code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool:
return not any(
neighbour == 1 and colored_vertices[i] == color
for i, neighbour in enumerate(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool:
# Base Case
if index == len(_SCREAMING_SNAKE_CASE ):
return True
# Recursive Step
for i in range(_SCREAMING_SNAKE_CASE ):
if valid_coloring(graph[index] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
# Color current vertex
snake_case_ = i
# Validate coloring
if util_color(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 ):
return True
# Backtrack
snake_case_ = -1
return False
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = [-1] * len(_SCREAMING_SNAKE_CASE )
if util_color(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0 ):
return colored_vertices
return []
| 2 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int:
snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
snake_case_ = n // 2
return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
__SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 2 | 1 |
"""simple docstring"""
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__)
def _a ( _SCREAMING_SNAKE_CASE ) -> Dict:
snake_case_ = OrderedDict()
for key, value in state_dict.items():
if key.startswith("""module.encoder""" ):
snake_case_ = key.replace("""module.encoder""" , """glpn.encoder""" )
if key.startswith("""module.decoder""" ):
snake_case_ = key.replace("""module.decoder""" , """decoder.stages""" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
snake_case_ = key[key.find("""patch_embed""" ) + len("""patch_embed""" )]
snake_case_ = key.replace(f"""patch_embed{idx}""" , f"""patch_embeddings.{int(_SCREAMING_SNAKE_CASE )-1}""" )
if "norm" in key:
snake_case_ = key.replace("""norm""" , """layer_norm""" )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
snake_case_ = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )]
snake_case_ = key.replace(f"""layer_norm{idx}""" , f"""layer_norm.{int(_SCREAMING_SNAKE_CASE )-1}""" )
if "layer_norm1" in key:
snake_case_ = key.replace("""layer_norm1""" , """layer_norm_1""" )
if "layer_norm2" in key:
snake_case_ = key.replace("""layer_norm2""" , """layer_norm_2""" )
if "block" in key:
# replace for example block1 by block.0
snake_case_ = key[key.find("""block""" ) + len("""block""" )]
snake_case_ = key.replace(f"""block{idx}""" , f"""block.{int(_SCREAMING_SNAKE_CASE )-1}""" )
if "attn.q" in key:
snake_case_ = key.replace("""attn.q""" , """attention.self.query""" )
if "attn.proj" in key:
snake_case_ = key.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in key:
snake_case_ = key.replace("""attn""" , """attention.self""" )
if "fc1" in key:
snake_case_ = key.replace("""fc1""" , """dense1""" )
if "fc2" in key:
snake_case_ = key.replace("""fc2""" , """dense2""" )
if "linear_pred" in key:
snake_case_ = key.replace("""linear_pred""" , """classifier""" )
if "linear_fuse" in key:
snake_case_ = key.replace("""linear_fuse.conv""" , """linear_fuse""" )
snake_case_ = key.replace("""linear_fuse.bn""" , """batch_norm""" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
snake_case_ = key[key.find("""linear_c""" ) + len("""linear_c""" )]
snake_case_ = key.replace(f"""linear_c{idx}""" , f"""linear_c.{int(_SCREAMING_SNAKE_CASE )-1}""" )
if "bot_conv" in key:
snake_case_ = key.replace("""bot_conv""" , """0.convolution""" )
if "skip_conv1" in key:
snake_case_ = key.replace("""skip_conv1""" , """1.convolution""" )
if "skip_conv2" in key:
snake_case_ = key.replace("""skip_conv2""" , """2.convolution""" )
if "fusion1" in key:
snake_case_ = key.replace("""fusion1""" , """1.fusion""" )
if "fusion2" in key:
snake_case_ = key.replace("""fusion2""" , """2.fusion""" )
if "fusion3" in key:
snake_case_ = key.replace("""fusion3""" , """3.fusion""" )
if "fusion" in key and "conv" in key:
snake_case_ = key.replace("""conv""" , """convolutional_layer""" )
if key.startswith("""module.last_layer_depth""" ):
snake_case_ = key.replace("""module.last_layer_depth""" , """head.head""" )
snake_case_ = value
return new_state_dict
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
snake_case_ = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" )
snake_case_ = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
snake_case_ = kv_weight[
: config.hidden_sizes[i], :
]
snake_case_ = kv_bias[: config.hidden_sizes[i]]
snake_case_ = kv_weight[
config.hidden_sizes[i] :, :
]
snake_case_ = kv_bias[config.hidden_sizes[i] :]
def _a ( ) -> str:
snake_case_ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
snake_case_ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw )
return image
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=None ) -> Optional[Any]:
snake_case_ = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
snake_case_ = GLPNImageProcessor()
# prepare image
snake_case_ = prepare_img()
snake_case_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
logger.info("""Converting model...""" )
# load original state dict
snake_case_ = torch.load(_SCREAMING_SNAKE_CASE , map_location=torch.device("""cpu""" ) )
# rename keys
snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE )
# key and value matrices need special treatment
read_in_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# create HuggingFace model and load state dict
snake_case_ = GLPNForDepthEstimation(_SCREAMING_SNAKE_CASE )
model.load_state_dict(_SCREAMING_SNAKE_CASE )
model.eval()
# forward pass
snake_case_ = model(_SCREAMING_SNAKE_CASE )
snake_case_ = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
snake_case_ = torch.tensor(
[[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] )
elif "kitti" in model_name:
snake_case_ = torch.tensor(
[[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] )
else:
raise ValueError(f"""Unknown model name: {model_name}""" )
snake_case_ = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
print("""Looks ok!""" )
# finally, push to hub if required
if push_to_hub:
logger.info("""Pushing model and image processor to the hub...""" )
model.push_to_hub(
repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=_SCREAMING_SNAKE_CASE , )
image_processor.push_to_hub(
repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=_SCREAMING_SNAKE_CASE , )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path',
default=None,
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.'
)
parser.add_argument(
'--model_name',
default='glpn-kitti',
type=str,
help='Name of the model in case you\'re pushing to the hub.',
)
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 2 |
"""simple docstring"""
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str:
snake_case_ = ascii_letters + digits + punctuation
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(_SCREAMING_SNAKE_CASE )
snake_case_ = i // 3
snake_case_ = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
snake_case_ = (
chars_incl
+ random(_SCREAMING_SNAKE_CASE , quotient + remainder )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
)
snake_case_ = list(_SCREAMING_SNAKE_CASE )
shuffle(_SCREAMING_SNAKE_CASE )
return "".join(_SCREAMING_SNAKE_CASE )
# random is a generalised function for letters, characters and numbers
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool:
if len(_SCREAMING_SNAKE_CASE ) < min_length:
# Your Password must be at least 8 characters long
return False
snake_case_ = any(char in ascii_uppercase for char in password )
snake_case_ = any(char in ascii_lowercase for char in password )
snake_case_ = any(char in digits for char in password )
snake_case_ = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def _a ( ) -> str:
snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() )
snake_case_ = input(
"""Please indicate the characters that must be in your password: """ ).strip()
print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) )
print(
"""Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , )
print("""[If you are thinking of using this passsword, You better save it.]""" )
if __name__ == "__main__":
main()
| 2 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__SCREAMING_SNAKE_CASE : List[Any] = {
'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'],
'tokenization_roberta': ['RobertaTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = ['RobertaTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : List[Any] = [
'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'RobertaForCausalLM',
'RobertaForMaskedLM',
'RobertaForMultipleChoice',
'RobertaForQuestionAnswering',
'RobertaForSequenceClassification',
'RobertaForTokenClassification',
'RobertaModel',
'RobertaPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : List[str] = [
'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRobertaForCausalLM',
'TFRobertaForMaskedLM',
'TFRobertaForMultipleChoice',
'TFRobertaForQuestionAnswering',
'TFRobertaForSequenceClassification',
'TFRobertaForTokenClassification',
'TFRobertaMainLayer',
'TFRobertaModel',
'TFRobertaPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Optional[int] = [
'FlaxRobertaForCausalLM',
'FlaxRobertaForMaskedLM',
'FlaxRobertaForMultipleChoice',
'FlaxRobertaForQuestionAnswering',
'FlaxRobertaForSequenceClassification',
'FlaxRobertaForTokenClassification',
'FlaxRobertaModel',
'FlaxRobertaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_normalize
def lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
snake_case_ = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" )
image_processor_first.to_json_file(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
pass
def _a ( ) -> str:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
snake_case_ = Image.open(dataset[4]["""file"""] )
snake_case_ = Image.open(dataset[5]["""file"""] )
snake_case_ = [imagea, imagea]
return images
@require_vision
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
snake_case_ = prepare_images()
# test non-batched
snake_case_ = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_024) )
snake_case_ = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ )
# test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_024) )
snake_case_ = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
| 2 | 1 |
"""simple docstring"""
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__SCREAMING_SNAKE_CASE : Any = get_tests_dir('fixtures/test_sentencepiece_no_bos.model')
@require_sentencepiece
@require_tokenizers
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[str] = PegasusTokenizer
__lowercase: List[Any] = PegasusTokenizerFast
__lowercase: Optional[Any] = True
__lowercase: Dict = True
def lowerCAmelCase ( self : Optional[int] ) ->int:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
snake_case_ = PegasusTokenizer(UpperCAmelCase_ )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def lowerCAmelCase ( self : int , **UpperCAmelCase_ : List[str] ) ->PegasusTokenizer:
"""simple docstring"""
return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Dict ) ->List[str]:
"""simple docstring"""
return ("This is a test", "This is a test")
def lowerCAmelCase ( self : Optional[Any] ) ->int:
"""simple docstring"""
snake_case_ = """</s>"""
snake_case_ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ )
def lowerCAmelCase ( self : Any ) ->str:
"""simple docstring"""
snake_case_ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(UpperCAmelCase_ ) , 1_103 )
def lowerCAmelCase ( self : int ) ->List[Any]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1_103 )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
snake_case_ = self.tokenizer_class.from_pretrained(self.tmpdirname )
snake_case_ = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
snake_case_ = rust_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ).input_ids[0]
snake_case_ = py_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ).input_ids[0]
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
snake_case_ = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
snake_case_ = [2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1]
snake_case_ = tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ ).input_ids[0]
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
snake_case_ = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96_103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1_024
snake_case_ = """To ensure a smooth flow of bank resolutions."""
snake_case_ = [413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1]
snake_case_ = tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ ).input_ids[0]
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def lowerCAmelCase ( self : Optional[Any] ) ->str:
"""simple docstring"""
snake_case_ = ["""This is going to be way too long.""" * 150, """short example"""]
snake_case_ = ["""not super long but more than 5 tokens""", """tiny"""]
snake_case_ = self._large_tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="""pt""" )
snake_case_ = self._large_tokenizer(
text_target=UpperCAmelCase_ , max_length=5 , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 1_024)
assert batch.attention_mask.shape == (2, 1_024)
assert targets["input_ids"].shape == (2, 5)
assert len(UpperCAmelCase_ ) == 2 # input_ids, attention_mask.
@slow
def lowerCAmelCase ( self : str ) ->str:
"""simple docstring"""
snake_case_ = {"""input_ids""": [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCAmelCase_ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Tuple = PegasusTokenizer
__lowercase: Tuple = PegasusTokenizerFast
__lowercase: str = True
__lowercase: Dict = True
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
snake_case_ = PegasusTokenizer(UpperCAmelCase_ , offset=0 , mask_token_sent=UpperCAmelCase_ , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCAmelCase ( self : str ) ->Dict:
"""simple docstring"""
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def lowerCAmelCase ( self : List[str] , **UpperCAmelCase_ : Any ) ->PegasusTokenizer:
"""simple docstring"""
return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] ) ->str:
"""simple docstring"""
return ("This is a test", "This is a test")
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
snake_case_ = self.tokenizer_class.from_pretrained(self.tmpdirname )
snake_case_ = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
snake_case_ = rust_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ).input_ids[0]
snake_case_ = py_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ).input_ids[0]
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
@require_torch
def lowerCAmelCase ( self : Any ) ->Any:
"""simple docstring"""
snake_case_ = ["""This is going to be way too long.""" * 1_000, """short example"""]
snake_case_ = ["""not super long but more than 5 tokens""", """tiny"""]
snake_case_ = self._large_tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="""pt""" )
snake_case_ = self._large_tokenizer(
text_target=UpperCAmelCase_ , max_length=5 , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 4_096)
assert batch.attention_mask.shape == (2, 4_096)
assert targets["input_ids"].shape == (2, 5)
assert len(UpperCAmelCase_ ) == 2 # input_ids, attention_mask.
def lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
snake_case_ = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
snake_case_ = self._large_tokenizer(UpperCAmelCase_ ).input_ids
self.assertListEqual(
UpperCAmelCase_ , [182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1] , )
| 2 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = scope
snake_case_ = range_bbox
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case_ = bbox[i, j, 3]
snake_case_ = bbox[i, j, 1]
snake_case_ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case_ = bbox[i, j, 2]
snake_case_ = bbox[i, j, 0]
snake_case_ = t
snake_case_ = None
if self.use_input_mask:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str:
"""simple docstring"""
snake_case_ = LiltModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict:
"""simple docstring"""
snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowercase: Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return True
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = LiltModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_torch
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ )
snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ )
snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ )
snake_case_ = torch.Size([1, 2, 768] )
snake_case_ = torch.tensor(
[[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Dict = {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: List[Any] = """realm"""
def __init__( self : Optional[int] , UpperCAmelCase_ : str=30_522 , UpperCAmelCase_ : Any=768 , UpperCAmelCase_ : Optional[Any]=128 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : Union[str, Any]=8 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : str="gelu_new" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : List[Any]=1E-12 , UpperCAmelCase_ : Optional[int]=256 , UpperCAmelCase_ : Optional[Any]=10 , UpperCAmelCase_ : Any=1E-3 , UpperCAmelCase_ : Tuple=5 , UpperCAmelCase_ : Optional[int]=320 , UpperCAmelCase_ : Dict=13_353_718 , UpperCAmelCase_ : List[str]=5_000 , UpperCAmelCase_ : Union[str, Any]=1 , UpperCAmelCase_ : Optional[Any]=0 , UpperCAmelCase_ : Tuple=2 , **UpperCAmelCase_ : List[Any] , ) ->Union[str, Any]:
"""simple docstring"""
super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ )
# Common config
snake_case_ = vocab_size
snake_case_ = max_position_embeddings
snake_case_ = hidden_size
snake_case_ = retriever_proj_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = num_candidates
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = initializer_range
snake_case_ = type_vocab_size
snake_case_ = layer_norm_eps
# Reader config
snake_case_ = span_hidden_size
snake_case_ = max_span_width
snake_case_ = reader_layer_norm_eps
snake_case_ = reader_beam_size
snake_case_ = reader_seq_len
# Retrieval config
snake_case_ = num_block_records
snake_case_ = searcher_beam_size
| 2 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = 0
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
snake_case_ = i + 1
else:
snake_case_ = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
| 2 | 1 |
"""simple docstring"""
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
__SCREAMING_SNAKE_CASE : int = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation='relu'))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation='relu'))
classifier.add(layers.Dense(units=1, activation='sigmoid'))
# Compiling the CNN
classifier.compile(
optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
__SCREAMING_SNAKE_CASE : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
__SCREAMING_SNAKE_CASE : Any = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
__SCREAMING_SNAKE_CASE : Tuple = train_datagen.flow_from_directory(
'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary'
)
__SCREAMING_SNAKE_CASE : Dict = test_datagen.flow_from_directory(
'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary'
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save('cnn.h5')
# Part 3 - Making new predictions
__SCREAMING_SNAKE_CASE : Optional[int] = tf.keras.preprocessing.image.load_img(
'dataset/single_prediction/image.png', target_size=(64, 64)
)
__SCREAMING_SNAKE_CASE : List[str] = tf.keras.preprocessing.image.img_to_array(test_image)
__SCREAMING_SNAKE_CASE : List[str] = np.expand_dims(test_image, axis=0)
__SCREAMING_SNAKE_CASE : Optional[int] = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
__SCREAMING_SNAKE_CASE : Dict = 'Normal'
if result[0][0] == 1:
__SCREAMING_SNAKE_CASE : int = 'Abnormality detected'
| 2 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 1 |
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class __A :
'''simple docstring'''
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ) ->List[Any]:
"""simple docstring"""
return None
class __A :
'''simple docstring'''
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int ) ->Tuple:
"""simple docstring"""
return None
class __A (unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = [
# (model_name, model_kwargs)
("""bert-base-cased""", {}),
("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->str:
"""simple docstring"""
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(UpperCAmelCase_ , """tf""" , 12 , **UpperCAmelCase_ )
@require_torch
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(UpperCAmelCase_ , """pt""" , 12 , **UpperCAmelCase_ )
@require_torch
@slow
def lowerCAmelCase ( self : List[Any] ) ->str:
"""simple docstring"""
from transformers import BertModel
snake_case_ = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""]
with NamedTemporaryFile(mode="""w+t""" ) as vocab_file:
vocab_file.write("""\n""".join(UpperCAmelCase_ ) )
vocab_file.flush()
snake_case_ = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
snake_case_ = BertModel(BertConfig(vocab_size=len(UpperCAmelCase_ ) ) )
model.save_pretrained(UpperCAmelCase_ )
self._test_export(UpperCAmelCase_ , """pt""" , 12 , UpperCAmelCase_ )
@require_tf
@slow
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
snake_case_ = self._test_export(UpperCAmelCase_ , """tf""" , 12 , **UpperCAmelCase_ )
snake_case_ = quantize(Path(UpperCAmelCase_ ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(UpperCAmelCase_ ).stat().st_size:
self.fail("""Quantized model is bigger than initial ONNX model""" )
@require_torch
@slow
def lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
snake_case_ = self._test_export(UpperCAmelCase_ , """pt""" , 12 , **UpperCAmelCase_ )
snake_case_ = quantize(UpperCAmelCase_ )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(UpperCAmelCase_ ).stat().st_size:
self.fail("""Quantized model is bigger than initial ONNX model""" )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , **UpperCAmelCase_ : Optional[int] ) ->int:
"""simple docstring"""
try:
# Compute path
with TemporaryDirectory() as tempdir:
snake_case_ = Path(UpperCAmelCase_ ).joinpath("""model.onnx""" )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ )
return path
except Exception as e:
self.fail(UpperCAmelCase_ )
@require_torch
@require_tokenizers
@slow
def lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
from transformers import BertModel
snake_case_ = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) )
snake_case_ = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" )
self._test_infer_dynamic_axis(UpperCAmelCase_ , UpperCAmelCase_ , """pt""" )
@require_tf
@require_tokenizers
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
from transformers import TFBertModel
snake_case_ = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) )
snake_case_ = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" )
self._test_infer_dynamic_axis(UpperCAmelCase_ , UpperCAmelCase_ , """tf""" )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = FeatureExtractionPipeline(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""]
snake_case_ , snake_case_ , snake_case_ , snake_case_ = infer_shapes(UpperCAmelCase_ , UpperCAmelCase_ )
# Assert all variables are present
self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , UpperCAmelCase_ )
self.assertSequenceEqual(variable_names[3:] , UpperCAmelCase_ )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: """batch""", 1: """sequence"""} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes["""output_0"""] , {0: """batch""", 1: """sequence"""} )
self.assertDictEqual(shapes["""output_1"""] , {0: """batch"""} )
def lowerCAmelCase ( self : List[str] ) ->Tuple:
"""simple docstring"""
snake_case_ = ["""input_ids""", """attention_mask""", """token_type_ids"""]
snake_case_ = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]}
snake_case_ , snake_case_ = ensure_valid_input(FuncContiguousArgs() , UpperCAmelCase_ , UpperCAmelCase_ )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(UpperCAmelCase_ ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(UpperCAmelCase_ ) , set(UpperCAmelCase_ ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(UpperCAmelCase_ , (tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
snake_case_ , snake_case_ = ensure_valid_input(FuncNonContiguousArgs() , UpperCAmelCase_ , UpperCAmelCase_ )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(UpperCAmelCase_ ) , 1 )
self.assertEqual(len(UpperCAmelCase_ ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens["""input_ids"""] )
self.assertEqual(ordered_input_names[0] , """input_ids""" )
def lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) , """-test""" )
self.assertEqual("""/home/something/my_fake_model-test.onnx""" , generated.as_posix() )
| 2 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter'
__SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE'
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}"""
raise TypeError(_SCREAMING_SNAKE_CASE )
snake_case_ = spanish_id.replace("""-""" , """""" ).upper()
if len(_SCREAMING_SNAKE_CASE ) != 9:
raise ValueError(_SCREAMING_SNAKE_CASE )
try:
snake_case_ = int(spanish_id_clean[0:8] )
snake_case_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_SCREAMING_SNAKE_CASE ) from ex
if letter.isdigit():
raise ValueError(_SCREAMING_SNAKE_CASE )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
from __future__ import annotations
from functools import lru_cache
from math import ceil
__SCREAMING_SNAKE_CASE : List[Any] = 100
__SCREAMING_SNAKE_CASE : Any = set(range(3, NUM_PRIMES, 2))
primes.add(2)
__SCREAMING_SNAKE_CASE : int
for prime in range(3, ceil(NUM_PRIMES**0.5), 2):
if prime not in primes:
continue
primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime)))
@lru_cache(maxsize=100 )
def _a ( _SCREAMING_SNAKE_CASE ) -> set[int]:
if number_to_partition < 0:
return set()
elif number_to_partition == 0:
return {1}
snake_case_ = set()
snake_case_ = 42
snake_case_ = 42
for prime in primes:
if prime > number_to_partition:
continue
for sub in partition(number_to_partition - prime ):
ret.add(sub * prime )
return ret
def _a ( _SCREAMING_SNAKE_CASE = 5_000 ) -> int | None:
for number_to_partition in range(1 , _SCREAMING_SNAKE_CASE ):
if len(partition(_SCREAMING_SNAKE_CASE ) ) > number_unique_partitions:
return number_to_partition
return None
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'}
__SCREAMING_SNAKE_CASE : List[str] = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
}
}
__SCREAMING_SNAKE_CASE : List[str] = {
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
__SCREAMING_SNAKE_CASE : int = '▁'
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = VOCAB_FILES_NAMES
__lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None:
"""simple docstring"""
snake_case_ = (
AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
else mask_token
)
snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
snake_case_ = do_lower_case
snake_case_ = remove_space
snake_case_ = keep_accents
snake_case_ = vocab_file
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
return len(self.sp_model )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) ->List[str]:
"""simple docstring"""
snake_case_ = self.__dict__.copy()
snake_case_ = None
return state
def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
snake_case_ = {}
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str:
"""simple docstring"""
if self.remove_space:
snake_case_ = """ """.join(inputs.strip().split() )
else:
snake_case_ = inputs
snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ )
snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] )
if self.do_lower_case:
snake_case_ = outputs.lower()
return outputs
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
snake_case_ = self.preprocess_text(UpperCAmelCase_ )
snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
snake_case_ = []
for piece in pieces:
if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
snake_case_ = cur_pieces[1:]
else:
snake_case_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCAmelCase_ )
else:
new_pieces.append(UpperCAmelCase_ )
return new_pieces
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict:
"""simple docstring"""
return self.sp_model.PieceToId(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return self.sp_model.IdToPiece(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any:
"""simple docstring"""
snake_case_ = []
snake_case_ = """"""
snake_case_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase_ ) + token
snake_case_ = True
snake_case_ = []
else:
current_sub_tokens.append(UpperCAmelCase_ )
snake_case_ = False
out_string += self.sp_model.decode(UpperCAmelCase_ )
return out_string.strip()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , """wb""" ) as fi:
snake_case_ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
return (out_vocab_file,)
| 2 | 1 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
if any(not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or x < 0 for x in sequence ):
raise TypeError("""Sequence must be list of non-negative integers""" )
for _ in range(len(_SCREAMING_SNAKE_CASE ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(_SCREAMING_SNAKE_CASE , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 2 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("""The given input must be positive""" )
# get the generated string sequence
snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = int(sequence[i] , 2 )
return sequence
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
snake_case_ = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
snake_case_ = gray_code_sequence_string(bit_count - 1 )
snake_case_ = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
snake_case_ = """0""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
snake_case_ = """1""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__)
def _a ( _SCREAMING_SNAKE_CASE ) -> YolosConfig:
snake_case_ = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
snake_case_ = 192
snake_case_ = 768
snake_case_ = 12
snake_case_ = 3
snake_case_ = [800, 1_333]
snake_case_ = False
elif yolos_name == "yolos_s_dWr":
snake_case_ = 330
snake_case_ = 14
snake_case_ = 6
snake_case_ = 1_320
elif "yolos_s" in yolos_name:
snake_case_ = 384
snake_case_ = 1_536
snake_case_ = 12
snake_case_ = 6
elif "yolos_b" in yolos_name:
snake_case_ = [800, 1_344]
snake_case_ = 91
snake_case_ = """huggingface/label-files"""
snake_case_ = """coco-detection-id2label.json"""
snake_case_ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) )
snake_case_ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
snake_case_ = idalabel
snake_case_ = {v: k for k, v in idalabel.items()}
return config
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) -> Union[str, Any]:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
snake_case_ = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" )
snake_case_ = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
snake_case_ = in_proj_weight[: config.hidden_size, :]
snake_case_ = in_proj_bias[: config.hidden_size]
snake_case_ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
snake_case_ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
snake_case_ = in_proj_weight[-config.hidden_size :, :]
snake_case_ = in_proj_bias[-config.hidden_size :]
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
if "backbone" in name:
snake_case_ = name.replace("""backbone""" , """vit""" )
if "cls_token" in name:
snake_case_ = name.replace("""cls_token""" , """embeddings.cls_token""" )
if "det_token" in name:
snake_case_ = name.replace("""det_token""" , """embeddings.detection_tokens""" )
if "mid_pos_embed" in name:
snake_case_ = name.replace("""mid_pos_embed""" , """encoder.mid_position_embeddings""" )
if "pos_embed" in name:
snake_case_ = name.replace("""pos_embed""" , """embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
snake_case_ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "blocks" in name:
snake_case_ = name.replace("""blocks""" , """encoder.layer""" )
if "attn.proj" in name:
snake_case_ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
snake_case_ = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
snake_case_ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
snake_case_ = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
snake_case_ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
snake_case_ = name.replace("""mlp.fc2""" , """output.dense""" )
if "class_embed" in name:
snake_case_ = name.replace("""class_embed""" , """class_labels_classifier""" )
if "bbox_embed" in name:
snake_case_ = name.replace("""bbox_embed""" , """bbox_predictor""" )
if "vit.norm" in name:
snake_case_ = name.replace("""vit.norm""" , """vit.layernorm""" )
return name
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> dict:
for key in orig_state_dict.copy().keys():
snake_case_ = orig_state_dict.pop(_SCREAMING_SNAKE_CASE )
if "qkv" in key:
snake_case_ = key.split(""".""" )
snake_case_ = int(key_split[2] )
snake_case_ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
snake_case_ = val[:dim, :]
snake_case_ = val[
dim : dim * 2, :
]
snake_case_ = val[-dim:, :]
else:
snake_case_ = val[:dim]
snake_case_ = val[dim : dim * 2]
snake_case_ = val[-dim:]
else:
snake_case_ = val
return orig_state_dict
def _a ( ) -> torch.Tensor:
snake_case_ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
snake_case_ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) -> Any:
snake_case_ = get_yolos_config(_SCREAMING_SNAKE_CASE )
# load original state_dict
snake_case_ = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )["""model"""]
# load 🤗 model
snake_case_ = YolosForObjectDetection(_SCREAMING_SNAKE_CASE )
model.eval()
snake_case_ = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
model.load_state_dict(_SCREAMING_SNAKE_CASE )
# Check outputs on an image, prepared by YolosImageProcessor
snake_case_ = 800 if yolos_name != """yolos_ti""" else 512
snake_case_ = YolosImageProcessor(format="""coco_detection""" , size=_SCREAMING_SNAKE_CASE )
snake_case_ = image_processor(images=prepare_img() , return_tensors="""pt""" )
snake_case_ = model(**_SCREAMING_SNAKE_CASE )
snake_case_ , snake_case_ = outputs.logits, outputs.pred_boxes
snake_case_ , snake_case_ = None, None
if yolos_name == "yolos_ti":
snake_case_ = torch.tensor(
[[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] )
snake_case_ = torch.tensor(
[[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] )
elif yolos_name == "yolos_s_200_pre":
snake_case_ = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] )
snake_case_ = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] )
elif yolos_name == "yolos_s_300_pre":
snake_case_ = torch.tensor(
[[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] )
snake_case_ = torch.tensor(
[[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] )
elif yolos_name == "yolos_s_dWr":
snake_case_ = torch.tensor(
[[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] )
snake_case_ = torch.tensor(
[[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] )
elif yolos_name == "yolos_base":
snake_case_ = torch.tensor(
[[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] )
snake_case_ = torch.tensor(
[[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] )
else:
raise ValueError(f"""Unknown yolos_name: {yolos_name}""" )
assert torch.allclose(logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
print(f"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if push_to_hub:
snake_case_ = {
"""yolos_ti""": """yolos-tiny""",
"""yolos_s_200_pre""": """yolos-small""",
"""yolos_s_300_pre""": """yolos-small-300""",
"""yolos_s_dWr""": """yolos-small-dwr""",
"""yolos_base""": """yolos-base""",
}
print("""Pushing to the hub...""" )
snake_case_ = model_mapping[yolos_name]
image_processor.push_to_hub(_SCREAMING_SNAKE_CASE , organization="""hustvl""" )
model.push_to_hub(_SCREAMING_SNAKE_CASE , organization="""hustvl""" )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--yolos_name',
default='yolos_s_200_pre',
type=str,
help=(
'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\','
' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.'
),
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
__SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 2 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 1 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = num_channels
snake_case_ = num_stages
snake_case_ = hidden_sizes
snake_case_ = depths
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = num_labels
snake_case_ = initializer_range
snake_case_ = out_features
snake_case_ = out_indices
snake_case_ = scope
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case_ = None
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[Any] = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
__lowercase: Union[str, Any] = (
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Optional[Any] = False
__lowercase: Any = False
__lowercase: Union[str, Any] = False
__lowercase: Dict = False
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = True
if model_class.__name__ in [
*get_values(UpperCAmelCase_ ),
*get_values(UpperCAmelCase_ ),
]:
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = False
snake_case_ = True
if (
model_class.__name__
in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )]
or not model_class.supports_gradient_checkpointing
):
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.gradient_checkpointing_enable()
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ):
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case_ = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _a ( ) -> str:
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ )
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
# verify the logits
snake_case_ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
| 2 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/'
__SCREAMING_SNAKE_CASE : List[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
snake_case_ = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
snake_case_ = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = {}
import re
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# keep original key
else:
snake_case_ = original_key
snake_case_ = replace_key(_SCREAMING_SNAKE_CASE )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
snake_case_ = original_key
snake_case_ = original_key
snake_case_ = value
return new_dict
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ):
snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE )
open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content )
snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]]
snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE )
snake_case_ = []
snake_case_ = {}
for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""]
snake_case_ = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
snake_case_ = old_dic[k]
elif k.endswith(""".w""" ):
snake_case_ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
snake_case_ = old_dic[k]
else:
snake_case_ = old_dic[k]
snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}"""
snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
weight_dict.append(_SCREAMING_SNAKE_CASE )
snake_case_ = weight_dict.pop(0 )
model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
return weight_dict
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 2 | 1 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
__SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__)
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Tuple ) ->None:
"""simple docstring"""
warnings.warn(
"""The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use VideoMAEImageProcessor instead.""" , UpperCAmelCase_ , )
super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
| 2 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__SCREAMING_SNAKE_CASE : Dict = 'zero2'
__SCREAMING_SNAKE_CASE : List[Any] = 'zero3'
__SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __A (snake_case__):
'''simple docstring'''
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = models[model]
snake_case_ = self.run_trainer(
stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
self.do_checks(UpperCAmelCase_ )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ )
snake_case_ = F"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(UpperCAmelCase_ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
snake_case_ = self.get_launcher(UpperCAmelCase_ )
snake_case_ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple:
"""simple docstring"""
snake_case_ = min(2 , get_gpu_count() ) if distributed else 1
return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 2 | 1 |
"""simple docstring"""
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __A (snake_case__):
'''simple docstring'''
__lowercase: List[str] = ["""image_processor""", """tokenizer"""]
__lowercase: List[Any] = """BlipImageProcessor"""
__lowercase: Union[str, Any] = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = False
super().__init__(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = self.image_processor
def __call__( self : str , UpperCAmelCase_ : ImageInput = None , UpperCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : Tuple , ) ->BatchEncoding:
"""simple docstring"""
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
snake_case_ = self.tokenizer
snake_case_ = self.tokenizer(
text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , )
return text_encoding
# add pixel_values
snake_case_ = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ )
if text is not None:
snake_case_ = self.tokenizer(
text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , )
else:
snake_case_ = None
if text_encoding is not None:
encoding_image_processor.update(UpperCAmelCase_ )
return encoding_image_processor
def lowerCAmelCase ( self : str , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : int , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str ) ->List[Any]:
"""simple docstring"""
return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[Any] ) ->int:
"""simple docstring"""
snake_case_ = self.tokenizer.model_input_names
snake_case_ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 2 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True})
__lowercase: ClassVar[Features] = Features({"""audio""": Audio()})
__lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")})
__lowercase: str = "audio"
__lowercase: str = "transcription"
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int:
"""simple docstring"""
if self.audio_column not in features:
raise ValueError(F"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , UpperCAmelCase_ ):
raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" )
snake_case_ = copy.deepcopy(self )
snake_case_ = self.input_schema.copy()
snake_case_ = features[self.audio_column]
snake_case_ = input_schema
return task_template
@property
def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]:
"""simple docstring"""
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 2 | 1 |
"""simple docstring"""
from heapq import heappop, heappush
import numpy as np
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> tuple[float | int, list[tuple[int, int]]]:
snake_case_ , snake_case_ = grid.shape
snake_case_ = [-1, 1, 0, 0]
snake_case_ = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
snake_case_ , snake_case_ = [(0, source)], set()
snake_case_ = np.full((rows, cols) , np.inf )
snake_case_ = 0
snake_case_ = np.empty((rows, cols) , dtype=_SCREAMING_SNAKE_CASE )
snake_case_ = None
while queue:
((snake_case_) , (snake_case_)) = heappop(_SCREAMING_SNAKE_CASE )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
snake_case_ = []
while (x, y) != source:
path.append((x, y) )
snake_case_ , snake_case_ = predecessors[x, y]
path.append(_SCREAMING_SNAKE_CASE ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ , snake_case_ = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
snake_case_ = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(_SCREAMING_SNAKE_CASE , (dist + 1, (nx, ny)) )
snake_case_ = dist + 1
snake_case_ = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 |
"""simple docstring"""
from functools import reduce
__SCREAMING_SNAKE_CASE : Tuple = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def _a ( _SCREAMING_SNAKE_CASE = N ) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) )
for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 | 1 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = 0
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
snake_case_ = i + 1
else:
snake_case_ = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
| 2 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : str = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Any = """mctct"""
def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = intermediate_size
snake_case_ = num_attention_heads
snake_case_ = attention_head_dim
snake_case_ = max_position_embeddings
snake_case_ = layer_norm_eps
snake_case_ = layerdrop
snake_case_ = hidden_act
snake_case_ = initializer_range
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = pad_token_id
snake_case_ = bos_token_id
snake_case_ = eos_token_id
snake_case_ = conv_glu_dim
snake_case_ = conv_dropout
snake_case_ = num_conv_layers
snake_case_ = input_feat_per_channel
snake_case_ = input_channels
snake_case_ = conv_channels
snake_case_ = ctc_loss_reduction
snake_case_ = ctc_zero_infinity
# prevents config testing fail with exporting to json
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """
F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """
F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
| 2 | 1 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
return "".join([hex(_SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(_SCREAMING_SNAKE_CASE )] )
def _a ( _SCREAMING_SNAKE_CASE ) -> bytes:
# Check data validity, following RFC3548
# https://www.ietf.org/rfc/rfc3548.txt
if (len(_SCREAMING_SNAKE_CASE ) % 2) != 0:
raise ValueError(
"""Base16 encoded data is invalid:
Data does not have an even number of hex digits.""" )
# Check the character set - the standard base16 alphabet
# is uppercase according to RFC3548 section 6
if not set(_SCREAMING_SNAKE_CASE ) <= set("""0123456789ABCDEF""" ):
raise ValueError(
"""Base16 encoded data is invalid:
Data is not uppercase hex or it contains invalid characters.""" )
# For every two hexadecimal digits (= a byte), turn it into an integer.
# Then, string the result together into bytes, and return it.
return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , 2 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int:
return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 2 | 1 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = 256
# Modulus to hash a string
__SCREAMING_SNAKE_CASE : int = 1_000_003
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool:
snake_case_ = len(_SCREAMING_SNAKE_CASE )
snake_case_ = len(_SCREAMING_SNAKE_CASE )
if p_len > t_len:
return False
snake_case_ = 0
snake_case_ = 0
snake_case_ = 1
# Calculating the hash of pattern and substring of text
for i in range(_SCREAMING_SNAKE_CASE ):
snake_case_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
snake_case_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
snake_case_ = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
snake_case_ = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def _a ( ) -> None:
snake_case_ = """abc1abc12"""
snake_case_ = """alskfjaldsabc1abc1abc12k23adsfabcabc"""
snake_case_ = """alskfjaldsk23adsfabcabc"""
assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Test 2)
snake_case_ = """ABABX"""
snake_case_ = """ABABZABABYABABX"""
assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Test 3)
snake_case_ = """AAAB"""
snake_case_ = """ABAAAAAB"""
assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Test 4)
snake_case_ = """abcdabcy"""
snake_case_ = """abcxabcdabxabcdabcdabcy"""
assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Test 5)
snake_case_ = """Lü"""
snake_case_ = """Lüsai"""
assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = """Lue"""
assert not rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print("""Success.""" )
if __name__ == "__main__":
test_rabin_karp()
| 2 |
"""simple docstring"""
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: str = VQModel
__lowercase: Union[str, Any] = """sample"""
@property
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple:
"""simple docstring"""
snake_case_ = 4
snake_case_ = 3
snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ )
return {"sample": image}
@property
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
return (3, 32, 32)
@property
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
return (3, 32, 32)
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 3,
}
snake_case_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(UpperCAmelCase_ )
snake_case_ = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" )
model.to(UpperCAmelCase_ ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
snake_case_ = image.to(UpperCAmelCase_ )
with torch.no_grad():
snake_case_ = model(UpperCAmelCase_ ).sample
snake_case_ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] )
# fmt: on
self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 1 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(snake_case__) , """Tatoeba directory does not exist.""")
