code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
from __future__ import annotations
import math
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
if depth < 0:
raise ValueError("""Depth cannot be less than 0""" )
if len(_SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("""Scores cannot be empty""" )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 , node_index * 2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , )
return min(
minimax(depth + 1 , node_index * 2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , )
def _a ( ) -> None:
snake_case_ = [90, 23, 6, 33, 21, 65, 123, 34_423]
snake_case_ = math.log(len(_SCREAMING_SNAKE_CASE ) , 2 )
print("""Optimal value : """ , end="""""" )
print(minimax(0 , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 2 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/'
__SCREAMING_SNAKE_CASE : List[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
snake_case_ = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
snake_case_ = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = {}
import re
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# keep original key
else:
snake_case_ = original_key
snake_case_ = replace_key(_SCREAMING_SNAKE_CASE )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
snake_case_ = original_key
snake_case_ = original_key
snake_case_ = value
return new_dict
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ):
snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE )
open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content )
snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]]
snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE )
snake_case_ = []
snake_case_ = {}
for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""]
snake_case_ = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
snake_case_ = old_dic[k]
elif k.endswith(""".w""" ):
snake_case_ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
snake_case_ = old_dic[k]
else:
snake_case_ = old_dic[k]
snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}"""
snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
weight_dict.append(_SCREAMING_SNAKE_CASE )
snake_case_ = weight_dict.pop(0 )
model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
return weight_dict
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 2 | 1 |
"""simple docstring"""
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = BlenderbotSmallTokenizer
__lowercase: Union[str, Any] = False
def lowerCAmelCase ( self : Union[str, Any] ) ->str:
"""simple docstring"""
super().setUp()
snake_case_ = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""]
snake_case_ = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) )
snake_case_ = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""]
snake_case_ = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""}
snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(UpperCAmelCase_ ) )
def lowerCAmelCase ( self : List[str] , **UpperCAmelCase_ : List[Any] ) ->int:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = """adapt act apte"""
snake_case_ = """adapt act apte"""
return input_text, output_text
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
snake_case_ = """adapt act apte"""
snake_case_ = ["""adapt""", """act""", """ap@@""", """te"""]
snake_case_ = tokenizer.tokenize(UpperCAmelCase_ )
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
snake_case_ = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" )
assert tok("""sam""" ).input_ids == [1_384]
snake_case_ = """I am a small frog."""
snake_case_ = tok([src_text] , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ )["""input_ids"""]
snake_case_ = tok.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
snake_case_ = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" )
snake_case_ = """I am a small frog ."""
snake_case_ = """."""
snake_case_ = tok(UpperCAmelCase_ )["""input_ids"""]
snake_case_ = tok(UpperCAmelCase_ )["""input_ids"""]
assert encoded[-1] == encoded_dot[0]
| 2 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__SCREAMING_SNAKE_CASE : Dict = 'zero2'
__SCREAMING_SNAKE_CASE : List[Any] = 'zero3'
__SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __A (snake_case__):
'''simple docstring'''
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = models[model]
snake_case_ = self.run_trainer(
stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
self.do_checks(UpperCAmelCase_ )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ )
snake_case_ = F"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(UpperCAmelCase_ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
snake_case_ = self.get_launcher(UpperCAmelCase_ )
snake_case_ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple:
"""simple docstring"""
snake_case_ = min(2 , get_gpu_count() ) if distributed else 1
return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 2 | 1 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
__SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
__SCREAMING_SNAKE_CASE : str = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n'
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=8 ) -> List[str]:
snake_case_ = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
snake_case_ = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=512 ) -> List[Any]:
snake_case_ = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 )
snake_case_ = np.array(pil_image.convert("""RGB""" ) )
snake_case_ = arr.astype(np.floataa ) / 127.5 - 1
snake_case_ = np.transpose(_SCREAMING_SNAKE_CASE , [2, 0, 1] )
snake_case_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).unsqueeze(0 )
return image
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : DDPMScheduler , UpperCAmelCase_ : VQModel , ) ->Tuple:
"""simple docstring"""
super().__init__()
self.register_modules(
unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , movq=UpperCAmelCase_ , )
snake_case_ = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def lowerCAmelCase ( self : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict ) ->Optional[int]:
"""simple docstring"""
snake_case_ = min(int(num_inference_steps * strength ) , UpperCAmelCase_ )
snake_case_ = max(num_inference_steps - init_timestep , 0 )
snake_case_ = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=None ) ->Optional[Any]:
"""simple docstring"""
if not isinstance(UpperCAmelCase_ , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCAmelCase_ )}""" )
snake_case_ = image.to(device=UpperCAmelCase_ , dtype=UpperCAmelCase_ )
snake_case_ = batch_size * num_images_per_prompt
if image.shape[1] == 4:
snake_case_ = image
else:
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and len(UpperCAmelCase_ ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(UpperCAmelCase_ )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = [
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase_ )
]
snake_case_ = torch.cat(UpperCAmelCase_ , dim=0 )
else:
snake_case_ = self.movq.encode(UpperCAmelCase_ ).latent_dist.sample(UpperCAmelCase_ )
snake_case_ = self.movq.config.scaling_factor * init_latents
snake_case_ = torch.cat([init_latents] , dim=0 )
snake_case_ = init_latents.shape
snake_case_ = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_ )
# get latents
snake_case_ = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = init_latents
return latents
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[Any]=0 ) ->Any:
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
snake_case_ = torch.device(F"""cuda:{gpu_id}""" )
snake_case_ = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Dict=0 ) ->int:
"""simple docstring"""
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
snake_case_ = torch.device(F"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=UpperCAmelCase_ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
snake_case_ = None
for cpu_offloaded_model in [self.unet, self.movq]:
snake_case_ , snake_case_ = cpu_offload_with_hook(UpperCAmelCase_ , UpperCAmelCase_ , prev_module_hook=UpperCAmelCase_ )
# We'll offload the last model manually.
snake_case_ = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def lowerCAmelCase ( self : Optional[Any] ) ->str:
"""simple docstring"""
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(UpperCAmelCase_ , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(UpperCAmelCase_ )
def __call__( self : str , UpperCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , UpperCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 100 , UpperCAmelCase_ : float = 4.0 , UpperCAmelCase_ : float = 0.3 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self._execution_device
snake_case_ = guidance_scale > 1.0
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = torch.cat(UpperCAmelCase_ , dim=0 )
snake_case_ = image_embeds.shape[0]
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = torch.cat(UpperCAmelCase_ , dim=0 )
if do_classifier_free_guidance:
snake_case_ = image_embeds.repeat_interleave(UpperCAmelCase_ , dim=0 )
snake_case_ = negative_image_embeds.repeat_interleave(UpperCAmelCase_ , dim=0 )
snake_case_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCAmelCase_ )
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = [image]
if not all(isinstance(UpperCAmelCase_ , (PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
F"""Input is in incorrect format: {[type(UpperCAmelCase_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" )
snake_case_ = torch.cat([prepare_image(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) for i in image] , dim=0 )
snake_case_ = image.to(dtype=image_embeds.dtype , device=UpperCAmelCase_ )
snake_case_ = self.movq.encode(UpperCAmelCase_ )["""latents"""]
snake_case_ = latents.repeat_interleave(UpperCAmelCase_ , dim=0 )
self.scheduler.set_timesteps(UpperCAmelCase_ , device=UpperCAmelCase_ )
snake_case_ , snake_case_ = self.get_timesteps(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = timesteps[:1].repeat(batch_size * num_images_per_prompt )
snake_case_ , snake_case_ = downscale_height_and_width(UpperCAmelCase_ , UpperCAmelCase_ , self.movq_scale_factor )
snake_case_ = self.prepare_latents(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , image_embeds.dtype , UpperCAmelCase_ , UpperCAmelCase_ )
for i, t in enumerate(self.progress_bar(UpperCAmelCase_ ) ):
# expand the latents if we are doing classifier free guidance
snake_case_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
snake_case_ = {"""image_embeds""": image_embeds}
snake_case_ = self.unet(
sample=UpperCAmelCase_ , timestep=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , added_cond_kwargs=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0]
if do_classifier_free_guidance:
snake_case_ , snake_case_ = noise_pred.split(latents.shape[1] , dim=1 )
snake_case_ , snake_case_ = noise_pred.chunk(2 )
snake_case_ , snake_case_ = variance_pred.chunk(2 )
snake_case_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
snake_case_ = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
snake_case_ , snake_case_ = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
snake_case_ = self.scheduler.step(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ , )[0]
# post-processing
snake_case_ = self.movq.decode(UpperCAmelCase_ , force_not_quantize=UpperCAmelCase_ )["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
snake_case_ = image * 0.5 + 0.5
snake_case_ = image.clamp(0 , 1 )
snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
snake_case_ = self.numpy_to_pil(UpperCAmelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCAmelCase_ )
| 2 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True})
__lowercase: ClassVar[Features] = Features({"""audio""": Audio()})
__lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")})
__lowercase: str = "audio"
__lowercase: str = "transcription"
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int:
"""simple docstring"""
if self.audio_column not in features:
raise ValueError(F"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , UpperCAmelCase_ ):
raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" )
snake_case_ = copy.deepcopy(self )
snake_case_ = self.input_schema.copy()
snake_case_ = features[self.audio_column]
snake_case_ = input_schema
return task_template
@property
def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]:
"""simple docstring"""
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 2 | 1 |
"""simple docstring"""
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
__SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = {
'artists_file': 'artists.json',
'lyrics_file': 'lyrics.json',
'genres_file': 'genres.json',
}
__SCREAMING_SNAKE_CASE : str = {
'artists_file': {
'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json',
},
'genres_file': {
'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json',
},
'lyrics_file': {
'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json',
},
}
__SCREAMING_SNAKE_CASE : List[Any] = {
'jukebox': 512,
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: int = VOCAB_FILES_NAMES
__lowercase: Tuple = PRETRAINED_VOCAB_FILES_MAP
__lowercase: int = PRETRAINED_LYRIC_TOKENS_SIZES
__lowercase: str = ["""input_ids""", """attention_mask"""]
def __init__( self : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]=["v3", "v2", "v2"] , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : Dict=5 , UpperCAmelCase_ : List[str]="<|endoftext|>" , **UpperCAmelCase_ : List[str] , ) ->Any:
"""simple docstring"""
snake_case_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else unk_token
super().__init__(
unk_token=UpperCAmelCase_ , n_genres=UpperCAmelCase_ , version=UpperCAmelCase_ , max_n_lyric_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , )
snake_case_ = version
snake_case_ = max_n_lyric_tokens
snake_case_ = n_genres
with open(UpperCAmelCase_ , encoding="""utf-8""" ) as vocab_handle:
snake_case_ = json.load(UpperCAmelCase_ )
with open(UpperCAmelCase_ , encoding="""utf-8""" ) as vocab_handle:
snake_case_ = json.load(UpperCAmelCase_ )
with open(UpperCAmelCase_ , encoding="""utf-8""" ) as vocab_handle:
snake_case_ = json.load(UpperCAmelCase_ )
snake_case_ = R"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+"""
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
snake_case_ = oov.replace(R"""\-'""" , R"""\-+'""" )
snake_case_ = regex.compile(UpperCAmelCase_ )
snake_case_ = {v: k for k, v in self.artists_encoder.items()}
snake_case_ = {v: k for k, v in self.genres_encoder.items()}
snake_case_ = {v: k for k, v in self.lyrics_encoder.items()}
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def lowerCAmelCase ( self : Tuple ) ->Union[str, Any]:
"""simple docstring"""
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] ) ->int:
"""simple docstring"""
snake_case_ = [self.artists_encoder.get(UpperCAmelCase_ , 0 ) for artist in list_artists]
for genres in range(len(UpperCAmelCase_ ) ):
snake_case_ = [self.genres_encoder.get(UpperCAmelCase_ , 0 ) for genre in list_genres[genres]]
snake_case_ = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
snake_case_ = [[self.lyrics_encoder.get(UpperCAmelCase_ , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[str] ) ->Any:
"""simple docstring"""
return list(UpperCAmelCase_ )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ , snake_case_ , snake_case_ = self.prepare_for_tokenization(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = self._tokenize(UpperCAmelCase_ )
return artist, genre, lyrics
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ) ->Tuple[str, str, str, Dict[str, Any]]:
"""simple docstring"""
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
snake_case_ = artists[idx].lower()
snake_case_ = [genres[idx].lower()]
else:
snake_case_ = self._normalize(artists[idx] ) + """.v2"""
snake_case_ = [
self._normalize(UpperCAmelCase_ ) + """.v2""" for genre in genres[idx].split("""_""" )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
snake_case_ = regex.compile(R"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" )
snake_case_ = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n"""
snake_case_ = {vocab[index]: index + 1 for index in range(len(UpperCAmelCase_ ) )}
snake_case_ = 0
snake_case_ = len(UpperCAmelCase_ ) + 1
snake_case_ = self.vocab
snake_case_ = {v: k for k, v in self.vocab.items()}
snake_case_ = """"""
else:
snake_case_ = regex.compile(R"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" )
snake_case_ = self._run_strip_accents(UpperCAmelCase_ )
snake_case_ = lyrics.replace("""\\""" , """\n""" )
snake_case_ = self.out_of_vocab.sub("""""" , UpperCAmelCase_ ), [], []
return artists, genres, lyrics
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[str] ) ->Tuple:
"""simple docstring"""
snake_case_ = unicodedata.normalize("""NFD""" , UpperCAmelCase_ )
snake_case_ = []
for char in text:
snake_case_ = unicodedata.category(UpperCAmelCase_ )
if cat == "Mn":
continue
output.append(UpperCAmelCase_ )
return "".join(UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : str ) ->str:
"""simple docstring"""
snake_case_ = (
[chr(UpperCAmelCase_ ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )]
+ [chr(UpperCAmelCase_ ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )]
+ [chr(UpperCAmelCase_ ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )]
+ ["""."""]
)
snake_case_ = frozenset(UpperCAmelCase_ )
snake_case_ = re.compile(R"""_+""" )
snake_case_ = """""".join([c if c in accepted else """_""" for c in text.lower()] )
snake_case_ = pattern.sub("""_""" , UpperCAmelCase_ ).strip("""_""" )
return text
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[str] ) ->str:
"""simple docstring"""
return " ".join(UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : bool = False ) ->Union[str, Any]:
"""simple docstring"""
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = TensorType(UpperCAmelCase_ )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
"""Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" )
import tensorflow as tf
snake_case_ = tf.constant
snake_case_ = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" )
import torch
snake_case_ = torch.tensor
snake_case_ = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" )
import jax.numpy as jnp # noqa: F811
snake_case_ = jnp.array
snake_case_ = _is_jax
else:
snake_case_ = np.asarray
snake_case_ = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
snake_case_ = [inputs]
if not is_tensor(UpperCAmelCase_ ):
snake_case_ = as_tensor(UpperCAmelCase_ )
except: # noqa E722
raise ValueError(
"""Unable to create tensor, you should probably activate truncation and/or padding """
"""with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" )
return inputs
def __call__( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any]="" , UpperCAmelCase_ : List[Any]="pt" ) ->BatchEncoding:
"""simple docstring"""
snake_case_ = [0, 0, 0]
snake_case_ = [artist] * len(self.version )
snake_case_ = [genres] * len(self.version )
snake_case_ , snake_case_ , snake_case_ = self.tokenize(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ , snake_case_ , snake_case_ = self._convert_token_to_id(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = [-INFINITY] * len(full_tokens[-1] )
snake_case_ = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=UpperCAmelCase_ )
for i in range(len(self.version ) )
]
return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] )
with open(UpperCAmelCase_ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=UpperCAmelCase_ ) )
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] )
with open(UpperCAmelCase_ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=UpperCAmelCase_ ) )
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] )
with open(UpperCAmelCase_ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=UpperCAmelCase_ ) )
return (artists_file, genres_file, lyrics_file)
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.artists_decoder.get(UpperCAmelCase_ )
snake_case_ = [self.genres_decoder.get(UpperCAmelCase_ ) for genre in genres_index]
snake_case_ = [self.lyrics_decoder.get(UpperCAmelCase_ ) for character in lyric_index]
return artist, genres, lyrics
| 2 |
"""simple docstring"""
from functools import reduce
__SCREAMING_SNAKE_CASE : Tuple = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def _a ( _SCREAMING_SNAKE_CASE = N ) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) )
for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 | 1 |
"""simple docstring"""
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
# General docstring
__SCREAMING_SNAKE_CASE : str = 'ResNetConfig'
# Base docstring
__SCREAMING_SNAKE_CASE : Any = 'microsoft/resnet-50'
__SCREAMING_SNAKE_CASE : Tuple = [1, 2_048, 7, 7]
# Image classification docstring
__SCREAMING_SNAKE_CASE : Optional[Any] = 'microsoft/resnet-50'
__SCREAMING_SNAKE_CASE : Optional[int] = 'tiger cat'
__SCREAMING_SNAKE_CASE : Tuple = [
'microsoft/resnet-50',
# See all resnet models at https://huggingface.co/models?filter=resnet
]
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = "relu" ) ->Tuple:
"""simple docstring"""
super().__init__()
snake_case_ = nn.Convad(
UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=kernel_size // 2 , bias=UpperCAmelCase_ )
snake_case_ = nn.BatchNormad(UpperCAmelCase_ )
snake_case_ = ACTaFN[activation] if activation is not None else nn.Identity()
def lowerCAmelCase ( self : int , UpperCAmelCase_ : Tensor ) ->Tensor:
"""simple docstring"""
snake_case_ = self.convolution(UpperCAmelCase_ )
snake_case_ = self.normalization(UpperCAmelCase_ )
snake_case_ = self.activation(UpperCAmelCase_ )
return hidden_state
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCAmelCase_ : ResNetConfig ) ->Tuple:
"""simple docstring"""
super().__init__()
snake_case_ = ResNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act )
snake_case_ = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 )
snake_case_ = config.num_channels
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Tensor ) ->Tensor:
"""simple docstring"""
snake_case_ = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"""Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" )
snake_case_ = self.embedder(UpperCAmelCase_ )
snake_case_ = self.pooler(UpperCAmelCase_ )
return embedding
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 2 ) ->List[Any]:
"""simple docstring"""
super().__init__()
snake_case_ = nn.Convad(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 , stride=UpperCAmelCase_ , bias=UpperCAmelCase_ )
snake_case_ = nn.BatchNormad(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tensor ) ->Tensor:
"""simple docstring"""
snake_case_ = self.convolution(UpperCAmelCase_ )
snake_case_ = self.normalization(UpperCAmelCase_ )
return hidden_state
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = "relu" ) ->Tuple:
"""simple docstring"""
super().__init__()
snake_case_ = in_channels != out_channels or stride != 1
snake_case_ = (
ResNetShortCut(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ ) if should_apply_shortcut else nn.Identity()
)
snake_case_ = nn.Sequential(
ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ ) , ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , activation=UpperCAmelCase_ ) , )
snake_case_ = ACTaFN[activation]
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = hidden_state
snake_case_ = self.layer(UpperCAmelCase_ )
snake_case_ = self.shortcut(UpperCAmelCase_ )
hidden_state += residual
snake_case_ = self.activation(UpperCAmelCase_ )
return hidden_state
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = "relu" , UpperCAmelCase_ : int = 4 ) ->Tuple:
"""simple docstring"""
super().__init__()
snake_case_ = in_channels != out_channels or stride != 1
snake_case_ = out_channels // reduction
snake_case_ = (
ResNetShortCut(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ ) if should_apply_shortcut else nn.Identity()
)
snake_case_ = nn.Sequential(
ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 ) , ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ ) , ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 , activation=UpperCAmelCase_ ) , )
snake_case_ = ACTaFN[activation]
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = hidden_state
snake_case_ = self.layer(UpperCAmelCase_ )
snake_case_ = self.shortcut(UpperCAmelCase_ )
hidden_state += residual
snake_case_ = self.activation(UpperCAmelCase_ )
return hidden_state
class __A (nn.Module):
'''simple docstring'''
def __init__( self : str , UpperCAmelCase_ : ResNetConfig , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , ) ->List[Any]:
"""simple docstring"""
super().__init__()
snake_case_ = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer
snake_case_ = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ , activation=config.hidden_act ) , *[layer(UpperCAmelCase_ , UpperCAmelCase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Tensor ) ->Tensor:
"""simple docstring"""
snake_case_ = input
for layer in self.layers:
snake_case_ = layer(UpperCAmelCase_ )
return hidden_state
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : ResNetConfig ) ->List[Any]:
"""simple docstring"""
super().__init__()
snake_case_ = nn.ModuleList([] )
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
UpperCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
snake_case_ = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(UpperCAmelCase_ , config.depths[1:] ):
self.stages.append(ResNetStage(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , depth=UpperCAmelCase_ ) )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Tensor , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True ) ->BaseModelOutputWithNoAttention:
"""simple docstring"""
snake_case_ = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
snake_case_ = hidden_states + (hidden_state,)
snake_case_ = stage_module(UpperCAmelCase_ )
if output_hidden_states:
snake_case_ = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(
last_hidden_state=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , )
class __A (snake_case__):
'''simple docstring'''
__lowercase: List[Any] = ResNetConfig
__lowercase: List[Any] = """resnet"""
__lowercase: Optional[Any] = """pixel_values"""
__lowercase: List[Any] = True
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : str ) ->Tuple:
"""simple docstring"""
if isinstance(UpperCAmelCase_ , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" )
elif isinstance(UpperCAmelCase_ , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int]=False ) ->Tuple:
"""simple docstring"""
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = value
__SCREAMING_SNAKE_CASE : int = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
__SCREAMING_SNAKE_CASE : List[Any] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"""The bare ResNet model outputting raw features without any specific head on top.""" , snake_case__ , )
class __A (snake_case__):
'''simple docstring'''
def __init__( self : str , UpperCAmelCase_ : Tuple ) ->Union[str, Any]:
"""simple docstring"""
super().__init__(UpperCAmelCase_ )
snake_case_ = config
snake_case_ = ResNetEmbeddings(UpperCAmelCase_ )
snake_case_ = ResNetEncoder(UpperCAmelCase_ )
snake_case_ = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UpperCAmelCase_ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Tensor , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None ) ->BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
snake_case_ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict
snake_case_ = self.embedder(UpperCAmelCase_ )
snake_case_ = self.encoder(
UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ )
snake_case_ = encoder_outputs[0]
snake_case_ = self.pooler(UpperCAmelCase_ )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"""
ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" , snake_case__ , )
class __A (snake_case__):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : int ) ->Any:
"""simple docstring"""
super().__init__(UpperCAmelCase_ )
snake_case_ = config.num_labels
snake_case_ = ResNetModel(UpperCAmelCase_ )
# classification head
snake_case_ = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UpperCAmelCase_ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[torch.LongTensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , ) ->ImageClassifierOutputWithNoAttention:
"""simple docstring"""
snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict
snake_case_ = self.resnet(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ )
snake_case_ = outputs.pooler_output if return_dict else outputs[1]
snake_case_ = self.classifier(UpperCAmelCase_ )
snake_case_ = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
snake_case_ = """regression"""
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
snake_case_ = """single_label_classification"""
else:
snake_case_ = """multi_label_classification"""
if self.config.problem_type == "regression":
snake_case_ = MSELoss()
if self.num_labels == 1:
snake_case_ = loss_fct(logits.squeeze() , labels.squeeze() )
else:
snake_case_ = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ )
elif self.config.problem_type == "single_label_classification":
snake_case_ = CrossEntropyLoss()
snake_case_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
snake_case_ = BCEWithLogitsLoss()
snake_case_ = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ )
if not return_dict:
snake_case_ = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states )
@add_start_docstrings(
"""
ResNet backbone, to be used with frameworks like DETR and MaskFormer.
""" , snake_case__ , )
class __A (snake_case__ , snake_case__):
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : Any ) ->Union[str, Any]:
"""simple docstring"""
super().__init__(UpperCAmelCase_ )
super()._init_backbone(UpperCAmelCase_ )
snake_case_ = [config.embedding_size] + config.hidden_sizes
snake_case_ = ResNetEmbeddings(UpperCAmelCase_ )
snake_case_ = ResNetEncoder(UpperCAmelCase_ )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UpperCAmelCase_ )
@replace_return_docstrings(output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Tensor , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None ) ->BackboneOutput:
"""simple docstring"""
snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict
snake_case_ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
snake_case_ = self.embedder(UpperCAmelCase_ )
snake_case_ = self.encoder(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ )
snake_case_ = outputs.hidden_states
snake_case_ = ()
for idx, stage in enumerate(self.stage_names ):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
snake_case_ = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=UpperCAmelCase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=UpperCAmelCase_ , )
| 2 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : str = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Any = """mctct"""
def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = intermediate_size
snake_case_ = num_attention_heads
snake_case_ = attention_head_dim
snake_case_ = max_position_embeddings
snake_case_ = layer_norm_eps
snake_case_ = layerdrop
snake_case_ = hidden_act
snake_case_ = initializer_range
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = pad_token_id
snake_case_ = bos_token_id
snake_case_ = eos_token_id
snake_case_ = conv_glu_dim
snake_case_ = conv_dropout
snake_case_ = num_conv_layers
snake_case_ = input_feat_per_channel
snake_case_ = input_channels
snake_case_ = conv_channels
snake_case_ = ctc_loss_reduction
snake_case_ = ctc_zero_infinity
# prevents config testing fail with exporting to json
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """
F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """
F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
| 2 | 1 |
"""simple docstring"""
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
__SCREAMING_SNAKE_CASE : List[str] = 'src/diffusers'
__SCREAMING_SNAKE_CASE : List[Any] = '.'
# This is to make sure the diffusers module imported is the one in the repo.
__SCREAMING_SNAKE_CASE : Any = importlib.util.spec_from_file_location(
'diffusers',
os.path.join(DIFFUSERS_PATH, '__init__.py'),
submodule_search_locations=[DIFFUSERS_PATH],
)
__SCREAMING_SNAKE_CASE : Optional[Any] = spec.loader.load_module()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
return line.startswith(_SCREAMING_SNAKE_CASE ) or len(_SCREAMING_SNAKE_CASE ) <= 1 or re.search(r"""^\s*\)(\s*->.*:|:)\s*$""" , _SCREAMING_SNAKE_CASE ) is not None
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
snake_case_ = object_name.split(""".""" )
snake_case_ = 0
# First let's find the module where our object lives.
snake_case_ = parts[i]
while i < len(_SCREAMING_SNAKE_CASE ) and not os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , f"""{module}.py""" ) ):
i += 1
if i < len(_SCREAMING_SNAKE_CASE ):
snake_case_ = os.path.join(_SCREAMING_SNAKE_CASE , parts[i] )
if i >= len(_SCREAMING_SNAKE_CASE ):
raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" )
with open(os.path.join(_SCREAMING_SNAKE_CASE , f"""{module}.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
snake_case_ = f.readlines()
# Now let's find the class / func in the code!
snake_case_ = """"""
snake_case_ = 0
for name in parts[i + 1 :]:
while (
line_index < len(_SCREAMING_SNAKE_CASE ) and re.search(rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(_SCREAMING_SNAKE_CASE ):
raise ValueError(f""" {object_name} does not match any function or class in {module}.""" )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
snake_case_ = line_index
while line_index < len(_SCREAMING_SNAKE_CASE ) and _should_continue(lines[line_index] , _SCREAMING_SNAKE_CASE ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
snake_case_ = lines[start_index:line_index]
return "".join(_SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE : Any = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)')
__SCREAMING_SNAKE_CASE : Optional[Any] = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)')
__SCREAMING_SNAKE_CASE : Any = re.compile(R'<FILL\s+[^>]*>')
def _a ( _SCREAMING_SNAKE_CASE ) -> Tuple:
snake_case_ = code.split("""\n""" )
snake_case_ = 0
while idx < len(_SCREAMING_SNAKE_CASE ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(_SCREAMING_SNAKE_CASE ):
return re.search(r"""^(\s*)\S""" , lines[idx] ).groups()[0]
return ""
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
snake_case_ = len(get_indent(_SCREAMING_SNAKE_CASE ) ) > 0
if has_indent:
snake_case_ = f"""class Bla:\n{code}"""
snake_case_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=_SCREAMING_SNAKE_CASE )
snake_case_ = black.format_str(_SCREAMING_SNAKE_CASE , mode=_SCREAMING_SNAKE_CASE )
snake_case_ , snake_case_ = style_docstrings_in_code(_SCREAMING_SNAKE_CASE )
return result[len("""class Bla:\n""" ) :] if has_indent else result
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[Any]:
with open(_SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
snake_case_ = f.readlines()
snake_case_ = []
snake_case_ = 0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(_SCREAMING_SNAKE_CASE ):
snake_case_ = _re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
snake_case_ , snake_case_ , snake_case_ = search.groups()
snake_case_ = find_code_in_diffusers(_SCREAMING_SNAKE_CASE )
snake_case_ = get_indent(_SCREAMING_SNAKE_CASE )
snake_case_ = line_index + 1 if indent == theoretical_indent else line_index + 2
snake_case_ = theoretical_indent
snake_case_ = start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
snake_case_ = True
while line_index < len(_SCREAMING_SNAKE_CASE ) and should_continue:
line_index += 1
if line_index >= len(_SCREAMING_SNAKE_CASE ):
break
snake_case_ = lines[line_index]
snake_case_ = _should_continue(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and re.search(f"""^{indent}# End copy""" , _SCREAMING_SNAKE_CASE ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
snake_case_ = lines[start_index:line_index]
snake_case_ = """""".join(_SCREAMING_SNAKE_CASE )
# Remove any nested `Copied from` comments to avoid circular copies
snake_case_ = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(_SCREAMING_SNAKE_CASE ) is None]
snake_case_ = """\n""".join(_SCREAMING_SNAKE_CASE )
# Before comparing, use the `replace_pattern` on the original code.
if len(_SCREAMING_SNAKE_CASE ) > 0:
snake_case_ = replace_pattern.replace("""with""" , """""" ).split(""",""" )
snake_case_ = [_re_replace_pattern.search(_SCREAMING_SNAKE_CASE ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
snake_case_ , snake_case_ , snake_case_ = pattern.groups()
snake_case_ = re.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if option.strip() == "all-casing":
snake_case_ = re.sub(obja.lower() , obja.lower() , _SCREAMING_SNAKE_CASE )
snake_case_ = re.sub(obja.upper() , obja.upper() , _SCREAMING_SNAKE_CASE )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
snake_case_ = blackify(lines[start_index - 1] + theoretical_code )
snake_case_ = theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
snake_case_ = lines[:start_index] + [theoretical_code] + lines[line_index:]
snake_case_ = start_index + 1
if overwrite and len(_SCREAMING_SNAKE_CASE ) > 0:
# Warn the user a file has been modified.
print(f"""Detected changes, rewriting {filename}.""" )
with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(_SCREAMING_SNAKE_CASE )
return diffs
def _a ( _SCREAMING_SNAKE_CASE = False ) -> str:
snake_case_ = glob.glob(os.path.join(_SCREAMING_SNAKE_CASE , """**/*.py""" ) , recursive=_SCREAMING_SNAKE_CASE )
snake_case_ = []
for filename in all_files:
snake_case_ = is_copy_consistent(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs]
if not overwrite and len(_SCREAMING_SNAKE_CASE ) > 0:
snake_case_ = """\n""".join(_SCREAMING_SNAKE_CASE )
raise Exception(
"""Found the following copy inconsistencies:\n"""
+ diff
+ """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
__SCREAMING_SNAKE_CASE : List[str] = parser.parse_args()
check_copies(args.fix_and_overwrite)
| 2 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int:
return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 2 | 1 |
"""simple docstring"""
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
__SCREAMING_SNAKE_CASE : Any = [
# tf -> hf
('/', '.'),
('layer_', 'layers.'),
('kernel', 'weight'),
('beta', 'bias'),
('gamma', 'weight'),
('pegasus', 'model'),
]
__SCREAMING_SNAKE_CASE : Union[str, Any] = [
('.output.dense', '.fc2'),
('intermediate.LayerNorm', 'final_layer_norm'),
('intermediate.dense', 'fc1'),
]
__SCREAMING_SNAKE_CASE : Tuple = (
INIT_COMMON
+ [
('attention.self.LayerNorm', 'self_attn_layer_norm'),
('attention.output.dense', 'self_attn.out_proj'),
('attention.self', 'self_attn'),
('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'),
('attention.encdec_output.dense', 'encoder_attn.out_proj'),
('attention.encdec', 'encoder_attn'),
('key', 'k_proj'),
('value', 'v_proj'),
('query', 'q_proj'),
('decoder.LayerNorm', 'decoder.layernorm_embedding'),
]
+ END_COMMON
)
__SCREAMING_SNAKE_CASE : List[str] = (
INIT_COMMON
+ [
('embeddings.word_embeddings', 'shared.weight'),
('embeddings.position_embeddings', 'embed_positions.weight'),
('attention.self.LayerNorm', 'self_attn_layer_norm'),
('attention.output.dense', 'self_attn.output'),
('attention.self', 'self_attn.self'),
('encoder.LayerNorm', 'encoder.layernorm_embedding'),
]
+ END_COMMON
)
__SCREAMING_SNAKE_CASE : Optional[int] = [
'encdec/key/bias',
'encdec/query/bias',
'encdec/value/bias',
'self/key/bias',
'self/query/bias',
'self/value/bias',
'encdec_output/dense/bias',
'attention/output/dense/bias',
]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
for tf_name, hf_name in patterns:
snake_case_ = k.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return k
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> BigBirdPegasusForConditionalGeneration:
snake_case_ = BigBirdPegasusConfig(**_SCREAMING_SNAKE_CASE )
snake_case_ = BigBirdPegasusForConditionalGeneration(_SCREAMING_SNAKE_CASE )
snake_case_ = torch_model.state_dict()
snake_case_ = {}
# separating decoder weights
snake_case_ = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )}
snake_case_ = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )}
for k, v in tqdm(decoder_weights.items() , """tf -> hf conversion""" ):
snake_case_ = [k.endswith(_SCREAMING_SNAKE_CASE ) for ending in KEYS_TO_IGNORE]
if any(_SCREAMING_SNAKE_CASE ):
continue
snake_case_ = DECODER_PATTERNS
snake_case_ = rename_state_dict_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if new_k not in state_dict:
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ):
snake_case_ = v.T
snake_case_ = torch.from_numpy(_SCREAMING_SNAKE_CASE )
assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
for k, v in tqdm(remaining_weights.items() , """tf -> hf conversion""" ):
snake_case_ = [k.endswith(_SCREAMING_SNAKE_CASE ) for ending in KEYS_TO_IGNORE]
if any(_SCREAMING_SNAKE_CASE ):
continue
snake_case_ = REMAINING_PATTERNS
snake_case_ = rename_state_dict_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ):
snake_case_ = v.T
snake_case_ = torch.from_numpy(_SCREAMING_SNAKE_CASE )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
snake_case_ = mapping["""model.embed_positions.weight"""]
snake_case_ = mapping.pop("""model.embed_positions.weight""" )
snake_case_ , snake_case_ = torch_model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
snake_case_ = [
k
for k in missing
if k
not in [
"""final_logits_bias""",
"""model.encoder.embed_tokens.weight""",
"""model.decoder.embed_tokens.weight""",
"""lm_head.weight""",
]
]
assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}"""
assert extra == [], f"""no matches found for the following tf keys {extra}"""
return torch_model
def _a ( _SCREAMING_SNAKE_CASE ) -> Dict:
snake_case_ = tf.train.list_variables(_SCREAMING_SNAKE_CASE )
snake_case_ = {}
snake_case_ = ["""global_step"""]
for name, shape in tqdm(_SCREAMING_SNAKE_CASE , desc="""converting tf checkpoint to dict""" ):
snake_case_ = any(pat in name for pat in ignore_name )
if skip_key:
continue
snake_case_ = tf.train.load_variable(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = array
return tf_weights
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
snake_case_ = get_tf_weights_as_numpy(_SCREAMING_SNAKE_CASE )
snake_case_ = convert_bigbird_pegasus(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
torch_model.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser()
parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables')
parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.')
__SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args()
__SCREAMING_SNAKE_CASE : Dict = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 2 |
"""simple docstring"""
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: str = VQModel
__lowercase: Union[str, Any] = """sample"""
@property
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple:
"""simple docstring"""
snake_case_ = 4
snake_case_ = 3
snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ )
return {"sample": image}
@property
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
return (3, 32, 32)
@property
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
return (3, 32, 32)
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 3,
}
snake_case_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(UpperCAmelCase_ )
snake_case_ = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" )
model.to(UpperCAmelCase_ ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
snake_case_ = image.to(UpperCAmelCase_ )
with torch.no_grad():
snake_case_ = model(UpperCAmelCase_ ).sample
snake_case_ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] )
# fmt: on
self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 1 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = [
(1_000, 'M'),
(900, 'CM'),
(500, 'D'),
(400, 'CD'),
(100, 'C'),
(90, 'XC'),
(50, 'L'),
(40, 'XL'),
(10, 'X'),
(9, 'IX'),
(5, 'V'),
(4, 'IV'),
(1, 'I'),
]
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
snake_case_ = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000}
snake_case_ = 0
snake_case_ = 0
while place < len(_SCREAMING_SNAKE_CASE ):
if (place + 1 < len(_SCREAMING_SNAKE_CASE )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
snake_case_ = []
for arabic, roman in ROMAN:
((snake_case_) , (snake_case_)) = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
result.append(roman * factor )
if number == 0:
break
return "".join(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = KandinskyVaaControlnetPipeline
__lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: Union[str, Any] = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
__lowercase: Tuple = False
@property
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return 100
@property
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
snake_case_ = self.dummy_unet
snake_case_ = self.dummy_movq
snake_case_ = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , )
snake_case_ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]:
"""simple docstring"""
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase_ )
# create hint
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
if str(UpperCAmelCase_ ).startswith("""mps""" ):
snake_case_ = torch.manual_seed(UpperCAmelCase_ )
else:
snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = """cpu"""
snake_case_ = self.get_dummy_components()
snake_case_ = self.pipeline_class(**UpperCAmelCase_ )
snake_case_ = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
snake_case_ = output.images
snake_case_ = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ = np.array(
[0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0
snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case_ = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case_ = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = """A robot, 4k photo"""
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ , snake_case_ = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ = pipeline(
image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 2 | 1 |
"""simple docstring"""
import collections
import os
import re
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = 'src/transformers'
# Matches is_xxx_available()
__SCREAMING_SNAKE_CASE : List[str] = re.compile(R'is\_([a-z_]*)_available()')
# Catches a one-line _import_struct = {xxx}
__SCREAMING_SNAKE_CASE : int = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
__SCREAMING_SNAKE_CASE : str = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]')
# Catches a line if not is_foo_available
__SCREAMING_SNAKE_CASE : Tuple = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)')
# Catches a line _import_struct["bla"].append("foo")
__SCREAMING_SNAKE_CASE : List[str] = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
__SCREAMING_SNAKE_CASE : Tuple = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]')
# Catches a line with an object between quotes and a comma: "MyModel",
__SCREAMING_SNAKE_CASE : List[str] = re.compile(R'^\s+"([^"]+)",')
# Catches a line with objects between brackets only: ["foo", "bar"],
__SCREAMING_SNAKE_CASE : Dict = re.compile(R'^\s+\[([^\]]+)\]')
# Catches a line with from foo import bar, bla, boo
__SCREAMING_SNAKE_CASE : Dict = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n')
# Catches a line with try:
__SCREAMING_SNAKE_CASE : int = re.compile(R'^\s*try:')
# Catches a line with else:
__SCREAMING_SNAKE_CASE : Tuple = re.compile(R'^\s*else:')
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
if _re_test_backend.search(_SCREAMING_SNAKE_CASE ) is None:
return None
snake_case_ = [b[0] for b in _re_backend.findall(_SCREAMING_SNAKE_CASE )]
backends.sort()
return "_and_".join(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
with open(_SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
snake_case_ = f.readlines()
snake_case_ = 0
while line_index < len(_SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith("""_import_structure = {""" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(_SCREAMING_SNAKE_CASE ):
return None
# First grab the objects without a specific backend in _import_structure
snake_case_ = []
while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None:
snake_case_ = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ):
snake_case_ = _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ).groups()[0]
snake_case_ = re.findall(r"""\[([^\]]+)\]""" , _SCREAMING_SNAKE_CASE )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(""", """ )] )
line_index += 1
continue
snake_case_ = _re_import_struct_key_value.search(_SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
snake_case_ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(_SCREAMING_SNAKE_CASE ) > 0]
objects.extend(_SCREAMING_SNAKE_CASE )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
line_index += 1
snake_case_ = {"""none""": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("""if TYPE_CHECKING""" ):
# If the line is an if not is_backend_available, we grab all objects associated.
snake_case_ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
snake_case_ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
snake_case_ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ):
snake_case_ = lines[line_index]
if _re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ).groups()[0] )
elif _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ) is not None:
snake_case_ = _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(""", """ )
snake_case_ = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0]
objects.extend(_SCREAMING_SNAKE_CASE )
elif _re_between_brackets.search(_SCREAMING_SNAKE_CASE ) is not None:
snake_case_ = _re_between_brackets.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(""", """ )
snake_case_ = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0]
objects.extend(_SCREAMING_SNAKE_CASE )
elif _re_quote_object.search(_SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_quote_object.search(_SCREAMING_SNAKE_CASE ).groups()[0] )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
elif line.startswith(""" """ * 12 + """\"""" ):
objects.append(line[13:-3] )
line_index += 1
snake_case_ = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
snake_case_ = []
while (
line_index < len(_SCREAMING_SNAKE_CASE )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("""else""" )
):
snake_case_ = lines[line_index]
snake_case_ = _re_import.search(_SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
snake_case_ = {"""none""": objects}
# Let's continue with backend-specific objects
while line_index < len(_SCREAMING_SNAKE_CASE ):
# If the line is an if is_backend_available, we grab all objects associated.
snake_case_ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
snake_case_ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
snake_case_ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ):
snake_case_ = lines[line_index]
snake_case_ = _re_import.search(_SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 12 ):
objects.append(line[12:-2] )
line_index += 1
snake_case_ = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
def find_duplicates(_SCREAMING_SNAKE_CASE ):
return [k for k, v in collections.Counter(_SCREAMING_SNAKE_CASE ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
snake_case_ = []
for key in import_dict_objects.keys():
snake_case_ = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
snake_case_ = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
snake_case_ = """base imports""" if key == """none""" else f"""{key} backend"""
errors.append(f"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def _a ( ) -> str:
snake_case_ = []
for root, _, files in os.walk(_SCREAMING_SNAKE_CASE ):
if "__init__.py" in files:
snake_case_ = os.path.join(_SCREAMING_SNAKE_CASE , """__init__.py""" )
snake_case_ = parse_init(_SCREAMING_SNAKE_CASE )
if objects is not None:
snake_case_ = analyze_results(*_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
snake_case_ = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append("""\n""".join(_SCREAMING_SNAKE_CASE ) )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError("""\n\n""".join(_SCREAMING_SNAKE_CASE ) )
def _a ( ) -> int:
snake_case_ = []
for path, directories, files in os.walk(_SCREAMING_SNAKE_CASE ):
for folder in directories:
# Ignore private modules
if folder.startswith("""_""" ):
directories.remove(_SCREAMING_SNAKE_CASE )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(_SCREAMING_SNAKE_CASE ) / folder).glob("""*.py""" ) ) ) == 0:
continue
snake_case_ = str((Path(_SCREAMING_SNAKE_CASE ) / folder).relative_to(_SCREAMING_SNAKE_CASE ) )
snake_case_ = short_path.replace(os.path.sep , """.""" )
submodules.append(_SCREAMING_SNAKE_CASE )
for fname in files:
if fname == "__init__.py":
continue
snake_case_ = str((Path(_SCREAMING_SNAKE_CASE ) / fname).relative_to(_SCREAMING_SNAKE_CASE ) )
snake_case_ = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" )
if len(submodule.split(""".""" ) ) == 1:
submodules.append(_SCREAMING_SNAKE_CASE )
return submodules
__SCREAMING_SNAKE_CASE : Dict = [
'convert_pytorch_checkpoint_to_tf2',
'modeling_flax_pytorch_utils',
'models.esm.openfold_utils',
]
def _a ( ) -> Tuple:
# This is to make sure the transformers module imported is the one in the repo.
from transformers.utils import direct_transformers_import
snake_case_ = direct_transformers_import(_SCREAMING_SNAKE_CASE )
snake_case_ = set(transformers._import_structure.keys() )
# This contains all the base keys of the _import_structure object defined in the init, but if the user is missing
# some optional dependencies, they may not have all of them. Thus we read the init to read all additions and
# (potentiall re-) add them.
with open(os.path.join(_SCREAMING_SNAKE_CASE , """__init__.py""" ) , """r""" ) as f:
snake_case_ = f.read()
import_structure_keys.update(set(re.findall(r"""import_structure\[\"([^\"]*)\"\]""" , _SCREAMING_SNAKE_CASE ) ) )
snake_case_ = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in import_structure_keys
]
if len(_SCREAMING_SNAKE_CASE ) > 0:
snake_case_ = """\n""".join(f"""- {module}""" for module in module_not_registered )
raise ValueError(
"""The following submodules are not properly registed in the main init of Transformers:\n"""
f"""{list_of_modules}\n"""
"""Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 2 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
class __A :
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = []
self.adlist.append(
{"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} )
for keyword in keywords:
self.add_keyword(UpperCAmelCase_ )
self.set_fail_transitions()
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None:
"""simple docstring"""
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None:
"""simple docstring"""
snake_case_ = 0
for character in keyword:
snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ )
if next_state is None:
self.adlist.append(
{
"""value""": character,
"""next_states""": [],
"""fail_state""": 0,
"""output""": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
snake_case_ = len(self.adlist ) - 1
else:
snake_case_ = next_state
self.adlist[current_state]["output"].append(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->None:
"""simple docstring"""
snake_case_ = deque()
for node in self.adlist[0]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = 0
while q:
snake_case_ = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = self.adlist[r]["""fail_state"""]
while (
self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None
and state != 0
):
snake_case_ = self.adlist[state]["""fail_state"""]
snake_case_ = self.find_next_state(
UpperCAmelCase_ , self.adlist[child]["""value"""] )
if self.adlist[child]["fail_state"] is None:
snake_case_ = 0
snake_case_ = (
self.adlist[child]["""output"""]
+ self.adlist[self.adlist[child]["""fail_state"""]]["""output"""]
)
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]:
"""simple docstring"""
snake_case_ = {} # returns a dict with keywords and list of its occurrences
snake_case_ = 0
for i in range(len(UpperCAmelCase_ ) ):
while (
self.find_next_state(UpperCAmelCase_ , string[i] ) is None
and current_state != 0
):
snake_case_ = self.adlist[current_state]["""fail_state"""]
snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] )
if next_state is None:
snake_case_ = 0
else:
snake_case_ = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
snake_case_ = []
result[key].append(i - len(UpperCAmelCase_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing the experiment tracking capability,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__SCREAMING_SNAKE_CASE : Any = 16
__SCREAMING_SNAKE_CASE : List[str] = 32
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 16 ) -> Tuple:
snake_case_ = AutoTokenizer.from_pretrained("""bert-base-cased""" )
snake_case_ = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(_SCREAMING_SNAKE_CASE ):
# max_length=None => use the model max length (it's actually the default)
snake_case_ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
snake_case_ = datasets.map(
_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
snake_case_ = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(_SCREAMING_SNAKE_CASE ):
# On TPU it's best to pad everything to the same length or training will be very slow.
snake_case_ = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
snake_case_ = 16
elif accelerator.mixed_precision != "no":
snake_case_ = 8
else:
snake_case_ = None
return tokenizer.pad(
_SCREAMING_SNAKE_CASE , padding="""longest""" , max_length=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , )
# Instantiate dataloaders.
snake_case_ = DataLoader(
tokenized_datasets["""train"""] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE )
snake_case_ = DataLoader(
tokenized_datasets["""validation"""] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
__SCREAMING_SNAKE_CASE : Tuple = mocked_dataloaders # noqa: F811
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _SCREAMING_SNAKE_CASE ) == "1":
snake_case_ = 2
# Initialize Accelerator
# New Code #
# We pass in "all" to `log_with` to grab all available trackers in the environment
# Note: If using a custom `Tracker` class, should be passed in here such as:
# >>> log_with = ["all", MyCustomTrackerClassInstance()]
if args.with_tracking:
snake_case_ = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir )
else:
snake_case_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
snake_case_ = config["""lr"""]
snake_case_ = int(config["""num_epochs"""] )
snake_case_ = int(config["""seed"""] )
snake_case_ = int(config["""batch_size"""] )
set_seed(_SCREAMING_SNAKE_CASE )
snake_case_ , snake_case_ = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = evaluate.load("""glue""" , """mrpc""" )
# If the batch size is too big we use gradient accumulation
snake_case_ = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
snake_case_ = batch_size // MAX_GPU_BATCH_SIZE
snake_case_ = MAX_GPU_BATCH_SIZE
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
snake_case_ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_SCREAMING_SNAKE_CASE )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
snake_case_ = model.to(accelerator.device )
# Instantiate optimizer
snake_case_ = AdamW(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE )
# Instantiate scheduler
snake_case_ = get_linear_schedule_with_warmup(
optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = accelerator.prepare(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# New Code #
# We need to initialize the trackers we use. Overall configurations can also be stored
if args.with_tracking:
snake_case_ = os.path.split(_SCREAMING_SNAKE_CASE )[-1].split(""".""" )[0]
accelerator.init_trackers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Now we train the model
for epoch in range(_SCREAMING_SNAKE_CASE ):
model.train()
# New Code #
# For our tracking example, we will log the total loss of each epoch
if args.with_tracking:
snake_case_ = 0
for step, batch in enumerate(_SCREAMING_SNAKE_CASE ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
snake_case_ = model(**_SCREAMING_SNAKE_CASE )
snake_case_ = outputs.loss
# New Code #
if args.with_tracking:
total_loss += loss.detach().float()
snake_case_ = loss / gradient_accumulation_steps
accelerator.backward(_SCREAMING_SNAKE_CASE )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(_SCREAMING_SNAKE_CASE ):
# We could avoid this line since we set the accelerator with `device_placement=True` (the default).
batch.to(accelerator.device )
with torch.no_grad():
snake_case_ = model(**_SCREAMING_SNAKE_CASE )
snake_case_ = outputs.logits.argmax(dim=-1 )
snake_case_ , snake_case_ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , )
snake_case_ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""" , _SCREAMING_SNAKE_CASE )
# New Code #
# To actually log, we call `Accelerator.log`
# The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int`
if args.with_tracking:
accelerator.log(
{
"""accuracy""": eval_metric["""accuracy"""],
"""f1""": eval_metric["""f1"""],
"""train_loss""": total_loss.item() / len(_SCREAMING_SNAKE_CASE ),
"""epoch""": epoch,
} , step=_SCREAMING_SNAKE_CASE , )
# New Code #
# When a run is finished, you should call `accelerator.end_training()`
# to close all of the open trackers
if args.with_tracking:
accelerator.end_training()
def _a ( ) -> Any:
snake_case_ = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
parser.add_argument(
"""--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , )
parser.add_argument(
"""--project_dir""" , type=_SCREAMING_SNAKE_CASE , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , )
snake_case_ = parser.parse_args()
snake_case_ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 2 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = num_channels
snake_case_ = num_stages
snake_case_ = hidden_sizes
snake_case_ = depths
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = num_labels
snake_case_ = initializer_range
snake_case_ = out_features
snake_case_ = out_indices
snake_case_ = scope
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case_ = None
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[Any] = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
__lowercase: Union[str, Any] = (
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Optional[Any] = False
__lowercase: Any = False
__lowercase: Union[str, Any] = False
__lowercase: Dict = False
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = True
if model_class.__name__ in [
*get_values(UpperCAmelCase_ ),
*get_values(UpperCAmelCase_ ),
]:
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = False
snake_case_ = True
if (
model_class.__name__
in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )]
or not model_class.supports_gradient_checkpointing
):
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.gradient_checkpointing_enable()
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ):
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case_ = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _a ( ) -> str:
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ )
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
# verify the logits
snake_case_ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
| 2 | 1 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
snake_case_ = [int(_SCREAMING_SNAKE_CASE ) for i in ip_va_address.split(""".""" ) if i.isdigit()]
return len(_SCREAMING_SNAKE_CASE ) == 4 and all(0 <= int(_SCREAMING_SNAKE_CASE ) <= 254 for octet in octets )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Any = input().strip()
__SCREAMING_SNAKE_CASE : int = 'valid' if is_ip_va_address_valid(ip) else 'invalid'
print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
| 2 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights']
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
if "emb" in name:
snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
snake_case_ = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
snake_case_ = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
snake_case_ = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
snake_case_ = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
snake_case_ = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]:
snake_case_ = list(state_dict.keys() )
snake_case_ = {}
for key in keys:
snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE )
if "in_proj_weight" in key:
# split fused qkv proj
snake_case_ = val[:hidden_size, :]
snake_case_ = val[hidden_size : 2 * hidden_size, :]
snake_case_ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
snake_case_ = val
else:
snake_case_ = val
return state_dict, enc_dec_proj_state_dict
def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
snake_case_ = 1_024
snake_case_ = 24
snake_case_ = 16
elif checkpoint == "medium":
snake_case_ = 1_536
snake_case_ = 48
snake_case_ = 24
elif checkpoint == "large":
snake_case_ = 2_048
snake_case_ = 48
snake_case_ = 32
else:
raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
snake_case_ = MusicgenDecoderConfig(
hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , )
return config
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple:
snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE )
snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE )
snake_case_ = fairseq_model.lm.state_dict()
snake_case_ , snake_case_ = rename_state_dict(
_SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size )
snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" )
snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE )
# check we can do a forward pass
snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
snake_case_ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" )
snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
# set the appropriate bos/pad token ids
snake_case_ = 2_048
snake_case_ = 2_048
# set other default generation config params
snake_case_ = int(30 * audio_encoder.config.frame_rate )
snake_case_ = True
snake_case_ = 3.0
if pytorch_dump_folder is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if repo_id:
logger.info(f"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
processor.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint',
default='small',
type=str,
help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.',
)
parser.add_argument(
'--pytorch_dump_folder',
required=True,
default=None,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
parser.add_argument(
'--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.'
)
__SCREAMING_SNAKE_CASE : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 2 | 1 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'}
__SCREAMING_SNAKE_CASE : List[str] = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
}
}
__SCREAMING_SNAKE_CASE : List[str] = {
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
__SCREAMING_SNAKE_CASE : int = '▁'
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = VOCAB_FILES_NAMES
__lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None:
"""simple docstring"""
snake_case_ = (
AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
else mask_token
)
snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
snake_case_ = do_lower_case
snake_case_ = remove_space
snake_case_ = keep_accents
snake_case_ = vocab_file
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
return len(self.sp_model )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) ->List[str]:
"""simple docstring"""
snake_case_ = self.__dict__.copy()
snake_case_ = None
return state
def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
snake_case_ = {}
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str:
"""simple docstring"""
if self.remove_space:
snake_case_ = """ """.join(inputs.strip().split() )
else:
snake_case_ = inputs
snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ )
snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] )
if self.do_lower_case:
snake_case_ = outputs.lower()
return outputs
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
snake_case_ = self.preprocess_text(UpperCAmelCase_ )
snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
snake_case_ = []
for piece in pieces:
if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
snake_case_ = cur_pieces[1:]
else:
snake_case_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCAmelCase_ )
else:
new_pieces.append(UpperCAmelCase_ )
return new_pieces
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict:
"""simple docstring"""
return self.sp_model.PieceToId(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return self.sp_model.IdToPiece(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any:
"""simple docstring"""
snake_case_ = []
snake_case_ = """"""
snake_case_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase_ ) + token
snake_case_ = True
snake_case_ = []
else:
current_sub_tokens.append(UpperCAmelCase_ )
snake_case_ = False
out_string += self.sp_model.decode(UpperCAmelCase_ )
return out_string.strip()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , """wb""" ) as fi:
snake_case_ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
return (out_vocab_file,)
| 2 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
if index == number_of_items:
return 0
snake_case_ = 0
snake_case_ = 0
snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 )
if weights[index] <= max_weight:
snake_case_ = values[index] + knapsack(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 )
return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import numpy as np
import torch
import tqdm
from ...models.unet_ad import UNetaDModel
from ...pipelines import DiffusionPipeline
from ...utils import randn_tensor
from ...utils.dummy_pt_objects import DDPMScheduler
class __A (snake_case__):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : UNetaDModel , UpperCAmelCase_ : UNetaDModel , UpperCAmelCase_ : DDPMScheduler , UpperCAmelCase_ : Tuple , ) ->Tuple:
"""simple docstring"""
super().__init__()
snake_case_ = value_function
snake_case_ = unet
snake_case_ = scheduler
snake_case_ = env
snake_case_ = env.get_dataset()
snake_case_ = {}
for key in self.data.keys():
try:
snake_case_ = self.data[key].mean()
except: # noqa: E722
pass
snake_case_ = {}
for key in self.data.keys():
try:
snake_case_ = self.data[key].std()
except: # noqa: E722
pass
snake_case_ = env.observation_space.shape[0]
snake_case_ = env.action_space.shape[0]
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ) ->Optional[Any]:
"""simple docstring"""
return (x_in - self.means[key]) / self.stds[key]
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] ) ->List[str]:
"""simple docstring"""
return x_in * self.stds[key] + self.means[key]
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
if type(UpperCAmelCase_ ) is dict:
return {k: self.to_torch(UpperCAmelCase_ ) for k, v in x_in.items()}
elif torch.is_tensor(UpperCAmelCase_ ):
return x_in.to(self.unet.device )
return torch.tensor(UpperCAmelCase_ , device=self.unet.device )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) ->int:
"""simple docstring"""
for key, val in cond.items():
snake_case_ = val.clone()
return x_in
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = x.shape[0]
snake_case_ = None
for i in tqdm.tqdm(self.scheduler.timesteps ):
# create batch of timesteps to pass into model
snake_case_ = torch.full((batch_size,) , UpperCAmelCase_ , device=self.unet.device , dtype=torch.long )
for _ in range(UpperCAmelCase_ ):
with torch.enable_grad():
x.requires_grad_()
# permute to match dimension for pre-trained models
snake_case_ = self.value_function(x.permute(0 , 2 , 1 ) , UpperCAmelCase_ ).sample
snake_case_ = torch.autograd.grad([y.sum()] , [x] )[0]
snake_case_ = self.scheduler._get_variance(UpperCAmelCase_ )
snake_case_ = torch.exp(0.5 * posterior_variance )
snake_case_ = model_std * grad
snake_case_ = 0
snake_case_ = x.detach()
snake_case_ = x + scale * grad
snake_case_ = self.reset_xa(UpperCAmelCase_ , UpperCAmelCase_ , self.action_dim )
snake_case_ = self.unet(x.permute(0 , 2 , 1 ) , UpperCAmelCase_ ).sample.permute(0 , 2 , 1 )
# TODO: verify deprecation of this kwarg
snake_case_ = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , predict_epsilon=UpperCAmelCase_ )["""prev_sample"""]
# apply conditions to the trajectory (set the initial state)
snake_case_ = self.reset_xa(UpperCAmelCase_ , UpperCAmelCase_ , self.action_dim )
snake_case_ = self.to_torch(UpperCAmelCase_ )
return x, y
def __call__( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str=64 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : str=0.1 ) ->str:
"""simple docstring"""
snake_case_ = self.normalize(UpperCAmelCase_ , """observations""" )
snake_case_ = obs[None].repeat(UpperCAmelCase_ , axis=0 )
snake_case_ = {0: self.to_torch(UpperCAmelCase_ )}
snake_case_ = (batch_size, planning_horizon, self.state_dim + self.action_dim)
# generate initial noise and apply our conditions (to make the trajectories start at current state)
snake_case_ = randn_tensor(UpperCAmelCase_ , device=self.unet.device )
snake_case_ = self.reset_xa(UpperCAmelCase_ , UpperCAmelCase_ , self.action_dim )
snake_case_ = self.to_torch(UpperCAmelCase_ )
# run the diffusion process
snake_case_ , snake_case_ = self.run_diffusion(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# sort output trajectories by value
snake_case_ = y.argsort(0 , descending=UpperCAmelCase_ ).squeeze()
snake_case_ = x[sorted_idx]
snake_case_ = sorted_values[:, :, : self.action_dim]
snake_case_ = actions.detach().cpu().numpy()
snake_case_ = self.de_normalize(UpperCAmelCase_ , key="""actions""" )
# select the action with the highest value
if y is not None:
snake_case_ = 0
else:
# if we didn't run value guiding, select a random action
snake_case_ = np.random.randint(0 , UpperCAmelCase_ )
snake_case_ = denorm_actions[selected_index, 0]
return denorm_actions
| 2 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int:
snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
snake_case_ = n // 2
return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
__SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 2 | 1 |
"""simple docstring"""
from __future__ import annotations
import math
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
__SCREAMING_SNAKE_CASE : str = [num for num in range(3, 100_001, 2) if not is_prime(num)]
def _a ( _SCREAMING_SNAKE_CASE ) -> list[int]:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise ValueError("""n must be an integer""" )
if n <= 0:
raise ValueError("""n must be >= 0""" )
snake_case_ = []
for num in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = 0
while 2 * i * i <= odd_composites[num]:
snake_case_ = odd_composites[num] - 2 * i * i
if is_prime(_SCREAMING_SNAKE_CASE ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(_SCREAMING_SNAKE_CASE ) == n:
return list_nums
return []
def _a ( ) -> int:
return compute_nums(1 )[0]
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 |
"""simple docstring"""
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str:
snake_case_ = ascii_letters + digits + punctuation
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(_SCREAMING_SNAKE_CASE )
snake_case_ = i // 3
snake_case_ = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
snake_case_ = (
chars_incl
+ random(_SCREAMING_SNAKE_CASE , quotient + remainder )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
)
snake_case_ = list(_SCREAMING_SNAKE_CASE )
shuffle(_SCREAMING_SNAKE_CASE )
return "".join(_SCREAMING_SNAKE_CASE )
# random is a generalised function for letters, characters and numbers
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool:
if len(_SCREAMING_SNAKE_CASE ) < min_length:
# Your Password must be at least 8 characters long
return False
snake_case_ = any(char in ascii_uppercase for char in password )
snake_case_ = any(char in ascii_lowercase for char in password )
snake_case_ = any(char in digits for char in password )
snake_case_ = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def _a ( ) -> str:
snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() )
snake_case_ = input(
"""Please indicate the characters that must be in your password: """ ).strip()
print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) )
print(
"""Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , )
print("""[If you are thinking of using this passsword, You better save it.]""" )
if __name__ == "__main__":
main()
| 2 | 1 |
"""simple docstring"""
import json
import os
import re
import unittest
from transformers import CodeGenTokenizer, CodeGenTokenizerFast
from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = CodeGenTokenizer
__lowercase: Any = CodeGenTokenizerFast
__lowercase: Dict = True
__lowercase: Any = {"""add_prefix_space""": True}
__lowercase: Dict = False
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
snake_case_ = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
"""<|endoftext|>""",
]
snake_case_ = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) )
snake_case_ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
snake_case_ = {"""unk_token""": """<unk>"""}
snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(UpperCAmelCase_ ) )
def lowerCAmelCase ( self : List[str] , **UpperCAmelCase_ : List[Any] ) ->List[Any]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return CodeGenTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def lowerCAmelCase ( self : str , **UpperCAmelCase_ : Union[str, Any] ) ->int:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] ) ->str:
"""simple docstring"""
snake_case_ = """lower newer"""
snake_case_ = """lower newer"""
return input_text, output_text
def lowerCAmelCase ( self : str ) ->str:
"""simple docstring"""
snake_case_ = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
snake_case_ = """lower newer"""
snake_case_ = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
snake_case_ = tokenizer.tokenize(UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ )
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = tokens + [tokenizer.unk_token]
snake_case_ = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ )
def lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
snake_case_ = self.get_tokenizer()
snake_case_ = self.get_rust_tokenizer(add_prefix_space=UpperCAmelCase_ )
snake_case_ = """lower newer"""
# Testing tokenization
snake_case_ = tokenizer.tokenize(UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ )
snake_case_ = rust_tokenizer.tokenize(UpperCAmelCase_ )
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
# Testing conversion to ids without special tokens
snake_case_ = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ )
snake_case_ = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ )
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
# Testing conversion to ids with special tokens
snake_case_ = self.get_rust_tokenizer(add_prefix_space=UpperCAmelCase_ )
snake_case_ = tokenizer.encode(UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ )
snake_case_ = rust_tokenizer.encode(UpperCAmelCase_ )
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
# Testing the unknown token
snake_case_ = tokens + [rust_tokenizer.unk_token]
snake_case_ = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ )
def lowerCAmelCase ( self : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any] ) ->str:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Optional[Any]=15 ) ->str:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
snake_case_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ )
# Simple input
snake_case_ = """This is a simple input"""
snake_case_ = ["""This is a simple input 1""", """This is a simple input 2"""]
snake_case_ = ("""This is a simple input""", """This is a pair""")
snake_case_ = [
("""This is a simple input 1""", """This is a simple input 2"""),
("""This is a simple pair 1""", """This is a simple pair 2"""),
]
# Simple input tests
self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="""max_length""" )
# Simple input
self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="""max_length""" )
# Simple input
self.assertRaises(
UpperCAmelCase_ , tokenizer_r.batch_encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="""max_length""" , )
# Pair input
self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="""max_length""" )
# Pair input
self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="""max_length""" )
# Pair input
self.assertRaises(
UpperCAmelCase_ , tokenizer_r.batch_encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="""max_length""" , )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" )
# Simple input
snake_case_ = """This is a simple input"""
snake_case_ = ["""This is a simple input looooooooong""", """This is a simple input"""]
snake_case_ = ("""This is a simple input""", """This is a pair""")
snake_case_ = [
("""This is a simple input loooooong""", """This is a simple input"""),
("""This is a simple pair loooooong""", """This is a simple pair"""),
]
snake_case_ = tokenizer.pad_token_id
snake_case_ = tokenizer(UpperCAmelCase_ , padding="""max_length""" , max_length=30 , return_tensors="""np""" )
snake_case_ = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , truncate=UpperCAmelCase_ , return_tensors="""np""" )
snake_case_ = tokenizer(*UpperCAmelCase_ , padding="""max_length""" , max_length=60 , return_tensors="""np""" )
snake_case_ = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , truncate=UpperCAmelCase_ , return_tensors="""np""" )
# s
# test single string max_length padding
self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 )
self.assertTrue(pad_token_id in out_s["""input_ids"""] )
self.assertTrue(0 in out_s["""attention_mask"""] )
# s2
# test automatic padding
self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 )
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] )
self.assertFalse(0 in out_sa["""attention_mask"""][0] )
# short slice does have padding
self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] )
self.assertTrue(0 in out_sa["""attention_mask"""][1] )
# p
# test single pair max_length padding
self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 )
self.assertTrue(pad_token_id in out_p["""input_ids"""] )
self.assertTrue(0 in out_p["""attention_mask"""] )
# p2
# test automatic padding pair
self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 )
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] )
self.assertFalse(0 in out_pa["""attention_mask"""][0] )
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] )
self.assertTrue(0 in out_pa["""attention_mask"""][1] )
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = """$$$"""
snake_case_ = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=UpperCAmelCase_ , add_bos_token=UpperCAmelCase_ )
snake_case_ = """This is a simple input"""
snake_case_ = ["""This is a simple input 1""", """This is a simple input 2"""]
snake_case_ = tokenizer.bos_token_id
snake_case_ = tokenizer(UpperCAmelCase_ )
snake_case_ = tokenizer(UpperCAmelCase_ )
self.assertEqual(out_s.input_ids[0] , UpperCAmelCase_ )
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) )
snake_case_ = tokenizer.decode(out_s.input_ids )
snake_case_ = tokenizer.batch_decode(out_sa.input_ids )
self.assertEqual(decode_s.split()[0] , UpperCAmelCase_ )
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) )
@slow
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" )
snake_case_ = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#"""
snake_case_ = """\nif len_a > len_b: result = a\nelse: result = b"""
snake_case_ = tokenizer.encode(UpperCAmelCase_ )
snake_case_ = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""]
snake_case_ = tokenizer.decode(UpperCAmelCase_ , truncate_before_pattern=UpperCAmelCase_ )
self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
pass
| 2 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_normalize
def lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
snake_case_ = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" )
image_processor_first.to_json_file(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
pass
def _a ( ) -> str:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
snake_case_ = Image.open(dataset[4]["""file"""] )
snake_case_ = Image.open(dataset[5]["""file"""] )
snake_case_ = [imagea, imagea]
return images
@require_vision
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
snake_case_ = prepare_images()
# test non-batched
snake_case_ = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_024) )
snake_case_ = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ )
# test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_024) )
snake_case_ = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
| 2 | 1 |
"""simple docstring"""
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : str=[1, 2, 1] , UpperCAmelCase_ : str=[2, 2, 4] , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=2.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : str=True , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Dict=1E-5 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[Any]=10 , UpperCAmelCase_ : List[Any]=8 , ) ->int:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = patch_size
snake_case_ = num_channels
snake_case_ = embed_dim
snake_case_ = depths
snake_case_ = num_heads
snake_case_ = window_size
snake_case_ = mlp_ratio
snake_case_ = qkv_bias
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = drop_path_rate
snake_case_ = hidden_act
snake_case_ = use_absolute_embeddings
snake_case_ = patch_norm
snake_case_ = layer_norm_eps
snake_case_ = initializer_range
snake_case_ = is_training
snake_case_ = scope
snake_case_ = use_labels
snake_case_ = type_sequence_label_size
snake_case_ = encoder_stride
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = SwinvaModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
snake_case_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
snake_case_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = SwinvaForMaskedImageModeling(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
snake_case_ = 1
snake_case_ = SwinvaForMaskedImageModeling(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.type_sequence_label_size
snake_case_ = SwinvaForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Any = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
__lowercase: Dict = (
{"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Optional[Any] = False
__lowercase: Union[str, Any] = False
__lowercase: str = False
def lowerCAmelCase ( self : List[Any] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = SwinvaModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , embed_dim=37 )
def lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
@unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" )
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""Swinv2 does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
snake_case_ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) )
def lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = True
for model_class in self.all_model_classes:
snake_case_ = True
snake_case_ = False
snake_case_ = True
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.attentions
snake_case_ = len(self.model_tester.depths )
self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
snake_case_ = True
snake_case_ = config.window_size**2
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.attentions
self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
snake_case_ = len(UpperCAmelCase_ )
# Check attention is always last and order is fine
snake_case_ = True
snake_case_ = True
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
if hasattr(self.model_tester , """num_hidden_states_types""" ):
snake_case_ = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
snake_case_ = 2
self.assertEqual(out_len + added_hidden_states , len(UpperCAmelCase_ ) )
snake_case_ = outputs.attentions
self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.hidden_states
snake_case_ = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ )
# Swinv2 has a different seq_length
snake_case_ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
snake_case_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
snake_case_ = outputs.reshaped_hidden_states
self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ )
snake_case_ , snake_case_ , snake_case_ , snake_case_ = reshaped_hidden_states[0].shape
snake_case_ = (
reshaped_hidden_states[0].view(UpperCAmelCase_ , UpperCAmelCase_ , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def lowerCAmelCase ( self : Any ) ->List[str]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
snake_case_ = True
self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = 3
snake_case_ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
snake_case_ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
snake_case_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
snake_case_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
snake_case_ = True
self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = SwinvaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = _config_zero_init(UpperCAmelCase_ )
for model_class in self.all_model_classes:
snake_case_ = model_class(config=UpperCAmelCase_ )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@require_vision
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" )
if is_vision_available()
else None
)
@slow
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to(
UpperCAmelCase_ )
snake_case_ = self.default_image_processor
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
snake_case_ = image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
# verify the logits
snake_case_ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([-0.3_947, -0.4_306, 0.0_026] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
| 2 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = scope
snake_case_ = range_bbox
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case_ = bbox[i, j, 3]
snake_case_ = bbox[i, j, 1]
snake_case_ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case_ = bbox[i, j, 2]
snake_case_ = bbox[i, j, 0]
snake_case_ = t
snake_case_ = None
if self.use_input_mask:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str:
"""simple docstring"""
snake_case_ = LiltModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict:
"""simple docstring"""
snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowercase: Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return True
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = LiltModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_torch
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ )
snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ )
snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ )
snake_case_ = torch.Size([1, 2, 768] )
snake_case_ = torch.tensor(
[[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 1 |
"""simple docstring"""
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class __A (datasets.BeamBasedBuilder):
'''simple docstring'''
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
return datasets.DatasetInfo(
features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any ) ->Tuple:
"""simple docstring"""
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )]
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(UpperCAmelCase_ )
class __A (datasets.BeamBasedBuilder):
'''simple docstring'''
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
return datasets.DatasetInfo(
features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=UpperCAmelCase_ , )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[Any]:
"""simple docstring"""
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} )
]
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(UpperCAmelCase_ )
def _a ( ) -> Dict:
return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )]
def _a ( ) -> int:
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )]
class __A (snake_case__):
'''simple docstring'''
@require_beam
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
snake_case_ = DummyBeamDataset(cache_dir=UpperCAmelCase_ , beam_runner="""DirectRunner""" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(UpperCAmelCase_ , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train.arrow""" ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) )
snake_case_ = builder.as_dataset()
self.assertEqual(dset["""train"""].num_rows , UpperCAmelCase_ )
self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , UpperCAmelCase_ )
self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(UpperCAmelCase_ , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) )
del dset
@require_beam
def lowerCAmelCase ( self : List[str] ) ->Optional[int]:
"""simple docstring"""
import apache_beam as beam
snake_case_ = beam.io.parquetio.WriteToParquet
snake_case_ = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
snake_case_ = DummyBeamDataset(cache_dir=UpperCAmelCase_ , beam_runner="""DirectRunner""" )
with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock:
snake_case_ = partial(UpperCAmelCase_ , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
UpperCAmelCase_ , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
UpperCAmelCase_ , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) )
snake_case_ = builder.as_dataset()
self.assertEqual(dset["""train"""].num_rows , UpperCAmelCase_ )
self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , UpperCAmelCase_ )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) )
self.assertTrue(
os.path.exists(os.path.join(UpperCAmelCase_ , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) )
del dset
@require_beam
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_cache_dir:
snake_case_ = DummyBeamDataset(cache_dir=UpperCAmelCase_ )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
snake_case_ = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
snake_case_ = NestedBeamDataset(cache_dir=UpperCAmelCase_ , beam_runner="""DirectRunner""" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(UpperCAmelCase_ , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train.arrow""" ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) )
snake_case_ = builder.as_dataset()
self.assertEqual(dset["""train"""].num_rows , UpperCAmelCase_ )
self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , UpperCAmelCase_ )
self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(UpperCAmelCase_ , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) )
del dset
| 2 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = 0
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
snake_case_ = i + 1
else:
snake_case_ = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
| 2 | 1 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True})
__lowercase: ClassVar[Features] = Features({"""audio""": Audio()})
__lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")})
__lowercase: str = "audio"
__lowercase: str = "transcription"
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int:
"""simple docstring"""
if self.audio_column not in features:
raise ValueError(F"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , UpperCAmelCase_ ):
raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" )
snake_case_ = copy.deepcopy(self )
snake_case_ = self.input_schema.copy()
snake_case_ = features[self.audio_column]
snake_case_ = input_schema
return task_template
@property
def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]:
"""simple docstring"""
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 2 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 1 |
"""simple docstring"""
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __A (snake_case__):
'''simple docstring'''
__lowercase: int = ["""image_processor""", """tokenizer"""]
__lowercase: Optional[Any] = """LayoutLMv3ImageProcessor"""
__lowercase: Union[str, Any] = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""")
def __init__( self : Optional[int] , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Dict ) ->Any:
"""simple docstring"""
snake_case_ = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , UpperCAmelCase_ , )
snake_case_ = kwargs.pop("""feature_extractor""" )
snake_case_ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(UpperCAmelCase_ , UpperCAmelCase_ )
def __call__( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase_ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase_ : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase_ : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : int , ) ->BatchEncoding:
"""simple docstring"""
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"""You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""" )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"""You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" )
# first, apply the image processor
snake_case_ = self.image_processor(images=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = [text] # add batch dimension (as the image processor always adds a batch dimension)
snake_case_ = features["""words"""]
snake_case_ = self.tokenizer(
text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , )
# add pixel values
snake_case_ = features.pop("""pixel_values""" )
if return_overflowing_tokens is True:
snake_case_ = self.get_overflowing_images(UpperCAmelCase_ , encoded_inputs["""overflow_to_sample_mapping"""] )
snake_case_ = images
return encoded_inputs
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ):
raise ValueError(
"""Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"""
F""" {len(UpperCAmelCase_ )} and {len(UpperCAmelCase_ )}""" )
return images_with_overflow
def lowerCAmelCase ( self : Dict , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : int ) ->int:
"""simple docstring"""
return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : int ) ->str:
"""simple docstring"""
return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , UpperCAmelCase_ , )
return self.image_processor_class
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->str:
"""simple docstring"""
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , UpperCAmelCase_ , )
return self.image_processor
| 2 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter'
__SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE'
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}"""
raise TypeError(_SCREAMING_SNAKE_CASE )
snake_case_ = spanish_id.replace("""-""" , """""" ).upper()
if len(_SCREAMING_SNAKE_CASE ) != 9:
raise ValueError(_SCREAMING_SNAKE_CASE )
try:
snake_case_ = int(spanish_id_clean[0:8] )
snake_case_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_SCREAMING_SNAKE_CASE ) from ex
if letter.isdigit():
raise ValueError(_SCREAMING_SNAKE_CASE )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Union[str, "sqlalchemy.sql.Selectable"] , UpperCAmelCase_ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , UpperCAmelCase_ : Optional[Features] = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = False , **UpperCAmelCase_ : Optional[Any] , ) ->int:
"""simple docstring"""
super().__init__(features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ , **UpperCAmelCase_ )
snake_case_ = Sql(
cache_dir=UpperCAmelCase_ , features=UpperCAmelCase_ , sql=UpperCAmelCase_ , con=UpperCAmelCase_ , **UpperCAmelCase_ , )
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
snake_case_ = None
snake_case_ = None
snake_case_ = None
snake_case_ = None
self.builder.download_and_prepare(
download_config=UpperCAmelCase_ , download_mode=UpperCAmelCase_ , verification_mode=UpperCAmelCase_ , base_path=UpperCAmelCase_ , )
# Build dataset for splits
snake_case_ = self.builder.as_dataset(
split="""train""" , verification_mode=UpperCAmelCase_ , in_memory=self.keep_in_memory )
return dataset
class __A :
'''simple docstring'''
def __init__( self : Any , UpperCAmelCase_ : Dataset , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : Tuple , ) ->Dict:
"""simple docstring"""
if num_proc is not None and num_proc <= 0:
raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" )
snake_case_ = dataset
snake_case_ = name
snake_case_ = con
snake_case_ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
snake_case_ = num_proc
snake_case_ = to_sql_kwargs
def lowerCAmelCase ( self : Optional[Any] ) ->int:
"""simple docstring"""
snake_case_ = self.to_sql_kwargs.pop("""sql""" , UpperCAmelCase_ )
snake_case_ = self.to_sql_kwargs.pop("""con""" , UpperCAmelCase_ )
snake_case_ = self.to_sql_kwargs.pop("""index""" , UpperCAmelCase_ )
snake_case_ = self._write(index=UpperCAmelCase_ , **self.to_sql_kwargs )
return written
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ , snake_case_ = args
snake_case_ = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs
snake_case_ = query_table(
table=self.dataset.data , key=slice(UpperCAmelCase_ , offset + self.batch_size ) , indices=self.dataset._indices , )
snake_case_ = batch.to_pandas()
snake_case_ = df.to_sql(self.name , self.con , index=UpperCAmelCase_ , **UpperCAmelCase_ )
return num_rows or len(UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int] ) ->int:
"""simple docstring"""
snake_case_ = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
snake_case_ , snake_case_ = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , UpperCAmelCase_ , UpperCAmelCase_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += num_rows
return written
| 2 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'}
__SCREAMING_SNAKE_CASE : List[str] = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
}
}
__SCREAMING_SNAKE_CASE : List[str] = {
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
__SCREAMING_SNAKE_CASE : int = '▁'
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = VOCAB_FILES_NAMES
__lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None:
"""simple docstring"""
snake_case_ = (
AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
else mask_token
)
snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
snake_case_ = do_lower_case
snake_case_ = remove_space
snake_case_ = keep_accents
snake_case_ = vocab_file
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
return len(self.sp_model )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) ->List[str]:
"""simple docstring"""
snake_case_ = self.__dict__.copy()
snake_case_ = None
return state
def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
snake_case_ = {}
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str:
"""simple docstring"""
if self.remove_space:
snake_case_ = """ """.join(inputs.strip().split() )
else:
snake_case_ = inputs
snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ )
snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] )
if self.do_lower_case:
snake_case_ = outputs.lower()
return outputs
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
snake_case_ = self.preprocess_text(UpperCAmelCase_ )
snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
snake_case_ = []
for piece in pieces:
if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
snake_case_ = cur_pieces[1:]
else:
snake_case_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCAmelCase_ )
else:
new_pieces.append(UpperCAmelCase_ )
return new_pieces
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict:
"""simple docstring"""
return self.sp_model.PieceToId(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return self.sp_model.IdToPiece(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any:
"""simple docstring"""
snake_case_ = []
snake_case_ = """"""
snake_case_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase_ ) + token
snake_case_ = True
snake_case_ = []
else:
current_sub_tokens.append(UpperCAmelCase_ )
snake_case_ = False
out_string += self.sp_model.decode(UpperCAmelCase_ )
return out_string.strip()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , """wb""" ) as fi:
snake_case_ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
return (out_vocab_file,)
| 2 | 1 |
"""simple docstring"""
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Union[str, Any] = {
'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json',
'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json',
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = """encodec"""
def __init__( self : Optional[Any] , UpperCAmelCase_ : int=[1.5, 3.0, 6.0, 12.0, 24.0] , UpperCAmelCase_ : Dict=24_000 , UpperCAmelCase_ : List[str]=1 , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Dict=128 , UpperCAmelCase_ : int=32 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : Any=[8, 5, 4, 2] , UpperCAmelCase_ : Union[str, Any]="weight_norm" , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : str=7 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Tuple="reflect" , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Union[str, Any]=1.0 , UpperCAmelCase_ : List[str]=1_024 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=True , **UpperCAmelCase_ : str , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = target_bandwidths
snake_case_ = sampling_rate
snake_case_ = audio_channels
snake_case_ = normalize
snake_case_ = chunk_length_s
snake_case_ = overlap
snake_case_ = hidden_size
snake_case_ = num_filters
snake_case_ = num_residual_layers
snake_case_ = upsampling_ratios
snake_case_ = norm_type
snake_case_ = kernel_size
snake_case_ = last_kernel_size
snake_case_ = residual_kernel_size
snake_case_ = dilation_growth_rate
snake_case_ = use_causal_conv
snake_case_ = pad_mode
snake_case_ = compress
snake_case_ = num_lstm_layers
snake_case_ = trim_right_ratio
snake_case_ = codebook_size
snake_case_ = codebook_dim if codebook_dim is not None else hidden_size
snake_case_ = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" )
super().__init__(**UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[Any] ) ->Optional[int]:
"""simple docstring"""
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
snake_case_ = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def lowerCAmelCase ( self : Optional[Any] ) ->int:
"""simple docstring"""
return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 2 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("""The given input must be positive""" )
# get the generated string sequence
snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = int(sequence[i] , 2 )
return sequence
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
snake_case_ = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
snake_case_ = gray_code_sequence_string(bit_count - 1 )
snake_case_ = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
snake_case_ = """0""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
snake_case_ = """1""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import argparse
import csv
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from tqdm import tqdm, trange
from transformers import (
CONFIG_NAME,
WEIGHTS_NAME,
AdamW,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTTokenizer,
get_linear_schedule_with_warmup,
)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__)
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
snake_case_ = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 )
return np.sum(outputs == labels )
def _a ( _SCREAMING_SNAKE_CASE ) -> Dict:
with open(_SCREAMING_SNAKE_CASE , encoding="""utf_8""" ) as f:
snake_case_ = csv.reader(_SCREAMING_SNAKE_CASE )
snake_case_ = []
next(_SCREAMING_SNAKE_CASE ) # skip the first line
for line in tqdm(_SCREAMING_SNAKE_CASE ):
output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) )
return output
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = []
for dataset in encoded_datasets:
snake_case_ = len(_SCREAMING_SNAKE_CASE )
snake_case_ = np.zeros((n_batch, 2, input_len) , dtype=np.intaa )
snake_case_ = np.zeros((n_batch, 2) , dtype=np.intaa )
snake_case_ = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa )
snake_case_ = np.zeros((n_batch,) , dtype=np.intaa )
for (
i,
(story, conta, conta, mc_label),
) in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
snake_case_ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
snake_case_ = with_conta
snake_case_ = with_conta
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
snake_case_ = with_conta
snake_case_ = with_conta
snake_case_ = mc_label
snake_case_ = (input_ids, mc_token_ids, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(_SCREAMING_SNAKE_CASE ) for t in all_inputs ) )
return tensor_datasets
def _a ( ) -> List[str]:
snake_case_ = argparse.ArgumentParser()
parser.add_argument("""--model_name""" , type=_SCREAMING_SNAKE_CASE , default="""openai-gpt""" , help="""pretrained model name""" )
parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" )
parser.add_argument("""--do_eval""" , action="""store_true""" , help="""Whether to run eval on the dev set.""" )
parser.add_argument(
"""--output_dir""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""The output directory where the model predictions and checkpoints will be written.""" , )
parser.add_argument("""--train_dataset""" , type=_SCREAMING_SNAKE_CASE , default="""""" )
parser.add_argument("""--eval_dataset""" , type=_SCREAMING_SNAKE_CASE , default="""""" )
parser.add_argument("""--seed""" , type=_SCREAMING_SNAKE_CASE , default=42 )
parser.add_argument("""--num_train_epochs""" , type=_SCREAMING_SNAKE_CASE , default=3 )
parser.add_argument("""--train_batch_size""" , type=_SCREAMING_SNAKE_CASE , default=8 )
parser.add_argument("""--eval_batch_size""" , type=_SCREAMING_SNAKE_CASE , default=16 )
parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=_SCREAMING_SNAKE_CASE , help="""Epsilon for Adam optimizer.""" )
parser.add_argument("""--max_grad_norm""" , type=_SCREAMING_SNAKE_CASE , default=1 )
parser.add_argument(
"""--max_steps""" , default=-1 , type=_SCREAMING_SNAKE_CASE , help=(
"""If > 0: set total number of training steps to perform. Override num_train_epochs."""
