hd.args (List.map (V β Ο) xs) v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | intro v a1 | case h1
D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
c1_left : X = E_hd.name
c1_right : xs.length = E_hd.args.length
β’ β (v : VarName),
isFreeIn v E_hd.q β
Function.updateListITE (V β Ο) E_hd.args (List.map (V β Ο) xs) v =
Function.updateListITE V E_hd.args (List.map (V β Ο) xs) v | case h1
D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
c1_left : X = E_hd.name
c1_right : xs.length = E_hd.args.length
v : VarName
a1 : isFreeIn v E_hd.q
β’ Function.updateListITE (V β Ο) E_hd.args (List.map (V β Ο) xs) v =
Function.updateListITE V E_hd.args (List.map (V β Ο) xs) v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | simp only [isFreeIn_iff_mem_freeVarSet v E_hd.q] at a1 | case h1
D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
c1_left : X = E_hd.name
c1_right : xs.length = E_hd.args.length
v : VarName
a1 : isFreeIn v E_hd.q
β’ Function.updateListITE (V β Ο) E_hd.args (List.map (V β Ο) xs) v =
Function.updateListITE V E_hd.args (List.map (V β Ο) xs) v | case h1
D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
c1_left : X = E_hd.name
c1_right : xs.length = E_hd.args.length
v : VarName
a1 : v β E_hd.q.freeVarSet
β’ Function.updateListITE (V β Ο) E_hd.args (List.map (V β Ο) xs) v =
Function.updateListITE V E_hd.args (List.map (V β Ο) xs) v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | apply Function.updateListITE_mem_eq_len | case h1
D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
c1_left : X = E_hd.name
c1_right : xs.length = E_hd.args.length
v : VarName
a1 : v β E_hd.q.freeVarSet
β’ Function.updateListITE (V β Ο) E_hd.args (List.map (V β Ο) xs) v =
Function.updateListITE V E_hd.args (List.map (V β Ο) xs) v | case h1.h1
D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
c1_left : X = E_hd.name
c1_right : xs.length = E_hd.args.length
v : VarName
a1 : v β E_hd.q.freeVarSet
β’ v β E_hd.args
case h1.h2
D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
c1_left : X = E_hd.name
c1_right : xs.length = E_hd.args.length
v : VarName
a1 : v β E_hd.q.freeVarSet
β’ E_hd.args.length = (List.map (V β Ο) xs).length |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | simp only [<- List.mem_toFinset] | case h1.h1
D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
c1_left : X = E_hd.name
c1_right : xs.length = E_hd.args.length
v : VarName
a1 : v β E_hd.q.freeVarSet
β’ v β E_hd.args | case h1.h1
D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
c1_left : X = E_hd.name
c1_right : xs.length = E_hd.args.length
v : VarName
a1 : v β E_hd.q.freeVarSet
β’ v β E_hd.args.toFinset |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | apply Finset.mem_of_subset E_hd.h1 a1 | case h1.h1
D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
c1_left : X = E_hd.name
c1_right : xs.length = E_hd.args.length
v : VarName
a1 : v β E_hd.q.freeVarSet
β’ v β E_hd.args.toFinset | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | simp | case h1.h2
D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
c1_left : X = E_hd.name
c1_right : xs.length = E_hd.args.length
v : VarName
a1 : v β E_hd.q.freeVarSet
β’ E_hd.args.length = (List.map (V β Ο) xs).length | case h1.h2
D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
c1_left : X = E_hd.name
c1_right : xs.length = E_hd.args.length
v : VarName
a1 : v β E_hd.q.freeVarSet
β’ E_hd.args.length = xs.length |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | simp only [c1_right] | case h1.h2
D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
c1_left : X = E_hd.name
c1_right : xs.length = E_hd.args.length
v : VarName
a1 : v β E_hd.q.freeVarSet
β’ E_hd.args.length = xs.length | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_theorem | [33, 1] | [96, 19] | apply E_ih | D : Type
I : Interpretation D
Ο : VarName β VarName
h1 : Function.Injective Ο
X : DefName
xs : List VarName
V : VarAssignment D
E_hd : Definition
E_tl : List Definition
E_ih : Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs))
c1 : Β¬(X = E_hd.name β§ xs.length = E_hd.args.length)
β’ Holds D I (V β Ο) E_tl (def_ X xs) β Holds D I V E_tl (def_ X (List.map Ο xs)) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_is_valid | [99, 1] | [111, 13] | simp only [IsValid] at h2 | F : Formula
Ο : VarName β VarName
h1 : Function.Injective Ο
h2 : F.IsValid
β’ (replaceAll Ο F).IsValid | F : Formula
Ο : VarName β VarName
h1 : Function.Injective Ο
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
β’ (replaceAll Ο F).IsValid |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_is_valid | [99, 1] | [111, 13] | simp only [IsValid] | F : Formula
Ο : VarName β VarName
h1 : Function.Injective Ο
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
β’ (replaceAll Ο F).IsValid | F : Formula
Ο : VarName β VarName
h1 : Function.Injective Ο
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
β’ β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (replaceAll Ο F) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_is_valid | [99, 1] | [111, 13] | intro D I V E | F : Formula
Ο : VarName β VarName
h1 : Function.Injective Ο
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
β’ β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (replaceAll Ο F) | F : Formula