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Tuple ) ->Optional[int]:
"""simple docstring"""
snake_case_ = tempfile.mkdtemp()
return TatoebaConverter(save_dir=UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
self.resolver.convert_models(["""heb-eng"""] )
@slow
def lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
snake_case_ , snake_case_ = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=UpperCAmelCase_ )
assert mmeta["long_pair"] == "heb-eng"
| 2 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = KandinskyVaaControlnetPipeline
__lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: Union[str, Any] = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
__lowercase: Tuple = False
@property
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return 100
@property
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
snake_case_ = self.dummy_unet
snake_case_ = self.dummy_movq
snake_case_ = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , )
snake_case_ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]:
"""simple docstring"""
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase_ )
# create hint
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
if str(UpperCAmelCase_ ).startswith("""mps""" ):
snake_case_ = torch.manual_seed(UpperCAmelCase_ )
else:
snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = """cpu"""
snake_case_ = self.get_dummy_components()
snake_case_ = self.pipeline_class(**UpperCAmelCase_ )
snake_case_ = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
snake_case_ = output.images
snake_case_ = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ = np.array(
[0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0
snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case_ = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case_ = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = """A robot, 4k photo"""
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ , snake_case_ = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ = pipeline(
image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 2 | 1 |
"""simple docstring"""
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __A :
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Tuple=99 , UpperCAmelCase_ : Optional[int]=36 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Dict=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : Optional[int]=16 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Tuple=6 , UpperCAmelCase_ : Tuple=6 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[Any]=1_000 , ) ->Dict:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = patch_size
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = coordinate_size
snake_case_ = shape_size
snake_case_ = num_labels
snake_case_ = num_choices
snake_case_ = scope
snake_case_ = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
snake_case_ = text_seq_length
snake_case_ = (image_size // patch_size) ** 2 + 1
snake_case_ = self.text_seq_length + self.image_seq_length
def lowerCAmelCase ( self : str ) ->List[str]:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
snake_case_ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
snake_case_ = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case_ = bbox[i, j, 3]
snake_case_ = bbox[i, j, 1]
snake_case_ = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case_ = bbox[i, j, 2]
snake_case_ = bbox[i, j, 0]
snake_case_ = tmp_coordinate
snake_case_ = tf.constant(UpperCAmelCase_ )
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_input_mask:
snake_case_ = random_attention_mask([self.batch_size, self.text_seq_length] )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
snake_case_ = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = TFLayoutLMvaModel(config=UpperCAmelCase_ )
# text + image
snake_case_ = model(UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , training=UpperCAmelCase_ )
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , training=UpperCAmelCase_ , )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , training=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
snake_case_ = model(UpperCAmelCase_ , training=UpperCAmelCase_ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
snake_case_ = model({"""pixel_values""": pixel_values} , training=UpperCAmelCase_ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase_ )
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , training=UpperCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict ) ->int:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase_ )
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , training=UpperCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = 2
snake_case_ = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase_ )
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , training=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : Union[str, Any] ) ->str:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
((snake_case_) , (snake_case_) , (snake_case_) , (snake_case_) , (snake_case_) , (snake_case_) , (snake_case_) , (snake_case_)) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_tf
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
__lowercase: Optional[int] = (
{"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel}
if is_tf_available()
else {}
)
__lowercase: Any = False
__lowercase: List[str] = False
__lowercase: Optional[int] = False
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ) ->Optional[int]:
"""simple docstring"""
return True
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str]=False ) ->dict:
"""simple docstring"""
snake_case_ = copy.deepcopy(UpperCAmelCase_ )
if model_class in get_values(UpperCAmelCase_ ):
snake_case_ = {
k: tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(UpperCAmelCase_ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(UpperCAmelCase_ ):
snake_case_ = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(UpperCAmelCase_ ):
snake_case_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
snake_case_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(UpperCAmelCase_ ):
snake_case_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(UpperCAmelCase_ ):
snake_case_ = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = TFLayoutLMvaModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Tuple ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
if getattr(UpperCAmelCase_ , """hf_compute_loss""" , UpperCAmelCase_ ):
# The number of elements in the loss should be the same as the number of elements in the label
snake_case_ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase_ )[0]
]
snake_case_ = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
snake_case_ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = prepared_for_class.pop("""input_ids""" )
snake_case_ = model(UpperCAmelCase_ , **UpperCAmelCase_ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
snake_case_ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = prepared_for_class.pop("""input_ids""" )
if "labels" in prepared_for_class:
snake_case_ = prepared_for_class["""labels"""].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
snake_case_ = -100
snake_case_ = tf.convert_to_tensor(UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , **UpperCAmelCase_ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
snake_case_ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
snake_case_ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
# Get keys that were added with the _prepare_for_class function
snake_case_ = prepared_for_class.keys() - inputs_dict.keys()
snake_case_ = inspect.signature(model.call ).parameters
snake_case_ = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
snake_case_ = {0: """input_ids"""}
for label_key in label_keys:
snake_case_ = signature_names.index(UpperCAmelCase_ )
snake_case_ = label_key
snake_case_ = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
snake_case_ = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
snake_case_ = prepared_for_class[value]
snake_case_ = tuple(UpperCAmelCase_ )
# Send to model
snake_case_ = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->int:
"""simple docstring"""
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _a ( ) -> Any:
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase_ ) if is_vision_available() else None
@slow
def lowerCAmelCase ( self : List[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" )
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = image_processor(images=UpperCAmelCase_ , return_tensors="""tf""" ).pixel_values
snake_case_ = tf.constant([[1, 2]] )
snake_case_ = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , training=UpperCAmelCase_ )
# verify the logits
snake_case_ = (1, 199, 768)
self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_ )
snake_case_ = tf.constant(
[[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
| 2 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
class __A :
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = []
self.adlist.append(
{"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} )
for keyword in keywords:
self.add_keyword(UpperCAmelCase_ )
self.set_fail_transitions()
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None:
"""simple docstring"""
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None:
"""simple docstring"""
snake_case_ = 0
for character in keyword:
snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ )
if next_state is None:
self.adlist.append(
{
"""value""": character,
"""next_states""": [],
"""fail_state""": 0,
"""output""": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
snake_case_ = len(self.adlist ) - 1
else:
snake_case_ = next_state
self.adlist[current_state]["output"].append(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->None:
"""simple docstring"""
snake_case_ = deque()
for node in self.adlist[0]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = 0
while q:
snake_case_ = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = self.adlist[r]["""fail_state"""]
while (
self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None
and state != 0
):
snake_case_ = self.adlist[state]["""fail_state"""]
snake_case_ = self.find_next_state(
UpperCAmelCase_ , self.adlist[child]["""value"""] )
if self.adlist[child]["fail_state"] is None:
snake_case_ = 0
snake_case_ = (
self.adlist[child]["""output"""]
+ self.adlist[self.adlist[child]["""fail_state"""]]["""output"""]
)
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]:
"""simple docstring"""
snake_case_ = {} # returns a dict with keywords and list of its occurrences
snake_case_ = 0
for i in range(len(UpperCAmelCase_ ) ):
while (
self.find_next_state(UpperCAmelCase_ , string[i] ) is None
and current_state != 0
):
snake_case_ = self.adlist[current_state]["""fail_state"""]
snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] )
if next_state is None:
snake_case_ = 0
else:
snake_case_ = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
snake_case_ = []
result[key].append(i - len(UpperCAmelCase_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import numpy as np
def _a ( _SCREAMING_SNAKE_CASE ) -> np.array:
return (2 / (1 + np.exp(-2 * vector ))) - 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = num_channels
snake_case_ = num_stages
snake_case_ = hidden_sizes
snake_case_ = depths
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = num_labels
snake_case_ = initializer_range
snake_case_ = out_features
snake_case_ = out_indices
snake_case_ = scope
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case_ = None
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[Any] = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
__lowercase: Union[str, Any] = (
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Optional[Any] = False
__lowercase: Any = False
__lowercase: Union[str, Any] = False
__lowercase: Dict = False
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = True
if model_class.__name__ in [
*get_values(UpperCAmelCase_ ),
*get_values(UpperCAmelCase_ ),
]:
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = False
snake_case_ = True
if (
model_class.__name__
in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )]
or not model_class.supports_gradient_checkpointing
):
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.gradient_checkpointing_enable()
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ):
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case_ = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _a ( ) -> str:
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ )
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
# verify the logits
snake_case_ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
| 2 | 1 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Dict , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any] ) ->None:
"""simple docstring"""
warnings.warn(
"""The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use MobileViTImageProcessor instead.""" , UpperCAmelCase_ , )
super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
| 2 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights']
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
if "emb" in name:
snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
snake_case_ = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
snake_case_ = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
snake_case_ = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
snake_case_ = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
snake_case_ = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]:
snake_case_ = list(state_dict.keys() )
snake_case_ = {}
for key in keys:
snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE )
if "in_proj_weight" in key:
# split fused qkv proj
snake_case_ = val[:hidden_size, :]
snake_case_ = val[hidden_size : 2 * hidden_size, :]
snake_case_ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
snake_case_ = val
else:
snake_case_ = val
return state_dict, enc_dec_proj_state_dict
def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
snake_case_ = 1_024
snake_case_ = 24
snake_case_ = 16
elif checkpoint == "medium":
snake_case_ = 1_536
snake_case_ = 48
snake_case_ = 24
elif checkpoint == "large":
snake_case_ = 2_048
snake_case_ = 48
snake_case_ = 32
else:
raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
snake_case_ = MusicgenDecoderConfig(
hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , )
return config
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple:
snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE )
snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE )
snake_case_ = fairseq_model.lm.state_dict()
snake_case_ , snake_case_ = rename_state_dict(
_SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size )
snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" )
snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE )
# check we can do a forward pass
snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
snake_case_ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" )
snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
# set the appropriate bos/pad token ids
snake_case_ = 2_048
snake_case_ = 2_048
# set other default generation config params
snake_case_ = int(30 * audio_encoder.config.frame_rate )
snake_case_ = True
snake_case_ = 3.0
if pytorch_dump_folder is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if repo_id:
logger.info(f"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
processor.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint',
default='small',
type=str,
help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.',
)
parser.add_argument(
'--pytorch_dump_folder',
required=True,
default=None,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
parser.add_argument(
'--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.'
)
__SCREAMING_SNAKE_CASE : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 2 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[int] = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : int = [
'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'WavLMForAudioFrameClassification',
'WavLMForCTC',
'WavLMForSequenceClassification',
'WavLMForXVector',
'WavLMModel',
'WavLMPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavlm import (
WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST,
WavLMForAudioFrameClassification,
WavLMForCTC,
WavLMForSequenceClassification,
WavLMForXVector,
WavLMModel,
WavLMPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
if index == number_of_items:
return 0
snake_case_ = 0
snake_case_ = 0
snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 )
if weights[index] <= max_weight:
snake_case_ = values[index] + knapsack(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 )
return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
__SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Tuple = {'vocab_file': 'vocab.txt'}
__SCREAMING_SNAKE_CASE : Any = {
'vocab_file': {
'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt',
'YituTech/conv-bert-medium-small': (
'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'
),
'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt',
}
}
__SCREAMING_SNAKE_CASE : int = {
'YituTech/conv-bert-base': 512,
'YituTech/conv-bert-medium-small': 512,
'YituTech/conv-bert-small': 512,
}
__SCREAMING_SNAKE_CASE : int = {
'YituTech/conv-bert-base': {'do_lower_case': True},
'YituTech/conv-bert-medium-small': {'do_lower_case': True},
'YituTech/conv-bert-small': {'do_lower_case': True},
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Tuple = VOCAB_FILES_NAMES
__lowercase: int = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Dict = PRETRAINED_INIT_CONFIGURATION
__lowercase: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase: Dict = ConvBertTokenizer
def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict="[UNK]" , UpperCAmelCase_ : Dict="[SEP]" , UpperCAmelCase_ : Tuple="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Any="[MASK]" , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : Dict , ) ->Tuple:
"""simple docstring"""
super().__init__(
UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , )
snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , UpperCAmelCase_ ) != do_lower_case
or normalizer_state.get("""strip_accents""" , UpperCAmelCase_ ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase_ ) != tokenize_chinese_chars
):
snake_case_ = getattr(UpperCAmelCase_ , normalizer_state.pop("""type""" ) )
snake_case_ = do_lower_case
snake_case_ = strip_accents
snake_case_ = tokenize_chinese_chars
snake_case_ = normalizer_class(**UpperCAmelCase_ )
snake_case_ = do_lower_case
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int=None ) ->List[Any]:
"""simple docstring"""
snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
snake_case_ = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ )
return tuple(UpperCAmelCase_ )
| 2 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int:
snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
snake_case_ = n // 2
return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
__SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 2 | 1 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'microsoft/unispeech-sat-base-100h-libri-ft': (
'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: int = """unispeech-sat"""
def __init__( self : int , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : Optional[Any]=768 , UpperCAmelCase_ : Dict=12 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : Optional[int]=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : Any="group" , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : List[str]=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Dict=128 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : List[Any]=10 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : List[Any]=10 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : str=320 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : List[str]=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Any="mean" , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[Any]=256 , UpperCAmelCase_ : Optional[Any]=(512, 512, 512, 512, 1_500) , UpperCAmelCase_ : Optional[Any]=(5, 3, 3, 1, 1) , UpperCAmelCase_ : Dict=(1, 2, 3, 1, 1) , UpperCAmelCase_ : str=512 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Tuple=504 , **UpperCAmelCase_ : str , ) ->Any:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
snake_case_ = hidden_size
snake_case_ = feat_extract_norm
snake_case_ = feat_extract_activation
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = conv_bias
snake_case_ = num_conv_pos_embeddings
snake_case_ = num_conv_pos_embedding_groups
snake_case_ = len(self.conv_dim )
snake_case_ = num_hidden_layers
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = num_attention_heads
snake_case_ = hidden_dropout
snake_case_ = attention_dropout
snake_case_ = activation_dropout
snake_case_ = feat_proj_dropout
snake_case_ = final_dropout
snake_case_ = layerdrop
snake_case_ = layer_norm_eps
snake_case_ = initializer_range
snake_case_ = vocab_size
snake_case_ = num_clusters
snake_case_ = do_stable_layer_norm
snake_case_ = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
snake_case_ = apply_spec_augment
snake_case_ = mask_time_prob
snake_case_ = mask_time_length
snake_case_ = mask_time_min_masks
snake_case_ = mask_feature_prob
snake_case_ = mask_feature_length
snake_case_ = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
snake_case_ = num_codevectors_per_group
snake_case_ = num_codevector_groups
snake_case_ = contrastive_logits_temperature
snake_case_ = feat_quantizer_dropout
snake_case_ = num_negatives
snake_case_ = codevector_dim
snake_case_ = proj_codevector_dim
snake_case_ = diversity_loss_weight
# ctc loss
snake_case_ = ctc_loss_reduction
snake_case_ = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
snake_case_ = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = xvector_output_dim
@property
def lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 2 |
"""simple docstring"""
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str:
snake_case_ = ascii_letters + digits + punctuation
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(_SCREAMING_SNAKE_CASE )
snake_case_ = i // 3
snake_case_ = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
snake_case_ = (
chars_incl
+ random(_SCREAMING_SNAKE_CASE , quotient + remainder )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
)
snake_case_ = list(_SCREAMING_SNAKE_CASE )
shuffle(_SCREAMING_SNAKE_CASE )
return "".join(_SCREAMING_SNAKE_CASE )
# random is a generalised function for letters, characters and numbers
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool:
if len(_SCREAMING_SNAKE_CASE ) < min_length:
# Your Password must be at least 8 characters long
return False
snake_case_ = any(char in ascii_uppercase for char in password )
snake_case_ = any(char in ascii_lowercase for char in password )
snake_case_ = any(char in digits for char in password )
snake_case_ = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def _a ( ) -> str:
snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() )
snake_case_ = input(
"""Please indicate the characters that must be in your password: """ ).strip()
print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) )
print(
"""Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , )
print("""[If you are thinking of using this passsword, You better save it.]""" )
if __name__ == "__main__":
main()
| 2 | 1 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool:
if len(_SCREAMING_SNAKE_CASE ) == 0:
return False
snake_case_ = len(_SCREAMING_SNAKE_CASE ) // 2
if a_list[midpoint] == item:
return True
if item < a_list[midpoint]:
return binary_search(a_list[:midpoint] , _SCREAMING_SNAKE_CASE )
else:
return binary_search(a_list[midpoint + 1 :] , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : List[str] = input('Enter numbers separated by comma:\n').strip()
__SCREAMING_SNAKE_CASE : Tuple = [int(item.strip()) for item in user_input.split(',')]
__SCREAMING_SNAKE_CASE : Union[str, Any] = int(input('Enter the number to be found in the list:\n').strip())
__SCREAMING_SNAKE_CASE : int = '' if binary_search(sequence, target) else 'not '
print(f"""{target} was {not_str}found in {sequence}""")
| 2 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_normalize
def lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
snake_case_ = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" )
image_processor_first.to_json_file(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
pass
def _a ( ) -> str:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
snake_case_ = Image.open(dataset[4]["""file"""] )
snake_case_ = Image.open(dataset[5]["""file"""] )
snake_case_ = [imagea, imagea]
return images
@require_vision
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
snake_case_ = prepare_images()
# test non-batched
snake_case_ = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_024) )
snake_case_ = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ )
# test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_024) )
snake_case_ = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
| 2 | 1 |
"""simple docstring"""
from urllib.parse import quote
import pytest
from datasets.utils.hub import hf_hub_url
@pytest.mark.parametrize("""repo_id""" , ["""canonical_dataset_name""", """org-name/dataset-name"""] )
@pytest.mark.parametrize("""path""" , ["""filename.csv""", """filename with blanks.csv"""] )
@pytest.mark.parametrize("""revision""" , [None, """v2"""] )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
snake_case_ = hf_hub_url(repo_id=_SCREAMING_SNAKE_CASE , path=_SCREAMING_SNAKE_CASE , revision=_SCREAMING_SNAKE_CASE )
assert url == f"""https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(_SCREAMING_SNAKE_CASE )}"""
| 2 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = scope
snake_case_ = range_bbox
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case_ = bbox[i, j, 3]
snake_case_ = bbox[i, j, 1]
snake_case_ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case_ = bbox[i, j, 2]
snake_case_ = bbox[i, j, 0]
snake_case_ = t
snake_case_ = None
if self.use_input_mask:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str:
"""simple docstring"""
snake_case_ = LiltModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict:
"""simple docstring"""
snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowercase: Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return True
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = LiltModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_torch
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ )
snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ )
snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ )
snake_case_ = torch.Size([1, 2, 768] )
snake_case_ = torch.tensor(
[[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 1 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE = 4 ) -> list[list[int]]:
snake_case_ = abs(_SCREAMING_SNAKE_CASE ) or 4
return [[1 + x + y * row_size for x in range(_SCREAMING_SNAKE_CASE )] for y in range(_SCREAMING_SNAKE_CASE )]
def _a ( _SCREAMING_SNAKE_CASE ) -> list[list[int]]:
return reverse_row(transpose(_SCREAMING_SNAKE_CASE ) )
# OR.. transpose(reverse_column(matrix))
def _a ( _SCREAMING_SNAKE_CASE ) -> list[list[int]]:
return reverse_row(reverse_column(_SCREAMING_SNAKE_CASE ) )
# OR.. reverse_column(reverse_row(matrix))
def _a ( _SCREAMING_SNAKE_CASE ) -> list[list[int]]:
return reverse_column(transpose(_SCREAMING_SNAKE_CASE ) )
# OR.. transpose(reverse_row(matrix))
def _a ( _SCREAMING_SNAKE_CASE ) -> list[list[int]]:
snake_case_ = [list(_SCREAMING_SNAKE_CASE ) for x in zip(*_SCREAMING_SNAKE_CASE )]
return matrix
def _a ( _SCREAMING_SNAKE_CASE ) -> list[list[int]]:
snake_case_ = matrix[::-1]
return matrix
def _a ( _SCREAMING_SNAKE_CASE ) -> list[list[int]]:
snake_case_ = [x[::-1] for x in matrix]
return matrix
def _a ( _SCREAMING_SNAKE_CASE ) -> None:
for i in matrix:
print(*_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : int = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 90 counterclockwise:\n')
print_matrix(rotate_aa(matrix))
__SCREAMING_SNAKE_CASE : Tuple = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 180:\n')
print_matrix(rotate_aaa(matrix))
__SCREAMING_SNAKE_CASE : Optional[int] = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 270 counterclockwise:\n')
print_matrix(rotate_aaa(matrix))
| 2 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = 0
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
snake_case_ = i + 1
else:
snake_case_ = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
| 2 | 1 |
"""simple docstring"""
import logging
import os
from typing import Dict, List, Optional, Union
import torch
import torch.nn as nn
from accelerate.utils.imports import (
is_abit_bnb_available,
is_abit_bnb_available,
is_bnb_available,
)
from ..big_modeling import dispatch_model, init_empty_weights
from .dataclasses import BnbQuantizationConfig
from .modeling import (
find_tied_parameters,
get_balanced_memory,
infer_auto_device_map,
load_checkpoint_in_model,
offload_weight,
set_module_tensor_to_device,
)
if is_bnb_available():
import bitsandbytes as bnb
from copy import deepcopy
__SCREAMING_SNAKE_CASE : int = logging.getLogger(__name__)
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , ) -> Union[str, Any]:
snake_case_ = bnb_quantization_config.load_in_abit
snake_case_ = bnb_quantization_config.load_in_abit
if load_in_abit and not is_abit_bnb_available():
raise ImportError(
"""You have a version of `bitsandbytes` that is not compatible with 8bit quantization,"""
""" make sure you have the latest version of `bitsandbytes` installed.""" )
if load_in_abit and not is_abit_bnb_available():
raise ValueError(
"""You have a version of `bitsandbytes` that is not compatible with 4bit quantization,"""
"""make sure you have the latest version of `bitsandbytes` installed.""" )
snake_case_ = []
# custom device map
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(device_map.keys() ) > 1:
snake_case_ = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]]
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
if bnb_quantization_config.skip_modules is None:
snake_case_ = get_keys_to_not_convert(_SCREAMING_SNAKE_CASE )
# add cpu modules to skip modules only for 4-bit modules
if load_in_abit:
bnb_quantization_config.skip_modules.extend(_SCREAMING_SNAKE_CASE )
snake_case_ = bnb_quantization_config.skip_modules
# We add the modules we want to keep in full precision
if bnb_quantization_config.keep_in_fpaa_modules is None:
snake_case_ = []
snake_case_ = bnb_quantization_config.keep_in_fpaa_modules
modules_to_not_convert.extend(_SCREAMING_SNAKE_CASE )
# compatibility with peft
snake_case_ = load_in_abit
snake_case_ = load_in_abit
snake_case_ = get_parameter_device(_SCREAMING_SNAKE_CASE )
if model_device.type != "meta":
# quantization of an already loaded model
logger.warning(
"""It is not recommended to quantize a loaded model. """
"""The model should be instantiated under the `init_empty_weights` context manager.""" )
snake_case_ = replace_with_bnb_layers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , modules_to_not_convert=_SCREAMING_SNAKE_CASE )
# convert param to the right dtype
snake_case_ = bnb_quantization_config.torch_dtype
for name, param in model.state_dict().items():
if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ):
param.to(torch.floataa )
if param.dtype != torch.floataa:
snake_case_ = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" )
snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if param is not None:
param.to(torch.floataa )
elif torch.is_floating_point(_SCREAMING_SNAKE_CASE ):
param.to(_SCREAMING_SNAKE_CASE )
if model_device.type == "cuda":
# move everything to cpu in the first place because we can't do quantization if the weights are already on cuda
model.cuda(torch.cuda.current_device() )
torch.cuda.empty_cache()
elif torch.cuda.is_available():
model.to(torch.cuda.current_device() )
else:
raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" )
logger.info(
f"""The model device type is {model_device.type}. However, cuda is needed for quantization."""
"""We move the model to cuda.""" )
return model
elif weights_location is None:
raise RuntimeError(
f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ )
else:
with init_empty_weights():
snake_case_ = replace_with_bnb_layers(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , modules_to_not_convert=_SCREAMING_SNAKE_CASE )
snake_case_ = get_quantized_model_device_map(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_memory=_SCREAMING_SNAKE_CASE , no_split_module_classes=_SCREAMING_SNAKE_CASE , )
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
snake_case_ = True
snake_case_ = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] )
load_checkpoint_in_model(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=bnb_quantization_config.torch_dtype , offload_folder=_SCREAMING_SNAKE_CASE , offload_state_dict=_SCREAMING_SNAKE_CASE , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , )
return dispatch_model(_SCREAMING_SNAKE_CASE , device_map=_SCREAMING_SNAKE_CASE , offload_dir=_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> List[Any]:
if device_map is None:
if torch.cuda.is_available():
snake_case_ = {"""""": torch.cuda.current_device()}
else:
raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" )
logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" )
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
raise ValueError(
"""If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """
"""'sequential'.""" )
snake_case_ = {}
special_dtypes.update(
{
name: bnb_quantization_config.torch_dtype
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.skip_modules )
} )
special_dtypes.update(
{
name: torch.floataa
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules )
} )
snake_case_ = {}
snake_case_ = special_dtypes
snake_case_ = no_split_module_classes
snake_case_ = bnb_quantization_config.target_dtype
# get max_memory for each device.
if device_map != "sequential":
snake_case_ = get_balanced_memory(
_SCREAMING_SNAKE_CASE , low_zero=(device_map == """balanced_low_0""") , max_memory=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
snake_case_ = max_memory
snake_case_ = infer_auto_device_map(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
# check if don't have any quantized module on the cpu
snake_case_ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules
snake_case_ = {
key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert
}
for device in ["cpu", "disk"]:
if device in device_map_without_some_modules.values():
if bnb_quantization_config.load_in_abit:
raise ValueError(
"""
Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit
the quantized model. If you want to dispatch the model on the CPU or the disk while keeping
these modules in `torch_dtype`, you need to pass a custom `device_map` to
`load_and_quantize_model`. Check
https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk
for more details.
""" )
else:
logger.info(
"""Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" )
del device_map_without_some_modules
return device_map
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]:
if modules_to_not_convert is None:
snake_case_ = []
snake_case_ , snake_case_ = _replace_with_bnb_layers(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if not has_been_replaced:
logger.warning(
"""You are loading your model in 8bit or 4bit but no linear modules were found in your model."""
""" this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers."""