) , )
parser.add_argument(
"""--gradient_accumulation_steps""" , type=_SCREAMING_SNAKE_CASE , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , )
parser.add_argument("""--learning_rate""" , type=_SCREAMING_SNAKE_CASE , default=6.2_5E-5 )
parser.add_argument("""--warmup_steps""" , default=0 , type=_SCREAMING_SNAKE_CASE , help="""Linear warmup over warmup_steps.""" )
parser.add_argument("""--lr_schedule""" , type=_SCREAMING_SNAKE_CASE , default="""warmup_linear""" )
parser.add_argument("""--weight_decay""" , type=_SCREAMING_SNAKE_CASE , default=0.01 )
parser.add_argument("""--lm_coef""" , type=_SCREAMING_SNAKE_CASE , default=0.9 )
parser.add_argument("""--n_valid""" , type=_SCREAMING_SNAKE_CASE , default=374 )
parser.add_argument("""--server_ip""" , type=_SCREAMING_SNAKE_CASE , default="""""" , help="""Can be used for distant debugging.""" )
parser.add_argument("""--server_port""" , type=_SCREAMING_SNAKE_CASE , default="""""" , help="""Can be used for distant debugging.""" )
snake_case_ = parser.parse_args()
print(_SCREAMING_SNAKE_CASE )
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("""Waiting for debugger attach""" )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_SCREAMING_SNAKE_CASE )
ptvsd.wait_for_attach()
random.seed(args.seed )
np.random.seed(args.seed )
torch.manual_seed(args.seed )
torch.cuda.manual_seed_all(args.seed )
snake_case_ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
snake_case_ = torch.cuda.device_count()
logger.info("""device: {}, n_gpu {}""".format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
if not args.do_train and not args.do_eval:
raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" )
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
# Load tokenizer and model
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
snake_case_ = ["""_start_""", """_delimiter_""", """_classify_"""]
snake_case_ = OpenAIGPTTokenizer.from_pretrained(args.model_name )
tokenizer.add_tokens(_SCREAMING_SNAKE_CASE )
snake_case_ = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE )
snake_case_ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name )
model.resize_token_embeddings(len(_SCREAMING_SNAKE_CASE ) )
model.to(_SCREAMING_SNAKE_CASE )
# Load and encode the datasets
def tokenize_and_encode(_SCREAMING_SNAKE_CASE ):
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) )
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return obj
return [tokenize_and_encode(_SCREAMING_SNAKE_CASE ) for o in obj]
logger.info("""Encoding dataset...""" )
snake_case_ = load_rocstories_dataset(args.train_dataset )
snake_case_ = load_rocstories_dataset(args.eval_dataset )
snake_case_ = (train_dataset, eval_dataset)
snake_case_ = tokenize_and_encode(_SCREAMING_SNAKE_CASE )
# Compute the max input length for the Transformer
snake_case_ = model.config.n_positions // 2 - 2
snake_case_ = max(
len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3
for dataset in encoded_datasets
for story, conta, conta, _ in dataset )
snake_case_ = min(_SCREAMING_SNAKE_CASE , model.config.n_positions ) # Max size of input for the pre-trained model
# Prepare inputs tensors and dataloaders
snake_case_ = pre_process_datasets(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )
snake_case_ , snake_case_ = tensor_datasets[0], tensor_datasets[1]
snake_case_ = TensorDataset(*_SCREAMING_SNAKE_CASE )
snake_case_ = RandomSampler(_SCREAMING_SNAKE_CASE )
snake_case_ = DataLoader(_SCREAMING_SNAKE_CASE , sampler=_SCREAMING_SNAKE_CASE , batch_size=args.train_batch_size )
snake_case_ = TensorDataset(*_SCREAMING_SNAKE_CASE )
snake_case_ = SequentialSampler(_SCREAMING_SNAKE_CASE )
snake_case_ = DataLoader(_SCREAMING_SNAKE_CASE , sampler=_SCREAMING_SNAKE_CASE , batch_size=args.eval_batch_size )
# Prepare optimizer
if args.do_train:
if args.max_steps > 0:
snake_case_ = args.max_steps
snake_case_ = args.max_steps // (len(_SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps) + 1
else:
snake_case_ = len(_SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps * args.num_train_epochs
snake_case_ = list(model.named_parameters() )
snake_case_ = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""]
snake_case_ = [
{
"""params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )],
"""weight_decay""": args.weight_decay,
},
{"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0},
]
snake_case_ = AdamW(_SCREAMING_SNAKE_CASE , lr=args.learning_rate , eps=args.adam_epsilon )
snake_case_ = get_linear_schedule_with_warmup(
_SCREAMING_SNAKE_CASE , num_warmup_steps=args.warmup_steps , num_training_steps=_SCREAMING_SNAKE_CASE )
if args.do_train:
snake_case_ , snake_case_ , snake_case_ = 0, 0, None
model.train()
for _ in trange(int(args.num_train_epochs ) , desc="""Epoch""" ):
snake_case_ = 0
snake_case_ = 0
snake_case_ = tqdm(_SCREAMING_SNAKE_CASE , desc="""Training""" )
for step, batch in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ = tuple(t.to(_SCREAMING_SNAKE_CASE ) for t in batch )
snake_case_ , snake_case_ , snake_case_ , snake_case_ = batch
snake_case_ = model(_SCREAMING_SNAKE_CASE , mc_token_ids=_SCREAMING_SNAKE_CASE , lm_labels=_SCREAMING_SNAKE_CASE , mc_labels=_SCREAMING_SNAKE_CASE )
snake_case_ = args.lm_coef * losses[0] + losses[1]
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
tr_loss += loss.item()
snake_case_ = (
loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item()
)
nb_tr_steps += 1
snake_case_ = """Training loss: {:.2e} lr: {:.2e}""".format(_SCREAMING_SNAKE_CASE , scheduler.get_lr()[0] )
# Save a trained model
if args.do_train:
# Save a trained model, configuration and tokenizer
snake_case_ = model.module if hasattr(_SCREAMING_SNAKE_CASE , """module""" ) else model # Only save the model itself
# If we save using the predefined names, we can load using `from_pretrained`
snake_case_ = os.path.join(args.output_dir , _SCREAMING_SNAKE_CASE )
snake_case_ = os.path.join(args.output_dir , _SCREAMING_SNAKE_CASE )
torch.save(model_to_save.state_dict() , _SCREAMING_SNAKE_CASE )
model_to_save.config.to_json_file(_SCREAMING_SNAKE_CASE )
tokenizer.save_vocabulary(args.output_dir )
# Load a trained model and vocabulary that you have fine-tuned
snake_case_ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir )
snake_case_ = OpenAIGPTTokenizer.from_pretrained(args.output_dir )
model.to(_SCREAMING_SNAKE_CASE )
if args.do_eval:
model.eval()
snake_case_ , snake_case_ = 0, 0
snake_case_ , snake_case_ = 0, 0
for batch in tqdm(_SCREAMING_SNAKE_CASE , desc="""Evaluating""" ):
snake_case_ = tuple(t.to(_SCREAMING_SNAKE_CASE ) for t in batch )
snake_case_ , snake_case_ , snake_case_ , snake_case_ = batch
with torch.no_grad():
snake_case_ , snake_case_ , snake_case_ , snake_case_ = model(
_SCREAMING_SNAKE_CASE , mc_token_ids=_SCREAMING_SNAKE_CASE , lm_labels=_SCREAMING_SNAKE_CASE , mc_labels=_SCREAMING_SNAKE_CASE )
snake_case_ = mc_logits.detach().cpu().numpy()
snake_case_ = mc_labels.to("""cpu""" ).numpy()
snake_case_ = accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
eval_loss += mc_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0 )
nb_eval_steps += 1
snake_case_ = eval_loss / nb_eval_steps
snake_case_ = eval_accuracy / nb_eval_examples
snake_case_ = tr_loss / nb_tr_steps if args.do_train else None
snake_case_ = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss}
snake_case_ = os.path.join(args.output_dir , """eval_results.txt""" )
with open(_SCREAMING_SNAKE_CASE , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key in sorted(result.keys() ):
logger.info(""" %s = %s""" , _SCREAMING_SNAKE_CASE , str(result[key] ) )
writer.write("""%s = %s\n""" % (key, str(result[key] )) )
if __name__ == "__main__":
main()
| 2 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 1 |
"""simple docstring"""
import io
import math
from typing import Dict, Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
get_image_size,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_vision_available, logging
from ...utils.import_utils import requires_backends
if is_vision_available():
import textwrap
from PIL import Image, ImageDraw, ImageFont
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
__SCREAMING_SNAKE_CASE : Any = False
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[Any] = 'ybelkada/fonts'
def _a ( ) -> Union[str, Any]:
if is_torch_available() and not is_torch_greater_or_equal_than_1_11:
raise ImportError(
f"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """
"""Pix2StructImageProcessor. Please upgrade torch.""" )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
requires_backends(_SCREAMING_SNAKE_CASE , ["""torch"""] )
_check_torch_version()
snake_case_ = image_tensor.unsqueeze(0 )
snake_case_ = torch.nn.functional.unfold(_SCREAMING_SNAKE_CASE , (patch_height, patch_width) , stride=(patch_height, patch_width) )
snake_case_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 )
snake_case_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape(
image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , )
return patches.unsqueeze(0 )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 36 , _SCREAMING_SNAKE_CASE = "black" , _SCREAMING_SNAKE_CASE = "white" , _SCREAMING_SNAKE_CASE = 5 , _SCREAMING_SNAKE_CASE = 5 , _SCREAMING_SNAKE_CASE = 5 , _SCREAMING_SNAKE_CASE = 5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , ) -> Image.Image:
requires_backends(_SCREAMING_SNAKE_CASE , """vision""" )
# Add new lines so that each line is no more than 80 characters.
snake_case_ = textwrap.TextWrapper(width=80 )
snake_case_ = wrapper.wrap(text=_SCREAMING_SNAKE_CASE )
snake_case_ = """\n""".join(_SCREAMING_SNAKE_CASE )
if font_bytes is not None and font_path is None:
snake_case_ = io.BytesIO(_SCREAMING_SNAKE_CASE )
elif font_path is not None:
snake_case_ = font_path
else:
snake_case_ = hf_hub_download(_SCREAMING_SNAKE_CASE , """Arial.TTF""" )
snake_case_ = ImageFont.truetype(_SCREAMING_SNAKE_CASE , encoding="""UTF-8""" , size=_SCREAMING_SNAKE_CASE )
# Use a temporary canvas to determine the width and height in pixels when
# rendering the text.
snake_case_ = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , _SCREAMING_SNAKE_CASE ) )
snake_case_ , snake_case_ , snake_case_ , snake_case_ = temp_draw.textbbox((0, 0) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Create the actual image with a bit of padding around the text.
snake_case_ = text_width + left_padding + right_padding
snake_case_ = text_height + top_padding + bottom_padding
snake_case_ = Image.new("""RGB""" , (image_width, image_height) , _SCREAMING_SNAKE_CASE )
snake_case_ = ImageDraw.Draw(_SCREAMING_SNAKE_CASE )
draw.text(xy=(left_padding, top_padding) , text=_SCREAMING_SNAKE_CASE , fill=_SCREAMING_SNAKE_CASE , font=_SCREAMING_SNAKE_CASE )
return image
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any:
requires_backends(_SCREAMING_SNAKE_CASE , """vision""" )
# Convert to PIL image if necessary
snake_case_ = to_pil_image(_SCREAMING_SNAKE_CASE )
snake_case_ = render_text(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
snake_case_ = max(header_image.width , image.width )
snake_case_ = int(image.height * (new_width / image.width) )
snake_case_ = int(header_image.height * (new_width / header_image.width) )
snake_case_ = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" )
new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) )
new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) )
# Convert back to the original framework if necessary
snake_case_ = to_numpy_array(_SCREAMING_SNAKE_CASE )
if infer_channel_dimension_format(_SCREAMING_SNAKE_CASE ) == ChannelDimension.LAST:
snake_case_ = to_channel_dimension_format(_SCREAMING_SNAKE_CASE , ChannelDimension.LAST )
return new_image
class __A (snake_case__):
'''simple docstring'''
__lowercase: Tuple = ["""flattened_patches"""]
def __init__( self : Optional[Any] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : int = 2_048 , UpperCAmelCase_ : bool = False , **UpperCAmelCase_ : Any , ) ->None:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ )
snake_case_ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16}
snake_case_ = do_normalize
snake_case_ = do_convert_rgb
snake_case_ = max_patches
snake_case_ = is_vqa
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : int , UpperCAmelCase_ : dict , **UpperCAmelCase_ : List[Any] ) ->np.ndarray:
"""simple docstring"""
requires_backends(self.extract_flattened_patches , """torch""" )
_check_torch_version()
# convert to torch
snake_case_ = to_channel_dimension_format(UpperCAmelCase_ , ChannelDimension.FIRST )
snake_case_ = torch.from_numpy(UpperCAmelCase_ )
snake_case_ , snake_case_ = patch_size["""height"""], patch_size["""width"""]
snake_case_ , snake_case_ = get_image_size(UpperCAmelCase_ )
# maximize scale s.t.
snake_case_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) )
snake_case_ = max(min(math.floor(scale * image_height / patch_height ) , UpperCAmelCase_ ) , 1 )
snake_case_ = max(min(math.floor(scale * image_width / patch_width ) , UpperCAmelCase_ ) , 1 )
snake_case_ = max(num_feasible_rows * patch_height , 1 )
snake_case_ = max(num_feasible_cols * patch_width , 1 )
snake_case_ = torch.nn.functional.interpolate(
image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=UpperCAmelCase_ , antialias=UpperCAmelCase_ , ).squeeze(0 )
# [1, rows, columns, patch_height * patch_width * image_channels]
snake_case_ = torch_extract_patches(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = patches.shape
snake_case_ = patches_shape[1]
snake_case_ = patches_shape[2]
snake_case_ = patches_shape[3]
# [rows * columns, patch_height * patch_width * image_channels]
snake_case_ = patches.reshape([rows * columns, depth] )
# [rows * columns, 1]
snake_case_ = torch.arange(UpperCAmelCase_ ).reshape([rows, 1] ).repeat(1 , UpperCAmelCase_ ).reshape([rows * columns, 1] )
snake_case_ = torch.arange(UpperCAmelCase_ ).reshape([1, columns] ).repeat(UpperCAmelCase_ , 1 ).reshape([rows * columns, 1] )
# Offset by 1 so the ids do not contain zeros, which represent padding.
row_ids += 1
col_ids += 1
# Prepare additional patch features.
# [rows * columns, 1]
snake_case_ = row_ids.to(torch.floataa )
snake_case_ = col_ids.to(torch.floataa )
# [rows * columns, 2 + patch_height * patch_width * image_channels]
snake_case_ = torch.cat([row_ids, col_ids, patches] , -1 )
# [max_patches, 2 + patch_height * patch_width * image_channels]
snake_case_ = torch.nn.functional.pad(UpperCAmelCase_ , [0, 0, 0, max_patches - (rows * columns)] ).float()
snake_case_ = to_numpy_array(UpperCAmelCase_ )
return result
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Union[str, Any] ) ->np.ndarray:
"""simple docstring"""
if image.dtype == np.uinta:
snake_case_ = image.astype(np.floataa )
# take mean across the whole `image`
snake_case_ = np.mean(UpperCAmelCase_ )
snake_case_ = np.std(UpperCAmelCase_ )
snake_case_ = max(UpperCAmelCase_ , 1.0 / math.sqrt(np.prod(image.shape ) ) )
return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : Union[str, Any] , ) ->ImageInput:
"""simple docstring"""
snake_case_ = do_normalize if do_normalize is not None else self.do_normalize
snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
snake_case_ = patch_size if patch_size is not None else self.patch_size
snake_case_ = max_patches if max_patches is not None else self.max_patches
snake_case_ = self.is_vqa
if kwargs.get("""data_format""" , UpperCAmelCase_ ) is not None:
raise ValueError("""data_format is not an accepted input as the outputs are """ )
snake_case_ = make_list_of_images(UpperCAmelCase_ )
if not valid_images(UpperCAmelCase_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
snake_case_ = [convert_to_rgb(UpperCAmelCase_ ) for image in images]
# All transformations expect numpy arrays.
snake_case_ = [to_numpy_array(UpperCAmelCase_ ) for image in images]
if is_vqa:
if header_text is None:
raise ValueError("""A header text must be provided for VQA models.""" )
snake_case_ = kwargs.pop("""font_bytes""" , UpperCAmelCase_ )
snake_case_ = kwargs.pop("""font_path""" , UpperCAmelCase_ )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = [header_text] * len(UpperCAmelCase_ )
snake_case_ = [
render_header(UpperCAmelCase_ , header_text[i] , font_bytes=UpperCAmelCase_ , font_path=UpperCAmelCase_ )
for i, image in enumerate(UpperCAmelCase_ )
]
if do_normalize:
snake_case_ = [self.normalize(image=UpperCAmelCase_ ) for image in images]
# convert to torch tensor and permute
snake_case_ = [
self.extract_flattened_patches(image=UpperCAmelCase_ , max_patches=UpperCAmelCase_ , patch_size=UpperCAmelCase_ )
for image in images
]
# create attention mask in numpy
snake_case_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images]
snake_case_ = BatchFeature(
data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=UpperCAmelCase_ )
return encoded_outputs
| 2 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/'
__SCREAMING_SNAKE_CASE : List[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
snake_case_ = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
snake_case_ = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = {}
import re
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# keep original key
else:
snake_case_ = original_key
snake_case_ = replace_key(_SCREAMING_SNAKE_CASE )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
snake_case_ = original_key
snake_case_ = original_key
snake_case_ = value
return new_dict
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ):
snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE )
open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content )
snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]]
snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE )
snake_case_ = []
snake_case_ = {}
for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""]
snake_case_ = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
snake_case_ = old_dic[k]
elif k.endswith(""".w""" ):
snake_case_ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
snake_case_ = old_dic[k]
else:
snake_case_ = old_dic[k]
snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}"""
snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
weight_dict.append(_SCREAMING_SNAKE_CASE )
snake_case_ = weight_dict.pop(0 )
model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
return weight_dict
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 2 | 1 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : str = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Any = """mctct"""
def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = intermediate_size
snake_case_ = num_attention_heads
snake_case_ = attention_head_dim
snake_case_ = max_position_embeddings
snake_case_ = layer_norm_eps
snake_case_ = layerdrop
snake_case_ = hidden_act
snake_case_ = initializer_range
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = pad_token_id
snake_case_ = bos_token_id
snake_case_ = eos_token_id
snake_case_ = conv_glu_dim
snake_case_ = conv_dropout
snake_case_ = num_conv_layers
snake_case_ = input_feat_per_channel
snake_case_ = input_channels
snake_case_ = conv_channels
snake_case_ = ctc_loss_reduction
snake_case_ = ctc_zero_infinity
# prevents config testing fail with exporting to json
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """
F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """
F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
| 2 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__SCREAMING_SNAKE_CASE : Dict = 'zero2'
__SCREAMING_SNAKE_CASE : List[Any] = 'zero3'
__SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __A (snake_case__):
'''simple docstring'''
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = models[model]
snake_case_ = self.run_trainer(
stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
self.do_checks(UpperCAmelCase_ )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ )
snake_case_ = F"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(UpperCAmelCase_ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
snake_case_ = self.get_launcher(UpperCAmelCase_ )
snake_case_ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple:
"""simple docstring"""
snake_case_ = min(2 , get_gpu_count() ) if distributed else 1
return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 2 | 1 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
class __A :
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = []
self.adlist.append(
{"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} )
for keyword in keywords:
self.add_keyword(UpperCAmelCase_ )
self.set_fail_transitions()
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None:
"""simple docstring"""
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None:
"""simple docstring"""
snake_case_ = 0
for character in keyword:
snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ )
if next_state is None:
self.adlist.append(
{
"""value""": character,
"""next_states""": [],
"""fail_state""": 0,
"""output""": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
snake_case_ = len(self.adlist ) - 1
else:
snake_case_ = next_state
self.adlist[current_state]["output"].append(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->None:
"""simple docstring"""
snake_case_ = deque()
for node in self.adlist[0]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = 0
while q:
snake_case_ = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = self.adlist[r]["""fail_state"""]
while (
self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None
and state != 0
):
snake_case_ = self.adlist[state]["""fail_state"""]
snake_case_ = self.find_next_state(
UpperCAmelCase_ , self.adlist[child]["""value"""] )
if self.adlist[child]["fail_state"] is None:
snake_case_ = 0
snake_case_ = (
self.adlist[child]["""output"""]
+ self.adlist[self.adlist[child]["""fail_state"""]]["""output"""]
)
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]:
"""simple docstring"""
snake_case_ = {} # returns a dict with keywords and list of its occurrences
snake_case_ = 0
for i in range(len(UpperCAmelCase_ ) ):
while (
self.find_next_state(UpperCAmelCase_ , string[i] ) is None
and current_state != 0
):
snake_case_ = self.adlist[current_state]["""fail_state"""]
snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] )
if next_state is None:
snake_case_ = 0
else:
snake_case_ = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
snake_case_ = []
result[key].append(i - len(UpperCAmelCase_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True})
__lowercase: ClassVar[Features] = Features({"""audio""": Audio()})
__lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")})
__lowercase: str = "audio"
__lowercase: str = "transcription"
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int:
"""simple docstring"""
if self.audio_column not in features:
raise ValueError(F"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , UpperCAmelCase_ ):
raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" )
snake_case_ = copy.deepcopy(self )
snake_case_ = self.input_schema.copy()
snake_case_ = features[self.audio_column]
snake_case_ = input_schema
return task_template
@property
def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]:
"""simple docstring"""
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 2 | 1 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Union[str, Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)]
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
snake_case_ = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 100_000]
number //= 100_000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
__SCREAMING_SNAKE_CASE : list[bool | None] = [None] * 10_000_000
__SCREAMING_SNAKE_CASE : Optional[Any] = True
__SCREAMING_SNAKE_CASE : Optional[Any] = False
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
snake_case_ = chain(next_number(_SCREAMING_SNAKE_CASE ) )
snake_case_ = number_chain
while number < 10_000_000:
snake_case_ = number_chain
number *= 10
return number_chain
def _a ( _SCREAMING_SNAKE_CASE = 10_000_000 ) -> int:
for i in range(1 , _SCREAMING_SNAKE_CASE ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{solution() = }""")
| 2 |
"""simple docstring"""
from functools import reduce
__SCREAMING_SNAKE_CASE : Tuple = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def _a ( _SCREAMING_SNAKE_CASE = N ) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) )
for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 | 1 |
"""simple docstring"""
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
snake_case_ = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() )
snake_case_ = sum([np.prod(p.size() ) for p in model_parameters] )
return params
__SCREAMING_SNAKE_CASE : List[Any] = logging.getLogger(__name__)
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
if metric == "rouge2":
snake_case_ = """{val_avg_rouge2:.4f}-{step_count}"""
elif metric == "bleu":
snake_case_ = """{val_avg_bleu:.4f}-{step_count}"""
elif metric == "em":
snake_case_ = """{val_avg_em:.4f}-{step_count}"""
else:
raise NotImplementedError(
f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this"""
""" function.""" )
snake_case_ = ModelCheckpoint(
dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=f"""val_{metric}""" , mode="""max""" , save_top_k=3 , every_n_epochs=1 , )
return checkpoint_callback
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
return EarlyStopping(
monitor=f"""val_{metric}""" , mode="""min""" if """loss""" in metric else """max""" , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , )
class __A (pl.Callback):
'''simple docstring'''
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = {F"""lr_group_{i}""": param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(UpperCAmelCase_ )
@rank_zero_only
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : pl.Trainer , UpperCAmelCase_ : pl.LightningModule , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any]=True ) ->None:
"""simple docstring"""
logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" )
snake_case_ = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} )
# Log results
snake_case_ = Path(pl_module.hparams.output_dir )
if type_path == "test":
snake_case_ = od / """test_results.txt"""
snake_case_ = od / """test_generations.txt"""
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
snake_case_ = od / F"""{type_path}_results/{trainer.global_step:05d}.txt"""
snake_case_ = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt"""
results_file.parent.mkdir(exist_ok=UpperCAmelCase_ )
generations_file.parent.mkdir(exist_ok=UpperCAmelCase_ )
with open(UpperCAmelCase_ , """a+""" ) as writer:
for key in sorted(UpperCAmelCase_ ):
if key in ["log", "progress_bar", "preds"]:
continue
snake_case_ = metrics[key]
if isinstance(UpperCAmelCase_ , torch.Tensor ):
snake_case_ = val.item()
snake_case_ = F"""{key}: {val:.6f}\n"""
writer.write(UpperCAmelCase_ )
if not save_generations:
return
if "preds" in metrics:
snake_case_ = """\n""".join(metrics["""preds"""] )
generations_file.open("""w+""" ).write(UpperCAmelCase_ )
@rank_zero_only
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
try:
snake_case_ = pl_module.model.model.num_parameters()
except AttributeError:
snake_case_ = pl_module.model.num_parameters()
snake_case_ = count_trainable_parameters(UpperCAmelCase_ )
# mp stands for million parameters
trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6} )
@rank_zero_only
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : pl.Trainer , UpperCAmelCase_ : pl.LightningModule ) ->List[Any]:
"""simple docstring"""
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(UpperCAmelCase_ , UpperCAmelCase_ , """test""" )
@rank_zero_only
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : pl.Trainer , UpperCAmelCase_ : Optional[int] ) ->int:
"""simple docstring"""
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 2 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : str = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Any = """mctct"""
def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = intermediate_size
snake_case_ = num_attention_heads
snake_case_ = attention_head_dim
snake_case_ = max_position_embeddings
snake_case_ = layer_norm_eps
snake_case_ = layerdrop
snake_case_ = hidden_act
snake_case_ = initializer_range
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = pad_token_id
snake_case_ = bos_token_id
snake_case_ = eos_token_id
snake_case_ = conv_glu_dim
snake_case_ = conv_dropout
snake_case_ = num_conv_layers
snake_case_ = input_feat_per_channel
snake_case_ = input_channels
snake_case_ = conv_channels
snake_case_ = ctc_loss_reduction
snake_case_ = ctc_zero_infinity
# prevents config testing fail with exporting to json
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """
F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """
F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
| 2 | 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : List[Any] = [
'MRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'MraForMaskedLM',
'MraForMultipleChoice',
'MraForQuestionAnswering',
'MraForSequenceClassification',
'MraForTokenClassification',
'MraLayer',
'MraModel',
'MraPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 2 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int:
return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 2 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__SCREAMING_SNAKE_CASE : List[str] = {
'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : List[Any] = ['MobileViTFeatureExtractor']
__SCREAMING_SNAKE_CASE : Any = ['MobileViTImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : List[Any] = [
'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MobileViTForImageClassification',
'MobileViTForSemanticSegmentation',
'MobileViTModel',
'MobileViTPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = [
'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFMobileViTForImageClassification',
'TFMobileViTForSemanticSegmentation',
'TFMobileViTModel',
'TFMobileViTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 |
"""simple docstring"""
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: str = VQModel
__lowercase: Union[str, Any] = """sample"""
@property
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple:
"""simple docstring"""
snake_case_ = 4
snake_case_ = 3
snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ )
return {"sample": image}
@property
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
return (3, 32, 32)
@property
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
return (3, 32, 32)
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 3,
}
snake_case_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(UpperCAmelCase_ )
snake_case_ = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" )
model.to(UpperCAmelCase_ ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
snake_case_ = image.to(UpperCAmelCase_ )
with torch.no_grad():
snake_case_ = model(UpperCAmelCase_ ).sample
snake_case_ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] )
# fmt: on
self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json',
'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json',
'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json',
'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json',
# See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Union[str, Any] = """mobilenet_v2"""
def __init__( self : int , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Dict=224 , UpperCAmelCase_ : List[Any]=1.0 , UpperCAmelCase_ : Optional[int]=8 , UpperCAmelCase_ : Dict=8 , UpperCAmelCase_ : Dict=6 , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : List[Any]="relu6" , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Tuple=0.8 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : Dict=0.001 , UpperCAmelCase_ : str=255 , **UpperCAmelCase_ : Tuple , ) ->str:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ )
if depth_multiplier <= 0:
raise ValueError("""depth_multiplier must be greater than zero.""" )
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = depth_multiplier
snake_case_ = depth_divisible_by
snake_case_ = min_depth
snake_case_ = expand_ratio
snake_case_ = output_stride
snake_case_ = first_layer_is_expansion
snake_case_ = finegrained_output
snake_case_ = hidden_act
snake_case_ = tf_padding
snake_case_ = classifier_dropout_prob
snake_case_ = initializer_range
snake_case_ = layer_norm_eps
snake_case_ = semantic_loss_ignore_index
class __A (snake_case__):
'''simple docstring'''
__lowercase: int = version.parse("""1.11""")
@property
def lowerCAmelCase ( self : Any ) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict([("""pixel_values""", {0: """batch"""})] )
@property
def lowerCAmelCase ( self : List[str] ) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "image-classification":
return OrderedDict([("""logits""", {0: """batch"""})] )
else:
return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] )
@property
def lowerCAmelCase ( self : int ) ->float:
"""simple docstring"""
return 1E-4
| 2 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = KandinskyVaaControlnetPipeline
__lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: Union[str, Any] = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
__lowercase: Tuple = False
@property
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return 100
@property
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
snake_case_ = self.dummy_unet
snake_case_ = self.dummy_movq
snake_case_ = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , )
snake_case_ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]:
"""simple docstring"""
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase_ )
# create hint
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
if str(UpperCAmelCase_ ).startswith("""mps""" ):
snake_case_ = torch.manual_seed(UpperCAmelCase_ )
else:
snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = """cpu"""
snake_case_ = self.get_dummy_components()
snake_case_ = self.pipeline_class(**UpperCAmelCase_ )
snake_case_ = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
snake_case_ = output.images
snake_case_ = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ = np.array(
[0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0
snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case_ = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case_ = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = """A robot, 4k photo"""
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ , snake_case_ = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ = pipeline(
image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 2 | 1 |
"""simple docstring"""
import sys
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
__SCREAMING_SNAKE_CASE : Optional[Any] = 'python tqdm regex requests packaging filelock numpy tokenizers'.split()
if sys.version_info < (3, 7):
pkgs_to_check_at_runtime.append('dataclasses')
if sys.version_info < (3, 8):
pkgs_to_check_at_runtime.append('importlib_metadata')
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""")
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int:
require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
| 2 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
class __A :
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = []
self.adlist.append(
{"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} )
for keyword in keywords:
self.add_keyword(UpperCAmelCase_ )
self.set_fail_transitions()
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None:
"""simple docstring"""
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None:
"""simple docstring"""
snake_case_ = 0
for character in keyword:
snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ )
if next_state is None:
self.adlist.append(
{
"""value""": character,
"""next_states""": [],
"""fail_state""": 0,
"""output""": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
snake_case_ = len(self.adlist ) - 1
else:
snake_case_ = next_state
self.adlist[current_state]["output"].append(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->None:
"""simple docstring"""
snake_case_ = deque()
for node in self.adlist[0]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = 0
while q:
snake_case_ = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = self.adlist[r]["""fail_state"""]
while (
self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None
and state != 0
):
snake_case_ = self.adlist[state]["""fail_state"""]
snake_case_ = self.find_next_state(
UpperCAmelCase_ , self.adlist[child]["""value"""] )
if self.adlist[child]["fail_state"] is None:
snake_case_ = 0
snake_case_ = (
self.adlist[child]["""output"""]
+ self.adlist[self.adlist[child]["""fail_state"""]]["""output"""]
)
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]:
"""simple docstring"""
snake_case_ = {} # returns a dict with keywords and list of its occurrences
snake_case_ = 0
for i in range(len(UpperCAmelCase_ ) ):
while (
self.find_next_state(UpperCAmelCase_ , string[i] ) is None
and current_state != 0
):
snake_case_ = self.adlist[current_state]["""fail_state"""]
snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] )
if next_state is None:
snake_case_ = 0
else:
snake_case_ = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
snake_case_ = []
result[key].append(i - len(UpperCAmelCase_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import argparse
import os
import pickle
import sys
import torch
from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils
from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
# We do this to be able to load python 2 datasets pickles
# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
__SCREAMING_SNAKE_CASE : List[str] = data_utils.TransfoXLTokenizer
__SCREAMING_SNAKE_CASE : Optional[int] = data_utils.TransfoXLCorpus
__SCREAMING_SNAKE_CASE : Optional[int] = data_utils
__SCREAMING_SNAKE_CASE : int = data_utils
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
if transfo_xl_dataset_file:
# Convert a pre-processed corpus (see original TensorFlow repo)
with open(_SCREAMING_SNAKE_CASE , """rb""" ) as fp:
snake_case_ = pickle.load(_SCREAMING_SNAKE_CASE , encoding="""latin1""" )
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
snake_case_ = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""]
print(f"""Save vocabulary to {pytorch_vocab_dump_path}""" )
snake_case_ = corpus.vocab.__dict__
torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = corpus.__dict__
corpus_dict_no_vocab.pop("""vocab""" , _SCREAMING_SNAKE_CASE )
snake_case_ = pytorch_dump_folder_path + """/""" + CORPUS_NAME
print(f"""Save dataset to {pytorch_dataset_dump_path}""" )
torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if tf_checkpoint_path:
# Convert a pre-trained TensorFlow model
snake_case_ = os.path.abspath(_SCREAMING_SNAKE_CASE )
snake_case_ = os.path.abspath(_SCREAMING_SNAKE_CASE )
print(f"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" )
# Initialise PyTorch model
if transfo_xl_config_file == "":
snake_case_ = TransfoXLConfig()
else:
snake_case_ = TransfoXLConfig.from_json_file(_SCREAMING_SNAKE_CASE )
print(f"""Building PyTorch model from configuration: {config}""" )
snake_case_ = TransfoXLLMHeadModel(_SCREAMING_SNAKE_CASE )
snake_case_ = load_tf_weights_in_transfo_xl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Save pytorch-model
snake_case_ = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"""Save PyTorch model to {os.path.abspath(_SCREAMING_SNAKE_CASE )}""" )
torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE )
print(f"""Save configuration file to {os.path.abspath(_SCREAMING_SNAKE_CASE )}""" )
with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser()
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the folder to store the PyTorch model or dataset/vocab.',
)
parser.add_argument(
'--tf_checkpoint_path',
default='',
type=str,
help='An optional path to a TensorFlow checkpoint path to be converted.',
)
parser.add_argument(
'--transfo_xl_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained BERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--transfo_xl_dataset_file',
default='',
type=str,
help='An optional dataset file to be converted in a vocabulary.',
)
__SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args()
convert_transfo_xl_checkpoint_to_pytorch(
args.tf_checkpoint_path,
args.transfo_xl_config_file,
args.pytorch_dump_folder_path,
args.transfo_xl_dataset_file,
)
| 2 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = num_channels
snake_case_ = num_stages
snake_case_ = hidden_sizes
snake_case_ = depths
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = num_labels
snake_case_ = initializer_range
snake_case_ = out_features
snake_case_ = out_indices
snake_case_ = scope
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case_ = None
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[Any] = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
__lowercase: Union[str, Any] = (
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Optional[Any] = False
__lowercase: Any = False
__lowercase: Union[str, Any] = False
__lowercase: Dict = False
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = True
if model_class.__name__ in [
*get_values(UpperCAmelCase_ ),
*get_values(UpperCAmelCase_ ),
]:
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = False
snake_case_ = True
if (
model_class.__name__
in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )]
or not model_class.supports_gradient_checkpointing
):
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.gradient_checkpointing_enable()
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ):
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case_ = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _a ( ) -> str:
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ )
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
# verify the logits
snake_case_ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
| 2 | 1 |
"""simple docstring"""
import os
import pytest
from attr import dataclass
__SCREAMING_SNAKE_CASE : Tuple = 'us-east-1' # defaults region
@dataclass
class __A :
'''simple docstring'''
__lowercase: str
__lowercase: Optional[Any] = """arn:aws:iam::558105141721:role/sagemaker_execution_role"""
__lowercase: str = {
"""task_name""": """mnli""",
"""per_device_train_batch_size""": 16,
"""per_device_eval_batch_size""": 16,
"""do_train""": True,
"""do_eval""": True,
"""do_predict""": True,
"""output_dir""": """/opt/ml/model""",
"""overwrite_output_dir""": True,
"""max_steps""": 5_00,
"""save_steps""": 55_00,
}
__lowercase: Dict = {**hyperparameters, """max_steps""": 10_00}
@property
def lowerCAmelCase ( self : Any ) ->str:
"""simple docstring"""
if self.framework == "pytorch":
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"},
{"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"},
]
else:
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"},
{"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"},
]
@property
def lowerCAmelCase ( self : Optional[int] ) ->str:
"""simple docstring"""
return F"""{self.framework}-transfromers-test"""
@property
def lowerCAmelCase ( self : Any ) ->str:
"""simple docstring"""
return F"""./tests/sagemaker/scripts/{self.framework}"""
@property
def lowerCAmelCase ( self : Any ) ->str:
"""simple docstring"""
if self.framework == "pytorch":
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04"
else:
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04"
@pytest.fixture(scope="""class""" )
def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]:
snake_case_ = SageMakerTestEnvironment(framework=request.cls.framework )
| 2 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights']
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
if "emb" in name:
snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
snake_case_ = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
snake_case_ = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
snake_case_ = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
snake_case_ = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
snake_case_ = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]:
snake_case_ = list(state_dict.keys() )
snake_case_ = {}
for key in keys:
snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE )
if "in_proj_weight" in key:
# split fused qkv proj
snake_case_ = val[:hidden_size, :]
snake_case_ = val[hidden_size : 2 * hidden_size, :]
snake_case_ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
snake_case_ = val
else:
snake_case_ = val
return state_dict, enc_dec_proj_state_dict
def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
snake_case_ = 1_024
snake_case_ = 24
snake_case_ = 16
elif checkpoint == "medium":
snake_case_ = 1_536
snake_case_ = 48
snake_case_ = 24
elif checkpoint == "large":
snake_case_ = 2_048
snake_case_ = 48
snake_case_ = 32
else:
raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
snake_case_ = MusicgenDecoderConfig(
hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , )
return config
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple:
snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE )
snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE )
snake_case_ = fairseq_model.lm.state_dict()
snake_case_ , snake_case_ = rename_state_dict(
_SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size )
snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" )
snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE )
# check we can do a forward pass
snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
snake_case_ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" )
snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
# set the appropriate bos/pad token ids
snake_case_ = 2_048
snake_case_ = 2_048
# set other default generation config params
snake_case_ = int(30 * audio_encoder.config.frame_rate )
snake_case_ = True
snake_case_ = 3.0
if pytorch_dump_folder is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if repo_id:
logger.info(f"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
processor.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint',
default='small',
type=str,
help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.',
)
parser.add_argument(
'--pytorch_dump_folder',
required=True,
default=None,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
parser.add_argument(
'--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.'