Ο : VarName β VarName
h1 : Function.Injective Ο
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
β’ Holds D I V E (replaceAll Ο F) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_is_valid | [99, 1] | [111, 13] | simp only [β substitution_theorem D I V E F Ο h1] | F : Formula
Ο : VarName β VarName
h1 : Function.Injective Ο
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
β’ Holds D I V E (replaceAll Ο F) | F : Formula
Ο : VarName β VarName
h1 : Function.Injective Ο
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
β’ Holds D I (V β Ο) E F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Inj/ReplaceAll.lean | FOL.NV.Sub.Var.All.Rec.Inj.substitution_is_valid | [99, 1] | [111, 13] | apply h2 | F : Formula
Ο : VarName β VarName
h1 : Function.Injective Ο
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
β’ Holds D I (V β Ο) E F | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | induction E generalizing F binders V V' Ο Ο' | D : Type
I : Interpretation D
V V' : VarAssignment D
E : Env
Ο Ο' : VarName β VarName
binders : Finset VarName
F : Formula
h1 : admitsAux Ο binders F
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V E F β Holds D I V' E (fastReplaceFree Ο' F) | case nil
D : Type
I : Interpretation D
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
F : Formula
h1 : admitsAux Ο binders F
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V [] F β Holds D I V' [] (fastReplaceFree Ο' F)
case cons
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
F : Formula
h1 : admitsAux Ο binders F
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) F β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' F) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | induction F generalizing binders V V' Ο Ο' | case cons
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
F : Formula
h1 : admitsAux Ο binders F
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) F β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' F) | case cons.pred_const_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : PredName
aβ : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (pred_const_ aβΒΉ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (pred_const_ aβΒΉ aβ) β
Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (pred_const_ aβΒΉ aβ))
case cons.pred_var_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : PredName
aβ : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (pred_var_ aβΒΉ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (pred_var_ aβΒΉ aβ) β
Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (pred_var_ aβΒΉ aβ))
case cons.eq_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ aβ : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (eq_ aβΒΉ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (eq_ aβΒΉ aβ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (eq_ aβΒΉ aβ))
case cons.true_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders true_
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) true_ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' true_)
case cons.false_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders false_
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) false_ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' false_)
case cons.not_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβ : Formula
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders aβ.not_
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) aβ.not_ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ.not_)
case cons.imp_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβΒΉ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβΒΉ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβΒΉ))
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (aβΒΉ.imp_ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (aβΒΉ.imp_ aβ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (aβΒΉ.imp_ aβ))
case cons.and_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβΒΉ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβΒΉ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβΒΉ))
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (aβΒΉ.and_ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (aβΒΉ.and_ aβ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (aβΒΉ.and_ aβ))
case cons.or_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβΒΉ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβΒΉ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβΒΉ))
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (aβΒΉ.or_ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (aβΒΉ.or_ aβ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (aβΒΉ.or_ aβ))
case cons.iff_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβΒΉ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβΒΉ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβΒΉ))
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (aβΒΉ.iff_ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (aβΒΉ.iff_ aβ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (aβΒΉ.iff_ aβ))
case cons.forall_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (forall_ aβΒΉ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (forall_ aβΒΉ aβ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (forall_ aβΒΉ aβ))
