code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations def __snake_case ( lowerCAmelCase_ ) -> list[int]: SCREAMING_SNAKE_CASE__ = [True] * limit SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): SCREAMING_SNAKE_CASE__ = i * 2 while index < limit: SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = index + i SCREAMING_SNAKE_CASE__ = [2] for i in range(3 , lowerCAmelCase_ , 2 ): if is_prime[i]: primes.append(lowerCAmelCase_ ) return primes def __snake_case ( lowerCAmelCase_ = 1_0_0_0_0_0_0 ) -> int: SCREAMING_SNAKE_CASE__ = prime_sieve(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 for i in range(len(lowerCAmelCase_ ) ): for j in range(i + length , len(lowerCAmelCase_ ) ): SCREAMING_SNAKE_CASE__ = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: SCREAMING_SNAKE_CASE__ = j - i SCREAMING_SNAKE_CASE__ = sol return largest if __name__ == "__main__": print(F'{solution() = }')
100
'''simple docstring''' import math def a ( _UpperCAmelCase ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( _UpperCAmelCase = 1_0_0_0_1 ) -> int: """simple docstring""" try: a_ = int(_UpperCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) a_ = [] a_ = 2 while len(_UpperCAmelCase ) < nth: if is_prime(_UpperCAmelCase ): primes.append(_UpperCAmelCase ) num += 1 else: num += 1 return primes[len(_UpperCAmelCase ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
697
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ : List[Any] ={ 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Union[str, Any] =[ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ : List[str] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
101
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = 10 def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = [1, 2, 3, 4] a_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = '' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) a_ , a_ = process_story(UpperCAmelCase__ ) a_ = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = ['It was the best of times.'] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = torch.tensor([1, 2, 3, 4] ) a_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 0 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 23 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 1 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = 101 a_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) a_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) a_ = compute_token_type_ids(UpperCAmelCase__ , UpperCAmelCase__ ) np.testing.assert_array_equal(UpperCAmelCase__ , UpperCAmelCase__ )
697
0
"""simple docstring""" from collections.abc import Sequence from queue import Queue class lowercase__ : """simple docstring""" def __init__( self , _A , _A , _A , _A=None , _A=None ): '''simple docstring''' UpperCamelCase : Union[str, Any] = start UpperCamelCase : List[Any] = end UpperCamelCase : Optional[Any] = val UpperCamelCase : Optional[Any] = (start + end) // 2 UpperCamelCase : List[str] = left UpperCamelCase : List[Any] = right def __repr__( self ): '''simple docstring''' return f"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})""" class lowercase__ : """simple docstring""" def __init__( self , _A , _A ): '''simple docstring''' UpperCamelCase : int = collection UpperCamelCase : Tuple = function if self.collection: UpperCamelCase : Any = self._build_tree(0 , len(_A ) - 1 ) def _a ( self , _A , _A ): '''simple docstring''' self._update_tree(self.root , _A , _A ) def _a ( self , _A , _A ): '''simple docstring''' return self._query_range(self.root , _A , _A ) def _a ( self , _A , _A ): '''simple docstring''' if start == end: return SegmentTreeNode(_A , _A , self.collection[start] ) UpperCamelCase : Optional[int] = (start + end) // 2 UpperCamelCase : Union[str, Any] = self._build_tree(_A , _A ) UpperCamelCase : List[str] = self._build_tree(mid + 1 , _A ) return SegmentTreeNode(_A , _A , self.fn(left.val , right.val ) , _A , _A ) def _a ( self , _A , _A , _A ): '''simple docstring''' if node.start == i and node.end == i: UpperCamelCase : List[str] = val return if i <= node.mid: self._update_tree(node.left , _A , _A ) else: self._update_tree(node.right , _A , _A ) UpperCamelCase : Dict = self.fn(node.left.val , node.right.val ) def _a ( self , _A , _A , _A ): '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , _A , _A ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , _A , node.mid ) , self._query_range(node.right , node.mid + 1 , _A ) , ) else: # range in right child tree return self._query_range(node.right , _A , _A ) def _a ( self ): '''simple docstring''' if self.root is not None: UpperCamelCase : Optional[Any] = Queue() queue.put(self.root ) while not queue.empty(): UpperCamelCase : Dict = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 5_0) __magic_name__ : Tuple = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
102
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __lowerCAmelCase ="\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class _snake_case ( unittest.TestCase , snake_case ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = load_tool('text-question-answering' ) self.tool.setup() a_ = load_tool('text-question-answering' , remote=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.remote_tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = self.tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = self.remote_tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' )
697
0
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCamelCase , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(__lowerCamelCase , '''depth_multiplier''' ) ) class UpperCAmelCase : def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple=1_3 , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : List[str]=3_2 , __lowerCamelCase : Dict=0.2_5 , __lowerCamelCase : Optional[Any]=8 , __lowerCamelCase : Dict=True , __lowerCamelCase : List[Any]=1_0_2_4 , __lowerCamelCase : Union[str, Any]=3_2 , __lowerCamelCase : int="relu6" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Tuple=0.0_2 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Dict=True , __lowerCamelCase : Union[str, Any]=1_0 , __lowerCamelCase : Optional[Any]=None , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = image_size _snake_case = depth_multiplier _snake_case = min_depth _snake_case = tf_padding _snake_case = int(last_hidden_size * depth_multiplier ) _snake_case = output_stride _snake_case = hidden_act _snake_case = classifier_dropout_prob _snake_case = use_labels _snake_case = is_training _snake_case = num_labels _snake_case = initializer_range _snake_case = scope def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.num_labels ) _snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _snake_case = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCAmelCase ( self : Dict ): """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ): """simple docstring""" _snake_case = MobileNetVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] ): """simple docstring""" _snake_case = self.num_labels _snake_case = MobileNetVaForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : List[Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () A__ : Optional[int] = ( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) A__ : List[str] = False A__ : Tuple = False A__ : List[Any] = False A__ : List[str] = False def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = MobileNetVaModelTester(self ) _snake_case = MobileNetVaConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV1 does not use inputs_embeds''' ) def __UpperCAmelCase ( self : int ): """simple docstring""" pass @unittest.skip(reason='''MobileNetV1 does not support input and output embeddings''' ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason='''MobileNetV1 does not output attentions''' ) def __UpperCAmelCase ( self : Any ): """simple docstring""" pass def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(__lowerCamelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" def check_hidden_states_output(__lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ): _snake_case = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) _snake_case = outputs.hidden_states _snake_case = 2_6 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def __UpperCAmelCase ( self : List[str] ): """simple docstring""" for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = MobileNetVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def snake_case ( ) -> int: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self : List[str] ): """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v1_1.0_224''' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v1_1.0_224''' ).to(__lowerCamelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=__lowerCamelCase , return_tensors='''pt''' ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): _snake_case = model(**__lowerCamelCase ) # verify the logits _snake_case = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) _snake_case = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) )
103
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase ={"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __lowerCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
697
0
"""simple docstring""" from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> Any: A__ = path_or_paths A__ = split if split or isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else "train" A__ = features A__ = cache_dir A__ = keep_in_memory A__ = streaming A__ = num_proc A__ = kwargs @abstractmethod def snake_case__ ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> str: A__ = features A__ = cache_dir A__ = keep_in_memory A__ = streaming A__ = num_proc A__ = kwargs @abstractmethod def snake_case__ ( self ) -> Union[Dataset, IterableDataset]: pass
104
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "vit" def __init__( self , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=224 , UpperCAmelCase__=16 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=16 , **UpperCAmelCase__ , ) -> Dict: super().__init__(**UpperCAmelCase__ ) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = image_size a_ = patch_size a_ = num_channels a_ = qkv_bias a_ = encoder_stride class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __SCREAMING_SNAKE_CASE ( self ) -> float: return 1e-4
697
0
class lowerCAmelCase_ : def __init__( self ,snake_case__ = "" ,snake_case__ = False ): # Mapping from the first character of the prefix of the node SCREAMING_SNAKE_CASE_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word SCREAMING_SNAKE_CASE_ : Union[str, Any] = is_leaf SCREAMING_SNAKE_CASE_ : List[Any] = prefix def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = 0 for q, w in zip(self.prefix ,snake_case__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def snake_case ( self ,snake_case__ ): for word in words: self.insert(snake_case__ ) def snake_case ( self ,snake_case__ ): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: SCREAMING_SNAKE_CASE_ : Union[str, Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: SCREAMING_SNAKE_CASE_ : int = RadixNode(prefix=snake_case__ ,is_leaf=snake_case__ ) else: SCREAMING_SNAKE_CASE_ : int = self.nodes[word[0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = incoming_node.match( snake_case__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(snake_case__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: SCREAMING_SNAKE_CASE_ : Any = remaining_prefix SCREAMING_SNAKE_CASE_ : List[Any] = self.nodes[matching_string[0]] SCREAMING_SNAKE_CASE_ : List[Any] = RadixNode(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = aux_node if remaining_word == "": SCREAMING_SNAKE_CASE_ : Union[str, Any] = True else: self.nodes[matching_string[0]].insert(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.nodes.get(word[0] ,snake_case__ ) if not incoming_node: return False else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = incoming_node.match( snake_case__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = self.nodes.get(word[0] ,snake_case__ ) if not incoming_node: return False else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = incoming_node.match( snake_case__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(snake_case__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: SCREAMING_SNAKE_CASE_ : Any = list(self.nodes.values() )[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = merging_node.is_leaf self.prefix += merging_node.prefix SCREAMING_SNAKE_CASE_ : Dict = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: SCREAMING_SNAKE_CASE_ : int = False # If there is 1 edge, we merge it with its child else: SCREAMING_SNAKE_CASE_ : Optional[Any] = list(incoming_node.nodes.values() )[0] SCREAMING_SNAKE_CASE_ : Dict = merging_node.is_leaf incoming_node.prefix += merging_node.prefix SCREAMING_SNAKE_CASE_ : Dict = merging_node.nodes return True def snake_case ( self ,snake_case__ = 0 ): if self.prefix != "": print('-' * height ,self.prefix ,' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __UpperCAmelCase ( ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'banana bananas bandana band apple all beast'.split() SCREAMING_SNAKE_CASE_ : List[Any] = RadixNode() root.insert_many(lowerCamelCase_ ) assert all(root.find(lowerCamelCase_ ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def __UpperCAmelCase ( ) -> None: """simple docstring""" assert test_trie() def __UpperCAmelCase ( ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = RadixNode() SCREAMING_SNAKE_CASE_ : Dict = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCamelCase_ ) print('Words:' , lowerCamelCase_ ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
105
'''simple docstring''' def a ( _UpperCAmelCase = 5_0 ) -> int: """simple docstring""" a_ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
697
0
__snake_case :Optional[Any] ={ 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def lowerCamelCase_ ( lowerCAmelCase__ : dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any ) -> list[str]: '''simple docstring''' A = set() # keep track of all the paths to be checked A = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue A = queue.pop(0 ) # get the last node from the path A = path[-1] if node not in explored: A = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: A = list(lowerCAmelCase__ ) new_path.append(lowerCAmelCase__ ) queue.append(lowerCAmelCase__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowerCAmelCase__ ) # in case there's no path between the 2 nodes return [] def lowerCamelCase_ ( lowerCAmelCase__ : dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ) -> int: '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 A = [start] A = set(lowerCAmelCase__ ) # Keep tab on distances from `start` node. A = {start: 0, target: -1} while queue: A = queue.pop(0 ) if node == target: A = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowerCAmelCase__ ) queue.append(lowerCAmelCase__ ) A = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
106
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def a ( ) -> None: """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
697
0
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowercase_ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : int ) -> Dict: _A = ['a', 'b', 'c'] # Defaults to last layer if both are None _A , _A = get_aligned_output_features_output_indices(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) self.assertEqual(UpperCamelCase__, ['c'] ) self.assertEqual(UpperCamelCase__, [2] ) # Out indices set to match out features _A , _A = get_aligned_output_features_output_indices(['a', 'c'], UpperCamelCase__, UpperCamelCase__ ) self.assertEqual(UpperCamelCase__, ['a', 'c'] ) self.assertEqual(UpperCamelCase__, [0, 2] ) # Out features set to match out indices _A , _A = get_aligned_output_features_output_indices(UpperCamelCase__, [0, 2], UpperCamelCase__ ) self.assertEqual(UpperCamelCase__, ['a', 'c'] ) self.assertEqual(UpperCamelCase__, [0, 2] ) # Out features selected from negative indices _A , _A = get_aligned_output_features_output_indices(UpperCamelCase__, [-3, -1], UpperCamelCase__ ) self.assertEqual(UpperCamelCase__, ['a', 'c'] ) self.assertEqual(UpperCamelCase__, [-3, -1] ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: # Stage names must be set with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(['a', 'b'], (0, 1), UpperCamelCase__ ) # Out features must be a list with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(('a', 'b'), (0, 1), ['a', 'b'] ) # Out features must be a subset of stage names with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(['a', 'b'], (0, 1), ['a'] ) # Out indices must be a list or tuple with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(UpperCamelCase__, 0, ['a', 'b'] ) # Out indices must be a subset of stage names with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(UpperCamelCase__, (0, 1), ['a'] ) # Out features and out indices must be the same length with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(['a', 'b'], (0,), ['a', 'b', 'c'] ) # Out features should match out indices with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(['a', 'b'], (0, 2), ['a', 'b', 'c'] ) # Out features and out indices should be in order with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(['b', 'a'], (0, 1), ['a', 'b'] ) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'], (0, 1, -1), ['a', 'b', 'c', 'd'] ) def __UpperCAmelCase ( self : Any ) -> Optional[int]: _A = BackboneMixin() _A = ['a', 'b', 'c'] _A = ['a', 'c'] _A = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features, ['a', 'c'] ) self.assertEqual(backbone.out_indices, [0, 2] ) # Check out features and indices are updated correctly _A = ['a', 'b'] self.assertEqual(backbone.out_features, ['a', 'b'] ) self.assertEqual(backbone.out_indices, [0, 1] ) _A = [-3, -1] self.assertEqual(backbone.out_features, ['a', 'c'] ) self.assertEqual(backbone.out_indices, [-3, -1] )
107
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a ( _UpperCAmelCase ) -> int: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _snake_case ( snake_case ): """simple docstring""" @staticmethod def __SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ) -> str: a_ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=UpperCAmelCase__ , help='Name of the model to download' ) download_parser.set_defaults(func=UpperCAmelCase__ ) def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = model a_ = cache a_ = force a_ = trust_remote_code def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
697
0
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case , ) -> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
108
'''simple docstring''' def a ( _UpperCAmelCase ) -> int: """simple docstring""" assert column_title.isupper() a_ = 0 a_ = len(_UpperCAmelCase ) - 1 a_ = 0 while index >= 0: a_ = (ord(column_title[index] ) - 6_4) * pow(2_6 , _UpperCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
697
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor a = logging.get_logger(__name__) class __a ( _snake_case ): def __init__( self : Dict ,*lowerCamelCase : Any ,**lowerCamelCase : str ): '''simple docstring''' warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" ,lowerCamelCase ,) super().__init__(*lowerCamelCase ,**lowerCamelCase )
109