)
__SCREAMING_SNAKE_CASE : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 2 | 1 |
"""simple docstring"""
from collections import namedtuple
import requests
from lxml import html # type: ignore
__SCREAMING_SNAKE_CASE : Optional[Any] = namedtuple('covid_data', 'cases deaths recovered')
def _a ( _SCREAMING_SNAKE_CASE = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
snake_case_ = """//div[@class = \"maincounter-number\"]/span/text()"""
return covid_data(*html.fromstring(requests.get(_SCREAMING_SNAKE_CASE ).content ).xpath(_SCREAMING_SNAKE_CASE ) )
__SCREAMING_SNAKE_CASE : int = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}'
print(fmt.format(*covid_stats()))
| 2 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
if index == number_of_items:
return 0
snake_case_ = 0
snake_case_ = 0
snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 )
if weights[index] <= max_weight:
snake_case_ = values[index] + knapsack(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 )
return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights']
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
if "emb" in name:
snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
snake_case_ = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
snake_case_ = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
snake_case_ = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
snake_case_ = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
snake_case_ = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]:
snake_case_ = list(state_dict.keys() )
snake_case_ = {}
for key in keys:
snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE )
if "in_proj_weight" in key:
# split fused qkv proj
snake_case_ = val[:hidden_size, :]
snake_case_ = val[hidden_size : 2 * hidden_size, :]
snake_case_ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
snake_case_ = val
else:
snake_case_ = val
return state_dict, enc_dec_proj_state_dict
def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
snake_case_ = 1_024
snake_case_ = 24
snake_case_ = 16
elif checkpoint == "medium":
snake_case_ = 1_536
snake_case_ = 48
snake_case_ = 24
elif checkpoint == "large":
snake_case_ = 2_048
snake_case_ = 48
snake_case_ = 32
else:
raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
snake_case_ = MusicgenDecoderConfig(
hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , )
return config
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple:
snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE )
snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE )
snake_case_ = fairseq_model.lm.state_dict()
snake_case_ , snake_case_ = rename_state_dict(
_SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size )
snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" )
snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE )
# check we can do a forward pass
snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
snake_case_ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" )
snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
# set the appropriate bos/pad token ids
snake_case_ = 2_048
snake_case_ = 2_048
# set other default generation config params
snake_case_ = int(30 * audio_encoder.config.frame_rate )
snake_case_ = True
snake_case_ = 3.0
if pytorch_dump_folder is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if repo_id:
logger.info(f"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
processor.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint',
default='small',
type=str,
help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.',
)
parser.add_argument(
'--pytorch_dump_folder',
required=True,
default=None,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
parser.add_argument(
'--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.'
)
__SCREAMING_SNAKE_CASE : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 2 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int:
snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
snake_case_ = n // 2
return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
__SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 2 | 1 |
"""simple docstring"""
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
__SCREAMING_SNAKE_CASE : Optional[Any] = getLogger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = 'cuda' if torch.cuda.is_available() else 'cpu'
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 , _SCREAMING_SNAKE_CASE = DEFAULT_DEVICE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="summarization" , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> Dict:
snake_case_ = Path(_SCREAMING_SNAKE_CASE ).open("""w""" , encoding="""utf-8""" )
snake_case_ = str(_SCREAMING_SNAKE_CASE )
snake_case_ = AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE )
if fpaa:
snake_case_ = model.half()
snake_case_ = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE )
logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type.
snake_case_ = time.time()
# update config with task specific params
use_task_specific_params(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if prefix is None:
snake_case_ = prefix or getattr(model.config , """prefix""" , """""" ) or """"""
for examples_chunk in tqdm(list(chunks(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ):
snake_case_ = [prefix + text for text in examples_chunk]
snake_case_ = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , truncation=_SCREAMING_SNAKE_CASE , padding="""longest""" ).to(_SCREAMING_SNAKE_CASE )
snake_case_ = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_SCREAMING_SNAKE_CASE , )
snake_case_ = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE )
for hypothesis in dec:
fout.write(hypothesis + """\n""" )
fout.flush()
fout.close()
snake_case_ = int(time.time() - start_time ) # seconds
snake_case_ = len(_SCREAMING_SNAKE_CASE )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def _a ( ) -> List[str]:
return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" )
def _a ( _SCREAMING_SNAKE_CASE=True ) -> Optional[Any]:
snake_case_ = argparse.ArgumentParser()
parser.add_argument("""model_name""" , type=_SCREAMING_SNAKE_CASE , help="""like facebook/bart-large-cnn,t5-base, etc.""" )
parser.add_argument("""input_path""" , type=_SCREAMING_SNAKE_CASE , help="""like cnn_dm/test.source""" )
parser.add_argument("""save_path""" , type=_SCREAMING_SNAKE_CASE , help="""where to save summaries""" )
parser.add_argument("""--reference_path""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""like cnn_dm/test.target""" )
parser.add_argument("""--score_path""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , default="""metrics.json""" , help="""where to save metrics""" )
parser.add_argument("""--device""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""cuda, cuda:1, cpu etc.""" )
parser.add_argument(
"""--prefix""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""will be added to the begininng of src examples""" )
parser.add_argument("""--task""" , type=_SCREAMING_SNAKE_CASE , default="""summarization""" , help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""" , type=_SCREAMING_SNAKE_CASE , default=8 , required=_SCREAMING_SNAKE_CASE , help="""batch size""" )
parser.add_argument(
"""--n_obs""" , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help="""How many observations. Defaults to all.""" )
parser.add_argument("""--fp16""" , action="""store_true""" )
parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" )
parser.add_argument(
"""--info""" , nargs="""?""" , type=_SCREAMING_SNAKE_CASE , const=datetime_now() , help=(
"""use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g."""
""" lang=en-ru. If no value is passed, the current datetime string will be used."""
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
snake_case_ , snake_case_ = parser.parse_known_args()
snake_case_ = parse_numeric_n_bool_cl_kwargs(_SCREAMING_SNAKE_CASE )
if parsed_args and verbose:
print(f"""parsed the following generate kwargs: {parsed_args}""" )
snake_case_ = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
snake_case_ = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError("""Can't mix --fp16 and --device cpu""" )
snake_case_ = generate_summaries_or_translations(
_SCREAMING_SNAKE_CASE , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_SCREAMING_SNAKE_CASE , )
if args.reference_path is None:
return {}
# Compute scores
snake_case_ = calculate_bleu if """translation""" in args.task else calculate_rouge
snake_case_ = [x.rstrip() for x in open(args.save_path ).readlines()]
snake_case_ = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_SCREAMING_SNAKE_CASE )]
snake_case_ = score_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
scores.update(_SCREAMING_SNAKE_CASE )
if args.dump_args:
scores.update(_SCREAMING_SNAKE_CASE )
if args.info:
snake_case_ = args.info
if verbose:
print(_SCREAMING_SNAKE_CASE )
if args.score_path is not None:
json.dump(_SCREAMING_SNAKE_CASE , open(args.score_path , """w""" ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 2 |
"""simple docstring"""
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str:
snake_case_ = ascii_letters + digits + punctuation
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(_SCREAMING_SNAKE_CASE )
snake_case_ = i // 3
snake_case_ = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
snake_case_ = (
chars_incl
+ random(_SCREAMING_SNAKE_CASE , quotient + remainder )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
)
snake_case_ = list(_SCREAMING_SNAKE_CASE )
shuffle(_SCREAMING_SNAKE_CASE )
return "".join(_SCREAMING_SNAKE_CASE )
# random is a generalised function for letters, characters and numbers
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool:
if len(_SCREAMING_SNAKE_CASE ) < min_length:
# Your Password must be at least 8 characters long
return False
snake_case_ = any(char in ascii_uppercase for char in password )
snake_case_ = any(char in ascii_lowercase for char in password )
snake_case_ = any(char in digits for char in password )
snake_case_ = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def _a ( ) -> str:
snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() )
snake_case_ = input(
"""Please indicate the characters that must be in your password: """ ).strip()
print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) )
print(
"""Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , )
print("""[If you are thinking of using this passsword, You better save it.]""" )
if __name__ == "__main__":
main()
| 2 | 1 |
"""simple docstring"""
from abc import ABC, abstractmethod
from typing import List, Optional
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Any ) ->Tuple:
"""simple docstring"""
self.test()
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = 0
snake_case_ = False
while not completed:
if counter == 1:
self.reset()
snake_case_ = self.advance()
if not self.does_advance(UpperCAmelCase_ ):
raise Exception(
"""Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" )
snake_case_ , snake_case_ , snake_case_ = self.update(UpperCAmelCase_ )
counter += 1
if counter > 10_000:
raise Exception("""update() does not fulfill the constraint.""" )
if self.remaining() != 0:
raise Exception("""Custom Constraint is not defined correctly.""" )
@abstractmethod
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
@abstractmethod
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : int ) ->Tuple:
"""simple docstring"""
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
@abstractmethod
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : int ) ->List[str]:
"""simple docstring"""
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
@abstractmethod
def lowerCAmelCase ( self : Optional[int] ) ->int:
"""simple docstring"""
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
@abstractmethod
def lowerCAmelCase ( self : Any ) ->List[str]:
"""simple docstring"""
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
@abstractmethod
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Optional[Any]=False ) ->List[Any]:
"""simple docstring"""
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Dict , UpperCAmelCase_ : List[int] ) ->str:
"""simple docstring"""
super(UpperCAmelCase_ , self ).__init__()
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or len(UpperCAmelCase_ ) == 0:
raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" )
if any((not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or token_id < 0) for token_id in token_ids ):
raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" )
snake_case_ = token_ids
snake_case_ = len(self.token_ids )
snake_case_ = -1 # the index of the currently fulfilled step
snake_case_ = False
def lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : int ) ->Optional[int]:
"""simple docstring"""
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase_ )}""" )
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : int ) ->List[Any]:
"""simple docstring"""
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase_ )}""" )
snake_case_ = False
snake_case_ = False
snake_case_ = False
if self.does_advance(UpperCAmelCase_ ):
self.fulfilled_idx += 1
snake_case_ = True
if self.fulfilled_idx == (self.seqlen - 1):
snake_case_ = True
snake_case_ = completed
else:
# failed to make progress.
snake_case_ = True
self.reset()
return stepped, completed, reset
def lowerCAmelCase ( self : Dict ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = False
snake_case_ = 0
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
return self.seqlen - (self.fulfilled_idx + 1)
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Dict=False ) ->List[str]:
"""simple docstring"""
snake_case_ = PhrasalConstraint(self.token_ids )
if stateful:
snake_case_ = self.seqlen
snake_case_ = self.fulfilled_idx
snake_case_ = self.completed
return new_constraint
class __A :
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCAmelCase_ : List[List[int]] , UpperCAmelCase_ : Optional[int]=True ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = max([len(UpperCAmelCase_ ) for one in nested_token_ids] )
snake_case_ = {}
for token_ids in nested_token_ids:
snake_case_ = root
for tidx, token_id in enumerate(UpperCAmelCase_ ):
if token_id not in level:
snake_case_ = {}
snake_case_ = level[token_id]
if no_subsets and self.has_subsets(UpperCAmelCase_ , UpperCAmelCase_ ):
raise ValueError(
"""Each list in `nested_token_ids` can't be a complete subset of another list, but is"""
F""" {nested_token_ids}.""" )
snake_case_ = root
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.trie
for current_token in current_seq:
snake_case_ = start[current_token]
snake_case_ = list(start.keys() )
return next_tokens
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.next_tokens(UpperCAmelCase_ )
return len(UpperCAmelCase_ ) == 0
def lowerCAmelCase ( self : int , UpperCAmelCase_ : Dict ) ->List[str]:
"""simple docstring"""
snake_case_ = list(root.values() )
if len(UpperCAmelCase_ ) == 0:
return 1
else:
return sum([self.count_leaves(UpperCAmelCase_ ) for nn in next_nodes] )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.count_leaves(UpperCAmelCase_ )
return len(UpperCAmelCase_ ) != leaf_count
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : List[List[int]] ) ->List[str]:
"""simple docstring"""
super(UpperCAmelCase_ , self ).__init__()
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or len(UpperCAmelCase_ ) == 0:
raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" )
if any(not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for token_ids in nested_token_ids ):
raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" )
if any(
any((not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or token_id < 0) for token_id in token_ids )
for token_ids in nested_token_ids ):
raise ValueError(
F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" )
snake_case_ = DisjunctiveTrie(UpperCAmelCase_ )
snake_case_ = nested_token_ids
snake_case_ = self.trie.max_height
snake_case_ = []
snake_case_ = False
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.trie.next_tokens(self.current_seq )
if len(UpperCAmelCase_ ) == 0:
return None
else:
return token_list
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : int ) ->int:
"""simple docstring"""
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase_ )}""" )
snake_case_ = self.trie.next_tokens(self.current_seq )
return token_id in next_tokens
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : int ) ->Dict:
"""simple docstring"""
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase_ )}""" )
snake_case_ = False
snake_case_ = False
snake_case_ = False
if self.does_advance(UpperCAmelCase_ ):
self.current_seq.append(UpperCAmelCase_ )
snake_case_ = True
else:
snake_case_ = True
self.reset()
snake_case_ = self.trie.reached_leaf(self.current_seq )
snake_case_ = completed
return stepped, completed, reset
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = False
snake_case_ = []
def lowerCAmelCase ( self : Optional[Any] ) ->int:
"""simple docstring"""
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Optional[Any]=False ) ->List[Any]:
"""simple docstring"""
snake_case_ = DisjunctiveConstraint(self.token_ids )
if stateful:
snake_case_ = self.seqlen
snake_case_ = self.current_seq
snake_case_ = self.completed
return new_constraint
class __A :
'''simple docstring'''
def __init__( self : str , UpperCAmelCase_ : List[Constraint] ) ->Any:
"""simple docstring"""
snake_case_ = constraints
# max # of steps required to fulfill a given constraint
snake_case_ = max([c.seqlen for c in constraints] )
snake_case_ = len(UpperCAmelCase_ )
snake_case_ = False
self.init_state()
def lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
snake_case_ = []
snake_case_ = None
snake_case_ = [constraint.copy(stateful=UpperCAmelCase_ ) for constraint in self.constraints]
def lowerCAmelCase ( self : List[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints ) * self.max_seqlen) + add
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
snake_case_ = constraint.advance()
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
token_list.append(UpperCAmelCase_ )
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
token_list.extend(UpperCAmelCase_ )
else:
snake_case_ = self.inprogress_constraint.advance()
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
token_list.append(UpperCAmelCase_ )
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
token_list.extend(UpperCAmelCase_ )
if len(UpperCAmelCase_ ) == 0:
return None
else:
return token_list
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[List[int]] ) ->Dict:
"""simple docstring"""
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
snake_case_ , snake_case_ = self.add(UpperCAmelCase_ )
# the entire list of constraints are fulfilled
if self.completed:
break
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : int ) ->List[Any]:
"""simple docstring"""
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" )
snake_case_ , snake_case_ = False, False
if self.completed:
snake_case_ = True
snake_case_ = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
snake_case_ , snake_case_ , snake_case_ = self.inprogress_constraint.update(UpperCAmelCase_ )
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=UpperCAmelCase_ ) )
snake_case_ = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint )
snake_case_ = None
if len(self.pending_constraints ) == 0:
# we're done!
snake_case_ = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints ):
if pending_constraint.does_advance(UpperCAmelCase_ ):
snake_case_ , snake_case_ , snake_case_ = pending_constraint.update(UpperCAmelCase_ )
if not stepped:
raise Exception(
"""`constraint.update(token_id)` is not yielding incremental progress, """
"""even though `constraint.does_advance(token_id)` is true.""" )
if complete:
self.complete_constraints.append(UpperCAmelCase_ )
snake_case_ = None
if not complete and stepped:
snake_case_ = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
snake_case_ = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
snake_case_ = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Optional[Any]=True ) ->Optional[int]:
"""simple docstring"""
snake_case_ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
snake_case_ = [
constraint.copy(stateful=UpperCAmelCase_ ) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
snake_case_ = self.inprogress_constraint.copy(stateful=UpperCAmelCase_ )
snake_case_ = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 2 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_normalize
def lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
snake_case_ = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" )
image_processor_first.to_json_file(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
pass
def _a ( ) -> str:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
snake_case_ = Image.open(dataset[4]["""file"""] )
snake_case_ = Image.open(dataset[5]["""file"""] )
snake_case_ = [imagea, imagea]
return images
@require_vision
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
snake_case_ = prepare_images()
# test non-batched
snake_case_ = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_024) )
snake_case_ = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ )
# test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_024) )
snake_case_ = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
| 2 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=7 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : Dict=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : str=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""shortest_edge""": 18}
snake_case_ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_center_crop
snake_case_ = crop_size
snake_case_ = do_normalize
snake_case_ = image_mean
snake_case_ = image_std
def lowerCAmelCase ( self : List[Any] ) ->str:
"""simple docstring"""
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = LevitImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : List[str] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = LevitImageProcessingTester(self )
@property
def lowerCAmelCase ( self : str ) ->Union[str, Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """image_mean""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """image_std""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_center_crop""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
def lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18} )
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def lowerCAmelCase ( self : str ) ->int:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict ) ->Tuple:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 2 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = scope
snake_case_ = range_bbox
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case_ = bbox[i, j, 3]
snake_case_ = bbox[i, j, 1]
snake_case_ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case_ = bbox[i, j, 2]
snake_case_ = bbox[i, j, 0]
snake_case_ = t
snake_case_ = None
if self.use_input_mask:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str:
"""simple docstring"""
snake_case_ = LiltModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict:
"""simple docstring"""
snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowercase: Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return True
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = LiltModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_torch
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ )
snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ )
snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ )
snake_case_ = torch.Size([1, 2, 768] )
snake_case_ = torch.tensor(
[[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 1 |
"""simple docstring"""
import darl # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline
__SCREAMING_SNAKE_CASE : Union[str, Any] = {
'n_samples': 64,
'horizon': 32,
'num_inference_steps': 20,
'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network
'scale_grad_by_std': True,
'scale': 0.1,
'eta': 0.0,
't_grad_cutoff': 2,
'device': 'cpu',
}
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Any = 'hopper-medium-v2'
__SCREAMING_SNAKE_CASE : Union[str, Any] = gym.make(env_name)
__SCREAMING_SNAKE_CASE : int = ValueGuidedRLPipeline.from_pretrained(
'bglick13/hopper-medium-v2-value-function-hor32',
env=env,
)
env.seed(0)
__SCREAMING_SNAKE_CASE : Tuple = env.reset()
__SCREAMING_SNAKE_CASE : int = 0
__SCREAMING_SNAKE_CASE : List[Any] = 0
__SCREAMING_SNAKE_CASE : Optional[int] = 1_000
__SCREAMING_SNAKE_CASE : Optional[int] = [obs.copy()]
try:
for t in tqdm.tqdm(range(T)):
# call the policy
__SCREAMING_SNAKE_CASE : Any = pipeline(obs, planning_horizon=32)
# execute action in environment
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = env.step(denorm_actions)
__SCREAMING_SNAKE_CASE : str = env.get_normalized_score(total_reward)
# update return
total_reward += reward
total_score += score
print(
f"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:"""
f""" {total_score}"""
)
# save observations for rendering
rollout.append(next_observation.copy())
__SCREAMING_SNAKE_CASE : Optional[int] = next_observation
except KeyboardInterrupt:
pass
print(f"""Total reward: {total_reward}""")
| 2 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = 0
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
snake_case_ = i + 1
else:
snake_case_ = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
| 2 | 1 |
"""simple docstring"""
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str:
snake_case_ = ascii_letters + digits + punctuation
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(_SCREAMING_SNAKE_CASE )
snake_case_ = i // 3
snake_case_ = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
snake_case_ = (
chars_incl
+ random(_SCREAMING_SNAKE_CASE , quotient + remainder )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
)
snake_case_ = list(_SCREAMING_SNAKE_CASE )
shuffle(_SCREAMING_SNAKE_CASE )
return "".join(_SCREAMING_SNAKE_CASE )
# random is a generalised function for letters, characters and numbers
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool:
if len(_SCREAMING_SNAKE_CASE ) < min_length:
# Your Password must be at least 8 characters long
return False
snake_case_ = any(char in ascii_uppercase for char in password )
snake_case_ = any(char in ascii_lowercase for char in password )
snake_case_ = any(char in digits for char in password )
snake_case_ = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def _a ( ) -> str:
snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() )
snake_case_ = input(
"""Please indicate the characters that must be in your password: """ ).strip()
print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) )
print(
"""Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , )
print("""[If you are thinking of using this passsword, You better save it.]""" )
if __name__ == "__main__":
main()
| 2 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 1 |
"""simple docstring"""
from __future__ import annotations
__SCREAMING_SNAKE_CASE : Dict = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> tuple[list[list[int]], list[list[int]]]:
snake_case_ = [
[0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) )
] # the reference grid
snake_case_ = 1
snake_case_ = [
[0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) )
] # the action grid
snake_case_ = init[0]
snake_case_ = init[1]
snake_case_ = 0
snake_case_ = g + heuristic[x][y] # cost from starting cell to destination cell
snake_case_ = [[f, g, x, y]]
snake_case_ = False # flag that is set when search is complete
snake_case_ = False # flag set if we can't find expand
while not found and not resign:
if len(_SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("""Algorithm is unable to find solution""" )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
snake_case_ = cell.pop()
snake_case_ = next_cell[2]
snake_case_ = next_cell[3]
snake_case_ = next_cell[1]
if x == goal[0] and y == goal[1]:
snake_case_ = True
else:
for i in range(len(_SCREAMING_SNAKE_CASE ) ): # to try out different valid actions
snake_case_ = x + DIRECTIONS[i][0]
snake_case_ = y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(_SCREAMING_SNAKE_CASE ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
snake_case_ = g + cost
snake_case_ = ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
snake_case_ = 1
snake_case_ = i
snake_case_ = []
snake_case_ = goal[0]
snake_case_ = goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
snake_case_ = x - DIRECTIONS[action[x][y]][0]
snake_case_ = y - DIRECTIONS[action[x][y]][1]
snake_case_ = xa
snake_case_ = ya
invpath.append([x, y] )
snake_case_ = []
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
path.append(invpath[len(_SCREAMING_SNAKE_CASE ) - 1 - i] )
return path, action
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : List[str] = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
__SCREAMING_SNAKE_CASE : List[str] = [0, 0]
# all coordinates are given in format [y,x]
__SCREAMING_SNAKE_CASE : Any = [len(grid) - 1, len(grid[0]) - 1]
__SCREAMING_SNAKE_CASE : Optional[Any] = 1
# the cost map which pushes the path closer to the goal
__SCREAMING_SNAKE_CASE : Dict = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
__SCREAMING_SNAKE_CASE : Tuple = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
__SCREAMING_SNAKE_CASE : Optional[int] = 99
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = search(grid, init, goal, cost, heuristic)
print('ACTION MAP')
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 2 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter'
__SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE'
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}"""
raise TypeError(_SCREAMING_SNAKE_CASE )
snake_case_ = spanish_id.replace("""-""" , """""" ).upper()
if len(_SCREAMING_SNAKE_CASE ) != 9:
raise ValueError(_SCREAMING_SNAKE_CASE )
try:
snake_case_ = int(spanish_id_clean[0:8] )
snake_case_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_SCREAMING_SNAKE_CASE ) from ex
if letter.isdigit():
raise ValueError(_SCREAMING_SNAKE_CASE )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
snake_case_ = int(_SCREAMING_SNAKE_CASE )
if n_element < 1:
snake_case_ = ValueError("""a should be a positive number""" )
raise my_error
snake_case_ = [1]
snake_case_ , snake_case_ , snake_case_ = (0, 0, 0)
snake_case_ = 1
while index < n_element:
while hamming_list[i] * 2 <= hamming_list[-1]:
i += 1
while hamming_list[j] * 3 <= hamming_list[-1]:
j += 1
while hamming_list[k] * 5 <= hamming_list[-1]:
k += 1
hamming_list.append(
min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) )
index += 1
return hamming_list
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : str = input('Enter the last number (nth term) of the Hamming Number Series: ')
print('Formula of Hamming Number Series => 2^i * 3^j * 5^k')
__SCREAMING_SNAKE_CASE : str = hamming(int(n))
print('-----------------------------------------------------')
print(f"""The list with nth numbers is: {hamming_numbers}""")
print('-----------------------------------------------------')
| 2 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'}
__SCREAMING_SNAKE_CASE : List[str] = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
}
}
__SCREAMING_SNAKE_CASE : List[str] = {
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
__SCREAMING_SNAKE_CASE : int = '▁'
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = VOCAB_FILES_NAMES
__lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None:
"""simple docstring"""
snake_case_ = (
AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
else mask_token
)
snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
snake_case_ = do_lower_case
snake_case_ = remove_space
snake_case_ = keep_accents
snake_case_ = vocab_file
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
return len(self.sp_model )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) ->List[str]:
"""simple docstring"""
snake_case_ = self.__dict__.copy()
snake_case_ = None
return state
def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
snake_case_ = {}
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str:
"""simple docstring"""
if self.remove_space:
snake_case_ = """ """.join(inputs.strip().split() )
else:
snake_case_ = inputs
snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ )
snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] )
if self.do_lower_case:
snake_case_ = outputs.lower()
return outputs
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
snake_case_ = self.preprocess_text(UpperCAmelCase_ )
snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
snake_case_ = []
for piece in pieces:
if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
snake_case_ = cur_pieces[1:]
else:
snake_case_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCAmelCase_ )
else:
new_pieces.append(UpperCAmelCase_ )
return new_pieces
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict:
"""simple docstring"""
return self.sp_model.PieceToId(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return self.sp_model.IdToPiece(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any:
"""simple docstring"""
snake_case_ = []
snake_case_ = """"""
snake_case_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase_ ) + token
snake_case_ = True
snake_case_ = []
else:
current_sub_tokens.append(UpperCAmelCase_ )
snake_case_ = False
out_string += self.sp_model.decode(UpperCAmelCase_ )
return out_string.strip()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , """wb""" ) as fi:
snake_case_ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
return (out_vocab_file,)
| 2 | 1 |
"""simple docstring"""
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__SCREAMING_SNAKE_CASE : Tuple = {
'facebook/mask2former-swin-small-coco-instance': (
'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json'
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = """mask2former"""
__lowercase: Any = ["""swin"""]
__lowercase: Union[str, Any] = {"""hidden_size""": """hidden_dim"""}
def __init__( self : str , UpperCAmelCase_ : Optional[Dict] = None , UpperCAmelCase_ : int = 256 , UpperCAmelCase_ : int = 256 , UpperCAmelCase_ : int = 256 , UpperCAmelCase_ : int = 1_024 , UpperCAmelCase_ : str = "relu" , UpperCAmelCase_ : int = 6 , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : int = 2_048 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : int = 4 , UpperCAmelCase_ : int = 255 , UpperCAmelCase_ : int = 100 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 2.0 , UpperCAmelCase_ : float = 5.0 , UpperCAmelCase_ : float = 5.0 , UpperCAmelCase_ : int = 12_544 , UpperCAmelCase_ : float = 3.0 , UpperCAmelCase_ : float = 0.75 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : List[int] = [4, 8, 16, 32] , UpperCAmelCase_ : bool = None , **UpperCAmelCase_ : Optional[Any] , ) ->Dict:
"""simple docstring"""
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" )
snake_case_ = CONFIG_MAPPING["""swin"""](
image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=UpperCAmelCase_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = backbone_config.pop("""model_type""" )
snake_case_ = CONFIG_MAPPING[backbone_model_type]
snake_case_ = config_class.from_dict(UpperCAmelCase_ )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """
F"""Supported model types: {",".join(self.backbones_supported )}""" )
snake_case_ = backbone_config
snake_case_ = feature_size
snake_case_ = mask_feature_size
snake_case_ = hidden_dim
snake_case_ = encoder_feedforward_dim
snake_case_ = activation_function
snake_case_ = encoder_layers
snake_case_ = decoder_layers
snake_case_ = num_attention_heads
snake_case_ = dropout
snake_case_ = dim_feedforward
snake_case_ = pre_norm
snake_case_ = enforce_input_projection
snake_case_ = common_stride
snake_case_ = ignore_value
snake_case_ = num_queries
snake_case_ = no_object_weight
snake_case_ = class_weight
snake_case_ = mask_weight
snake_case_ = dice_weight
snake_case_ = train_num_points
snake_case_ = oversample_ratio
snake_case_ = importance_sample_ratio
snake_case_ = init_std
snake_case_ = init_xavier_std
snake_case_ = use_auxiliary_loss
snake_case_ = feature_strides
snake_case_ = output_auxiliary_logits
snake_case_ = decoder_layers
super().__init__(**UpperCAmelCase_ )
@classmethod
def lowerCAmelCase ( cls : Tuple , UpperCAmelCase_ : PretrainedConfig , **UpperCAmelCase_ : List[Any] ) ->int:
"""simple docstring"""
return cls(
backbone_config=UpperCAmelCase_ , **UpperCAmelCase_ , )
def lowerCAmelCase ( self : int ) ->Dict[str, any]:
"""simple docstring"""
snake_case_ = copy.deepcopy(self.__dict__ )
snake_case_ = self.backbone_config.to_dict()
snake_case_ = self.__class__.model_type
return output
| 2 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("""The given input must be positive""" )
# get the generated string sequence
snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = int(sequence[i] , 2 )
return sequence
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
snake_case_ = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
snake_case_ = gray_code_sequence_string(bit_count - 1 )
snake_case_ = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
snake_case_ = """0""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
snake_case_ = """1""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
__SCREAMING_SNAKE_CASE : Optional[int] = pd.read_csv(
'https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/'
'position_salaries.csv'
)
__SCREAMING_SNAKE_CASE : Union[str, Any] = dataset.iloc[:, 1:2].values
__SCREAMING_SNAKE_CASE : str = dataset.iloc[:, 2].values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = train_test_split(X, y, test_size=0.2, random_state=0)
__SCREAMING_SNAKE_CASE : List[str] = PolynomialFeatures(degree=4)
__SCREAMING_SNAKE_CASE : Tuple = poly_reg.fit_transform(X)
__SCREAMING_SNAKE_CASE : Optional[Any] = LinearRegression()
pol_reg.fit(X_poly, y)
def _a ( ) -> List[Any]:
plt.scatter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , color="""red""" )
plt.plot(_SCREAMING_SNAKE_CASE , pol_reg.predict(poly_reg.fit_transform(_SCREAMING_SNAKE_CASE ) ) , color="""blue""" )
plt.title("""Truth or Bluff (Linear Regression)""" )
plt.xlabel("""Position level""" )
plt.ylabel("""Salary""" )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 2 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 1 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AlignProcessor, EfficientNetImageProcessor
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
snake_case_ = tempfile.mkdtemp()
snake_case_ = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
snake_case_ = {
"""do_resize""": True,
"""size""": 20,
"""do_center_crop""": True,
"""crop_size""": 18,
"""do_normalize""": True,
"""image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073],
"""image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711],
}
snake_case_ = os.path.join(self.tmpdirname , UpperCAmelCase_ )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : List[str] , **UpperCAmelCase_ : Dict ) ->Dict:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , **UpperCAmelCase_ : Tuple ) ->str:
"""simple docstring"""
return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , **UpperCAmelCase_ : Tuple ) ->Dict:
"""simple docstring"""
return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
snake_case_ = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.get_tokenizer()
snake_case_ = self.get_rust_tokenizer()
snake_case_ = self.get_image_processor()
snake_case_ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
processor_slow.save_pretrained(self.tmpdirname )
snake_case_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ )
snake_case_ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
processor_fast.save_pretrained(self.tmpdirname )
snake_case_ = AlignProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ )
self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ )
self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ )
def lowerCAmelCase ( self : int ) ->int:
"""simple docstring"""
snake_case_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
snake_case_ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
snake_case_ = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 )
snake_case_ = AlignProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCAmelCase_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
snake_case_ = self.prepare_image_inputs()
snake_case_ = image_processor(UpperCAmelCase_ , return_tensors="""np""" )
snake_case_ = processor(images=UpperCAmelCase_ , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
snake_case_ = """lower newer"""
snake_case_ = processor(text=UpperCAmelCase_ )
snake_case_ = tokenizer(UpperCAmelCase_ , padding="""max_length""" , max_length=64 )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowerCAmelCase ( self : Dict ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
snake_case_ = """lower newer"""
snake_case_ = self.prepare_image_inputs()
snake_case_ = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase_ ):
processor()
def lowerCAmelCase ( self : int ) ->int:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
snake_case_ = processor.batch_decode(UpperCAmelCase_ )
snake_case_ = tokenizer.batch_decode(UpperCAmelCase_ )
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : int ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
snake_case_ = """lower newer"""
snake_case_ = self.prepare_image_inputs()
snake_case_ = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 2 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/'
__SCREAMING_SNAKE_CASE : List[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
snake_case_ = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
snake_case_ = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = {}
import re
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# keep original key
else:
snake_case_ = original_key
snake_case_ = replace_key(_SCREAMING_SNAKE_CASE )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
snake_case_ = original_key
snake_case_ = original_key
snake_case_ = value
return new_dict
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ):
snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE )
open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content )
snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]]
snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE )
snake_case_ = []
snake_case_ = {}
for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""]
snake_case_ = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
snake_case_ = old_dic[k]
elif k.endswith(""".w""" ):
snake_case_ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
snake_case_ = old_dic[k]
else:
snake_case_ = old_dic[k]
snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}"""
snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
weight_dict.append(_SCREAMING_SNAKE_CASE )
snake_case_ = weight_dict.pop(0 )
model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
return weight_dict
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 2 | 1 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int:
return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 2 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__SCREAMING_SNAKE_CASE : Dict = 'zero2'
__SCREAMING_SNAKE_CASE : List[Any] = 'zero3'
__SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __A (snake_case__):
'''simple docstring'''
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = models[model]
snake_case_ = self.run_trainer(
stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
self.do_checks(UpperCAmelCase_ )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ )
snake_case_ = F"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(UpperCAmelCase_ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
snake_case_ = self.get_launcher(UpperCAmelCase_ )
snake_case_ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple:
"""simple docstring"""
snake_case_ = min(2 , get_gpu_count() ) if distributed else 1
return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 2 | 1 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int:
snake_case_ = set()
snake_case_ = 0
snake_case_ = n + 1 # maximum limit
for a in range(2 , _SCREAMING_SNAKE_CASE ):
for b in range(2 , _SCREAMING_SNAKE_CASE ):
snake_case_ = a**b # calculates the current power
collect_powers.add(_SCREAMING_SNAKE_CASE ) # adds the result to the set
return len(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print('Number of terms ', solution(int(str(input()).strip())))
| 2 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True})
__lowercase: ClassVar[Features] = Features({"""audio""": Audio()})
__lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")})
__lowercase: str = "audio"
__lowercase: str = "transcription"
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int:
"""simple docstring"""
if self.audio_column not in features:
raise ValueError(F"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , UpperCAmelCase_ ):
raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" )
snake_case_ = copy.deepcopy(self )
snake_case_ = self.input_schema.copy()
snake_case_ = features[self.audio_column]
snake_case_ = input_schema
return task_template
@property
def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]:
"""simple docstring"""
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 2 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : str = {
'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json',
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = """blenderbot-small"""
__lowercase: Any = ["""past_key_values"""]
__lowercase: Optional[int] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self : Optional[Any] , UpperCAmelCase_ : int=50_265 , UpperCAmelCase_ : Dict=512 , UpperCAmelCase_ : List[Any]=8 , UpperCAmelCase_ : List[Any]=2_048 , UpperCAmelCase_ : Optional[Any]=16 , UpperCAmelCase_ : List[str]=8 , UpperCAmelCase_ : int=2_048 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Optional[Any]=2 , **UpperCAmelCase_ : List[str] , ) ->Optional[int]:
"""simple docstring"""
snake_case_ = vocab_size
snake_case_ = max_position_embeddings
snake_case_ = d_model
snake_case_ = encoder_ffn_dim
snake_case_ = encoder_layers
snake_case_ = encoder_attention_heads
snake_case_ = decoder_ffn_dim
snake_case_ = decoder_layers
snake_case_ = decoder_attention_heads
snake_case_ = dropout
snake_case_ = attention_dropout
snake_case_ = activation_dropout
snake_case_ = activation_function
snake_case_ = init_std
snake_case_ = encoder_layerdrop
snake_case_ = decoder_layerdrop
snake_case_ = use_cache
snake_case_ = encoder_layers
snake_case_ = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , forced_eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , )
class __A (snake_case__):
'''simple docstring'''
@property
def lowerCAmelCase ( self : Optional[int] ) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
snake_case_ = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
] )
if self.use_past:
snake_case_ = {0: """batch"""}
snake_case_ = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
else:
snake_case_ = {0: """batch""", 1: """decoder_sequence"""}
snake_case_ = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(UpperCAmelCase_ , direction="""inputs""" )
elif self.task == "causal-lm":