case cons.exists_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (exists_ aβΒΉ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (exists_ aβΒΉ aβ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (exists_ aβΒΉ aβ))
case cons.def_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : DefName
aβ : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (def_ aβΒΉ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (def_ aβΒΉ aβ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (def_ aβΒΉ aβ)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | all_goals
simp only [admitsAux] at h1
simp only [fastReplaceFree]
simp only [Holds] | case cons.pred_const_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : PredName
aβ : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (pred_const_ aβΒΉ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (pred_const_ aβΒΉ aβ) β
Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (pred_const_ aβΒΉ aβ))
case cons.pred_var_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : PredName
aβ : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (pred_var_ aβΒΉ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (pred_var_ aβΒΉ aβ) β
Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (pred_var_ aβΒΉ aβ))
case cons.eq_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ aβ : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (eq_ aβΒΉ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (eq_ aβΒΉ aβ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (eq_ aβΒΉ aβ))
case cons.true_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders true_
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) true_ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' true_)
case cons.false_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders false_
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) false_ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' false_)
case cons.not_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβ : Formula
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders aβ.not_
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) aβ.not_ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ.not_)
case cons.imp_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβΒΉ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβΒΉ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβΒΉ))
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (aβΒΉ.imp_ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (aβΒΉ.imp_ aβ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (aβΒΉ.imp_ aβ))
case cons.and_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβΒΉ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβΒΉ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβΒΉ))
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (aβΒΉ.and_ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (aβΒΉ.and_ aβ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (aβΒΉ.and_ aβ))
case cons.or_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβΒΉ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβΒΉ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβΒΉ))
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (aβΒΉ.or_ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (aβΒΉ.or_ aβ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (aβΒΉ.or_ aβ))
case cons.iff_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβΒΉ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβΒΉ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβΒΉ))
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (aβΒΉ.iff_ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (aβΒΉ.iff_ aβ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (aβΒΉ.iff_ aβ))
case cons.forall_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (forall_ aβΒΉ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (forall_ aβΒΉ aβ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (forall_ aβΒΉ aβ))
case cons.exists_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (exists_ aβΒΉ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (exists_ aβΒΉ aβ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (exists_ aβΒΉ aβ))
case cons.def_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : DefName
aβ : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (def_ aβΒΉ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (def_ aβΒΉ aβ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (def_ aβΒΉ aβ)) | case cons.pred_const_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : PredName
aβ : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β aβ, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ I.pred_const_ aβΒΉ (List.map V aβ) β I.pred_const_ aβΒΉ (List.map V' (List.map Ο' aβ))
case cons.pred_var_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : PredName
aβ : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β aβ, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ I.pred_var_ aβΒΉ (List.map V aβ) β I.pred_var_ aβΒΉ (List.map V' (List.map Ο' aβ))
case cons.eq_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ aβ : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : (aβΒΉ β binders β Ο aβΒΉ β binders) β§ (aβ β binders β Ο aβ β binders)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ V aβΒΉ = V aβ β V' (Ο' aβΒΉ) = V' (Ο' aβ)