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __lowerCAmelCase =logging.get_logger(__name__) class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = ["audio_values", "audio_mask"] def __init__( self , UpperCAmelCase__=2048 , UpperCAmelCase__=1 , UpperCAmelCase__=[16, 16] , UpperCAmelCase__=128 , UpperCAmelCase__=4_4100 , UpperCAmelCase__=86 , UpperCAmelCase__=2048 , UpperCAmelCase__=0.0 , **UpperCAmelCase__ , ) -> Union[str, Any]: super().__init__( feature_size=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , padding_value=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = spectrogram_length a_ = num_channels a_ = patch_size a_ = feature_size // self.patch_size[1] a_ = n_fft a_ = sampling_rate // hop_length_to_sampling_rate a_ = sampling_rate a_ = padding_value a_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=UpperCAmelCase__ , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=UpperCAmelCase__ , norm='slaney' , mel_scale='slaney' , ).T def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> np.ndarray: a_ = spectrogram( UpperCAmelCase__ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=8_0.0 , ) a_ = log_spec[:, :-1] a_ = log_spec - 2_0.0 a_ = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , **UpperCAmelCase__ , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) a_ = isinstance(UpperCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) a_ = is_batched_numpy or ( isinstance(UpperCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a_ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase__ , np.ndarray ): a_ = np.asarray(UpperCAmelCase__ , dtype=np.floataa ) elif isinstance(UpperCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a_ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis a_ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , UpperCAmelCase__ ): a_ = [np.asarray(UpperCAmelCase__ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask a_ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: a_ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] a_ = np.array(UpperCAmelCase__ ).astype(np.floataa ) # convert into correct format for padding a_ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch a_ = np.ones([len(UpperCAmelCase__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) a_ = padded_audio_features * self.padding_value for i in range(len(UpperCAmelCase__ ) ): a_ = audio_features[i] a_ = feature # return as BatchFeature if return_attention_mask: a_ = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: a_ = {'audio_values': padded_audio_features} a_ = BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) return encoded_inputs
697
0
import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCAmelCase__ = open # noqa: we just need to have a builtin inside this module to test it properly
351
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Optional[Any]: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = len(set_a.intersection(_UpperCAmelCase ) ) if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) else: a_ = len(set_a.union(_UpperCAmelCase ) ) return intersection / union if isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) ): a_ = [element for element in set_a if element in set_b] if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / union else: a_ = set_a + [element for element in set_b if element not in set_a] return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return None if __name__ == "__main__": __lowerCAmelCase ={"a", "b", "c", "d", "e"} __lowerCAmelCase ={"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
697
0
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __magic_name__ = logging.get_logger(__name__) __magic_name__ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __magic_name__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : '''simple docstring''' a_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Model type selected in the list: """ + """, """.join(__SCREAMING_SNAKE_CASE )} ) a_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a_ = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a_ = field( default=128 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a_ = field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a_ = field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a_ = field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a_ = field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a_ = field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a_ = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """train""" a_ = """dev""" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = 42 a_ = 42 a_ = 42 a_ = 42 def __init__( self : Tuple ,_a : List[str] ,_a : List[Any] ,_a : Dict = None ,_a : Any = Split.train ,_a : Optional[int] = False ,_a : Dict = None ,_a : Any = "pt" ,): '''simple docstring''' A_ : Union[str, Any] = args A_ : Dict = is_language_sensitive A_ : Tuple = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(UpperCAmelCase__ ,UpperCAmelCase__ ): try: A_ : Any = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) A_ : int = mode # Load data features from cache or dataset file A_ : str = """v2""" if args.version_2_with_negative else """v1""" A_ : Any = os.path.join( cache_dir if cache_dir is not None else args.data_dir ,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' ,) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ : List[Any] = cached_features_file + """.lock""" with FileLock(UpperCAmelCase__ ): if os.path.exists(UpperCAmelCase__ ) and not args.overwrite_cache: A_ : Optional[Any] = time.time() A_ : List[Any] = torch.load(UpperCAmelCase__ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. A_ : List[Any] = self.old_features["""features"""] A_ : Tuple = self.old_features.get("""dataset""" ,UpperCAmelCase__ ) A_ : Optional[int] = self.old_features.get("""examples""" ,UpperCAmelCase__ ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' ,time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: A_ : Optional[Any] = self.processor.get_dev_examples(args.data_dir ) else: A_ : Union[str, Any] = self.processor.get_train_examples(args.data_dir ) A_ , A_ : Any = squad_convert_examples_to_features( examples=self.examples ,tokenizer=UpperCAmelCase__ ,max_seq_length=args.max_seq_length ,doc_stride=args.doc_stride ,max_query_length=args.max_query_length ,is_training=mode == Split.train ,threads=args.threads ,return_dataset=UpperCAmelCase__ ,) A_ : Optional[int] = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} ,UpperCAmelCase__ ,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[int] ): '''simple docstring''' return len(self.features ) def __getitem__( self : Dict ,_a : List[Any] ): '''simple docstring''' A_ : str = self.features[i] A_ : Any = torch.tensor(feature.input_ids ,dtype=torch.long ) A_ : int = torch.tensor(feature.attention_mask ,dtype=torch.long ) A_ : Dict = torch.tensor(feature.token_type_ids ,dtype=torch.long ) A_ : Optional[Any] = torch.tensor(feature.cls_index ,dtype=torch.long ) A_ : List[str] = torch.tensor(feature.p_mask ,dtype=torch.float ) A_ : List[str] = torch.tensor(feature.is_impossible ,dtype=torch.float ) A_ : Optional[int] = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape ,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: A_ : List[Any] = torch.tensor(feature.start_position ,dtype=torch.long ) A_ : List[Any] = torch.tensor(feature.end_position ,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
665
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('iterations must be defined as integers' ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) a_ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
697
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase_ : Union[str, Any] = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : int = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] lowerCAmelCase_ : str = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] lowerCAmelCase_ : Optional[int] = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): lowerCAmelCase_ : int = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys lowerCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _snake_case ( snake_case ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ) -> str: super().__init__( features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ , streaming=UpperCAmelCase__ , num_proc=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = Generator( cache_dir=UpperCAmelCase__ , features=UpperCAmelCase__ , generator=UpperCAmelCase__ , gen_kwargs=UpperCAmelCase__ , **UpperCAmelCase__ , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Build iterable dataset if self.streaming: a_ = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: a_ = None a_ = None a_ = None a_ = None self.builder.download_and_prepare( download_config=UpperCAmelCase__ , download_mode=UpperCAmelCase__ , verification_mode=UpperCAmelCase__ , base_path=UpperCAmelCase__ , num_proc=self.num_proc , ) a_ = self.builder.as_dataset( split='train' , verification_mode=UpperCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
697
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case__ : Dict = { 'configuration_clip': [ 'CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPConfig', 'CLIPOnnxConfig', 'CLIPTextConfig', 'CLIPVisionConfig', ], 'processing_clip': ['CLIPProcessor'], 'tokenization_clip': ['CLIPTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = ['CLIPTokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[Any] = ['CLIPFeatureExtractor'] snake_case__ : str = ['CLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ 'CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPModel', 'CLIPPreTrainedModel', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CLIPVisionModel', 'CLIPVisionModelWithProjection', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ 'TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCLIPModel', 'TFCLIPPreTrainedModel', 'TFCLIPTextModel', 'TFCLIPVisionModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[Any] = [ 'FlaxCLIPModel', 'FlaxCLIPPreTrainedModel', 'FlaxCLIPTextModel', 'FlaxCLIPTextPreTrainedModel', 'FlaxCLIPVisionModel', 'FlaxCLIPVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
408
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase =numpy.array([0, 0]) __lowerCAmelCase =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase =numpy.array([1, 0]) __lowerCAmelCase =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a ( _UpperCAmelCase , _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = initial_vectors for _ in range(_UpperCAmelCase ): a_ = iteration_step(_UpperCAmelCase ) return vectors def a ( _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = [] for i, start_vector in enumerate(vectors[:-1] ): a_ = vectors[i + 1] new_vectors.append(_UpperCAmelCase ) a_ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a ( _UpperCAmelCase , _UpperCAmelCase ) -> numpy.ndarray: """simple docstring""" a_ = numpy.radians(_UpperCAmelCase ) a_ , a_ = numpy.cos(_UpperCAmelCase ), numpy.sin(_UpperCAmelCase ) a_ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_UpperCAmelCase , _UpperCAmelCase ) def a ( _UpperCAmelCase ) -> None: """simple docstring""" a_ = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() a_ , a_ = zip(*_UpperCAmelCase ) plt.plot(_UpperCAmelCase , _UpperCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
697
0
'''simple docstring''' import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem _SCREAMING_SNAKE_CASE = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 _SCREAMING_SNAKE_CASE = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def _lowerCAmelCase ( lowerCamelCase_ : List[str] ): if "://" in dataset_path: __lowercase = dataset_path.split('''://''' )[1] return dataset_path def _lowerCAmelCase ( lowerCamelCase_ : Dict ): if fs is not None and fs.protocol != "file": return True else: return False def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any ): __lowercase = not is_remote_filesystem(_UpperCAmelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(_UpperCAmelCase ) , fs._strip_protocol(_UpperCAmelCase ) ) else: fs.mv(_UpperCAmelCase , _UpperCAmelCase , recursive=_UpperCAmelCase ) def _lowerCAmelCase ( ): if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __lowercase = None __lowercase = None __lowercase = threading.Lock()
502
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def a ( _UpperCAmelCase ) -> int: """simple docstring""" if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def a ( _UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" for char in word: a_ = ord(_UpperCAmelCase ) if not _is_chinese_char(_UpperCAmelCase ): return 0 return 1 def a ( _UpperCAmelCase ) -> Tuple: """simple docstring""" a_ = set() for token in tokens: a_ = len(_UpperCAmelCase ) > 1 and is_chinese(_UpperCAmelCase ) if chinese_word: word_set.add(_UpperCAmelCase ) a_ = list(_UpperCAmelCase ) return word_list def a ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: """simple docstring""" if not chinese_word_set: return bert_tokens a_ = max([len(_UpperCAmelCase ) for w in chinese_word_set] ) a_ = bert_tokens a_ , a_ = 0, len(_UpperCAmelCase ) while start < end: a_ = True if is_chinese(bert_word[start] ): a_ = min(end - start , _UpperCAmelCase ) for i in range(_UpperCAmelCase , 1 , -1 ): a_ = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): a_ = '##' + bert_word[j] a_ = start + i a_ = False break if single_word: start += 1 return bert_word def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: """simple docstring""" a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['cws'] ).cws a_ = [get_chinese_word(_UpperCAmelCase ) for r in res] ltp_res.extend(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=5_1_2 ) bert_res.extend(res['input_ids'] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for input_ids, chinese_word in zip(_UpperCAmelCase , _UpperCAmelCase ): a_ = [] for id in input_ids: a_ = bert_tokenizer._convert_id_to_token(_UpperCAmelCase ) input_tokens.append(_UpperCAmelCase ) a_ = add_sub_symbol(_UpperCAmelCase , _UpperCAmelCase ) a_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_UpperCAmelCase ): if token[:2] == "##": a_ = token[2:] # save chinese tokens' pos if len(_UpperCAmelCase ) == 1 and _is_chinese_char(ord(_UpperCAmelCase ) ): ref_id.append(_UpperCAmelCase ) ref_ids.append(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) return ref_ids def a ( _UpperCAmelCase ) -> Optional[Any]: """simple docstring""" with open(args.file_name , 'r' , encoding='utf-8' ) as f: a_ = f.readlines() a_ = [line.strip() for line in data if len(_UpperCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' a_ = LTP(args.ltp ) # faster in GPU device a_ = BertTokenizer.from_pretrained(args.bert ) a_ = prepare_ref(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: a_ = [json.dumps(_UpperCAmelCase ) + '\n' for ref in ref_ids] f.writelines(_UpperCAmelCase ) if __name__ == "__main__": __lowerCAmelCase =argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __lowerCAmelCase =parser.parse_args() main(args)
697
0
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class A : def __init__( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Tuple="resnet50" , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : int=32 , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=True , ) -> Optional[Any]: """simple docstring""" _a = parent _a = out_indices if out_indices is not None else [4] _a = stage_names _a = out_features _a = backbone _a = batch_size _a = image_size _a = num_channels _a = use_pretrained_backbone _a = is_training def __lowerCAmelCase ( self : str ) -> str: """simple docstring""" _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = self.get_config() return config, pixel_values def __lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" _a = TimmBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): _a = model(UpperCAmelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a = config_and_inputs _a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class A ( _a ,_a ,_a ,unittest.TestCase ): lowercase_ = (TimmBackbone,) if is_torch_available() else () lowercase_ = {'feature-extraction': TimmBackbone} if is_torch_available() else {} lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def __lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _a = TimmBackboneModelTester(self ) _a = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def __lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self : str ) -> Any: """simple docstring""" _a = '''resnet18''' _a = '''microsoft/resnet-18''' _a = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ ) _a = AutoBackbone.from_pretrained(UpperCAmelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) _a = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ , out_indices=[1, 2, 3] ) _a = AutoBackbone.from_pretrained(UpperCAmelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def __lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def __lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __lowerCAmelCase ( self : int ) -> Any: """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def __lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''Safetensors is not supported by timm.''' ) def __lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def __lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(UpperCAmelCase__ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True _a = self.has_attentions # no need to test all models as different heads yield the same functionality _a = self.all_model_classes[0] _a = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) _a = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) _a = model(**UpperCAmelCase__ ) _a = outputs[0][-1] # Encoder-/Decoder-only models _a = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _a = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCAmelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None _a = copy.deepcopy(UpperCAmelCase__ ) _a = None _a = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights _a = copy.deepcopy(UpperCAmelCase__ ) _a = False _a = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a = model(**UpperCAmelCase__ )
22
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase ={ "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": 512, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase = RetriBertTokenizer _UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__="[UNK]" , UpperCAmelCase__="[SEP]" , UpperCAmelCase__="[PAD]" , UpperCAmelCase__="[CLS]" , UpperCAmelCase__="[MASK]" , UpperCAmelCase__=True , UpperCAmelCase__=None , **UpperCAmelCase__ , ) -> int: super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase__ ) != tokenize_chinese_chars ): a_ = getattr(UpperCAmelCase__ , normalizer_state.pop('type' ) ) a_ = do_lower_case a_ = strip_accents a_ = tokenize_chinese_chars a_ = normalizer_class(**UpperCAmelCase__ ) a_ = do_lower_case def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__=None ) -> str: a_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> List[int]: a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> Tuple[str]: a_ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
697
0
import math import qiskit def _UpperCamelCase ( snake_case__ = 1, snake_case__ = 1, snake_case__ = 1 ) -> qiskit.result.counts.Counts: if ( isinstance(_UpperCAmelCase, _UpperCAmelCase ) or isinstance(_UpperCAmelCase, _UpperCAmelCase ) or isinstance(_UpperCAmelCase, _UpperCAmelCase ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(_UpperCAmelCase ) != input_a) or (math.floor(_UpperCAmelCase ) != input_a) or (math.floor(_UpperCAmelCase ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers __UpperCAmelCase : Any = qiskit.QuantumRegister(4, "qr" ) __UpperCAmelCase : Any = qiskit.ClassicalRegister(2, "cr" ) # list the entries __UpperCAmelCase : Union[str, Any] = [input_a, input_a, carry_in] __UpperCAmelCase : Optional[Any] = qiskit.QuantumCircuit(_UpperCAmelCase, _UpperCAmelCase ) for i in range(0, 3 ): if entry[i] == 2: quantum_circuit.h(_UpperCAmelCase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(_UpperCAmelCase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(_UpperCAmelCase ) # for 0 entries # build the circuit quantum_circuit.ccx(0, 1, 3 ) # ccx = toffoli gate quantum_circuit.cx(0, 1 ) quantum_circuit.ccx(1, 2, 3 ) quantum_circuit.cx(1, 2 ) quantum_circuit.cx(0, 1 ) quantum_circuit.measure([2, 3], _UpperCAmelCase ) # measure the last two qbits __UpperCAmelCase : List[str] = qiskit.Aer.get_backend("aer_simulator" ) __UpperCAmelCase : str = qiskit.execute(_UpperCAmelCase, _UpperCAmelCase, shots=1000 ) return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
382
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "lilt" def __init__( self , UpperCAmelCase__=3_0522 , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=512 , UpperCAmelCase__=2 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=0 , UpperCAmelCase__="absolute" , UpperCAmelCase__=None , UpperCAmelCase__=4 , UpperCAmelCase__=1024 , **UpperCAmelCase__ , ) -> Optional[Any]: super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = classifier_dropout a_ = channel_shrink_ratio a_ = max_ad_position_embeddings
697
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase ( A_ ): @staticmethod @abstractmethod def _SCREAMING_SNAKE_CASE (snake_case__ : Dict ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError() @abstractmethod def _SCREAMING_SNAKE_CASE (self : Tuple ) -> int: '''simple docstring''' raise NotImplementedError()