# TODO: figure this case out.
snake_case_ = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
] )
if self.use_past:
snake_case_ , snake_case_ = self.num_layers
for i in range(UpperCAmelCase_ ):
snake_case_ = {0: """batch""", 2: """past_sequence + sequence"""}
snake_case_ = {0: """batch""", 2: """past_sequence + sequence"""}
else:
snake_case_ = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}),
("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}),
] )
return common_inputs
@property
def lowerCAmelCase ( self : str ) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
snake_case_ = super().outputs
else:
snake_case_ = super(UpperCAmelCase_ , self ).outputs
if self.use_past:
snake_case_ , snake_case_ = self.num_layers
for i in range(UpperCAmelCase_ ):
snake_case_ = {0: """batch""", 2: """past_sequence + sequence"""}
snake_case_ = {0: """batch""", 2: """past_sequence + sequence"""}
return common_outputs
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ) ->Mapping[str, Any]:
"""simple docstring"""
snake_case_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# Generate decoder inputs
snake_case_ = seq_length if not self.use_past else 1
snake_case_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()}
snake_case_ = dict(**UpperCAmelCase_ , **UpperCAmelCase_ )
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
snake_case_ , snake_case_ = common_inputs["""input_ids"""].shape
snake_case_ = common_inputs["""decoder_input_ids"""].shape[1]
snake_case_ , snake_case_ = self.num_attention_heads
snake_case_ = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
snake_case_ = decoder_seq_length + 3
snake_case_ = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
snake_case_ = torch.cat(
[common_inputs["""decoder_attention_mask"""], torch.ones(UpperCAmelCase_ , UpperCAmelCase_ )] , dim=1 )
snake_case_ = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
snake_case_ , snake_case_ = self.num_layers
snake_case_ = min(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = max(UpperCAmelCase_ , UpperCAmelCase_ ) - min_num_layers
snake_case_ = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder"""
for _ in range(UpperCAmelCase_ ):
common_inputs["past_key_values"].append(
(
torch.zeros(UpperCAmelCase_ ),
torch.zeros(UpperCAmelCase_ ),
torch.zeros(UpperCAmelCase_ ),
torch.zeros(UpperCAmelCase_ ),
) )
# TODO: test this.
snake_case_ = encoder_shape if remaining_side_name == """encoder""" else decoder_shape
for _ in range(UpperCAmelCase_ , UpperCAmelCase_ ):
common_inputs["past_key_values"].append((torch.zeros(UpperCAmelCase_ ), torch.zeros(UpperCAmelCase_ )) )
return common_inputs
def lowerCAmelCase ( self : int , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ) ->Mapping[str, Any]:
"""simple docstring"""
snake_case_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
snake_case_ , snake_case_ = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
snake_case_ = seqlen + 2
snake_case_ , snake_case_ = self.num_layers
snake_case_ , snake_case_ = self.num_attention_heads
snake_case_ = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
snake_case_ = common_inputs["""attention_mask"""].dtype
snake_case_ = torch.cat(
[common_inputs["""attention_mask"""], torch.ones(UpperCAmelCase_ , UpperCAmelCase_ , dtype=UpperCAmelCase_ )] , dim=1 )
snake_case_ = [
(torch.zeros(UpperCAmelCase_ ), torch.zeros(UpperCAmelCase_ )) for _ in range(UpperCAmelCase_ )
]
return common_inputs
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ) ->Mapping[str, Any]:
"""simple docstring"""
snake_case_ = compute_effective_axis_dimension(
UpperCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
snake_case_ = tokenizer.num_special_tokens_to_add(UpperCAmelCase_ )
snake_case_ = compute_effective_axis_dimension(
UpperCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase_ )
# Generate dummy inputs according to compute batch and sequence
snake_case_ = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size
snake_case_ = dict(tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) )
return common_inputs
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ) ->Mapping[str, Any]:
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
snake_case_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_ )
elif self.task == "causal-lm":
snake_case_ = self._generate_dummy_inputs_for_causal_lm(
UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_ )
else:
snake_case_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_ )
return common_inputs
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
snake_case_ = super()._flatten_past_key_values_(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
else:
snake_case_ = super(UpperCAmelCase_ , self )._flatten_past_key_values_(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
| 2 |
"""simple docstring"""
from functools import reduce
__SCREAMING_SNAKE_CASE : Tuple = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def _a ( _SCREAMING_SNAKE_CASE = N ) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) )
for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 | 1 |
"""simple docstring"""
import argparse
import math
import os
import torch
from neural_compressor.utils.pytorch import load
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel
def _a ( ) -> str:
snake_case_ = argparse.ArgumentParser()
parser.add_argument(
"""-m""" , """--pretrained_model_name_or_path""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , )
parser.add_argument(
"""-c""" , """--caption""" , type=_SCREAMING_SNAKE_CASE , default="""robotic cat with wings""" , help="""Text used to generate images.""" , )
parser.add_argument(
"""-n""" , """--images_num""" , type=_SCREAMING_SNAKE_CASE , default=4 , help="""How much images to generate.""" , )
parser.add_argument(
"""-s""" , """--seed""" , type=_SCREAMING_SNAKE_CASE , default=42 , help="""Seed for random process.""" , )
parser.add_argument(
"""-ci""" , """--cuda_id""" , type=_SCREAMING_SNAKE_CASE , default=0 , help="""cuda_id.""" , )
snake_case_ = parser.parse_args()
return args
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
if not len(_SCREAMING_SNAKE_CASE ) == rows * cols:
raise ValueError("""The specified number of rows and columns are not correct.""" )
snake_case_ , snake_case_ = imgs[0].size
snake_case_ = Image.new("""RGB""" , size=(cols * w, rows * h) )
snake_case_ , snake_case_ = grid.size
for i, img in enumerate(_SCREAMING_SNAKE_CASE ):
grid.paste(_SCREAMING_SNAKE_CASE , box=(i % cols * w, i // cols * h) )
return grid
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="robotic cat with wings" , _SCREAMING_SNAKE_CASE=7.5 , _SCREAMING_SNAKE_CASE=50 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=42 , ) -> Dict:
snake_case_ = torch.Generator(pipeline.device ).manual_seed(_SCREAMING_SNAKE_CASE )
snake_case_ = pipeline(
_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , ).images
snake_case_ = int(math.sqrt(_SCREAMING_SNAKE_CASE ) )
snake_case_ = image_grid(_SCREAMING_SNAKE_CASE , rows=_rows , cols=num_images_per_prompt // _rows )
return grid, images
__SCREAMING_SNAKE_CASE : List[Any] = parse_args()
# Load models and create wrapper for stable diffusion
__SCREAMING_SNAKE_CASE : Optional[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer')
__SCREAMING_SNAKE_CASE : List[str] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder')
__SCREAMING_SNAKE_CASE : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae')
__SCREAMING_SNAKE_CASE : Optional[int] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet')
__SCREAMING_SNAKE_CASE : str = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer
)
__SCREAMING_SNAKE_CASE : Union[str, Any] = lambda images, clip_input: (images, False)
if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')):
__SCREAMING_SNAKE_CASE : Optional[Any] = load(args.pretrained_model_name_or_path, model=unet)
unet.eval()
setattr(pipeline, 'unet', unet)
else:
__SCREAMING_SNAKE_CASE : Any = unet.to(torch.device('cuda', args.cuda_id))
__SCREAMING_SNAKE_CASE : Tuple = pipeline.to(unet.device)
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed)
grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split()))))
__SCREAMING_SNAKE_CASE : Dict = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split()))
os.makedirs(dirname, exist_ok=True)
for idx, image in enumerate(images):
image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
| 2 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : str = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Any = """mctct"""
def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = intermediate_size
snake_case_ = num_attention_heads
snake_case_ = attention_head_dim
snake_case_ = max_position_embeddings
snake_case_ = layer_norm_eps
snake_case_ = layerdrop
snake_case_ = hidden_act
snake_case_ = initializer_range
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = pad_token_id
snake_case_ = bos_token_id
snake_case_ = eos_token_id
snake_case_ = conv_glu_dim
snake_case_ = conv_dropout
snake_case_ = num_conv_layers
snake_case_ = input_feat_per_channel
snake_case_ = input_channels
snake_case_ = conv_channels
snake_case_ = ctc_loss_reduction
snake_case_ = ctc_zero_infinity
# prevents config testing fail with exporting to json
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """
F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """
F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
| 2 | 1 |
"""simple docstring"""
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
from .record_evaluation import evaluate as evaluate_record
__SCREAMING_SNAKE_CASE : Any = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n'
__SCREAMING_SNAKE_CASE : Optional[int] = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n'
__SCREAMING_SNAKE_CASE : Any = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n'
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
return float((preds == labels).mean() )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="binary" ) -> str:
snake_case_ = simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE , average=_SCREAMING_SNAKE_CASE ) )
return {
"accuracy": acc,
"f1": fa,
}
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
snake_case_ = {}
for id_pred, label in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}"""
snake_case_ = id_pred["""prediction"""]
if question_id in question_map:
question_map[question_id].append((pred, label) )
else:
snake_case_ = [(pred, label)]
snake_case_ , snake_case_ = [], []
for question, preds_labels in question_map.items():
snake_case_ , snake_case_ = zip(*_SCREAMING_SNAKE_CASE )
snake_case_ = fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE , average="""macro""" )
fas.append(_SCREAMING_SNAKE_CASE )
snake_case_ = int(sum(pred == label for pred, label in preds_labels ) == len(_SCREAMING_SNAKE_CASE ) )
ems.append(_SCREAMING_SNAKE_CASE )
snake_case_ = float(sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) )
snake_case_ = sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )
snake_case_ = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) )
return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class __A (datasets.Metric):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
if self.config_name not in [
"boolq",
"cb",
"copa",
"multirc",
"record",
"rte",
"wic",
"wsc",
"wsc.fixed",
"axb",
"axg",
]:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , )
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
if self.config_name == "record":
return {
"predictions": {
"idx": {
"passage": datasets.Value("""int64""" ),
"query": datasets.Value("""int64""" ),
},
"prediction_text": datasets.Value("""string""" ),
},
"references": {
"idx": {
"passage": datasets.Value("""int64""" ),
"query": datasets.Value("""int64""" ),
},
"answers": datasets.Sequence(datasets.Value("""string""" ) ),
},
}
elif self.config_name == "multirc":
return {
"predictions": {
"idx": {
"answer": datasets.Value("""int64""" ),
"paragraph": datasets.Value("""int64""" ),
"question": datasets.Value("""int64""" ),
},
"prediction": datasets.Value("""int64""" ),
},
"references": datasets.Value("""int64""" ),
}
else:
return {
"predictions": datasets.Value("""int64""" ),
"references": datasets.Value("""int64""" ),
}
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ) ->Dict:
"""simple docstring"""
if self.config_name == "axb":
return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase_ , UpperCAmelCase_ )}
elif self.config_name == "cb":
return acc_and_fa(UpperCAmelCase_ , UpperCAmelCase_ , fa_avg="""macro""" )
elif self.config_name == "record":
snake_case_ = [
{
"""qas""": [
{"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]}
for ref in references
]
}
]
snake_case_ = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions}
return evaluate_record(UpperCAmelCase_ , UpperCAmelCase_ )[0]
elif self.config_name == "multirc":
return evaluate_multirc(UpperCAmelCase_ , UpperCAmelCase_ )
elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]:
return {"accuracy": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )}
else:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
| 2 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int:
return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 2 | 1 |
"""simple docstring"""
import json
import os
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Union[str, Any] = {
'vocab_file': 'vocab.json',
'tokenizer_config_file': 'tokenizer_config.json',
'merges_file': 'merges.txt',
}
__SCREAMING_SNAKE_CASE : List[str] = {
'vocab_file': {
'facebook/s2t-wav2vec2-large-en-de': (
'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json'
),
},
'tokenizer_config_file': {
'facebook/s2t-wav2vec2-large-en-de': (
'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json'
),
},
'merges_file': {
'facebook/s2t-wav2vec2-large-en-de': (
'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt'
),
},
}
__SCREAMING_SNAKE_CASE : int = '</w>'
__SCREAMING_SNAKE_CASE : List[Any] = '@@ '
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
snake_case_ = set()
snake_case_ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
snake_case_ = char
return pairs
# Speech2Text2 has no max input length
__SCREAMING_SNAKE_CASE : Dict = {'facebook/s2t-wav2vec2-large-en-de': 1_024}
class __A (snake_case__):
'''simple docstring'''
__lowercase: int = VOCAB_FILES_NAMES
__lowercase: str = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase: Optional[Any] = ["""input_ids""", """attention_mask"""]
def __init__( self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]="<s>" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : List[Any]="</s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str] , ) ->List[str]:
"""simple docstring"""
super().__init__(
unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , **UpperCAmelCase_ , )
snake_case_ = do_lower_case
with open(UpperCAmelCase_ , encoding="""utf-8""" ) as vocab_handle:
snake_case_ = json.load(UpperCAmelCase_ )
snake_case_ = {v: k for k, v in self.encoder.items()}
if merges_file is None:
logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" )
snake_case_ = None
snake_case_ = None
else:
with open(UpperCAmelCase_ , encoding="""utf-8""" ) as merges_handle:
snake_case_ = merges_handle.read().split("""\n""" )[:-1]
snake_case_ = [tuple(merge.split()[:2] ) for merge in merges]
snake_case_ = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) )
snake_case_ = {}
@property
def lowerCAmelCase ( self : Dict ) ->int:
"""simple docstring"""
return len(self.decoder )
def lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : List[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,)
if token in self.cache:
return self.cache[token]
snake_case_ = get_pairs(UpperCAmelCase_ )
if not pairs:
return token
while True:
snake_case_ = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : self.bpe_ranks.get(UpperCAmelCase_ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
snake_case_ , snake_case_ = bigram
snake_case_ = []
snake_case_ = 0
while i < len(UpperCAmelCase_ ):
try:
snake_case_ = word.index(UpperCAmelCase_ , UpperCAmelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
snake_case_ = j
if word[i] == first and i < len(UpperCAmelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
snake_case_ = tuple(UpperCAmelCase_ )
snake_case_ = new_word
if len(UpperCAmelCase_ ) == 1:
break
else:
snake_case_ = get_pairs(UpperCAmelCase_ )
snake_case_ = """ """.join(UpperCAmelCase_ )
if word == "\n " + BPE_TOKEN_MERGES:
snake_case_ = """\n""" + BPE_TOKEN_MERGES
if word.endswith(UpperCAmelCase_ ):
snake_case_ = word.replace(UpperCAmelCase_ , """""" )
snake_case_ = word.replace(""" """ , UpperCAmelCase_ )
snake_case_ = word
return word
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] ) ->List[str]:
"""simple docstring"""
if self.bpe_ranks is None:
raise ValueError(
"""This tokenizer was instantiated without a `merges.txt` file, so"""
""" that it can only be used for decoding, not for encoding."""
"""Make sure to provide `merges.txt` file at instantiation to enable """
"""encoding.""" )
if self.do_lower_case:
snake_case_ = text.lower()
snake_case_ = text.split()
snake_case_ = []
for token in text:
if token:
split_tokens.extend(list(self.bpe(UpperCAmelCase_ ).split(""" """ ) ) )
return split_tokens
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : str ) ->int:
"""simple docstring"""
return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token ) )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : int ) ->str:
"""simple docstring"""
snake_case_ = self.decoder.get(UpperCAmelCase_ , self.unk_token )
return result
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[str] ) ->str:
"""simple docstring"""
snake_case_ = """ """.join(UpperCAmelCase_ )
# make sure @@ tokens are concatenated
snake_case_ = """""".join(string.split(UpperCAmelCase_ ) )
return string
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(UpperCAmelCase_ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_ ) + """\n""" )
snake_case_ = 0
if self.bpe_ranks is None:
return (vocab_file,)
with open(UpperCAmelCase_ , """w""" , encoding="""utf-8""" ) as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive."""
""" Please check that the tokenizer is not corrupted!""" )
snake_case_ = token_index
writer.write(""" """.join(UpperCAmelCase_ ) + """\n""" )
index += 1
return (vocab_file, merges_file)
| 2 |
"""simple docstring"""
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: str = VQModel
__lowercase: Union[str, Any] = """sample"""
@property
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple:
"""simple docstring"""
snake_case_ = 4
snake_case_ = 3
snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ )
return {"sample": image}
@property
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
return (3, 32, 32)
@property
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
return (3, 32, 32)
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 3,
}
snake_case_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(UpperCAmelCase_ )
snake_case_ = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" )
model.to(UpperCAmelCase_ ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
snake_case_ = image.to(UpperCAmelCase_ )
with torch.no_grad():
snake_case_ = model(UpperCAmelCase_ ).sample
snake_case_ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] )
# fmt: on
self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 1 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE = 50 ) -> int:
snake_case_ = [1] * (length + 1)
for row_length in range(3 , length + 1 ):
for block_length in range(3 , row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = KandinskyVaaControlnetPipeline
__lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: Union[str, Any] = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
__lowercase: Tuple = False
@property
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return 100
@property
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
snake_case_ = self.dummy_unet
snake_case_ = self.dummy_movq
snake_case_ = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , )
snake_case_ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]:
"""simple docstring"""
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase_ )
# create hint
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
if str(UpperCAmelCase_ ).startswith("""mps""" ):
snake_case_ = torch.manual_seed(UpperCAmelCase_ )
else:
snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = """cpu"""
snake_case_ = self.get_dummy_components()
snake_case_ = self.pipeline_class(**UpperCAmelCase_ )
snake_case_ = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
snake_case_ = output.images
snake_case_ = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ = np.array(
[0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0
snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case_ = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case_ = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = """A robot, 4k photo"""
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ , snake_case_ = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ = pipeline(
image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 2 | 1 |
"""simple docstring"""
from functools import lru_cache
def _a ( _SCREAMING_SNAKE_CASE ) -> set:
snake_case_ = 2
snake_case_ = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(_SCREAMING_SNAKE_CASE )
if n > 1:
factors.add(_SCREAMING_SNAKE_CASE )
return factors
@lru_cache
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
return len(unique_prime_factors(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
return len(set(_SCREAMING_SNAKE_CASE ) ) in (0, 1)
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
snake_case_ = 2
while True:
# Increment each value of a generated range
snake_case_ = [base + i for i in range(_SCREAMING_SNAKE_CASE )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
snake_case_ = [upf_len(_SCREAMING_SNAKE_CASE ) for x in group]
checker.append(_SCREAMING_SNAKE_CASE )
# If all numbers in the list are equal, return the group variable.
if equality(_SCREAMING_SNAKE_CASE ):
return group
# Increment our base variable by 1
base += 1
def _a ( _SCREAMING_SNAKE_CASE = 4 ) -> int:
snake_case_ = run(_SCREAMING_SNAKE_CASE )
return results[0] if len(_SCREAMING_SNAKE_CASE ) else None
if __name__ == "__main__":
print(solution())
| 2 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
class __A :
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = []
self.adlist.append(
{"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} )
for keyword in keywords:
self.add_keyword(UpperCAmelCase_ )
self.set_fail_transitions()
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None:
"""simple docstring"""
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None:
"""simple docstring"""
snake_case_ = 0
for character in keyword:
snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ )
if next_state is None:
self.adlist.append(
{
"""value""": character,
"""next_states""": [],
"""fail_state""": 0,
"""output""": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
snake_case_ = len(self.adlist ) - 1
else:
snake_case_ = next_state
self.adlist[current_state]["output"].append(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->None:
"""simple docstring"""
snake_case_ = deque()
for node in self.adlist[0]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = 0
while q:
snake_case_ = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = self.adlist[r]["""fail_state"""]
while (
self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None
and state != 0
):
snake_case_ = self.adlist[state]["""fail_state"""]
snake_case_ = self.find_next_state(
UpperCAmelCase_ , self.adlist[child]["""value"""] )
if self.adlist[child]["fail_state"] is None:
snake_case_ = 0
snake_case_ = (
self.adlist[child]["""output"""]
+ self.adlist[self.adlist[child]["""fail_state"""]]["""output"""]
)
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]:
"""simple docstring"""
snake_case_ = {} # returns a dict with keywords and list of its occurrences
snake_case_ = 0
for i in range(len(UpperCAmelCase_ ) ):
while (
self.find_next_state(UpperCAmelCase_ , string[i] ) is None
and current_state != 0
):
snake_case_ = self.adlist[current_state]["""fail_state"""]
snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] )
if next_state is None:
snake_case_ = 0
else:
snake_case_ = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
snake_case_ = []
result[key].append(i - len(UpperCAmelCase_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
class __A :
'''simple docstring'''
__lowercase: str
__lowercase: str = None
@staticmethod
def lowerCAmelCase ( ) ->Any:
"""simple docstring"""
raise NotImplementedError
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any] ) ->Any:
"""simple docstring"""
raise NotImplementedError
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : List[Any] ) ->Any:
"""simple docstring"""
raise NotImplementedError
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
if not self.is_available():
raise RuntimeError(
F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" )
@classmethod
def lowerCAmelCase ( cls : Union[str, Any] ) ->Dict:
"""simple docstring"""
return F"""`pip install {cls.pip_package or cls.name}`"""
class __A (snake_case__):
'''simple docstring'''
__lowercase: List[str] = """optuna"""
@staticmethod
def lowerCAmelCase ( ) ->Dict:
"""simple docstring"""
return is_optuna_available()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : str , **UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
return run_hp_search_optuna(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : int ) ->Any:
"""simple docstring"""
return default_hp_space_optuna(UpperCAmelCase_ )
class __A (snake_case__):
'''simple docstring'''
__lowercase: Any = """ray"""
__lowercase: Tuple = """'ray[tune]'"""
@staticmethod
def lowerCAmelCase ( ) ->List[Any]:
"""simple docstring"""
return is_ray_available()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , **UpperCAmelCase_ : List[str] ) ->List[Any]:
"""simple docstring"""
return run_hp_search_ray(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str ) ->Optional[int]:
"""simple docstring"""
return default_hp_space_ray(UpperCAmelCase_ )
class __A (snake_case__):
'''simple docstring'''
__lowercase: Union[str, Any] = """sigopt"""
@staticmethod
def lowerCAmelCase ( ) ->int:
"""simple docstring"""
return is_sigopt_available()
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : str , **UpperCAmelCase_ : str ) ->Optional[Any]:
"""simple docstring"""
return run_hp_search_sigopt(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict ) ->int:
"""simple docstring"""
return default_hp_space_sigopt(UpperCAmelCase_ )
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[int] = """wandb"""
@staticmethod
def lowerCAmelCase ( ) ->List[str]:
"""simple docstring"""
return is_wandb_available()
def lowerCAmelCase ( self : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int] ) ->List[Any]:
"""simple docstring"""
return run_hp_search_wandb(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return default_hp_space_wandb(UpperCAmelCase_ )
__SCREAMING_SNAKE_CASE : List[str] = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def _a ( ) -> str:
snake_case_ = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(_SCREAMING_SNAKE_CASE ) > 0:
snake_case_ = available_backends[0].name
if len(_SCREAMING_SNAKE_CASE ) > 1:
logger.info(
f"""{len(_SCREAMING_SNAKE_CASE )} hyperparameter search backends available. Using {name} as the default.""" )
return name
raise RuntimeError(
"""No hyperparameter search backend available.\n"""
+ """\n""".join(
f""" - To install {backend.name} run {backend.pip_install()}"""
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 2 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = num_channels
snake_case_ = num_stages
snake_case_ = hidden_sizes
snake_case_ = depths
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = num_labels
snake_case_ = initializer_range
snake_case_ = out_features
snake_case_ = out_indices
snake_case_ = scope
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case_ = None
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[Any] = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
__lowercase: Union[str, Any] = (
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Optional[Any] = False
__lowercase: Any = False
__lowercase: Union[str, Any] = False
__lowercase: Dict = False
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = True
if model_class.__name__ in [
*get_values(UpperCAmelCase_ ),
*get_values(UpperCAmelCase_ ),
]:
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = False
snake_case_ = True
if (
model_class.__name__
in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )]
or not model_class.supports_gradient_checkpointing
):
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.gradient_checkpointing_enable()
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ):
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case_ = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _a ( ) -> str:
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ )
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
# verify the logits
snake_case_ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
| 2 | 1 |
"""simple docstring"""
import pytest
__SCREAMING_SNAKE_CASE : int = '__dummy_dataset1__'
__SCREAMING_SNAKE_CASE : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n'
@pytest.fixture
def _a ( ) -> Optional[int]:
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def _a ( ) -> Optional[Any]:
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
snake_case_ = dataset_loading_script_name
snake_case_ = tmp_path / """datasets""" / script_name
script_dir.mkdir(parents=_SCREAMING_SNAKE_CASE )
snake_case_ = script_dir / f"""{script_name}.py"""
with open(_SCREAMING_SNAKE_CASE , """w""" ) as f:
f.write(_SCREAMING_SNAKE_CASE )
return str(_SCREAMING_SNAKE_CASE )
| 2 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights']
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
if "emb" in name:
snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
snake_case_ = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
snake_case_ = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
snake_case_ = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
snake_case_ = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
snake_case_ = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]:
snake_case_ = list(state_dict.keys() )
snake_case_ = {}
for key in keys:
snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE )
if "in_proj_weight" in key:
# split fused qkv proj
snake_case_ = val[:hidden_size, :]
snake_case_ = val[hidden_size : 2 * hidden_size, :]
snake_case_ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
snake_case_ = val
else:
snake_case_ = val
return state_dict, enc_dec_proj_state_dict
def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
snake_case_ = 1_024
snake_case_ = 24
snake_case_ = 16
elif checkpoint == "medium":
snake_case_ = 1_536
snake_case_ = 48
snake_case_ = 24
elif checkpoint == "large":
snake_case_ = 2_048
snake_case_ = 48
snake_case_ = 32
else:
raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
snake_case_ = MusicgenDecoderConfig(
hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , )
return config
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple:
snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE )
snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE )
snake_case_ = fairseq_model.lm.state_dict()
snake_case_ , snake_case_ = rename_state_dict(
_SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size )
snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" )
snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE )
# check we can do a forward pass
snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
snake_case_ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" )
snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
# set the appropriate bos/pad token ids
snake_case_ = 2_048
snake_case_ = 2_048
# set other default generation config params
snake_case_ = int(30 * audio_encoder.config.frame_rate )
snake_case_ = True
snake_case_ = 3.0
if pytorch_dump_folder is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if repo_id:
logger.info(f"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
processor.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint',
default='small',
type=str,
help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.',
)
parser.add_argument(
'--pytorch_dump_folder',
required=True,
default=None,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
parser.add_argument(
'--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.'
)
__SCREAMING_SNAKE_CASE : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 2 | 1 |
"""simple docstring"""
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class __A :
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=13 , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Optional[int]=16 , UpperCAmelCase_ : Dict=[1, 2, 1] , UpperCAmelCase_ : List[Any]=[2, 2, 4] , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Dict=2.0 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Any=8 , UpperCAmelCase_ : Optional[int]=["stage1", "stage2", "stage3"] , UpperCAmelCase_ : str=[1, 2, 3] , ) ->Dict:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = patch_size
snake_case_ = num_channels
snake_case_ = embed_dim
snake_case_ = depths
snake_case_ = num_heads
snake_case_ = window_size
snake_case_ = mlp_ratio
snake_case_ = qkv_bias
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = drop_path_rate
snake_case_ = hidden_act
snake_case_ = use_absolute_embeddings
snake_case_ = patch_norm
snake_case_ = layer_norm_eps
snake_case_ = initializer_range
snake_case_ = is_training
snake_case_ = scope
snake_case_ = use_labels
snake_case_ = type_sequence_label_size
snake_case_ = encoder_stride
snake_case_ = out_features
snake_case_ = out_indices
def lowerCAmelCase ( self : str ) ->List[str]:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = MaskFormerSwinModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
snake_case_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
snake_case_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ) ->Tuple:
"""simple docstring"""
snake_case_ = MaskFormerSwinBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(UpperCAmelCase_ ):
snake_case_ = ["""stem"""]
snake_case_ = MaskFormerSwinBackbone(config=UpperCAmelCase_ )
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[Any] = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
__lowercase: Tuple = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {}
__lowercase: Tuple = False
__lowercase: Optional[int] = False
__lowercase: Dict = False
__lowercase: int = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : Optional[Any] ) ->str:
"""simple docstring"""
snake_case_ = MaskFormerSwinModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
"""`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with"""
""" `nn.DataParallel`"""
) )
def lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
pass
def lowerCAmelCase ( self : int ) ->Union[str, Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
return
def lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*UpperCAmelCase_ )
@unittest.skip("""Swin does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[Any] ) ->int:
"""simple docstring"""
pass
@unittest.skip("""Swin does not support feedforward chunking""" )
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
pass
def lowerCAmelCase ( self : List[Any] ) ->int:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
snake_case_ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) )
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
@unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" )
def lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" )
def lowerCAmelCase ( self : int ) ->Tuple:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.hidden_states
snake_case_ = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ )
# Swin has a different seq_length
snake_case_ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
snake_case_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
snake_case_ = True
self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = 3
snake_case_ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
snake_case_ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
snake_case_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
snake_case_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
snake_case_ = True
self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) )
@unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" )
def lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(UpperCAmelCase_ : List[Any] ):
snake_case_ = 0
return t
def check_equivalence(UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]={} ):
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ , return_dict=UpperCAmelCase_ , **UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ , return_dict=UpperCAmelCase_ , **UpperCAmelCase_ ).to_tuple()
def recursive_check(UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] ):
if isinstance(UpperCAmelCase_ , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
recursive_check(UpperCAmelCase_ , UpperCAmelCase_ )
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(UpperCAmelCase_ , UpperCAmelCase_ )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(UpperCAmelCase_ ) , set_nan_tensor_to_zero(UpperCAmelCase_ ) , atol=1E-5 ) , msg=(
"""Tuple and dict output are not equal. Difference:"""
F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:"""
F""" {torch.isnan(UpperCAmelCase_ ).any()} and `inf`: {torch.isinf(UpperCAmelCase_ )}. Dict has"""
F""" `nan`: {torch.isnan(UpperCAmelCase_ ).any()} and `inf`: {torch.isinf(UpperCAmelCase_ )}."""