case cons.not_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβ : Formula
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders aβ
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Β¬Holds D I V (headβ :: tailβ) aβ β Β¬Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ)
case cons.imp_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβΒΉ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβΒΉ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβΒΉ))
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders aβΒΉ β§ admitsAux Ο binders aβ
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) aβΒΉ β Holds D I V (headβ :: tailβ) aβ β
Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβΒΉ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ)
case cons.and_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβΒΉ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβΒΉ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβΒΉ))
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders aβΒΉ β§ admitsAux Ο binders aβ
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) aβΒΉ β§ Holds D I V (headβ :: tailβ) aβ β
Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβΒΉ) β§ Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ)
case cons.or_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβΒΉ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβΒΉ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβΒΉ))
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders aβΒΉ β§ admitsAux Ο binders aβ
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) aβΒΉ β¨ Holds D I V (headβ :: tailβ) aβ β
Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβΒΉ) β¨ Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ)
case cons.iff_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβΒΉ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβΒΉ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβΒΉ))
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders aβΒΉ β§ admitsAux Ο binders aβ
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ (Holds D I V (headβ :: tailβ) aβΒΉ β Holds D I V (headβ :: tailβ) aβ) β
(Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβΒΉ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
case cons.forall_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {aβΒΉ}) aβ
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ (β (d : D), Holds D I (Function.updateITE V aβΒΉ d) (headβ :: tailβ) aβ) β
β (d : D),
Holds D I (Function.updateITE V' aβΒΉ d) (headβ :: tailβ) (fastReplaceFree (Function.updateITE Ο' aβΒΉ aβΒΉ) aβ)
case cons.exists_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) aβ β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' aβ))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {aβΒΉ}) aβ
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ (β d, Holds D I (Function.updateITE V aβΒΉ d) (headβ :: tailβ) aβ) β
β d, Holds D I (Function.updateITE V' aβΒΉ d) (headβ :: tailβ) (fastReplaceFree (Function.updateITE Ο' aβΒΉ aβΒΉ) aβ)
case cons.def_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : DefName
aβ : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β aβ, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ (if aβΒΉ = headβ.name β§ aβ.length = headβ.args.length then
Holds D I (Function.updateListITE V headβ.args (List.map V aβ)) tailβ headβ.q
else Holds D I V tailβ (def_ aβΒΉ aβ)) β
if aβΒΉ = headβ.name β§ (List.map Ο' aβ).length = headβ.args.length then
Holds D I (Function.updateListITE V' headβ.args (List.map V' (List.map Ο' aβ))) tailβ headβ.q
else Holds D I V' tailβ (def_ aβΒΉ (List.map Ο' aβ)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | case not_ phi phi_ih =>
congr! 1
exact phi_ih V V' Ο Ο' binders h1 h2 h2' h3 | D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
phi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName),
admitsAux Ο binders phi β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β
(Holds D I V (headβ :: tailβ) phi β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' phi))
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders phi
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Β¬Holds D I V (headβ :: tailβ) phi β Β¬Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' phi) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | simp only [admitsAux] at h1 | case cons.def_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : DefName
aβ : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : admitsAux Ο binders (def_ aβΒΉ aβ)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (def_ aβΒΉ aβ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (def_ aβΒΉ aβ)) | case cons.def_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : DefName
aβ : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β aβ, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (def_ aβΒΉ aβ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (def_ aβΒΉ aβ)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | simp only [fastReplaceFree] | case cons.def_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : DefName
aβ : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β aβ, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (def_ aβΒΉ aβ) β Holds D I V' (headβ :: tailβ) (fastReplaceFree Ο' (def_ aβΒΉ aβ)) | case cons.def_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : DefName