204
'''simple docstring''' from __future__ import annotations def a ( _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # We need to create solution object to save path. a_ = [[0 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] a_ = run_maze(_UpperCAmelCase , 0 , 0 , _UpperCAmelCase ) if solved: print('\n'.join(str(_UpperCAmelCase ) for row in solutions ) ) else: print('No solution exists!' ) return solved def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # Final check point. if i == j == (size - 1): a_ = 1 return True a_ = (not i < 0) and (not j < 0) # Check lower bounds a_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. a_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited a_ = 1 # check for directions if ( run_maze(_UpperCAmelCase , i + 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j + 1 , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , i - 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j - 1 , _UpperCAmelCase ) ): return True a_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
697
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer A__ : Union[str, Any] = ['''bert-base-uncased''', '''bert-base-cased'''] A__ : int = '''hf-internal-testing/tiny-bert-tf-only''' if is_tf_available(): class __snake_case ( tf.keras.Model ): def __init__( self : Any , A_ : str): super().__init__() lowerCAmelCase_ : str = tokenizer lowerCAmelCase_ : Optional[Any] = AutoConfig.from_pretrained(UpperCAmelCase__) lowerCAmelCase_ : List[str] = TFAutoModel.from_config(UpperCAmelCase__) def UpperCAmelCase__ ( self : int , A_ : List[Any]): lowerCAmelCase_ : Union[str, Any] = self.tokenizer(UpperCAmelCase__) lowerCAmelCase_ : Optional[int] = self.bert(**UpperCAmelCase__) return out["pooler_output"] @require_tf @require_tensorflow_text class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple): super().setUp() lowerCAmelCase_ : Any = [ BertTokenizer.from_pretrained(UpperCAmelCase__) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false lowerCAmelCase_ : List[Any] = [TFBertTokenizer.from_pretrained(UpperCAmelCase__) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(UpperCAmelCase__ , use_fast_bert_tokenizer=UpperCAmelCase__) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) lowerCAmelCase_ : Any = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] lowerCAmelCase_ : List[str] = list(zip(self.test_sentences , self.test_sentences[::-1])) def UpperCAmelCase__ ( self : Any): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): lowerCAmelCase_ : Optional[Any] = tokenizer(UpperCAmelCase__ , return_tensors='''tf''' , padding='''longest''') lowerCAmelCase_ : str = tf_tokenizer(UpperCAmelCase__) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa) == tf_outputs[key])) @slow def UpperCAmelCase__ ( self : int): for tf_tokenizer in self.tf_tokenizers: lowerCAmelCase_ : Optional[int] = tf_tokenizer(self.paired_sentences) lowerCAmelCase_ : Union[str, Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa) == separated_outputs[key])) @slow def UpperCAmelCase__ ( self : List[str]): for tf_tokenizer in self.tf_tokenizers: lowerCAmelCase_ : Tuple = tf.function(UpperCAmelCase__) for test_inputs in (self.test_sentences, self.paired_sentences): lowerCAmelCase_ : Union[str, Any] = tf.constant(UpperCAmelCase__) lowerCAmelCase_ : str = compiled_tokenizer(UpperCAmelCase__) lowerCAmelCase_ : List[Any] = tf_tokenizer(UpperCAmelCase__) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def UpperCAmelCase__ ( self : Any): for tf_tokenizer in self.tf_tokenizers: lowerCAmelCase_ : Optional[Any] = ModelToSave(tokenizer=UpperCAmelCase__) lowerCAmelCase_ : List[str] = tf.convert_to_tensor(self.test_sentences) lowerCAmelCase_ : Optional[Any] = model(UpperCAmelCase__) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowerCAmelCase_ : Tuple = Path(UpperCAmelCase__) / '''saved.model''' model.save(UpperCAmelCase__) lowerCAmelCase_ : Optional[Any] = tf.keras.models.load_model(UpperCAmelCase__) lowerCAmelCase_ : Union[str, Any] = loaded_model(UpperCAmelCase__) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)) , 1e-5)
171
'''simple docstring''' __lowerCAmelCase ={ "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) __lowerCAmelCase ={ "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float: """simple docstring""" a_ = from_type.lower().strip('s' ) a_ = to_type.lower().strip('s' ) a_ = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) a_ = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) if from_sanitized not in METRIC_CONVERSION: a_ = ( F'''Invalid \'from_type\' value: {from_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) if to_sanitized not in METRIC_CONVERSION: a_ = ( F'''Invalid \'to_type\' value: {to_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) a_ = METRIC_CONVERSION[from_sanitized] a_ = METRIC_CONVERSION[to_sanitized] a_ = 1 if from_exponent > to_exponent: a_ = from_exponent - to_exponent else: a_ = -(to_exponent - from_exponent) return value * pow(1_0 , _UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
697
0
"""simple docstring""" from collections.abc import Generator def lowerCamelCase_ (): _UpperCAmelCase , _UpperCAmelCase : List[str] = 0, 1 while True: _UpperCAmelCase , _UpperCAmelCase : List[Any] = b, a + b yield b def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] = 1000 ): _UpperCAmelCase : Optional[int] = 1 _UpperCAmelCase : List[str] = fibonacci_generator() while len(str(next(_UpperCAmelCase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
506
'''simple docstring''' import unittest from transformers import DonutProcessor __lowerCAmelCase ="naver-clova-ix/donut-base" class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = DonutProcessor.from_pretrained(UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } a_ = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) a_ = self.processor.tokenajson(UpperCAmelCase__ ) self.assertDictEqual(UpperCAmelCase__ , UpperCAmelCase__ )
697
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = tempfile.mkdtemp() lowercase = BlipImageProcessor() lowercase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel' ) lowercase = BlipProcessor(UpperCAmelCase__ , UpperCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ).tokenizer def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ).image_processor def SCREAMING_SNAKE_CASE__ ( self ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase = [Image.fromarray(np.moveaxis(UpperCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self ): lowercase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowercase = self.get_image_processor(do_normalize=UpperCAmelCase__ , padding_value=1.0 ) lowercase = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) lowercase = self.prepare_image_inputs() lowercase = image_processor(UpperCAmelCase__ , return_tensors='np' ) lowercase = processor(images=UpperCAmelCase__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) lowercase = 'lower newer' lowercase = processor(text=UpperCAmelCase__ ) lowercase = tokenizer(UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) lowercase = 'lower newer' lowercase = self.prepare_image_inputs() lowercase = processor(text=UpperCAmelCase__ , images=UpperCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase = processor.batch_decode(UpperCAmelCase__ ) lowercase = tokenizer.batch_decode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) lowercase = 'lower newer' lowercase = self.prepare_image_inputs() lowercase = processor(text=UpperCAmelCase__ , images=UpperCAmelCase__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
84
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _snake_case : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__="resnet50" , UpperCAmelCase__=3 , UpperCAmelCase__=32 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=True , ) -> Optional[Any]: a_ = parent a_ = out_indices if out_indices is not None else [4] a_ = stage_names a_ = out_features a_ = backbone a_ = batch_size a_ = image_size a_ = num_channels a_ = use_pretrained_backbone a_ = is_training def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ = self.get_config() return config, pixel_values def __SCREAMING_SNAKE_CASE ( self ) -> Dict: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = TimmBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): a_ = model(UpperCAmelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = self.prepare_config_and_inputs() a_ , a_ = config_and_inputs a_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _snake_case ( snake_case , snake_case , snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = (TimmBackbone,) if is_torch_available() else () _UpperCamelCase = {"feature-extraction": TimmBackbone} if is_torch_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = TimmBackboneModelTester(self ) a_ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = 'resnet18' a_ = 'microsoft/resnet-18' a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ , out_indices=[1, 2, 3] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Safetensors is not supported by timm.' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) a_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = True a_ = self.has_attentions # no need to test all models as different heads yield the same functionality a_ = self.all_model_classes[0] a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) a_ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = model(**UpperCAmelCase__ ) a_ = outputs[0][-1] # Encoder-/Decoder-only models a_ = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a_ = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCAmelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = None a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = False a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ )
697
0
import sys UpperCAmelCase__ = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def a_ (__A = N ) -> int: """simple docstring""" __a : Tuple = -sys.maxsize - 1 for i in range(len(_UpperCAmelCase ) - 12 ): __a : int = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: __a : Union[str, Any] = product return largest_product if __name__ == "__main__": print(F"{solution() = }")
351
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=7 , UpperCAmelCase__=3 , UpperCAmelCase__=18 , UpperCAmelCase__=30 , UpperCAmelCase__=400 , UpperCAmelCase__=True , UpperCAmelCase__=None , UpperCAmelCase__=True , ) -> List[Any]: a_ = size if size is not None else {'height': 18, 'width': 18} a_ = parent a_ = batch_size a_ = num_channels a_ = image_size a_ = min_resolution a_ = max_resolution a_ = do_resize a_ = size a_ = apply_ocr def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _snake_case ( snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = LayoutLMvaImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'apply_ocr' ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) a_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , UpperCAmelCase__ ) self.assertIsInstance(encoding.boxes , UpperCAmelCase__ ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> int: # with apply_OCR = True a_ = LayoutLMvaImageProcessor() from datasets import load_dataset a_ = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) a_ = Image.open(ds[0]['file'] ).convert('RGB' ) a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 a_ = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 a_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCAmelCase__ ) self.assertListEqual(encoding.boxes , UpperCAmelCase__ ) # with apply_OCR = False a_ = LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
697
0
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowerCamelCase ( lowerCamelCase : Tuple , lowerCamelCase : Any): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer A_ : Dict = flax_key_tuple[:-1] + ("""weight""",) A_ : Optional[int] = torch.permute(_UpperCAmelCase , (0, 2, 1)) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCAmelCase): # linear layer A_ : Any = flax_key_tuple[:-1] + ("""weight""",) A_ : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: A_ : List[Any] = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : List[Any]): if "metadata" in layer: A_ : str = layer.split("""metadata""") A_ : List[str] = """""".join(split_layer[0])[:-1] A_ : List[str] = [tuple(("""metadata""" + split_layer[1]).split("""/"""))] elif "kvstore" in layer: A_ : List[Any] = layer.split("""kvstore""") A_ : Dict = """""".join(split_layer[0])[:-1] A_ : Dict = [tuple(("""kvstore""" + split_layer[1]).split("""/"""))] else: A_ : Dict = layer.split("""/""") A_ : List[str] = """/""".join(split_layer[:-1]) A_ : List[Any] = (split_layer[-1],) if "kvstore/path" in layer: A_ : str = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: A_ : Union[str, Any] = """file""" else: A_ : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : List[str]): A_ : Optional[int] = rename_keys(_UpperCAmelCase) A_ : int = {} for k, v in current_block.items(): A_ : Dict = v A_ : Any = new_current_block torch.save(_UpperCAmelCase , _UpperCAmelCase) def lowerCamelCase ( lowerCamelCase : Tuple , lowerCamelCase : Any , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : str = WEIGHTS_NAME): A_ : str = convert_file_size_to_int(_UpperCAmelCase) A_ : Tuple = [] A_ : List[Any] = {} A_ : Union[str, Any] = 0 A_ : Dict = 0 os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""") as fp: A_ : Union[str, Any] = serialization.msgpack_restore(fp.read())["""optimizer"""]["""target"""] A_ : Union[str, Any] = flatten_dict(_UpperCAmelCase , sep="""/""") A_ : int = {} for layer in checkpoint_info.keys(): A_ , A_ , A_ : List[str] = get_key_and_tensorstore_dict( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) if curr_real_layer_name in all_layers: A_ : Dict = content else: A_ : List[str] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file A_ : int = ts.open(unflatten_dict(all_layers[key])).result().read().result() A_ : List[Any] = torch.tensor(_UpperCAmelCase) A_ : Optional[int] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype) # use the renaming pattern from the small conversion scripts A_ , A_ : Any = rename_base_flax_keys(tuple(key.split("""/""")) , _UpperCAmelCase) A_ : Optional[int] = """/""".join(_UpperCAmelCase) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: A_ : Dict = os.path.join( _UpperCAmelCase , weights_name.replace(""".bin""" , F'-{len(_UpperCAmelCase)+1:05d}-of-???.bin')) rename_and_save_block(_UpperCAmelCase , _UpperCAmelCase) sharded_state_dicts.append(current_block.keys()) del current_block A_ : Optional[Any] = {} A_ : List[Any] = 0 A_ : Tuple = raw_weights.to(getattr(_UpperCAmelCase , _UpperCAmelCase)) current_block_size += weight_size total_size += weight_size # Add the last block A_ : int = os.path.join(_UpperCAmelCase , weights_name.replace(""".bin""" , F'-{len(_UpperCAmelCase)+1:05d}-of-???.bin')) rename_and_save_block(_UpperCAmelCase , _UpperCAmelCase) sharded_state_dicts.append(current_block.keys()) # If we only have one shard, we return it if len(_UpperCAmelCase) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index A_ : Any = {} A_ : Tuple = {} for idx, shard in enumerate(_UpperCAmelCase): A_ : List[Any] = weights_name.replace( """.bin""" , F'-{idx+1:05d}-of-{len(_UpperCAmelCase):05d}.bin') # len(sharded_state_dicts):05d} A_ : List[Any] = os.path.join(_UpperCAmelCase , weights_name.replace(""".bin""" , F'-{idx+1:05d}-of-???.bin')) os.rename(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase)) A_ : Dict = shard for key in shard: A_ : str = shard_file # Add the metadata A_ : Optional[int] = {"""total_size""": total_size} A_ : Union[str, Any] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase) , """w""" , encoding="""utf-8""") as f: A_ : Any = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase) + """\n""" f.write(_UpperCAmelCase) return metadata, index if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) __magic_name__ = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowerCamelCase ( ): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer A_ : List[str] = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""") config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""") A_ : List[str] = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""") A_ : List[str] = TaTokenizer.from_pretrained("""t5-small""") A_ : str = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" A_ : str = tokenizer(_UpperCAmelCase , return_tensors="""pt""").input_ids A_ : str = model.generate(_UpperCAmelCase , decoder_start_token_id=0) print(tokenizer.decode(out[0]))
665
'''simple docstring''' import math def a ( _UpperCAmelCase ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( _UpperCAmelCase = 1_0_0_0_1 ) -> int: """simple docstring""" try: a_ = int(_UpperCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) a_ = [] a_ = 2 while len(_UpperCAmelCase ) < nth: if is_prime(_UpperCAmelCase ): primes.append(_UpperCAmelCase ) num += 1 else: num += 1 return primes[len(_UpperCAmelCase ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
697
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int=7 , __a : str=3 , __a : str=30 , __a : Union[str, Any]=4_00 , __a : Union[str, Any]=True , __a : Union[str, Any]=None , __a : int=True , __a : List[Any]=1 / 2_55 , __a : List[Any]=True , __a : int=[0.5, 0.5, 0.5] , __a : Union[str, Any]=[0.5, 0.5, 0.5] , __a : Any=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _a = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} _a = parent _a = batch_size _a = num_channels _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean _a = image_std _a = do_pad def UpperCamelCase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def UpperCamelCase__ ( self : Any , __a : List[str] , __a : Any=False ): if not batched: _a = image_inputs[0] if isinstance(UpperCAmelCase__ , Image.Image ): _a , _a = image.size else: _a , _a = image.shape[1], image.shape[2] if w < h: _a = int(self.size["shortest_edge"] * h / w ) _a = self.size["shortest_edge"] elif w > h: _a = self.size["shortest_edge"] _a = int(self.size["shortest_edge"] * w / h ) else: _a = self.size["shortest_edge"] _a = self.size["shortest_edge"] else: _a = [] for image in image_inputs: _a , _a = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _a = max(UpperCAmelCase__ , key=lambda __a : item[0] )[0] _a = max(UpperCAmelCase__ , key=lambda __a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =DetrImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self : int ): _a = DetrImageProcessingTester(self ) @property def UpperCamelCase__ ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self : str ): _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "image_std" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_rescale" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "rescale_factor" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "size" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_pad" ) ) def UpperCamelCase__ ( self : int ): _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase__ ) _a = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__ ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase__ ) def UpperCamelCase__ ( self : Optional[int] ): pass def UpperCamelCase__ ( self : Tuple ): # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _a , _a = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a , _a = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) _a = image_processing(UpperCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ ( self : str ): # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _a , _a = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a = image_processing(UpperCAmelCase__ , return_tensors="pt" ).pixel_values _a , _a = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ ( self : str ): # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _a , _a = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a = image_processing(UpperCAmelCase__ , return_tensors="pt" ).pixel_values _a , _a = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase__ ( self : str ): # prepare image and target _a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: _a = json.loads(f.read() ) _a = {"image_id": 3_97_69, "annotations": target} # encode them _a = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50" ) _a = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors="pt" ) # verify pixel values _a = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase__ ) _a = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4 ) ) # verify area _a = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase__ ) ) # verify boxes _a = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase__ ) _a = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase__ , atol=1e-3 ) ) # verify image_id _a = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase__ ) ) # verify is_crowd _a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase__ ) ) # verify class_labels _a = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase__ ) ) # verify orig_size _a = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase__ ) ) # verify size _a = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase__ ) ) @slow def UpperCamelCase__ ( self : Dict ): # prepare image, target and masks_path _a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: _a = json.loads(f.read() ) _a = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} _a = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them _a = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic" ) _a = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors="pt" ) # verify pixel values _a = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase__ ) _a = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4 ) ) # verify area _a = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase__ ) ) # verify boxes _a = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase__ ) _a = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase__ , atol=1e-3 ) ) # verify image_id _a = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase__ ) ) # verify is_crowd _a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase__ ) ) # verify class_labels _a = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase__ ) ) # verify masks _a = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , UpperCAmelCase__ ) # verify orig_size _a = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase__ ) ) # verify size _a = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase__ ) )