) , )
recursive_check(UpperCAmelCase_ , UpperCAmelCase_ )
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ )
check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ )
check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , {"""output_hidden_states""": True} )
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , {"""output_hidden_states""": True} )
@require_torch
class __A (unittest.TestCase , snake_case__):
'''simple docstring'''
__lowercase: Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else ()
__lowercase: Tuple = MaskFormerSwinConfig
def lowerCAmelCase ( self : str ) ->Any:
"""simple docstring"""
snake_case_ = MaskFormerSwinModelTester(self )
def lowerCAmelCase ( self : Optional[Any] ) ->int:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = inputs_dict["""pixel_values"""].shape[0]
for backbone_class in self.all_model_classes:
snake_case_ = backbone_class(UpperCAmelCase_ )
backbone.to(UpperCAmelCase_ )
backbone.eval()
snake_case_ = backbone(**UpperCAmelCase_ )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , UpperCAmelCase_ )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
snake_case_ = backbone(**UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
snake_case_ , snake_case_ , snake_case_ = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
snake_case_ = backbone(**UpperCAmelCase_ , output_attentions=UpperCAmelCase_ )
self.assertIsNotNone(outputs.attentions )
| 2 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
if index == number_of_items:
return 0
snake_case_ = 0
snake_case_ = 0
snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 )
if weights[index] <= max_weight:
snake_case_ = values[index] + knapsack(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 )
return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechTaHifiGan,
SpeechTaHifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = AudioLDMPipeline
__lowercase: Optional[Any] = TEXT_TO_AUDIO_PARAMS
__lowercase: List[str] = TEXT_TO_AUDIO_BATCH_PARAMS
__lowercase: Optional[Any] = frozenset(
[
"""num_inference_steps""",
"""num_waveforms_per_prompt""",
"""generator""",
"""latents""",
"""output_type""",
"""return_dict""",
"""callback""",
"""callback_steps""",
])
def lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=UpperCAmelCase_ , )
snake_case_ = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , )
torch.manual_seed(0 )
snake_case_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
snake_case_ = ClapTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , projection_dim=32 , )
snake_case_ = ClapTextModelWithProjection(UpperCAmelCase_ )
snake_case_ = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 )
snake_case_ = SpeechTaHifiGanConfig(
model_in_dim=8 , sampling_rate=16_000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=UpperCAmelCase_ , )
snake_case_ = SpeechTaHifiGan(UpperCAmelCase_ )
snake_case_ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""vocoder""": vocoder,
}
return components
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int=0 ) ->Tuple:
"""simple docstring"""
if str(UpperCAmelCase_ ).startswith("""mps""" ):
snake_case_ = torch.manual_seed(UpperCAmelCase_ )
else:
snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ = {
"""prompt""": """A hammer hitting a wooden surface""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
}
return inputs
def lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
snake_case_ = """cpu""" # ensure determinism for the device-dependent torch.Generator
snake_case_ = self.get_dummy_components()
snake_case_ = AudioLDMPipeline(**UpperCAmelCase_ )
snake_case_ = audioldm_pipe.to(UpperCAmelCase_ )
audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = self.get_dummy_inputs(UpperCAmelCase_ )
snake_case_ = audioldm_pipe(**UpperCAmelCase_ )
snake_case_ = output.audios[0]
assert audio.ndim == 1
assert len(UpperCAmelCase_ ) == 256
snake_case_ = audio[:10]
snake_case_ = np.array(
[-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] )
assert np.abs(audio_slice - expected_slice ).max() < 1E-2
def lowerCAmelCase ( self : str ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_dummy_components()
snake_case_ = AudioLDMPipeline(**UpperCAmelCase_ )
snake_case_ = audioldm_pipe.to(UpperCAmelCase_ )
snake_case_ = audioldm_pipe.to(UpperCAmelCase_ )
audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = self.get_dummy_inputs(UpperCAmelCase_ )
snake_case_ = 3 * [inputs["""prompt"""]]
# forward
snake_case_ = audioldm_pipe(**UpperCAmelCase_ )
snake_case_ = output.audios[0]
snake_case_ = self.get_dummy_inputs(UpperCAmelCase_ )
snake_case_ = 3 * [inputs.pop("""prompt""" )]
snake_case_ = audioldm_pipe.tokenizer(
UpperCAmelCase_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=UpperCAmelCase_ , return_tensors="""pt""" , )
snake_case_ = text_inputs["""input_ids"""].to(UpperCAmelCase_ )
snake_case_ = audioldm_pipe.text_encoder(
UpperCAmelCase_ , )
snake_case_ = prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
snake_case_ = F.normalize(UpperCAmelCase_ , dim=-1 )
snake_case_ = prompt_embeds
# forward
snake_case_ = audioldm_pipe(**UpperCAmelCase_ )
snake_case_ = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1E-2
def lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.get_dummy_components()
snake_case_ = AudioLDMPipeline(**UpperCAmelCase_ )
snake_case_ = audioldm_pipe.to(UpperCAmelCase_ )
snake_case_ = audioldm_pipe.to(UpperCAmelCase_ )
audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = self.get_dummy_inputs(UpperCAmelCase_ )
snake_case_ = 3 * ["""this is a negative prompt"""]
snake_case_ = negative_prompt
snake_case_ = 3 * [inputs["""prompt"""]]
# forward
snake_case_ = audioldm_pipe(**UpperCAmelCase_ )
snake_case_ = output.audios[0]
snake_case_ = self.get_dummy_inputs(UpperCAmelCase_ )
snake_case_ = 3 * [inputs.pop("""prompt""" )]
snake_case_ = []
for p in [prompt, negative_prompt]:
snake_case_ = audioldm_pipe.tokenizer(
UpperCAmelCase_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=UpperCAmelCase_ , return_tensors="""pt""" , )
snake_case_ = text_inputs["""input_ids"""].to(UpperCAmelCase_ )
snake_case_ = audioldm_pipe.text_encoder(
UpperCAmelCase_ , )
snake_case_ = text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
snake_case_ = F.normalize(UpperCAmelCase_ , dim=-1 )
embeds.append(UpperCAmelCase_ )
snake_case_ , snake_case_ = embeds
# forward
snake_case_ = audioldm_pipe(**UpperCAmelCase_ )
snake_case_ = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1E-2
def lowerCAmelCase ( self : Optional[Any] ) ->int:
"""simple docstring"""
snake_case_ = """cpu""" # ensure determinism for the device-dependent torch.Generator
snake_case_ = self.get_dummy_components()
snake_case_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase_ )
snake_case_ = AudioLDMPipeline(**UpperCAmelCase_ )
snake_case_ = audioldm_pipe.to(UpperCAmelCase_ )
audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = self.get_dummy_inputs(UpperCAmelCase_ )
snake_case_ = """egg cracking"""
snake_case_ = audioldm_pipe(**UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ )
snake_case_ = output.audios[0]
assert audio.ndim == 1
assert len(UpperCAmelCase_ ) == 256
snake_case_ = audio[:10]
snake_case_ = np.array(
[-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] )
assert np.abs(audio_slice - expected_slice ).max() < 1E-2
def lowerCAmelCase ( self : Tuple ) ->Optional[int]:
"""simple docstring"""
snake_case_ = """cpu""" # ensure determinism for the device-dependent torch.Generator
snake_case_ = self.get_dummy_components()
snake_case_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase_ )
snake_case_ = AudioLDMPipeline(**UpperCAmelCase_ )
snake_case_ = audioldm_pipe.to(UpperCAmelCase_ )
audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = """A hammer hitting a wooden surface"""
# test num_waveforms_per_prompt=1 (default)
snake_case_ = audioldm_pipe(UpperCAmelCase_ , num_inference_steps=2 ).audios
assert audios.shape == (1, 256)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
snake_case_ = 2
snake_case_ = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios
assert audios.shape == (batch_size, 256)
# test num_waveforms_per_prompt for single prompt
snake_case_ = 2
snake_case_ = audioldm_pipe(UpperCAmelCase_ , num_inference_steps=2 , num_waveforms_per_prompt=UpperCAmelCase_ ).audios
assert audios.shape == (num_waveforms_per_prompt, 256)
# test num_waveforms_per_prompt for batch of prompts
snake_case_ = 2
snake_case_ = audioldm_pipe(
[prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=UpperCAmelCase_ ).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
def lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = """cpu""" # ensure determinism for the device-dependent torch.Generator
snake_case_ = self.get_dummy_components()
snake_case_ = AudioLDMPipeline(**UpperCAmelCase_ )
snake_case_ = audioldm_pipe.to(UpperCAmelCase_ )
audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = audioldm_pipe.vocoder.config.sampling_rate
snake_case_ = self.get_dummy_inputs(UpperCAmelCase_ )
snake_case_ = audioldm_pipe(audio_length_in_s=0.016 , **UpperCAmelCase_ )
snake_case_ = output.audios[0]
assert audio.ndim == 1
assert len(UpperCAmelCase_ ) / vocoder_sampling_rate == 0.016
snake_case_ = audioldm_pipe(audio_length_in_s=0.032 , **UpperCAmelCase_ )
snake_case_ = output.audios[0]
assert audio.ndim == 1
assert len(UpperCAmelCase_ ) / vocoder_sampling_rate == 0.032
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.get_dummy_components()
snake_case_ = AudioLDMPipeline(**UpperCAmelCase_ )
snake_case_ = audioldm_pipe.to(UpperCAmelCase_ )
audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = ["""hey"""]
snake_case_ = audioldm_pipe(UpperCAmelCase_ , num_inference_steps=1 )
snake_case_ = output.audios.shape
assert audio_shape == (1, 256)
snake_case_ = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
snake_case_ = SpeechTaHifiGan(UpperCAmelCase_ ).to(UpperCAmelCase_ )
snake_case_ = audioldm_pipe(UpperCAmelCase_ , num_inference_steps=1 )
snake_case_ = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 256)
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict ) ->List[Any]:
"""simple docstring"""
self._test_inference_batch_single_identical(test_mean_pixel_difference=UpperCAmelCase_ )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ )
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->int:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int="cpu" , UpperCAmelCase_ : Any=torch.floataa , UpperCAmelCase_ : Dict=0 ) ->List[str]:
"""simple docstring"""
snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ = np.random.RandomState(UpperCAmelCase_ ).standard_normal((1, 8, 128, 16) )
snake_case_ = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ , dtype=UpperCAmelCase_ )
snake_case_ = {
"""prompt""": """A hammer hitting a wooden surface""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 2.5,
}
return inputs
def lowerCAmelCase ( self : int ) ->List[Any]:
"""simple docstring"""
snake_case_ = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" )
snake_case_ = audioldm_pipe.to(UpperCAmelCase_ )
audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = self.get_inputs(UpperCAmelCase_ )
snake_case_ = 25
snake_case_ = audioldm_pipe(**UpperCAmelCase_ ).audios[0]
assert audio.ndim == 1
assert len(UpperCAmelCase_ ) == 81_920
snake_case_ = audio[77_230:77_240]
snake_case_ = np.array(
[-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] )
snake_case_ = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 1E-2
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" )
snake_case_ = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config )
snake_case_ = audioldm_pipe.to(UpperCAmelCase_ )
audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = self.get_inputs(UpperCAmelCase_ )
snake_case_ = audioldm_pipe(**UpperCAmelCase_ ).audios[0]
assert audio.ndim == 1
assert len(UpperCAmelCase_ ) == 81_920
snake_case_ = audio[27_780:27_790]
snake_case_ = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] )
snake_case_ = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 3E-2
| 2 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int:
snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
snake_case_ = n // 2
return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
__SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 2 | 1 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
snake_case_ = 1
snake_case_ = 2
while i * i <= n:
snake_case_ = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def _a ( ) -> Tuple:
snake_case_ = 1
snake_case_ = 1
while True:
i += 1
t_num += i
if count_divisors(_SCREAMING_SNAKE_CASE ) > 500:
break
return t_num
if __name__ == "__main__":
print(solution())
| 2 |
"""simple docstring"""
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str:
snake_case_ = ascii_letters + digits + punctuation
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(_SCREAMING_SNAKE_CASE )
snake_case_ = i // 3
snake_case_ = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
snake_case_ = (
chars_incl
+ random(_SCREAMING_SNAKE_CASE , quotient + remainder )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
)
snake_case_ = list(_SCREAMING_SNAKE_CASE )
shuffle(_SCREAMING_SNAKE_CASE )
return "".join(_SCREAMING_SNAKE_CASE )
# random is a generalised function for letters, characters and numbers
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool:
if len(_SCREAMING_SNAKE_CASE ) < min_length:
# Your Password must be at least 8 characters long
return False
snake_case_ = any(char in ascii_uppercase for char in password )
snake_case_ = any(char in ascii_lowercase for char in password )
snake_case_ = any(char in digits for char in password )
snake_case_ = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def _a ( ) -> str:
snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() )
snake_case_ = input(
"""Please indicate the characters that must be in your password: """ ).strip()
print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) )
print(
"""Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , )
print("""[If you are thinking of using this passsword, You better save it.]""" )
if __name__ == "__main__":
main()
| 2 | 1 |
"""simple docstring"""
import string
def _a ( _SCREAMING_SNAKE_CASE ) -> None:
for key in range(len(string.ascii_uppercase ) ):
snake_case_ = """"""
for symbol in message:
if symbol in string.ascii_uppercase:
snake_case_ = string.ascii_uppercase.find(_SCREAMING_SNAKE_CASE )
snake_case_ = num - key
if num < 0:
snake_case_ = num + len(string.ascii_uppercase )
snake_case_ = translated + string.ascii_uppercase[num]
else:
snake_case_ = translated + symbol
print(f"""Decryption using Key #{key}: {translated}""" )
def _a ( ) -> None:
snake_case_ = input("""Encrypted message: """ )
snake_case_ = message.upper()
decrypt(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 2 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_normalize
def lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
snake_case_ = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" )
image_processor_first.to_json_file(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
pass
def _a ( ) -> str:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
snake_case_ = Image.open(dataset[4]["""file"""] )
snake_case_ = Image.open(dataset[5]["""file"""] )
snake_case_ = [imagea, imagea]
return images
@require_vision
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
snake_case_ = prepare_images()
# test non-batched
snake_case_ = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_024) )
snake_case_ = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ )
# test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_024) )
snake_case_ = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
| 2 | 1 |
"""simple docstring"""
import functools
import gc
import inspect
import torch
from .imports import is_npu_available, is_xpu_available
def _a ( *_SCREAMING_SNAKE_CASE ) -> int:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = list(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = None
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
return objects
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
snake_case_ = [
"""CUDA out of memory.""", # CUDA OOM
"""cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU
"""DefaultCPUAllocator: can't allocate memory""", # CPU OOM
]
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(exception.args ) == 1:
return any(err in exception.args[0] for err in _statements )
return False
def _a ( _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 128 ) -> Optional[Any]:
if function is None:
return functools.partial(_SCREAMING_SNAKE_CASE , starting_batch_size=_SCREAMING_SNAKE_CASE )
snake_case_ = starting_batch_size
def decorator(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ):
nonlocal batch_size
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
snake_case_ = list(inspect.signature(_SCREAMING_SNAKE_CASE ).parameters.keys() )
# Guard against user error
if len(_SCREAMING_SNAKE_CASE ) < (len(_SCREAMING_SNAKE_CASE ) + 1):
snake_case_ = """, """.join([f"""{arg}={value}""" for arg, value in zip(params[1:] , args[1:] )] )
raise TypeError(
f"""Batch size was passed into `{function.__name__}` as the first argument when called."""
f"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" )
while True:
if batch_size == 0:
raise RuntimeError("""No executable batch size found, reached zero.""" )
try:
return function(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
except Exception as e:
if should_reduce_batch_size(_SCREAMING_SNAKE_CASE ):
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
batch_size //= 2
else:
raise
return decorator
| 2 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = scope
snake_case_ = range_bbox
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case_ = bbox[i, j, 3]
snake_case_ = bbox[i, j, 1]
snake_case_ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case_ = bbox[i, j, 2]
snake_case_ = bbox[i, j, 0]
snake_case_ = t
snake_case_ = None
if self.use_input_mask:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str:
"""simple docstring"""
snake_case_ = LiltModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict:
"""simple docstring"""
snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowercase: Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return True
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = LiltModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_torch
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ )
snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ )
snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ )
snake_case_ = torch.Size([1, 2, 768] )
snake_case_ = torch.tensor(
[[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 1 |
"""simple docstring"""
from math import isqrt, loga
def _a ( _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = False
return [i for i in range(2 , _SCREAMING_SNAKE_CASE ) if is_prime[i]]
def _a ( _SCREAMING_SNAKE_CASE = 800_800 , _SCREAMING_SNAKE_CASE = 800_800 ) -> int:
snake_case_ = degree * loga(_SCREAMING_SNAKE_CASE )
snake_case_ = int(_SCREAMING_SNAKE_CASE )
snake_case_ = calculate_prime_numbers(_SCREAMING_SNAKE_CASE )
snake_case_ = 0
snake_case_ = 0
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = 0
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
snake_case_ = i + 1
else:
snake_case_ = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
| 2 | 1 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE = 600_851_475_143 ) -> int:
try:
snake_case_ = int(_SCREAMING_SNAKE_CASE )
except (TypeError, ValueError):
raise TypeError("""Parameter n must be int or castable to int.""" )
if n <= 0:
raise ValueError("""Parameter n must be greater than or equal to one.""" )
snake_case_ = 1
snake_case_ = 2
while i * i <= n:
while n % i == 0:
snake_case_ = i
n //= i
i += 1
if n > 1:
snake_case_ = n
return int(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
__SCREAMING_SNAKE_CASE : Dict = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
__SCREAMING_SNAKE_CASE : str = TaTokenizerFast
__SCREAMING_SNAKE_CASE : List[str] = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Dict = [
'MT5EncoderModel',
'MT5ForConditionalGeneration',
'MT5ForQuestionAnswering',
'MT5Model',
'MT5PreTrainedModel',
'MT5Stack',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Union[str, Any] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model']
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
__SCREAMING_SNAKE_CASE : List[str] = _LazyModule(
__name__,
globals()['__file__'],
_import_structure,
extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast},
module_spec=__spec__,
)
| 2 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter'
__SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE'
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}"""
raise TypeError(_SCREAMING_SNAKE_CASE )
snake_case_ = spanish_id.replace("""-""" , """""" ).upper()
if len(_SCREAMING_SNAKE_CASE ) != 9:
raise ValueError(_SCREAMING_SNAKE_CASE )
try:
snake_case_ = int(spanish_id_clean[0:8] )
snake_case_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_SCREAMING_SNAKE_CASE ) from ex
if letter.isdigit():
raise ValueError(_SCREAMING_SNAKE_CASE )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , ) -> Union[str, Any]:
snake_case_ = {}
if train_file is not None:
snake_case_ = [train_file]
if eval_file is not None:
snake_case_ = [eval_file]
if test_file is not None:
snake_case_ = [test_file]
snake_case_ = datasets.load_dataset("""csv""" , data_files=_SCREAMING_SNAKE_CASE )
snake_case_ = list(ds[list(files.keys() )[0]].features.keys() )
snake_case_ = features_name.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = list(set(ds[list(files.keys() )[0]][label_name] ) )
snake_case_ = {label: i for i, label in enumerate(_SCREAMING_SNAKE_CASE )}
snake_case_ = tokenizer.model_input_names
snake_case_ = {}
if len(_SCREAMING_SNAKE_CASE ) == 1:
for k in files.keys():
snake_case_ = ds[k].map(
lambda _SCREAMING_SNAKE_CASE : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding="""max_length""" ) , batched=_SCREAMING_SNAKE_CASE , )
elif len(_SCREAMING_SNAKE_CASE ) == 2:
for k in files.keys():
snake_case_ = ds[k].map(
lambda _SCREAMING_SNAKE_CASE : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding="""max_length""" , ) , batched=_SCREAMING_SNAKE_CASE , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
snake_case_ = {k: v for k, v in ex.items() if k in input_names}
snake_case_ = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
snake_case_ = {k: v for k, v in ex.items() if k in input_names}
snake_case_ = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
snake_case_ = {k: v for k, v in ex.items() if k in input_names}
snake_case_ = labelaid[ex[label_name]]
yield (d, label)
snake_case_ = (
tf.data.Dataset.from_generator(
_SCREAMING_SNAKE_CASE , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
snake_case_ = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
snake_case_ = (
tf.data.Dataset.from_generator(
_SCREAMING_SNAKE_CASE , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
snake_case_ = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
snake_case_ = (
tf.data.Dataset.from_generator(
_SCREAMING_SNAKE_CASE , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
snake_case_ = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
__SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__)
@dataclass
class __A :
'''simple docstring'''
__lowercase: int = field(metadata={"""help""": """Which column contains the label"""})
__lowercase: str = field(default=snake_case__ , metadata={"""help""": """The path of the training file"""})
__lowercase: Optional[str] = field(default=snake_case__ , metadata={"""help""": """The path of the development file"""})
__lowercase: Optional[str] = field(default=snake_case__ , metadata={"""help""": """The path of the test file"""})
__lowercase: int = field(
default=1_28 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__lowercase: bool = field(
default=snake_case__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""})
@dataclass
class __A :
'''simple docstring'''
__lowercase: str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""})
__lowercase: Optional[str] = field(
default=snake_case__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""})
__lowercase: Optional[str] = field(
default=snake_case__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""})
__lowercase: bool = field(default=snake_case__ , metadata={"""help""": """Set this flag to use fast tokenization."""})
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
__lowercase: Optional[str] = field(
default=snake_case__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
def _a ( ) -> Union[str, Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
""" --overwrite_output_dir to overcome.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.info(
f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """
f"""16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
snake_case_ = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case_ , snake_case_ , snake_case_ , snake_case_ = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_SCREAMING_SNAKE_CASE , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
snake_case_ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_SCREAMING_SNAKE_CASE ) , labelaid=_SCREAMING_SNAKE_CASE , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
snake_case_ = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , )
def compute_metrics(_SCREAMING_SNAKE_CASE ) -> Dict:
snake_case_ = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
snake_case_ = TFTrainer(
model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
snake_case_ = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
snake_case_ = trainer.evaluate()
snake_case_ = os.path.join(training_args.output_dir , """eval_results.txt""" )
with open(_SCREAMING_SNAKE_CASE , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key, value in result.items():
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
results.update(_SCREAMING_SNAKE_CASE )
return results
if __name__ == "__main__":
main()
| 2 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'}
__SCREAMING_SNAKE_CASE : List[str] = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
}
}
__SCREAMING_SNAKE_CASE : List[str] = {
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
__SCREAMING_SNAKE_CASE : int = '▁'
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = VOCAB_FILES_NAMES
__lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None:
"""simple docstring"""
snake_case_ = (
AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
else mask_token
)
snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
snake_case_ = do_lower_case
snake_case_ = remove_space
snake_case_ = keep_accents
snake_case_ = vocab_file
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
return len(self.sp_model )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) ->List[str]:
"""simple docstring"""
snake_case_ = self.__dict__.copy()
snake_case_ = None
return state
def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
snake_case_ = {}
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str:
"""simple docstring"""
if self.remove_space:
snake_case_ = """ """.join(inputs.strip().split() )
else:
snake_case_ = inputs
snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ )
snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] )
if self.do_lower_case:
snake_case_ = outputs.lower()
return outputs
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
snake_case_ = self.preprocess_text(UpperCAmelCase_ )
snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
snake_case_ = []
for piece in pieces:
if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
snake_case_ = cur_pieces[1:]
else:
snake_case_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCAmelCase_ )
else:
new_pieces.append(UpperCAmelCase_ )
return new_pieces
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict:
"""simple docstring"""
return self.sp_model.PieceToId(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return self.sp_model.IdToPiece(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any:
"""simple docstring"""
snake_case_ = []
snake_case_ = """"""
snake_case_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase_ ) + token
snake_case_ = True
snake_case_ = []
else:
current_sub_tokens.append(UpperCAmelCase_ )
snake_case_ = False
out_string += self.sp_model.decode(UpperCAmelCase_ )
return out_string.strip()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , """wb""" ) as fi:
snake_case_ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
return (out_vocab_file,)
| 2 | 1 |
"""simple docstring"""
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPVisionModel
from ...models import PriorTransformer
from ...pipelines import DiffusionPipeline
from ...schedulers import HeunDiscreteScheduler
from ...utils import (
BaseOutput,
is_accelerate_available,
logging,
randn_tensor,
replace_example_docstring,
)
from .renderer import ShapERenderer
__SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
__SCREAMING_SNAKE_CASE : Optional[int] = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n'
@dataclass
class __A (snake_case__):
'''simple docstring'''
__lowercase: Union[PIL.Image.Image, np.ndarray]
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : PriorTransformer , UpperCAmelCase_ : CLIPVisionModel , UpperCAmelCase_ : CLIPImageProcessor , UpperCAmelCase_ : HeunDiscreteScheduler , UpperCAmelCase_ : ShapERenderer , ) ->int:
"""simple docstring"""
super().__init__()
self.register_modules(
prior=UpperCAmelCase_ , image_encoder=UpperCAmelCase_ , image_processor=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , renderer=UpperCAmelCase_ , )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict ) ->Union[str, Any]:
"""simple docstring"""
if latents is None:
snake_case_ = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_ )
else:
if latents.shape != shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" )
snake_case_ = latents.to(UpperCAmelCase_ )
snake_case_ = latents * scheduler.init_noise_sigma
return latents
def lowerCAmelCase ( self : int , UpperCAmelCase_ : List[str]=0 ) ->Optional[int]:
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
snake_case_ = torch.device(F"""cuda:{gpu_id}""" )
snake_case_ = [self.image_encoder, self.prior]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(UpperCAmelCase_ , UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[str] ) ->Optional[int]:
"""simple docstring"""
if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ):
return self.device
for module in self.image_encoder.modules():
if (
hasattr(UpperCAmelCase_ , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
def lowerCAmelCase ( self : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , ) ->Optional[int]:
"""simple docstring"""
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(image[0] , torch.Tensor ):
snake_case_ = torch.cat(UpperCAmelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCAmelCase_ , axis=0 )
if not isinstance(UpperCAmelCase_ , torch.Tensor ):
snake_case_ = self.image_processor(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 )
snake_case_ = image.to(dtype=self.image_encoder.dtype , device=UpperCAmelCase_ )
snake_case_ = self.image_encoder(UpperCAmelCase_ )["""last_hidden_state"""]
snake_case_ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256
snake_case_ = image_embeds.repeat_interleave(UpperCAmelCase_ , dim=0 )
if do_classifier_free_guidance:
snake_case_ = torch.zeros_like(UpperCAmelCase_ )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
snake_case_ = torch.cat([negative_image_embeds, image_embeds] )
return image_embeds
@torch.no_grad()
@replace_example_docstring(UpperCAmelCase_ )
def __call__( self : int , UpperCAmelCase_ : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 25 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : float = 4.0 , UpperCAmelCase_ : int = 64 , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , ) ->Any:
"""simple docstring"""
if isinstance(UpperCAmelCase_ , PIL.Image.Image ):
snake_case_ = 1
elif isinstance(UpperCAmelCase_ , torch.Tensor ):
snake_case_ = image.shape[0]
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ):
snake_case_ = len(UpperCAmelCase_ )
else:
raise ValueError(
F"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCAmelCase_ )}""" )
snake_case_ = self._execution_device
snake_case_ = batch_size * num_images_per_prompt
snake_case_ = guidance_scale > 1.0
snake_case_ = self._encode_image(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# prior
self.scheduler.set_timesteps(UpperCAmelCase_ , device=UpperCAmelCase_ )
snake_case_ = self.scheduler.timesteps
snake_case_ = self.prior.config.num_embeddings
snake_case_ = self.prior.config.embedding_dim
snake_case_ = self.prepare_latents(
(batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , self.scheduler , )
# YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim
snake_case_ = latents.reshape(latents.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ )
for i, t in enumerate(self.progress_bar(UpperCAmelCase_ ) ):
# expand the latents if we are doing classifier free guidance
snake_case_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
snake_case_ = self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = self.prior(
UpperCAmelCase_ , timestep=UpperCAmelCase_ , proj_embedding=UpperCAmelCase_ , ).predicted_image_embedding
# remove the variance
snake_case_ , snake_case_ = noise_pred.split(
scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim
if do_classifier_free_guidance is not None:
snake_case_ , snake_case_ = noise_pred.chunk(2 )
snake_case_ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)
snake_case_ = self.scheduler.step(
UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , ).prev_sample
if output_type == "latent":
return ShapEPipelineOutput(images=UpperCAmelCase_ )
snake_case_ = []
for i, latent in enumerate(UpperCAmelCase_ ):
print()
snake_case_ = self.renderer.decode(
latent[None, :] , UpperCAmelCase_ , size=UpperCAmelCase_ , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , )
images.append(UpperCAmelCase_ )
snake_case_ = torch.stack(UpperCAmelCase_ )
if output_type not in ["np", "pil"]:
raise ValueError(F"""Only the output types `pil` and `np` are supported not output_type={output_type}""" )
snake_case_ = images.cpu().numpy()
if output_type == "pil":
snake_case_ = [self.numpy_to_pil(UpperCAmelCase_ ) for image in images]
# Offload last model to CPU
if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (images,)
return ShapEPipelineOutput(images=UpperCAmelCase_ )
| 2 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("""The given input must be positive""" )
# get the generated string sequence
snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = int(sequence[i] , 2 )
return sequence
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
snake_case_ = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
snake_case_ = gray_code_sequence_string(bit_count - 1 )
snake_case_ = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
snake_case_ = """0""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
snake_case_ = """1""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
from maths.prime_factors import prime_factors
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""Input value of [number={number}] must be an integer"""
raise TypeError(_SCREAMING_SNAKE_CASE )
if number < 1:
raise ValueError("""Input must be a positive integer""" )
return -1 if len(prime_factors(_SCREAMING_SNAKE_CASE ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 1 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = scope
snake_case_ = range_bbox
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case_ = bbox[i, j, 3]
snake_case_ = bbox[i, j, 1]
snake_case_ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case_ = bbox[i, j, 2]
snake_case_ = bbox[i, j, 0]
snake_case_ = t
snake_case_ = None
if self.use_input_mask:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str:
"""simple docstring"""
snake_case_ = LiltModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict:
"""simple docstring"""
snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowercase: Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return True
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = LiltModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_torch
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ )
snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ )
snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ )
snake_case_ = torch.Size([1, 2, 768] )
snake_case_ = torch.tensor(
[[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
| 2 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/'
__SCREAMING_SNAKE_CASE : List[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
snake_case_ = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
snake_case_ = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = {}
import re
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# keep original key
else:
snake_case_ = original_key
snake_case_ = replace_key(_SCREAMING_SNAKE_CASE )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
snake_case_ = original_key
snake_case_ = original_key
snake_case_ = value
return new_dict
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ):
snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE )
open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content )
snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]]
snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE )
snake_case_ = []
snake_case_ = {}
for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""]
snake_case_ = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
snake_case_ = old_dic[k]
elif k.endswith(""".w""" ):
snake_case_ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
snake_case_ = old_dic[k]
else:
snake_case_ = old_dic[k]
snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}"""
snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
weight_dict.append(_SCREAMING_SNAKE_CASE )
snake_case_ = weight_dict.pop(0 )
model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
return weight_dict
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 2 | 1 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class __A :
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0 ) ->None:
"""simple docstring"""
snake_case_ , snake_case_ = row, column
snake_case_ = [[default_value for c in range(UpperCAmelCase_ )] for r in range(UpperCAmelCase_ )]
def __str__( self : Optional[int] ) ->str:
"""simple docstring"""
snake_case_ = F"""Matrix consist of {self.row} rows and {self.column} columns\n"""
# Make string identifier
snake_case_ = 0
for row_vector in self.array:
for obj in row_vector:
snake_case_ = max(UpperCAmelCase_ , len(str(UpperCAmelCase_ ) ) )
snake_case_ = F"""%{max_element_length}s"""
# Make string and return
def single_line(UpperCAmelCase_ : list[float] ) -> str:
nonlocal string_format_identifier
snake_case_ = """["""
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(UpperCAmelCase_ ) for row_vector in self.array )
return s
def __repr__( self : Tuple ) ->str:
"""simple docstring"""
return str(self )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : tuple[int, int] ) ->bool:
"""simple docstring"""
if not (isinstance(UpperCAmelCase_ , (list, tuple) ) and len(UpperCAmelCase_ ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self : Union[str, Any] , UpperCAmelCase_ : tuple[int, int] ) ->Any:
"""simple docstring"""
assert self.validate_indicies(UpperCAmelCase_ )
return self.array[loc[0]][loc[1]]
def __setitem__( self : Dict , UpperCAmelCase_ : tuple[int, int] , UpperCAmelCase_ : float ) ->None:
"""simple docstring"""
assert self.validate_indicies(UpperCAmelCase_ )
snake_case_ = value
def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix ) ->Matrix:
"""simple docstring"""
assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
assert self.row == another.row and self.column == another.column
# Add
snake_case_ = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
snake_case_ = self[r, c] + another[r, c]
return result
def __neg__( self : int ) ->Matrix:
"""simple docstring"""
snake_case_ = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
snake_case_ = -self[r, c]
return result
def __sub__( self : Optional[Any] , UpperCAmelCase_ : Matrix ) ->Matrix:
"""simple docstring"""
return self + (-another)
def __mul__( self : List[str] , UpperCAmelCase_ : int | float | Matrix ) ->Matrix:
"""simple docstring"""
if isinstance(UpperCAmelCase_ , (int, float) ): # Scalar multiplication
snake_case_ = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
snake_case_ = self[r, c] * another
return result
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): # Matrix multiplication
assert self.column == another.row
snake_case_ = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
snake_case_ = F"""Unsupported type given for another ({type(UpperCAmelCase_ )})"""
raise TypeError(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Matrix:
"""simple docstring"""
snake_case_ = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
snake_case_ = self[r, c]
return result
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Matrix , UpperCAmelCase_ : Matrix ) ->Any:
"""simple docstring"""
assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
snake_case_ = v.transpose()
snake_case_ = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def _a ( ) -> None:
# a^(-1)
snake_case_ = Matrix(3 , 3 , 0 )
for i in range(3 ):
snake_case_ = 1
print(f"""a^(-1) is {ainv}""" )
# u, v
snake_case_ = Matrix(3 , 1 , 0 )
snake_case_ , snake_case_ , snake_case_ = 1, 2, -3
snake_case_ = Matrix(3 , 1 , 0 )
snake_case_ , snake_case_ , snake_case_ = 4, -2, 5
print(f"""u is {u}""" )
print(f"""v is {v}""" )
print(f"""uv^T is {u * v.transpose()}""" )
# Sherman Morrison
print(f"""(a + uv^T)^(-1) is {ainv.sherman_morrison(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}""" )
def _a ( ) -> None:
import doctest
doctest.testmod()
testa()
| 2 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__SCREAMING_SNAKE_CASE : Dict = 'zero2'
__SCREAMING_SNAKE_CASE : List[Any] = 'zero3'
__SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __A (snake_case__):
'''simple docstring'''
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = models[model]
snake_case_ = self.run_trainer(
stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
self.do_checks(UpperCAmelCase_ )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ )
snake_case_ = F"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(UpperCAmelCase_ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
snake_case_ = self.get_launcher(UpperCAmelCase_ )
snake_case_ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple:
"""simple docstring"""
snake_case_ = min(2 , get_gpu_count() ) if distributed else 1
return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 2 | 1 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
__SCREAMING_SNAKE_CASE : Dict = TypeVar('T')
class __A (Generic[T]):
'''simple docstring'''
def __init__( self : List[str] , UpperCAmelCase_ : T ) ->Tuple:
"""simple docstring"""
snake_case_ = data
snake_case_ = None
def __str__( self : Any ) ->str:
"""simple docstring"""
return F"""{self.data}"""
class __A (Generic[T]):
'''simple docstring'''
def __init__( self : str ) ->None:
"""simple docstring"""
snake_case_ = None
def __iter__( self : Union[str, Any] ) ->Iterator[T]:
"""simple docstring"""
snake_case_ = self.top
while node:
yield node.data
snake_case_ = node.next
def __str__( self : List[str] ) ->str:
"""simple docstring"""
return "->".join([str(UpperCAmelCase_ ) for item in self] )
def __len__( self : str ) ->int:
"""simple docstring"""
return len(tuple(iter(self ) ) )
def lowerCAmelCase ( self : Union[str, Any] ) ->bool:
"""simple docstring"""
return self.top is None
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : T ) ->None:
"""simple docstring"""
snake_case_ = Node(UpperCAmelCase_ )
if not self.is_empty():
snake_case_ = self.top
snake_case_ = node
def lowerCAmelCase ( self : Dict ) ->T:
"""simple docstring"""
if self.is_empty():
raise IndexError("""pop from empty stack""" )
assert isinstance(self.top , UpperCAmelCase_ )
snake_case_ = self.top
snake_case_ = self.top.next
return pop_node.data
def lowerCAmelCase ( self : Optional[int] ) ->T:
"""simple docstring"""
if self.is_empty():
raise IndexError("""peek from empty stack""" )
assert self.top is not None
return self.top.data
def lowerCAmelCase ( self : int ) ->None:
"""simple docstring"""
snake_case_ = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 2 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True})
__lowercase: ClassVar[Features] = Features({"""audio""": Audio()})
__lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")})
__lowercase: str = "audio"
__lowercase: str = "transcription"
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int:
"""simple docstring"""
if self.audio_column not in features:
raise ValueError(F"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , UpperCAmelCase_ ):
raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" )
snake_case_ = copy.deepcopy(self )
snake_case_ = self.input_schema.copy()
snake_case_ = features[self.audio_column]
snake_case_ = input_schema
return task_template
@property
def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]:
"""simple docstring"""
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 2 | 1 |
"""simple docstring"""
from collections.abc import Sequence
def _a ( _SCREAMING_SNAKE_CASE = None ) -> int:
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
snake_case_ = nums[0]
for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = nums[i]
snake_case_ = max(_SCREAMING_SNAKE_CASE , ans + num , _SCREAMING_SNAKE_CASE )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
__SCREAMING_SNAKE_CASE : Any = int(input('Enter number of elements : ').strip())
__SCREAMING_SNAKE_CASE : Optional[int] = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n]
print(max_subsequence_sum(array))
| 2 |
"""simple docstring"""
from functools import reduce
__SCREAMING_SNAKE_CASE : Tuple = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def _a ( _SCREAMING_SNAKE_CASE = N ) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) )
for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 | 1 |
"""simple docstring"""
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __A :
'''simple docstring'''
@staticmethod
def lowerCAmelCase ( *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str] ) ->Any:
"""simple docstring"""
pass
@is_pipeline_test
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
@require_torch
def lowerCAmelCase ( self : Dict ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = pipeline(
model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , )
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
snake_case_ = image_classifier(UpperCAmelCase_ , candidate_labels=["""a""", """b""", """c"""] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(UpperCAmelCase_ ) , [
[{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}],
[{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}],
] , )
snake_case_ = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase_ ) , [
[
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
],
[
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
],
[
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
],
[
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
],
[
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
],
] , )
@require_tf
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = pipeline(
model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" )
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
snake_case_ = image_classifier(UpperCAmelCase_ , candidate_labels=["""a""", """b""", """c"""] )
self.assertEqual(
nested_simplify(UpperCAmelCase_ ) , [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}] , )
snake_case_ = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase_ ) , [
[
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
],
[
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
],
[
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
],
[
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
],
[
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
],
] , )
@slow
@require_torch
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
snake_case_ = pipeline(
task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , )
# This is an image of 2 cats with remotes and no planes
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
snake_case_ = image_classifier(UpperCAmelCase_ , candidate_labels=["""cat""", """plane""", """remote"""] )
self.assertEqual(
nested_simplify(UpperCAmelCase_ ) , [
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
] , )
snake_case_ = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase_ ) , [
[
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
],
]
* 5 , )
@slow
@require_tf
def lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
snake_case_ = pipeline(
task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" )
# This is an image of 2 cats with remotes and no planes
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
snake_case_ = image_classifier(UpperCAmelCase_ , candidate_labels=["""cat""", """plane""", """remote"""] )
self.assertEqual(
nested_simplify(UpperCAmelCase_ ) , [
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
] , )
snake_case_ = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase_ ) , [
[
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
],
]
* 5 , )
| 2 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : str = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Any = """mctct"""
def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = intermediate_size
snake_case_ = num_attention_heads
snake_case_ = attention_head_dim
snake_case_ = max_position_embeddings
snake_case_ = layer_norm_eps
snake_case_ = layerdrop
snake_case_ = hidden_act
snake_case_ = initializer_range
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = pad_token_id
snake_case_ = bos_token_id
snake_case_ = eos_token_id
snake_case_ = conv_glu_dim
snake_case_ = conv_dropout
snake_case_ = num_conv_layers
snake_case_ = input_feat_per_channel
snake_case_ = input_channels
snake_case_ = conv_channels
snake_case_ = ctc_loss_reduction
snake_case_ = ctc_zero_infinity
# prevents config testing fail with exporting to json
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """
F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """
F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
| 2 | 1 |
"""simple docstring"""
import inspect
import unittest
from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=[0, 1, 2, 3] , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=37 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=[1, 384, 24, 24] , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : str=None , ) ->Any:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = patch_size
snake_case_ = num_channels
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = backbone_out_indices
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = backbone_featmap_shape
snake_case_ = scope
snake_case_ = is_hybrid
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
snake_case_ = (image_size // patch_size) ** 2
snake_case_ = num_patches + 1
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [96, 192, 384, 768],
"""num_groups""": 2,
}
return DPTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=UpperCAmelCase_ , backbone_featmap_shape=self.backbone_featmap_shape , )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = DPTModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = DPTForDepthEstimation(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = DPTForSemanticSegmentation(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
__lowercase: Optional[Any] = (
{
"""depth-estimation""": DPTForDepthEstimation,
"""feature-extraction""": DPTModel,
"""image-segmentation""": DPTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Tuple = False
__lowercase: Tuple = False
def lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
snake_case_ = DPTModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""DPT does not use inputs_embeds""" )
def lowerCAmelCase ( self : Union[str, Any] ) ->str:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
snake_case_ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) )
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = True
if model_class in get_values(UpperCAmelCase_ ):
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = False
snake_case_ = True
if model_class in get_values(UpperCAmelCase_ ) or not model_class.supports_gradient_checkpointing:
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.gradient_checkpointing_enable()
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = _config_zero_init(UpperCAmelCase_ )
for model_class in self.all_model_classes:
snake_case_ = model_class(config=UpperCAmelCase_ )
# Skip the check for the backbone
snake_case_ = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
snake_case_ = [F"""{name}.{key}""" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
pass
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
snake_case_ = DPTModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = """add"""
with self.assertRaises(UpperCAmelCase_ ):
snake_case_ = DPTForDepthEstimation(UpperCAmelCase_ )
def _a ( ) -> Any:
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
snake_case_ = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" )
snake_case_ = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(UpperCAmelCase_ )
snake_case_ = prepare_img()
snake_case_ = image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
snake_case_ = outputs.predicted_depth
# verify the predicted depth
snake_case_ = torch.Size((1, 384, 384) )
self.assertEqual(predicted_depth.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor(
[[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , UpperCAmelCase_ , atol=1E-4 ) )
| 2 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int:
return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 2 | 1 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : str = {
'post_extract_proj': 'feature_projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.upsample.0': 'encoder.upsample.projection',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'layer_norm',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
}
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
for attribute in key.split(""".""" ):
snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if weight_type is not None:
snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape
else:
snake_case_ = hf_pointer.shape
assert hf_shape == value.shape, (
f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
snake_case_ = value
elif weight_type == "weight_g":
snake_case_ = value
elif weight_type == "weight_v":
snake_case_ = value
elif weight_type == "bias":
snake_case_ = value
else:
snake_case_ = value
logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
snake_case_ = []
snake_case_ = fairseq_model.state_dict()
snake_case_ = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
snake_case_ = False
if "conv_layers" in name:
load_conv_layer(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == """group""" , )
snake_case_ = True
else:
for key, mapped_key in MAPPING.items():
snake_case_ = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
snake_case_ = True
if "*" in mapped_key:
snake_case_ = name.split(_SCREAMING_SNAKE_CASE )[0].split(""".""" )[-2]
snake_case_ = mapped_key.replace("""*""" , _SCREAMING_SNAKE_CASE )
if "weight_g" in name:
snake_case_ = """weight_g"""
elif "weight_v" in name:
snake_case_ = """weight_v"""
elif "weight" in name:
snake_case_ = """weight"""
elif "bias" in name:
snake_case_ = """bias"""
else:
snake_case_ = None
set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(_SCREAMING_SNAKE_CASE )
logger.warning(f"""Unused weights: {unused_weights}""" )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
snake_case_ = full_name.split("""conv_layers.""" )[-1]
snake_case_ = name.split(""".""" )
snake_case_ = int(items[0] )
snake_case_ = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
snake_case_ = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
snake_case_ = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
snake_case_ = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
snake_case_ = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
snake_case_ = SEWConfig()
if is_finetuned:
snake_case_ = model.wav_encoder.wav_model.cfg
else:
snake_case_ = model.cfg
snake_case_ = fs_config.conv_bias
snake_case_ = eval(fs_config.conv_feature_layers )
snake_case_ = [x[0] for x in conv_layers]
snake_case_ = [x[1] for x in conv_layers]
snake_case_ = [x[2] for x in conv_layers]
snake_case_ = """gelu"""
snake_case_ = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
snake_case_ = 0.0
snake_case_ = fs_config.activation_fn.name
snake_case_ = fs_config.encoder_embed_dim
snake_case_ = 0.02
snake_case_ = fs_config.encoder_ffn_embed_dim
snake_case_ = 1E-5
snake_case_ = fs_config.encoder_layerdrop
snake_case_ = fs_config.encoder_attention_heads
snake_case_ = fs_config.conv_pos_groups
snake_case_ = fs_config.conv_pos
snake_case_ = len(_SCREAMING_SNAKE_CASE )
snake_case_ = fs_config.encoder_layers
snake_case_ = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
snake_case_ = model.cfg
snake_case_ = fs_config.final_dropout
snake_case_ = fs_config.layerdrop
snake_case_ = fs_config.activation_dropout
snake_case_ = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
snake_case_ = fs_config.attention_dropout
snake_case_ = fs_config.dropout_input
snake_case_ = fs_config.dropout
snake_case_ = fs_config.mask_channel_length
snake_case_ = fs_config.mask_channel_prob
snake_case_ = fs_config.mask_length
snake_case_ = fs_config.mask_prob
snake_case_ = """Wav2Vec2FeatureExtractor"""
snake_case_ = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True ) -> List[Any]:
if is_finetuned:
snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
snake_case_ = SEWConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
else:
snake_case_ = convert_config(model[0] , _SCREAMING_SNAKE_CASE )
snake_case_ = model[0].eval()
snake_case_ = True if config.feat_extract_norm == """layer""" else False
snake_case_ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , )
if is_finetuned:
if dict_path:
snake_case_ = Dictionary.load(_SCREAMING_SNAKE_CASE )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
snake_case_ = target_dict.pad_index
snake_case_ = target_dict.bos_index
snake_case_ = target_dict.pad_index
snake_case_ = target_dict.bos_index
snake_case_ = target_dict.eos_index
snake_case_ = len(target_dict.symbols )
snake_case_ = os.path.join(_SCREAMING_SNAKE_CASE , """vocab.json""" )
if not os.path.isdir(_SCREAMING_SNAKE_CASE ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_SCREAMING_SNAKE_CASE ) )
return
os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , _SCREAMING_SNAKE_CASE )
snake_case_ = WavaVecaCTCTokenizer(
_SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_SCREAMING_SNAKE_CASE , )
snake_case_ = WavaVecaProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = SEWForCTC(_SCREAMING_SNAKE_CASE )