""" Please double check your model architecture, or submit an issue on github if you think this is"""
""" a bug.""" )
return model
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> List[str]:
snake_case_ = False
for name, module in model.named_children():
if current_key_name is None:
snake_case_ = []
current_key_name.append(_SCREAMING_SNAKE_CASE )
if isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
snake_case_ = """.""".join(_SCREAMING_SNAKE_CASE )
snake_case_ = True
for key in modules_to_not_convert:
if (
(key in current_key_name_str) and (key + "." in current_key_name_str)
) or key == current_key_name_str:
snake_case_ = False
break
if proceed:
# Load bnb module with empty weight and replace ``nn.Linear` module
if bnb_quantization_config.load_in_abit:
snake_case_ = bnb.nn.LinearabitLt(
module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_SCREAMING_SNAKE_CASE , threshold=bnb_quantization_config.llm_inta_threshold , )
elif bnb_quantization_config.load_in_abit:
snake_case_ = bnb.nn.Linearabit(
module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , )
else:
raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" )
snake_case_ = module.weight.data
if module.bias is not None:
snake_case_ = module.bias.data
bnb_module.requires_grad_(_SCREAMING_SNAKE_CASE )
setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = True
if len(list(module.children() ) ) > 0:
snake_case_ , snake_case_ = _replace_with_bnb_layers(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = has_been_replaced | _has_been_replaced
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def _a ( _SCREAMING_SNAKE_CASE ) -> Dict:
# Create a copy of the model
with init_empty_weights():
snake_case_ = deepcopy(_SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
snake_case_ = find_tied_parameters(_SCREAMING_SNAKE_CASE )
# For compatibility with Accelerate < 0.18
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
snake_case_ = sum(_SCREAMING_SNAKE_CASE , [] )
snake_case_ = len(_SCREAMING_SNAKE_CASE ) > 0
# Check if it is a base model
snake_case_ = False
if hasattr(_SCREAMING_SNAKE_CASE , """base_model_prefix""" ):
snake_case_ = not hasattr(_SCREAMING_SNAKE_CASE , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
snake_case_ = list(model.named_children() )
snake_case_ = [list_modules[-1][0]]
# add last module together with tied weights
snake_case_ = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE )
snake_case_ = list(set(_SCREAMING_SNAKE_CASE ) ) + list(_SCREAMING_SNAKE_CASE )
# remove ".weight" from the keys
snake_case_ = [""".weight""", """.bias"""]
snake_case_ = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
snake_case_ = name.replace(_SCREAMING_SNAKE_CASE , """""" )
filtered_module_names.append(_SCREAMING_SNAKE_CASE )
return filtered_module_names
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
for m in model.modules():
if isinstance(_SCREAMING_SNAKE_CASE , bnb.nn.Linearabit ):
return True
return False
def _a ( _SCREAMING_SNAKE_CASE ) -> Tuple:
return next(parameter.parameters() ).device
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
# if it is not quantized, we quantize and offload the quantized weights and the SCB stats
if fpaa_statistics is None:
set_module_tensor_to_device(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0 , dtype=_SCREAMING_SNAKE_CASE , value=_SCREAMING_SNAKE_CASE )
snake_case_ = param_name
snake_case_ = model
if "." in tensor_name:
snake_case_ = tensor_name.split(""".""" )
for split in splits[:-1]:
snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if new_module is None:
raise ValueError(f"""{module} has no attribute {split}.""" )
snake_case_ = new_module
snake_case_ = splits[-1]
# offload weights
snake_case_ = False
offload_weight(module._parameters[tensor_name] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE )
if hasattr(module._parameters[tensor_name] , """SCB""" ):
offload_weight(
module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE , )
else:
offload_weight(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE )
offload_weight(_SCREAMING_SNAKE_CASE , param_name.replace("""weight""" , """SCB""" ) , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE )
set_module_tensor_to_device(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """meta""" , dtype=_SCREAMING_SNAKE_CASE , value=torch.empty(*param.size() ) )
| 2 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 1 |
"""simple docstring"""
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="pt" ) -> str:
snake_case_ = {"""add_prefix_space""": True} if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not line.startswith(""" """ ) else {}
snake_case_ = padding_side
return tokenizer(
[line] , max_length=_SCREAMING_SNAKE_CASE , padding="""max_length""" if pad_to_max_length else None , truncation=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , ) -> Any:
snake_case_ = input_ids.ne(_SCREAMING_SNAKE_CASE ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int="train" , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : str="" , ) ->Tuple:
"""simple docstring"""
super().__init__()
snake_case_ = Path(UpperCAmelCase_ ).joinpath(type_path + """.source""" )
snake_case_ = Path(UpperCAmelCase_ ).joinpath(type_path + """.target""" )
snake_case_ = self.get_char_lens(self.src_file )
snake_case_ = max_source_length
snake_case_ = max_target_length
assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}"""
snake_case_ = tokenizer
snake_case_ = prefix
if n_obs is not None:
snake_case_ = self.src_lens[:n_obs]
snake_case_ = src_lang
snake_case_ = tgt_lang
def __len__( self : Any ) ->List[Any]:
"""simple docstring"""
return len(self.src_lens )
def __getitem__( self : Any , UpperCAmelCase_ : Dict ) ->Dict[str, torch.Tensor]:
"""simple docstring"""
snake_case_ = index + 1 # linecache starts at 1
snake_case_ = self.prefix + linecache.getline(str(self.src_file ) , UpperCAmelCase_ ).rstrip("""\n""" )
snake_case_ = linecache.getline(str(self.tgt_file ) , UpperCAmelCase_ ).rstrip("""\n""" )
assert source_line, F"""empty source line for index {index}"""
assert tgt_line, F"""empty tgt line for index {index}"""
# Need to add eos token manually for T5
if isinstance(self.tokenizer , UpperCAmelCase_ ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
snake_case_ = (
self.tokenizer.question_encoder if isinstance(self.tokenizer , UpperCAmelCase_ ) else self.tokenizer
)
snake_case_ = self.tokenizer.generator if isinstance(self.tokenizer , UpperCAmelCase_ ) else self.tokenizer
snake_case_ = encode_line(UpperCAmelCase_ , UpperCAmelCase_ , self.max_source_length , """right""" )
snake_case_ = encode_line(UpperCAmelCase_ , UpperCAmelCase_ , self.max_target_length , """right""" )
snake_case_ = source_inputs["""input_ids"""].squeeze()
snake_case_ = target_inputs["""input_ids"""].squeeze()
snake_case_ = source_inputs["""attention_mask"""].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def lowerCAmelCase ( UpperCAmelCase_ : Union[str, Any] ) ->List[str]:
"""simple docstring"""
return [len(UpperCAmelCase_ ) for x in Path(UpperCAmelCase_ ).open().readlines()]
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[Any] ) ->Dict[str, torch.Tensor]:
"""simple docstring"""
snake_case_ = torch.stack([x["""input_ids"""] for x in batch] )
snake_case_ = torch.stack([x["""attention_mask"""] for x in batch] )
snake_case_ = torch.stack([x["""decoder_input_ids"""] for x in batch] )
snake_case_ = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer , UpperCAmelCase_ )
else self.tokenizer.pad_token_id
)
snake_case_ = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer , UpperCAmelCase_ )
else self.tokenizer.pad_token_id
)
snake_case_ = trim_batch(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ , snake_case_ = trim_batch(UpperCAmelCase_ , UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )
snake_case_ = {
"""input_ids""": source_ids,
"""attention_mask""": source_mask,
"""decoder_input_ids""": y,
}
return batch
__SCREAMING_SNAKE_CASE : List[Any] = getLogger(__name__)
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
return list(itertools.chain.from_iterable(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE ) -> None:
snake_case_ = get_git_info()
save_json(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , """git_log.json""" ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=4 , **_SCREAMING_SNAKE_CASE ) -> int:
with open(_SCREAMING_SNAKE_CASE , """w""" ) as f:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , indent=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
with open(_SCREAMING_SNAKE_CASE ) as f:
return json.load(_SCREAMING_SNAKE_CASE )
def _a ( ) -> Any:
snake_case_ = git.Repo(search_parent_directories=_SCREAMING_SNAKE_CASE )
snake_case_ = {
"""repo_id""": str(_SCREAMING_SNAKE_CASE ),
"""repo_sha""": str(repo.head.object.hexsha ),
"""repo_branch""": str(repo.active_branch ),
"""hostname""": str(socket.gethostname() ),
}
return repo_infos
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List:
return list(map(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
with open(_SCREAMING_SNAKE_CASE , """wb""" ) as f:
return pickle.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
def remove_articles(_SCREAMING_SNAKE_CASE ):
return re.sub(r"""\b(a|an|the)\b""" , """ """ , _SCREAMING_SNAKE_CASE )
def white_space_fix(_SCREAMING_SNAKE_CASE ):
return " ".join(text.split() )
def remove_punc(_SCREAMING_SNAKE_CASE ):
snake_case_ = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_SCREAMING_SNAKE_CASE ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
snake_case_ = normalize_answer(_SCREAMING_SNAKE_CASE ).split()
snake_case_ = normalize_answer(_SCREAMING_SNAKE_CASE ).split()
snake_case_ = Counter(_SCREAMING_SNAKE_CASE ) & Counter(_SCREAMING_SNAKE_CASE )
snake_case_ = sum(common.values() )
if num_same == 0:
return 0
snake_case_ = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE )
snake_case_ = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE )
snake_case_ = (2 * precision * recall) / (precision + recall)
return fa
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
return normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )
snake_case_ = 0
for hypo, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
em += exact_match_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
em /= len(_SCREAMING_SNAKE_CASE )
return {"em": em}
def _a ( _SCREAMING_SNAKE_CASE ) -> Dict:
return model_prefix.startswith("""rag""" )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
snake_case_ = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
snake_case_ = """dropout_rate"""
for p in extra_params:
if getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if not hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not hasattr(_SCREAMING_SNAKE_CASE , equivalent_param[p] ):
logger.info("""config doesn't have a `{}` attribute""".format(_SCREAMING_SNAKE_CASE ) )
delattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
continue
snake_case_ = p if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else equivalent_param[p]
setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
delattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return hparams, config
| 2 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter'
__SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE'
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}"""
raise TypeError(_SCREAMING_SNAKE_CASE )
snake_case_ = spanish_id.replace("""-""" , """""" ).upper()
if len(_SCREAMING_SNAKE_CASE ) != 9:
raise ValueError(_SCREAMING_SNAKE_CASE )
try:
snake_case_ = int(spanish_id_clean[0:8] )
snake_case_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_SCREAMING_SNAKE_CASE ) from ex
if letter.isdigit():
raise ValueError(_SCREAMING_SNAKE_CASE )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import math
__SCREAMING_SNAKE_CASE : Optional[int] = 10
__SCREAMING_SNAKE_CASE : Optional[Any] = 7
__SCREAMING_SNAKE_CASE : Dict = BALLS_PER_COLOUR * NUM_COLOURS
def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> str:
snake_case_ = math.comb(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _SCREAMING_SNAKE_CASE )
snake_case_ = NUM_COLOURS * (1 - missing_colour / total)
return f"""{result:.9f}"""
if __name__ == "__main__":
print(solution(20))
| 2 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'}
__SCREAMING_SNAKE_CASE : List[str] = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
}
}
__SCREAMING_SNAKE_CASE : List[str] = {
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
__SCREAMING_SNAKE_CASE : int = '▁'
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = VOCAB_FILES_NAMES
__lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None:
"""simple docstring"""
snake_case_ = (
AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
else mask_token
)
snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
snake_case_ = do_lower_case
snake_case_ = remove_space
snake_case_ = keep_accents
snake_case_ = vocab_file
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
return len(self.sp_model )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) ->List[str]:
"""simple docstring"""
snake_case_ = self.__dict__.copy()
snake_case_ = None
return state
def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
snake_case_ = {}
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str:
"""simple docstring"""
if self.remove_space:
snake_case_ = """ """.join(inputs.strip().split() )
else:
snake_case_ = inputs
snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ )
snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] )
if self.do_lower_case:
snake_case_ = outputs.lower()
return outputs
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
snake_case_ = self.preprocess_text(UpperCAmelCase_ )
snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
snake_case_ = []
for piece in pieces:
if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
snake_case_ = cur_pieces[1:]
else:
snake_case_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCAmelCase_ )
else:
new_pieces.append(UpperCAmelCase_ )
return new_pieces
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict:
"""simple docstring"""
return self.sp_model.PieceToId(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return self.sp_model.IdToPiece(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any:
"""simple docstring"""
snake_case_ = []
snake_case_ = """"""
snake_case_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase_ ) + token
snake_case_ = True
snake_case_ = []
else:
current_sub_tokens.append(UpperCAmelCase_ )
snake_case_ = False
out_string += self.sp_model.decode(UpperCAmelCase_ )
return out_string.strip()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , """wb""" ) as fi:
snake_case_ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
return (out_vocab_file,)
| 2 | 1 |
"""simple docstring"""
import argparse
import os
import re
import packaging.version
__SCREAMING_SNAKE_CASE : Optional[Any] = 'examples/'
__SCREAMING_SNAKE_CASE : int = {
'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'),
'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'),
'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'),
'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'),
}
__SCREAMING_SNAKE_CASE : Optional[int] = {
'init': 'src/transformers/__init__.py',
'setup': 'setup.py',
}
__SCREAMING_SNAKE_CASE : List[Any] = 'README.md'
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
with open(_SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
snake_case_ = f.read()
snake_case_ , snake_case_ = REPLACE_PATTERNS[pattern]
snake_case_ = replace.replace("""VERSION""" , _SCREAMING_SNAKE_CASE )
snake_case_ = re_pattern.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
for folder, directories, fnames in os.walk(_SCREAMING_SNAKE_CASE ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , pattern="""examples""" )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]:
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if not patch:
update_version_in_examples(_SCREAMING_SNAKE_CASE )
def _a ( ) -> Union[str, Any]:
snake_case_ = """🤗 Transformers currently provides the following architectures"""
snake_case_ = """1. Want to contribute a new model?"""
with open(_SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
snake_case_ = f.readlines()
# Find the start of the list.
snake_case_ = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
snake_case_ = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
snake_case_ = lines[index].replace(
"""https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , )
index += 1
with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(_SCREAMING_SNAKE_CASE )
def _a ( ) -> List[str]:
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
snake_case_ = f.read()
snake_case_ = REPLACE_PATTERNS["""init"""][0].search(_SCREAMING_SNAKE_CASE ).groups()[0]
return packaging.version.parse(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE=False ) -> List[str]:
snake_case_ = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
snake_case_ = default_version.base_version
elif patch:
snake_case_ = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
snake_case_ = f"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
snake_case_ = input(f"""Which version are you releasing? [{default_version}]""" )
if len(_SCREAMING_SNAKE_CASE ) == 0:
snake_case_ = default_version
print(f"""Updating version to {version}.""" )
global_version_update(_SCREAMING_SNAKE_CASE , patch=_SCREAMING_SNAKE_CASE )
if not patch:
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
def _a ( ) -> Optional[int]:
snake_case_ = get_version()
snake_case_ = f"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
snake_case_ = current_version.base_version
# Check with the user we got that right.
snake_case_ = input(f"""Which version are we developing now? [{dev_version}]""" )
if len(_SCREAMING_SNAKE_CASE ) == 0:
snake_case_ = dev_version
print(f"""Updating version to {version}.""" )
global_version_update(_SCREAMING_SNAKE_CASE )
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser()
parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.')
parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.')
__SCREAMING_SNAKE_CASE : Any = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('Nothing to do after a patch :-)')
else:
post_release_work()
| 2 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("""The given input must be positive""" )
# get the generated string sequence
snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = int(sequence[i] , 2 )
return sequence
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
snake_case_ = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
snake_case_ = gray_code_sequence_string(bit_count - 1 )
snake_case_ = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
snake_case_ = """0""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
snake_case_ = """1""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]:
warnings.warn(
"""The preprocess method is deprecated and will be removed in a future version. Please"""
""" use VaeImageProcessor.preprocess instead""" , _SCREAMING_SNAKE_CASE , )
if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ):
return image
elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ):
snake_case_ = [image]
if isinstance(image[0] , PIL.Image.Image ):
snake_case_ , snake_case_ = image[0].size
snake_case_ , snake_case_ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
snake_case_ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image]
snake_case_ = np.concatenate(_SCREAMING_SNAKE_CASE , axis=0 )
snake_case_ = np.array(_SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 255.0
snake_case_ = image.transpose(0 , 3 , 1 , 2 )
snake_case_ = 2.0 * image - 1.0
snake_case_ = torch.from_numpy(_SCREAMING_SNAKE_CASE )
elif isinstance(image[0] , torch.Tensor ):
snake_case_ = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 )
return image
def _a ( _SCREAMING_SNAKE_CASE ) -> Dict:
if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ):
return mask
elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ):
snake_case_ = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
snake_case_ , snake_case_ = mask[0].size
snake_case_ , snake_case_ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
snake_case_ = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask]
snake_case_ = np.concatenate(_SCREAMING_SNAKE_CASE , axis=0 )
snake_case_ = mask.astype(np.floataa ) / 255.0
snake_case_ = 0
snake_case_ = 1
snake_case_ = torch.from_numpy(_SCREAMING_SNAKE_CASE )
elif isinstance(mask[0] , torch.Tensor ):
snake_case_ = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 )
return mask
class __A (snake_case__):
'''simple docstring'''
__lowercase: UNetaDModel
__lowercase: RePaintScheduler
def __init__( self : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] ) ->Optional[Any]:
"""simple docstring"""
super().__init__()
self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ )
@torch.no_grad()
def __call__( self : Dict , UpperCAmelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCAmelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCAmelCase_ : int = 250 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
snake_case_ = image
snake_case_ = _preprocess_image(UpperCAmelCase_ )
snake_case_ = original_image.to(device=self.device , dtype=self.unet.dtype )
snake_case_ = _preprocess_mask(UpperCAmelCase_ )
snake_case_ = mask_image.to(device=self.device , dtype=self.unet.dtype )
snake_case_ = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and len(UpperCAmelCase_ ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(UpperCAmelCase_ )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
snake_case_ = original_image.shape
snake_case_ = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , self.device )
snake_case_ = eta
snake_case_ = self.scheduler.timesteps[0] + 1
snake_case_ = generator[0] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
snake_case_ = self.unet(UpperCAmelCase_ , UpperCAmelCase_ ).sample
# compute previous image: x_t -> x_t-1
snake_case_ = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
snake_case_ = self.scheduler.undo_step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = t
snake_case_ = (image / 2 + 0.5).clamp(0 , 1 )
snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
snake_case_ = self.numpy_to_pil(UpperCAmelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCAmelCase_ )
| 2 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
__SCREAMING_SNAKE_CASE : Any = None
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : str = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
__SCREAMING_SNAKE_CASE : Union[str, Any] = {
'vocab_file': {
'facebook/nllb-200-distilled-600M': (
'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model'
),
},
'tokenizer_file': {
'facebook/nllb-200-distilled-600M': (
'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json'
),
},
}
__SCREAMING_SNAKE_CASE : List[str] = {
'facebook/nllb-large-en-ro': 1_024,
'facebook/nllb-200-distilled-600M': 1_024,
}
# fmt: off
__SCREAMING_SNAKE_CASE : Dict = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn']
class __A (snake_case__):
'''simple docstring'''
__lowercase: Tuple = VOCAB_FILES_NAMES
__lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase: List[str] = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Optional[int] = ["""input_ids""", """attention_mask"""]
__lowercase: List[Any] = NllbTokenizer
__lowercase: List[int] = []
__lowercase: List[int] = []
def __init__( self : Optional[int] , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : List[str]="<s>" , UpperCAmelCase_ : List[Any]="</s>" , UpperCAmelCase_ : Optional[int]="</s>" , UpperCAmelCase_ : Tuple="<s>" , UpperCAmelCase_ : Any="<unk>" , UpperCAmelCase_ : int="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : int=False , **UpperCAmelCase_ : Dict , ) ->int:
"""simple docstring"""
snake_case_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token
snake_case_ = legacy_behaviour
super().__init__(
vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , )
snake_case_ = vocab_file
snake_case_ = False if not self.vocab_file else True
snake_case_ = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} )
snake_case_ = {
lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
snake_case_ = src_lang if src_lang is not None else """eng_Latn"""
snake_case_ = self.convert_tokens_to_ids(self._src_lang )
snake_case_ = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def lowerCAmelCase ( self : Any ) ->str:
"""simple docstring"""
return self._src_lang
@src_lang.setter
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : str ) ->None:
"""simple docstring"""
snake_case_ = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def lowerCAmelCase ( self : str , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] , UpperCAmelCase_ : Optional[str] , **UpperCAmelCase_ : int ) ->List[str]:
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
snake_case_ = src_lang
snake_case_ = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ )
snake_case_ = self.convert_tokens_to_ids(UpperCAmelCase_ )
snake_case_ = tgt_lang_id
return inputs
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str = "eng_Latn" , UpperCAmelCase_ : Optional[List[str]] = None , UpperCAmelCase_ : str = "fra_Latn" , **UpperCAmelCase_ : List[Any] , ) ->BatchEncoding:
"""simple docstring"""
snake_case_ = src_lang
snake_case_ = tgt_lang
return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->None:
"""simple docstring"""
snake_case_ = self.convert_tokens_to_ids(UpperCAmelCase_ )
if self.legacy_behaviour:
snake_case_ = []
snake_case_ = [self.eos_token_id, self.cur_lang_code]
else:
snake_case_ = [self.cur_lang_code]
snake_case_ = [self.eos_token_id]
snake_case_ = self.convert_ids_to_tokens(self.prefix_tokens )
snake_case_ = self.convert_ids_to_tokens(self.suffix_tokens )
snake_case_ = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : str ) ->None:
"""simple docstring"""
snake_case_ = self.convert_tokens_to_ids(UpperCAmelCase_ )
if self.legacy_behaviour:
snake_case_ = []
snake_case_ = [self.eos_token_id, self.cur_lang_code]
else:
snake_case_ = [self.cur_lang_code]
snake_case_ = [self.eos_token_id]
snake_case_ = self.convert_ids_to_tokens(self.prefix_tokens )
snake_case_ = self.convert_ids_to_tokens(self.suffix_tokens )
snake_case_ = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ):
copyfile(self.vocab_file , UpperCAmelCase_ )
return (out_vocab_file,)
| 2 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/'
__SCREAMING_SNAKE_CASE : List[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
snake_case_ = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
snake_case_ = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = {}
import re
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# keep original key
else:
snake_case_ = original_key
snake_case_ = replace_key(_SCREAMING_SNAKE_CASE )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
snake_case_ = original_key
snake_case_ = original_key
snake_case_ = value
return new_dict
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ):
snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE )
open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content )
snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]]
snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE )
snake_case_ = []
snake_case_ = {}
for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""]
snake_case_ = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
snake_case_ = old_dic[k]
elif k.endswith(""".w""" ):
snake_case_ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
snake_case_ = old_dic[k]
else:
snake_case_ = old_dic[k]
snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}"""
snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
weight_dict.append(_SCREAMING_SNAKE_CASE )
snake_case_ = weight_dict.pop(0 )
model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
return weight_dict
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 2 | 1 |
"""simple docstring"""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class __A (snake_case__):
'''simple docstring'''
__lowercase: torch.FloatTensor
__lowercase: Optional[torch.FloatTensor] = None
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.999 , _SCREAMING_SNAKE_CASE="cosine" , ) -> Optional[int]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(_SCREAMING_SNAKE_CASE ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_SCREAMING_SNAKE_CASE ):
return math.exp(t * -12.0 )
else:
raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" )
snake_case_ = []
for i in range(_SCREAMING_SNAKE_CASE ):
snake_case_ = i / num_diffusion_timesteps
snake_case_ = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) )
return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa )
class __A (snake_case__ , snake_case__):
'''simple docstring'''
@register_to_config
def __init__( self : Union[str, Any] , UpperCAmelCase_ : int = 1_000 , UpperCAmelCase_ : str = "fixed_small_log" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[float] = 1.0 , UpperCAmelCase_ : str = "epsilon" , UpperCAmelCase_ : str = "squaredcos_cap_v2" , ) ->Optional[int]:
"""simple docstring"""
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" )
snake_case_ = betas_for_alpha_bar(UpperCAmelCase_ )
snake_case_ = 1.0 - self.betas
snake_case_ = torch.cumprod(self.alphas , dim=0 )
snake_case_ = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
snake_case_ = 1.0
# setable values
snake_case_ = None
snake_case_ = torch.from_numpy(np.arange(0 , UpperCAmelCase_ )[::-1].copy() )
snake_case_ = variance_type
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Optional[int] = None ) ->torch.FloatTensor:
"""simple docstring"""
return sample
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, torch.device] = None ) ->Tuple:
"""simple docstring"""
snake_case_ = num_inference_steps
snake_case_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
snake_case_ = (np.arange(0 , UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(np.intaa )
snake_case_ = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[str]=None ) ->str:
"""simple docstring"""
if prev_timestep is None:
snake_case_ = t - 1
snake_case_ = self.alphas_cumprod[t]
snake_case_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
snake_case_ = 1 - alpha_prod_t
snake_case_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
snake_case_ = self.betas[t]
else:
snake_case_ = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
snake_case_ = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
snake_case_ = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
snake_case_ = torch.log(torch.clamp(UpperCAmelCase_ , min=1E-20 ) )
snake_case_ = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
snake_case_ = variance.log()
snake_case_ = beta.log()
snake_case_ = (predicted_variance + 1) / 2
snake_case_ = frac * max_log + (1 - frac) * min_log
return variance
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : int , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : bool = True , ) ->Union[UnCLIPSchedulerOutput, Tuple]:
"""simple docstring"""
snake_case_ = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
snake_case_ , snake_case_ = torch.split(UpperCAmelCase_ , sample.shape[1] , dim=1 )
else:
snake_case_ = None
# 1. compute alphas, betas
if prev_timestep is None:
snake_case_ = t - 1
snake_case_ = self.alphas_cumprod[t]
snake_case_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
snake_case_ = 1 - alpha_prod_t
snake_case_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
snake_case_ = self.betas[t]
snake_case_ = self.alphas[t]
else:
snake_case_ = 1 - alpha_prod_t / alpha_prod_t_prev
snake_case_ = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
snake_case_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
snake_case_ = model_output
else:
raise ValueError(
F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`"""
""" for the UnCLIPScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
snake_case_ = torch.clamp(
UpperCAmelCase_ , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
snake_case_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
snake_case_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
snake_case_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
snake_case_ = 0
if t > 0:
snake_case_ = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase_ , device=model_output.device )
snake_case_ = self._get_variance(
UpperCAmelCase_ , predicted_variance=UpperCAmelCase_ , prev_timestep=UpperCAmelCase_ , )
if self.variance_type == "fixed_small_log":
snake_case_ = variance
elif self.variance_type == "learned_range":
snake_case_ = (0.5 * variance).exp()
else:
raise ValueError(
F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`"""
""" for the UnCLIPScheduler.""" )
snake_case_ = variance * variance_noise
snake_case_ = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase_ , pred_original_sample=UpperCAmelCase_ )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : torch.IntTensor , ) ->torch.FloatTensor:
"""simple docstring"""
snake_case_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
snake_case_ = timesteps.to(original_samples.device )
snake_case_ = alphas_cumprod[timesteps] ** 0.5
snake_case_ = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
snake_case_ = sqrt_alpha_prod.unsqueeze(-1 )
snake_case_ = (1 - alphas_cumprod[timesteps]) ** 0.5
snake_case_ = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
snake_case_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
snake_case_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 2 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__SCREAMING_SNAKE_CASE : Dict = 'zero2'
__SCREAMING_SNAKE_CASE : List[Any] = 'zero3'
__SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __A (snake_case__):
'''simple docstring'''
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = models[model]
snake_case_ = self.run_trainer(
stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
self.do_checks(UpperCAmelCase_ )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ )
snake_case_ = F"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(UpperCAmelCase_ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
snake_case_ = self.get_launcher(UpperCAmelCase_ )
snake_case_ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple:
"""simple docstring"""
snake_case_ = min(2 , get_gpu_count() ) if distributed else 1
return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 2 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Any = {
'configuration_instructblip': [
'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'InstructBlipConfig',
'InstructBlipQFormerConfig',
'InstructBlipVisionConfig',
],
'processing_instructblip': ['InstructBlipProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : str = [
'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'InstructBlipQFormerModel',
'InstructBlipPreTrainedModel',
'InstructBlipForConditionalGeneration',
'InstructBlipVisionModel',
]
if TYPE_CHECKING:
from .configuration_instructblip import (
INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
InstructBlipConfig,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from .processing_instructblip import InstructBlipProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_instructblip import (
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
InstructBlipForConditionalGeneration,
InstructBlipPreTrainedModel,
InstructBlipQFormerModel,
InstructBlipVisionModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True})
__lowercase: ClassVar[Features] = Features({"""audio""": Audio()})
__lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")})
__lowercase: str = "audio"
__lowercase: str = "transcription"
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int:
"""simple docstring"""
if self.audio_column not in features:
raise ValueError(F"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , UpperCAmelCase_ ):
raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" )
snake_case_ = copy.deepcopy(self )
snake_case_ = self.input_schema.copy()
snake_case_ = features[self.audio_column]
snake_case_ = input_schema
return task_template
@property
def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]:
"""simple docstring"""
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 2 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 |
"""simple docstring"""
from functools import reduce
__SCREAMING_SNAKE_CASE : Tuple = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def _a ( _SCREAMING_SNAKE_CASE = N ) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) )
for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Any = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'}
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = """openai-gpt"""
__lowercase: List[str] = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : Optional[int] , UpperCAmelCase_ : List[str]=40_478 , UpperCAmelCase_ : Dict=512 , UpperCAmelCase_ : Optional[int]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : List[Any]=1E-5 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict="cls_index" , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Dict=0.1 , **UpperCAmelCase_ : Union[str, Any] , ) ->Dict:
"""simple docstring"""
snake_case_ = vocab_size
snake_case_ = n_positions
snake_case_ = n_embd
snake_case_ = n_layer
snake_case_ = n_head
snake_case_ = afn
snake_case_ = resid_pdrop
snake_case_ = embd_pdrop
snake_case_ = attn_pdrop
snake_case_ = layer_norm_epsilon
snake_case_ = initializer_range
snake_case_ = summary_type
snake_case_ = summary_use_proj
snake_case_ = summary_activation
snake_case_ = summary_first_dropout
snake_case_ = summary_proj_to_labels
super().__init__(**UpperCAmelCase_ )
| 2 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : str = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Any = """mctct"""
def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = intermediate_size
snake_case_ = num_attention_heads
snake_case_ = attention_head_dim
snake_case_ = max_position_embeddings
snake_case_ = layer_norm_eps
snake_case_ = layerdrop
snake_case_ = hidden_act
snake_case_ = initializer_range
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = pad_token_id
snake_case_ = bos_token_id
snake_case_ = eos_token_id
snake_case_ = conv_glu_dim
snake_case_ = conv_dropout
snake_case_ = num_conv_layers
snake_case_ = input_feat_per_channel
snake_case_ = input_channels
snake_case_ = conv_channels
snake_case_ = ctc_loss_reduction
snake_case_ = ctc_zero_infinity
# prevents config testing fail with exporting to json
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """
F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """
F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
| 2 | 1 |
"""simple docstring"""
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
# A local function to see if a dot lands in the circle.
def is_in_circle(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool:
snake_case_ = sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
snake_case_ = mean(
int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) )
for _ in range(_SCREAMING_SNAKE_CASE ) )
# The ratio of the area for circle to square is pi/4.
snake_case_ = proportion * 4
print(f"""The estimated value of pi is {pi_estimate}""" )
print(f"""The numpy value of pi is {pi}""" )
print(f"""The total error is {abs(pi - pi_estimate )}""" )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = 1.0 , ) -> float:
return mean(
function_to_integrate(uniform(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) * (max_value - min_value)
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = 1.0 ) -> None:
def identity_function(_SCREAMING_SNAKE_CASE ) -> float:
return x
snake_case_ = area_under_curve_estimator(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = (max_value * max_value - min_value * min_value) / 2
print("""******************""" )
print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {expected_value}""" )
print(f"""Total error is {abs(estimated_value - expected_value )}""" )
print("""******************""" )
def _a ( _SCREAMING_SNAKE_CASE ) -> None:
def function_to_integrate(_SCREAMING_SNAKE_CASE ) -> float:
return sqrt(4.0 - x * x )
snake_case_ = area_under_curve_estimator(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0.0 , 2.0 )
print("""******************""" )
print("""Estimating pi using area_under_curve_estimator""" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {pi}""" )
print(f"""Total error is {abs(estimated_value - pi )}""" )
print("""******************""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int:
return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 2 | 1 |
"""simple docstring"""
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import maybe_allow_in_graph
from .activations import get_activation
from .attention_processor import Attention
from .embeddings import CombinedTimestepLabelEmbeddings
@maybe_allow_in_graph
class __A (nn.Module):
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : str = "geglu" , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : str = "layer_norm" , UpperCAmelCase_ : bool = False , ) ->Tuple:
"""simple docstring"""
super().__init__()
snake_case_ = only_cross_attention
snake_case_ = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero"""
snake_case_ = (num_embeds_ada_norm is not None) and norm_type == """ada_norm"""
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"""
F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" )
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
snake_case_ = AdaLayerNorm(UpperCAmelCase_ , UpperCAmelCase_ )
elif self.use_ada_layer_norm_zero:
snake_case_ = AdaLayerNormZero(UpperCAmelCase_ , UpperCAmelCase_ )
else:
snake_case_ = nn.LayerNorm(UpperCAmelCase_ , elementwise_affine=UpperCAmelCase_ )
snake_case_ = Attention(
query_dim=UpperCAmelCase_ , heads=UpperCAmelCase_ , dim_head=UpperCAmelCase_ , dropout=UpperCAmelCase_ , bias=UpperCAmelCase_ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=UpperCAmelCase_ , )
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
snake_case_ = (
AdaLayerNorm(UpperCAmelCase_ , UpperCAmelCase_ )
if self.use_ada_layer_norm
else nn.LayerNorm(UpperCAmelCase_ , elementwise_affine=UpperCAmelCase_ )
)
snake_case_ = Attention(
query_dim=UpperCAmelCase_ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=UpperCAmelCase_ , dim_head=UpperCAmelCase_ , dropout=UpperCAmelCase_ , bias=UpperCAmelCase_ , upcast_attention=UpperCAmelCase_ , ) # is self-attn if encoder_hidden_states is none
else:
snake_case_ = None
snake_case_ = None
# 3. Feed-forward
snake_case_ = nn.LayerNorm(UpperCAmelCase_ , elementwise_affine=UpperCAmelCase_ )
snake_case_ = FeedForward(UpperCAmelCase_ , dropout=UpperCAmelCase_ , activation_fn=UpperCAmelCase_ , final_dropout=UpperCAmelCase_ )
# let chunk size default to None
snake_case_ = None
snake_case_ = 0
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ) ->str:
"""simple docstring"""
snake_case_ = chunk_size
snake_case_ = dim
def lowerCAmelCase ( self : int , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[torch.LongTensor] = None , UpperCAmelCase_ : Dict[str, Any] = None , UpperCAmelCase_ : Optional[torch.LongTensor] = None , ) ->Union[str, Any]:
"""simple docstring"""
if self.use_ada_layer_norm:
snake_case_ = self.norma(UpperCAmelCase_ , UpperCAmelCase_ )
elif self.use_ada_layer_norm_zero:
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.norma(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , hidden_dtype=hidden_states.dtype )
else:
snake_case_ = self.norma(UpperCAmelCase_ )
snake_case_ = cross_attention_kwargs if cross_attention_kwargs is not None else {}
snake_case_ = self.attna(
UpperCAmelCase_ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , )
if self.use_ada_layer_norm_zero:
snake_case_ = gate_msa.unsqueeze(1 ) * attn_output
snake_case_ = attn_output + hidden_states
# 2. Cross-Attention
if self.attna is not None:
snake_case_ = (
self.norma(UpperCAmelCase_ , UpperCAmelCase_ ) if self.use_ada_layer_norm else self.norma(UpperCAmelCase_ )
)
snake_case_ = self.attna(
UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , )
snake_case_ = attn_output + hidden_states
# 3. Feed-forward
snake_case_ = self.norma(UpperCAmelCase_ )
if self.use_ada_layer_norm_zero:
snake_case_ = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" )
snake_case_ = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
snake_case_ = torch.cat(
[self.ff(UpperCAmelCase_ ) for hid_slice in norm_hidden_states.chunk(UpperCAmelCase_ , dim=self._chunk_dim )] , dim=self._chunk_dim , )
else:
snake_case_ = self.ff(UpperCAmelCase_ )
if self.use_ada_layer_norm_zero:
snake_case_ = gate_mlp.unsqueeze(1 ) * ff_output
snake_case_ = ff_output + hidden_states
return hidden_states
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 4 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : str = "geglu" , UpperCAmelCase_ : bool = False , ) ->List[str]:
"""simple docstring"""
super().__init__()
snake_case_ = int(dim * mult )
snake_case_ = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
snake_case_ = GELU(UpperCAmelCase_ , UpperCAmelCase_ )
if activation_fn == "gelu-approximate":
snake_case_ = GELU(UpperCAmelCase_ , UpperCAmelCase_ , approximate="""tanh""" )
elif activation_fn == "geglu":
snake_case_ = GEGLU(UpperCAmelCase_ , UpperCAmelCase_ )
elif activation_fn == "geglu-approximate":
snake_case_ = ApproximateGELU(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = nn.ModuleList([] )
# project in
self.net.append(UpperCAmelCase_ )
# project dropout
self.net.append(nn.Dropout(UpperCAmelCase_ ) )
# project out
self.net.append(nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ ) )
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(UpperCAmelCase_ ) )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : int ) ->Any:
"""simple docstring"""
for module in self.net:
snake_case_ = module(UpperCAmelCase_ )
return hidden_states
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str = "none" ) ->Dict:
"""simple docstring"""
super().__init__()
snake_case_ = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = approximate
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Any ) ->int:
"""simple docstring"""
if gate.device.type != "mps":
return F.gelu(UpperCAmelCase_ , approximate=self.approximate )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->int:
"""simple docstring"""
snake_case_ = self.proj(UpperCAmelCase_ )
snake_case_ = self.gelu(UpperCAmelCase_ )
return hidden_states
class __A (nn.Module):
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) ->Union[str, Any]:
"""simple docstring"""
super().__init__()
snake_case_ = nn.Linear(UpperCAmelCase_ , dim_out * 2 )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Tuple ) ->Optional[Any]:
"""simple docstring"""
if gate.device.type != "mps":
return F.gelu(UpperCAmelCase_ )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : int ) ->str:
"""simple docstring"""
snake_case_ , snake_case_ = self.proj(UpperCAmelCase_ ).chunk(2 , dim=-1 )
return hidden_states * self.gelu(UpperCAmelCase_ )
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) ->Union[str, Any]:
"""simple docstring"""
super().__init__()
snake_case_ = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.proj(UpperCAmelCase_ )
return x * torch.sigmoid(1.702 * x )
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ) ->Union[str, Any]:
"""simple docstring"""
super().__init__()
snake_case_ = nn.Embedding(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = nn.SiLU()
snake_case_ = nn.Linear(UpperCAmelCase_ , embedding_dim * 2 )
snake_case_ = nn.LayerNorm(UpperCAmelCase_ , elementwise_affine=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ) ->int:
"""simple docstring"""
snake_case_ = self.linear(self.silu(self.emb(UpperCAmelCase_ ) ) )
snake_case_ , snake_case_ = torch.chunk(UpperCAmelCase_ , 2 )
snake_case_ = self.norm(UpperCAmelCase_ ) * (1 + scale) + shift
return x
class __A (nn.Module):
'''simple docstring'''
def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ) ->Tuple:
"""simple docstring"""
super().__init__()
snake_case_ = CombinedTimestepLabelEmbeddings(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = nn.SiLU()
snake_case_ = nn.Linear(UpperCAmelCase_ , 6 * embedding_dim , bias=UpperCAmelCase_ )
snake_case_ = nn.LayerNorm(UpperCAmelCase_ , elementwise_affine=UpperCAmelCase_ , eps=1E-6 )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=None ) ->Any:
"""simple docstring"""
snake_case_ = self.linear(self.silu(self.emb(UpperCAmelCase_ , UpperCAmelCase_ , hidden_dtype=UpperCAmelCase_ ) ) )
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = emb.chunk(6 , dim=1 )
snake_case_ = self.norm(UpperCAmelCase_ ) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class __A (nn.Module):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : float = 1E-5 ) ->str:
"""simple docstring"""
super().__init__()
snake_case_ = num_groups
snake_case_ = eps
if act_fn is None:
snake_case_ = None
else:
snake_case_ = get_activation(UpperCAmelCase_ )
snake_case_ = nn.Linear(UpperCAmelCase_ , out_dim * 2 )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] ) ->Dict:
"""simple docstring"""
if self.act:
snake_case_ = self.act(UpperCAmelCase_ )
snake_case_ = self.linear(UpperCAmelCase_ )
snake_case_ = emb[:, :, None, None]
snake_case_ , snake_case_ = emb.chunk(2 , dim=1 )
snake_case_ = F.group_norm(UpperCAmelCase_ , self.num_groups , eps=self.eps )
snake_case_ = x * (1 + scale) + shift
return x
| 2 |
"""simple docstring"""
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: str = VQModel
__lowercase: Union[str, Any] = """sample"""
@property
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple:
"""simple docstring"""
snake_case_ = 4
snake_case_ = 3
snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ )
return {"sample": image}
@property
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
return (3, 32, 32)
@property
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
return (3, 32, 32)
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 3,
}
snake_case_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(UpperCAmelCase_ )
snake_case_ = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" )
model.to(UpperCAmelCase_ ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
snake_case_ = image.to(UpperCAmelCase_ )
with torch.no_grad():
snake_case_ = model(UpperCAmelCase_ ).sample
snake_case_ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] )
# fmt: on
self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 1 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/'
__SCREAMING_SNAKE_CASE : List[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
snake_case_ = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
snake_case_ = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = {}
import re
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# keep original key
else:
snake_case_ = original_key
snake_case_ = replace_key(_SCREAMING_SNAKE_CASE )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
snake_case_ = original_key
snake_case_ = original_key
snake_case_ = value
return new_dict
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ):
snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE )
open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content )
snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]]
snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE )
snake_case_ = []
snake_case_ = {}
for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""]
snake_case_ = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
snake_case_ = old_dic[k]
elif k.endswith(""".w""" ):
snake_case_ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
snake_case_ = old_dic[k]
else:
snake_case_ = old_dic[k]
snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}"""
snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
weight_dict.append(_SCREAMING_SNAKE_CASE )
snake_case_ = weight_dict.pop(0 )
model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
return weight_dict
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 2 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = KandinskyVaaControlnetPipeline
__lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: Union[str, Any] = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
__lowercase: Tuple = False
@property
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return 100
@property
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
snake_case_ = self.dummy_unet
snake_case_ = self.dummy_movq
snake_case_ = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , )
snake_case_ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]:
"""simple docstring"""
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase_ )
# create hint
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
if str(UpperCAmelCase_ ).startswith("""mps""" ):
snake_case_ = torch.manual_seed(UpperCAmelCase_ )
else:
snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = """cpu"""
snake_case_ = self.get_dummy_components()
snake_case_ = self.pipeline_class(**UpperCAmelCase_ )
snake_case_ = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
snake_case_ = output.images
snake_case_ = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ = np.array(
[0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0
snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case_ = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case_ = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = """A robot, 4k photo"""
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ , snake_case_ = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ = pipeline(
image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 2 | 1 |
"""simple docstring"""
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append('.')