692
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = 10 def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = [1, 2, 3, 4] a_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = '' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) a_ , a_ = process_story(UpperCAmelCase__ ) a_ = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = ['It was the best of times.'] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = torch.tensor([1, 2, 3, 4] ) a_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 0 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 23 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 1 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = 101 a_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) a_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) a_ = compute_token_type_ids(UpperCAmelCase__ , UpperCAmelCase__ ) np.testing.assert_array_equal(UpperCAmelCase__ , UpperCAmelCase__ )
697
0
from math import factorial def lowerCamelCase__ ( _lowerCamelCase = 100 ) ->int: return sum(int(_UpperCAmelCase ) for x in str(factorial(_UpperCAmelCase ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
408
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __lowerCAmelCase ="\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class _snake_case ( unittest.TestCase , snake_case ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = load_tool('text-question-answering' ) self.tool.setup() a_ = load_tool('text-question-answering' , remote=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.remote_tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = self.tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = self.remote_tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' )
697
0
'''simple docstring''' from itertools import product def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any] ): __lowercase = sides_number __lowercase = max_face_number * dice_number __lowercase = [0] * (max_total + 1) __lowercase = 1 __lowercase = range(_UpperCAmelCase , max_face_number + 1 ) for dice_numbers in product(_UpperCAmelCase , repeat=_UpperCAmelCase ): __lowercase = sum(_UpperCAmelCase ) totals_frequencies[total] += 1 return totals_frequencies def _lowerCAmelCase ( ): __lowercase = total_frequency_distribution( sides_number=4 , dice_number=9 ) __lowercase = total_frequency_distribution( sides_number=6 , dice_number=6 ) __lowercase = 0 __lowercase = 9 __lowercase = 4 * 9 __lowercase = 6 for peter_total in range(_UpperCAmelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __lowercase = (4**9) * (6**6) __lowercase = peter_wins_count / total_games_number __lowercase = round(_UpperCAmelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'''{solution() = }''')
502
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase ={"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __lowerCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
697
0
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _snake_case : Tuple = Lock() def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : List[str] , UpperCamelCase : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : Any ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_UpperCAmelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() _a = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left _a = min(_UpperCAmelCase , _UpperCAmelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_UpperCAmelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() _a = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right _a = max(_UpperCAmelCase , _UpperCAmelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_UpperCAmelCase ) def snake_case_ (UpperCamelCase : List[Any] ): '''simple docstring''' _a = [] _a = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop _a = Pipe() _a = Pipe() process_array_.append( Process( target=_UpperCAmelCase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) _a = temp_rs _a = temp_rr for i in range(1 , len(_UpperCAmelCase ) - 1 ): _a = Pipe() _a = Pipe() process_array_.append( Process( target=_UpperCAmelCase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) _a = temp_rs _a = temp_rr process_array_.append( Process( target=_UpperCAmelCase , args=( len(_UpperCAmelCase ) - 1, arr[len(_UpperCAmelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_UpperCAmelCase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_UpperCAmelCase ) ): _a = result_pipe[p][0].recv() process_array_[p].join() return arr def snake_case_ (): '''simple docstring''' _a = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*_UpperCAmelCase ) _a = odd_even_transposition(_UpperCAmelCase ) print('''Sorted List\n''' ) print(*_UpperCAmelCase ) if __name__ == "__main__": main()
22
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "vit" def __init__( self , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=224 , UpperCAmelCase__=16 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=16 , **UpperCAmelCase__ , ) -> Dict: super().__init__(**UpperCAmelCase__ ) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = image_size a_ = patch_size a_ = num_channels a_ = qkv_bias a_ = encoder_stride class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __SCREAMING_SNAKE_CASE ( self ) -> float: return 1e-4
697
0
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _snake_case ( unittest.TestCase ): @property def _lowerCamelCase ( self: int ) -> int: torch.manual_seed(0 ) __UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : Tuple = self.dummy_uncond_unet __UpperCAmelCase : List[Any] = PNDMScheduler() __UpperCAmelCase : Union[str, Any] = PNDMPipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pndm.to(UpperCAmelCase__ ) pndm.set_progress_bar_config(disable=UpperCAmelCase__ ) __UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) __UpperCAmelCase : str = pndm(generator=UpperCAmelCase__ , num_inference_steps=20 , output_type="numpy" ).images __UpperCAmelCase : Tuple = torch.manual_seed(0 ) __UpperCAmelCase : List[Any] = pndm(generator=UpperCAmelCase__ , num_inference_steps=20 , output_type="numpy" , return_dict=UpperCAmelCase__ )[0] __UpperCAmelCase : str = image[0, -3:, -3:, -1] __UpperCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCAmelCase : Optional[Any] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: int ) -> int: __UpperCAmelCase : Optional[Any] = "google/ddpm-cifar10-32" __UpperCAmelCase : Union[str, Any] = UNetaDModel.from_pretrained(UpperCAmelCase__ ) __UpperCAmelCase : Dict = PNDMScheduler() __UpperCAmelCase : Any = PNDMPipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pndm.to(UpperCAmelCase__ ) pndm.set_progress_bar_config(disable=UpperCAmelCase__ ) __UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) __UpperCAmelCase : List[str] = pndm(generator=UpperCAmelCase__ , output_type="numpy" ).images __UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCAmelCase : List[str] = np.array([0.15_64, 0.1_46_45, 0.14_06, 0.1_47_15, 0.1_24_25, 0.1_40_45, 0.1_31_15, 0.1_21_75, 0.1_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
382
'''simple docstring''' def a ( _UpperCAmelCase = 5_0 ) -> int: """simple docstring""" a_ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
697
0
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __lowerCamelCase = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def UpperCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Any=False , ): output_path.parent.mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _UpperCAmelCase , _UpperCAmelCase , f=output_path.as_posix() , input_names=_UpperCAmelCase , output_names=_UpperCAmelCase , dynamic_axes=_UpperCAmelCase , do_constant_folding=_UpperCAmelCase , use_external_data_format=_UpperCAmelCase , enable_onnx_checker=_UpperCAmelCase , opset_version=_UpperCAmelCase , ) else: export( _UpperCAmelCase , _UpperCAmelCase , f=output_path.as_posix() , input_names=_UpperCAmelCase , output_names=_UpperCAmelCase , dynamic_axes=_UpperCAmelCase , do_constant_folding=_UpperCAmelCase , opset_version=_UpperCAmelCase , ) @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Tuple = False ): snake_case : Any = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): snake_case : Union[str, Any] = "cuda" elif fpaa and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA" ) else: snake_case : Optional[Any] = "cpu" snake_case : Optional[Any] = Path(_UpperCAmelCase ) # VAE DECODER snake_case : Any = AutoencoderKL.from_pretrained(model_path + "/vae" ) snake_case : Dict = vae_decoder.config.latent_channels # forward only through the decoder part snake_case : Union[str, Any] = vae_decoder.decode onnx_export( _UpperCAmelCase , model_args=( torch.randn(1 , _UpperCAmelCase , 25 , 25 ).to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ), False, ) , output_path=output_path / "vae_decoder" / "model.onnx" , ordered_input_names=["latent_sample", "return_dict"] , output_names=["sample"] , dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } , opset=_UpperCAmelCase , ) del vae_decoder if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") __lowerCamelCase = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("""SD: Done: ONNX""")
204
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def a ( ) -> None: """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
697
0
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand A__ : int = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) A__ : str = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) A__ : Any = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) A__ : List[Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) A__ : Union[str, Any] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) A__ : List[str] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) A__ : Optional[Any] = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def UpperCamelCase( ): lowerCAmelCase_ , lowerCAmelCase_ : Any = randrange(len(_UpperCAmelCase ) ), randrange(len(_UpperCAmelCase ) ) lowerCAmelCase_ : Optional[Any] = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowerCAmelCase_ , lowerCAmelCase_ : List[str] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def UpperCamelCase( __UpperCamelCase : Dict = 100 ): return (generate_random_hand() for _ in range(_UpperCAmelCase )) @pytest.mark.parametrize('''hand, expected''' ,_UpperCAmelCase ) def UpperCamelCase( __UpperCamelCase : List[Any] ,__UpperCamelCase : Tuple ): assert PokerHand(_UpperCAmelCase )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' ,_UpperCAmelCase ) def UpperCamelCase( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Any ): assert PokerHand(_UpperCAmelCase )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' ,_UpperCAmelCase ) def UpperCamelCase( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : str ): lowerCAmelCase_ : int = PokerHand(_UpperCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' ,_UpperCAmelCase ) def UpperCamelCase( __UpperCamelCase : List[str] ,__UpperCamelCase : List[str] ): assert PokerHand(_UpperCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' ,_UpperCAmelCase ) def UpperCamelCase( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Any ): assert PokerHand(_UpperCAmelCase )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' ,_UpperCAmelCase ) def UpperCamelCase( __UpperCamelCase : List[Any] ,__UpperCamelCase : str ,__UpperCamelCase : Optional[Any] ): assert PokerHand(_UpperCAmelCase ).compare_with(PokerHand(_UpperCAmelCase ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' ,generate_random_hands() ) def UpperCamelCase( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Dict ,__UpperCamelCase : Any ): assert PokerHand(_UpperCAmelCase ).compare_with(PokerHand(_UpperCAmelCase ) ) == expected def UpperCamelCase( ): lowerCAmelCase_ : Dict = [PokerHand(_UpperCAmelCase ) for hand in SORTED_HANDS] lowerCAmelCase_ : Optional[Any] = poker_hands.copy() shuffle(_UpperCAmelCase ) lowerCAmelCase_ : str = chain(sorted(_UpperCAmelCase ) ) for index, hand in enumerate(_UpperCAmelCase ): assert hand == poker_hands[index] def UpperCamelCase( ): lowerCAmelCase_ : int = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=_UpperCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def UpperCamelCase( ): lowerCAmelCase_ : Tuple = PokerHand('''2C 4S AS 3D 5C''' ) lowerCAmelCase_ : Dict = True lowerCAmelCase_ : int = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def UpperCamelCase( ): lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : Tuple = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowerCAmelCase_ : List[str] = os.path.join(_UpperCAmelCase ,'''poker_hands.txt''' ) with open(_UpperCAmelCase ) as file_hand: for line in file_hand: lowerCAmelCase_ : Tuple = line[:14].strip() lowerCAmelCase_ : Union[str, Any] = line[15:].strip() lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = PokerHand(_UpperCAmelCase ), PokerHand(_UpperCAmelCase ) lowerCAmelCase_ : Tuple = player.compare_with(_UpperCAmelCase ) if output == "Win": answer += 1 assert answer == 376
171
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a ( _UpperCAmelCase ) -> int: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _snake_case ( snake_case ): """simple docstring""" @staticmethod def __SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ) -> str: a_ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=UpperCAmelCase__ , help='Name of the model to download' ) download_parser.set_defaults(func=UpperCAmelCase__ ) def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = model a_ = cache a_ = force a_ = trust_remote_code def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
697
0
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( a ,unittest.TestCase ): '''simple docstring''' a__ =None a__ =BloomTokenizerFast a__ =BloomTokenizerFast a__ =True a__ =False a__ ='''tokenizer_file''' a__ ={'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def __lowerCAmelCase ( self ) -> List[Any]: super().setUp() _UpperCAmelCase : Any = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **A ) -> Any: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def __lowerCAmelCase ( self ) -> List[Any]: _UpperCAmelCase : Tuple = self.get_rust_tokenizer() _UpperCAmelCase : Any = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] _UpperCAmelCase : Any = [[2_1_7_5, 2_3_7_1_4, 7_3_1_7_3, 1_4_4_2_5_2, 2], [7_7, 1_3_2_6_1_9, 3_4_7_8, 3_6_8, 1_0_9_5_8_6, 3_5_4_3_3, 2]] _UpperCAmelCase : Union[str, Any] = tokenizer.batch_encode_plus(UpperCAmelCase__ )['''input_ids'''] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCAmelCase ( self , A=6 ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input _UpperCAmelCase : Dict = '''This is a simple input''' _UpperCAmelCase : Any = ['''This is a simple input 1''', '''This is a simple input 2'''] _UpperCAmelCase : Optional[int] = ('''This is a simple input''', '''This is a pair''') _UpperCAmelCase : List[str] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(UpperCAmelCase__ , max_length=UpperCAmelCase__ ) tokenizer_r.encode_plus(UpperCAmelCase__ , max_length=UpperCAmelCase__ ) tokenizer_r.batch_encode_plus(UpperCAmelCase__ , max_length=UpperCAmelCase__ ) tokenizer_r.encode(UpperCAmelCase__ , max_length=UpperCAmelCase__ ) tokenizer_r.batch_encode_plus(UpperCAmelCase__ , max_length=UpperCAmelCase__ ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) _UpperCAmelCase : Any = None # Hotfixing padding = None self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' ) # Simple input self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' ) # Simple input self.assertRaises( UpperCAmelCase__ , tokenizer_r.batch_encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' , ) # Pair input self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' ) # Pair input self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' ) # Pair input self.assertRaises( UpperCAmelCase__ , tokenizer_r.batch_encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' , ) def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : Any = self.get_rust_tokenizer() _UpperCAmelCase : List[Any] = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=UpperCAmelCase__ ) _UpperCAmelCase : Optional[Any] = next(iter(UpperCAmelCase__ ) )['''premise'''] # pick up one data _UpperCAmelCase : List[str] = list(sample_data.values() ) _UpperCAmelCase : Optional[int] = list(map(tokenizer.encode , UpperCAmelCase__ ) ) _UpperCAmelCase : Tuple = [tokenizer.decode(UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ ) for x in output_tokens] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCAmelCase ( self ) -> Any: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
506
'''simple docstring''' def a ( _UpperCAmelCase ) -> int: """simple docstring""" assert column_title.isupper() a_ = 0 a_ = len(_UpperCAmelCase ) - 1 a_ = 0 while index >= 0: a_ = (ord(column_title[index] ) - 6_4) * pow(2_6 , _UpperCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
697
0
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A_ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : Optional[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} _UpperCamelCase : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def SCREAMING_SNAKE_CASE__ ( self ): return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case=0 ): if str(UpperCAmelCase__ ).startswith('mps' ): lowercase = torch.manual_seed(UpperCAmelCase__ ) else: lowercase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) lowercase = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) lowercase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def SCREAMING_SNAKE_CASE__ ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def SCREAMING_SNAKE_CASE__ ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def SCREAMING_SNAKE_CASE__ ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def SCREAMING_SNAKE_CASE__ ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
84