else:
snake_case_ = SEWModel(_SCREAMING_SNAKE_CASE )
feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE )
recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
hf_model.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
__SCREAMING_SNAKE_CASE : Any = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 2 |
"""simple docstring"""
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: str = VQModel
__lowercase: Union[str, Any] = """sample"""
@property
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple:
"""simple docstring"""
snake_case_ = 4
snake_case_ = 3
snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ )
return {"sample": image}
@property
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
return (3, 32, 32)
@property
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
return (3, 32, 32)
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 3,
}
snake_case_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(UpperCAmelCase_ )
snake_case_ = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" )
model.to(UpperCAmelCase_ ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
snake_case_ = image.to(UpperCAmelCase_ )
with torch.no_grad():
snake_case_ = model(UpperCAmelCase_ ).sample
snake_case_ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] )
# fmt: on
self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 1 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[Any] = 'Alexander Joslin'
import operator as op
from .stack import Stack
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
snake_case_ = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub}
snake_case_ = Stack()
snake_case_ = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(_SCREAMING_SNAKE_CASE ) )
elif i in operators:
# RULE 2
operator_stack.push(_SCREAMING_SNAKE_CASE )
elif i == ")":
# RULE 4
snake_case_ = operator_stack.peek()
operator_stack.pop()
snake_case_ = operand_stack.peek()
operand_stack.pop()
snake_case_ = operand_stack.peek()
operand_stack.pop()
snake_case_ = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
operand_stack.push(_SCREAMING_SNAKE_CASE )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : str = '(5 + ((4 * 2) * (2 + 3)))'
# answer = 45
print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
| 2 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = KandinskyVaaControlnetPipeline
__lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: Union[str, Any] = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
__lowercase: Tuple = False
@property
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return 100
@property
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
snake_case_ = self.dummy_unet
snake_case_ = self.dummy_movq
snake_case_ = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , )
snake_case_ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]:
"""simple docstring"""
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase_ )
# create hint
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
if str(UpperCAmelCase_ ).startswith("""mps""" ):
snake_case_ = torch.manual_seed(UpperCAmelCase_ )
else:
snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = """cpu"""
snake_case_ = self.get_dummy_components()
snake_case_ = self.pipeline_class(**UpperCAmelCase_ )
snake_case_ = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
snake_case_ = output.images
snake_case_ = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ = np.array(
[0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0
snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case_ = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case_ = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = """A robot, 4k photo"""
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ , snake_case_ = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ = pipeline(
image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 2 | 1 |
"""simple docstring"""
import logging
import math
from functools import partial
from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union
import torch
from .tensor_utils import tensor_tree_map, tree_map
def _a ( _SCREAMING_SNAKE_CASE ) -> List[Tuple[int, ...]]:
snake_case_ = []
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for v in tree.values():
shapes.extend(_fetch_dims(_SCREAMING_SNAKE_CASE ) )
elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ):
for t in tree:
shapes.extend(_fetch_dims(_SCREAMING_SNAKE_CASE ) )
elif isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ):
shapes.append(tree.shape )
else:
raise ValueError("""Not supported""" )
return shapes
@torch.jit.ignore
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[int, ...]:
snake_case_ = []
for d in reversed(_SCREAMING_SNAKE_CASE ):
idx.append(flat_idx % d )
snake_case_ = flat_idx // d
return tuple(reversed(_SCREAMING_SNAKE_CASE ) )
@torch.jit.ignore
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , ) -> List[Tuple[slice, ...]]:
# start_edges and end_edges both indicate whether, starting from any given
# dimension, the start/end index is at the top/bottom edge of the
# corresponding tensor, modeled as a tree
def reduce_edge_list(_SCREAMING_SNAKE_CASE ) -> None:
snake_case_ = True
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = -1 * (i + 1)
l[reversed_idx] &= tally
snake_case_ = l[reversed_idx]
if start_edges is None:
snake_case_ = [s == 0 for s in start]
reduce_edge_list(_SCREAMING_SNAKE_CASE )
if end_edges is None:
snake_case_ = [e == (d - 1) for e, d in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
reduce_edge_list(_SCREAMING_SNAKE_CASE )
# Base cases. Either start/end are empty and we're done, or the final,
# one-dimensional tensor can be simply sliced
if len(_SCREAMING_SNAKE_CASE ) == 0:
return [()]
elif len(_SCREAMING_SNAKE_CASE ) == 1:
return [(slice(start[0] , end[0] + 1 ),)]
snake_case_ = []
snake_case_ = []
# Dimensions common to start and end can be selected directly
for s, e in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if s == e:
path_list.append(slice(_SCREAMING_SNAKE_CASE , s + 1 ) )
else:
break
snake_case_ = tuple(_SCREAMING_SNAKE_CASE )
snake_case_ = len(_SCREAMING_SNAKE_CASE )
# start == end, and we're done
if divergence_idx == len(_SCREAMING_SNAKE_CASE ):
return [path]
def upper() -> Tuple[Tuple[slice, ...], ...]:
assert start_edges is not None
assert end_edges is not None
snake_case_ = start[divergence_idx]
return tuple(
path + (slice(_SCREAMING_SNAKE_CASE , sdi + 1 ),) + s
for s in _get_minimal_slice_set(
start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) )
def lower() -> Tuple[Tuple[slice, ...], ...]:
assert start_edges is not None
assert end_edges is not None
snake_case_ = end[divergence_idx]
return tuple(
path + (slice(_SCREAMING_SNAKE_CASE , edi + 1 ),) + s
for s in _get_minimal_slice_set(
[0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) )
# If both start and end are at the edges of the subtree rooted at
# divergence_idx, we can just select the whole subtree at once
if start_edges[divergence_idx] and end_edges[divergence_idx]:
slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) )
# If just start is at the edge, we can grab almost all of the subtree,
# treating only the ragged bottom edge as an edge case
elif start_edges[divergence_idx]:
slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) )
slices.extend(lower() )
# Analogous to the previous case, but the top is ragged this time
elif end_edges[divergence_idx]:
slices.extend(upper() )
slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) )
# If both sides of the range are ragged, we need to handle both sides
# separately. If there's contiguous meat in between them, we can index it
# in one big chunk
else:
slices.extend(upper() )
snake_case_ = end[divergence_idx] - start[divergence_idx]
if middle_ground > 1:
slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) )
slices.extend(lower() )
return slices
@torch.jit.ignore
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> torch.Tensor:
snake_case_ = t.shape[:no_batch_dims]
snake_case_ = list(_flat_idx_to_idx(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
# _get_minimal_slice_set is inclusive
snake_case_ = list(_flat_idx_to_idx(flat_end - 1 , _SCREAMING_SNAKE_CASE ) )
# Get an ordered list of slices to perform
snake_case_ = _get_minimal_slice_set(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )
snake_case_ = [t[s] for s in slices]
return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , ) -> Any:
if not (len(_SCREAMING_SNAKE_CASE ) > 0):
raise ValueError("""Must provide at least one input""" )
snake_case_ = [shape[:no_batch_dims] for shape in _fetch_dims(_SCREAMING_SNAKE_CASE )]
snake_case_ = tuple([max(_SCREAMING_SNAKE_CASE ) for s in zip(*_SCREAMING_SNAKE_CASE )] )
def _prep_inputs(_SCREAMING_SNAKE_CASE ) -> torch.Tensor:
if not low_mem:
if not sum(t.shape[:no_batch_dims] ) == no_batch_dims:
snake_case_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] )
snake_case_ = t.reshape(-1 , *t.shape[no_batch_dims:] )
else:
snake_case_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] )
return t
snake_case_ = tensor_tree_map(_prep_inputs , _SCREAMING_SNAKE_CASE )
snake_case_ = None
if _out is not None:
snake_case_ = tensor_tree_map(lambda _SCREAMING_SNAKE_CASE : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out )
snake_case_ = 1
for d in orig_batch_dims:
flat_batch_dim *= d
snake_case_ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0)
def _select_chunk(_SCREAMING_SNAKE_CASE ) -> torch.Tensor:
return t[i : i + chunk_size] if t.shape[0] != 1 else t
snake_case_ = 0
snake_case_ = prepped_outputs
for _ in range(_SCREAMING_SNAKE_CASE ):
# Chunk the input
if not low_mem:
snake_case_ = _select_chunk
else:
snake_case_ = partial(
_chunk_slice , flat_start=_SCREAMING_SNAKE_CASE , flat_end=min(_SCREAMING_SNAKE_CASE , i + chunk_size ) , no_batch_dims=len(_SCREAMING_SNAKE_CASE ) , )
snake_case_ = tensor_tree_map(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Run the layer on the chunk
snake_case_ = layer(**_SCREAMING_SNAKE_CASE )
# Allocate space for the output
if out is None:
snake_case_ = tensor_tree_map(lambda _SCREAMING_SNAKE_CASE : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , _SCREAMING_SNAKE_CASE )
# Put the chunk in its pre-allocated space
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
def assign(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None:
for k, v in da.items():
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
assign(_SCREAMING_SNAKE_CASE , da[k] )
else:
if _add_into_out:
v[i : i + chunk_size] += da[k]
else:
snake_case_ = da[k]
assign(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for xa, xa in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if _add_into_out:
xa[i : i + chunk_size] += xa
else:
snake_case_ = xa
elif isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ):
if _add_into_out:
out[i : i + chunk_size] += output_chunk
else:
snake_case_ = output_chunk
else:
raise ValueError("""Not supported""" )
i += chunk_size
snake_case_ = tensor_tree_map(lambda _SCREAMING_SNAKE_CASE : t.view(orig_batch_dims + t.shape[1:] ) , _SCREAMING_SNAKE_CASE )
return out
class __A :
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : int = 512 , ) ->Any:
"""simple docstring"""
snake_case_ = max_chunk_size
snake_case_ = None
snake_case_ = None
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int ) ->int:
"""simple docstring"""
logging.info("""Tuning chunk size...""" )
if min_chunk_size >= self.max_chunk_size:
return min_chunk_size
snake_case_ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )]
snake_case_ = [c for c in candidates if c > min_chunk_size]
snake_case_ = [min_chunk_size] + candidates
candidates[-1] += 4
def test_chunk_size(UpperCAmelCase_ : int ) -> bool:
try:
with torch.no_grad():
fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_ )
return True
except RuntimeError:
return False
snake_case_ = 0
snake_case_ = len(UpperCAmelCase_ ) - 1
while i > min_viable_chunk_size_index:
snake_case_ = test_chunk_size(candidates[i] )
if not viable:
snake_case_ = (min_viable_chunk_size_index + i) // 2
else:
snake_case_ = i
snake_case_ = (i + len(UpperCAmelCase_ ) - 1) // 2
return candidates[min_viable_chunk_size_index]
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable ) ->bool:
"""simple docstring"""
snake_case_ = True
for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
assert type(UpperCAmelCase_ ) == type(UpperCAmelCase_ )
if isinstance(UpperCAmelCase_ , (list, tuple) ):
consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_ )
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_ : x[0] )]
snake_case_ = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_ : x[0] )]
consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_ )
else:
consistent &= aa == aa
return consistent
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ) ->int:
"""simple docstring"""
snake_case_ = True
snake_case_ = tree_map(lambda UpperCAmelCase_ : a.shape if isinstance(UpperCAmelCase_ , torch.Tensor ) else a , UpperCAmelCase_ , UpperCAmelCase_ )
if self.cached_arg_data is not None:
# If args have changed shape/value, we need to re-tune
assert len(self.cached_arg_data ) == len(UpperCAmelCase_ )
snake_case_ = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_ )
else:
# Otherwise, we can reuse the precomputed value
snake_case_ = False
if not consistent:
snake_case_ = self._determine_favorable_chunk_size(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , )
snake_case_ = arg_data
assert self.cached_chunk_size is not None
return self.cached_chunk_size
| 2 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
class __A :
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = []
self.adlist.append(
{"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} )
for keyword in keywords:
self.add_keyword(UpperCAmelCase_ )
self.set_fail_transitions()
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None:
"""simple docstring"""
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None:
"""simple docstring"""
snake_case_ = 0
for character in keyword:
snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ )
if next_state is None:
self.adlist.append(
{
"""value""": character,
"""next_states""": [],
"""fail_state""": 0,
"""output""": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
snake_case_ = len(self.adlist ) - 1
else:
snake_case_ = next_state
self.adlist[current_state]["output"].append(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->None:
"""simple docstring"""
snake_case_ = deque()
for node in self.adlist[0]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = 0
while q:
snake_case_ = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = self.adlist[r]["""fail_state"""]
while (
self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None
and state != 0
):
snake_case_ = self.adlist[state]["""fail_state"""]
snake_case_ = self.find_next_state(
UpperCAmelCase_ , self.adlist[child]["""value"""] )
if self.adlist[child]["fail_state"] is None:
snake_case_ = 0
snake_case_ = (
self.adlist[child]["""output"""]
+ self.adlist[self.adlist[child]["""fail_state"""]]["""output"""]
)
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]:
"""simple docstring"""
snake_case_ = {} # returns a dict with keywords and list of its occurrences
snake_case_ = 0
for i in range(len(UpperCAmelCase_ ) ):
while (
self.find_next_state(UpperCAmelCase_ , string[i] ) is None
and current_state != 0
):
snake_case_ = self.adlist[current_state]["""fail_state"""]
snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] )
if next_state is None:
snake_case_ = 0
else:
snake_case_ = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
snake_case_ = []
result[key].append(i - len(UpperCAmelCase_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
# flake8: noqa
# Lint as: python3
__SCREAMING_SNAKE_CASE : Dict = [
'VerificationMode',
'Version',
'disable_progress_bar',
'enable_progress_bar',
'is_progress_bar_enabled',
'experimental',
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 2 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = num_channels
snake_case_ = num_stages
snake_case_ = hidden_sizes
snake_case_ = depths
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = num_labels
snake_case_ = initializer_range
snake_case_ = out_features
snake_case_ = out_indices
snake_case_ = scope
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case_ = None
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[Any] = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
__lowercase: Union[str, Any] = (
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Optional[Any] = False
__lowercase: Any = False
__lowercase: Union[str, Any] = False
__lowercase: Dict = False
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = True
if model_class.__name__ in [
*get_values(UpperCAmelCase_ ),
*get_values(UpperCAmelCase_ ),
]:
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = False
snake_case_ = True
if (
model_class.__name__
in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )]
or not model_class.supports_gradient_checkpointing
):
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.gradient_checkpointing_enable()
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ):
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case_ = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _a ( ) -> str:
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ )
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
# verify the logits
snake_case_ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
| 2 | 1 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Union[str, Any] = {
'meter': 'm',
'kilometer': 'km',
'megametre': 'Mm',
'gigametre': 'Gm',
'terametre': 'Tm',
'petametre': 'Pm',
'exametre': 'Em',
'zettametre': 'Zm',
'yottametre': 'Ym',
}
# Exponent of the factor(meter)
__SCREAMING_SNAKE_CASE : List[str] = {
'm': 0,
'km': 3,
'Mm': 6,
'Gm': 9,
'Tm': 12,
'Pm': 15,
'Em': 18,
'Zm': 21,
'Ym': 24,
}
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
snake_case_ = from_type.lower().strip("""s""" )
snake_case_ = to_type.lower().strip("""s""" )
snake_case_ = UNIT_SYMBOL.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = UNIT_SYMBOL.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if from_sanitized not in METRIC_CONVERSION:
snake_case_ = (
f"""Invalid 'from_type' value: {from_type!r}.\n"""
f"""Conversion abbreviations are: {", ".join(_SCREAMING_SNAKE_CASE )}"""
)
raise ValueError(_SCREAMING_SNAKE_CASE )
if to_sanitized not in METRIC_CONVERSION:
snake_case_ = (
f"""Invalid 'to_type' value: {to_type!r}.\n"""
f"""Conversion abbreviations are: {", ".join(_SCREAMING_SNAKE_CASE )}"""
)
raise ValueError(_SCREAMING_SNAKE_CASE )
snake_case_ = METRIC_CONVERSION[from_sanitized]
snake_case_ = METRIC_CONVERSION[to_sanitized]
snake_case_ = 1
if from_exponent > to_exponent:
snake_case_ = from_exponent - to_exponent
else:
snake_case_ = -(to_exponent - from_exponent)
return value * pow(10 , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 2 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights']
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
if "emb" in name:
snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
snake_case_ = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
snake_case_ = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
snake_case_ = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
snake_case_ = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
snake_case_ = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]:
snake_case_ = list(state_dict.keys() )
snake_case_ = {}
for key in keys:
snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE )
if "in_proj_weight" in key:
# split fused qkv proj
snake_case_ = val[:hidden_size, :]
snake_case_ = val[hidden_size : 2 * hidden_size, :]
snake_case_ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
snake_case_ = val
else:
snake_case_ = val
return state_dict, enc_dec_proj_state_dict
def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
snake_case_ = 1_024
snake_case_ = 24
snake_case_ = 16
elif checkpoint == "medium":
snake_case_ = 1_536
snake_case_ = 48
snake_case_ = 24
elif checkpoint == "large":
snake_case_ = 2_048
snake_case_ = 48
snake_case_ = 32
else:
raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
snake_case_ = MusicgenDecoderConfig(
hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , )
return config
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple:
snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE )
snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE )
snake_case_ = fairseq_model.lm.state_dict()
snake_case_ , snake_case_ = rename_state_dict(
_SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size )
snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" )
snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE )
# check we can do a forward pass
snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
snake_case_ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" )
snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
# set the appropriate bos/pad token ids
snake_case_ = 2_048
snake_case_ = 2_048
# set other default generation config params
snake_case_ = int(30 * audio_encoder.config.frame_rate )
snake_case_ = True
snake_case_ = 3.0
if pytorch_dump_folder is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if repo_id:
logger.info(f"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
processor.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint',
default='small',
type=str,
help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.',
)
parser.add_argument(
'--pytorch_dump_folder',
required=True,
default=None,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
parser.add_argument(
'--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.'
)
__SCREAMING_SNAKE_CASE : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 2 | 1 |
"""simple docstring"""
import os
from distutils.util import strtobool
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
for e in env_keys:
snake_case_ = int(os.environ.get(_SCREAMING_SNAKE_CASE , -1 ) )
if val >= 0:
return val
return default
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]:
snake_case_ = os.environ.get(_SCREAMING_SNAKE_CASE , str(_SCREAMING_SNAKE_CASE ) )
return strtobool(_SCREAMING_SNAKE_CASE ) == 1 # As its name indicates `strtobool` actually returns an int...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="no" ) -> Optional[Any]:
snake_case_ = os.environ.get(_SCREAMING_SNAKE_CASE , str(_SCREAMING_SNAKE_CASE ) )
return value
| 2 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
if index == number_of_items:
return 0
snake_case_ = 0
snake_case_ = 0
snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 )
if weights[index] <= max_weight:
snake_case_ = values[index] + knapsack(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 )
return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__)
def _a ( _SCREAMING_SNAKE_CASE ) -> Dict:
snake_case_ = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
snake_case_ = 128
elif "12-12" in model_name:
snake_case_ = 12
snake_case_ = 12
elif "14-14" in model_name:
snake_case_ = 14
snake_case_ = 14
elif "16-16" in model_name:
snake_case_ = 16
snake_case_ = 16
else:
raise ValueError("""Model not supported""" )
snake_case_ = """huggingface/label-files"""
if "speech-commands" in model_name:
snake_case_ = 35
snake_case_ = """speech-commands-v2-id2label.json"""
else:
snake_case_ = 527
snake_case_ = """audioset-id2label.json"""
snake_case_ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) )
snake_case_ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
snake_case_ = idalabel
snake_case_ = {v: k for k, v in idalabel.items()}
return config
def _a ( _SCREAMING_SNAKE_CASE ) -> Tuple:
if "module.v" in name:
snake_case_ = name.replace("""module.v""" , """audio_spectrogram_transformer""" )
if "cls_token" in name:
snake_case_ = name.replace("""cls_token""" , """embeddings.cls_token""" )
if "dist_token" in name:
snake_case_ = name.replace("""dist_token""" , """embeddings.distillation_token""" )
if "pos_embed" in name:
snake_case_ = name.replace("""pos_embed""" , """embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
snake_case_ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
# transformer blocks
if "blocks" in name:
snake_case_ = name.replace("""blocks""" , """encoder.layer""" )
if "attn.proj" in name:
snake_case_ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
snake_case_ = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
snake_case_ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
snake_case_ = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
snake_case_ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
snake_case_ = name.replace("""mlp.fc2""" , """output.dense""" )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
snake_case_ = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" )
# classifier head
if "module.mlp_head.0" in name:
snake_case_ = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" )
if "module.mlp_head.1" in name:
snake_case_ = name.replace("""module.mlp_head.1""" , """classifier.dense""" )
return name
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]:
for key in orig_state_dict.copy().keys():
snake_case_ = orig_state_dict.pop(_SCREAMING_SNAKE_CASE )
if "qkv" in key:
snake_case_ = key.split(""".""" )
snake_case_ = int(key_split[3] )
snake_case_ = config.hidden_size
if "weight" in key:
snake_case_ = val[:dim, :]
snake_case_ = val[dim : dim * 2, :]
snake_case_ = val[-dim:, :]
else:
snake_case_ = val[:dim]
snake_case_ = val[dim : dim * 2]
snake_case_ = val[-dim:]
else:
snake_case_ = val
return orig_state_dict
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
snake_case_ = [
"""module.v.head.weight""",
"""module.v.head.bias""",
"""module.v.head_dist.weight""",
"""module.v.head_dist.bias""",
]
for k in ignore_keys:
state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> str:
snake_case_ = get_audio_spectrogram_transformer_config(_SCREAMING_SNAKE_CASE )
snake_case_ = {
"""ast-finetuned-audioset-10-10-0.4593""": (
"""https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.450""": (
"""https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448""": (
"""https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448-v2""": (
"""https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1"""
),
"""ast-finetuned-audioset-12-12-0.447""": (
"""https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1"""
),
"""ast-finetuned-audioset-14-14-0.443""": (
"""https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1"""
),
"""ast-finetuned-audioset-16-16-0.442""": (
"""https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1"""
),
"""ast-finetuned-speech-commands-v2""": (
"""https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1"""
),
}
# load original state_dict
snake_case_ = model_name_to_url[model_name]
snake_case_ = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )
# remove some keys
remove_keys(_SCREAMING_SNAKE_CASE )
# rename some keys
snake_case_ = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# load 🤗 model
snake_case_ = ASTForAudioClassification(_SCREAMING_SNAKE_CASE )
model.eval()
model.load_state_dict(_SCREAMING_SNAKE_CASE )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
snake_case_ = -4.267_7393 if """speech-commands""" not in model_name else -6.84_5978
snake_case_ = 4.568_9974 if """speech-commands""" not in model_name else 5.565_4526
snake_case_ = 1_024 if """speech-commands""" not in model_name else 128
snake_case_ = ASTFeatureExtractor(mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE )
if "speech-commands" in model_name:
snake_case_ = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" )
snake_case_ = dataset[0]["""audio"""]["""array"""]
else:
snake_case_ = hf_hub_download(
repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , )
snake_case_ , snake_case_ = torchaudio.load(_SCREAMING_SNAKE_CASE )
snake_case_ = waveform.squeeze().numpy()
snake_case_ = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=16_000 , return_tensors="""pt""" )
# forward pass
snake_case_ = model(**_SCREAMING_SNAKE_CASE )
snake_case_ = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
snake_case_ = torch.tensor([-0.8760, -7.0042, -8.6602] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
snake_case_ = torch.tensor([-1.1986, -7.0903, -8.2718] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
snake_case_ = torch.tensor([-2.6128, -8.0080, -9.4344] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
snake_case_ = torch.tensor([-1.5080, -7.4534, -8.8917] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
snake_case_ = torch.tensor([-0.5050, -6.5833, -8.0843] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
snake_case_ = torch.tensor([-0.3826, -7.0336, -8.2413] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
snake_case_ = torch.tensor([-1.2113, -6.9101, -8.3470] )
elif model_name == "ast-finetuned-speech-commands-v2":
snake_case_ = torch.tensor([6.1589, -8.0566, -8.7984] )
else:
raise ValueError("""Unknown model name""" )
if not torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ):
raise ValueError("""Logits don't match""" )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(f"""Saving feature extractor to {pytorch_dump_folder_path}""" )
feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE )
if push_to_hub:
print("""Pushing model and feature extractor to the hub...""" )
model.push_to_hub(f"""MIT/{model_name}""" )
feature_extractor.push_to_hub(f"""MIT/{model_name}""" )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='ast-finetuned-audioset-10-10-0.4593',
type=str,
help='Name of the Audio Spectrogram Transformer model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
__SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 2 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int:
snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
snake_case_ = n // 2
return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
__SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 2 | 1 |
"""simple docstring"""
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[int]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[str]=1 / 255 , UpperCAmelCase_ : Union[str, Any]=True , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1_333}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_normalize
snake_case_ = image_mean
snake_case_ = image_std
snake_case_ = do_rescale
snake_case_ = rescale_factor
snake_case_ = do_pad
def lowerCAmelCase ( self : List[Any] ) ->int:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=False ) ->List[str]:
"""simple docstring"""
if not batched:
snake_case_ = image_inputs[0]
if isinstance(UpperCAmelCase_ , Image.Image ):
snake_case_ , snake_case_ = image.size
else:
snake_case_ , snake_case_ = image.shape[1], image.shape[2]
if w < h:
snake_case_ = int(self.size["""shortest_edge"""] * h / w )
snake_case_ = self.size["""shortest_edge"""]
elif w > h:
snake_case_ = self.size["""shortest_edge"""]
snake_case_ = int(self.size["""shortest_edge"""] * w / h )
else:
snake_case_ = self.size["""shortest_edge"""]
snake_case_ = self.size["""shortest_edge"""]
else:
snake_case_ = []
for image in image_inputs:
snake_case_ , snake_case_ = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case_ = max(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : item[0] )[0]
snake_case_ = max(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: str = DeformableDetrImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Dict ) ->Dict:
"""simple docstring"""
snake_case_ = DeformableDetrImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Union[str, Any] ) ->str:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """image_mean""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """image_std""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_rescale""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_pad""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
def lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1_333} )
self.assertEqual(image_processor.do_pad , UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase_ )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} )
self.assertEqual(image_processor.do_pad , UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(UpperCAmelCase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ )
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(UpperCAmelCase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowerCAmelCase ( self : List[str] ) ->Tuple:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(UpperCAmelCase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f:
snake_case_ = json.loads(f.read() )
snake_case_ = {"""image_id""": 39_769, """annotations""": target}
# encode them
snake_case_ = DeformableDetrImageProcessor()
snake_case_ = image_processing(images=UpperCAmelCase_ , annotations=UpperCAmelCase_ , return_tensors="""pt""" )
# verify pixel values
snake_case_ = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding["""pixel_values"""].shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
# verify area
snake_case_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCAmelCase_ ) )
# verify boxes
snake_case_ = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCAmelCase_ , atol=1E-3 ) )
# verify image_id
snake_case_ = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCAmelCase_ ) )
# verify is_crowd
snake_case_ = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCAmelCase_ ) )
# verify class_labels
snake_case_ = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCAmelCase_ ) )
# verify orig_size
snake_case_ = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCAmelCase_ ) )
# verify size
snake_case_ = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCAmelCase_ ) )
@slow
def lowerCAmelCase ( self : Optional[int] ) ->int:
"""simple docstring"""
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f:
snake_case_ = json.loads(f.read() )
snake_case_ = {"""file_name""": """000000039769.png""", """image_id""": 39_769, """segments_info""": target}
snake_case_ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" )
# encode them
snake_case_ = DeformableDetrImageProcessor(format="""coco_panoptic""" )
snake_case_ = image_processing(images=UpperCAmelCase_ , annotations=UpperCAmelCase_ , masks_path=UpperCAmelCase_ , return_tensors="""pt""" )
# verify pixel values
snake_case_ = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding["""pixel_values"""].shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
# verify area
snake_case_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCAmelCase_ ) )
# verify boxes
snake_case_ = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCAmelCase_ , atol=1E-3 ) )
# verify image_id
snake_case_ = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCAmelCase_ ) )
# verify is_crowd
snake_case_ = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCAmelCase_ ) )
# verify class_labels
snake_case_ = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCAmelCase_ ) )
# verify masks
snake_case_ = 822_873
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCAmelCase_ )
# verify orig_size
snake_case_ = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCAmelCase_ ) )
# verify size
snake_case_ = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCAmelCase_ ) )
| 2 |
"""simple docstring"""
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str:
snake_case_ = ascii_letters + digits + punctuation
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(_SCREAMING_SNAKE_CASE )
snake_case_ = i // 3
snake_case_ = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
snake_case_ = (
chars_incl
+ random(_SCREAMING_SNAKE_CASE , quotient + remainder )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
)
snake_case_ = list(_SCREAMING_SNAKE_CASE )
shuffle(_SCREAMING_SNAKE_CASE )
return "".join(_SCREAMING_SNAKE_CASE )
# random is a generalised function for letters, characters and numbers
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool:
if len(_SCREAMING_SNAKE_CASE ) < min_length:
# Your Password must be at least 8 characters long
return False
snake_case_ = any(char in ascii_uppercase for char in password )
snake_case_ = any(char in ascii_lowercase for char in password )
snake_case_ = any(char in digits for char in password )
snake_case_ = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def _a ( ) -> str:
snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() )
snake_case_ = input(
"""Please indicate the characters that must be in your password: """ ).strip()
print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) )
print(
"""Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , )
print("""[If you are thinking of using this passsword, You better save it.]""" )
if __name__ == "__main__":
main()
| 2 | 1 |
"""simple docstring"""
import argparse
import json
import os
import torch
from transformers.file_utils import has_file
from diffusers import UNetaDConditionModel, UNetaDModel
__SCREAMING_SNAKE_CASE : Any = False
__SCREAMING_SNAKE_CASE : Tuple = True
__SCREAMING_SNAKE_CASE : Optional[Any] = False
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
parser.add_argument(
'--repo_path',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
__SCREAMING_SNAKE_CASE : Union[str, Any] = {
'image_size': 'sample_size',
'num_res_blocks': 'layers_per_block',
'block_channels': 'block_out_channels',
'down_blocks': 'down_block_types',
'up_blocks': 'up_block_types',
'downscale_freq_shift': 'freq_shift',
'resnet_num_groups': 'norm_num_groups',
'resnet_act_fn': 'act_fn',
'resnet_eps': 'norm_eps',
'num_head_channels': 'attention_head_dim',
}
__SCREAMING_SNAKE_CASE : Optional[int] = {
'time_steps': 'time_proj',
'mid': 'mid_block',
'downsample_blocks': 'down_blocks',
'upsample_blocks': 'up_blocks',
}
__SCREAMING_SNAKE_CASE : Dict = '' if has_file(args.repo_path, 'config.json') else 'unet'
with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader:
__SCREAMING_SNAKE_CASE : int = reader.read()
__SCREAMING_SNAKE_CASE : Any = json.loads(text)
if do_only_config:
for key in config_parameters_to_change.keys():
config.pop(key, None)
if has_file(args.repo_path, 'config.json'):
__SCREAMING_SNAKE_CASE : Tuple = UNetaDModel(**config)
else:
__SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel
__SCREAMING_SNAKE_CASE : Tuple = class_name(**config)
if do_only_config:
model.save_config(os.path.join(args.repo_path, subfolder))
__SCREAMING_SNAKE_CASE : str = dict(model.config)
if do_only_renaming:
for key, value in config_parameters_to_change.items():
if key in config:
__SCREAMING_SNAKE_CASE : Union[str, Any] = config[key]
del config[key]
__SCREAMING_SNAKE_CASE : Optional[Any] = [k.replace('UNetRes', '') for k in config['down_block_types']]
__SCREAMING_SNAKE_CASE : List[Any] = [k.replace('UNetRes', '') for k in config['up_block_types']]
if do_only_weights:
__SCREAMING_SNAKE_CASE : Optional[int] = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin'))
__SCREAMING_SNAKE_CASE : Any = {}
for param_key, param_value in state_dict.items():
if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'):
continue
__SCREAMING_SNAKE_CASE : int = False
for key, new_key in key_parameters_to_change.items():
if not has_changed and param_key.split('.')[0] == key:
__SCREAMING_SNAKE_CASE : List[str] = param_value
__SCREAMING_SNAKE_CASE : List[Any] = True
if not has_changed:
__SCREAMING_SNAKE_CASE : Tuple = param_value
model.load_state_dict(new_state_dict)
model.save_pretrained(os.path.join(args.repo_path, subfolder))
| 2 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_normalize
def lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
snake_case_ = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" )
image_processor_first.to_json_file(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
pass
def _a ( ) -> str:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
snake_case_ = Image.open(dataset[4]["""file"""] )
snake_case_ = Image.open(dataset[5]["""file"""] )
snake_case_ = [imagea, imagea]
return images
@require_vision
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
snake_case_ = prepare_images()
# test non-batched
snake_case_ = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_024) )
snake_case_ = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ )
# test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_024) )
snake_case_ = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
| 2 | 1 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
snake_case_ = str(_SCREAMING_SNAKE_CASE )
return n == n[::-1]
def _a ( _SCREAMING_SNAKE_CASE = 1_000_000 ) -> int:
snake_case_ = 0
for i in range(1 , _SCREAMING_SNAKE_CASE ):
if is_palindrome(_SCREAMING_SNAKE_CASE ) and is_palindrome(bin(_SCREAMING_SNAKE_CASE ).split("""b""" )[1] ):
total += i
return total
if __name__ == "__main__":
print(solution(int(str(input().strip()))))
| 2 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = scope
snake_case_ = range_bbox
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case_ = bbox[i, j, 3]
snake_case_ = bbox[i, j, 1]
snake_case_ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case_ = bbox[i, j, 2]
snake_case_ = bbox[i, j, 0]
snake_case_ = t
snake_case_ = None
if self.use_input_mask:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str:
"""simple docstring"""
snake_case_ = LiltModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict:
"""simple docstring"""
snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowercase: Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return True
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = LiltModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_torch
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ )
snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ )
snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ )
snake_case_ = torch.Size([1, 2, 768] )
snake_case_ = torch.tensor(
[[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 1 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__SCREAMING_SNAKE_CASE : Dict = 'zero2'
__SCREAMING_SNAKE_CASE : List[Any] = 'zero3'
__SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __A (snake_case__):
'''simple docstring'''
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = models[model]
snake_case_ = self.run_trainer(
stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
self.do_checks(UpperCAmelCase_ )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ )
snake_case_ = F"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(UpperCAmelCase_ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
snake_case_ = self.get_launcher(UpperCAmelCase_ )
snake_case_ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple:
"""simple docstring"""
snake_case_ = min(2 , get_gpu_count() ) if distributed else 1
return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 2 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = 0
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
snake_case_ = i + 1
else:
snake_case_ = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
| 2 | 1 |
"""simple docstring"""
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
snake_case_ = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""_float_tensor""",
"""decoder.output_projection.weight""",
]
for k in ignore_keys:
state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ , snake_case_ = emb.weight.shape
snake_case_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE )
snake_case_ = emb.weight.data
return lin_layer
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="facebook/mbart-large-en-ro" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ) -> Tuple:
snake_case_ = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )["""model"""]
remove_ignore_keys_(_SCREAMING_SNAKE_CASE )
snake_case_ = state_dict["""encoder.embed_tokens.weight"""].shape[0]
snake_case_ = MBartConfig.from_pretrained(_SCREAMING_SNAKE_CASE , vocab_size=_SCREAMING_SNAKE_CASE )
if mbart_aa and finetuned:
snake_case_ = """relu"""
snake_case_ = state_dict["""decoder.embed_tokens.weight"""]
snake_case_ = MBartForConditionalGeneration(_SCREAMING_SNAKE_CASE )
model.model.load_state_dict(_SCREAMING_SNAKE_CASE )
if finetuned:
snake_case_ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'
)
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--hf_config',
default='facebook/mbart-large-cc25',
type=str,
help='Which huggingface architecture to use: mbart-large',
)
parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint')
parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint')
__SCREAMING_SNAKE_CASE : Dict = parser.parse_args()
__SCREAMING_SNAKE_CASE : Any = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 2 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 1 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" )
if len(_SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("""Input list must be a non empty list""" )
if len(_SCREAMING_SNAKE_CASE ) == 1:
return True
snake_case_ = series[1] - series[0]
for index in range(len(_SCREAMING_SNAKE_CASE ) - 1 ):
if series[index + 1] - series[index] != common_diff:
return False
return True
def _a ( _SCREAMING_SNAKE_CASE ) -> float:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" )
if len(_SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("""Input list must be a non empty list""" )
snake_case_ = 0
for val in series:
answer += val
return answer / len(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter'
__SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE'
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}"""
raise TypeError(_SCREAMING_SNAKE_CASE )
snake_case_ = spanish_id.replace("""-""" , """""" ).upper()
if len(_SCREAMING_SNAKE_CASE ) != 9:
raise ValueError(_SCREAMING_SNAKE_CASE )
try:
snake_case_ = int(spanish_id_clean[0:8] )
snake_case_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_SCREAMING_SNAKE_CASE ) from ex
if letter.isdigit():
raise ValueError(_SCREAMING_SNAKE_CASE )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
from graphs.minimum_spanning_tree_kruskal import kruskal
def _a ( ) -> Union[str, Any]:
snake_case_ = 9
snake_case_ = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
snake_case_ = kruskal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
assert sorted(_SCREAMING_SNAKE_CASE ) == sorted(_SCREAMING_SNAKE_CASE )
| 2 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'}
__SCREAMING_SNAKE_CASE : List[str] = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
}
}
__SCREAMING_SNAKE_CASE : List[str] = {
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
__SCREAMING_SNAKE_CASE : int = '▁'
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = VOCAB_FILES_NAMES
__lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None:
"""simple docstring"""
snake_case_ = (
AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
else mask_token
)
snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
snake_case_ = do_lower_case
snake_case_ = remove_space
snake_case_ = keep_accents
snake_case_ = vocab_file
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
return len(self.sp_model )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) ->List[str]:
"""simple docstring"""
snake_case_ = self.__dict__.copy()
snake_case_ = None
return state
def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
snake_case_ = {}
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str:
"""simple docstring"""
if self.remove_space:
snake_case_ = """ """.join(inputs.strip().split() )
else:
snake_case_ = inputs
snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ )
snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] )
if self.do_lower_case:
snake_case_ = outputs.lower()
return outputs
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
snake_case_ = self.preprocess_text(UpperCAmelCase_ )
snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
snake_case_ = []
for piece in pieces:
if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
snake_case_ = cur_pieces[1:]
else:
snake_case_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCAmelCase_ )
else:
new_pieces.append(UpperCAmelCase_ )
return new_pieces
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict:
"""simple docstring"""
return self.sp_model.PieceToId(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return self.sp_model.IdToPiece(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any:
"""simple docstring"""
snake_case_ = []
snake_case_ = """"""
snake_case_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase_ ) + token
snake_case_ = True
snake_case_ = []
else:
current_sub_tokens.append(UpperCAmelCase_ )
snake_case_ = False
out_string += self.sp_model.decode(UpperCAmelCase_ )
return out_string.strip()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , """wb""" ) as fi:
snake_case_ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
return (out_vocab_file,)
| 2 | 1 |
"""simple docstring"""
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
__SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__)
@add_end_docstrings(snake_case__)
class __A (snake_case__):
'''simple docstring'''
def __init__( self : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int ) ->Any:
"""simple docstring"""
super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : int=None ) ->Dict:
"""simple docstring"""
snake_case_ = {}
snake_case_ = {}
if prompt is not None:
snake_case_ = prompt
if generate_kwargs is not None:
snake_case_ = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
snake_case_ = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
snake_case_ = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : str , UpperCAmelCase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCAmelCase_ : int ) ->int:
"""simple docstring"""
return super().__call__(UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=None ) ->List[str]:
"""simple docstring"""
snake_case_ = load_image(UpperCAmelCase_ )
if prompt is not None:
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
raise ValueError(
F"""Received an invalid text input, got - {type(UpperCAmelCase_ )} - but expected a single string. """
"""Note also that one single text can be provided for conditional image to text generation.""" )
snake_case_ = self.model.config.model_type
if model_type == "git":
snake_case_ = self.image_processor(images=UpperCAmelCase_ , return_tensors=self.framework )
snake_case_ = self.tokenizer(text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ).input_ids
snake_case_ = [self.tokenizer.cls_token_id] + input_ids
snake_case_ = torch.tensor(UpperCAmelCase_ ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
snake_case_ = self.image_processor(images=UpperCAmelCase_ , header_text=UpperCAmelCase_ , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
snake_case_ = self.image_processor(images=UpperCAmelCase_ , return_tensors=self.framework )
snake_case_ = self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework )
model_inputs.update(UpperCAmelCase_ )
else:
raise ValueError(F"""Model type {model_type} does not support conditional text generation""" )
else:
snake_case_ = self.image_processor(images=UpperCAmelCase_ , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
snake_case_ = None
return model_inputs
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int=None ) ->List[str]:
"""simple docstring"""
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , UpperCAmelCase_ )
and all(x is None for x in model_inputs["""input_ids"""] )
):
snake_case_ = None
if generate_kwargs is None:
snake_case_ = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
snake_case_ = model_inputs.pop(self.model.main_input_name )
snake_case_ = self.model.generate(UpperCAmelCase_ , **UpperCAmelCase_ , **UpperCAmelCase_ )
return model_outputs
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = []
for output_ids in model_outputs:
snake_case_ = {
"""generated_text""": self.tokenizer.decode(
UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , )
}
records.append(UpperCAmelCase_ )
return records
| 2 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("""The given input must be positive""" )
# get the generated string sequence
snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = int(sequence[i] , 2 )
return sequence
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
snake_case_ = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
snake_case_ = gray_code_sequence_string(bit_count - 1 )
snake_case_ = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
snake_case_ = """0""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
snake_case_ = """1""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise ValueError("""Input must be an integer""" )
if input_num <= 0:
raise ValueError("""Input must be positive""" )
return sum(
divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 1 |
"""simple docstring"""
import warnings
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
__SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: Dict = ["""input_values""", """attention_mask"""]
def __init__( self : List[Any] , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 16_000 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : int = 80 , UpperCAmelCase_ : int = 16 , UpperCAmelCase_ : int = 64 , UpperCAmelCase_ : str = "hann_window" , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : float = 80 , UpperCAmelCase_ : float = 7_600 , UpperCAmelCase_ : float = 1E-10 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : str , ) ->str:
"""simple docstring"""
super().__init__(feature_size=UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , padding_value=UpperCAmelCase_ , **UpperCAmelCase_ )
snake_case_ = do_normalize
snake_case_ = return_attention_mask
snake_case_ = num_mel_bins
snake_case_ = hop_length
snake_case_ = win_length
snake_case_ = win_function
snake_case_ = frame_signal_scale
snake_case_ = fmin
snake_case_ = fmax
snake_case_ = mel_floor
snake_case_ = reduction_factor
snake_case_ = win_length * sampling_rate // 1_000
snake_case_ = hop_length * sampling_rate // 1_000
snake_case_ = optimal_fft_length(self.sample_size )
snake_case_ = (self.n_fft // 2) + 1
snake_case_ = window_function(window_length=self.sample_size , name=self.win_function , periodic=UpperCAmelCase_ )
snake_case_ = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="""slaney""" , mel_scale="""slaney""" , )
if frame_signal_scale != 1.0:
warnings.warn(
"""The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" , UpperCAmelCase_ , )
if reduction_factor != 2.0:
warnings.warn(
"""The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" , UpperCAmelCase_ , )
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def lowerCAmelCase ( UpperCAmelCase_ : List[np.ndarray] , UpperCAmelCase_ : List[np.ndarray] , UpperCAmelCase_ : float = 0.0 ) ->List[np.ndarray]:
"""simple docstring"""
if attention_mask is not None:
snake_case_ = np.array(UpperCAmelCase_ , np.intaa )
snake_case_ = []
for vector, length in zip(UpperCAmelCase_ , attention_mask.sum(-1 ) ):
snake_case_ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 )
if length < normed_slice.shape[0]:
snake_case_ = padding_value
normed_input_values.append(UpperCAmelCase_ )
else:
snake_case_ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values]
return normed_input_values
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : np.ndarray , ) ->np.ndarray:
"""simple docstring"""
snake_case_ = spectrogram(
UpperCAmelCase_ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="""log10""" , )
return log_mel_spec.T
def __call__( self : int , UpperCAmelCase_ : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , UpperCAmelCase_ : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : Optional[Any] , ) ->BatchFeature:
"""simple docstring"""
if audio is None and audio_target is None:
raise ValueError("""You must provide either `audio` or `audio_target` values.""" )
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of"""
F""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with"""
F""" {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
"""It is strongly recommended to pass the ``sampling_rate`` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
if audio is not None:
snake_case_ = self._process_audio(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ , )
else:
snake_case_ = None
if audio_target is not None:
snake_case_ = self._process_audio(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ , )
if inputs is None:
return inputs_target
else:
snake_case_ = inputs_target["""input_values"""]
snake_case_ = inputs_target.get("""attention_mask""" )
if decoder_attention_mask is not None:
snake_case_ = decoder_attention_mask
return inputs
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : Optional[int] , ) ->BatchFeature:
"""simple docstring"""
snake_case_ = isinstance(UpperCAmelCase_ , np.ndarray ) and len(speech.shape ) > 1
if is_batched_numpy and len(speech.shape ) > 2:
raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" )
snake_case_ = is_batched_numpy or (
isinstance(UpperCAmelCase_ , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
snake_case_ = [np.asarray(UpperCAmelCase_ , dtype=np.floataa ) for speech in speech]
elif not is_batched and not isinstance(UpperCAmelCase_ , np.ndarray ):
snake_case_ = np.asarray(UpperCAmelCase_ , dtype=np.floataa )
elif isinstance(UpperCAmelCase_ , np.ndarray ) and speech.dtype is np.dtype(np.floataa ):
snake_case_ = speech.astype(np.floataa )
# always return batch
if not is_batched:
snake_case_ = [speech]
# needed to make pad() work on spectrogram inputs
snake_case_ = self.feature_size
# convert into correct format for padding
if is_target:
snake_case_ = [self._extract_mel_features(UpperCAmelCase_ ) for waveform in speech]
snake_case_ = BatchFeature({"""input_values""": features} )
snake_case_ = self.num_mel_bins
else:
snake_case_ = BatchFeature({"""input_values""": speech} )
snake_case_ = self.pad(
UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , )
snake_case_ = feature_size_hack
# convert input values to correct format
snake_case_ = padded_inputs["""input_values"""]
if not isinstance(input_values[0] , np.ndarray ):
snake_case_ = [np.asarray(UpperCAmelCase_ , dtype=np.floataa ) for array in input_values]
elif (
not isinstance(UpperCAmelCase_ , np.ndarray )
and isinstance(input_values[0] , np.ndarray )
and input_values[0].dtype is np.dtype(np.floataa )
):
snake_case_ = [array.astype(np.floataa ) for array in input_values]
elif isinstance(UpperCAmelCase_ , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ):
snake_case_ = input_values.astype(np.floataa )
# convert attention_mask to correct format
snake_case_ = padded_inputs.get("""attention_mask""" )
if attention_mask is not None:
snake_case_ = [np.asarray(UpperCAmelCase_ , dtype=np.intaa ) for array in attention_mask]
# zero-mean and unit-variance normalization
if not is_target and self.do_normalize:
snake_case_ = (
attention_mask
if self._get_padding_strategies(UpperCAmelCase_ , max_length=UpperCAmelCase_ ) is not PaddingStrategy.DO_NOT_PAD
else None
)
snake_case_ = self.zero_mean_unit_var_norm(
padded_inputs["""input_values"""] , attention_mask=UpperCAmelCase_ , padding_value=self.padding_value )
if return_tensors is not None:
snake_case_ = padded_inputs.convert_to_tensors(UpperCAmelCase_ )
return padded_inputs
def lowerCAmelCase ( self : Any ) ->Dict[str, Any]:
"""simple docstring"""
snake_case_ = super().to_dict()