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
snake_case_ = test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
"""`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """
f"""{test_file} instead.""" )
snake_case_ = components[-1]
if not test_fn.endswith("""py""" ):
raise ValueError(f"""`test_file` should be a python file. Got {test_fn} instead.""" )
if not test_fn.startswith("""test_modeling_""" ):
raise ValueError(
f"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" )
snake_case_ = components[:-1] + [test_fn.replace(""".py""" , """""" )]
snake_case_ = """.""".join(_SCREAMING_SNAKE_CASE )
return test_module_path
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
snake_case_ = get_module_path(_SCREAMING_SNAKE_CASE )
snake_case_ = importlib.import_module(_SCREAMING_SNAKE_CASE )
return test_module
def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]:
snake_case_ = []
snake_case_ = get_test_module(_SCREAMING_SNAKE_CASE )
for attr in dir(_SCREAMING_SNAKE_CASE ):
if attr.endswith("""ModelTester""" ):
tester_classes.append(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
# sort with class names
return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ )
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
snake_case_ = []
snake_case_ = get_test_module(_SCREAMING_SNAKE_CASE )
for attr in dir(_SCREAMING_SNAKE_CASE ):
snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """all_model_classes""" , [] )
if len(_SCREAMING_SNAKE_CASE ) > 0:
test_classes.append(_SCREAMING_SNAKE_CASE )
# sort with class names
return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ )
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
snake_case_ = get_test_classes(_SCREAMING_SNAKE_CASE )
snake_case_ = set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ )
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
snake_case_ = test_class()
if hasattr(_SCREAMING_SNAKE_CASE , """setUp""" ):
test.setUp()
snake_case_ = None
if hasattr(_SCREAMING_SNAKE_CASE , """model_tester""" ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
snake_case_ = test.model_tester.__class__
return model_tester
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
snake_case_ = get_test_classes(_SCREAMING_SNAKE_CASE )
snake_case_ = []
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(_SCREAMING_SNAKE_CASE )
# sort with class names
return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
snake_case_ = get_test_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = []
for test_class in test_classes:
snake_case_ = get_model_tester_from_test_class(_SCREAMING_SNAKE_CASE )
if tester_class is not None:
tester_classes.append(_SCREAMING_SNAKE_CASE )
# sort with class names
return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ )
def _a ( _SCREAMING_SNAKE_CASE ) -> Dict:
snake_case_ = get_test_classes(_SCREAMING_SNAKE_CASE )
snake_case_ = {test_class: get_model_tester_from_test_class(_SCREAMING_SNAKE_CASE ) for test_class in test_classes}
return test_tester_mapping
def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]:
snake_case_ = get_model_classes(_SCREAMING_SNAKE_CASE )
snake_case_ = {
model_class: get_test_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in model_classes
}
return model_test_mapping
def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = get_model_classes(_SCREAMING_SNAKE_CASE )
snake_case_ = {
model_class: get_tester_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in model_classes
}
return model_to_tester_mapping
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return o
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return o.__name__
elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ):
return [to_json(_SCREAMING_SNAKE_CASE ) for x in o]
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return {to_json(_SCREAMING_SNAKE_CASE ): to_json(_SCREAMING_SNAKE_CASE ) for k, v in o.items()}
else:
return o
| 2 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
class __A :
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = []
self.adlist.append(
{"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} )
for keyword in keywords:
self.add_keyword(UpperCAmelCase_ )
self.set_fail_transitions()
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None:
"""simple docstring"""
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None:
"""simple docstring"""
snake_case_ = 0
for character in keyword:
snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ )
if next_state is None:
self.adlist.append(
{
"""value""": character,
"""next_states""": [],
"""fail_state""": 0,
"""output""": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
snake_case_ = len(self.adlist ) - 1
else:
snake_case_ = next_state
self.adlist[current_state]["output"].append(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->None:
"""simple docstring"""
snake_case_ = deque()
for node in self.adlist[0]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = 0
while q:
snake_case_ = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = self.adlist[r]["""fail_state"""]
while (
self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None
and state != 0
):
snake_case_ = self.adlist[state]["""fail_state"""]
snake_case_ = self.find_next_state(
UpperCAmelCase_ , self.adlist[child]["""value"""] )
if self.adlist[child]["fail_state"] is None:
snake_case_ = 0
snake_case_ = (
self.adlist[child]["""output"""]
+ self.adlist[self.adlist[child]["""fail_state"""]]["""output"""]
)
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]:
"""simple docstring"""
snake_case_ = {} # returns a dict with keywords and list of its occurrences
snake_case_ = 0
for i in range(len(UpperCAmelCase_ ) ):
while (
self.find_next_state(UpperCAmelCase_ , string[i] ) is None
and current_state != 0
):
snake_case_ = self.adlist[current_state]["""fail_state"""]
snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] )
if next_state is None:
snake_case_ = 0
else:
snake_case_ = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
snake_case_ = []
result[key].append(i - len(UpperCAmelCase_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = KandinskyVaaControlnetPipeline
__lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: Union[str, Any] = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
__lowercase: Tuple = False
@property
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return 100
@property
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
snake_case_ = self.dummy_unet
snake_case_ = self.dummy_movq
snake_case_ = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , )
snake_case_ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]:
"""simple docstring"""
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase_ )
# create hint
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
if str(UpperCAmelCase_ ).startswith("""mps""" ):
snake_case_ = torch.manual_seed(UpperCAmelCase_ )
else:
snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = """cpu"""
snake_case_ = self.get_dummy_components()
snake_case_ = self.pipeline_class(**UpperCAmelCase_ )
snake_case_ = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
snake_case_ = output.images
snake_case_ = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ = np.array(
[0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0
snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case_ = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case_ = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = """A robot, 4k photo"""
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ , snake_case_ = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ = pipeline(
image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 2 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = num_channels
snake_case_ = num_stages
snake_case_ = hidden_sizes
snake_case_ = depths
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = num_labels
snake_case_ = initializer_range
snake_case_ = out_features
snake_case_ = out_indices
snake_case_ = scope
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case_ = None
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[Any] = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
__lowercase: Union[str, Any] = (
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Optional[Any] = False
__lowercase: Any = False
__lowercase: Union[str, Any] = False
__lowercase: Dict = False
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = True
if model_class.__name__ in [
*get_values(UpperCAmelCase_ ),
*get_values(UpperCAmelCase_ ),
]:
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = False
snake_case_ = True
if (
model_class.__name__
in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )]
or not model_class.supports_gradient_checkpointing
):
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.gradient_checkpointing_enable()
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ):
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case_ = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _a ( ) -> str:
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ )
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
# verify the logits
snake_case_ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
| 2 | 1 |
"""simple docstring"""
import requests
from bsa import BeautifulSoup
def _a ( _SCREAMING_SNAKE_CASE = "AAPL" ) -> str:
snake_case_ = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"""
snake_case_ = BeautifulSoup(requests.get(_SCREAMING_SNAKE_CASE ).text , """html.parser""" )
snake_case_ = """My(6px) Pos(r) smartphone_Mt(6px)"""
return soup.find("""div""" , class_=class_ ).find("""span""" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
| 2 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights']
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
if "emb" in name:
snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
snake_case_ = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
snake_case_ = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
snake_case_ = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
snake_case_ = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
snake_case_ = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]:
snake_case_ = list(state_dict.keys() )
snake_case_ = {}
for key in keys:
snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE )
if "in_proj_weight" in key:
# split fused qkv proj
snake_case_ = val[:hidden_size, :]
snake_case_ = val[hidden_size : 2 * hidden_size, :]
snake_case_ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
snake_case_ = val
else:
snake_case_ = val
return state_dict, enc_dec_proj_state_dict
def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
snake_case_ = 1_024
snake_case_ = 24
snake_case_ = 16
elif checkpoint == "medium":
snake_case_ = 1_536
snake_case_ = 48
snake_case_ = 24
elif checkpoint == "large":
snake_case_ = 2_048
snake_case_ = 48
snake_case_ = 32
else:
raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
snake_case_ = MusicgenDecoderConfig(
hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , )
return config
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple:
snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE )
snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE )
snake_case_ = fairseq_model.lm.state_dict()
snake_case_ , snake_case_ = rename_state_dict(
_SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size )
snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" )
snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE )
# check we can do a forward pass
snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
snake_case_ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" )
snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
# set the appropriate bos/pad token ids
snake_case_ = 2_048
snake_case_ = 2_048
# set other default generation config params
snake_case_ = int(30 * audio_encoder.config.frame_rate )
snake_case_ = True
snake_case_ = 3.0
if pytorch_dump_folder is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if repo_id:
logger.info(f"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
processor.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint',
default='small',
type=str,
help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.',
)
parser.add_argument(
'--pytorch_dump_folder',
required=True,
default=None,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
parser.add_argument(
'--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.'
)
__SCREAMING_SNAKE_CASE : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 2 | 1 |
"""simple docstring"""
import itertools
import math
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _a ( ) -> List[Any]:
snake_case_ = 2
while True:
if is_prime(_SCREAMING_SNAKE_CASE ):
yield num
num += 1
def _a ( _SCREAMING_SNAKE_CASE = 10_001 ) -> int:
return next(itertools.islice(prime_generator() , nth - 1 , _SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
if index == number_of_items:
return 0
snake_case_ = 0
snake_case_ = 0
snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 )
if weights[index] <= max_weight:
snake_case_ = values[index] + knapsack(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 )
return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter'
__SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE'
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}"""
raise TypeError(_SCREAMING_SNAKE_CASE )
snake_case_ = spanish_id.replace("""-""" , """""" ).upper()
if len(_SCREAMING_SNAKE_CASE ) != 9:
raise ValueError(_SCREAMING_SNAKE_CASE )
try:
snake_case_ = int(spanish_id_clean[0:8] )
snake_case_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_SCREAMING_SNAKE_CASE ) from ex
if letter.isdigit():
raise ValueError(_SCREAMING_SNAKE_CASE )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int:
snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
snake_case_ = n // 2
return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
__SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 2 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : Union[str, Any]=400 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[int]=0.9 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Dict=[0.5, 0.5, 0.5] , UpperCAmelCase_ : int=[0.5, 0.5, 0.5] , ) ->int:
"""simple docstring"""
snake_case_ = size if size is not None else {"""shortest_edge""": 30}
snake_case_ = crop_size if crop_size is not None else {"""height""": 30, """width""": 30}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize_and_center_crop
snake_case_ = size
snake_case_ = crop_pct
snake_case_ = crop_size
snake_case_ = do_normalize
snake_case_ = image_mean
snake_case_ = image_std
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = PoolFormerImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = PoolFormerImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize_and_center_crop""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """crop_pct""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """image_mean""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """image_std""" ) )
def lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 30} )
self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCAmelCase ( self : int ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 2 |
"""simple docstring"""
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str:
snake_case_ = ascii_letters + digits + punctuation
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(_SCREAMING_SNAKE_CASE )
snake_case_ = i // 3
snake_case_ = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
snake_case_ = (
chars_incl
+ random(_SCREAMING_SNAKE_CASE , quotient + remainder )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
)
snake_case_ = list(_SCREAMING_SNAKE_CASE )
shuffle(_SCREAMING_SNAKE_CASE )
return "".join(_SCREAMING_SNAKE_CASE )
# random is a generalised function for letters, characters and numbers
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool:
if len(_SCREAMING_SNAKE_CASE ) < min_length:
# Your Password must be at least 8 characters long
return False
snake_case_ = any(char in ascii_uppercase for char in password )
snake_case_ = any(char in ascii_lowercase for char in password )
snake_case_ = any(char in digits for char in password )
snake_case_ = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def _a ( ) -> str:
snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() )
snake_case_ = input(
"""Please indicate the characters that must be in your password: """ ).strip()
print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) )
print(
"""Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , )
print("""[If you are thinking of using this passsword, You better save it.]""" )
if __name__ == "__main__":
main()
| 2 | 1 |
"""simple docstring"""
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Dict ) ->Tuple:
"""simple docstring"""
snake_case_ = tempfile.mkdtemp()
snake_case_ = BlipImageProcessor()
snake_case_ = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" )
snake_case_ = BlipProcessor(UpperCAmelCase_ , UpperCAmelCase_ )
processor.save_pretrained(self.tmpdirname )
def lowerCAmelCase ( self : str , **UpperCAmelCase_ : List[str] ) ->Dict:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).tokenizer
def lowerCAmelCase ( self : Dict , **UpperCAmelCase_ : Optional[Any] ) ->List[str]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).image_processor
def lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
snake_case_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
snake_case_ = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
snake_case_ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
snake_case_ = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 )
snake_case_ = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCAmelCase_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = BlipProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
snake_case_ = self.prepare_image_inputs()
snake_case_ = image_processor(UpperCAmelCase_ , return_tensors="""np""" )
snake_case_ = processor(images=UpperCAmelCase_ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = BlipProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
snake_case_ = """lower newer"""
snake_case_ = processor(text=UpperCAmelCase_ )
snake_case_ = tokenizer(UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = BlipProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
snake_case_ = """lower newer"""
snake_case_ = self.prepare_image_inputs()
snake_case_ = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase_ ):
processor()
def lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = BlipProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
snake_case_ = processor.batch_decode(UpperCAmelCase_ )
snake_case_ = tokenizer.batch_decode(UpperCAmelCase_ )
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = BlipProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
snake_case_ = """lower newer"""
snake_case_ = self.prepare_image_inputs()
snake_case_ = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
| 2 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_normalize
def lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
snake_case_ = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" )
image_processor_first.to_json_file(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
pass
def _a ( ) -> str:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
snake_case_ = Image.open(dataset[4]["""file"""] )
snake_case_ = Image.open(dataset[5]["""file"""] )
snake_case_ = [imagea, imagea]
return images
@require_vision
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
snake_case_ = prepare_images()
# test non-batched
snake_case_ = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_024) )
snake_case_ = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ )
# test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_024) )
snake_case_ = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
| 2 | 1 |
"""simple docstring"""
import json
import os
import re
import sys
import urllib.request
import requests
from bsa import BeautifulSoup
__SCREAMING_SNAKE_CASE : List[Any] = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582'
}
def _a ( _SCREAMING_SNAKE_CASE = "dhaka" , _SCREAMING_SNAKE_CASE = 5 ) -> int:
snake_case_ = min(_SCREAMING_SNAKE_CASE , 50 ) # Prevent abuse!
snake_case_ = {
"""q""": query,
"""tbm""": """isch""",
"""hl""": """en""",
"""ijn""": """0""",
}
snake_case_ = requests.get("""https://www.google.com/search""" , params=_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE )
snake_case_ = BeautifulSoup(html.text , """html.parser""" )
snake_case_ = """""".join(
re.findall(r"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""" ) ) ) )
snake_case_ = json.dumps(_SCREAMING_SNAKE_CASE )
snake_case_ = json.loads(_SCREAMING_SNAKE_CASE )
snake_case_ = re.findall(
r"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , _SCREAMING_SNAKE_CASE , )
if not matched_google_image_data:
return 0
snake_case_ = re.sub(
r"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(_SCREAMING_SNAKE_CASE ) , )
snake_case_ = re.findall(
r"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , _SCREAMING_SNAKE_CASE , )
for index, fixed_full_res_image in enumerate(_SCREAMING_SNAKE_CASE ):
if index >= max_images:
return index
snake_case_ = bytes(_SCREAMING_SNAKE_CASE , """ascii""" ).decode(
"""unicode-escape""" )
snake_case_ = bytes(_SCREAMING_SNAKE_CASE , """ascii""" ).decode(
"""unicode-escape""" )
snake_case_ = urllib.request.build_opener()
snake_case_ = [
(
"""User-Agent""",
"""Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"""
""" (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""",
)
]
urllib.request.install_opener(_SCREAMING_SNAKE_CASE )
snake_case_ = f"""query_{query.replace(" " , "_" )}"""
if not os.path.exists(_SCREAMING_SNAKE_CASE ):
os.makedirs(_SCREAMING_SNAKE_CASE )
urllib.request.urlretrieve( # noqa: S310
_SCREAMING_SNAKE_CASE , f"""{path_name}/original_size_img_{index}.jpg""" )
return index
if __name__ == "__main__":
try:
__SCREAMING_SNAKE_CASE : Optional[int] = download_images_from_google_query(sys.argv[1])
print(f"""{image_count} images were downloaded to disk.""")
except IndexError:
print('Please provide a search term.')
raise
| 2 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = scope
snake_case_ = range_bbox
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case_ = bbox[i, j, 3]
snake_case_ = bbox[i, j, 1]
snake_case_ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case_ = bbox[i, j, 2]
snake_case_ = bbox[i, j, 0]
snake_case_ = t
snake_case_ = None
if self.use_input_mask:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str:
"""simple docstring"""
snake_case_ = LiltModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict:
"""simple docstring"""
snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowercase: Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return True
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = LiltModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_torch
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ )
snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ )
snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ )
snake_case_ = torch.Size([1, 2, 768] )
snake_case_ = torch.tensor(
[[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any]=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : List[Any]=18 , UpperCAmelCase_ : int=30 , UpperCAmelCase_ : List[Any]=400 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[int]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : int=False , ) ->str:
"""simple docstring"""
snake_case_ = size if size is not None else {"""height""": 20, """width""": 20}
snake_case_ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_center_crop
snake_case_ = crop_size
snake_case_ = do_normalize
snake_case_ = image_mean
snake_case_ = image_std
snake_case_ = do_reduce_labels
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def _a ( ) -> List[Any]:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" )
snake_case_ = Image.open(dataset[0]["""file"""] )
snake_case_ = Image.open(dataset[1]["""file"""] )
return image, map
def _a ( ) -> Dict:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" )
snake_case_ = Image.open(ds[0]["""file"""] )
snake_case_ = Image.open(ds[1]["""file"""] )
snake_case_ = Image.open(ds[2]["""file"""] )
snake_case_ = Image.open(ds[3]["""file"""] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[str] = BeitImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = BeitImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_center_crop""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """center_crop""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """image_mean""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """image_std""" ) )
def lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} )
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} )
self.assertEqual(image_processor.do_reduce_labels , UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=UpperCAmelCase_ )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
self.assertEqual(image_processor.do_reduce_labels , UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Optional[int] ) ->int:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ )
snake_case_ = []
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
1,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
# Test not batched input (PIL images)
snake_case_ , snake_case_ = prepare_semantic_single_inputs()
snake_case_ = image_processing(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
1,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
# Test batched input (PIL images)
snake_case_ , snake_case_ = prepare_semantic_batch_inputs()
snake_case_ = image_processing(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
2,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
def lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
snake_case_ , snake_case_ = prepare_semantic_single_inputs()
snake_case_ = image_processing(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""pt""" )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 150 )
snake_case_ = True
snake_case_ = image_processing(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""pt""" )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
| 2 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = 0
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
snake_case_ = i + 1
else:
snake_case_ = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
| 2 | 1 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_normalize
def lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
snake_case_ = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" )
image_processor_first.to_json_file(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
pass
def _a ( ) -> str:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
snake_case_ = Image.open(dataset[4]["""file"""] )
snake_case_ = Image.open(dataset[5]["""file"""] )
snake_case_ = [imagea, imagea]
return images
@require_vision
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
snake_case_ = prepare_images()
# test non-batched
snake_case_ = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_024) )
snake_case_ = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ )
# test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_024) )
snake_case_ = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
| 2 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 1 |
"""simple docstring"""
import datasets
__SCREAMING_SNAKE_CASE : Dict = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n'
__SCREAMING_SNAKE_CASE : str = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n'
__SCREAMING_SNAKE_CASE : List[Any] = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n'
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
return (preds == labels).mean()
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class __A (datasets.Metric):
'''simple docstring'''
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ),
"""references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ),
} ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ) ->List[str]:
"""simple docstring"""
return {"accuracy": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )}
| 2 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter'
__SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE'
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}"""
raise TypeError(_SCREAMING_SNAKE_CASE )
snake_case_ = spanish_id.replace("""-""" , """""" ).upper()
if len(_SCREAMING_SNAKE_CASE ) != 9:
raise ValueError(_SCREAMING_SNAKE_CASE )
try:
snake_case_ = int(spanish_id_clean[0:8] )
snake_case_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_SCREAMING_SNAKE_CASE ) from ex
if letter.isdigit():
raise ValueError(_SCREAMING_SNAKE_CASE )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import re
import tempfile
from pathlib import Path
import pytest
import yaml
from datasets.utils.readme import ReadMe
# @pytest.fixture
# def example_yaml_structure():
__SCREAMING_SNAKE_CASE : Tuple = yaml.safe_load(
'\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n'
)
__SCREAMING_SNAKE_CASE : Any = {
'name': 'root',
'text': '',
'is_empty_text': True,
'subsections': [
{
'name': 'Dataset Card for My Dataset',
'text': '',
'is_empty_text': True,
'subsections': [
{'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []},
{
'name': 'Dataset Description',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [
{
'name': 'Dataset Summary',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [],
},
{
'name': 'Supported Tasks and Leaderboards',
'text': '',
'is_empty_text': True,
'subsections': [],
},
{'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []},
],
},
],
}
],
}
__SCREAMING_SNAKE_CASE : Any = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__SCREAMING_SNAKE_CASE : Dict = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__SCREAMING_SNAKE_CASE : List[str] = {
'name': 'root',
'text': '',
'is_empty_text': True,
'subsections': [
{
'name': 'Dataset Card for My Dataset',
'text': '',
'is_empty_text': True,
'subsections': [
{'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []},
{
'name': 'Dataset Description',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [
{
'name': 'Dataset Summary',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [
{
'name': 'Extra Ignored Subsection',
'text': '',
'is_empty_text': True,
'subsections': [],
}
],
},
{
'name': 'Supported Tasks and Leaderboards',
'text': '',
'is_empty_text': True,
'subsections': [],
},
{'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []},
],
},
],
}
],
}
__SCREAMING_SNAKE_CASE : List[Any] = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__SCREAMING_SNAKE_CASE : Union[str, Any] = (
'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.'
)
__SCREAMING_SNAKE_CASE : int = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__SCREAMING_SNAKE_CASE : Tuple = (
'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.'
)
__SCREAMING_SNAKE_CASE : int = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__SCREAMING_SNAKE_CASE : Tuple = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.'
__SCREAMING_SNAKE_CASE : List[str] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__SCREAMING_SNAKE_CASE : int = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).'
__SCREAMING_SNAKE_CASE : int = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n'
__SCREAMING_SNAKE_CASE : Any = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.'
__SCREAMING_SNAKE_CASE : Any = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n'
__SCREAMING_SNAKE_CASE : List[str] = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.'
__SCREAMING_SNAKE_CASE : List[Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n'
__SCREAMING_SNAKE_CASE : Dict = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.'
__SCREAMING_SNAKE_CASE : Tuple = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__SCREAMING_SNAKE_CASE : Dict = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.'
__SCREAMING_SNAKE_CASE : Any = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n'
__SCREAMING_SNAKE_CASE : Tuple = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.'
__SCREAMING_SNAKE_CASE : List[str] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__SCREAMING_SNAKE_CASE : List[Any] = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.'
__SCREAMING_SNAKE_CASE : Tuple = ''
__SCREAMING_SNAKE_CASE : List[str] = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.'
__SCREAMING_SNAKE_CASE : List[Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__SCREAMING_SNAKE_CASE : Optional[int] = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.'
@pytest.mark.parametrize(
"""readme_md, expected_dict""" , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
assert ReadMe.from_string(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to_dict() == expected_dict
@pytest.mark.parametrize(
"""readme_md, expected_error""" , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
with pytest.raises(_SCREAMING_SNAKE_CASE , match=re.escape(expected_error.format(path="""root""" ) ) ):
snake_case_ = ReadMe.from_string(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
readme.validate()
@pytest.mark.parametrize(
"""readme_md, expected_error""" , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
with pytest.raises(_SCREAMING_SNAKE_CASE , match=re.escape(expected_error.format(path="""root""" ) ) ):
ReadMe.from_string(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
"""readme_md,""" , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
ReadMe.from_string(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , suppress_parsing_errors=_SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
"""readme_md, expected_dict""" , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = Path(_SCREAMING_SNAKE_CASE ) / """README.md"""
with open(_SCREAMING_SNAKE_CASE , """w+""" ) as readme_file:
readme_file.write(_SCREAMING_SNAKE_CASE )
snake_case_ = ReadMe.from_readme(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to_dict()
assert out["name"] == path
assert out["text"] == ""
assert out["is_empty_text"]
assert out["subsections"] == expected_dict["subsections"]
@pytest.mark.parametrize(
"""readme_md, expected_error""" , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = Path(_SCREAMING_SNAKE_CASE ) / """README.md"""
with open(_SCREAMING_SNAKE_CASE , """w+""" ) as readme_file:
readme_file.write(_SCREAMING_SNAKE_CASE )
snake_case_ = expected_error.format(path=_SCREAMING_SNAKE_CASE )
with pytest.raises(_SCREAMING_SNAKE_CASE , match=re.escape(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = ReadMe.from_readme(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
readme.validate()
@pytest.mark.parametrize(
"""readme_md, expected_error""" , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = Path(_SCREAMING_SNAKE_CASE ) / """README.md"""
with open(_SCREAMING_SNAKE_CASE , """w+""" ) as readme_file:
readme_file.write(_SCREAMING_SNAKE_CASE )
snake_case_ = expected_error.format(path=_SCREAMING_SNAKE_CASE )
with pytest.raises(_SCREAMING_SNAKE_CASE , match=re.escape(_SCREAMING_SNAKE_CASE ) ):
ReadMe.from_readme(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
"""readme_md,""" , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = Path(_SCREAMING_SNAKE_CASE ) / """README.md"""
with open(_SCREAMING_SNAKE_CASE , """w+""" ) as readme_file:
readme_file.write(_SCREAMING_SNAKE_CASE )
ReadMe.from_readme(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , suppress_parsing_errors=_SCREAMING_SNAKE_CASE )
| 2 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'}
__SCREAMING_SNAKE_CASE : List[str] = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
}
}
__SCREAMING_SNAKE_CASE : List[str] = {
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
__SCREAMING_SNAKE_CASE : int = '▁'
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = VOCAB_FILES_NAMES
__lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None:
"""simple docstring"""
snake_case_ = (
AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
else mask_token
)
snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
snake_case_ = do_lower_case
snake_case_ = remove_space
snake_case_ = keep_accents
snake_case_ = vocab_file
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
return len(self.sp_model )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) ->List[str]:
"""simple docstring"""
snake_case_ = self.__dict__.copy()
snake_case_ = None
return state
def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
snake_case_ = {}
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str:
"""simple docstring"""
if self.remove_space:
snake_case_ = """ """.join(inputs.strip().split() )
else:
snake_case_ = inputs
snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ )
snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] )
if self.do_lower_case:
snake_case_ = outputs.lower()
return outputs
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
snake_case_ = self.preprocess_text(UpperCAmelCase_ )
snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
snake_case_ = []
for piece in pieces:
if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
snake_case_ = cur_pieces[1:]
else:
snake_case_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCAmelCase_ )
else:
new_pieces.append(UpperCAmelCase_ )
return new_pieces
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict:
"""simple docstring"""
return self.sp_model.PieceToId(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return self.sp_model.IdToPiece(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any:
"""simple docstring"""
snake_case_ = []
snake_case_ = """"""
snake_case_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase_ ) + token
snake_case_ = True
snake_case_ = []
else:
current_sub_tokens.append(UpperCAmelCase_ )
snake_case_ = False
out_string += self.sp_model.decode(UpperCAmelCase_ )
return out_string.strip()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , """wb""" ) as fi:
snake_case_ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
return (out_vocab_file,)
| 2 | 1 |
"""simple docstring"""
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
__SCREAMING_SNAKE_CASE : Union[str, Any] = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
__SCREAMING_SNAKE_CASE : Optional[Any] = [file for file in filepaths if file != file.lower()]
if upper_files:
print(f"""{len(upper_files)} files contain uppercase characters:""")
print('\n'.join(upper_files) + '\n')
__SCREAMING_SNAKE_CASE : List[str] = [file for file in filepaths if ' ' in file]
if space_files:
print(f"""{len(space_files)} files contain space characters:""")
print('\n'.join(space_files) + '\n')
__SCREAMING_SNAKE_CASE : List[Any] = [file for file in filepaths if '-' in file]
if hyphen_files:
print(f"""{len(hyphen_files)} files contain hyphen characters:""")
print('\n'.join(hyphen_files) + '\n')
__SCREAMING_SNAKE_CASE : List[str] = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(f"""{len(nodir_files)} files are not in a directory:""")
print('\n'.join(nodir_files) + '\n')
__SCREAMING_SNAKE_CASE : str = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 2 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("""The given input must be positive""" )
# get the generated string sequence
snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = int(sequence[i] , 2 )
return sequence
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
snake_case_ = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
snake_case_ = gray_code_sequence_string(bit_count - 1 )
snake_case_ = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
snake_case_ = """0""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
snake_case_ = """1""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=7 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : List[Any]=18 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : Tuple=400 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : str=None , UpperCAmelCase_ : str=True , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : int=True , ) ->List[str]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""shortest_edge""": 20}
snake_case_ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_center_crop
snake_case_ = crop_size
snake_case_ = do_flip_channel_order
def lowerCAmelCase ( self : Any ) ->List[str]:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Tuple = MobileViTImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
snake_case_ = MobileViTImageProcessingTester(self )
@property
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : int ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_center_crop""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """center_crop""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_flip_channel_order""" ) )
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 20} )
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCAmelCase ( self : str ) ->str:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 2 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : List[str] = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Dict = """ctrl"""
__lowercase: Optional[Any] = ["""past_key_values"""]
__lowercase: Optional[Any] = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : List[str] , UpperCAmelCase_ : Dict=246_534 , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Dict=1_280 , UpperCAmelCase_ : List[str]=8_192 , UpperCAmelCase_ : str=48 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=1E-6 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : int=True , **UpperCAmelCase_ : int , ) ->Dict:
"""simple docstring"""
snake_case_ = vocab_size
snake_case_ = n_positions
snake_case_ = n_embd
snake_case_ = n_layer
snake_case_ = n_head
snake_case_ = dff
snake_case_ = resid_pdrop
snake_case_ = embd_pdrop
snake_case_ = layer_norm_epsilon
snake_case_ = initializer_range
snake_case_ = use_cache
super().__init__(**UpperCAmelCase_ )
| 2 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/'
__SCREAMING_SNAKE_CASE : List[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
snake_case_ = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
snake_case_ = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = {}
import re
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# keep original key
else:
snake_case_ = original_key
snake_case_ = replace_key(_SCREAMING_SNAKE_CASE )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
snake_case_ = original_key
snake_case_ = original_key
snake_case_ = value
return new_dict
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ):
snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE )
open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content )
snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]]
snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE )
snake_case_ = []
snake_case_ = {}
for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""]
snake_case_ = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
snake_case_ = old_dic[k]
elif k.endswith(""".w""" ):
snake_case_ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
snake_case_ = old_dic[k]
else:
snake_case_ = old_dic[k]
snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}"""
snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
weight_dict.append(_SCREAMING_SNAKE_CASE )
snake_case_ = weight_dict.pop(0 )
model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
return weight_dict
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 2 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__)
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
snake_case_ = b.T
snake_case_ = np.sum(np.square(_SCREAMING_SNAKE_CASE ) , axis=1 )
snake_case_ = np.sum(np.square(_SCREAMING_SNAKE_CASE ) , axis=0 )
snake_case_ = np.matmul(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = aa[:, None] - 2 * ab + ba[None, :]
return d
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
snake_case_ = x.reshape(-1 , 3 )
snake_case_ = squared_euclidean_distance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return np.argmin(_SCREAMING_SNAKE_CASE , axis=1 )
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = ["""pixel_values"""]
def __init__( self : Tuple , UpperCAmelCase_ : Optional[Union[List[List[int]], np.ndarray]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : Optional[int] , ) ->None:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ )
snake_case_ = size if size is not None else {"""height""": 256, """width""": 256}
snake_case_ = get_size_dict(UpperCAmelCase_ )
snake_case_ = np.array(UpperCAmelCase_ ) if clusters is not None else None
snake_case_ = do_resize
snake_case_ = size
snake_case_ = resample
snake_case_ = do_normalize
snake_case_ = do_color_quantize
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Tuple , ) ->np.ndarray:
"""simple docstring"""
snake_case_ = get_size_dict(UpperCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F"""Size dictionary must contain both height and width keys. Got {size.keys()}""" )
return resize(
UpperCAmelCase_ , size=(size["""height"""], size["""width"""]) , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , ) ->np.ndarray:
"""simple docstring"""
snake_case_ = rescale(image=UpperCAmelCase_ , scale=1 / 127.5 , data_format=UpperCAmelCase_ )
snake_case_ = image - 1
return image
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[List[List[int]], np.ndarray]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **UpperCAmelCase_ : Any , ) ->PIL.Image.Image:
"""simple docstring"""
snake_case_ = do_resize if do_resize is not None else self.do_resize
snake_case_ = size if size is not None else self.size
snake_case_ = get_size_dict(UpperCAmelCase_ )
snake_case_ = resample if resample is not None else self.resample
snake_case_ = do_normalize if do_normalize is not None else self.do_normalize
snake_case_ = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
snake_case_ = clusters if clusters is not None else self.clusters
snake_case_ = np.array(UpperCAmelCase_ )
snake_case_ = make_list_of_images(UpperCAmelCase_ )
if not valid_images(UpperCAmelCase_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_color_quantize and clusters is None:
raise ValueError("""Clusters must be specified if do_color_quantize is True.""" )
# All transformations expect numpy arrays.
snake_case_ = [to_numpy_array(UpperCAmelCase_ ) for image in images]
if do_resize:
snake_case_ = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ ) for image in images]
if do_normalize:
snake_case_ = [self.normalize(image=UpperCAmelCase_ ) for image in images]
if do_color_quantize:
snake_case_ = [to_channel_dimension_format(UpperCAmelCase_ , ChannelDimension.LAST ) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
snake_case_ = np.array(UpperCAmelCase_ )
snake_case_ = color_quantize(UpperCAmelCase_ , UpperCAmelCase_ ).reshape(images.shape[:-1] )
# flatten to (batch_size, height*width)
snake_case_ = images.shape[0]
snake_case_ = images.reshape(UpperCAmelCase_ , -1 )