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __lowerCAmelCase =logging.get_logger(__name__) class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = ["audio_values", "audio_mask"] def __init__( self , UpperCAmelCase__=2048 , UpperCAmelCase__=1 , UpperCAmelCase__=[16, 16] , UpperCAmelCase__=128 , UpperCAmelCase__=4_4100 , UpperCAmelCase__=86 , UpperCAmelCase__=2048 , UpperCAmelCase__=0.0 , **UpperCAmelCase__ , ) -> Union[str, Any]: super().__init__( feature_size=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , padding_value=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = spectrogram_length a_ = num_channels a_ = patch_size a_ = feature_size // self.patch_size[1] a_ = n_fft a_ = sampling_rate // hop_length_to_sampling_rate a_ = sampling_rate a_ = padding_value a_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=UpperCAmelCase__ , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=UpperCAmelCase__ , norm='slaney' , mel_scale='slaney' , ).T def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> np.ndarray: a_ = spectrogram( UpperCAmelCase__ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=8_0.0 , ) a_ = log_spec[:, :-1] a_ = log_spec - 2_0.0 a_ = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , **UpperCAmelCase__ , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) a_ = isinstance(UpperCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) a_ = is_batched_numpy or ( isinstance(UpperCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a_ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase__ , np.ndarray ): a_ = np.asarray(UpperCAmelCase__ , dtype=np.floataa ) elif isinstance(UpperCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a_ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis a_ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , UpperCAmelCase__ ): a_ = [np.asarray(UpperCAmelCase__ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask a_ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: a_ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] a_ = np.array(UpperCAmelCase__ ).astype(np.floataa ) # convert into correct format for padding a_ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch a_ = np.ones([len(UpperCAmelCase__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) a_ = padded_audio_features * self.padding_value for i in range(len(UpperCAmelCase__ ) ): a_ = audio_features[i] a_ = feature # return as BatchFeature if return_attention_mask: a_ = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: a_ = {'audio_values': padded_audio_features} a_ = BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) return encoded_inputs
697
0
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class snake_case_ ( __UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case__ = AlbertTokenizer snake_case__ = AlbertTokenizerFast snake_case__ = True snake_case__ = True snake_case__ = True def UpperCAmelCase__ (self: Dict ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a : Dict = AlbertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ (self: List[str] , __UpperCAmelCase: int ) -> Optional[int]: '''simple docstring''' __a : Union[str, Any] = "this is a test" __a : Any = "this is a test" return input_text, output_text def UpperCAmelCase__ (self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' __a : List[str] = "<pad>" __a : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def UpperCAmelCase__ (self: Union[str, Any] ) -> str: '''simple docstring''' __a : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(UpperCAmelCase__ ) , 30000 ) def UpperCAmelCase__ (self: Tuple ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def UpperCAmelCase__ (self: Dict ) -> Union[str, Any]: '''simple docstring''' if not self.test_rust_tokenizer: return __a : List[Any] = self.get_tokenizer() __a : Optional[Any] = self.get_rust_tokenizer() __a : Dict = "I was born in 92000, and this is falsé." __a : Any = tokenizer.tokenize(UpperCAmelCase__ ) __a : Dict = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __a : str = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) __a : Optional[int] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __a : Optional[Any] = self.get_rust_tokenizer() __a : Optional[int] = tokenizer.encode(UpperCAmelCase__ ) __a : str = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase__ (self: Tuple ) -> str: '''simple docstring''' __a : Union[str, Any] = AlbertTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) __a : int = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCAmelCase__ , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [48, 25, 21, 1289] ) __a : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCAmelCase__ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) __a : Any = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) __a : int = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def UpperCAmelCase__ (self: Union[str, Any] ) -> Tuple: '''simple docstring''' __a : Union[str, Any] = AlbertTokenizer(UpperCAmelCase__ ) __a : Dict = tokenizer.encode("sequence builders" ) __a : Dict = tokenizer.encode("multi-sequence build" ) __a : List[Any] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) __a : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCAmelCase__ (self: Union[str, Any] ) -> Tuple: '''simple docstring''' __a : Tuple = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
351
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Optional[Any]: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = len(set_a.intersection(_UpperCAmelCase ) ) if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) else: a_ = len(set_a.union(_UpperCAmelCase ) ) return intersection / union if isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) ): a_ = [element for element in set_a if element in set_b] if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / union else: a_ = set_a + [element for element in set_b if element not in set_a] return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return None if __name__ == "__main__": __lowerCAmelCase ={"a", "b", "c", "d", "e"} __lowerCAmelCase ={"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
697
0
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : Dict): def get_matched_characters(lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any]) -> str: A_ : str = [] A_ : int = min(len(_stra) , len(_stra)) // 2 for i, l in enumerate(_stra): A_ : Optional[Any] = int(max(0 , i - limit)) A_ : Tuple = int(min(i + limit + 1 , len(_stra))) if l in _stra[left:right]: matched.append(_UpperCAmelCase) A_ : Any = F'{_stra[0:_stra.index(_UpperCAmelCase)]} {_stra[_stra.index(_UpperCAmelCase) + 1:]}' return "".join(_UpperCAmelCase) # matching characters A_ : Optional[Any] = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase) A_ : Optional[Any] = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase) A_ : Dict = len(_UpperCAmelCase) # transposition A_ : Union[str, Any] = ( len([(ca, ca) for ca, ca in zip(_UpperCAmelCase , _UpperCAmelCase) if ca != ca]) // 2 ) if not match_count: A_ : Union[str, Any] = 0.0 else: A_ : Optional[int] = ( 1 / 3 * ( match_count / len(_UpperCAmelCase) + match_count / len(_UpperCAmelCase) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters A_ : List[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4]): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
665
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('iterations must be defined as integers' ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) a_ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
697
0
'''simple docstring''' from PIL import Image def _lowerCamelCase ( lowercase : List[str] , lowercase : int ) -> Image: _a = (259 * (level + 255)) / (255 * (259 - level)) def contrast(lowercase : Any ) -> int: return int(128 + factor * (c - 128) ) return img.point(_UpperCAmelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 lowerCAmelCase_ : Tuple = change_contrast(img, 1_70) cont_img.save('image_data/lena_high_contrast.png', format='png')
692
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _snake_case ( snake_case ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ) -> str: super().__init__( features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ , streaming=UpperCAmelCase__ , num_proc=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = Generator( cache_dir=UpperCAmelCase__ , features=UpperCAmelCase__ , generator=UpperCAmelCase__ , gen_kwargs=UpperCAmelCase__ , **UpperCAmelCase__ , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Build iterable dataset if self.streaming: a_ = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: a_ = None a_ = None a_ = None a_ = None self.builder.download_and_prepare( download_config=UpperCAmelCase__ , download_mode=UpperCAmelCase__ , verification_mode=UpperCAmelCase__ , base_path=UpperCAmelCase__ , num_proc=self.num_proc , ) a_ = self.builder.as_dataset( split='train' , verification_mode=UpperCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
697
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a ( unittest.TestCase ): """simple docstring""" def __init__( self , _snake_case , _snake_case=13 , _snake_case=3 , _snake_case=224 , _snake_case=30 , _snake_case=400 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=[0.5, 0.5, 0.5] , _snake_case=[0.5, 0.5, 0.5] , ): _UpperCAmelCase =size if size is not None else {"height": 18, "width": 18} _UpperCAmelCase =parent _UpperCAmelCase =batch_size _UpperCAmelCase =num_channels _UpperCAmelCase =image_size _UpperCAmelCase =min_resolution _UpperCAmelCase =max_resolution _UpperCAmelCase =do_resize _UpperCAmelCase =size _UpperCAmelCase =do_normalize _UpperCAmelCase =image_mean _UpperCAmelCase =image_std def SCREAMING_SNAKE_CASE ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _a ( A__ , unittest.TestCase ): """simple docstring""" snake_case =ViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =EfficientFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE ( self ): return self.image_proc_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "image_std" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "size" ) ) def SCREAMING_SNAKE_CASE ( self ): pass def SCREAMING_SNAKE_CASE ( self ): # Initialize image_processor _UpperCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase =prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase =image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched _UpperCAmelCase =image_processor(UpperCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def SCREAMING_SNAKE_CASE ( self ): # Initialize image_processor _UpperCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase =prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input _UpperCAmelCase =image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched _UpperCAmelCase =image_processor(UpperCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def SCREAMING_SNAKE_CASE ( self ): # Initialize image_processor _UpperCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase =prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase =image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched _UpperCAmelCase =image_processor(UpperCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , )
408
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase =numpy.array([0, 0]) __lowerCAmelCase =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase =numpy.array([1, 0]) __lowerCAmelCase =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a ( _UpperCAmelCase , _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = initial_vectors for _ in range(_UpperCAmelCase ): a_ = iteration_step(_UpperCAmelCase ) return vectors def a ( _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = [] for i, start_vector in enumerate(vectors[:-1] ): a_ = vectors[i + 1] new_vectors.append(_UpperCAmelCase ) a_ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a ( _UpperCAmelCase , _UpperCAmelCase ) -> numpy.ndarray: """simple docstring""" a_ = numpy.radians(_UpperCAmelCase ) a_ , a_ = numpy.cos(_UpperCAmelCase ), numpy.sin(_UpperCAmelCase ) a_ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_UpperCAmelCase , _UpperCAmelCase ) def a ( _UpperCAmelCase ) -> None: """simple docstring""" a_ = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() a_ , a_ = zip(*_UpperCAmelCase ) plt.plot(_UpperCAmelCase , _UpperCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
697
0
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] = None , lowerCamelCase_ : Optional[int] = None ): if start is None: __lowercase = 0 if end is None: __lowercase = len(_UpperCAmelCase ) - 1 if start >= end: return __lowercase = (start + end) // 2 slowsort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) slowsort(_UpperCAmelCase , mid + 1 , _UpperCAmelCase ) if sequence[end] < sequence[mid]: __lowercase , __lowercase = sequence[mid], sequence[end] slowsort(_UpperCAmelCase , _UpperCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
502
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def a ( _UpperCAmelCase ) -> int: """simple docstring""" if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def a ( _UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" for char in word: a_ = ord(_UpperCAmelCase ) if not _is_chinese_char(_UpperCAmelCase ): return 0 return 1 def a ( _UpperCAmelCase ) -> Tuple: """simple docstring""" a_ = set() for token in tokens: a_ = len(_UpperCAmelCase ) > 1 and is_chinese(_UpperCAmelCase ) if chinese_word: word_set.add(_UpperCAmelCase ) a_ = list(_UpperCAmelCase ) return word_list def a ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: """simple docstring""" if not chinese_word_set: return bert_tokens a_ = max([len(_UpperCAmelCase ) for w in chinese_word_set] ) a_ = bert_tokens a_ , a_ = 0, len(_UpperCAmelCase ) while start < end: a_ = True if is_chinese(bert_word[start] ): a_ = min(end - start , _UpperCAmelCase ) for i in range(_UpperCAmelCase , 1 , -1 ): a_ = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): a_ = '##' + bert_word[j] a_ = start + i a_ = False break if single_word: start += 1 return bert_word def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: """simple docstring""" a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['cws'] ).cws a_ = [get_chinese_word(_UpperCAmelCase ) for r in res] ltp_res.extend(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=5_1_2 ) bert_res.extend(res['input_ids'] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for input_ids, chinese_word in zip(_UpperCAmelCase , _UpperCAmelCase ): a_ = [] for id in input_ids: a_ = bert_tokenizer._convert_id_to_token(_UpperCAmelCase ) input_tokens.append(_UpperCAmelCase ) a_ = add_sub_symbol(_UpperCAmelCase , _UpperCAmelCase ) a_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_UpperCAmelCase ): if token[:2] == "##": a_ = token[2:] # save chinese tokens' pos if len(_UpperCAmelCase ) == 1 and _is_chinese_char(ord(_UpperCAmelCase ) ): ref_id.append(_UpperCAmelCase ) ref_ids.append(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) return ref_ids def a ( _UpperCAmelCase ) -> Optional[Any]: """simple docstring""" with open(args.file_name , 'r' , encoding='utf-8' ) as f: a_ = f.readlines() a_ = [line.strip() for line in data if len(_UpperCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' a_ = LTP(args.ltp ) # faster in GPU device a_ = BertTokenizer.from_pretrained(args.bert ) a_ = prepare_ref(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: a_ = [json.dumps(_UpperCAmelCase ) + '\n' for ref in ref_ids] f.writelines(_UpperCAmelCase ) if __name__ == "__main__": __lowerCAmelCase =argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __lowerCAmelCase =parser.parse_args() main(args)
697
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _snake_case : Dict = logging.get_logger(__name__) if is_vision_available(): import PIL class A ( _a ): lowercase_ = ['pixel_values'] def __init__( self : str , lowerCAmelCase_ : List[str] = True , lowerCAmelCase_ : Union[str, Any] = None , lowerCAmelCase_ : Tuple = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[int] = True , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict = True , lowerCAmelCase_ : str = 1 / 2_55 , lowerCAmelCase_ : List[Any] = True , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Any = None , lowerCAmelCase_ : Dict = True , **lowerCAmelCase_ : Any , ) -> None: """simple docstring""" super().__init__(**UpperCAmelCase__ ) _a = size if size is not None else {'''shortest_edge''': 2_24} _a = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) _a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _a = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ , param_name='''crop_size''' ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a = image_std if image_std is not None else OPENAI_CLIP_STD _a = do_convert_rgb def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Any = PILImageResampling.BICUBIC , lowerCAmelCase_ : Union[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> np.ndarray: """simple docstring""" _a = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(UpperCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=UpperCAmelCase__ ) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: """simple docstring""" _a = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(UpperCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple = None , **lowerCAmelCase_ : str , ) -> Union[str, Any]: """simple docstring""" return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] = None , **lowerCAmelCase_ : List[Any] , ) -> np.ndarray: """simple docstring""" return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Tuple = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : Tuple = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : List[str] = ChannelDimension.FIRST , **lowerCAmelCase_ : Optional[Any] , ) -> PIL.Image.Image: """simple docstring""" _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(UpperCAmelCase__ , param_name='''size''' , default_to_square=UpperCAmelCase__ ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(UpperCAmelCase__ , param_name='''crop_size''' , default_to_square=UpperCAmelCase__ ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(UpperCAmelCase__ ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: _a = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_center_crop: _a = [self.center_crop(image=UpperCAmelCase__ , size=UpperCAmelCase__ ) for image in images] if do_rescale: _a = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_normalize: _a = [self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) for image in images] _a = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
22
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase ={ "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": 512, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase = RetriBertTokenizer _UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__="[UNK]" , UpperCAmelCase__="[SEP]" , UpperCAmelCase__="[PAD]" , UpperCAmelCase__="[CLS]" , UpperCAmelCase__="[MASK]" , UpperCAmelCase__=True , UpperCAmelCase__=None , **UpperCAmelCase__ , ) -> int: super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase__ ) != tokenize_chinese_chars ): a_ = getattr(UpperCAmelCase__ , normalizer_state.pop('type' ) ) a_ = do_lower_case a_ = strip_accents a_ = tokenize_chinese_chars a_ = normalizer_class(**UpperCAmelCase__ ) a_ = do_lower_case def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__=None ) -> str: a_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> List[int]: a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> Tuple[str]: a_ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
697
0
_snake_case = 9.8_0_6_6_5 def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ = g ) -> float: if fluid_density <= 0: raise ValueError("Impossible fluid density" ) if volume < 0: raise ValueError("Impossible Object volume" ) if gravity <= 0: raise ValueError("Impossible Gravity" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
382
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "lilt" def __init__( self , UpperCAmelCase__=3_0522 , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=512 , UpperCAmelCase__=2 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=0 , UpperCAmelCase__="absolute" , UpperCAmelCase__=None , UpperCAmelCase__=4 , UpperCAmelCase__=1024 , **UpperCAmelCase__ , ) -> Optional[Any]: super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = classifier_dropout a_ = channel_shrink_ratio a_ = max_ad_position_embeddings
697
0
def UpperCamelCase ( __lowerCamelCase : Union[str, Any] ): snake_case : Optional[Any] = len(_UpperCAmelCase ) for i in range(1 , _UpperCAmelCase ): snake_case : Tuple = collection[i] snake_case : Any = 0 snake_case : Tuple = i - 1 while low <= high: snake_case : Union[str, Any] = (low + high) // 2 if val < collection[mid]: snake_case : int = mid - 1 else: snake_case : Dict = mid + 1 for j in range(_UpperCAmelCase , _UpperCAmelCase , -1 ): snake_case : Dict = collection[j - 1] snake_case : Dict = val return collection if __name__ == "__main__": __lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase = [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