aβ : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β aβ, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (def_ aβΒΉ aβ) β Holds D I V' (headβ :: tailβ) (def_ aβΒΉ (List.map Ο' aβ)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | simp only [Holds] | case cons.def_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : DefName
aβ : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β aβ, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ Holds D I V (headβ :: tailβ) (def_ aβΒΉ aβ) β Holds D I V' (headβ :: tailβ) (def_ aβΒΉ (List.map Ο' aβ)) | case cons.def_
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
aβΒΉ : DefName
aβ : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β aβ, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ (if aβΒΉ = headβ.name β§ aβ.length = headβ.args.length then
Holds D I (Function.updateListITE V headβ.args (List.map V aβ)) tailβ headβ.q
else Holds D I V tailβ (def_ aβΒΉ aβ)) β
if aβΒΉ = headβ.name β§ (List.map Ο' aβ).length = headβ.args.length then
Holds D I (Function.updateListITE V' headβ.args (List.map V' (List.map Ο' aβ))) tailβ headβ.q
else Holds D I V' tailβ (def_ aβΒΉ (List.map Ο' aβ)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | congr! 1 | D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ I.pred_var_ X (List.map V xs) β I.pred_var_ X (List.map V' (List.map Ο' xs)) | case a.h.e'_4
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ List.map V xs = List.map V' (List.map Ο' xs) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | simp | case a.h.e'_4
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ List.map V xs = List.map V' (List.map Ο' xs) | case a.h.e'_4
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ List.map V xs = List.map (V' β Ο') xs |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | simp only [List.map_eq_map_iff] | case a.h.e'_4
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ List.map V xs = List.map (V' β Ο') xs | case a.h.e'_4
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ β x β xs, V x = (V' β Ο') x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | intro v a1 | case a.h.e'_4
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ β x β xs, V x = (V' β Ο') x | case a.h.e'_4
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
v : VarName
a1 : v β xs
β’ V v = (V' β Ο') v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | apply h2 | case a.h.e'_4
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
v : VarName
a1 : v β xs
β’ V v = (V' β Ο') v | case a.h.e'_4.a
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
v : VarName
a1 : v β xs
β’ v β binders β¨ Ο' v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | by_cases c1 : v β binders | case a.h.e'_4.a
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
v : VarName
a1 : v β xs
β’ v β binders β¨ Ο' v β binders | case pos
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
v : VarName
a1 : v β xs
c1 : v β binders
β’ v β binders β¨ Ο' v β binders
case neg
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
v : VarName
a1 : v β xs
c1 : v β binders
β’ v β binders β¨ Ο' v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | left | case pos
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
v : VarName
a1 : v β xs
c1 : v β binders
β’ v β binders β¨ Ο' v β binders | case pos.h
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
v : VarName
a1 : v β xs
c1 : v β binders
β’ v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | exact c1 | case pos.h
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
v : VarName
a1 : v β xs
c1 : v β binders
β’ v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | right | case neg
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
v : VarName
a1 : v β xs
c1 : v β binders
β’ v β binders β¨ Ο' v β binders | case neg.h
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
v : VarName
a1 : v β xs
c1 : v β binders
β’ Ο' v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | simp only [h3 v c1] | case neg.h
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
v : VarName
a1 : v β xs
c1 : v β binders
β’ Ο' v β binders | case neg.h
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
v : VarName
a1 : v β xs
c1 : v β binders
β’ Ο v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | exact h1 v a1 c1 | case neg.h
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : β v β xs, v β binders β Ο v β binders
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
v : VarName
a1 : v β xs
c1 : v β binders
β’ Ο v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | cases h1 | D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
x y : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h1 : (x β binders β Ο x β binders) β§ (y β binders β Ο y β binders)
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
β’ V x = V y β V' (Ο' x) = V' (Ο' y) | case intro
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
x y : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
leftβ : x β binders β Ο x β binders
rightβ : y β binders β Ο y β binders
β’ V x = V y β V' (Ο' x) = V' (Ο' y) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | congr! 1 | D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
x y : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