# We need to convert back to a list of images to keep consistent behaviour across processors.
snake_case_ = list(UpperCAmelCase_ )
else:
snake_case_ = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images]
snake_case_ = {"""input_ids""": images}
return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ )
| 2 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__SCREAMING_SNAKE_CASE : Dict = 'zero2'
__SCREAMING_SNAKE_CASE : List[Any] = 'zero3'
__SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __A (snake_case__):
'''simple docstring'''
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = models[model]
snake_case_ = self.run_trainer(
stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
self.do_checks(UpperCAmelCase_ )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ )
snake_case_ = F"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(UpperCAmelCase_ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
snake_case_ = self.get_launcher(UpperCAmelCase_ )
snake_case_ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple:
"""simple docstring"""
snake_case_ = min(2 , get_gpu_count() ) if distributed else 1
return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 2 | 1 |
"""simple docstring"""
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> str:
try:
snake_case_ = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
snake_case_ = default
else:
# KEY is set, convert it to True or False.
try:
snake_case_ = strtobool(_SCREAMING_SNAKE_CASE )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f"""If set, {key} must be yes or no.""" )
return _value
__SCREAMING_SNAKE_CASE : List[Any] = parse_flag_from_env('RUN_SLOW', default=False)
def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]:
return unittest.skip("""Test was skipped""" )(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
return unittest.skipUnless(_run_slow_tests , """test is slow""" )(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Tuple:
return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]:
if test_case is None:
return partial(_SCREAMING_SNAKE_CASE , version=_SCREAMING_SNAKE_CASE )
return unittest.skipUnless(is_torch_version(""">=""" , _SCREAMING_SNAKE_CASE ) , f"""test requires torch version >= {version}""" )(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]:
return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Tuple:
return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Dict:
return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(_SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE : Any = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
return unittest.skipUnless(
_atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(_SCREAMING_SNAKE_CASE )
class __A (unittest.TestCase):
'''simple docstring'''
__lowercase: Tuple = True
@classmethod
def lowerCAmelCase ( cls : Tuple ) ->str:
"""simple docstring"""
snake_case_ = tempfile.mkdtemp()
@classmethod
def lowerCAmelCase ( cls : Tuple ) ->Any:
"""simple docstring"""
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob("""**/*""" ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(UpperCAmelCase_ )
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Union[mock.Mock, List[mock.Mock]] ) ->str:
"""simple docstring"""
snake_case_ = mocks if isinstance(UpperCAmelCase_ , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]:
snake_case_ = AcceleratorState()
snake_case_ = tensor[None].clone().to(state.device )
snake_case_ = gather(_SCREAMING_SNAKE_CASE ).cpu()
snake_case_ = tensor[0].cpu()
for i in range(tensors.shape[0] ):
if not torch.equal(tensors[i] , _SCREAMING_SNAKE_CASE ):
return False
return True
class __A :
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) ->Any:
"""simple docstring"""
snake_case_ = returncode
snake_case_ = stdout
snake_case_ = stderr
async def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
while True:
snake_case_ = await stream.readline()
if line:
callback(_SCREAMING_SNAKE_CASE )
else:
break
async def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ) -> _RunOutput:
if echo:
print("""\nRunning: """ , """ """.join(_SCREAMING_SNAKE_CASE ) )
snake_case_ = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=_SCREAMING_SNAKE_CASE , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_SCREAMING_SNAKE_CASE , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
snake_case_ = []
snake_case_ = []
def tee(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="" ):
snake_case_ = line.decode("""utf-8""" ).rstrip()
sink.append(_SCREAMING_SNAKE_CASE )
if not quiet:
print(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , file=_SCREAMING_SNAKE_CASE )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda _SCREAMING_SNAKE_CASE : tee(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , sys.stdout , label="""stdout:""" ) ) ),
asyncio.create_task(_read_stream(p.stderr , lambda _SCREAMING_SNAKE_CASE : tee(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , sys.stderr , label="""stderr:""" ) ) ),
] , timeout=_SCREAMING_SNAKE_CASE , )
return _RunOutput(await p.wait() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=180 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True ) -> _RunOutput:
snake_case_ = asyncio.get_event_loop()
snake_case_ = loop.run_until_complete(
_stream_subprocess(_SCREAMING_SNAKE_CASE , env=_SCREAMING_SNAKE_CASE , stdin=_SCREAMING_SNAKE_CASE , timeout=_SCREAMING_SNAKE_CASE , quiet=_SCREAMING_SNAKE_CASE , echo=_SCREAMING_SNAKE_CASE ) )
snake_case_ = """ """.join(_SCREAMING_SNAKE_CASE )
if result.returncode > 0:
snake_case_ = """\n""".join(result.stderr )
raise RuntimeError(
f"""'{cmd_str}' failed with returncode {result.returncode}\n\n"""
f"""The combined stderr from workers follows:\n{stderr}""" )
return result
class __A (snake_case__):
'''simple docstring'''
pass
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> List[str]:
try:
snake_case_ = subprocess.check_output(_SCREAMING_SNAKE_CASE , stderr=subprocess.STDOUT )
if return_stdout:
if hasattr(_SCREAMING_SNAKE_CASE , """decode""" ):
snake_case_ = output.decode("""utf-8""" )
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
f"""Command `{" ".join(_SCREAMING_SNAKE_CASE )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
| 2 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True})
__lowercase: ClassVar[Features] = Features({"""audio""": Audio()})
__lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")})
__lowercase: str = "audio"
__lowercase: str = "transcription"
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int:
"""simple docstring"""
if self.audio_column not in features:
raise ValueError(F"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , UpperCAmelCase_ ):
raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" )
snake_case_ = copy.deepcopy(self )
snake_case_ = self.input_schema.copy()
snake_case_ = features[self.audio_column]
snake_case_ = input_schema
return task_template
@property
def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]:
"""simple docstring"""
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 2 | 1 |
"""simple docstring"""
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
__SCREAMING_SNAKE_CASE : Optional[Any] = '\\n Text data.\n Second line of data.'
__SCREAMING_SNAKE_CASE : List[str] = 'file'
@pytest.fixture(scope="""session""" )
def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]:
snake_case_ = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""")
snake_case_ = bytes(_SCREAMING_SNAKE_CASE , """utf-8""" )
with zstd.open(_SCREAMING_SNAKE_CASE , """wb""" ) as f:
f.write(_SCREAMING_SNAKE_CASE )
return path
@pytest.fixture
def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
with open(os.path.join(tmpfs.local_root_dir , _SCREAMING_SNAKE_CASE ) , """w""" ) as f:
f.write(_SCREAMING_SNAKE_CASE )
return FILE_PATH
@pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
snake_case_ = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path}
snake_case_ = input_paths[compression_format]
snake_case_ = tmp_path / """cache"""
snake_case_ = DownloadConfig(cache_dir=_SCREAMING_SNAKE_CASE , extract_compressed_file=_SCREAMING_SNAKE_CASE )
snake_case_ = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE )
with open(_SCREAMING_SNAKE_CASE ) as f:
snake_case_ = f.read()
with open(_SCREAMING_SNAKE_CASE ) as f:
snake_case_ = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize("""default_extracted""" , [True, False] )
@pytest.mark.parametrize("""default_cache_dir""" , [True, False] )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
snake_case_ = """custom_cache"""
snake_case_ = """custom_extracted_dir"""
snake_case_ = tmp_path / """custom_extracted_path"""
if default_extracted:
snake_case_ = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""")
else:
monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , _SCREAMING_SNAKE_CASE )
monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(_SCREAMING_SNAKE_CASE ) )
snake_case_ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
snake_case_ = xz_file
snake_case_ = (
DownloadConfig(extract_compressed_file=_SCREAMING_SNAKE_CASE )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_SCREAMING_SNAKE_CASE )
)
snake_case_ = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE )
assert Path(_SCREAMING_SNAKE_CASE ).parent.parts[-2:] == expected
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
# absolute path
snake_case_ = str(Path(_SCREAMING_SNAKE_CASE ).resolve() )
assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file
# relative path
snake_case_ = str(Path(_SCREAMING_SNAKE_CASE ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file
def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]:
# absolute path
snake_case_ = str(tmp_path.resolve() / """__missing_file__.txt""" )
with pytest.raises(_SCREAMING_SNAKE_CASE ):
cached_path(_SCREAMING_SNAKE_CASE )
# relative path
snake_case_ = """./__missing_file__.txt"""
with pytest.raises(_SCREAMING_SNAKE_CASE ):
cached_path(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
snake_case_ = get_from_cache(f"""tmp://{tmpfs_file}""" )
with open(_SCREAMING_SNAKE_CASE ) as f:
snake_case_ = f.read()
assert output_file_content == FILE_CONTENT
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE )
def _a ( ) -> Tuple:
with pytest.raises(_SCREAMING_SNAKE_CASE ):
cached_path("""https://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Dict:
snake_case_ = tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(_SCREAMING_SNAKE_CASE ):
http_get("""https://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE )
with pytest.raises(_SCREAMING_SNAKE_CASE ):
http_head("""https://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Dict:
snake_case_ = tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(_SCREAMING_SNAKE_CASE ):
ftp_get("""ftp://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE )
with pytest.raises(_SCREAMING_SNAKE_CASE ):
ftp_head("""ftp://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Tuple:
snake_case_ = tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(_SCREAMING_SNAKE_CASE ):
fsspec_get("""s3://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE )
with pytest.raises(_SCREAMING_SNAKE_CASE ):
fsspec_head("""s3://huggingface.co""" )
| 2 |
"""simple docstring"""
from functools import reduce
__SCREAMING_SNAKE_CASE : Tuple = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def _a ( _SCREAMING_SNAKE_CASE = N ) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) )
for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 | 1 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=10 ) -> Optional[int]:
snake_case_ = []
for _ in range(_SCREAMING_SNAKE_CASE ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=10 ) -> int:
snake_case_ = []
for step in range(_SCREAMING_SNAKE_CASE ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ = os.path.join(_SCREAMING_SNAKE_CASE , """schedule.bin""" )
torch.save(scheduler.state_dict() , _SCREAMING_SNAKE_CASE )
snake_case_ = torch.load(_SCREAMING_SNAKE_CASE )
scheduler.load_state_dict(_SCREAMING_SNAKE_CASE )
return lrs
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str ) ->Optional[Any]:
"""simple docstring"""
self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) )
for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
self.assertAlmostEqual(UpperCAmelCase_ , UpperCAmelCase_ , delta=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase_ )
snake_case_ = torch.tensor([0.4, 0.2, -0.5] )
snake_case_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
snake_case_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
snake_case_ = criterion(UpperCAmelCase_ , UpperCAmelCase_ )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
snake_case_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase_ )
snake_case_ = torch.tensor([0.4, 0.2, -0.5] )
snake_case_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
snake_case_ = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase_ , weight_decay=0.0 , relative_step=UpperCAmelCase_ , scale_parameter=UpperCAmelCase_ , warmup_init=UpperCAmelCase_ , )
for _ in range(1_000 ):
snake_case_ = criterion(UpperCAmelCase_ , UpperCAmelCase_ )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
__lowercase: int = nn.Linear(50 , 50) if is_torch_available() else None
__lowercase: Tuple = AdamW(m.parameters() , lr=1_0.0) if is_torch_available() else None
__lowercase: int = 10
def lowerCAmelCase ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None ) ->Union[str, Any]:
"""simple docstring"""
self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) )
for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
self.assertAlmostEqual(UpperCAmelCase_ , UpperCAmelCase_ , delta=UpperCAmelCase_ , msg=UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
snake_case_ = {"""num_warmup_steps""": 2, """num_training_steps""": 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
snake_case_ = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"""num_warmup_steps""": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, """num_cycles""": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, """power""": 2.0, """lr_end""": 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"""num_warmup_steps""": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
snake_case_ , snake_case_ = data
snake_case_ = scheduler_func(self.optimizer , **UpperCAmelCase_ )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
snake_case_ = unwrap_schedule(UpperCAmelCase_ , self.num_steps )
self.assertListAlmostEqual(
UpperCAmelCase_ , UpperCAmelCase_ , tol=1E-2 , msg=F"""failed for {scheduler_func} in normal scheduler""" , )
snake_case_ = scheduler_func(self.optimizer , **UpperCAmelCase_ )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase_ ) # wrap to test picklability of the schedule
snake_case_ = unwrap_and_save_reload_schedule(UpperCAmelCase_ , self.num_steps )
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ , msg=F"""failed for {scheduler_func} in save and reload""" )
class __A :
'''simple docstring'''
def __init__( self : str , UpperCAmelCase_ : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = fn
def __call__( self : Optional[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int ) ->str:
"""simple docstring"""
return self.fn(*UpperCAmelCase_ , **UpperCAmelCase_ )
@classmethod
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Dict ) ->List[Any]:
"""simple docstring"""
snake_case_ = list(map(self , scheduler.lr_lambdas ) )
| 2 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : str = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Any = """mctct"""
def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = intermediate_size
snake_case_ = num_attention_heads
snake_case_ = attention_head_dim
snake_case_ = max_position_embeddings
snake_case_ = layer_norm_eps
snake_case_ = layerdrop
snake_case_ = hidden_act
snake_case_ = initializer_range
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = pad_token_id
snake_case_ = bos_token_id
snake_case_ = eos_token_id
snake_case_ = conv_glu_dim
snake_case_ = conv_dropout
snake_case_ = num_conv_layers
snake_case_ = input_feat_per_channel
snake_case_ = input_channels
snake_case_ = conv_channels
snake_case_ = ctc_loss_reduction
snake_case_ = ctc_zero_infinity
# prevents config testing fail with exporting to json
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """
F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """
F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
| 2 | 1 |
"""simple docstring"""
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def _a ( ) -> None:
print("""Making key files...""" )
make_key_files("""rsa""" , 1_024 )
print("""Key files generation successful.""" )
def _a ( _SCREAMING_SNAKE_CASE ) -> tuple[tuple[int, int], tuple[int, int]]:
print("""Generating prime p...""" )
snake_case_ = rabinMiller.generate_large_prime(_SCREAMING_SNAKE_CASE )
print("""Generating prime q...""" )
snake_case_ = rabinMiller.generate_large_prime(_SCREAMING_SNAKE_CASE )
snake_case_ = p * q
print("""Generating e that is relatively prime to (p - 1) * (q - 1)...""" )
while True:
snake_case_ = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) )
if cryptoMath.gcd(_SCREAMING_SNAKE_CASE , (p - 1) * (q - 1) ) == 1:
break
print("""Calculating d that is mod inverse of e...""" )
snake_case_ = cryptoMath.find_mod_inverse(_SCREAMING_SNAKE_CASE , (p - 1) * (q - 1) )
snake_case_ = (n, e)
snake_case_ = (n, d)
return (public_key, private_key)
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None:
if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ):
print("""\nWARNING:""" )
print(
f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n"""
"""Use a different name or delete these files and re-run this program.""" )
sys.exit()
snake_case_ , snake_case_ = generate_key(_SCREAMING_SNAKE_CASE )
print(f"""\nWriting public key to file {name}_pubkey.txt...""" )
with open(f"""{name}_pubkey.txt""" , """w""" ) as out_file:
out_file.write(f"""{key_size},{public_key[0]},{public_key[1]}""" )
print(f"""Writing private key to file {name}_privkey.txt...""" )
with open(f"""{name}_privkey.txt""" , """w""" ) as out_file:
out_file.write(f"""{key_size},{private_key[0]},{private_key[1]}""" )
if __name__ == "__main__":
main()
| 2 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int:
return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 2 | 1 |
"""simple docstring"""
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : int ) ->str:
"""simple docstring"""
snake_case_ = tempfile.mkdtemp()
snake_case_ = SamImageProcessor()
snake_case_ = SamProcessor(UpperCAmelCase_ )
processor.save_pretrained(self.tmpdirname )
def lowerCAmelCase ( self : List[Any] , **UpperCAmelCase_ : Any ) ->Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).image_processor
def lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
snake_case_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
snake_case_ = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCAmelCase ( self : Any ) ->str:
"""simple docstring"""
snake_case_ = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
snake_case_ = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 )
snake_case_ = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCAmelCase_ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = SamProcessor(image_processor=UpperCAmelCase_ )
snake_case_ = self.prepare_image_inputs()
snake_case_ = image_processor(UpperCAmelCase_ , return_tensors="""np""" )
snake_case_ = processor(images=UpperCAmelCase_ , return_tensors="""np""" )
input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_torch
def lowerCAmelCase ( self : Optional[Any] ) ->int:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = SamProcessor(image_processor=UpperCAmelCase_ )
snake_case_ = [torch.ones((1, 3, 5, 5) )]
snake_case_ = [[1_764, 2_646]]
snake_case_ = [[683, 1_024]]
snake_case_ = processor.post_process_masks(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) )
snake_case_ = processor.post_process_masks(
UpperCAmelCase_ , torch.tensor(UpperCAmelCase_ ) , torch.tensor(UpperCAmelCase_ ) )
self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) )
# should also work with np
snake_case_ = [np.ones((1, 3, 5, 5) )]
snake_case_ = processor.post_process_masks(UpperCAmelCase_ , np.array(UpperCAmelCase_ ) , np.array(UpperCAmelCase_ ) )
self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) )
snake_case_ = [[1, 0], [0, 1]]
with self.assertRaises(UpperCAmelCase_ ):
snake_case_ = processor.post_process_masks(UpperCAmelCase_ , np.array(UpperCAmelCase_ ) , np.array(UpperCAmelCase_ ) )
@require_vision
@require_tf
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
snake_case_ = tempfile.mkdtemp()
snake_case_ = SamImageProcessor()
snake_case_ = SamProcessor(UpperCAmelCase_ )
processor.save_pretrained(self.tmpdirname )
def lowerCAmelCase ( self : Optional[Any] , **UpperCAmelCase_ : Tuple ) ->Dict:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).image_processor
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowerCAmelCase ( self : Dict ) ->List[Any]:
"""simple docstring"""
snake_case_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
snake_case_ = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
snake_case_ = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 )
snake_case_ = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCAmelCase_ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = SamProcessor(image_processor=UpperCAmelCase_ )
snake_case_ = self.prepare_image_inputs()
snake_case_ = image_processor(UpperCAmelCase_ , return_tensors="""np""" )
snake_case_ = processor(images=UpperCAmelCase_ , return_tensors="""np""" )
input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_tf
def lowerCAmelCase ( self : List[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = SamProcessor(image_processor=UpperCAmelCase_ )
snake_case_ = [tf.ones((1, 3, 5, 5) )]
snake_case_ = [[1_764, 2_646]]
snake_case_ = [[683, 1_024]]
snake_case_ = processor.post_process_masks(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""tf""" )
self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) )
snake_case_ = processor.post_process_masks(
UpperCAmelCase_ , tf.convert_to_tensor(UpperCAmelCase_ ) , tf.convert_to_tensor(UpperCAmelCase_ ) , return_tensors="""tf""" , )
self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) )
# should also work with np
snake_case_ = [np.ones((1, 3, 5, 5) )]
snake_case_ = processor.post_process_masks(
UpperCAmelCase_ , np.array(UpperCAmelCase_ ) , np.array(UpperCAmelCase_ ) , return_tensors="""tf""" )
self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) )
snake_case_ = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
snake_case_ = processor.post_process_masks(
UpperCAmelCase_ , np.array(UpperCAmelCase_ ) , np.array(UpperCAmelCase_ ) , return_tensors="""tf""" )
@require_vision
@require_torchvision
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
snake_case_ = tempfile.mkdtemp()
snake_case_ = SamImageProcessor()
snake_case_ = SamProcessor(UpperCAmelCase_ )
processor.save_pretrained(self.tmpdirname )
def lowerCAmelCase ( self : Dict , **UpperCAmelCase_ : List[Any] ) ->str:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).image_processor
def lowerCAmelCase ( self : int ) ->Tuple:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
snake_case_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
snake_case_ = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = SamProcessor(image_processor=UpperCAmelCase_ )
snake_case_ = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
snake_case_ = [tf.convert_to_tensor(UpperCAmelCase_ )]
snake_case_ = [torch.tensor(UpperCAmelCase_ )]
snake_case_ = [[1_764, 2_646]]
snake_case_ = [[683, 1_024]]
snake_case_ = processor.post_process_masks(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""tf""" )
snake_case_ = processor.post_process_masks(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""pt""" )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def lowerCAmelCase ( self : Optional[Any] ) ->int:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = SamProcessor(image_processor=UpperCAmelCase_ )
snake_case_ = self.prepare_image_inputs()
snake_case_ = image_processor(UpperCAmelCase_ , return_tensors="""pt""" )["""pixel_values"""].numpy()
snake_case_ = processor(images=UpperCAmelCase_ , return_tensors="""pt""" )["""pixel_values"""].numpy()
snake_case_ = image_processor(UpperCAmelCase_ , return_tensors="""tf""" )["""pixel_values"""].numpy()
snake_case_ = processor(images=UpperCAmelCase_ , return_tensors="""tf""" )["""pixel_values"""].numpy()
self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) )
self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) )
self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) )
| 2 |
"""simple docstring"""
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: str = VQModel
__lowercase: Union[str, Any] = """sample"""
@property
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple:
"""simple docstring"""
snake_case_ = 4
snake_case_ = 3
snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ )
return {"sample": image}
@property
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
return (3, 32, 32)
@property
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
return (3, 32, 32)
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 3,
}
snake_case_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(UpperCAmelCase_ )
snake_case_ = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" )
model.to(UpperCAmelCase_ ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
snake_case_ = image.to(UpperCAmelCase_ )
with torch.no_grad():
snake_case_ = model(UpperCAmelCase_ ).sample
snake_case_ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] )
# fmt: on
self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 1 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]:
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0X4e00 and cp <= 0X9fff)
or (cp >= 0X3400 and cp <= 0X4dbf) #
or (cp >= 0X20000 and cp <= 0X2a6df) #
or (cp >= 0X2a700 and cp <= 0X2b73f) #
or (cp >= 0X2b740 and cp <= 0X2b81f) #
or (cp >= 0X2b820 and cp <= 0X2ceaf) #
or (cp >= 0Xf900 and cp <= 0Xfaff)
or (cp >= 0X2f800 and cp <= 0X2fa1f) #
): #
return True
return False
def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]:
# word like '180' or '身高' or '神'
for char in word:
snake_case_ = ord(_SCREAMING_SNAKE_CASE )
if not _is_chinese_char(_SCREAMING_SNAKE_CASE ):
return 0
return 1
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
snake_case_ = set()
for token in tokens:
snake_case_ = len(_SCREAMING_SNAKE_CASE ) > 1 and is_chinese(_SCREAMING_SNAKE_CASE )
if chinese_word:
word_set.add(_SCREAMING_SNAKE_CASE )
snake_case_ = list(_SCREAMING_SNAKE_CASE )
return word_list
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
if not chinese_word_set:
return bert_tokens
snake_case_ = max([len(_SCREAMING_SNAKE_CASE ) for w in chinese_word_set] )
snake_case_ = bert_tokens
snake_case_ , snake_case_ = 0, len(_SCREAMING_SNAKE_CASE )
while start < end:
snake_case_ = True
if is_chinese(bert_word[start] ):
snake_case_ = min(end - start , _SCREAMING_SNAKE_CASE )
for i in range(_SCREAMING_SNAKE_CASE , 1 , -1 ):
snake_case_ = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
snake_case_ = """##""" + bert_word[j]
snake_case_ = start + i
snake_case_ = False
break
if single_word:
start += 1
return bert_word
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
snake_case_ = []
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , 100 ):
snake_case_ = ltp_tokenizer.seg(lines[i : i + 100] )[0]
snake_case_ = [get_chinese_word(_SCREAMING_SNAKE_CASE ) for r in res]
ltp_res.extend(_SCREAMING_SNAKE_CASE )
assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )
snake_case_ = []
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , 100 ):
snake_case_ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=512 )
bert_res.extend(res["""input_ids"""] )
assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )
snake_case_ = []
for input_ids, chinese_word in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = []
for id in input_ids:
snake_case_ = bert_tokenizer._convert_id_to_token(_SCREAMING_SNAKE_CASE )
input_tokens.append(_SCREAMING_SNAKE_CASE )
snake_case_ = add_sub_symbol(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_SCREAMING_SNAKE_CASE ):
if token[:2] == "##":
snake_case_ = token[2:]
# save chinese tokens' pos
if len(_SCREAMING_SNAKE_CASE ) == 1 and _is_chinese_char(ord(_SCREAMING_SNAKE_CASE ) ):
ref_id.append(_SCREAMING_SNAKE_CASE )
ref_ids.append(_SCREAMING_SNAKE_CASE )
assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )
return ref_ids
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
snake_case_ = f.readlines()
snake_case_ = [line.strip() for line in data if len(_SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
snake_case_ = LTP(args.ltp ) # faster in GPU device
snake_case_ = BertTokenizer.from_pretrained(args.bert )
snake_case_ = prepare_ref(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
snake_case_ = [json.dumps(_SCREAMING_SNAKE_CASE ) + """\n""" for ref in ref_ids]
f.writelines(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path'
)
parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer')
parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res')
__SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
main(args)
| 2 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = KandinskyVaaControlnetPipeline
__lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: Union[str, Any] = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
__lowercase: Tuple = False
@property
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return 100
@property
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
snake_case_ = self.dummy_unet
snake_case_ = self.dummy_movq
snake_case_ = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , )
snake_case_ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]:
"""simple docstring"""
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase_ )
# create hint
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
if str(UpperCAmelCase_ ).startswith("""mps""" ):
snake_case_ = torch.manual_seed(UpperCAmelCase_ )
else:
snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = """cpu"""
snake_case_ = self.get_dummy_components()
snake_case_ = self.pipeline_class(**UpperCAmelCase_ )
snake_case_ = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
snake_case_ = output.images
snake_case_ = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ = np.array(
[0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0
snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case_ = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case_ = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = """A robot, 4k photo"""
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ , snake_case_ = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ = pipeline(
image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 2 | 1 |
"""simple docstring"""
from .configuration_bert_masked import MaskedBertConfig
from .modeling_bert_masked import (
MaskedBertForMultipleChoice,
MaskedBertForQuestionAnswering,
MaskedBertForSequenceClassification,
MaskedBertForTokenClassification,
MaskedBertModel,
)
from .modules import *
| 2 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
class __A :
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = []
self.adlist.append(
{"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} )
for keyword in keywords:
self.add_keyword(UpperCAmelCase_ )
self.set_fail_transitions()
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None:
"""simple docstring"""
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None:
"""simple docstring"""
snake_case_ = 0
for character in keyword:
snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ )
if next_state is None:
self.adlist.append(
{
"""value""": character,
"""next_states""": [],
"""fail_state""": 0,
"""output""": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
snake_case_ = len(self.adlist ) - 1
else:
snake_case_ = next_state
self.adlist[current_state]["output"].append(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->None:
"""simple docstring"""
snake_case_ = deque()
for node in self.adlist[0]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = 0
while q:
snake_case_ = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = self.adlist[r]["""fail_state"""]
while (
self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None
and state != 0
):
snake_case_ = self.adlist[state]["""fail_state"""]
snake_case_ = self.find_next_state(
UpperCAmelCase_ , self.adlist[child]["""value"""] )
if self.adlist[child]["fail_state"] is None:
snake_case_ = 0
snake_case_ = (
self.adlist[child]["""output"""]
+ self.adlist[self.adlist[child]["""fail_state"""]]["""output"""]
)
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]:
"""simple docstring"""
snake_case_ = {} # returns a dict with keywords and list of its occurrences
snake_case_ = 0
for i in range(len(UpperCAmelCase_ ) ):
while (
self.find_next_state(UpperCAmelCase_ , string[i] ) is None
and current_state != 0
):
snake_case_ = self.adlist[current_state]["""fail_state"""]
snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] )
if next_state is None:
snake_case_ = 0
else:
snake_case_ = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
snake_case_ = []
result[key].append(i - len(UpperCAmelCase_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
__SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__)
@add_end_docstrings(snake_case__)
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Optional[int] , **UpperCAmelCase_ : Any ) ->Tuple:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ )
if self.framework != "pt":
raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" )
# No specific FOR_XXX available yet
def __call__( self : str , UpperCAmelCase_ : Union[np.ndarray, bytes, str] , **UpperCAmelCase_ : List[Any] ) ->Tuple:
"""simple docstring"""
return super().__call__(UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , **UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ = {}
if "candidate_labels" in kwargs:
snake_case_ = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
snake_case_ = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Optional[int]="This is a sound of {}." ) ->str:
"""simple docstring"""
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
if audio.startswith("""http://""" ) or audio.startswith("""https://""" ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
snake_case_ = requests.get(UpperCAmelCase_ ).content
else:
with open(UpperCAmelCase_ , """rb""" ) as f:
snake_case_ = f.read()
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = ffmpeg_read(UpperCAmelCase_ , self.feature_extractor.sampling_rate )
if not isinstance(UpperCAmelCase_ , np.ndarray ):
raise ValueError("""We expect a numpy ndarray as input""" )
if len(audio.shape ) != 1:
raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" )
snake_case_ = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" )
snake_case_ = candidate_labels
snake_case_ = [hypothesis_template.format(UpperCAmelCase_ ) for x in candidate_labels]
snake_case_ = self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework , padding=UpperCAmelCase_ )
snake_case_ = [text_inputs]
return inputs
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Tuple ) ->Optional[int]:
"""simple docstring"""
snake_case_ = model_inputs.pop("""candidate_labels""" )
snake_case_ = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] , UpperCAmelCase_ ):
snake_case_ = text_inputs[0]
else:
# Batching case.
snake_case_ = text_inputs[0][0]
snake_case_ = self.model(**UpperCAmelCase_ , **UpperCAmelCase_ )
snake_case_ = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_audio,
}
return model_outputs
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = model_outputs.pop("""candidate_labels""" )
snake_case_ = model_outputs["""logits"""][0]
if self.framework == "pt":
snake_case_ = logits.softmax(dim=0 )
snake_case_ = probs.tolist()
else:
raise ValueError("""`tf` framework not supported.""" )
snake_case_ = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(UpperCAmelCase_ , UpperCAmelCase_ ) , key=lambda UpperCAmelCase_ : -x[0] )
]
return result
| 2 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = num_channels
snake_case_ = num_stages
snake_case_ = hidden_sizes
snake_case_ = depths
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = num_labels
snake_case_ = initializer_range
snake_case_ = out_features
snake_case_ = out_indices
snake_case_ = scope
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case_ = None
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[Any] = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
__lowercase: Union[str, Any] = (
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Optional[Any] = False
__lowercase: Any = False
__lowercase: Union[str, Any] = False
__lowercase: Dict = False
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = True
if model_class.__name__ in [
*get_values(UpperCAmelCase_ ),
*get_values(UpperCAmelCase_ ),
]:
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = False
snake_case_ = True
if (
model_class.__name__
in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )]
or not model_class.supports_gradient_checkpointing
):
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.gradient_checkpointing_enable()
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ):
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case_ = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _a ( ) -> str:
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ )
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
# verify the logits
snake_case_ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
| 2 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class __A (unittest.TestCase):
'''simple docstring'''
@property
def lowerCAmelCase ( self : str ) ->Any:
"""simple docstring"""
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = ort.SessionOptions()
snake_case_ = False
return options
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" )
# using the PNDM scheduler by default
snake_case_ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = """A red cat sitting on a park bench"""
snake_case_ = np.random.RandomState(0 )
snake_case_ = pipe(
prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=UpperCAmelCase_ , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1E-2
| 2 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights']
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
if "emb" in name:
snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
snake_case_ = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
snake_case_ = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
snake_case_ = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
snake_case_ = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
snake_case_ = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]:
snake_case_ = list(state_dict.keys() )
snake_case_ = {}
for key in keys:
snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE )
if "in_proj_weight" in key:
# split fused qkv proj
snake_case_ = val[:hidden_size, :]
snake_case_ = val[hidden_size : 2 * hidden_size, :]
snake_case_ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
snake_case_ = val
else:
snake_case_ = val
return state_dict, enc_dec_proj_state_dict
def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
snake_case_ = 1_024
snake_case_ = 24
snake_case_ = 16
elif checkpoint == "medium":
snake_case_ = 1_536
snake_case_ = 48
snake_case_ = 24
elif checkpoint == "large":
snake_case_ = 2_048
snake_case_ = 48
snake_case_ = 32
else:
raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
snake_case_ = MusicgenDecoderConfig(
hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , )
return config
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple:
snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE )
snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE )
snake_case_ = fairseq_model.lm.state_dict()
snake_case_ , snake_case_ = rename_state_dict(
_SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size )
snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" )
snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE )
# check we can do a forward pass
snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
snake_case_ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" )
snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
# set the appropriate bos/pad token ids
snake_case_ = 2_048
snake_case_ = 2_048
# set other default generation config params
snake_case_ = int(30 * audio_encoder.config.frame_rate )
snake_case_ = True
snake_case_ = 3.0
if pytorch_dump_folder is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if repo_id:
logger.info(f"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
processor.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint',
default='small',
type=str,
help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.',
)
parser.add_argument(
'--pytorch_dump_folder',
required=True,
default=None,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
parser.add_argument(
'--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.'