204
'''simple docstring''' from __future__ import annotations def a ( _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # We need to create solution object to save path. a_ = [[0 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] a_ = run_maze(_UpperCAmelCase , 0 , 0 , _UpperCAmelCase ) if solved: print('\n'.join(str(_UpperCAmelCase ) for row in solutions ) ) else: print('No solution exists!' ) return solved def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # Final check point. if i == j == (size - 1): a_ = 1 return True a_ = (not i < 0) and (not j < 0) # Check lower bounds a_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. a_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited a_ = 1 # check for directions if ( run_maze(_UpperCAmelCase , i + 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j + 1 , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , i - 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j - 1 , _UpperCAmelCase ) ): return True a_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
697
0
from __future__ import annotations from statistics import mean def UpperCamelCase( __UpperCamelCase : Any ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : List[Any] ): lowerCAmelCase_ : Dict = [0] * no_of_processes lowerCAmelCase_ : Optional[Any] = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_UpperCAmelCase ): lowerCAmelCase_ : int = burst_time[i] lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : List[str] = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Optional[int] = -1 for i in range(_UpperCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: lowerCAmelCase_ : str = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowerCAmelCase_ : Tuple = i total_time += burst_time[target_process] completed += 1 lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : Dict = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def UpperCamelCase( __UpperCamelCase : Any ,__UpperCamelCase : List[Any] ,__UpperCamelCase : Dict ): lowerCAmelCase_ : str = [0] * no_of_processes for i in range(_UpperCAmelCase ): lowerCAmelCase_ : Union[str, Any] = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') A__ : Optional[int] = 4 A__ : str = [2, 5, 3, 7] A__ : Any = [0, 0, 0, 0] A__ : int = calculate_waitingtime(arrival_time, burst_time, no_of_processes) A__ : Optional[int] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
171
'''simple docstring''' __lowerCAmelCase ={ "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) __lowerCAmelCase ={ "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float: """simple docstring""" a_ = from_type.lower().strip('s' ) a_ = to_type.lower().strip('s' ) a_ = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) a_ = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) if from_sanitized not in METRIC_CONVERSION: a_ = ( F'''Invalid \'from_type\' value: {from_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) if to_sanitized not in METRIC_CONVERSION: a_ = ( F'''Invalid \'to_type\' value: {to_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) a_ = METRIC_CONVERSION[from_sanitized] a_ = METRIC_CONVERSION[to_sanitized] a_ = 1 if from_exponent > to_exponent: a_ = from_exponent - to_exponent else: a_ = -(to_exponent - from_exponent) return value * pow(1_0 , _UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
697
0
"""simple docstring""" from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def lowerCamelCase_ (UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): _UpperCAmelCase : List[Any] = k_size // 2 _UpperCAmelCase , _UpperCAmelCase : Optional[int] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] _UpperCAmelCase : Union[str, Any] = 1 / (2 * pi * sigma) * exp(-(square(_UpperCAmelCase ) + square(_UpperCAmelCase )) / (2 * square(_UpperCAmelCase )) ) return g def lowerCamelCase_ (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict ): _UpperCAmelCase , _UpperCAmelCase : int = image.shape[0], image.shape[1] # dst image height and width _UpperCAmelCase : List[str] = height - k_size + 1 _UpperCAmelCase : List[str] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows _UpperCAmelCase : Optional[int] = zeros((dst_height * dst_width, k_size * k_size) ) _UpperCAmelCase : Union[str, Any] = 0 for i, j in product(range(_UpperCAmelCase ) , range(_UpperCAmelCase ) ): _UpperCAmelCase : Optional[int] = ravel(image[i : i + k_size, j : j + k_size] ) _UpperCAmelCase : Dict = window row += 1 # turn the kernel into shape(k*k, 1) _UpperCAmelCase : str = gen_gaussian_kernel(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : Optional[int] = ravel(_UpperCAmelCase ) # reshape and get the dst image _UpperCAmelCase : Tuple = dot(_UpperCAmelCase , _UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ).astype(_UpperCAmelCase ) return dst if __name__ == "__main__": # read original image _lowerCAmelCase :str = imread(R'../image_data/lena.jpg') # turn image in gray scale value _lowerCAmelCase :Optional[int] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _lowerCAmelCase :Optional[int] = gaussian_filter(gray, 3, sigma=1) _lowerCAmelCase :List[Any] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('gaussian filter with 3x3 mask', gaussianaxa) imshow('gaussian filter with 5x5 mask', gaussianaxa) waitKey()
506
'''simple docstring''' import unittest from transformers import DonutProcessor __lowerCAmelCase ="naver-clova-ix/donut-base" class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = DonutProcessor.from_pretrained(UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } a_ = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) a_ = self.processor.tokenajson(UpperCAmelCase__ ) self.assertDictEqual(UpperCAmelCase__ , UpperCAmelCase__ )
697
0
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) UpperCAmelCase = '''hf-internal-testing/tiny-random-bert''' UpperCAmelCase = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') UpperCAmelCase = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = cached_file(UpperCAmelCase__ , UpperCAmelCase__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCAmelCase__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) ) with open(os.path.join(UpperCAmelCase__ , 'refs' , 'main' ) ) as f: lowercase = f.read() self.assertEqual(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , 'snapshots' , UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertTrue(os.path.isfile(UpperCAmelCase__ ) ) # File is cached at the same place the second time. lowercase = cached_file(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Using a specific revision to test the full commit hash. lowercase = cached_file(UpperCAmelCase__ , UpperCAmelCase__ , revision='9b8c223' ) self.assertEqual(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , 'snapshots' , UpperCAmelCase__ , UpperCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ): with self.assertRaisesRegex(UpperCAmelCase__ , 'is not a valid model identifier' ): lowercase = cached_file('tiny-random-bert' , UpperCAmelCase__ ) with self.assertRaisesRegex(UpperCAmelCase__ , 'is not a valid git identifier' ): lowercase = cached_file(UpperCAmelCase__ , UpperCAmelCase__ , revision='aaaa' ) with self.assertRaisesRegex(UpperCAmelCase__ , 'does not appear to have a file named' ): lowercase = cached_file(UpperCAmelCase__ , 'conf' ) def SCREAMING_SNAKE_CASE__ ( self ): with self.assertRaisesRegex(UpperCAmelCase__ , 'does not appear to have a file named' ): lowercase = cached_file(UpperCAmelCase__ , 'conf' ) with open(os.path.join(UpperCAmelCase__ , 'refs' , 'main' ) ) as f: lowercase = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase__ , '.no_exist' , UpperCAmelCase__ , 'conf' ) ) ) lowercase = cached_file(UpperCAmelCase__ , 'conf' , _raise_exceptions_for_missing_entries=UpperCAmelCase__ ) self.assertIsNone(UpperCAmelCase__ ) lowercase = cached_file(UpperCAmelCase__ , 'conf' , local_files_only=UpperCAmelCase__ , _raise_exceptions_for_missing_entries=UpperCAmelCase__ ) self.assertIsNone(UpperCAmelCase__ ) lowercase = mock.Mock() lowercase = 500 lowercase = {} lowercase = HTTPError lowercase = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=UpperCAmelCase__ ) as mock_head: lowercase = cached_file(UpperCAmelCase__ , 'conf' , _raise_exceptions_for_connection_errors=UpperCAmelCase__ ) self.assertIsNone(UpperCAmelCase__ ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ ( self ): self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , UpperCAmelCase__ ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , UpperCAmelCase__ ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , UpperCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCAmelCase__ , 'is not a valid model identifier' ): get_file_from_repo('bert-base-case' , UpperCAmelCase__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCAmelCase__ , 'is not a valid git identifier' ): get_file_from_repo('bert-base-cased' , UpperCAmelCase__ , revision='ahaha' ) lowercase = get_file_from_repo('bert-base-cased' , UpperCAmelCase__ ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase = json.loads(open(UpperCAmelCase__ , 'r' ).read() ) self.assertEqual(config['hidden_size'] , 768 ) def SCREAMING_SNAKE_CASE__ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowercase = Path(UpperCAmelCase__ ) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(UpperCAmelCase__ , 'a.txt' ) , str(UpperCAmelCase__ ) ) self.assertIsNone(get_file_from_repo(UpperCAmelCase__ , 'b.txt' ) )
84
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _snake_case : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__="resnet50" , UpperCAmelCase__=3 , UpperCAmelCase__=32 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=True , ) -> Optional[Any]: a_ = parent a_ = out_indices if out_indices is not None else [4] a_ = stage_names a_ = out_features a_ = backbone a_ = batch_size a_ = image_size a_ = num_channels a_ = use_pretrained_backbone a_ = is_training def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ = self.get_config() return config, pixel_values def __SCREAMING_SNAKE_CASE ( self ) -> Dict: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = TimmBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): a_ = model(UpperCAmelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = self.prepare_config_and_inputs() a_ , a_ = config_and_inputs a_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _snake_case ( snake_case , snake_case , snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = (TimmBackbone,) if is_torch_available() else () _UpperCamelCase = {"feature-extraction": TimmBackbone} if is_torch_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = TimmBackboneModelTester(self ) a_ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = 'resnet18' a_ = 'microsoft/resnet-18' a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ , out_indices=[1, 2, 3] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Safetensors is not supported by timm.' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) a_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = True a_ = self.has_attentions # no need to test all models as different heads yield the same functionality a_ = self.all_model_classes[0] a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) a_ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = model(**UpperCAmelCase__ ) a_ = outputs[0][-1] # Encoder-/Decoder-only models a_ = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a_ = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCAmelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = None a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = False a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ )
697
0
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class snake_case_ ( __UpperCamelCase ): """simple docstring""" def __init__(self: Tuple , *__UpperCAmelCase: Tuple , **__UpperCAmelCase: int ) -> None: '''simple docstring''' warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
351
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=7 , UpperCAmelCase__=3 , UpperCAmelCase__=18 , UpperCAmelCase__=30 , UpperCAmelCase__=400 , UpperCAmelCase__=True , UpperCAmelCase__=None , UpperCAmelCase__=True , ) -> List[Any]: a_ = size if size is not None else {'height': 18, 'width': 18} a_ = parent a_ = batch_size a_ = num_channels a_ = image_size a_ = min_resolution a_ = max_resolution a_ = do_resize a_ = size a_ = apply_ocr def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _snake_case ( snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = LayoutLMvaImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'apply_ocr' ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) a_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , UpperCAmelCase__ ) self.assertIsInstance(encoding.boxes , UpperCAmelCase__ ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> int: # with apply_OCR = True a_ = LayoutLMvaImageProcessor() from datasets import load_dataset a_ = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) a_ = Image.open(ds[0]['file'] ).convert('RGB' ) a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 a_ = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 a_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCAmelCase__ ) self.assertListEqual(encoding.boxes , UpperCAmelCase__ ) # with apply_OCR = False a_ = LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
697
0
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ): '''simple docstring''' super().__init__() A_ : Any = nn.Linear(3 ,4 ) A_ : List[Any] = nn.BatchNormad(4 ) A_ : str = nn.Linear(4 ,5 ) def _a ( self : Optional[int] ,_a : List[Any] ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase__ ) ) ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def _a ( self : Optional[Any] ,_a : List[str] ,*_a : str ,**_a : Optional[Any] ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def _a ( self : str ,_a : Tuple ,_a : Union[str, Any] ): '''simple docstring''' return output + 1 class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def _a ( self : str ): '''simple docstring''' A_ : Optional[Any] = ModelForTest() A_ : Dict = ModelHook() add_hook_to_module(UpperCAmelCase__ ,UpperCAmelCase__ ) self.assertEqual(test_model._hf_hook ,UpperCAmelCase__ ) self.assertTrue(hasattr(UpperCAmelCase__ ,"""_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ ,"""forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) ,["""x"""] ) remove_hook_from_module(UpperCAmelCase__ ) self.assertFalse(hasattr(UpperCAmelCase__ ,"""_hf_hook""" ) ) self.assertFalse(hasattr(UpperCAmelCase__ ,"""_old_forward""" ) ) def _a ( self : Tuple ): '''simple docstring''' A_ : Tuple = ModelForTest() A_ : Union[str, Any] = ModelHook() add_hook_to_module(UpperCAmelCase__ ,UpperCAmelCase__ ) add_hook_to_module(UpperCAmelCase__ ,UpperCAmelCase__ ,append=UpperCAmelCase__ ) self.assertEqual(isinstance(test_model._hf_hook ,UpperCAmelCase__ ) ,UpperCAmelCase__ ) self.assertEqual(len(test_model._hf_hook.hooks ) ,2 ) self.assertTrue(hasattr(UpperCAmelCase__ ,"""_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ ,"""forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) ,["""x"""] ) remove_hook_from_module(UpperCAmelCase__ ) self.assertFalse(hasattr(UpperCAmelCase__ ,"""_hf_hook""" ) ) self.assertFalse(hasattr(UpperCAmelCase__ ,"""_old_forward""" ) ) def _a ( self : int ): '''simple docstring''' A_ : Optional[Any] = ModelForTest() A_ : Any = torch.randn(2 ,3 ) A_ : Optional[int] = test_model(x + 1 ) A_ : Optional[Any] = test_model(x + 2 ) A_ : int = PreForwardHook() add_hook_to_module(UpperCAmelCase__ ,UpperCAmelCase__ ) A_ : Tuple = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ ,UpperCAmelCase__ ,atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain A_ : Optional[int] = PreForwardHook() add_hook_to_module(UpperCAmelCase__ ,UpperCAmelCase__ ) A_ : Any = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ ,UpperCAmelCase__ ,atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks A_ : int = SequentialHook(PreForwardHook() ,PreForwardHook() ) add_hook_to_module(UpperCAmelCase__ ,UpperCAmelCase__ ) A_ : int = test_model(UpperCAmelCase__ ) assert torch.allclose(UpperCAmelCase__ ,UpperCAmelCase__ ,atol=1e-5 ) def _a ( self : Any ): '''simple docstring''' A_ : str = ModelForTest() A_ : int = torch.randn(2 ,3 ) A_ : Union[str, Any] = test_model(UpperCAmelCase__ ) A_ : Optional[Any] = PostForwardHook() add_hook_to_module(UpperCAmelCase__ ,UpperCAmelCase__ ) A_ : Any = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ ,output + 1 ,atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain A_ : Optional[int] = PostForwardHook() add_hook_to_module(UpperCAmelCase__ ,UpperCAmelCase__ ) A_ : List[Any] = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ ,output + 1 ,atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks A_ : Dict = SequentialHook(PostForwardHook() ,PostForwardHook() ) add_hook_to_module(UpperCAmelCase__ ,UpperCAmelCase__ ) A_ : List[Any] = test_model(UpperCAmelCase__ ) assert torch.allclose(UpperCAmelCase__ ,output + 2 ,atol=1e-5 ) def _a ( self : int ): '''simple docstring''' A_ : Dict = ModelForTest() A_ : int = torch.randn(2 ,3 ) A_ : List[str] = test_model(UpperCAmelCase__ ) A_ : str = PostForwardHook() add_hook_to_module(UpperCAmelCase__ ,UpperCAmelCase__ ) A_ : Optional[Any] = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ ,output + 1 ) ) self.assertTrue(outputa.requires_grad ) A_ : Union[str, Any] = True A_ : Tuple = test_model(UpperCAmelCase__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Dict = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device ,torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device ,torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara ,AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm ,AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara ,AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device ,torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device ,torch.device(0 ) ) self.assertEqual(model.lineara.weight.device ,torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device A_ : Any = torch.randn(2 ,3 ) A_ : Optional[int] = model(UpperCAmelCase__ ) self.assertEqual(output.device ,torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(UpperCAmelCase__ ,AlignDevicesHook(io_same_device=UpperCAmelCase__ ) ) A_ : List[str] = torch.randn(2 ,3 ).to(0 ) A_ : str = model(UpperCAmelCase__ ) self.assertEqual(output.device ,torch.device(0 ) ) def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Optional[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device ,torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device ,torch.device("""cpu""" ) ) # This will move each submodule on different devices A_ : Any = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara ,AlignDevicesHook(**UpperCAmelCase__ ) ) add_hook_to_module(model.batchnorm ,AlignDevicesHook(**UpperCAmelCase__ ) ) add_hook_to_module(model.lineara ,AlignDevicesHook(**UpperCAmelCase__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device ,torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device ,torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A_ : Tuple = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device ,UpperCAmelCase__ ) A_ : Optional[int] = torch.randn(2 ,3 ) A_ : Tuple = model(UpperCAmelCase__ ) self.assertEqual(output.device ,UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device ,torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device ,torch.device("""cpu""" ) ) # Now test with buffers included in the offload A_ : Any = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara ,AlignDevicesHook(**UpperCAmelCase__ ) ) add_hook_to_module(model.batchnorm ,AlignDevicesHook(**UpperCAmelCase__ ) ) add_hook_to_module(model.lineara ,AlignDevicesHook(**UpperCAmelCase__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device ,torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device ,torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device ,torch.device("""meta""" ) ) A_ : int = torch.randn(2 ,3 ) A_ : Any = model(UpperCAmelCase__ ) self.assertEqual(output.device ,UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device ,torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device ,torch.device("""cpu""" ) ) def _a ( self : Any ): '''simple docstring''' A_ : Dict = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device ,torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device ,torch.device("""cpu""" ) ) # This will move each submodule on different devices A_ : Dict = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(UpperCAmelCase__ ,execution_device=UpperCAmelCase__ ,offload=UpperCAmelCase__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device ,torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device ,torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A_ : Union[str, Any] = torch.device(UpperCAmelCase__ ) self.assertEqual(model.batchnorm.running_mean.device ,UpperCAmelCase__ ) A_ : int = torch.randn(2 ,3 ) A_ : Optional[Any] = model(UpperCAmelCase__ ) self.assertEqual(output.device ,UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase__ ) self.assertEqual(model.lineara.weight.device ,torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device ,torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(UpperCAmelCase__ ,execution_device=UpperCAmelCase__ ,offload=UpperCAmelCase__ ,offload_buffers=UpperCAmelCase__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device ,torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device ,torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device ,torch.device("""meta""" ) ) A_ : Optional[int] = torch.randn(2 ,3 ) A_ : Dict = model(UpperCAmelCase__ ) self.assertEqual(output.device ,UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase__ ) self.assertEqual(model.lineara.weight.device ,torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device ,torch.device("""cpu""" ) ) def _a ( self : List[Any] ): '''simple docstring''' A_ : Dict = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device ,torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device ,torch.device("""cpu""" ) ) # This will move each submodule on different devices A_ : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( UpperCAmelCase__ ,execution_device=UpperCAmelCase__ ,offload=UpperCAmelCase__ ,weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device ,torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device ,torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A_ : Dict = torch.device(UpperCAmelCase__ ) self.assertEqual(model.batchnorm.running_mean.device ,UpperCAmelCase__ ) A_ : Any = torch.randn(2 ,3 ) A_ : Optional[Any] = model(UpperCAmelCase__ ) self.assertEqual(output.device ,UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase__ ) self.assertEqual(model.lineara.weight.device ,torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device ,torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( UpperCAmelCase__ ,execution_device=UpperCAmelCase__ ,offload=UpperCAmelCase__ ,weights_map=model.state_dict() ,offload_buffers=UpperCAmelCase__ ,) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device ,torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device ,torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device ,torch.device("""meta""" ) ) A_ : int = torch.randn(2 ,3 ) A_ : Tuple = model(UpperCAmelCase__ ) self.assertEqual(output.device ,UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase__ ) self.assertEqual(model.lineara.weight.device ,torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device ,torch.device("""cpu""" ) )
665
'''simple docstring''' import math def a ( _UpperCAmelCase ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( _UpperCAmelCase = 1_0_0_0_1 ) -> int: """simple docstring""" try: a_ = int(_UpperCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) a_ = [] a_ = 2 while len(_UpperCAmelCase ) < nth: if is_prime(_UpperCAmelCase ): primes.append(_UpperCAmelCase ) num += 1 else: num += 1 return primes[len(_UpperCAmelCase ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
697
0
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =BarthezTokenizer __a =BarthezTokenizerFast __a =True __a =True def UpperCamelCase__ ( self : Union[str, Any] ): super().setUp() _a = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=UpperCAmelCase__ ) _a = tokenizer def UpperCamelCase__ ( self : Optional[int] ): _a = "<pad>" _a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def UpperCamelCase__ ( self : List[Any] ): _a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(UpperCAmelCase__ ) , 10_11_22 ) def UpperCamelCase__ ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size , 10_11_22 ) @require_torch def UpperCamelCase__ ( self : Optional[int] ): _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = [0, 57, 30_18, 7_03_07, 91, 2] _a = self.tokenizer( UpperCAmelCase__ , max_length=len(UpperCAmelCase__ ) , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _a = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCamelCase__ ( self : Optional[int] ): if not self.test_rust_tokenizer: return _a = self.get_tokenizer() _a = self.get_rust_tokenizer() _a = "I was born in 92000, and this is falsé." _a = tokenizer.tokenize(UpperCAmelCase__ ) _a = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a = self.get_rust_tokenizer() _a = tokenizer.encode(UpperCAmelCase__ ) _a = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def UpperCamelCase__ ( self : int ): # fmt: off _a = {"input_ids": [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _a = [ "Le transformeur est un modèle d\'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=UpperCAmelCase__ , )
692
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = 10 def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = [1, 2, 3, 4] a_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = '' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) a_ , a_ = process_story(UpperCAmelCase__ ) a_ = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = ['It was the best of times.'] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = torch.tensor([1, 2, 3, 4] ) a_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 0 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 23 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 1 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = 101 a_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) a_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) a_ = compute_token_type_ids(UpperCAmelCase__ , UpperCAmelCase__ ) np.testing.assert_array_equal(UpperCAmelCase__ , UpperCAmelCase__ )
697
0
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): snake_case__ : Any = yaml.safe_load( '\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) snake_case__ : Union[str, Any] = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } snake_case__ : Dict = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' snake_case__ : Optional[int] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' snake_case__ : Dict = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } snake_case__ : Dict = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' snake_case__ : Any = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) snake_case__ : Any = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' snake_case__ : Optional[int] = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) snake_case__ : Any = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' snake_case__ : List[str] = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' snake_case__ : int = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' snake_case__ : str = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' snake_case__ : Optional[Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' snake_case__ : Optional[int] = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' snake_case__ : Tuple = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' snake_case__ : List[Any] = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' snake_case__ : int = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' snake_case__ : List[str] = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' snake_case__ : Optional[int] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' snake_case__ : List[str] = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' snake_case__ : Any = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' snake_case__ : Dict = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' snake_case__ : Union[str, Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' snake_case__ : Tuple = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' snake_case__ : str = '' snake_case__ : int = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' snake_case__ : Dict = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' snake_case__ : Tuple = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->Optional[int]: assert ReadMe.from_string(_UpperCAmelCase , _UpperCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->int: with pytest.raises(_UpperCAmelCase , match=re.escape(expected_error.format(path="root" ) ) ): _UpperCAmelCase =ReadMe.from_string(_UpperCAmelCase , _UpperCAmelCase ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->str: with pytest.raises(_UpperCAmelCase , match=re.escape(expected_error.format(path="root" ) ) ): ReadMe.from_string(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase__ ( _lowerCamelCase ) ->Tuple: ReadMe.from_string(_UpperCAmelCase , _UpperCAmelCase , suppress_parsing_errors=_UpperCAmelCase ) @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase =Path(_UpperCAmelCase ) / "README.md" with open(_UpperCAmelCase , "w+" ) as readme_file: readme_file.write(_UpperCAmelCase ) _UpperCAmelCase =ReadMe.from_readme(_UpperCAmelCase , _UpperCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->int: with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase =Path(_UpperCAmelCase ) / "README.md" with open(_UpperCAmelCase , "w+" ) as readme_file: readme_file.write(_UpperCAmelCase ) _UpperCAmelCase =expected_error.format(path=_UpperCAmelCase ) with pytest.raises(_UpperCAmelCase , match=re.escape(_UpperCAmelCase ) ): _UpperCAmelCase =ReadMe.from_readme(_UpperCAmelCase , _UpperCAmelCase ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->Tuple: with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase =Path(_UpperCAmelCase ) / "README.md" with open(_UpperCAmelCase , "w+" ) as readme_file: readme_file.write(_UpperCAmelCase ) _UpperCAmelCase =expected_error.format(path=_UpperCAmelCase ) with pytest.raises(_UpperCAmelCase , match=re.escape(_UpperCAmelCase ) ): ReadMe.from_readme(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase__ ( _lowerCamelCase ) ->str: with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase =Path(_UpperCAmelCase ) / "README.md" with open(_UpperCAmelCase , "w+" ) as readme_file: readme_file.write(_UpperCAmelCase ) ReadMe.from_readme(_UpperCAmelCase , _UpperCAmelCase , suppress_parsing_errors=_UpperCAmelCase )
408
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __lowerCAmelCase ="\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class _snake_case ( unittest.TestCase , snake_case ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = load_tool('text-question-answering' ) self.tool.setup() a_ = load_tool('text-question-answering' , remote=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.remote_tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = self.tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = self.remote_tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' )
697
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Optional[Any] = "layoutlmv3" def __init__(self ,_lowerCamelCase=50265 ,_lowerCamelCase=768 ,_lowerCamelCase=12 ,_lowerCamelCase=12 ,_lowerCamelCase=3072 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=512 ,_lowerCamelCase=2 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-5 ,_lowerCamelCase=1 ,_lowerCamelCase=0 ,_lowerCamelCase=2 ,_lowerCamelCase=1024 ,_lowerCamelCase=128 ,_lowerCamelCase=128 ,_lowerCamelCase=True ,_lowerCamelCase=32 ,_lowerCamelCase=128 ,_lowerCamelCase=64 ,_lowerCamelCase=256 ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=224 ,_lowerCamelCase=3 ,_lowerCamelCase=16 ,_lowerCamelCase=None ,**_lowerCamelCase ,) -> Dict: '''simple docstring''' super().__init__( vocab_size=UpperCAmelCase__ ,hidden_size=UpperCAmelCase__ ,num_hidden_layers=UpperCAmelCase__ ,num_attention_heads=UpperCAmelCase__ ,intermediate_size=UpperCAmelCase__ ,hidden_act=UpperCAmelCase__ ,hidden_dropout_prob=UpperCAmelCase__ ,attention_probs_dropout_prob=UpperCAmelCase__ ,max_position_embeddings=UpperCAmelCase__ ,type_vocab_size=UpperCAmelCase__ ,initializer_range=UpperCAmelCase__ ,layer_norm_eps=UpperCAmelCase__ ,pad_token_id=UpperCAmelCase__ ,bos_token_id=UpperCAmelCase__ ,eos_token_id=UpperCAmelCase__ ,**UpperCAmelCase__ ,) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = version.parse("1.12" ) @property def _UpperCAmelCase (self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def _UpperCAmelCase (self ) -> float: '''simple docstring''' return 1E-5 @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' return 12 def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = -1 ,_lowerCamelCase = -1 ,_lowerCamelCase = False ,_lowerCamelCase = None ,_lowerCamelCase = 3 ,_lowerCamelCase = 40 ,_lowerCamelCase = 40 ,) -> Mapping[str, Any]: '''simple docstring''' setattr(processor.image_processor ,'''apply_ocr''' ,UpperCAmelCase__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( UpperCAmelCase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(UpperCAmelCase__ ) __lowercase = compute_effective_axis_dimension( UpperCAmelCase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=UpperCAmelCase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ) __lowercase = dict( processor( UpperCAmelCase__ ,text=UpperCAmelCase__ ,boxes=UpperCAmelCase__ ,return_tensors=UpperCAmelCase__ ,) ) return inputs
502
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase ={"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __lowerCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
697
0
'''simple docstring''' from __future__ import annotations def snake_case_ (UpperCamelCase : Any ): '''simple docstring''' _a = len(_UpperCAmelCase ) # We need to create solution object to save path. _a = [[0 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] _a = run_maze(_UpperCAmelCase , 0 , 0 , _UpperCAmelCase ) if solved: print('''\n'''.join(str(_UpperCAmelCase ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def snake_case_ (UpperCamelCase : Any , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _a = len(_UpperCAmelCase ) # Final check point. if i == j == (size - 1): _a = 1 return True _a = (not i < 0) and (not j < 0) # Check lower bounds _a = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. _a = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited _a = 1 # check for directions if ( run_maze(_UpperCAmelCase , i + 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j + 1 , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , i - 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j - 1 , _UpperCAmelCase ) ): return True _a = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
22
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "vit" def __init__( self , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=224 , UpperCAmelCase__=16 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=16 , **UpperCAmelCase__ , ) -> Dict: super().__init__(**UpperCAmelCase__ ) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = image_size a_ = patch_size a_ = num_channels a_ = qkv_bias a_ = encoder_stride class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __SCREAMING_SNAKE_CASE ( self ) -> float: return 1e-4
697
0
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Optional[int]: __UpperCAmelCase : List[Any] = LxmertConfig.from_json_file(_UpperCAmelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) __UpperCAmelCase : List[Any] = LxmertForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(), _UpperCAmelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
382
'''simple docstring''' def a ( _UpperCAmelCase = 5_0 ) -> int: """simple docstring""" a_ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
697
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__(self : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Union[str, Any]=7 , snake_case__ : Tuple=3 , snake_case__ : Any=18 , snake_case__ : Dict=30 , snake_case__ : Optional[Any]=4_00 , snake_case__ : Union[str, Any]=True , snake_case__ : str=None , snake_case__ : Optional[int]=True , ) -> List[Any]: '''simple docstring''' snake_case : Tuple = size if size is not None else {"height": 18, "width": 18} snake_case : Union[str, Any] = parent snake_case : Optional[Any] = batch_size snake_case : Union[str, Any] = num_channels snake_case : str = image_size snake_case : Tuple = min_resolution snake_case : Optional[int] = max_resolution snake_case : List[Any] = do_resize snake_case : Optional[int] = size snake_case : Union[str, Any] = apply_ocr def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[int]: '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _SCREAMING_SNAKE_CASE (self : str ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = LayoutLMvaImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "size" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "apply_ocr" ) ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) snake_case : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def _SCREAMING_SNAKE_CASE (self : str ) -> Any: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , UpperCAmelCase__ ) self.assertIsInstance(encoding.boxes , UpperCAmelCase__ ) # Test batched snake_case : Tuple = image_processing(UpperCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Dict: '''simple docstring''' snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input snake_case : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched snake_case : List[str] = image_processing(UpperCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[Any]: '''simple docstring''' snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input snake_case : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched snake_case : Tuple = image_processing(UpperCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> int: '''simple docstring''' snake_case : Any = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case : int = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) snake_case : Dict = Image.open(ds[0]["file"] ).convert("RGB" ) snake_case : Optional[int] = image_processing(UpperCAmelCase__ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case : Dict = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 snake_case : Union[str, Any] = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCAmelCase__ ) self.assertListEqual(encoding.boxes , UpperCAmelCase__ ) # with apply_OCR = False snake_case : List[Any] = LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) snake_case : Any = image_processing(UpperCAmelCase__ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
204
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def a ( ) -> None: """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
697
0
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( UpperCamelCase_ ,unittest.TestCase ): _a = LxmertTokenizer _a = LxmertTokenizerFast _a = True _a = True def UpperCAmelCase__ ( self : Tuple): super().setUp() lowerCAmelCase_ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCAmelCase_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) def UpperCAmelCase__ ( self : Any , A_ : Optional[Any]): lowerCAmelCase_ : Tuple = '''UNwant\u00E9d,running''' lowerCAmelCase_ : Tuple = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : Union[str, Any] = self.tokenizer_class(self.vocab_file) lowerCAmelCase_ : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''') self.assertListEqual(UpperCAmelCase__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__) , [7, 4, 5, 1_0, 8, 9]) def UpperCAmelCase__ ( self : Any): if not self.test_rust_tokenizer: return lowerCAmelCase_ : int = self.get_tokenizer() lowerCAmelCase_ : Optional[Any] = self.get_rust_tokenizer() lowerCAmelCase_ : int = '''I was born in 92000, and this is falsé.''' lowerCAmelCase_ : Optional[Any] = tokenizer.tokenize(UpperCAmelCase__) lowerCAmelCase_ : Any = rust_tokenizer.tokenize(UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) lowerCAmelCase_ : List[str] = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__) lowerCAmelCase_ : str = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) lowerCAmelCase_ : List[Any] = self.get_rust_tokenizer() lowerCAmelCase_ : List[Any] = tokenizer.encode(UpperCAmelCase__) lowerCAmelCase_ : Optional[Any] = rust_tokenizer.encode(UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__)