# Don't serialize these as they are derived from the other properties.
snake_case_ = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""]
for name in names:
if name in output:
del output[name]
return output
| 2 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/'
__SCREAMING_SNAKE_CASE : List[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
snake_case_ = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
snake_case_ = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = {}
import re
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# keep original key
else:
snake_case_ = original_key
snake_case_ = replace_key(_SCREAMING_SNAKE_CASE )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
snake_case_ = original_key
snake_case_ = original_key
snake_case_ = value
return new_dict
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ):
snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE )
open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content )
snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]]
snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE )
snake_case_ = []
snake_case_ = {}
for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""]
snake_case_ = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
snake_case_ = old_dic[k]
elif k.endswith(""".w""" ):
snake_case_ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
snake_case_ = old_dic[k]
else:
snake_case_ = old_dic[k]
snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}"""
snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
weight_dict.append(_SCREAMING_SNAKE_CASE )
snake_case_ = weight_dict.pop(0 )
model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
return weight_dict
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 2 | 1 |
"""simple docstring"""
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str ) ->Tuple:
"""simple docstring"""
snake_case_ = dataset
snake_case_ = process
snake_case_ = params
def __len__( self : Tuple ) ->List[Any]:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self : List[str] , UpperCAmelCase_ : Any ) ->Dict:
"""simple docstring"""
snake_case_ = self.dataset[i]
snake_case_ = self.process(UpperCAmelCase_ , **self.params )
return processed
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str=None ) ->Dict:
"""simple docstring"""
snake_case_ = loader
snake_case_ = infer
snake_case_ = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
snake_case_ = None
snake_case_ = loader_batch_size
# Internal bookkeeping
snake_case_ = None
snake_case_ = None
def __len__( self : int ) ->Optional[int]:
"""simple docstring"""
return len(self.loader )
def __iter__( self : Dict ) ->List[Any]:
"""simple docstring"""
snake_case_ = iter(self.loader )
return self
def lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
snake_case_ = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
snake_case_ = {}
for k, element in self._loader_batch_data.items():
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
# Convert ModelOutput to tuple first
snake_case_ = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
snake_case_ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
snake_case_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
snake_case_ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
snake_case_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
snake_case_ = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
snake_case_ = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
snake_case_ = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
snake_case_ = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
snake_case_ = self._loader_batch_data.__class__(UpperCAmelCase_ )
self._loader_batch_index += 1
return result
def lowerCAmelCase ( self : List[str] ) ->Any:
"""simple docstring"""
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
snake_case_ = next(self.iterator )
snake_case_ = self.infer(UpperCAmelCase_ , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(UpperCAmelCase_ , torch.Tensor ):
snake_case_ = processed
else:
snake_case_ = list(processed.keys() )[0]
snake_case_ = processed[key]
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = len(UpperCAmelCase_ )
else:
snake_case_ = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
snake_case_ = observed_batch_size
# Setting internal index to unwrap the batch
snake_case_ = processed
snake_case_ = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any]=None ) ->str:
"""simple docstring"""
super().__init__(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def __iter__( self : Dict ) ->Optional[int]:
"""simple docstring"""
snake_case_ = iter(self.loader )
snake_case_ = None
return self
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
if self.subiterator is None:
snake_case_ = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
snake_case_ = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
snake_case_ = self.infer(next(self.iterator ) , **self.params )
snake_case_ = next(self.subiterator )
return processed
class __A (snake_case__):
'''simple docstring'''
def __iter__( self : List[Any] ) ->int:
"""simple docstring"""
snake_case_ = iter(self.loader )
return self
def lowerCAmelCase ( self : Optional[int] ) ->Tuple:
"""simple docstring"""
snake_case_ = False
snake_case_ = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
snake_case_ = self.loader_batch_item()
snake_case_ = item.pop("""is_last""" )
accumulator.append(UpperCAmelCase_ )
if is_last:
return accumulator
while not is_last:
snake_case_ = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(UpperCAmelCase_ , torch.Tensor ):
snake_case_ = processed
else:
snake_case_ = list(processed.keys() )[0]
snake_case_ = processed[key]
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = len(UpperCAmelCase_ )
else:
snake_case_ = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
snake_case_ = observed_batch_size
snake_case_ = processed
snake_case_ = 0
while self._loader_batch_index < self.loader_batch_size:
snake_case_ = self.loader_batch_item()
snake_case_ = item.pop("""is_last""" )
accumulator.append(UpperCAmelCase_ )
if is_last:
return accumulator
else:
snake_case_ = processed
snake_case_ = item.pop("""is_last""" )
accumulator.append(UpperCAmelCase_ )
return accumulator
class __A (snake_case__):
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : Dataset , UpperCAmelCase_ : str ) ->Tuple:
"""simple docstring"""
snake_case_ = dataset
snake_case_ = key
def __len__( self : Union[str, Any] ) ->int:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) ->Dict:
"""simple docstring"""
return self.dataset[i][self.key]
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Any , UpperCAmelCase_ : Dataset , UpperCAmelCase_ : str , UpperCAmelCase_ : str ) ->Dict:
"""simple docstring"""
snake_case_ = dataset
snake_case_ = keya
snake_case_ = keya
def __len__( self : Dict ) ->List[str]:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 2 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__SCREAMING_SNAKE_CASE : Dict = 'zero2'
__SCREAMING_SNAKE_CASE : List[Any] = 'zero3'
__SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __A (snake_case__):
'''simple docstring'''
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = models[model]
snake_case_ = self.run_trainer(
stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
self.do_checks(UpperCAmelCase_ )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ )
snake_case_ = F"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(UpperCAmelCase_ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
snake_case_ = self.get_launcher(UpperCAmelCase_ )
snake_case_ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple:
"""simple docstring"""
snake_case_ = min(2 , get_gpu_count() ) if distributed else 1
return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 2 | 1 |
"""simple docstring"""
from functools import reduce
__SCREAMING_SNAKE_CASE : Tuple = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def _a ( _SCREAMING_SNAKE_CASE = N ) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) )
for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True})
__lowercase: ClassVar[Features] = Features({"""audio""": Audio()})
__lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")})
__lowercase: str = "audio"
__lowercase: str = "transcription"
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int:
"""simple docstring"""
if self.audio_column not in features:
raise ValueError(F"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , UpperCAmelCase_ ):
raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" )
snake_case_ = copy.deepcopy(self )
snake_case_ = self.input_schema.copy()
snake_case_ = features[self.audio_column]
snake_case_ = input_schema
return task_template
@property
def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]:
"""simple docstring"""
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 2 | 1 |
"""simple docstring"""
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def _a ( _SCREAMING_SNAKE_CASE = 3 ) -> qiskit.result.counts.Counts:
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise TypeError("""number of qubits must be a integer.""" )
if number_of_qubits <= 0:
raise ValueError("""number of qubits must be > 0.""" )
if math.floor(_SCREAMING_SNAKE_CASE ) != number_of_qubits:
raise ValueError("""number of qubits must be exact integer.""" )
if number_of_qubits > 10:
raise ValueError("""number of qubits too large to simulate(>10).""" )
snake_case_ = QuantumRegister(_SCREAMING_SNAKE_CASE , """qr""" )
snake_case_ = ClassicalRegister(_SCREAMING_SNAKE_CASE , """cr""" )
snake_case_ = QuantumCircuit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = number_of_qubits
for i in range(_SCREAMING_SNAKE_CASE ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(_SCREAMING_SNAKE_CASE ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(_SCREAMING_SNAKE_CASE , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# simulate with 10000 shots
snake_case_ = Aer.get_backend("""qasm_simulator""" )
snake_case_ = execute(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , shots=10_000 )
return job.result().get_counts(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(
f"""Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}"""
)
| 2 |
"""simple docstring"""
from functools import reduce
__SCREAMING_SNAKE_CASE : Tuple = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def _a ( _SCREAMING_SNAKE_CASE = N ) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) )
for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 | 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import importlib.metadata
import json
import os
from dataclasses import dataclass
from typing import Any, Dict, Union
from packaging import version
from ..utils import is_torch_available, logging
if is_torch_available():
import torch
__SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__)
@dataclass
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : List[str]=6.0 , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any="fp4" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Union[str, Any] , ) ->List[str]:
"""simple docstring"""
snake_case_ = load_in_abit
snake_case_ = load_in_abit
snake_case_ = llm_inta_threshold
snake_case_ = llm_inta_skip_modules
snake_case_ = llm_inta_enable_fpaa_cpu_offload
snake_case_ = llm_inta_has_fpaa_weight
snake_case_ = bnb_abit_quant_type
snake_case_ = bnb_abit_use_double_quant
if bnb_abit_compute_dtype is None:
snake_case_ = torch.floataa
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = getattr(UpperCAmelCase_ , UpperCAmelCase_ )
elif isinstance(UpperCAmelCase_ , torch.dtype ):
snake_case_ = bnb_abit_compute_dtype
else:
raise ValueError("""bnb_4bit_compute_dtype must be a string or a torch.dtype""" )
self.post_init()
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
if not isinstance(self.llm_inta_threshold , UpperCAmelCase_ ):
raise ValueError("""llm_int8_threshold must be a float""" )
if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , UpperCAmelCase_ ):
raise ValueError("""llm_int8_skip_modules must be a list of strings""" )
if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , UpperCAmelCase_ ):
raise ValueError("""llm_int8_enable_fp32_cpu_offload must be a boolean""" )
if not isinstance(self.llm_inta_has_fpaa_weight , UpperCAmelCase_ ):
raise ValueError("""llm_int8_has_fp16_weight must be a boolean""" )
if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ):
raise ValueError("""bnb_4bit_compute_dtype must be torch.dtype""" )
if not isinstance(self.bnb_abit_quant_type , UpperCAmelCase_ ):
raise ValueError("""bnb_4bit_quant_type must be a string""" )
if not isinstance(self.bnb_abit_use_double_quant , UpperCAmelCase_ ):
raise ValueError("""bnb_4bit_use_double_quant must be a boolean""" )
if self.load_in_abit and not version.parse(importlib.metadata.version("""bitsandbytes""" ) ) >= version.parse(
"""0.39.0""" ):
raise ValueError(
"""4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version""" )
def lowerCAmelCase ( self : int ) ->Tuple:
"""simple docstring"""
return self.load_in_abit or self.load_in_abit
def lowerCAmelCase ( self : Union[str, Any] ) ->Any:
"""simple docstring"""
if self.load_in_abit:
return "llm_int8"
elif self.load_in_abit and self.bnb_abit_quant_type == "fp4":
return "fp4"
elif self.load_in_abit and self.bnb_abit_quant_type == "nf4":
return "nf4"
else:
return None
@classmethod
def lowerCAmelCase ( cls : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = cls(**UpperCAmelCase_ )
snake_case_ = []
for key, value in kwargs.items():
if hasattr(UpperCAmelCase_ , UpperCAmelCase_ ):
setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
to_remove.append(UpperCAmelCase_ )
for key in to_remove:
kwargs.pop(UpperCAmelCase_ , UpperCAmelCase_ )
if return_unused_kwargs:
return config, kwargs
else:
return config
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, os.PathLike] ) ->Any:
"""simple docstring"""
with open(UpperCAmelCase_ , """w""" , encoding="""utf-8""" ) as writer:
snake_case_ = self.to_dict()
snake_case_ = json.dumps(UpperCAmelCase_ , indent=2 , sort_keys=UpperCAmelCase_ ) + """\n"""
writer.write(UpperCAmelCase_ )
def lowerCAmelCase ( self : Any ) ->Dict[str, Any]:
"""simple docstring"""
snake_case_ = copy.deepcopy(self.__dict__ )
snake_case_ = str(output["""bnb_4bit_compute_dtype"""] ).split(""".""" )[1]
return output
def __repr__( self : Optional[Any] ) ->int:
"""simple docstring"""
return F"""{self.__class__.__name__} {self.to_json_string()}"""
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : bool = True ) ->str:
"""simple docstring"""
if use_diff is True:
snake_case_ = self.to_diff_dict()
else:
snake_case_ = self.to_dict()
return json.dumps(UpperCAmelCase_ , indent=2 , sort_keys=UpperCAmelCase_ ) + "\n"
def lowerCAmelCase ( self : Any ) ->Dict[str, Any]:
"""simple docstring"""
snake_case_ = self.to_dict()
# get the default config dict
snake_case_ = BitsAndBytesConfig().to_dict()
snake_case_ = {}
# only serialize values that differ from the default config
for key, value in config_dict.items():
if value != default_config_dict[key]:
snake_case_ = value
return serializable_config_dict
| 2 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : str = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Any = """mctct"""
def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = intermediate_size
snake_case_ = num_attention_heads
snake_case_ = attention_head_dim
snake_case_ = max_position_embeddings
snake_case_ = layer_norm_eps
snake_case_ = layerdrop
snake_case_ = hidden_act
snake_case_ = initializer_range
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = pad_token_id
snake_case_ = bos_token_id
snake_case_ = eos_token_id
snake_case_ = conv_glu_dim
snake_case_ = conv_dropout
snake_case_ = num_conv_layers
snake_case_ = input_feat_per_channel
snake_case_ = input_channels
snake_case_ = conv_channels
snake_case_ = ctc_loss_reduction
snake_case_ = ctc_zero_infinity
# prevents config testing fail with exporting to json
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """
F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """
F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
| 2 | 1 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = 0 # The first color of the flag.
__SCREAMING_SNAKE_CASE : Optional[int] = 1 # The second color of the flag.
__SCREAMING_SNAKE_CASE : str = 2 # The third color of the flag.
__SCREAMING_SNAKE_CASE : Optional[int] = (red, white, blue)
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
if not sequence:
return []
if len(_SCREAMING_SNAKE_CASE ) == 1:
return list(_SCREAMING_SNAKE_CASE )
snake_case_ = 0
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
snake_case_ = 0
while mid <= high:
if sequence[mid] == colors[0]:
snake_case_ , snake_case_ = sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
snake_case_ , snake_case_ = sequence[high], sequence[mid]
high -= 1
else:
snake_case_ = f"""The elements inside the sequence must contains only {colors} values"""
raise ValueError(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
__SCREAMING_SNAKE_CASE : List[str] = input('Enter numbers separated by commas:\n').strip()
__SCREAMING_SNAKE_CASE : str = [int(item.strip()) for item in user_input.split(',')]
print(f"""{dutch_national_flag_sort(unsorted)}""")
| 2 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int:
return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 2 | 1 |
"""simple docstring"""
class __A :
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCAmelCase_ : list[int] ) ->None:
"""simple docstring"""
snake_case_ = len(UpperCAmelCase_ )
snake_case_ = [0] * len_array
if len_array > 0:
snake_case_ = array[0]
for i in range(1 , UpperCAmelCase_ ):
snake_case_ = self.prefix_sum[i - 1] + array[i]
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) ->int:
"""simple docstring"""
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : int ) ->bool:
"""simple docstring"""
snake_case_ = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(UpperCAmelCase_ )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 |
"""simple docstring"""
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: str = VQModel
__lowercase: Union[str, Any] = """sample"""
@property
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple:
"""simple docstring"""
snake_case_ = 4
snake_case_ = 3
snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ )
return {"sample": image}
@property
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
return (3, 32, 32)
@property
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
return (3, 32, 32)
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 3,
}
snake_case_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(UpperCAmelCase_ )
snake_case_ = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" )
model.to(UpperCAmelCase_ ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
snake_case_ = image.to(UpperCAmelCase_ )
with torch.no_grad():
snake_case_ = model(UpperCAmelCase_ ).sample
snake_case_ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] )
# fmt: on
self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 1 |
"""simple docstring"""
import os
from pathlib import Path
def _a ( ) -> List[str]:
from torch.utils.cpp_extension import load
snake_case_ = Path(_SCREAMING_SNAKE_CASE ).resolve().parent.parent.parent / """kernels""" / """deformable_detr"""
snake_case_ = [
root / filename
for filename in [
"""vision.cpp""",
os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ),
os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ),
]
]
load(
"""MultiScaleDeformableAttention""" , _SCREAMING_SNAKE_CASE , with_cuda=_SCREAMING_SNAKE_CASE , extra_include_paths=[str(_SCREAMING_SNAKE_CASE )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[
"""-DCUDA_HAS_FP16=1""",
"""-D__CUDA_NO_HALF_OPERATORS__""",
"""-D__CUDA_NO_HALF_CONVERSIONS__""",
"""-D__CUDA_NO_HALF2_OPERATORS__""",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 2 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = KandinskyVaaControlnetPipeline
__lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: Union[str, Any] = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
__lowercase: Tuple = False
@property
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return 100
@property
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
snake_case_ = self.dummy_unet
snake_case_ = self.dummy_movq
snake_case_ = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , )
snake_case_ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]:
"""simple docstring"""
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase_ )
# create hint
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
if str(UpperCAmelCase_ ).startswith("""mps""" ):
snake_case_ = torch.manual_seed(UpperCAmelCase_ )
else:
snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = """cpu"""
snake_case_ = self.get_dummy_components()
snake_case_ = self.pipeline_class(**UpperCAmelCase_ )
snake_case_ = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
snake_case_ = output.images
snake_case_ = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ = np.array(
[0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0
snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case_ = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case_ = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = """A robot, 4k photo"""
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ , snake_case_ = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ = pipeline(
image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 2 | 1 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class __A (snake_case__):
'''simple docstring'''
pass
class __A :
'''simple docstring'''
def __init__( self : str , UpperCAmelCase_ : Any ) ->None:
"""simple docstring"""
snake_case_ = data
snake_case_ = None
def __iter__( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self
snake_case_ = []
while node:
if node in visited:
raise ContainsLoopError
visited.append(UpperCAmelCase_ )
yield node.data
snake_case_ = node.next_node
@property
def lowerCAmelCase ( self : str ) ->bool:
"""simple docstring"""
try:
list(self )
return False
except ContainsLoopError:
return True
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Dict = Node(1)
__SCREAMING_SNAKE_CASE : Tuple = Node(2)
__SCREAMING_SNAKE_CASE : Optional[int] = Node(3)
__SCREAMING_SNAKE_CASE : str = Node(4)
print(root_node.has_loop) # False
__SCREAMING_SNAKE_CASE : List[Any] = root_node.next_node
print(root_node.has_loop) # True
__SCREAMING_SNAKE_CASE : Dict = Node(5)
__SCREAMING_SNAKE_CASE : Optional[int] = Node(6)
__SCREAMING_SNAKE_CASE : List[Any] = Node(5)
__SCREAMING_SNAKE_CASE : Optional[int] = Node(6)
print(root_node.has_loop) # False
__SCREAMING_SNAKE_CASE : Dict = Node(1)
print(root_node.has_loop) # False
| 2 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
class __A :
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = []
self.adlist.append(
{"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} )
for keyword in keywords:
self.add_keyword(UpperCAmelCase_ )
self.set_fail_transitions()
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None:
"""simple docstring"""
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None:
"""simple docstring"""
snake_case_ = 0
for character in keyword:
snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ )
if next_state is None:
self.adlist.append(
{
"""value""": character,
"""next_states""": [],
"""fail_state""": 0,
"""output""": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
snake_case_ = len(self.adlist ) - 1
else:
snake_case_ = next_state
self.adlist[current_state]["output"].append(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->None:
"""simple docstring"""
snake_case_ = deque()
for node in self.adlist[0]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = 0
while q:
snake_case_ = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = self.adlist[r]["""fail_state"""]
while (
self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None
and state != 0
):
snake_case_ = self.adlist[state]["""fail_state"""]
snake_case_ = self.find_next_state(
UpperCAmelCase_ , self.adlist[child]["""value"""] )
if self.adlist[child]["fail_state"] is None:
snake_case_ = 0
snake_case_ = (
self.adlist[child]["""output"""]
+ self.adlist[self.adlist[child]["""fail_state"""]]["""output"""]
)
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]:
"""simple docstring"""
snake_case_ = {} # returns a dict with keywords and list of its occurrences
snake_case_ = 0
for i in range(len(UpperCAmelCase_ ) ):
while (
self.find_next_state(UpperCAmelCase_ , string[i] ) is None
and current_state != 0
):
snake_case_ = self.adlist[current_state]["""fail_state"""]
snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] )
if next_state is None:
snake_case_ = 0
else:
snake_case_ = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
snake_case_ = []
result[key].append(i - len(UpperCAmelCase_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : int = {
'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json',
}
class __A (snake_case__ , snake_case__):
'''simple docstring'''
__lowercase: Any = """focalnet"""
def __init__( self : List[str] , UpperCAmelCase_ : Tuple=224 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Optional[int]=96 , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[Any]=[192, 384, 768, 768] , UpperCAmelCase_ : int=[2, 2, 6, 2] , UpperCAmelCase_ : Optional[int]=[2, 2, 2, 2] , UpperCAmelCase_ : str=[3, 3, 3, 3] , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : Optional[Any]=4.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : str=1E-4 , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Optional[Any]=32 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Dict=None , **UpperCAmelCase_ : Union[str, Any] , ) ->Optional[int]:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ )
snake_case_ = image_size
snake_case_ = patch_size
snake_case_ = num_channels
snake_case_ = embed_dim
snake_case_ = use_conv_embed
snake_case_ = hidden_sizes
snake_case_ = depths
snake_case_ = focal_levels
snake_case_ = focal_windows
snake_case_ = hidden_act
snake_case_ = mlp_ratio
snake_case_ = hidden_dropout_prob
snake_case_ = drop_path_rate
snake_case_ = use_layerscale
snake_case_ = layerscale_value
snake_case_ = use_post_layernorm
snake_case_ = use_post_layernorm_in_modulation
snake_case_ = normalize_modulator
snake_case_ = initializer_range
snake_case_ = layer_norm_eps
snake_case_ = encoder_stride
snake_case_ = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )]
snake_case_ , snake_case_ = get_aligned_output_features_output_indices(
out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
| 2 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = num_channels
snake_case_ = num_stages
snake_case_ = hidden_sizes
snake_case_ = depths
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = num_labels
snake_case_ = initializer_range
snake_case_ = out_features
snake_case_ = out_indices
snake_case_ = scope
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case_ = None
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[Any] = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
__lowercase: Union[str, Any] = (
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Optional[Any] = False
__lowercase: Any = False
__lowercase: Union[str, Any] = False
__lowercase: Dict = False
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = True
if model_class.__name__ in [
*get_values(UpperCAmelCase_ ),
*get_values(UpperCAmelCase_ ),
]:
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = False
snake_case_ = True
if (
model_class.__name__
in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )]
or not model_class.supports_gradient_checkpointing
):
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.gradient_checkpointing_enable()
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ):
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case_ = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _a ( ) -> str:
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ )
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
# verify the logits
snake_case_ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
| 2 | 1 |
"""simple docstring"""
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__)
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
snake_case_ = RobertaPreLayerNormConfig.from_pretrained(
_SCREAMING_SNAKE_CASE , architectures=["""RobertaPreLayerNormForMaskedLM"""] )
# convert state_dict
snake_case_ = torch.load(hf_hub_download(repo_id=_SCREAMING_SNAKE_CASE , filename="""pytorch_model.bin""" ) )
snake_case_ = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("""roberta.""" ):
snake_case_ = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ):
continue
snake_case_ = tensor_value
snake_case_ = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE , state_dict=_SCREAMING_SNAKE_CASE )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
# convert tokenizer
snake_case_ = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE )
tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint-repo',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 2 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights']
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
if "emb" in name:
snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
snake_case_ = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
snake_case_ = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
snake_case_ = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
snake_case_ = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
snake_case_ = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]:
snake_case_ = list(state_dict.keys() )
snake_case_ = {}
for key in keys:
snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE )
if "in_proj_weight" in key:
# split fused qkv proj
snake_case_ = val[:hidden_size, :]
snake_case_ = val[hidden_size : 2 * hidden_size, :]
snake_case_ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
snake_case_ = val
else:
snake_case_ = val
return state_dict, enc_dec_proj_state_dict
def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
snake_case_ = 1_024
snake_case_ = 24
snake_case_ = 16
elif checkpoint == "medium":
snake_case_ = 1_536
snake_case_ = 48
snake_case_ = 24
elif checkpoint == "large":
snake_case_ = 2_048
snake_case_ = 48
snake_case_ = 32
else:
raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
snake_case_ = MusicgenDecoderConfig(
hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , )
return config
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple:
snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE )
snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE )
snake_case_ = fairseq_model.lm.state_dict()
snake_case_ , snake_case_ = rename_state_dict(
_SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size )
snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" )
snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE )
# check we can do a forward pass
snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
snake_case_ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" )
snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
# set the appropriate bos/pad token ids
snake_case_ = 2_048
snake_case_ = 2_048
# set other default generation config params
snake_case_ = int(30 * audio_encoder.config.frame_rate )
snake_case_ = True
snake_case_ = 3.0
if pytorch_dump_folder is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if repo_id:
logger.info(f"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
processor.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint',
default='small',
type=str,
help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.',
)
parser.add_argument(
'--pytorch_dump_folder',
required=True,
default=None,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
parser.add_argument(
'--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.'
)
__SCREAMING_SNAKE_CASE : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 2 | 1 |
"""simple docstring"""
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
__SCREAMING_SNAKE_CASE : Tuple = TypeVar('T')
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
return (position - 1) // 2
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
return (2 * position) + 1
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
return (2 * position) + 2
class __A (Generic[T]):
'''simple docstring'''
def __init__( self : Optional[Any] ) ->None:
"""simple docstring"""
snake_case_ = []
snake_case_ = {}
snake_case_ = 0
def __len__( self : Dict ) ->int:
"""simple docstring"""
return self.elements
def __repr__( self : Dict ) ->str:
"""simple docstring"""
return str(self.heap )
def lowerCAmelCase ( self : Tuple ) ->bool:
"""simple docstring"""
return self.elements == 0
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : T , UpperCAmelCase_ : int ) ->None:
"""simple docstring"""
self.heap.append((elem, weight) )
snake_case_ = self.elements
self.elements += 1
self._bubble_up(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->T:
"""simple docstring"""
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
snake_case_ , snake_case_ = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
snake_case_ , snake_case_ = self.heap[0]
self._bubble_down(UpperCAmelCase_ )
return elem
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : T , UpperCAmelCase_ : int ) ->None:
"""simple docstring"""
snake_case_ = self.position_map[elem]
snake_case_ = (elem, weight)
if position > 0:
snake_case_ = get_parent_position(UpperCAmelCase_ )
snake_case_ , snake_case_ = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(UpperCAmelCase_ )
else:
self._bubble_down(UpperCAmelCase_ )
else:
self._bubble_down(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : T ) ->None:
"""simple docstring"""
snake_case_ = self.position_map[elem]
if curr_pos == 0:
return None
snake_case_ = get_parent_position(UpperCAmelCase_ )
snake_case_ , snake_case_ = self.heap[curr_pos]
snake_case_ , snake_case_ = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(UpperCAmelCase_ , UpperCAmelCase_ )
return self._bubble_up(UpperCAmelCase_ )
return None
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : T ) ->None:
"""simple docstring"""
snake_case_ = self.position_map[elem]
snake_case_ , snake_case_ = self.heap[curr_pos]
snake_case_ = get_child_left_position(UpperCAmelCase_ )
snake_case_ = get_child_right_position(UpperCAmelCase_ )
if child_left_position < self.elements and child_right_position < self.elements:
snake_case_ , snake_case_ = self.heap[child_left_position]
snake_case_ , snake_case_ = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(UpperCAmelCase_ , UpperCAmelCase_ )
return self._bubble_down(UpperCAmelCase_ )
if child_left_position < self.elements:
snake_case_ , snake_case_ = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(UpperCAmelCase_ , UpperCAmelCase_ )
return self._bubble_down(UpperCAmelCase_ )
else:
return None
if child_right_position < self.elements:
snake_case_ , snake_case_ = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(UpperCAmelCase_ , UpperCAmelCase_ )
return self._bubble_down(UpperCAmelCase_ )
return None
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) ->None:
"""simple docstring"""
snake_case_ = self.heap[nodea_pos][0]
snake_case_ = self.heap[nodea_pos][0]
snake_case_ , snake_case_ = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
snake_case_ = nodea_pos
snake_case_ = nodea_pos
class __A (Generic[T]):
'''simple docstring'''
def __init__( self : Any ) ->None:
"""simple docstring"""
snake_case_ = {}
snake_case_ = 0
def __repr__( self : Tuple ) ->str:
"""simple docstring"""
return str(self.connections )
def __len__( self : Dict ) ->int:
"""simple docstring"""
return self.nodes
def lowerCAmelCase ( self : int , UpperCAmelCase_ : T ) ->None:
"""simple docstring"""
if node not in self.connections:
snake_case_ = {}
self.nodes += 1
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : T , UpperCAmelCase_ : T , UpperCAmelCase_ : int ) ->None:
"""simple docstring"""
self.add_node(UpperCAmelCase_ )
self.add_node(UpperCAmelCase_ )
snake_case_ = weight
snake_case_ = weight
def _a ( _SCREAMING_SNAKE_CASE , ) -> tuple[dict[T, int], dict[T, T | None]]:
snake_case_ = {node: maxsize for node in graph.connections}
snake_case_ = {node: None for node in graph.connections}
snake_case_ = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if priority_queue.is_empty():
return dist, parent
# initialization
snake_case_ = priority_queue.extract_min()
snake_case_ = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
snake_case_ = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] )
snake_case_ = node
# running prim's algorithm
while not priority_queue.is_empty():
snake_case_ = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
snake_case_ = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] )
snake_case_ = node
return dist, parent
| 2 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
if index == number_of_items:
return 0
snake_case_ = 0
snake_case_ = 0
snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 )
if weights[index] <= max_weight:
snake_case_ = values[index] + knapsack(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 )
return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.