)
__SCREAMING_SNAKE_CASE : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 2 | 1 |
"""simple docstring"""
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler')
class __A :
'''simple docstring'''
def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = False ) ->Dict:
"""simple docstring"""
snake_case_ = scheduler
snake_case_ = optimizers if isinstance(UpperCAmelCase_ , (list, tuple) ) else [optimizers]
snake_case_ = split_batches
snake_case_ = step_with_optimizer
snake_case_ = GradientState()
def lowerCAmelCase ( self : Dict , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict ) ->Union[str, Any]:
"""simple docstring"""
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*UpperCAmelCase_ , **UpperCAmelCase_ )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*UpperCAmelCase_ , **UpperCAmelCase_ )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
snake_case_ = AcceleratorState().num_processes
for _ in range(UpperCAmelCase_ ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , """total_steps""" ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*UpperCAmelCase_ , **UpperCAmelCase_ )
else:
self.scheduler.step(*UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple ) ->Optional[int]:
"""simple docstring"""
return self.scheduler.get_last_lr()
def lowerCAmelCase ( self : Dict ) ->Optional[Any]:
"""simple docstring"""
return self.scheduler.state_dict()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Any:
"""simple docstring"""
self.scheduler.load_state_dict(UpperCAmelCase_ )
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
return self.scheduler.get_lr()
def lowerCAmelCase ( self : str , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[int] ) ->Any:
"""simple docstring"""
return self.scheduler.print_lr(*UpperCAmelCase_ , **UpperCAmelCase_ )
| 2 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
if index == number_of_items:
return 0
snake_case_ = 0
snake_case_ = 0
snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 )
if weights[index] <= max_weight:
snake_case_ = values[index] + knapsack(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 )
return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import os
def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]:
snake_case_ = len(grid[0] )
snake_case_ = len(_SCREAMING_SNAKE_CASE )
snake_case_ = 0
snake_case_ = 0
snake_case_ = 0
# Check vertically, horizontally, diagonally at the same time (only works
# for nxn grid)
for i in range(_SCREAMING_SNAKE_CASE ):
for j in range(n_rows - 3 ):
snake_case_ = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i]
snake_case_ = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3]
# Left-to-right diagonal (\) product
if i < n_columns - 3:
snake_case_ = (
grid[i][j]
* grid[i + 1][j + 1]
* grid[i + 2][j + 2]
* grid[i + 3][j + 3]
)
# Right-to-left diagonal(/) product
if i > 2:
snake_case_ = (
grid[i][j]
* grid[i - 1][j + 1]
* grid[i - 2][j + 2]
* grid[i - 3][j + 3]
)
snake_case_ = max(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if max_product > largest:
snake_case_ = max_product
return largest
def _a ( ) -> Optional[Any]:
snake_case_ = []
with open(os.path.dirname(_SCREAMING_SNAKE_CASE ) + """/grid.txt""" ) as file:
for line in file:
grid.append(line.strip("""\n""" ).split(""" """ ) )
snake_case_ = [[int(_SCREAMING_SNAKE_CASE ) for i in grid[j]] for j in range(len(_SCREAMING_SNAKE_CASE ) )]
return largest_product(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(solution())
| 2 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int:
snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
snake_case_ = n // 2
return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
__SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 2 | 1 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = range(2, 20 + 1)
__SCREAMING_SNAKE_CASE : Any = [10**k for k in range(ks[-1] + 1)]
__SCREAMING_SNAKE_CASE : dict[int, dict[int, list[list[int]]]] = {}
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]:
snake_case_ = sum(a_i[j] for j in range(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ) )
snake_case_ = sum(a_i[j] * base[j] for j in range(min(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) )
snake_case_ , snake_case_ = 0, 0
snake_case_ = n - i
snake_case_ = memo.get(_SCREAMING_SNAKE_CASE )
if sub_memo is not None:
snake_case_ = sub_memo.get(_SCREAMING_SNAKE_CASE )
if jumps is not None and len(_SCREAMING_SNAKE_CASE ) > 0:
# find and make the largest jump without going over
snake_case_ = -1
for _k in range(len(_SCREAMING_SNAKE_CASE ) - 1 , -1 , -1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
snake_case_ = _k
break
if max_jump >= 0:
snake_case_ , snake_case_ , snake_case_ = jumps[max_jump]
# since the difference between jumps is cached, add c
snake_case_ = diff + c
for j in range(min(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ) ):
snake_case_ , snake_case_ = divmod(_SCREAMING_SNAKE_CASE , 10 )
if new_c > 0:
add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
snake_case_ = []
else:
snake_case_ = {c: []}
snake_case_ = sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
snake_case_ , snake_case_ = next_term(_SCREAMING_SNAKE_CASE , k - 1 , i + dn , _SCREAMING_SNAKE_CASE )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
snake_case_ , snake_case_ = compute(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , i + dn , _SCREAMING_SNAKE_CASE )
diff += _diff
dn += terms_jumped
snake_case_ = sub_memo[c]
# keep jumps sorted by # of terms skipped
snake_case_ = 0
while j < len(_SCREAMING_SNAKE_CASE ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(_SCREAMING_SNAKE_CASE , (diff, dn, k) )
return (diff, dn)
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
if i >= n:
return 0, i
if k > len(_SCREAMING_SNAKE_CASE ):
a_i.extend([0 for _ in range(k - len(_SCREAMING_SNAKE_CASE ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
snake_case_ = i
snake_case_ , snake_case_ , snake_case_ = 0, 0, 0
for j in range(len(_SCREAMING_SNAKE_CASE ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
snake_case_ = ds_c + ds_b
diff += addend
snake_case_ = 0
for j in range(_SCREAMING_SNAKE_CASE ):
snake_case_ = a_i[j] + addend
snake_case_ , snake_case_ = divmod(_SCREAMING_SNAKE_CASE , 10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return diff, i - start_i
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
for j in range(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = digits[j] + addend
if s >= 10:
snake_case_ , snake_case_ = divmod(_SCREAMING_SNAKE_CASE , 10 )
snake_case_ = addend // 10 + quotient
else:
snake_case_ = s
snake_case_ = addend // 10
if addend == 0:
break
while addend > 0:
snake_case_ , snake_case_ = divmod(_SCREAMING_SNAKE_CASE , 10 )
digits.append(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE = 10**15 ) -> int:
snake_case_ = [1]
snake_case_ = 1
snake_case_ = 0
while True:
snake_case_ , snake_case_ = next_term(_SCREAMING_SNAKE_CASE , 20 , i + dn , _SCREAMING_SNAKE_CASE )
dn += terms_jumped
if dn == n - i:
break
snake_case_ = 0
for j in range(len(_SCREAMING_SNAKE_CASE ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 |
"""simple docstring"""
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str:
snake_case_ = ascii_letters + digits + punctuation
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(_SCREAMING_SNAKE_CASE )
snake_case_ = i // 3
snake_case_ = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
snake_case_ = (
chars_incl
+ random(_SCREAMING_SNAKE_CASE , quotient + remainder )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
)
snake_case_ = list(_SCREAMING_SNAKE_CASE )
shuffle(_SCREAMING_SNAKE_CASE )
return "".join(_SCREAMING_SNAKE_CASE )
# random is a generalised function for letters, characters and numbers
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool:
if len(_SCREAMING_SNAKE_CASE ) < min_length:
# Your Password must be at least 8 characters long
return False
snake_case_ = any(char in ascii_uppercase for char in password )
snake_case_ = any(char in ascii_lowercase for char in password )
snake_case_ = any(char in digits for char in password )
snake_case_ = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def _a ( ) -> str:
snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() )
snake_case_ = input(
"""Please indicate the characters that must be in your password: """ ).strip()
print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) )
print(
"""Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , )
print("""[If you are thinking of using this passsword, You better save it.]""" )
if __name__ == "__main__":
main()
| 2 | 1 |
"""simple docstring"""
from __future__ import annotations
import copy
import tempfile
import unittest
from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available
from transformers.testing_utils import (
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tensorflow_probability,
require_tf,
slow,
)
from ..bert.test_modeling_bert import BertModelTester
if is_tf_available():
from transformers import (
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFFunnelBaseModel,
TFFunnelModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
TFTapasForQuestionAnswering,
)
from transformers.models.auto.modeling_tf_auto import (
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_MAPPING,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = """new-model"""
if is_tf_available():
class __A (snake_case__):
'''simple docstring'''
__lowercase: Union[str, Any] = NewModelConfig
@require_tf
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = """bert-base-cased"""
snake_case_ = AutoConfig.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = TFAutoModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : int ) ->int:
"""simple docstring"""
snake_case_ = """bert-base-cased"""
snake_case_ = AutoConfig.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = TFAutoModelForPreTraining.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Tuple ) ->Union[str, Any]:
"""simple docstring"""
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = AutoConfig.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase_ )
snake_case_ , snake_case_ = TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase_ , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : int ) ->str:
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = AutoConfig.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Optional[Any] ) ->str:
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = AutoConfig.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase_ )
snake_case_ , snake_case_ = TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase_ , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = AutoConfig.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase_ )
snake_case_ , snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase_ , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : List[Any] ) ->int:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
snake_case_ = AutoConfig.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = TFAutoModelForSequenceClassification.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
snake_case_ = AutoConfig.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = TFAutoModelForQuestionAnswering.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
@slow
@require_tensorflow_probability
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
snake_case_ = AutoConfig.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = TFAutoModelForTableQuestionAnswering.from_pretrained(UpperCAmelCase_ )
snake_case_ , snake_case_ = TFAutoModelForTableQuestionAnswering.from_pretrained(
UpperCAmelCase_ , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase_ ) , 14_410 )
def lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase_ ) , 14_410 )
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""" )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = copy.deepcopy(model.config )
snake_case_ = ["""FunnelBaseModel"""]
snake_case_ = TFAutoModel.from_config(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(UpperCAmelCase_ )
snake_case_ = TFAutoModel.from_pretrained(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->List[Any]:
"""simple docstring"""
try:
AutoConfig.register("""new-model""" , UpperCAmelCase_ )
snake_case_ = [
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSequenceClassification,
TFAutoModelForTokenClassification,
]
for auto_class in auto_classes:
with self.subTest(auto_class.__name__ ):
# Wrong config class will raise an error
with self.assertRaises(UpperCAmelCase_ ):
auto_class.register(UpperCAmelCase_ , UpperCAmelCase_ )
auto_class.register(UpperCAmelCase_ , UpperCAmelCase_ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(UpperCAmelCase_ ):
auto_class.register(UpperCAmelCase_ , UpperCAmelCase_ )
# Now that the config is registered, it can be used as any other config with the auto-API
snake_case_ = BertModelTester(self ).get_config()
snake_case_ = NewModelConfig(**tiny_config.to_dict() )
snake_case_ = auto_class.from_config(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(UpperCAmelCase_ )
snake_case_ = auto_class.from_pretrained(UpperCAmelCase_ )
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
for mapping in (
TF_MODEL_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
):
if NewModelConfig in mapping._extra_content:
del mapping._extra_content[NewModelConfig]
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
with self.assertRaisesRegex(
UpperCAmelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ):
snake_case_ = TFAutoModel.from_pretrained("""bert-base""" )
def lowerCAmelCase ( self : Optional[int] ) ->str:
"""simple docstring"""
with self.assertRaisesRegex(
UpperCAmelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
snake_case_ = TFAutoModel.from_pretrained(UpperCAmelCase_ , revision="""aaaaaa""" )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
with self.assertRaisesRegex(
UpperCAmelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ):
snake_case_ = TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" )
def lowerCAmelCase ( self : int ) ->Union[str, Any]:
"""simple docstring"""
with self.assertRaisesRegex(UpperCAmelCase_ , """Use `from_pt=True` to load this model""" ):
snake_case_ = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" )
def lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
snake_case_ = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
with RequestCounter() as counter:
snake_case_ = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
# With a sharded checkpoint
snake_case_ = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" )
with RequestCounter() as counter:
snake_case_ = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
| 2 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_normalize
def lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
snake_case_ = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" )
image_processor_first.to_json_file(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
pass
def _a ( ) -> str:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
snake_case_ = Image.open(dataset[4]["""file"""] )
snake_case_ = Image.open(dataset[5]["""file"""] )
snake_case_ = [imagea, imagea]
return images
@require_vision
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
snake_case_ = prepare_images()
# test non-batched
snake_case_ = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_024) )
snake_case_ = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ )
# test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_024) )
snake_case_ = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
| 2 | 1 |
"""simple docstring"""
import argparse
import torch
from torch import nn
from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration
def _a ( _SCREAMING_SNAKE_CASE ) -> Tuple:
snake_case_ = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""decoder.output_projection.weight""",
"""_float_tensor""",
"""encoder.embed_positions._float_tensor""",
"""decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]:
snake_case_ = list(s_dict.keys() )
for key in keys:
if "transformer_layers" in key:
snake_case_ = s_dict.pop(_SCREAMING_SNAKE_CASE )
elif "subsample" in key:
snake_case_ = s_dict.pop(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
snake_case_ , snake_case_ = emb.weight.shape
snake_case_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE )
snake_case_ = emb.weight.data
return lin_layer
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
snake_case_ = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )
snake_case_ = mam_aaa["""args"""]
snake_case_ = mam_aaa["""model"""]
snake_case_ = state_dict["""decoder.output_projection.weight"""]
remove_ignore_keys_(_SCREAMING_SNAKE_CASE )
rename_keys(_SCREAMING_SNAKE_CASE )
snake_case_ = state_dict["""decoder.embed_tokens.weight"""].shape[0]
snake_case_ = args.share_decoder_input_output_embed
snake_case_ = [int(_SCREAMING_SNAKE_CASE ) for i in args.conv_kernel_sizes.split(""",""" )]
snake_case_ = SpeechaTextConfig(
vocab_size=_SCREAMING_SNAKE_CASE , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , num_conv_layers=len(_SCREAMING_SNAKE_CASE ) , conv_channels=args.conv_channels , conv_kernel_sizes=_SCREAMING_SNAKE_CASE , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=_SCREAMING_SNAKE_CASE , num_beams=5 , max_length=200 , use_cache=_SCREAMING_SNAKE_CASE , decoder_start_token_id=2 , early_stopping=_SCREAMING_SNAKE_CASE , )
snake_case_ = SpeechaTextForConditionalGeneration(_SCREAMING_SNAKE_CASE )
snake_case_ , snake_case_ = model.model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0 and not set(_SCREAMING_SNAKE_CASE ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
"""Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,"""
f""" but all the following weights are missing {missing}""" )
if tie_embeds:
snake_case_ = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
snake_case_ = lm_head_weights
model.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.')
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
| 2 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = scope
snake_case_ = range_bbox
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case_ = bbox[i, j, 3]
snake_case_ = bbox[i, j, 1]
snake_case_ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case_ = bbox[i, j, 2]
snake_case_ = bbox[i, j, 0]
snake_case_ = t
snake_case_ = None
if self.use_input_mask:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str:
"""simple docstring"""
snake_case_ = LiltModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict:
"""simple docstring"""
snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowercase: Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return True
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = LiltModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_torch
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ )
snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ )
snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ )
snake_case_ = torch.Size([1, 2, 768] )
snake_case_ = torch.tensor(
[[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
flip_channel_order,
get_resize_output_image_size,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging
if is_vision_available():
import PIL
if is_torch_available():
import torch
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: Any = ["""pixel_values"""]
def __init__( self : List[str] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : Tuple , ) ->None:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ )
snake_case_ = size if size is not None else {"""shortest_edge""": 224}
snake_case_ = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ )
snake_case_ = crop_size if crop_size is not None else {"""height""": 256, """width""": 256}
snake_case_ = get_size_dict(UpperCAmelCase_ , param_name="""crop_size""" )
snake_case_ = do_resize
snake_case_ = size
snake_case_ = resample
snake_case_ = do_rescale
snake_case_ = rescale_factor
snake_case_ = do_center_crop
snake_case_ = crop_size
snake_case_ = do_flip_channel_order
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PIL.Image.BILINEAR , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->np.ndarray:
"""simple docstring"""
snake_case_ = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ )
if "shortest_edge" not in size:
raise ValueError(F"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" )
snake_case_ = get_resize_output_image_size(UpperCAmelCase_ , size=size["""shortest_edge"""] , default_to_square=UpperCAmelCase_ )
return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[str] , ) ->np.ndarray:
"""simple docstring"""
snake_case_ = get_size_dict(UpperCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
return center_crop(UpperCAmelCase_ , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : str , ) ->Optional[int]:
"""simple docstring"""
return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None ) ->np.ndarray:
"""simple docstring"""
return flip_channel_order(UpperCAmelCase_ , data_format=UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : Any , ) ->PIL.Image.Image:
"""simple docstring"""
snake_case_ = do_resize if do_resize is not None else self.do_resize
snake_case_ = resample if resample is not None else self.resample
snake_case_ = do_rescale if do_rescale is not None else self.do_rescale
snake_case_ = rescale_factor if rescale_factor is not None else self.rescale_factor
snake_case_ = do_center_crop if do_center_crop is not None else self.do_center_crop
snake_case_ = (
do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order
)
snake_case_ = size if size is not None else self.size
snake_case_ = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ )
snake_case_ = crop_size if crop_size is not None else self.crop_size
snake_case_ = get_size_dict(UpperCAmelCase_ , param_name="""crop_size""" )
snake_case_ = make_list_of_images(UpperCAmelCase_ )
if not valid_images(UpperCAmelCase_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
# All transformations expect numpy arrays.
snake_case_ = [to_numpy_array(UpperCAmelCase_ ) for image in images]
if do_resize:
snake_case_ = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ ) for image in images]
if do_center_crop:
snake_case_ = [self.center_crop(image=UpperCAmelCase_ , size=UpperCAmelCase_ ) for image in images]
if do_rescale:
snake_case_ = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_ ) for image in images]
# the pretrained checkpoints assume images are BGR, not RGB
if do_flip_channel_order:
snake_case_ = [self.flip_channel_order(image=UpperCAmelCase_ ) for image in images]
snake_case_ = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images]
snake_case_ = {"""pixel_values""": images}
return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Tuple] = None ) ->Dict:
"""simple docstring"""
snake_case_ = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ):
raise ValueError(
"""Make sure that you pass in as many target sizes as the batch dimension of the logits""" )
if is_torch_tensor(UpperCAmelCase_ ):
snake_case_ = target_sizes.numpy()
snake_case_ = []
for idx in range(len(UpperCAmelCase_ ) ):
snake_case_ = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=UpperCAmelCase_ )
snake_case_ = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(UpperCAmelCase_ )
else:
snake_case_ = logits.argmax(dim=1 )
snake_case_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 2 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = 0
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
snake_case_ = i + 1
else:
snake_case_ = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
| 2 | 1 |
"""simple docstring"""
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def _a ( *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=2 ) -> List[str]:
from .. import __version__
snake_case_ = take_from
snake_case_ = ()
if not isinstance(args[0] , _SCREAMING_SNAKE_CASE ):
snake_case_ = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(_SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(_SCREAMING_SNAKE_CASE ):
raise ValueError(
f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"""
f""" version {__version__} is >= {version_name}""" )
snake_case_ = None
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(_SCREAMING_SNAKE_CASE ),)
snake_case_ = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}."""
elif hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
values += (getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ),)
snake_case_ = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}."""
elif deprecated_kwargs is None:
snake_case_ = f"""`{attribute}` is deprecated and will be removed in version {version_name}."""
if warning is not None:
snake_case_ = warning + """ """ if standard_warn else """"""
warnings.warn(warning + message , _SCREAMING_SNAKE_CASE , stacklevel=_SCREAMING_SNAKE_CASE )
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) > 0:
snake_case_ = inspect.getouterframes(inspect.currentframe() )[1]
snake_case_ = call_frame.filename
snake_case_ = call_frame.lineno
snake_case_ = call_frame.function
snake_case_ , snake_case_ = next(iter(deprecated_kwargs.items() ) )
raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" )
if len(_SCREAMING_SNAKE_CASE ) == 0:
return
elif len(_SCREAMING_SNAKE_CASE ) == 1:
return values[0]
return values
| 2 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 1 |
"""simple docstring"""
import unittest
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __A :
'''simple docstring'''
@staticmethod
def lowerCAmelCase ( *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
pass
@is_pipeline_test
@require_torch
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] ) ->Any:
"""simple docstring"""
snake_case_ = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" )
snake_case_ = [
{
"""image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ),
"""question""": """How many cats are there?""",
},
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""question""": """How many cats are there?""",
},
]
return vqa_pipeline, examples
def lowerCAmelCase ( self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ) ->Tuple:
"""simple docstring"""
snake_case_ = vqa_pipeline(UpperCAmelCase_ , top_k=1 )
self.assertEqual(
UpperCAmelCase_ , [
[{"""score""": ANY(UpperCAmelCase_ ), """answer""": ANY(UpperCAmelCase_ )}],
[{"""score""": ANY(UpperCAmelCase_ ), """answer""": ANY(UpperCAmelCase_ )}],
] , )
@require_torch
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" )
snake_case_ = """./tests/fixtures/tests_samples/COCO/000000039769.png"""
snake_case_ = """How many cats are there?"""
snake_case_ = vqa_pipeline(image=UpperCAmelCase_ , question="""How many cats are there?""" , top_k=2 )
self.assertEqual(
UpperCAmelCase_ , [{"""score""": ANY(UpperCAmelCase_ ), """answer""": ANY(UpperCAmelCase_ )}, {"""score""": ANY(UpperCAmelCase_ ), """answer""": ANY(UpperCAmelCase_ )}] )
snake_case_ = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 )
self.assertEqual(
UpperCAmelCase_ , [{"""score""": ANY(UpperCAmelCase_ ), """answer""": ANY(UpperCAmelCase_ )}, {"""score""": ANY(UpperCAmelCase_ ), """answer""": ANY(UpperCAmelCase_ )}] )
@slow
@require_torch
def lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
snake_case_ = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" )
snake_case_ = """./tests/fixtures/tests_samples/COCO/000000039769.png"""
snake_case_ = """How many cats are there?"""
snake_case_ = vqa_pipeline(image=UpperCAmelCase_ , question=UpperCAmelCase_ , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase_ , decimals=4 ) , [{"""score""": 0.8_799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] )
snake_case_ = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase_ , decimals=4 ) , [{"""score""": 0.8_799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] )
snake_case_ = vqa_pipeline(
[{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase_ , decimals=4 ) , [[{"""score""": 0.8_799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}]] * 2 , )
@require_tf
@unittest.skip("""Visual question answering not implemented in TF""" )
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
pass
| 2 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter'
__SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE'
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}"""
raise TypeError(_SCREAMING_SNAKE_CASE )
snake_case_ = spanish_id.replace("""-""" , """""" ).upper()
if len(_SCREAMING_SNAKE_CASE ) != 9:
raise ValueError(_SCREAMING_SNAKE_CASE )
try:
snake_case_ = int(spanish_id_clean[0:8] )
snake_case_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_SCREAMING_SNAKE_CASE ) from ex
if letter.isdigit():
raise ValueError(_SCREAMING_SNAKE_CASE )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import os
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen, xsplitext
from ..table import array_cast
from ..utils.py_utils import no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
from .features import FeatureType
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = False, False, False
@dataclass
class __A :
'''simple docstring'''
__lowercase: Optional[int] = None
__lowercase: bool = True
__lowercase: bool = True
__lowercase: Optional[str] = None
# Automatically constructed
__lowercase: ClassVar[str] = "dict"
__lowercase: ClassVar[Any] = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()})
__lowercase: str = field(default="""Audio""" , init=snake_case__ , repr=snake_case__)
def __call__( self : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
return self.pa_type
def lowerCAmelCase ( self : int , UpperCAmelCase_ : Union[str, bytes, dict] ) ->dict:
"""simple docstring"""
try:
import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files.
except ImportError as err:
raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
return {"bytes": None, "path": value}
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
return {"bytes": value, "path": None}
elif "array" in value:
# convert the audio array to wav bytes
snake_case_ = BytesIO()
sf.write(UpperCAmelCase_ , value["""array"""] , value["""sampling_rate"""] , format="""wav""" )
return {"bytes": buffer.getvalue(), "path": None}
elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ):
# we set "bytes": None to not duplicate the data if they're already available locally
if value["path"].endswith("""pcm""" ):
# "PCM" only has raw audio bytes
if value.get("""sampling_rate""" ) is None:
# At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate
raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" )
if value.get("""bytes""" ):
# If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!)
snake_case_ = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 32_767
else:
snake_case_ = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 32_767
snake_case_ = BytesIO(bytes() )
sf.write(UpperCAmelCase_ , UpperCAmelCase_ , value["""sampling_rate"""] , format="""wav""" )
return {"bytes": buffer.getvalue(), "path": None}
else:
return {"bytes": None, "path": value.get("""path""" )}
elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None:
# store the audio bytes, and path is used to infer the audio format using the file extension
return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )}
else:
raise ValueError(
F"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : dict , UpperCAmelCase_ : Optional[Dict[str, Union[str, bool, None]]] = None ) ->dict:
"""simple docstring"""
if not self.decode:
raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" )
snake_case_ , snake_case_ = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None)
if path is None and file is None:
raise ValueError(F"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" )
try:
import librosa
import soundfile as sf
except ImportError as err:
raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err
snake_case_ = xsplitext(UpperCAmelCase_ )[1][1:].lower() if path is not None else None
if not config.IS_OPUS_SUPPORTED and audio_format == "opus":
raise RuntimeError(
"""Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """
"""You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ )
elif not config.IS_MP3_SUPPORTED and audio_format == "mp3":
raise RuntimeError(
"""Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """
"""You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ )
if file is None:
snake_case_ = token_per_repo_id or {}
snake_case_ = path.split("""::""" )[-1]
try:
snake_case_ = string_to_dict(UpperCAmelCase_ , config.HUB_DATASETS_URL )["""repo_id"""]
snake_case_ = token_per_repo_id[repo_id]
except (ValueError, KeyError):
snake_case_ = None
with xopen(UpperCAmelCase_ , """rb""" , use_auth_token=UpperCAmelCase_ ) as f:
snake_case_ , snake_case_ = sf.read(UpperCAmelCase_ )
else:
snake_case_ , snake_case_ = sf.read(UpperCAmelCase_ )
snake_case_ = array.T
if self.mono:
snake_case_ = librosa.to_mono(UpperCAmelCase_ )
if self.sampling_rate and self.sampling_rate != sampling_rate:
snake_case_ = librosa.resample(UpperCAmelCase_ , orig_sr=UpperCAmelCase_ , target_sr=self.sampling_rate )
snake_case_ = self.sampling_rate
return {"path": path, "array": array, "sampling_rate": sampling_rate}
def lowerCAmelCase ( self : Dict ) ->Union["FeatureType", Dict[str, "FeatureType"]]:
"""simple docstring"""
from .features import Value
if self.decode:
raise ValueError("""Cannot flatten a decoded Audio feature.""" )
return {
"bytes": Value("""binary""" ),
"path": Value("""string""" ),
}
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[pa.StringArray, pa.StructArray] ) ->pa.StructArray:
"""simple docstring"""
if pa.types.is_string(storage.type ):
snake_case_ = pa.array([None] * len(UpperCAmelCase_ ) , type=pa.binary() )
snake_case_ = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
snake_case_ = pa.array([None] * len(UpperCAmelCase_ ) , type=pa.string() )
snake_case_ = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ):
snake_case_ = pa.array([Audio().encode_example(UpperCAmelCase_ ) if x is not None else None for x in storage.to_pylist()] )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("""bytes""" ) >= 0:
snake_case_ = storage.field("""bytes""" )
else:
snake_case_ = pa.array([None] * len(UpperCAmelCase_ ) , type=pa.binary() )
if storage.type.get_field_index("""path""" ) >= 0:
snake_case_ = storage.field("""path""" )
else:
snake_case_ = pa.array([None] * len(UpperCAmelCase_ ) , type=pa.string() )
snake_case_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
return array_cast(UpperCAmelCase_ , self.pa_type )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : pa.StructArray ) ->pa.StructArray:
"""simple docstring"""
@no_op_if_value_is_null
def path_to_bytes(UpperCAmelCase_ : Dict ):
with xopen(UpperCAmelCase_ , """rb""" ) as f:
snake_case_ = f.read()
return bytes_
snake_case_ = pa.array(
[
(path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
snake_case_ = pa.array(
[os.path.basename(UpperCAmelCase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , )
snake_case_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(UpperCAmelCase_ , self.pa_type )
| 2 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'}
__SCREAMING_SNAKE_CASE : List[str] = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
}
}
__SCREAMING_SNAKE_CASE : List[str] = {
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
__SCREAMING_SNAKE_CASE : int = '▁'
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = VOCAB_FILES_NAMES
__lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None:
"""simple docstring"""
snake_case_ = (
AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
else mask_token
)
snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
snake_case_ = do_lower_case
snake_case_ = remove_space
snake_case_ = keep_accents
snake_case_ = vocab_file
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
return len(self.sp_model )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) ->List[str]:
"""simple docstring"""
snake_case_ = self.__dict__.copy()
snake_case_ = None
return state
def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
snake_case_ = {}
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str:
"""simple docstring"""
if self.remove_space:
snake_case_ = """ """.join(inputs.strip().split() )
else:
snake_case_ = inputs
snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ )
snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] )
if self.do_lower_case:
snake_case_ = outputs.lower()
return outputs
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
snake_case_ = self.preprocess_text(UpperCAmelCase_ )
snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
snake_case_ = []
for piece in pieces:
if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
snake_case_ = cur_pieces[1:]
else:
snake_case_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCAmelCase_ )
else:
new_pieces.append(UpperCAmelCase_ )
return new_pieces
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict:
"""simple docstring"""
return self.sp_model.PieceToId(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return self.sp_model.IdToPiece(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any:
"""simple docstring"""
snake_case_ = []
snake_case_ = """"""
snake_case_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase_ ) + token
snake_case_ = True
snake_case_ = []
else:
current_sub_tokens.append(UpperCAmelCase_ )
snake_case_ = False
out_string += self.sp_model.decode(UpperCAmelCase_ )
return out_string.strip()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , """wb""" ) as fi:
snake_case_ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
return (out_vocab_file,)
| 2 | 1 |
"""simple docstring"""
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: str = VQModel
__lowercase: Union[str, Any] = """sample"""
@property
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple:
"""simple docstring"""
snake_case_ = 4
snake_case_ = 3
snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ )
return {"sample": image}
@property
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
return (3, 32, 32)
@property
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
return (3, 32, 32)
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 3,
}
snake_case_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(UpperCAmelCase_ )
snake_case_ = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" )
model.to(UpperCAmelCase_ ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
snake_case_ = image.to(UpperCAmelCase_ )
with torch.no_grad():
snake_case_ = model(UpperCAmelCase_ ).sample
snake_case_ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] )
# fmt: on
self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
| 2 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("""The given input must be positive""" )
# get the generated string sequence
snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = int(sequence[i] , 2 )
return sequence
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
snake_case_ = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
snake_case_ = gray_code_sequence_string(bit_count - 1 )
snake_case_ = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
snake_case_ = """0""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
snake_case_ = """1""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
__SCREAMING_SNAKE_CASE : List[str] = [
'python',
'tqdm',
'regex',
'requests',
'packaging',
'filelock',
'numpy',
'tokenizers',
'huggingface-hub',
'safetensors',
'accelerate',
'pyyaml',
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""")
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]:
require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
| 2 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 1 |
"""simple docstring"""
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
__SCREAMING_SNAKE_CASE : str = datasets.utils.logging.get_logger(__name__)
@dataclass
class __A (datasets.BuilderConfig):
'''simple docstring'''
__lowercase: Optional[datasets.Features] = None
__lowercase: str = "utf-8"
__lowercase: Optional[str] = None
__lowercase: Optional[str] = None
__lowercase: bool = True # deprecated
__lowercase: Optional[int] = None # deprecated
__lowercase: int = 10 << 20 # 10MB
__lowercase: Optional[bool] = None
class __A (datasets.ArrowBasedBuilder):
'''simple docstring'''
__lowercase: str = JsonConfig
def lowerCAmelCase ( self : Optional[int] ) ->Tuple:
"""simple docstring"""
if self.config.block_size is not None:
logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" )
snake_case_ = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
"""The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" )
if self.config.newlines_in_values is not None:
raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" )
return datasets.DatasetInfo(features=self.config.features )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
snake_case_ = dl_manager.download_and_extract(self.config.data_files )
if isinstance(UpperCAmelCase_ , (str, list, tuple) ):
snake_case_ = data_files
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = [files]
snake_case_ = [dl_manager.iter_files(UpperCAmelCase_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
snake_case_ = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = [files]
snake_case_ = [dl_manager.iter_files(UpperCAmelCase_ ) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase_ , gen_kwargs={"""files""": files} ) )
return splits
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : pa.Table ) ->pa.Table:
"""simple docstring"""
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
snake_case_ = self.config.features.arrow_schema.field(UpperCAmelCase_ ).type
snake_case_ = pa_table.append_column(UpperCAmelCase_ , pa.array([None] * len(UpperCAmelCase_ ) , type=UpperCAmelCase_ ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
snake_case_ = table_cast(UpperCAmelCase_ , self.config.features.arrow_schema )
return pa_table
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase_ ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(UpperCAmelCase_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
snake_case_ = json.load(UpperCAmelCase_ )
# We keep only the field we are interested in
snake_case_ = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(UpperCAmelCase_ , (list, tuple) ):
snake_case_ = set().union(*[row.keys() for row in dataset] )
snake_case_ = {col: [row.get(UpperCAmelCase_ ) for row in dataset] for col in keys}
else:
snake_case_ = dataset
snake_case_ = pa.Table.from_pydict(UpperCAmelCase_ )
yield file_idx, self._cast_table(UpperCAmelCase_ )
# If the file has one json object per line
else:
with open(UpperCAmelCase_ , """rb""" ) as f:
snake_case_ = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
snake_case_ = max(self.config.chunksize // 32 , 16 << 10 )
snake_case_ = (
self.config.encoding_errors if self.config.encoding_errors is not None else """strict"""
)
while True:
snake_case_ = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(UpperCAmelCase_ )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
snake_case_ = batch.decode(self.config.encoding , errors=UpperCAmelCase_ ).encode("""utf-8""" )
try:
while True:
try:
snake_case_ = paj.read_json(
io.BytesIO(UpperCAmelCase_ ) , read_options=paj.ReadOptions(block_size=UpperCAmelCase_ ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(UpperCAmelCase_ , pa.ArrowInvalid )
and "straddling" not in str(UpperCAmelCase_ )
or block_size > len(UpperCAmelCase_ )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
F"""Batch of {len(UpperCAmelCase_ )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
UpperCAmelCase_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
snake_case_ = json.load(UpperCAmelCase_ )
except json.JSONDecodeError:
logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase_ )}: {e}""" )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): # list is the only sequence type supported in JSON
try:
snake_case_ = set().union(*[row.keys() for row in dataset] )
snake_case_ = {col: [row.get(UpperCAmelCase_ ) for row in dataset] for col in keys}
snake_case_ = pa.Table.from_pydict(UpperCAmelCase_ )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase_ )}: {e}""" )
raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None
yield file_idx, self._cast_table(UpperCAmelCase_ )
break
else:
logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase_ )}: {e}""" )
raise ValueError(
F"""Not able to read records in the JSON file at {file}. """
F"""You should probably indicate the field of the JSON file containing your records. """
F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """
F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase_ )
batch_idx += 1
| 2 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/'
__SCREAMING_SNAKE_CASE : List[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
snake_case_ = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
snake_case_ = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = {}
import re
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# keep original key
else:
snake_case_ = original_key
snake_case_ = replace_key(_SCREAMING_SNAKE_CASE )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
snake_case_ = original_key
snake_case_ = original_key
snake_case_ = value
return new_dict
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ):
snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE )
open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content )
snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]]
snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE )
snake_case_ = []
snake_case_ = {}
for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""]
snake_case_ = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
snake_case_ = old_dic[k]
elif k.endswith(""".w""" ):
snake_case_ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
snake_case_ = old_dic[k]
else:
snake_case_ = old_dic[k]
snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}"""
snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
weight_dict.append(_SCREAMING_SNAKE_CASE )
snake_case_ = weight_dict.pop(0 )
model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
return weight_dict
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 2 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__SCREAMING_SNAKE_CASE : Dict = 'zero2'
__SCREAMING_SNAKE_CASE : List[Any] = 'zero3'
__SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __A (snake_case__):
'''simple docstring'''
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = models[model]
snake_case_ = self.run_trainer(
stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
self.do_checks(UpperCAmelCase_ )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ )
snake_case_ = F"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(UpperCAmelCase_ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
snake_case_ = self.get_launcher(UpperCAmelCase_ )
snake_case_ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple:
"""simple docstring"""
snake_case_ = min(2 , get_gpu_count() ) if distributed else 1
return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 2 | 1 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __A (metaclass=snake_case__):
'''simple docstring'''
__lowercase: str = ["""torch""", """transformers""", """onnx"""]
def __init__( self : Union[str, Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Tuple ) ->Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : Optional[int] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : Optional[int] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class __A (metaclass=snake_case__):
'''simple docstring'''
__lowercase: List[Any] = ["""torch""", """transformers""", """onnx"""]
def __init__( self : Any , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ) ->int:
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : str , *UpperCAmelCase_ : int , **UpperCAmelCase_ : int ) ->List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[Any] ) ->List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class __A (metaclass=snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = ["""torch""", """transformers""", """onnx"""]