h1_left : x β binders β Ο x β binders
h1_right : y β binders β Ο y β binders
β’ V x = V y β V' (Ο' x) = V' (Ο' y) | case a.h.e'_2
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
x y : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
h1_left : x β binders β Ο x β binders
h1_right : y β binders β Ο y β binders
β’ V x = V' (Ο' x)
case a.h.e'_3
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
x y : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
h1_left : x β binders β Ο x β binders
h1_right : y β binders β Ο y β binders
β’ V y = V' (Ο' y) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | apply h2 | case a.h.e'_2
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
x y : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
h1_left : x β binders β Ο x β binders
h1_right : y β binders β Ο y β binders
β’ V x = V' (Ο' x) | case a.h.e'_2.a
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
x y : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
h1_left : x β binders β Ο x β binders
h1_right : y β binders β Ο y β binders
β’ x β binders β¨ Ο' x β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | by_cases c1 : x β binders | case a.h.e'_2.a
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
x y : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
h1_left : x β binders β Ο x β binders
h1_right : y β binders β Ο y β binders
β’ x β binders β¨ Ο' x β binders | case pos
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
x y : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
h1_left : x β binders β Ο x β binders
h1_right : y β binders β Ο y β binders
c1 : x β binders
β’ x β binders β¨ Ο' x β binders
case neg
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
x y : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
h1_left : x β binders β Ο x β binders
h1_right : y β binders β Ο y β binders
c1 : x β binders
β’ x β binders β¨ Ο' x β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | left | case pos
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
x y : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
h1_left : x β binders β Ο x β binders
h1_right : y β binders β Ο y β binders
c1 : x β binders
β’ x β binders β¨ Ο' x β binders | case pos.h
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
x y : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
h1_left : x β binders β Ο x β binders
h1_right : y β binders β Ο y β binders
c1 : x β binders
β’ x β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | exact c1 | case pos.h
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
x y : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
h1_left : x β binders β Ο x β binders
h1_right : y β binders β Ο y β binders
c1 : x β binders
β’ x β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | right | case neg
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
x y : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
h1_left : x β binders β Ο x β binders
h1_right : y β binders β Ο y β binders
c1 : x β binders
β’ x β binders β¨ Ο' x β binders | case neg.h
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
x y : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
h1_left : x β binders β Ο x β binders
h1_right : y β binders β Ο y β binders
c1 : x β binders
β’ Ο' x β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | simp only [h3 x c1] | case neg.h
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
x y : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
h1_left : x β binders β Ο x β binders
h1_right : y β binders β Ο y β binders
c1 : x β binders
β’ Ο' x β binders | case neg.h
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
x y : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
h1_left : x β binders β Ο x β binders
h1_right : y β binders β Ο y β binders
c1 : x β binders
β’ Ο x β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | exact h1_left c1 | case neg.h
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
x y : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
h1_left : x β binders β Ο x β binders
h1_right : y β binders β Ο y β binders
c1 : x β binders
β’ Ο x β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Rec/Admits.lean | FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux | [74, 1] | [207, 28] | apply h2 | case a.h.e'_3
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
x y : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
h1_left : x β binders β Ο x β binders
h1_right : y β binders β Ο y β binders
β’ V y = V' (Ο' y) | case a.h.e'_3.a
D : Type
I : Interpretation D
headβ : Definition
tailβ : List Definition
tail_ihβ :
β (V V' : VarAssignment D) (Ο Ο' : VarName β VarName) (binders : Finset VarName) (F : Formula),
admitsAux Ο binders F β
(β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)) β
(β v β binders, v = Ο' v) β
(β v β binders, Ο' v = Ο v) β (Holds D I V tailβ F β Holds D I V' tailβ (fastReplaceFree Ο' F))
x y : VarName
V V' : VarAssignment D
Ο Ο' : VarName β VarName
binders : Finset VarName
h2 : β (v : VarName), v β binders β¨ Ο' v β binders β V v = V' (Ο' v)
h2' : β v β binders, v = Ο' v
h3 : β v β binders, Ο' v = Ο v
h1_left : x β binders β Ο x β binders
h1_right : y β binders β Ο y β binders
β’ y β binders β¨ Ο' y β binders |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.