def __init__( self : Tuple , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str ) ->str:
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ) ->List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : List[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Tuple ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class __A (metaclass=snake_case__):
'''simple docstring'''
__lowercase: Optional[int] = ["""torch""", """transformers""", """onnx"""]
def __init__( self : int , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ) ->Tuple:
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any] ) ->Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : List[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : str ) ->Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class __A (metaclass=snake_case__):
'''simple docstring'''
__lowercase: Any = ["""torch""", """transformers""", """onnx"""]
def __init__( self : Any , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any] ) ->Dict:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any ) ->List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class __A (metaclass=snake_case__):
'''simple docstring'''
__lowercase: int = ["""torch""", """transformers""", """onnx"""]
def __init__( self : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Tuple ) ->Any:
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Tuple ) ->Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Tuple ) ->Any:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
| 2 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True})
__lowercase: ClassVar[Features] = Features({"""audio""": Audio()})
__lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")})
__lowercase: str = "audio"
__lowercase: str = "transcription"
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int:
"""simple docstring"""
if self.audio_column not in features:
raise ValueError(F"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , UpperCAmelCase_ ):
raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" )
snake_case_ = copy.deepcopy(self )
snake_case_ = self.input_schema.copy()
snake_case_ = features[self.audio_column]
snake_case_ = input_schema
return task_template
@property
def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]:
"""simple docstring"""
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 2 | 1 |
"""simple docstring"""
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[int] = """"""
__lowercase: Union[str, Any] = """hf-legacy""" # "hf://"" is reserved for hffs
def __init__( self : Dict , UpperCAmelCase_ : Optional[DatasetInfo] = None , UpperCAmelCase_ : Optional[str] = None , **UpperCAmelCase_ : str , ) ->List[Any]:
"""simple docstring"""
super().__init__(self , **UpperCAmelCase_ )
snake_case_ = repo_info
snake_case_ = token
snake_case_ = None
def lowerCAmelCase ( self : int ) ->List[Any]:
"""simple docstring"""
if self.dir_cache is None:
snake_case_ = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
snake_case_ = {
"""name""": hf_file.rfilename,
"""size""": None,
"""type""": """file""",
}
self.dir_cache.update(
{
str(UpperCAmelCase_ ): {"""name""": str(UpperCAmelCase_ ), """size""": None, """type""": """directory"""}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : str = "rb" , **UpperCAmelCase_ : List[Any] , ) ->Union[str, Any]:
"""simple docstring"""
if not isinstance(self.repo_info , UpperCAmelCase_ ):
raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""" )
snake_case_ = hf_hub_url(self.repo_info.id , UpperCAmelCase_ , revision=self.repo_info.sha )
return fsspec.open(
UpperCAmelCase_ , mode=UpperCAmelCase_ , headers=get_authentication_headers_for_url(UpperCAmelCase_ , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open()
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[Any] ) ->Dict:
"""simple docstring"""
self._get_dirs()
snake_case_ = self._strip_protocol(UpperCAmelCase_ )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Dict ) ->List[str]:
"""simple docstring"""
self._get_dirs()
snake_case_ = PurePosixPath(path.strip("""/""" ) )
snake_case_ = {}
for p, f in self.dir_cache.items():
snake_case_ = PurePosixPath(p.strip("""/""" ) )
snake_case_ = p.parent
if root == path:
snake_case_ = f
snake_case_ = list(paths.values() )
if detail:
return out
else:
return sorted(f["""name"""] for f in out )
| 2 |
"""simple docstring"""
from functools import reduce
__SCREAMING_SNAKE_CASE : Tuple = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def _a ( _SCREAMING_SNAKE_CASE = N ) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) )
for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 | 1 |
"""simple docstring"""
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class __A (unittest.TestCase):
'''simple docstring'''
__lowercase: Any = JukeboxTokenizer
__lowercase: Union[str, Any] = {
"""artist""": """Zac Brown Band""",
"""genres""": """Country""",
"""lyrics""": """I met a traveller from an antique land,
Who said \"Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
""",
}
@require_torch
def lowerCAmelCase ( self : List[Any] ) ->int:
"""simple docstring"""
import torch
snake_case_ = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" )
snake_case_ = tokenizer(**self.metas )["""input_ids"""]
# fmt: off
snake_case_ = [
torch.tensor([[
0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1_069, 11]] ),
torch.tensor([[0, 0, 0, 1_069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
import torch
snake_case_ = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" )
snake_case_ = tokenizer(**self.metas )["""input_ids"""]
# fmt: off
snake_case_ = [
torch.tensor([[
0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 2 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : str = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Any = """mctct"""
def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = intermediate_size
snake_case_ = num_attention_heads
snake_case_ = attention_head_dim
snake_case_ = max_position_embeddings
snake_case_ = layer_norm_eps
snake_case_ = layerdrop
snake_case_ = hidden_act
snake_case_ = initializer_range
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = pad_token_id
snake_case_ = bos_token_id
snake_case_ = eos_token_id
snake_case_ = conv_glu_dim
snake_case_ = conv_dropout
snake_case_ = num_conv_layers
snake_case_ = input_feat_per_channel
snake_case_ = input_channels
snake_case_ = conv_channels
snake_case_ = ctc_loss_reduction
snake_case_ = ctc_zero_infinity
# prevents config testing fail with exporting to json
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """
F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """
F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
| 2 | 1 |
"""simple docstring"""
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
__SCREAMING_SNAKE_CASE : Optional[Any] = get_logger()
__SCREAMING_SNAKE_CASE : Optional[dict] = None
class __A (TensorFormatter[Mapping, """jax.Array""", Mapping]):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Tuple ) ->Optional[Any]:
"""simple docstring"""
super().__init__(features=UpperCAmelCase_ )
import jax
from jaxlib.xla_client import Device
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
raise ValueError(
F"""Expected {device} to be a `str` not {type(UpperCAmelCase_ )}, as `jaxlib.xla_extension.Device` """
"""is not serializable neither with `pickle` nor with `dill`. Instead you can surround """
"""the device with `str()` to get its string identifier that will be internally mapped """
"""to the actual `jaxlib.xla_extension.Device`.""" )
snake_case_ = device if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
snake_case_ = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
F"""Device with string identifier {self.device} not listed among the available """
F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """
F"""device: {str(jax.devices()[0] )}.""" )
snake_case_ = str(jax.devices()[0] )
snake_case_ = jnp_array_kwargs
@staticmethod
def lowerCAmelCase ( ) ->Dict[str, "jaxlib.xla_extension.Device"]:
"""simple docstring"""
import jax
return {str(UpperCAmelCase_ ): device for device in jax.devices()}
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] ) ->str:
"""simple docstring"""
import jax
import jax.numpy as jnp
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and column:
if all(
isinstance(UpperCAmelCase_ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(UpperCAmelCase_ , axis=0 )
return column
def lowerCAmelCase ( self : int , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
import jax
import jax.numpy as jnp
if isinstance(UpperCAmelCase_ , (str, bytes, type(UpperCAmelCase_ )) ):
return value
elif isinstance(UpperCAmelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
snake_case_ = {}
if isinstance(UpperCAmelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
snake_case_ = {"""dtype""": jnp.intaa}
else:
snake_case_ = {"""dtype""": jnp.intaa}
elif isinstance(UpperCAmelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
snake_case_ = {"""dtype""": jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(UpperCAmelCase_ , PIL.Image.Image ):
snake_case_ = np.asarray(UpperCAmelCase_ )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
snake_case_ = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(UpperCAmelCase_ , **{**default_dtype, **self.jnp_array_kwargs} )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]:
"""simple docstring"""
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(UpperCAmelCase_ , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(UpperCAmelCase_ , """__array__""" ) and not isinstance(UpperCAmelCase_ , jax.Array ):
snake_case_ = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(UpperCAmelCase_ , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(UpperCAmelCase_ ) for substruct in data_struct] )
elif isinstance(UpperCAmelCase_ , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(UpperCAmelCase_ ) for substruct in data_struct] )
return self._tensorize(UpperCAmelCase_ )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : dict ) ->int:
"""simple docstring"""
return map_nested(self._recursive_tensorize , UpperCAmelCase_ , map_list=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : pa.Table ) ->Mapping:
"""simple docstring"""
snake_case_ = self.numpy_arrow_extractor().extract_row(UpperCAmelCase_ )
snake_case_ = self.python_features_decoder.decode_row(UpperCAmelCase_ )
return self.recursive_tensorize(UpperCAmelCase_ )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : pa.Table ) ->"jax.Array":
"""simple docstring"""
snake_case_ = self.numpy_arrow_extractor().extract_column(UpperCAmelCase_ )
snake_case_ = self.python_features_decoder.decode_column(UpperCAmelCase_ , pa_table.column_names[0] )
snake_case_ = self.recursive_tensorize(UpperCAmelCase_ )
snake_case_ = self._consolidate(UpperCAmelCase_ )
return column
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : pa.Table ) ->Mapping:
"""simple docstring"""
snake_case_ = self.numpy_arrow_extractor().extract_batch(UpperCAmelCase_ )
snake_case_ = self.python_features_decoder.decode_batch(UpperCAmelCase_ )
snake_case_ = self.recursive_tensorize(UpperCAmelCase_ )
for column_name in batch:
snake_case_ = self._consolidate(batch[column_name] )
return batch
| 2 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int:
return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 2 | 1 |
"""simple docstring"""
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : List[Any] ) ->str:
"""simple docstring"""
debug_launcher(test_script.main )
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
debug_launcher(test_ops.main )
| 2 |
"""simple docstring"""
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: str = VQModel
__lowercase: Union[str, Any] = """sample"""
@property
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple:
"""simple docstring"""
snake_case_ = 4
snake_case_ = 3
snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ )
return {"sample": image}
@property
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
return (3, 32, 32)
@property
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
return (3, 32, 32)
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 3,
}
snake_case_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(UpperCAmelCase_ )
snake_case_ = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" )
model.to(UpperCAmelCase_ ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
snake_case_ = image.to(UpperCAmelCase_ )
with torch.no_grad():
snake_case_ = model(UpperCAmelCase_ ).sample
snake_case_ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] )
# fmt: on
self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 1 |
"""simple docstring"""
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def _a ( _SCREAMING_SNAKE_CASE ) -> tuple:
return (data["data"], data["target"])
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> np.ndarray:
snake_case_ = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Predict target for test data
snake_case_ = xgb.predict(_SCREAMING_SNAKE_CASE )
snake_case_ = predictions.reshape(len(_SCREAMING_SNAKE_CASE ) , 1 )
return predictions
def _a ( ) -> None:
snake_case_ = fetch_california_housing()
snake_case_ , snake_case_ = data_handling(_SCREAMING_SNAKE_CASE )
snake_case_ , snake_case_ , snake_case_ , snake_case_ = train_test_split(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , test_size=0.25 , random_state=1 )
snake_case_ = xgboost(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Error printing
print(f"""Mean Absolute Error : {mean_absolute_error(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}""" )
print(f"""Mean Square Error : {mean_squared_error(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}""" )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 2 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = KandinskyVaaControlnetPipeline
__lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: Union[str, Any] = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
__lowercase: Tuple = False
@property
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return 100
@property
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
snake_case_ = self.dummy_unet
snake_case_ = self.dummy_movq
snake_case_ = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , )
snake_case_ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]:
"""simple docstring"""
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase_ )
# create hint
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
if str(UpperCAmelCase_ ).startswith("""mps""" ):
snake_case_ = torch.manual_seed(UpperCAmelCase_ )
else:
snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = """cpu"""
snake_case_ = self.get_dummy_components()
snake_case_ = self.pipeline_class(**UpperCAmelCase_ )
snake_case_ = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
snake_case_ = output.images
snake_case_ = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ = np.array(
[0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0
snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case_ = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case_ = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = """A robot, 4k photo"""
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ , snake_case_ = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ = pipeline(
image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 2 | 1 |
"""simple docstring"""
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
snake_case_ = UniSpeechSatForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE )
snake_case_ = downstream_dict["""projector.weight"""]
snake_case_ = downstream_dict["""projector.bias"""]
snake_case_ = downstream_dict["""model.post_net.linear.weight"""]
snake_case_ = downstream_dict["""model.post_net.linear.bias"""]
return model
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
snake_case_ = UniSpeechSatForAudioFrameClassification.from_pretrained(_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE )
snake_case_ = downstream_dict["""model.linear.weight"""]
snake_case_ = downstream_dict["""model.linear.bias"""]
return model
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
snake_case_ = UniSpeechSatForXVector.from_pretrained(_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE )
snake_case_ = downstream_dict["""connector.weight"""]
snake_case_ = downstream_dict["""connector.bias"""]
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
snake_case_ = downstream_dict[
f"""model.framelevel_feature_extractor.module.{i}.kernel.weight"""
]
snake_case_ = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""]
snake_case_ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""]
snake_case_ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""]
snake_case_ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""]
snake_case_ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""]
snake_case_ = downstream_dict["""objective.W"""]
return model
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
snake_case_ = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )
snake_case_ = checkpoint["""Downstream"""]
snake_case_ = UniSpeechSatConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = WavaVecaFeatureExtractor.from_pretrained(
_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , do_normalize=_SCREAMING_SNAKE_CASE )
snake_case_ = hf_config.architectures[0]
if arch.endswith("""ForSequenceClassification""" ):
snake_case_ = convert_classification(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif arch.endswith("""ForAudioFrameClassification""" ):
snake_case_ = convert_diarization(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif arch.endswith("""ForXVector""" ):
snake_case_ = convert_xvector(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" )
if hf_config.use_weighted_layer_sum:
snake_case_ = checkpoint["""Featurizer"""]["""weights"""]
hf_feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE )
hf_model.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
parser.add_argument(
'--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.'
)
parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.')
parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.')
__SCREAMING_SNAKE_CASE : Any = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 2 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
class __A :
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = []
self.adlist.append(
{"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} )
for keyword in keywords:
self.add_keyword(UpperCAmelCase_ )
self.set_fail_transitions()
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None:
"""simple docstring"""
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None:
"""simple docstring"""
snake_case_ = 0
for character in keyword:
snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ )
if next_state is None:
self.adlist.append(
{
"""value""": character,
"""next_states""": [],
"""fail_state""": 0,
"""output""": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
snake_case_ = len(self.adlist ) - 1
else:
snake_case_ = next_state
self.adlist[current_state]["output"].append(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->None:
"""simple docstring"""
snake_case_ = deque()
for node in self.adlist[0]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = 0
while q:
snake_case_ = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = self.adlist[r]["""fail_state"""]
while (
self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None
and state != 0
):
snake_case_ = self.adlist[state]["""fail_state"""]
snake_case_ = self.find_next_state(
UpperCAmelCase_ , self.adlist[child]["""value"""] )
if self.adlist[child]["fail_state"] is None:
snake_case_ = 0
snake_case_ = (
self.adlist[child]["""output"""]
+ self.adlist[self.adlist[child]["""fail_state"""]]["""output"""]
)
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]:
"""simple docstring"""
snake_case_ = {} # returns a dict with keywords and list of its occurrences
snake_case_ = 0
for i in range(len(UpperCAmelCase_ ) ):
while (
self.find_next_state(UpperCAmelCase_ , string[i] ) is None
and current_state != 0
):
snake_case_ = self.adlist[current_state]["""fail_state"""]
snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] )
if next_state is None:
snake_case_ = 0
else:
snake_case_ = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
snake_case_ = []
result[key].append(i - len(UpperCAmelCase_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
from functools import lru_cache
@lru_cache
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if num < 0:
raise ValueError("""Number should not be negative.""" )
return 1 if num in (0, 1) else num * factorial(num - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = num_channels
snake_case_ = num_stages
snake_case_ = hidden_sizes
snake_case_ = depths
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = num_labels
snake_case_ = initializer_range
snake_case_ = out_features
snake_case_ = out_indices
snake_case_ = scope
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case_ = None
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[Any] = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
__lowercase: Union[str, Any] = (
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Optional[Any] = False
__lowercase: Any = False
__lowercase: Union[str, Any] = False
__lowercase: Dict = False
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = True
if model_class.__name__ in [
*get_values(UpperCAmelCase_ ),
*get_values(UpperCAmelCase_ ),
]:
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = False
snake_case_ = True
if (
model_class.__name__
in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )]
or not model_class.supports_gradient_checkpointing
):
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.gradient_checkpointing_enable()
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ):
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case_ = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _a ( ) -> str:
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ )
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
# verify the logits
snake_case_ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
| 2 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[Any] = IFPipeline
__lowercase: Optional[Any] = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""}
__lowercase: List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS
__lowercase: Optional[int] = PipelineTesterMixin.required_optional_params - {"""latents"""}
def lowerCAmelCase ( self : List[str] ) ->Any:
"""simple docstring"""
return self._get_dummy_components()
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=0 ) ->str:
"""simple docstring"""
if str(UpperCAmelCase_ ).startswith("""mps""" ):
snake_case_ = torch.manual_seed(UpperCAmelCase_ )
else:
snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1 )
def lowerCAmelCase ( self : Tuple ) ->Any:
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def lowerCAmelCase ( self : Union[str, Any] ) ->str:
"""simple docstring"""
self._test_save_load_local()
def lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def lowerCAmelCase ( self : Union[str, Any] ) ->Any:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@slow
@require_torch_gpu
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa )
snake_case_ = IFSuperResolutionPipeline.from_pretrained(
"""DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to("""cuda""" )
snake_case_ , snake_case_ = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
snake_case_ = None
snake_case_ = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
snake_case_ = IFImgaImgPipeline(**pipe_a.components )
snake_case_ = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
snake_case_ = IFInpaintingPipeline(**pipe_a.components )
snake_case_ = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ) ->str:
"""simple docstring"""
_start_torch_memory_measurement()
snake_case_ = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case_ = pipe_a(
prompt_embeds=UpperCAmelCase_ , negative_prompt_embeds=UpperCAmelCase_ , num_inference_steps=2 , generator=UpperCAmelCase_ , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (64, 64, 3)
snake_case_ = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" )
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
# pipeline 2
_start_torch_memory_measurement()
snake_case_ = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCAmelCase_ )
snake_case_ = pipe_a(
prompt_embeds=UpperCAmelCase_ , negative_prompt_embeds=UpperCAmelCase_ , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (256, 256, 3)
snake_case_ = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" )
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ) ->List[Any]:
"""simple docstring"""
_start_torch_memory_measurement()
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCAmelCase_ )
snake_case_ = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case_ = pipe_a(
prompt_embeds=UpperCAmelCase_ , negative_prompt_embeds=UpperCAmelCase_ , image=UpperCAmelCase_ , num_inference_steps=2 , generator=UpperCAmelCase_ , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (64, 64, 3)
snake_case_ = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" )
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
# pipeline 2
_start_torch_memory_measurement()
snake_case_ = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCAmelCase_ )
snake_case_ = pipe_a(
prompt_embeds=UpperCAmelCase_ , negative_prompt_embeds=UpperCAmelCase_ , image=UpperCAmelCase_ , original_image=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (256, 256, 3)
snake_case_ = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" )
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
_start_torch_memory_measurement()
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(UpperCAmelCase_ )
snake_case_ = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case_ = pipe_a(
prompt_embeds=UpperCAmelCase_ , negative_prompt_embeds=UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , num_inference_steps=2 , generator=UpperCAmelCase_ , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (64, 64, 3)
snake_case_ = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" )
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
# pipeline 2
_start_torch_memory_measurement()
snake_case_ = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(UpperCAmelCase_ )
snake_case_ = pipe_a(
prompt_embeds=UpperCAmelCase_ , negative_prompt_embeds=UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , original_image=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (256, 256, 3)
snake_case_ = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" )
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
def _a ( ) -> Optional[Any]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 2 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights']
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
if "emb" in name:
snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
snake_case_ = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
snake_case_ = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
snake_case_ = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
snake_case_ = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
snake_case_ = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]:
snake_case_ = list(state_dict.keys() )
snake_case_ = {}
for key in keys:
snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE )
if "in_proj_weight" in key:
# split fused qkv proj
snake_case_ = val[:hidden_size, :]
snake_case_ = val[hidden_size : 2 * hidden_size, :]
snake_case_ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
snake_case_ = val
else:
snake_case_ = val
return state_dict, enc_dec_proj_state_dict
def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
snake_case_ = 1_024
snake_case_ = 24
snake_case_ = 16
elif checkpoint == "medium":
snake_case_ = 1_536
snake_case_ = 48
snake_case_ = 24
elif checkpoint == "large":
snake_case_ = 2_048
snake_case_ = 48
snake_case_ = 32
else:
raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
snake_case_ = MusicgenDecoderConfig(
hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , )
return config
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple:
snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE )
snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE )
snake_case_ = fairseq_model.lm.state_dict()
snake_case_ , snake_case_ = rename_state_dict(
_SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size )
snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" )
snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE )
# check we can do a forward pass
snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
snake_case_ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" )
snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
# set the appropriate bos/pad token ids
snake_case_ = 2_048
snake_case_ = 2_048
# set other default generation config params
snake_case_ = int(30 * audio_encoder.config.frame_rate )
snake_case_ = True
snake_case_ = 3.0
if pytorch_dump_folder is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if repo_id:
logger.info(f"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
processor.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint',
default='small',
type=str,
help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.',
)
parser.add_argument(
'--pytorch_dump_folder',
required=True,
default=None,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
parser.add_argument(
'--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.'
)
__SCREAMING_SNAKE_CASE : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 2 | 1 |
"""simple docstring"""
import torch
from diffusers import DPMSolverSDEScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import require_torchsde
from .test_schedulers import SchedulerCommonTest
@require_torchsde
class __A (snake_case__):
'''simple docstring'''
__lowercase: int = (DPMSolverSDEScheduler,)
__lowercase: Optional[Any] = 10
def lowerCAmelCase ( self : Any , **UpperCAmelCase_ : List[Any] ) ->int:
"""simple docstring"""
snake_case_ = {
"""num_train_timesteps""": 1_100,
"""beta_start""": 0.0_001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""noise_sampler_seed""": 0,
}
config.update(**UpperCAmelCase_ )
return config
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for timesteps in [10, 50, 100, 1_000]:
self.check_over_configs(num_train_timesteps=UpperCAmelCase_ )
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = self.scheduler_classes[0]
snake_case_ = self.get_scheduler_config()
snake_case_ = scheduler_class(**UpperCAmelCase_ )
scheduler.set_timesteps(self.num_inference_steps )
snake_case_ = self.dummy_model()
snake_case_ = self.dummy_sample_deter * scheduler.init_noise_sigma
snake_case_ = sample.to(UpperCAmelCase_ )
for i, t in enumerate(scheduler.timesteps ):
snake_case_ = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = output.prev_sample
snake_case_ = torch.sum(torch.abs(UpperCAmelCase_ ) )
snake_case_ = torch.mean(torch.abs(UpperCAmelCase_ ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1E-2
assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1E-2
assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1E-3
else:
assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2
assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.scheduler_classes[0]
snake_case_ = self.get_scheduler_config(prediction_type="""v_prediction""" )
snake_case_ = scheduler_class(**UpperCAmelCase_ )
scheduler.set_timesteps(self.num_inference_steps )
snake_case_ = self.dummy_model()
snake_case_ = self.dummy_sample_deter * scheduler.init_noise_sigma
snake_case_ = sample.to(UpperCAmelCase_ )
for i, t in enumerate(scheduler.timesteps ):
snake_case_ = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = output.prev_sample
snake_case_ = torch.sum(torch.abs(UpperCAmelCase_ ) )
snake_case_ = torch.mean(torch.abs(UpperCAmelCase_ ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1E-2
assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1E-2
assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1E-3
else:
assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1E-2
assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1E-3
def lowerCAmelCase ( self : str ) ->str:
"""simple docstring"""
snake_case_ = self.scheduler_classes[0]
snake_case_ = self.get_scheduler_config()
snake_case_ = scheduler_class(**UpperCAmelCase_ )
scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase_ )
snake_case_ = self.dummy_model()
snake_case_ = self.dummy_sample_deter.to(UpperCAmelCase_ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
snake_case_ = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = output.prev_sample
snake_case_ = torch.sum(torch.abs(UpperCAmelCase_ ) )
snake_case_ = torch.mean(torch.abs(UpperCAmelCase_ ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1E-2
assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1E-2
assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1E-3
else:
assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2
assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.scheduler_classes[0]
snake_case_ = self.get_scheduler_config()
snake_case_ = scheduler_class(**UpperCAmelCase_ , use_karras_sigmas=UpperCAmelCase_ )
scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase_ )
snake_case_ = self.dummy_model()
snake_case_ = self.dummy_sample_deter.to(UpperCAmelCase_ ) * scheduler.init_noise_sigma
snake_case_ = sample.to(UpperCAmelCase_ )
for t in scheduler.timesteps:
snake_case_ = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = output.prev_sample
snake_case_ = torch.sum(torch.abs(UpperCAmelCase_ ) )
snake_case_ = torch.mean(torch.abs(UpperCAmelCase_ ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1E-2
assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1E-2
assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2
else:
assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1E-2
assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2
| 2 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
if index == number_of_items:
return 0
snake_case_ = 0
snake_case_ = 0
snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 )
if weights[index] <= max_weight:
snake_case_ = values[index] + knapsack(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 )
return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
__SCREAMING_SNAKE_CASE : Dict = pytest.mark.integration
@pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
inspect_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = path + """.py"""
assert script_name in os.listdir(_SCREAMING_SNAKE_CASE )
assert "__pycache__" not in os.listdir(_SCREAMING_SNAKE_CASE )
@pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" )
@pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" )
@pytest.mark.parametrize("""path""" , ["""accuracy"""] )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
inspect_metric(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = path + """.py"""
assert script_name in os.listdir(_SCREAMING_SNAKE_CASE )
assert "__pycache__" not in os.listdir(_SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
"""path, config_name, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
snake_case_ = get_dataset_config_info(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
with pytest.raises(_SCREAMING_SNAKE_CASE ):
get_dataset_config_info(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
"""path, expected""" , [
("""squad""", """plain_text"""),
("""acronym_identification""", """default"""),
("""lhoestq/squad""", """plain_text"""),
("""lhoestq/test""", """default"""),
("""lhoestq/demo1""", """lhoestq--demo1"""),
("""dalle-mini/wit""", """dalle-mini--wit"""),
] , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
snake_case_ = get_dataset_config_names(_SCREAMING_SNAKE_CASE )
assert expected in config_names
@pytest.mark.parametrize(
"""path, expected_configs, expected_splits_in_first_config""" , [
("""squad""", ["""plain_text"""], ["""train""", """validation"""]),
("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]),
("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]),
] , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = get_dataset_infos(_SCREAMING_SNAKE_CASE )
assert list(infos.keys() ) == expected_configs
snake_case_ = expected_configs[0]
assert expected_config in infos
snake_case_ = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
"""path, expected_config, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
snake_case_ = get_dataset_infos(_SCREAMING_SNAKE_CASE )
assert expected_config in infos
snake_case_ = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]:
with pytest.raises(_SCREAMING_SNAKE_CASE ):
get_dataset_split_names(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE )
| 2 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int:
snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
snake_case_ = n // 2
return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
__SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 2 | 1 |
"""simple docstring"""
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
__SCREAMING_SNAKE_CASE : Optional[int] = get_logger(__name__)
__SCREAMING_SNAKE_CASE : Union[str, Any] = R'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n'
class __A :
'''simple docstring'''
@add_start_docstrings(UpperCAmelCase_ )
def __call__( self : int , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray ) ->jnp.ndarray:
"""simple docstring"""
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
class __A :
'''simple docstring'''
@add_start_docstrings(UpperCAmelCase_ )
def __call__( self : Dict , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray ) ->jnp.ndarray:
"""simple docstring"""
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
class __A (snake_case__):
'''simple docstring'''
@add_start_docstrings(UpperCAmelCase_ )
def __call__( self : int , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int , **UpperCAmelCase_ : List[Any] ) ->jnp.ndarray:
"""simple docstring"""
for processor in self:
snake_case_ = inspect.signature(processor.__call__ ).parameters
if len(UpperCAmelCase_ ) > 3:
if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ):
raise ValueError(
F"""Make sure that all the required parameters: {list(function_args.keys() )} for """
F"""{processor.__class__} are passed to the logits processor.""" )
snake_case_ = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ )
else:
snake_case_ = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
return scores
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : float ) ->Optional[int]:
"""simple docstring"""
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not (temperature > 0):
raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""" )
snake_case_ = temperature
def __call__( self : Dict , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ) ->jnp.ndarray:
"""simple docstring"""
snake_case_ = scores / self.temperature
return scores
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : float , UpperCAmelCase_ : float = -float("""Inf""" ) , UpperCAmelCase_ : int = 1 ) ->str:
"""simple docstring"""
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (top_p < 0 or top_p > 1.0):
raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" )
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (min_tokens_to_keep < 1):
raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" )
snake_case_ = top_p
snake_case_ = filter_value
snake_case_ = min_tokens_to_keep
def __call__( self : Union[str, Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ) ->jnp.ndarray:
"""simple docstring"""
snake_case_ , snake_case_ = lax.top_k(UpperCAmelCase_ , scores.shape[-1] )
snake_case_ = jnp.full_like(UpperCAmelCase_ , self.filter_value )
snake_case_ = jax.nn.softmax(UpperCAmelCase_ , axis=-1 ).cumsum(axis=-1 )
snake_case_ = cumulative_probs < self.top_p
# include the token that is higher than top_p as well
snake_case_ = jnp.roll(UpperCAmelCase_ , 1 )
score_mask |= score_mask.at[:, 0].set(UpperCAmelCase_ )
# min tokens to keep
snake_case_ = score_mask.at[:, : self.min_tokens_to_keep].set(UpperCAmelCase_ )
snake_case_ = jnp.where(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = jax.lax.sort_key_val(UpperCAmelCase_ , UpperCAmelCase_ )[-1]
return next_scores
class __A (snake_case__):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = -float("""Inf""" ) , UpperCAmelCase_ : int = 1 ) ->Dict:
"""simple docstring"""
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or top_k <= 0:
raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""" )
snake_case_ = max(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = filter_value
def __call__( self : Tuple , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ) ->jnp.ndarray:
"""simple docstring"""
snake_case_ , snake_case_ = scores.shape
snake_case_ = jnp.full(batch_size * vocab_size , self.filter_value )
snake_case_ = min(self.top_k , scores.shape[-1] ) # Safety check
snake_case_ , snake_case_ = lax.top_k(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = jnp.broadcast_to((jnp.arange(UpperCAmelCase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten()
snake_case_ = topk_scores.flatten()
snake_case_ = topk_indices.flatten() + shift
snake_case_ = next_scores_flat.at[topk_indices_flat].set(UpperCAmelCase_ )
snake_case_ = next_scores_flat.reshape(UpperCAmelCase_ , UpperCAmelCase_ )
return next_scores
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Any , UpperCAmelCase_ : int ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = bos_token_id
def __call__( self : Tuple , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ) ->jnp.ndarray:
"""simple docstring"""
snake_case_ = jnp.full(scores.shape , -float("""inf""" ) )
snake_case_ = 1 - jnp.bool_(cur_len - 1 )
snake_case_ = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.bos_token_id].set(0 ) , UpperCAmelCase_ )
return scores
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) ->Tuple:
"""simple docstring"""
snake_case_ = max_length
snake_case_ = eos_token_id
def __call__( self : List[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ) ->jnp.ndarray:
"""simple docstring"""
snake_case_ = jnp.full(scores.shape , -float("""inf""" ) )
snake_case_ = 1 - jnp.bool_(cur_len - self.max_length + 1 )
snake_case_ = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.eos_token_id].set(0 ) , UpperCAmelCase_ )
return scores
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) ->List[str]:
"""simple docstring"""
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or min_length < 0:
raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""" )
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or eos_token_id < 0:
raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" )
snake_case_ = min_length
snake_case_ = eos_token_id
def __call__( self : Union[str, Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ) ->jnp.ndarray:
"""simple docstring"""
snake_case_ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 )
snake_case_ = jnp.where(UpperCAmelCase_ , scores.at[:, self.eos_token_id].set(-float("""inf""" ) ) , UpperCAmelCase_ )
return scores
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = begin_index
def __call__( self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ) ->List[str]:
"""simple docstring"""
snake_case_ = 1 - jnp.bool_(cur_len - self.begin_index )
snake_case_ = jnp.where(UpperCAmelCase_ , scores.at[:, self.begin_suppress_tokens].set(-float("""inf""" ) ) , UpperCAmelCase_ )
return scores
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Any , UpperCAmelCase_ : list ) ->List[str]:
"""simple docstring"""
snake_case_ = list(UpperCAmelCase_ )
def __call__( self : int , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ) ->jnp.ndarray:
"""simple docstring"""
snake_case_ = scores.at[..., self.suppress_tokens].set(-float("""inf""" ) )
return scores
class __A (snake_case__):
'''simple docstring'''
def __init__( self : str , UpperCAmelCase_ : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = dict(UpperCAmelCase_ )
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
snake_case_ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1
for index, token in force_token_map.items():
if token is not None:
snake_case_ = force_token_array.at[index].set(UpperCAmelCase_ )
snake_case_ = jnp.intaa(UpperCAmelCase_ )
def __call__( self : Optional[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ) ->jnp.ndarray:
"""simple docstring"""
def _force_token(UpperCAmelCase_ : List[Any] ):
snake_case_ = scores.shape[0]
snake_case_ = self.force_token_array[generation_idx]
snake_case_ = jnp.ones_like(UpperCAmelCase_ , dtype=scores.dtype ) * -float("""inf""" )
snake_case_ = jnp.zeros((batch_size, 1) , dtype=scores.dtype )
snake_case_ = lax.dynamic_update_slice(UpperCAmelCase_ , UpperCAmelCase_ , (0, current_token) )
return new_scores
snake_case_ = lax.cond(
cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond(
self.force_token_array[cur_len] >= 0 , lambda: _force_token(UpperCAmelCase_ ) , lambda: scores , ) , )
return scores
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ) ->int:
"""simple docstring"""
snake_case_ = generate_config.eos_token_id
snake_case_ = generate_config.no_timestamps_token_id
snake_case_ = generate_config.no_timestamps_token_id + 1
snake_case_ = decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(UpperCAmelCase_ , """max_initial_timestamp_index""" ):
snake_case_ = generate_config.max_initial_timestamp_index
else:
snake_case_ = model_config.vocab_size
if self.max_initial_timestamp_index is None:
snake_case_ = model_config.vocab_size
def __call__( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = scores.at[:, self.no_timestamps_token_id].set(-float("""inf""" ) )
def handle_pairs(UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ):
snake_case_ = jnp.where((cur_len - self.begin_index) >= 1 , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , UpperCAmelCase_ , )
snake_case_ = jnp.where((cur_len - self.begin_index) < 2 , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin , UpperCAmelCase_ , UpperCAmelCase_ , )
return jnp.where(
UpperCAmelCase_ , jnp.where(
penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("""inf""" ) ) , scores_k.at[: self.eos_token_id].set(-float("""inf""" ) ) , ) , UpperCAmelCase_ , )
snake_case_ = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = jnp.where(cur_len == self.begin_index , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = jnp.where(
self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , UpperCAmelCase_ , )
snake_case_ = self.timestamp_begin + self.max_initial_timestamp_index
snake_case_ = jnp.where(
UpperCAmelCase_ , scores.at[:, last_allowed + 1 :].set(-float("""inf""" ) ) , UpperCAmelCase_ , )
# if sum of probability over timestamps is above any other token, sample timestamp
snake_case_ = jax.nn.log_softmax(UpperCAmelCase_ , axis=-1 )
def handle_cumulative_probs(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ):
snake_case_ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 )
snake_case_ = jnp.max(logprobs_k[: self.timestamp_begin] )
return jnp.where(
timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("""inf""" ) ) , UpperCAmelCase_ , )
snake_case_ = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ )
return scores
| 2 |
"""simple docstring"""
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str:
snake_case_ = ascii_letters + digits + punctuation
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(_SCREAMING_SNAKE_CASE )
snake_case_ = i // 3
snake_case_ = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
snake_case_ = (
chars_incl
+ random(_SCREAMING_SNAKE_CASE , quotient + remainder )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
)
snake_case_ = list(_SCREAMING_SNAKE_CASE )
shuffle(_SCREAMING_SNAKE_CASE )
return "".join(_SCREAMING_SNAKE_CASE )
# random is a generalised function for letters, characters and numbers
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool:
if len(_SCREAMING_SNAKE_CASE ) < min_length:
# Your Password must be at least 8 characters long
return False
snake_case_ = any(char in ascii_uppercase for char in password )
snake_case_ = any(char in ascii_lowercase for char in password )
snake_case_ = any(char in digits for char in password )
snake_case_ = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def _a ( ) -> str:
snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() )
snake_case_ = input(
"""Please indicate the characters that must be in your password: """ ).strip()
print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) )
print(
"""Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , )
print("""[If you are thinking of using this passsword, You better save it.]""" )
if __name__ == "__main__":
main()
| 2 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Union[str, Any] = '▁'
__SCREAMING_SNAKE_CASE : int = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'}
__SCREAMING_SNAKE_CASE : Any = {
'vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model',
},
'monolingual_vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt',
},
}
__SCREAMING_SNAKE_CASE : Any = {'vinai/bartpho-syllable': 1_024}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Dict = VOCAB_FILES_NAMES
__lowercase: str = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase: Tuple = ["""input_ids""", """attention_mask"""]
def __init__( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str="<s>" , UpperCAmelCase_ : str="</s>" , UpperCAmelCase_ : Dict="</s>" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="<unk>" , UpperCAmelCase_ : Union[str, Any]="<pad>" , UpperCAmelCase_ : Optional[int]="<mask>" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : List[Any] , ) ->None:
"""simple docstring"""
snake_case_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token
snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
snake_case_ = vocab_file
snake_case_ = monolingual_vocab_file
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(UpperCAmelCase_ ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
snake_case_ = {}
snake_case_ = 0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(UpperCAmelCase_ ) not in self.fairseq_tokens_to_ids:
snake_case_ = cnt
cnt += 1
with open(UpperCAmelCase_ , """r""" , encoding="""utf-8""" ) as f:
for line in f.readlines():
snake_case_ = line.strip().split()[0]
snake_case_ = len(self.fairseq_tokens_to_ids )
if str(UpperCAmelCase_ ) not in self.fairseq_tokens_to_ids:
snake_case_ = len(self.fairseq_tokens_to_ids )
snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : List[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.__dict__.copy()
snake_case_ = None
snake_case_ = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : int , UpperCAmelCase_ : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
snake_case_ = {}
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
snake_case_ = [self.cls_token_id]
snake_case_ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] + ([0] * len(UpperCAmelCase_ )) + [1]
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def lowerCAmelCase ( self : Dict ) ->Tuple:
"""simple docstring"""
return len(self.fairseq_ids_to_tokens )
def lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Optional[Any] ) ->Any:
"""simple docstring"""
return self.fairseq_ids_to_tokens[index]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : List[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = """""".join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , """ """ ).strip()
return out_string
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , """wb""" ) as fi:
snake_case_ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
UpperCAmelCase_ ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(UpperCAmelCase_ , """w""" , encoding="""utf-8""" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(F"""{str(UpperCAmelCase_ )} \n""" )
return out_vocab_file, out_monolingual_vocab_file
| 2 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_normalize
def lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
snake_case_ = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" )
image_processor_first.to_json_file(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
pass
def _a ( ) -> str:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
snake_case_ = Image.open(dataset[4]["""file"""] )
snake_case_ = Image.open(dataset[5]["""file"""] )
snake_case_ = [imagea, imagea]
return images
@require_vision
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
snake_case_ = prepare_images()
# test non-batched
snake_case_ = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_024) )
snake_case_ = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ )
# test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_024) )
snake_case_ = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
| 2 | 1 |
"""simple docstring"""
from pathlib import Path
import fire
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]:
snake_case_ = Path(_SCREAMING_SNAKE_CASE )
snake_case_ = Path(_SCREAMING_SNAKE_CASE )
dest_dir.mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
for path in src_dir.iterdir():
snake_case_ = [x.rstrip() for x in list(path.open().readlines() )][:n]
snake_case_ = dest_dir.joinpath(path.name )
print(_SCREAMING_SNAKE_CASE )
dest_path.open("""w""" ).write("""\n""".join(_SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
fire.Fire(minify)
| 2 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = scope
snake_case_ = range_bbox
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case_ = bbox[i, j, 3]
snake_case_ = bbox[i, j, 1]
snake_case_ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case_ = bbox[i, j, 2]
snake_case_ = bbox[i, j, 0]
snake_case_ = t
snake_case_ = None
if self.use_input_mask:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str:
"""simple docstring"""
snake_case_ = LiltModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict:
"""simple docstring"""
snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowercase: Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return True
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = LiltModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_torch
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ )
snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ )
snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ )
snake_case_ = torch.Size([1, 2, 768] )
snake_case_ = torch.tensor(
[[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 1 |
"""simple docstring"""
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class __A (snake_case__):
'''simple docstring'''
__lowercase: List[str] = """char"""
__lowercase: Any = """bpe"""
__lowercase: Dict = """wp"""
__SCREAMING_SNAKE_CASE : Any = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = ["""image_processor""", """char_tokenizer"""]
__lowercase: Union[str, Any] = """ViTImageProcessor"""
__lowercase: Any = """MgpstrTokenizer"""
def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , **UpperCAmelCase_ : Dict ) ->Dict:
"""simple docstring"""
snake_case_ = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , UpperCAmelCase_ , )
snake_case_ = kwargs.pop("""feature_extractor""" )
snake_case_ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
snake_case_ = tokenizer
snake_case_ = AutoTokenizer.from_pretrained("""gpt2""" )
snake_case_ = AutoTokenizer.from_pretrained("""bert-base-uncased""" )
super().__init__(UpperCAmelCase_ , UpperCAmelCase_ )
def __call__( self : Optional[Any] , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Any ) ->Any:
"""simple docstring"""
if images is None and text is None:
raise ValueError("""You need to specify either an `images` or `text` input to process.""" )
if images is not None:
snake_case_ = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ )
if text is not None:
snake_case_ = self.char_tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ )
if text is None:
return inputs
elif images is None:
return encodings
else:
snake_case_ = encodings["""input_ids"""]
return inputs
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ , snake_case_ , snake_case_ = sequences
snake_case_ = char_preds.size(0 )
snake_case_ , snake_case_ = self._decode_helper(UpperCAmelCase_ , """char""" )
snake_case_ , snake_case_ = self._decode_helper(UpperCAmelCase_ , """bpe""" )
snake_case_ , snake_case_ = self._decode_helper(UpperCAmelCase_ , """wp""" )
snake_case_ = []
snake_case_ = []
for i in range(UpperCAmelCase_ ):
snake_case_ = [char_scores[i], bpe_scores[i], wp_scores[i]]
snake_case_ = [char_strs[i], bpe_strs[i], wp_strs[i]]
snake_case_ = scores.index(max(UpperCAmelCase_ ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
snake_case_ = {}
snake_case_ = final_strs
snake_case_ = final_scores
snake_case_ = char_strs
snake_case_ = bpe_strs
snake_case_ = wp_strs
return out
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
if format == DecodeType.CHARACTER:
snake_case_ = self.char_decode
snake_case_ = 1
snake_case_ = """[s]"""
elif format == DecodeType.BPE:
snake_case_ = self.bpe_decode
snake_case_ = 2
snake_case_ = """#"""
elif format == DecodeType.WORDPIECE:
snake_case_ = self.wp_decode
snake_case_ = 102
snake_case_ = """[SEP]"""
else:
raise ValueError(F"""Format {format} is not supported.""" )
snake_case_ , snake_case_ = [], []
snake_case_ = pred_logits.size(0 )
snake_case_ = pred_logits.size(1 )
snake_case_ , snake_case_ = pred_logits.topk(1 , dim=-1 , largest=UpperCAmelCase_ , sorted=UpperCAmelCase_ )
snake_case_ = preds_index.view(-1 , UpperCAmelCase_ )[:, 1:]
snake_case_ = decoder(UpperCAmelCase_ )
snake_case_ , snake_case_ = torch.nn.functional.softmax(UpperCAmelCase_ , dim=2 ).max(dim=2 )
snake_case_ = preds_max_prob[:, 1:]
for index in range(UpperCAmelCase_ ):
snake_case_ = preds_str[index].find(UpperCAmelCase_ )
snake_case_ = preds_str[index][:pred_eos]
snake_case_ = preds_index[index].cpu().tolist()
snake_case_ = pred_index.index(UpperCAmelCase_ ) if eos_token in pred_index else -1
snake_case_ = preds_max_prob[index][: pred_eos_index + 1]
snake_case_ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(UpperCAmelCase_ )
conf_scores.append(UpperCAmelCase_ )
return dec_strs, conf_scores
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->Dict:
"""simple docstring"""
snake_case_ = [seq.replace(""" """ , """""" ) for seq in self.char_tokenizer.batch_decode(UpperCAmelCase_ )]
return decode_strs
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Optional[Any] ) ->str:
"""simple docstring"""
return self.bpe_tokenizer.batch_decode(UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] ) ->str:
"""simple docstring"""
snake_case_ = [seq.replace(""" """ , """""" ) for seq in self.wp_tokenizer.batch_decode(UpperCAmelCase_ )]
return decode_strs
| 2 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = 0
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
snake_case_ = i + 1
else:
snake_case_ = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
| 2 | 1 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class __A :
'''simple docstring'''
def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = 13
snake_case_ = 7
snake_case_ = True
snake_case_ = True
snake_case_ = False
snake_case_ = True
snake_case_ = 99
snake_case_ = 32
snake_case_ = 2
snake_case_ = 4
snake_case_ = 37
snake_case_ = """gelu"""
snake_case_ = 0.1
snake_case_ = 0.1
snake_case_ = 512
snake_case_ = 16
snake_case_ = 2
snake_case_ = 0.02
snake_case_ = 3
snake_case_ = 4
snake_case_ = None
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = None
if self.use_input_mask:
snake_case_ = random_attention_mask([self.batch_size, self.seq_length] )
snake_case_ = None
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = ids_tensor([self.batch_size] , self.num_choices )
snake_case_ = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int ) ->str:
"""simple docstring"""
snake_case_ = TFDistilBertModel(config=UpperCAmelCase_ )
snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask}
snake_case_ = model(UpperCAmelCase_ )
snake_case_ = [input_ids, input_mask]
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] ) ->int:
"""simple docstring"""
snake_case_ = TFDistilBertForMaskedLM(config=UpperCAmelCase_ )
snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask}
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ) ->Optional[int]:
"""simple docstring"""
snake_case_ = TFDistilBertForQuestionAnswering(config=UpperCAmelCase_ )
snake_case_ = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
}
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) ->int:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = TFDistilBertForSequenceClassification(UpperCAmelCase_ )
snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask}
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict ) ->int:
"""simple docstring"""
snake_case_ = self.num_choices
snake_case_ = TFDistilBertForMultipleChoice(UpperCAmelCase_ )
snake_case_ = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) )
snake_case_ = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) )
snake_case_ = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
}
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = TFDistilBertForTokenClassification(UpperCAmelCase_ )
snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask}
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : str ) ->Tuple:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
((snake_case_) , (snake_case_) , (snake_case_) , (snake_case_) , (snake_case_) , (snake_case_)) = config_and_inputs
snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: str = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
__lowercase: int = (
{
"""feature-extraction""": TFDistilBertModel,
"""fill-mask""": TFDistilBertForMaskedLM,
"""question-answering""": TFDistilBertForQuestionAnswering,
"""text-classification""": TFDistilBertForSequenceClassification,
"""token-classification""": TFDistilBertForTokenClassification,
"""zero-shot""": TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__lowercase: Any = False
__lowercase: Optional[int] = False
def lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
snake_case_ = TFDistilBertModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , dim=37 )
def lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ) ->Tuple:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->str:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : List[Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
snake_case_ = TFDistilBertModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_tf
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" )
snake_case_ = tf.constant([[0, 1, 2, 3, 4, 5]] )
snake_case_ = model(UpperCAmelCase_ )[0]
snake_case_ = [1, 6, 768]
self.assertEqual(output.shape , UpperCAmelCase_ )
snake_case_ = tf.constant(
[
[
[0.19_261_885, -0.13_732_955, 0.4_119_799],
[0.22_150_156, -0.07_422_661, 0.39_037_204],
[0.22_756_018, -0.0_896_414, 0.3_701_467],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 )
| 2 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 1 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> set[str]:
snake_case_ , snake_case_ = set(_SCREAMING_SNAKE_CASE ), [start]
while stack:
snake_case_ = stack.pop()
explored.add(_SCREAMING_SNAKE_CASE )
# Differences from BFS:
# 1) pop last element instead of first one
# 2) add adjacent elements to stack without exploring them
for adj in reversed(graph[v] ):
if adj not in explored:
stack.append(_SCREAMING_SNAKE_CASE )
return explored
__SCREAMING_SNAKE_CASE : List[str] = {
'A': ['B', 'C', 'D'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F'],
'D': ['B', 'D'],
'E': ['B', 'F'],
'F': ['C', 'E', 'G'],
'G': ['F'],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
print(depth_first_search(G, 'A'))
| 2 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter'
__SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE'
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}"""
raise TypeError(_SCREAMING_SNAKE_CASE )
snake_case_ = spanish_id.replace("""-""" , """""" ).upper()
if len(_SCREAMING_SNAKE_CASE ) != 9:
raise ValueError(_SCREAMING_SNAKE_CASE )
try:
snake_case_ = int(spanish_id_clean[0:8] )
snake_case_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_SCREAMING_SNAKE_CASE ) from ex
if letter.isdigit():
raise ValueError(_SCREAMING_SNAKE_CASE )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : WhisperForConditionalGeneration , UpperCAmelCase_ : WhisperProcessor , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : CLIPTextModel , UpperCAmelCase_ : CLIPTokenizer , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase_ : StableDiffusionSafetyChecker , UpperCAmelCase_ : CLIPImageProcessor , ) ->Any:
"""simple docstring"""
super().__init__()
if safety_checker is None:
logger.warning(
F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"""
""" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"""
""" results in services or applications open to the public. Both the diffusers team and Hugging Face"""
""" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"""
""" it only for use-cases that involve analyzing network behavior or auditing its results. For more"""
""" information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" )
self.register_modules(
speech_model=UpperCAmelCase_ , speech_processor=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[Union[str, int]] = "auto" ) ->Dict:
"""simple docstring"""
if slice_size == "auto":
snake_case_ = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase_ )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.enable_attention_slicing(UpperCAmelCase_ )
@torch.no_grad()
def __call__( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=16_000 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : float = 7.5 , UpperCAmelCase_ : Optional[Union[str, List[str]]] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , **UpperCAmelCase_ : int , ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.speech_processor.feature_extractor(
UpperCAmelCase_ , return_tensors="""pt""" , sampling_rate=UpperCAmelCase_ ).input_features.to(self.device )
snake_case_ = self.speech_model.generate(UpperCAmelCase_ , max_length=480_000 )
snake_case_ = self.speech_processor.tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , normalize=UpperCAmelCase_ )[
0
]
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = 1
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = len(UpperCAmelCase_ )
else:
raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(UpperCAmelCase_ )}""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or callback_steps <= 0)
):
raise ValueError(
F"""`callback_steps` has to be a positive integer but is {callback_steps} of type"""
F""" {type(UpperCAmelCase_ )}.""" )
# get prompt text embeddings
snake_case_ = self.tokenizer(
UpperCAmelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , )
snake_case_ = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
snake_case_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"""The following part of your input was truncated because CLIP can only handle sequences up to"""
F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" )
snake_case_ = text_input_ids[:, : self.tokenizer.model_max_length]
snake_case_ = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
snake_case_ , snake_case_ , snake_case_ = text_embeddings.shape
snake_case_ = text_embeddings.repeat(1 , UpperCAmelCase_ , 1 )
snake_case_ = text_embeddings.view(bs_embed * num_images_per_prompt , UpperCAmelCase_ , -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
snake_case_ = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
snake_case_ = 42
if negative_prompt is None:
snake_case_ = [""""""] * batch_size
elif type(UpperCAmelCase_ ) is not type(UpperCAmelCase_ ):
raise TypeError(
F"""`negative_prompt` should be the same type to `prompt`, but got {type(UpperCAmelCase_ )} !="""
F""" {type(UpperCAmelCase_ )}.""" )
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = [negative_prompt]
elif batch_size != len(UpperCAmelCase_ ):
raise ValueError(
F"""`negative_prompt`: {negative_prompt} has batch size {len(UpperCAmelCase_ )}, but `prompt`:"""
F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"""
""" the batch size of `prompt`.""" )
else:
snake_case_ = negative_prompt
snake_case_ = text_input_ids.shape[-1]
snake_case_ = self.tokenizer(
UpperCAmelCase_ , padding="""max_length""" , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="""pt""" , )
snake_case_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
snake_case_ = uncond_embeddings.shape[1]
snake_case_ = uncond_embeddings.repeat(1 , UpperCAmelCase_ , 1 )
snake_case_ = uncond_embeddings.view(batch_size * num_images_per_prompt , UpperCAmelCase_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
snake_case_ = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
snake_case_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
snake_case_ = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
snake_case_ = torch.randn(UpperCAmelCase_ , generator=UpperCAmelCase_ , device="""cpu""" , dtype=UpperCAmelCase_ ).to(
self.device )
else:
snake_case_ = torch.randn(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=self.device , dtype=UpperCAmelCase_ )
else:
if latents.shape != latents_shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
snake_case_ = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(UpperCAmelCase_ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
snake_case_ = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
snake_case_ = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
snake_case_ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
snake_case_ = {}
if accepts_eta:
snake_case_ = eta
for i, t in enumerate(self.progress_bar(UpperCAmelCase_ ) ):
# expand the latents if we are doing classifier free guidance
snake_case_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
snake_case_ = self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ )
# predict the noise residual
snake_case_ = self.unet(UpperCAmelCase_ , UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ ).sample
# perform guidance
if do_classifier_free_guidance:
snake_case_ , snake_case_ = noise_pred.chunk(2 )
snake_case_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
snake_case_ = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = 1 / 0.18_215 * latents
snake_case_ = self.vae.decode(UpperCAmelCase_ ).sample
snake_case_ = (image / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
snake_case_ = self.numpy_to_pil(UpperCAmelCase_ )
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=UpperCAmelCase_ , nsfw_content_detected=UpperCAmelCase_ )
| 2 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'}
__SCREAMING_SNAKE_CASE : List[str] = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
}
}
__SCREAMING_SNAKE_CASE : List[str] = {
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
__SCREAMING_SNAKE_CASE : int = '▁'
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = VOCAB_FILES_NAMES
__lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None:
"""simple docstring"""
snake_case_ = (
AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
else mask_token
)
snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
snake_case_ = do_lower_case
snake_case_ = remove_space
snake_case_ = keep_accents
snake_case_ = vocab_file
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
return len(self.sp_model )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) ->List[str]:
"""simple docstring"""
snake_case_ = self.__dict__.copy()
snake_case_ = None
return state
def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
snake_case_ = {}
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str:
"""simple docstring"""
if self.remove_space:
snake_case_ = """ """.join(inputs.strip().split() )
else:
snake_case_ = inputs
snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ )
snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] )
if self.do_lower_case:
snake_case_ = outputs.lower()
return outputs
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
snake_case_ = self.preprocess_text(UpperCAmelCase_ )
snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
snake_case_ = []
for piece in pieces:
if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
snake_case_ = cur_pieces[1:]
else:
snake_case_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCAmelCase_ )
else:
new_pieces.append(UpperCAmelCase_ )
return new_pieces
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict:
"""simple docstring"""
return self.sp_model.PieceToId(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return self.sp_model.IdToPiece(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any:
"""simple docstring"""
snake_case_ = []
snake_case_ = """"""
snake_case_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase_ ) + token
snake_case_ = True
snake_case_ = []
else:
current_sub_tokens.append(UpperCAmelCase_ )
snake_case_ = False
out_string += self.sp_model.decode(UpperCAmelCase_ )
return out_string.strip()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , """wb""" ) as fi:
snake_case_ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
return (out_vocab_file,)
| 2 | 1 |
"""simple docstring"""
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
__SCREAMING_SNAKE_CASE : Union[str, Any] = pytest.mark.integration
__SCREAMING_SNAKE_CASE : Optional[int] = {'comet'}
__SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.util.find_spec('fairseq') is not None
__SCREAMING_SNAKE_CASE : Dict = {'code_eval'}
__SCREAMING_SNAKE_CASE : str = os.name == 'nt'
__SCREAMING_SNAKE_CASE : Union[str, Any] = {'bertscore', 'frugalscore', 'perplexity'}
__SCREAMING_SNAKE_CASE : Any = importlib.util.find_spec('transformers') is not None
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
@wraps(_SCREAMING_SNAKE_CASE )
def wrapper(self , _SCREAMING_SNAKE_CASE ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest("""\"test requires Fairseq\"""" )
else:
test_case(self , _SCREAMING_SNAKE_CASE )
return wrapper
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
@wraps(_SCREAMING_SNAKE_CASE )
def wrapper(self , _SCREAMING_SNAKE_CASE ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest("""\"test requires transformers\"""" )
else:
test_case(self , _SCREAMING_SNAKE_CASE )
return wrapper
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
@wraps(_SCREAMING_SNAKE_CASE )
def wrapper(self , _SCREAMING_SNAKE_CASE ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest("""\"test not supported on Windows\"""" )
else:
test_case(self , _SCREAMING_SNAKE_CASE )
return wrapper
def _a ( ) -> List[str]:
snake_case_ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names())
@for_all_test_methods(
snake_case__ , snake_case__ , snake_case__)
@local
class __A (parameterized.TestCase):
'''simple docstring'''
__lowercase: Tuple = {}
__lowercase: Tuple = None
@pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" )
@pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = """[...]"""
snake_case_ = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("""metrics""" , UpperCAmelCase_ ) ).module_path )
snake_case_ = datasets.load.import_main_class(metric_module.__name__ , dataset=UpperCAmelCase_ )
# check parameters
snake_case_ = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(UpperCAmelCase_ , metric_module.__name__ ):
with self.use_local_metrics():
try:
snake_case_ = doctest.testmod(UpperCAmelCase_ , verbose=UpperCAmelCase_ , raise_on_error=UpperCAmelCase_ )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[str] ) ->Any:
"""simple docstring"""
snake_case_ = """[...]"""
snake_case_ = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("""metrics""" , UpperCAmelCase_ ) ).module_path )
# run doctest
with self.use_local_metrics():
snake_case_ = doctest.testmod(UpperCAmelCase_ , verbose=UpperCAmelCase_ , raise_on_error=UpperCAmelCase_ )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) ->int:
"""simple docstring"""
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](UpperCAmelCase_ ):
yield
else:
yield
@contextmanager
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
def load_local_metric(UpperCAmelCase_ : Optional[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str ):
return load_metric(os.path.join("""metrics""" , UpperCAmelCase_ ) , *UpperCAmelCase_ , **UpperCAmelCase_ )
with patch("""datasets.load_metric""" ) as mock_load_metric:
snake_case_ = load_local_metric
yield
@classmethod
def lowerCAmelCase ( cls : Any , UpperCAmelCase_ : Dict ) ->List[Any]:
"""simple docstring"""
def wrapper(UpperCAmelCase_ : Optional[int] ):
snake_case_ = contextmanager(UpperCAmelCase_ )
snake_case_ = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher("""bleurt""" )
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags
class __A (snake_case__):
'''simple docstring'''
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
assert len(input_dict["""input_ids"""] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor:
snake_case_ = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher("""bertscore""" )
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
import torch
def bert_cos_score_idf(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(_SCREAMING_SNAKE_CASE ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch("""bert_score.scorer.get_model""" ), patch(
"""bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf:
snake_case_ = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher("""comet""" )
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
def load_from_checkpoint(_SCREAMING_SNAKE_CASE ):
class __A :
'''simple docstring'''
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : str ) ->Any:
"""simple docstring"""
assert len(UpperCAmelCase_ ) == 2
snake_case_ = [0.19, 0.92]
return scores, sum(UpperCAmelCase_ ) / len(UpperCAmelCase_ )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch("""comet.download_model""" ) as mock_download_model:
snake_case_ = None
with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint:
snake_case_ = load_from_checkpoint
yield
def _a ( ) -> List[str]:
snake_case_ = load_metric(os.path.join("""metrics""" , """seqeval""" ) )
snake_case_ = """ERROR"""
snake_case_ = f"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}"""
with pytest.raises(_SCREAMING_SNAKE_CASE , match=re.escape(_SCREAMING_SNAKE_CASE ) ):
metric.compute(predictions=[] , references=[] , scheme=_SCREAMING_SNAKE_CASE )
| 2 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("""The given input must be positive""" )
# get the generated string sequence
snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = int(sequence[i] , 2 )
return sequence
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
snake_case_ = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
snake_case_ = gray_code_sequence_string(bit_count - 1 )
snake_case_ = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
snake_case_ = """0""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
snake_case_ = """1""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Any , UpperCAmelCase_ : List[Any]=0.01 , UpperCAmelCase_ : Optional[int]=1_000 ) ->Tuple:
"""simple docstring"""
snake_case_ = p_stop
snake_case_ = max_length
def __iter__( self : List[Any] ) ->int:
"""simple docstring"""
snake_case_ = 0
snake_case_ = False
while not stop and count < self.max_length:
yield count
count += 1
snake_case_ = random.random() < self.p_stop
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[str]=True ) ->List[Any]:
"""simple docstring"""
snake_case_ = [
BatchSamplerShard(UpperCAmelCase_ , 2 , UpperCAmelCase_ , split_batches=UpperCAmelCase_ , even_batches=UpperCAmelCase_ )
for i in range(2 )
]
snake_case_ = [list(UpperCAmelCase_ ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(UpperCAmelCase_ ) for shard in batch_sampler_shards] , [len(UpperCAmelCase_ ) for e in expected] )
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : int ) ->Tuple:
"""simple docstring"""
snake_case_ = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase_ )
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
snake_case_ = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
snake_case_ = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
snake_case_ = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ )
# Check the shards when the dataset is very small.
snake_case_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase_ )
snake_case_ = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase_ )
snake_case_ = [[], []]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , split_batches=UpperCAmelCase_ )
snake_case_ = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase_ )
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , split_batches=UpperCAmelCase_ )
# Check the shards when the dataset is not a round multiple of batch size.
snake_case_ = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , split_batches=UpperCAmelCase_ )
snake_case_ = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , split_batches=UpperCAmelCase_ )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
snake_case_ = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , split_batches=UpperCAmelCase_ )
snake_case_ = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , split_batches=UpperCAmelCase_ )
# Check the shards when the dataset is very small.
snake_case_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase_ )
snake_case_ = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , split_batches=UpperCAmelCase_ )
snake_case_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase_ )
snake_case_ = [[], []]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , split_batches=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , even_batches=UpperCAmelCase_ )
snake_case_ = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase_ )
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , even_batches=UpperCAmelCase_ )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
snake_case_ = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , even_batches=UpperCAmelCase_ )
snake_case_ = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , even_batches=UpperCAmelCase_ )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
snake_case_ = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , even_batches=UpperCAmelCase_ )
snake_case_ = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , even_batches=UpperCAmelCase_ )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
snake_case_ = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , even_batches=UpperCAmelCase_ )
snake_case_ = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , even_batches=UpperCAmelCase_ )
# Check the shards when the dataset is very small.
snake_case_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase_ )
snake_case_ = [[[0, 1]], []]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , even_batches=UpperCAmelCase_ )
snake_case_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase_ )
snake_case_ = [[], []]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , even_batches=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
snake_case_ = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , split_batches=UpperCAmelCase_ , even_batches=UpperCAmelCase_ )
snake_case_ = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase_ )
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , split_batches=UpperCAmelCase_ , even_batches=UpperCAmelCase_ )
# Check the shards when the dataset is not a round multiple of batch size.
snake_case_ = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , split_batches=UpperCAmelCase_ , even_batches=UpperCAmelCase_ )
snake_case_ = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , split_batches=UpperCAmelCase_ , even_batches=UpperCAmelCase_ )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
snake_case_ = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , split_batches=UpperCAmelCase_ , even_batches=UpperCAmelCase_ )
snake_case_ = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase_ )
snake_case_ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , split_batches=UpperCAmelCase_ , even_batches=UpperCAmelCase_ )
# Check the shards when the dataset is very small.
snake_case_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase_ )
snake_case_ = [[[0, 1]], []]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , split_batches=UpperCAmelCase_ , even_batches=UpperCAmelCase_ )
snake_case_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase_ )
snake_case_ = [[], []]
self.check_batch_sampler_shards(UpperCAmelCase_ , UpperCAmelCase_ , split_batches=UpperCAmelCase_ , even_batches=UpperCAmelCase_ )
def lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
snake_case_ = [BatchSamplerShard(UpperCAmelCase_ , 2 , UpperCAmelCase_ , even_batches=UpperCAmelCase_ ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Tuple=False ) ->Tuple:
"""simple docstring"""
random.seed(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = [
IterableDatasetShard(
UpperCAmelCase_ , batch_size=UpperCAmelCase_ , drop_last=UpperCAmelCase_ , num_processes=UpperCAmelCase_ , process_index=UpperCAmelCase_ , split_batches=UpperCAmelCase_ , )
for i in range(UpperCAmelCase_ )
]
snake_case_ = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(UpperCAmelCase_ )
iterable_dataset_lists.append(list(UpperCAmelCase_ ) )
snake_case_ = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
snake_case_ = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) )
self.assertTrue(len(UpperCAmelCase_ ) % shard_batch_size == 0 )
snake_case_ = []
for idx in range(0 , len(UpperCAmelCase_ ) , UpperCAmelCase_ ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(UpperCAmelCase_ ) < len(UpperCAmelCase_ ):
reference += reference
self.assertListEqual(UpperCAmelCase_ , reference[: len(UpperCAmelCase_ )] )
def lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
snake_case_ = 42
snake_case_ = RandomIterableDataset()
self.check_iterable_dataset_shards(UpperCAmelCase_ , UpperCAmelCase_ , batch_size=4 , drop_last=UpperCAmelCase_ , split_batches=UpperCAmelCase_ )
self.check_iterable_dataset_shards(UpperCAmelCase_ , UpperCAmelCase_ , batch_size=4 , drop_last=UpperCAmelCase_ , split_batches=UpperCAmelCase_ )
self.check_iterable_dataset_shards(UpperCAmelCase_ , UpperCAmelCase_ , batch_size=4 , drop_last=UpperCAmelCase_ , split_batches=UpperCAmelCase_ )
self.check_iterable_dataset_shards(UpperCAmelCase_ , UpperCAmelCase_ , batch_size=4 , drop_last=UpperCAmelCase_ , split_batches=UpperCAmelCase_ )
# Edge case with a very small dataset
snake_case_ = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(UpperCAmelCase_ , UpperCAmelCase_ , batch_size=4 , drop_last=UpperCAmelCase_ , split_batches=UpperCAmelCase_ )
self.check_iterable_dataset_shards(UpperCAmelCase_ , UpperCAmelCase_ , batch_size=4 , drop_last=UpperCAmelCase_ , split_batches=UpperCAmelCase_ )
self.check_iterable_dataset_shards(UpperCAmelCase_ , UpperCAmelCase_ , batch_size=4 , drop_last=UpperCAmelCase_ , split_batches=UpperCAmelCase_ )
self.check_iterable_dataset_shards(UpperCAmelCase_ , UpperCAmelCase_ , batch_size=4 , drop_last=UpperCAmelCase_ , split_batches=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
snake_case_ = BatchSampler(range(16 ) , batch_size=4 , drop_last=UpperCAmelCase_ )
snake_case_ = SkipBatchSampler(UpperCAmelCase_ , 2 )
self.assertListEqual(list(UpperCAmelCase_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = DataLoader(list(range(16 ) ) , batch_size=4 )
snake_case_ = skip_first_batches(UpperCAmelCase_ , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
snake_case_ = DataLoaderShard(list(range(16 ) ) , batch_size=4 )
for idx, _ in enumerate(UpperCAmelCase_ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(UpperCAmelCase_ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def lowerCAmelCase ( self : str ) ->List[str]:
"""simple docstring"""
Accelerator()
snake_case_ = DataLoaderDispatcher(range(16 ) , batch_size=4 )
for idx, _ in enumerate(UpperCAmelCase_ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(UpperCAmelCase_ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 2 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 1 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("""The given input must be positive""" )
# get the generated string sequence
snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = int(sequence[i] , 2 )
return sequence
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
snake_case_ = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
snake_case_ = gray_code_sequence_string(bit_count - 1 )
snake_case_ = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
snake_case_ = """0""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
snake_case_ = """1""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/'
__SCREAMING_SNAKE_CASE : List[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
snake_case_ = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
snake_case_ = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = {}
import re
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# keep original key
else:
snake_case_ = original_key
snake_case_ = replace_key(_SCREAMING_SNAKE_CASE )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
snake_case_ = original_key
snake_case_ = original_key
snake_case_ = value
return new_dict
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ):
snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE )
open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content )
snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]]
snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE )
snake_case_ = []
snake_case_ = {}
for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""]
snake_case_ = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
snake_case_ = old_dic[k]
elif k.endswith(""".w""" ):
snake_case_ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
snake_case_ = old_dic[k]
else:
snake_case_ = old_dic[k]
snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}"""
snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
weight_dict.append(_SCREAMING_SNAKE_CASE )
snake_case_ = weight_dict.pop(0 )
model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
return weight_dict
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 2 | 1 |
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__SCREAMING_SNAKE_CASE : List[str] = 'platform'
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class __A :
'''simple docstring'''
__lowercase: List[str] = PegasusConfig
__lowercase: Dict = {}
__lowercase: Optional[Any] = """gelu"""
def __init__( self : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=99 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=20 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Tuple=0 , ) ->Optional[int]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = eos_token_id
snake_case_ = pad_token_id
snake_case_ = bos_token_id
def lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
snake_case_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
snake_case_ = np.concatenate([input_ids, eos_tensor] , axis=1 )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
snake_case_ = prepare_pegasus_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
return config, inputs_dict
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->str:
"""simple docstring"""
snake_case_ = 20
snake_case_ = model_class_name(UpperCAmelCase_ )
snake_case_ = model.encode(inputs_dict["""input_ids"""] )
snake_case_ , snake_case_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
snake_case_ = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
snake_case_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
snake_case_ = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
snake_case_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
snake_case_ = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , )
snake_case_ = model.decode(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = 20
snake_case_ = model_class_name(UpperCAmelCase_ )
snake_case_ = model.encode(inputs_dict["""input_ids"""] )
snake_case_ , snake_case_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
snake_case_ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
snake_case_ = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
snake_case_ = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
snake_case_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
snake_case_ = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
snake_case_ = model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ )
snake_case_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Dict:
if attention_mask is None:
snake_case_ = np.not_equal(_SCREAMING_SNAKE_CASE , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
snake_case_ = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
__lowercase: Union[str, Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
__lowercase: List[str] = True
__lowercase: str = False
__lowercase: Optional[int] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = FlaxPegasusModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = model_class(UpperCAmelCase_ )
@jax.jit
def encode_jitted(UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any]=None , **UpperCAmelCase_ : Optional[Any] ):
return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )
with self.subTest("""JIT Enabled""" ):
snake_case_ = encode_jitted(**UpperCAmelCase_ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
snake_case_ = encode_jitted(**UpperCAmelCase_ ).to_tuple()
self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) )
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
snake_case_ = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] ):
return model.decode(
decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , )
with self.subTest("""JIT Enabled""" ):
snake_case_ = decode_jitted(**UpperCAmelCase_ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
snake_case_ = decode_jitted(**UpperCAmelCase_ ).to_tuple()
self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) )
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowerCAmelCase ( self : Any ) ->List[str]:
"""simple docstring"""
for model_class_name in self.all_model_classes:
snake_case_ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=UpperCAmelCase_ )
snake_case_ = np.ones((1, 1) )
snake_case_ = model(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Dict ) ->Tuple:
"""simple docstring"""
snake_case_ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
snake_case_ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
snake_case_ = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
snake_case_ = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
snake_case_ = tokenizer(UpperCAmelCase_ , return_tensors="""np""" , truncation=UpperCAmelCase_ , max_length=512 , padding=UpperCAmelCase_ )
snake_case_ = model.generate(**UpperCAmelCase_ , num_beams=2 ).sequences
snake_case_ = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ )
assert tgt_text == decoded
| 2 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__SCREAMING_SNAKE_CASE : Dict = 'zero2'
__SCREAMING_SNAKE_CASE : List[Any] = 'zero3'
__SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __A (snake_case__):
'''simple docstring'''
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = models[model]
snake_case_ = self.run_trainer(
stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
self.do_checks(UpperCAmelCase_ )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ )
snake_case_ = F"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(UpperCAmelCase_ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
snake_case_ = self.get_launcher(UpperCAmelCase_ )
snake_case_ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple:
"""simple docstring"""
snake_case_ = min(2 , get_gpu_count() ) if distributed else 1
return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 2 | 1 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.