171
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a ( _UpperCAmelCase ) -> int: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _snake_case ( snake_case ): """simple docstring""" @staticmethod def __SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ) -> str: a_ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=UpperCAmelCase__ , help='Name of the model to download' ) download_parser.set_defaults(func=UpperCAmelCase__ ) def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = model a_ = cache a_ = force a_ = trust_remote_code def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
697
0
"""simple docstring""" class _UpperCAmelCase : '''simple docstring''' def __init__( self ) -> List[str]: _UpperCAmelCase : List[Any] = 0 _UpperCAmelCase : Any = 0 _UpperCAmelCase : List[str] = {} def __lowerCAmelCase ( self , A ) -> Tuple: if vertex not in self.adjacency: _UpperCAmelCase : Optional[Any] = {} self.num_vertices += 1 def __lowerCAmelCase ( self , A , A , A ) -> List[Any]: self.add_vertex(UpperCAmelCase__ ) self.add_vertex(UpperCAmelCase__ ) if head == tail: return _UpperCAmelCase : Any = weight _UpperCAmelCase : List[str] = weight def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : Dict = self.get_edges() for edge in edges: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = edge edges.remove((tail, head, weight) ) for i in range(len(UpperCAmelCase__ ) ): _UpperCAmelCase : List[str] = list(edges[i] ) edges.sort(key=lambda A : e[2] ) for i in range(len(UpperCAmelCase__ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _UpperCAmelCase : List[str] = edges[i][2] + 1 for edge in edges: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = edge _UpperCAmelCase : Dict = weight _UpperCAmelCase : int = weight def __str__( self ) -> Dict: _UpperCAmelCase : Any = '''''' for tail in self.adjacency: for head in self.adjacency[tail]: _UpperCAmelCase : List[Any] = self.adjacency[head][tail] string += f'{head} -> {tail} == {weight}\n' return string.rstrip('''\n''' ) def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : str = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowerCAmelCase ( self ) -> Union[str, Any]: return self.adjacency.keys() @staticmethod def __lowerCAmelCase ( A=None , A=None ) -> Any: _UpperCAmelCase : int = Graph() if vertices is None: _UpperCAmelCase : Optional[int] = [] if edges is None: _UpperCAmelCase : List[Any] = [] for vertex in vertices: g.add_vertex(UpperCAmelCase__ ) for edge in edges: g.add_edge(*UpperCAmelCase__ ) return g class _UpperCAmelCase : '''simple docstring''' def __init__( self ) -> str: _UpperCAmelCase : str = {} _UpperCAmelCase : Dict = {} def __len__( self ) -> Dict: return len(self.parent ) def __lowerCAmelCase ( self , A ) -> Optional[int]: if item in self.parent: return self.find(UpperCAmelCase__ ) _UpperCAmelCase : int = item _UpperCAmelCase : Dict = 0 return item def __lowerCAmelCase ( self , A ) -> Optional[int]: if item not in self.parent: return self.make_set(UpperCAmelCase__ ) if item != self.parent[item]: _UpperCAmelCase : int = self.find(self.parent[item] ) return self.parent[item] def __lowerCAmelCase ( self , A , A ) -> str: _UpperCAmelCase : Any = self.find(UpperCAmelCase__ ) _UpperCAmelCase : Any = self.find(UpperCAmelCase__ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _UpperCAmelCase : List[str] = roota return roota if self.rank[roota] < self.rank[roota]: _UpperCAmelCase : str = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _UpperCAmelCase : List[Any] = roota return roota return None @staticmethod def __lowerCAmelCase ( A ) -> Any: _UpperCAmelCase : Union[str, Any] = graph.num_vertices _UpperCAmelCase : Optional[Any] = Graph.UnionFind() _UpperCAmelCase : Any = [] while num_components > 1: _UpperCAmelCase : Union[str, Any] = {} for vertex in graph.get_vertices(): _UpperCAmelCase : Optional[Any] = -1 _UpperCAmelCase : Any = graph.get_edges() for edge in edges: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = edge edges.remove((tail, head, weight) ) for edge in edges: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = edge _UpperCAmelCase : Tuple = union_find.find(UpperCAmelCase__ ) _UpperCAmelCase : Optional[int] = union_find.find(UpperCAmelCase__ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _UpperCAmelCase : Dict = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _UpperCAmelCase : List[str] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(UpperCAmelCase__ ) != union_find.find(UpperCAmelCase__ ): union_find.union(UpperCAmelCase__ , UpperCAmelCase__ ) mst_edges.append(cheap_edge[vertex] ) _UpperCAmelCase : str = num_components - 1 _UpperCAmelCase : Optional[int] = Graph.build(edges=UpperCAmelCase__ ) return mst
506
'''simple docstring''' def a ( _UpperCAmelCase ) -> int: """simple docstring""" assert column_title.isupper() a_ = 0 a_ = len(_UpperCAmelCase ) - 1 a_ = 0 while index >= 0: a_ = (ord(column_title[index] ) - 6_4) * pow(2_6 , _UpperCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
697
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} UpperCAmelCase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } UpperCAmelCase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCAmelCase_ ( ): lowercase = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowercase = bs[:] lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 lowercase = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = set() lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase = char return pairs class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Any = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case , snake_case , snake_case="replace" , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=False , **snake_case , ): lowercase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else bos_token lowercase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else eos_token lowercase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else sep_token lowercase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else cls_token lowercase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else unk_token lowercase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , **UpperCAmelCase__ , ) with open(UpperCAmelCase__ , encoding='utf-8' ) as vocab_handle: lowercase = json.load(UpperCAmelCase__ ) lowercase = {v: k for k, v in self.encoder.items()} lowercase = errors # how to handle errors in decoding lowercase = bytes_to_unicode() lowercase = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase__ , encoding='utf-8' ) as merges_handle: lowercase = merges_handle.read().split('\n' )[1:-1] lowercase = [tuple(merge.split() ) for merge in bpe_merges] lowercase = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) lowercase = {} lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def SCREAMING_SNAKE_CASE__ ( self ): return len(self.encoder ) def SCREAMING_SNAKE_CASE__ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if token in self.cache: return self.cache[token] lowercase = tuple(UpperCAmelCase__ ) lowercase = get_pairs(UpperCAmelCase__ ) if not pairs: return token while True: lowercase = min(UpperCAmelCase__ , key=lambda snake_case : self.bpe_ranks.get(UpperCAmelCase__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase = bigram lowercase = [] lowercase = 0 while i < len(UpperCAmelCase__ ): try: lowercase = word.index(UpperCAmelCase__ , UpperCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase = j if word[i] == first and i < len(UpperCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase = tuple(UpperCAmelCase__ ) lowercase = new_word if len(UpperCAmelCase__ ) == 1: break else: lowercase = get_pairs(UpperCAmelCase__ ) lowercase = ' '.join(UpperCAmelCase__ ) lowercase = word return word def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = [] for token in re.findall(self.pat , UpperCAmelCase__ ): lowercase = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase__ ).split(' ' ) ) return bpe_tokens def SCREAMING_SNAKE_CASE__ ( self , snake_case ): return self.encoder.get(UpperCAmelCase__ , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): return self.decoder.get(UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = ''.join(UpperCAmelCase__ ) lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): if not os.path.isdir(UpperCAmelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase = os.path.join( UpperCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowercase = os.path.join( UpperCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ ) + '\n' ) lowercase = 0 with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) lowercase = token_index writer.write(' '.join(UpperCAmelCase__ ) + '\n' ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase = [self.cls_token_id] lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None , snake_case = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase__ )) + [1] return [1] + ([0] * len(UpperCAmelCase__ )) + [1, 1] + ([0] * len(UpperCAmelCase__ )) + [1] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case=False , **snake_case ): lowercase = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase__ ) > 0 and not text[0].isspace()): lowercase = ' ' + text return (text, kwargs)
84
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __lowerCAmelCase =logging.get_logger(__name__) class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = ["audio_values", "audio_mask"] def __init__( self , UpperCAmelCase__=2048 , UpperCAmelCase__=1 , UpperCAmelCase__=[16, 16] , UpperCAmelCase__=128 , UpperCAmelCase__=4_4100 , UpperCAmelCase__=86 , UpperCAmelCase__=2048 , UpperCAmelCase__=0.0 , **UpperCAmelCase__ , ) -> Union[str, Any]: super().__init__( feature_size=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , padding_value=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = spectrogram_length a_ = num_channels a_ = patch_size a_ = feature_size // self.patch_size[1] a_ = n_fft a_ = sampling_rate // hop_length_to_sampling_rate a_ = sampling_rate a_ = padding_value a_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=UpperCAmelCase__ , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=UpperCAmelCase__ , norm='slaney' , mel_scale='slaney' , ).T def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> np.ndarray: a_ = spectrogram( UpperCAmelCase__ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=8_0.0 , ) a_ = log_spec[:, :-1] a_ = log_spec - 2_0.0 a_ = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , **UpperCAmelCase__ , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) a_ = isinstance(UpperCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) a_ = is_batched_numpy or ( isinstance(UpperCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a_ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase__ , np.ndarray ): a_ = np.asarray(UpperCAmelCase__ , dtype=np.floataa ) elif isinstance(UpperCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a_ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis a_ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , UpperCAmelCase__ ): a_ = [np.asarray(UpperCAmelCase__ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask a_ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: a_ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] a_ = np.array(UpperCAmelCase__ ).astype(np.floataa ) # convert into correct format for padding a_ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch a_ = np.ones([len(UpperCAmelCase__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) a_ = padded_audio_features * self.padding_value for i in range(len(UpperCAmelCase__ ) ): a_ = audio_features[i] a_ = feature # return as BatchFeature if return_attention_mask: a_ = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: a_ = {'audio_values': padded_audio_features} a_ = BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) return encoded_inputs
697
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase__ = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } UpperCAmelCase__ = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class snake_case_ ( __UpperCamelCase ): """simple docstring""" snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["""input_ids""", """attention_mask"""] snake_case__ = RobertaTokenizer def __init__(self: List[Any] , __UpperCAmelCase: Optional[Any]=None , __UpperCAmelCase: Any=None , __UpperCAmelCase: Any=None , __UpperCAmelCase: Union[str, Any]="replace" , __UpperCAmelCase: str="<s>" , __UpperCAmelCase: str="</s>" , __UpperCAmelCase: Dict="</s>" , __UpperCAmelCase: Union[str, Any]="<s>" , __UpperCAmelCase: Optional[Any]="<unk>" , __UpperCAmelCase: Optional[int]="<pad>" , __UpperCAmelCase: str="<mask>" , __UpperCAmelCase: List[Any]=False , __UpperCAmelCase: int=True , **__UpperCAmelCase: Tuple , ) -> Dict: '''simple docstring''' super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , ) __a : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase__ ) != add_prefix_space: __a : Any = getattr(UpperCAmelCase__ , pre_tok_state.pop("type" ) ) __a : Any = add_prefix_space __a : List[str] = pre_tok_class(**UpperCAmelCase__ ) __a : List[str] = add_prefix_space __a : str = "post_processor" __a : Any = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) if tokenizer_component_instance: __a : Union[str, Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __a : List[Any] = tuple(state["sep"] ) if "cls" in state: __a : Dict = tuple(state["cls"] ) __a : Union[str, Any] = False if state.get("add_prefix_space" , UpperCAmelCase__ ) != add_prefix_space: __a : List[Any] = add_prefix_space __a : Any = True if state.get("trim_offsets" , UpperCAmelCase__ ) != trim_offsets: __a : Union[str, Any] = trim_offsets __a : Optional[Any] = True if changes_to_apply: __a : Optional[int] = getattr(UpperCAmelCase__ , state.pop("type" ) ) __a : Dict = component_class(**UpperCAmelCase__ ) setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) @property def UpperCAmelCase__ (self: str ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase__ (self: Union[str, Any] , __UpperCAmelCase: Dict ) -> Union[str, Any]: '''simple docstring''' __a : int = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else value __a : int = value def UpperCAmelCase__ (self: str , *__UpperCAmelCase: List[Any] , **__UpperCAmelCase: Dict ) -> BatchEncoding: '''simple docstring''' __a : List[str] = kwargs.get("is_split_into_words" , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase__ (self: List[str] , *__UpperCAmelCase: List[str] , **__UpperCAmelCase: int ) -> BatchEncoding: '''simple docstring''' __a : Optional[int] = kwargs.get("is_split_into_words" , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase__ (self: Any , __UpperCAmelCase: List[str] , __UpperCAmelCase: Dict = None ) -> Tuple[str]: '''simple docstring''' __a : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def UpperCAmelCase__ (self: List[str] , __UpperCAmelCase: List[Any] , __UpperCAmelCase: Any=None ) -> Optional[Any]: '''simple docstring''' __a : Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ (self: Dict , __UpperCAmelCase: List[str] , __UpperCAmelCase: List[str] = None ) -> List[int]: '''simple docstring''' __a : Optional[Any] = [self.sep_token_id] __a : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
351
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Optional[Any]: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = len(set_a.intersection(_UpperCAmelCase ) ) if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) else: a_ = len(set_a.union(_UpperCAmelCase ) ) return intersection / union if isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) ): a_ = [element for element in set_a if element in set_b] if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / union else: a_ = set_a + [element for element in set_b if element not in set_a] return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return None if __name__ == "__main__": __lowerCAmelCase ={"a", "b", "c", "d", "e"} __lowerCAmelCase ={"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
697
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
665
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('iterations must be defined as integers' ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) a_ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
697
0
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _lowerCamelCase ( lowercase : int , lowercase : Any , lowercase : str ) -> Optional[Any]: if openai_config_file == "": _a = OpenAIGPTConfig() else: _a = OpenAIGPTConfig.from_json_file(_UpperCAmelCase ) _a = OpenAIGPTModel(_UpperCAmelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model _a = pytorch_dump_folder_path + "/" + WEIGHTS_NAME _a = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , _UpperCAmelCase ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(_UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--openai_checkpoint_folder_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--openai_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) lowerCAmelCase_ : Dict = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
692
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _snake_case ( snake_case ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ) -> str: super().__init__( features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ , streaming=UpperCAmelCase__ , num_proc=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = Generator( cache_dir=UpperCAmelCase__ , features=UpperCAmelCase__ , generator=UpperCAmelCase__ , gen_kwargs=UpperCAmelCase__ , **UpperCAmelCase__ , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Build iterable dataset if self.streaming: a_ = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: a_ = None a_ = None a_ = None a_ = None self.builder.download_and_prepare( download_config=UpperCAmelCase__ , download_mode=UpperCAmelCase__ , verification_mode=UpperCAmelCase__ , base_path=UpperCAmelCase__ , num_proc=self.num_proc , ) a_ = self.builder.as_dataset( split='train' , verification_mode=UpperCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
697
0
from ..utils import DummyObject, requires_backends class _a ( metaclass=A__ ): """simple docstring""" snake_case =["""transformers""", """torch""", """note_seq"""] def __init__( self , *_snake_case , **_snake_case ): requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_snake_case , **_snake_case ): requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_snake_case , **_snake_case ): requires_backends(cls , ["transformers", "torch", "note_seq"] )
408
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase =numpy.array([0, 0]) __lowerCAmelCase =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase =numpy.array([1, 0]) __lowerCAmelCase =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a ( _UpperCAmelCase , _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = initial_vectors for _ in range(_UpperCAmelCase ): a_ = iteration_step(_UpperCAmelCase ) return vectors def a ( _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = [] for i, start_vector in enumerate(vectors[:-1] ): a_ = vectors[i + 1] new_vectors.append(_UpperCAmelCase ) a_ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a ( _UpperCAmelCase , _UpperCAmelCase ) -> numpy.ndarray: """simple docstring""" a_ = numpy.radians(_UpperCAmelCase ) a_ , a_ = numpy.cos(_UpperCAmelCase ), numpy.sin(_UpperCAmelCase ) a_ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_UpperCAmelCase , _UpperCAmelCase ) def a ( _UpperCAmelCase ) -> None: """simple docstring""" a_ = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() a_ , a_ = zip(*_UpperCAmelCase ) plt.plot(_UpperCAmelCase , _UpperCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
697
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
502
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def a ( _UpperCAmelCase ) -> int: """simple docstring""" if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def a ( _UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" for char in word: a_ = ord(_UpperCAmelCase ) if not _is_chinese_char(_UpperCAmelCase ): return 0 return 1 def a ( _UpperCAmelCase ) -> Tuple: """simple docstring""" a_ = set() for token in tokens: a_ = len(_UpperCAmelCase ) > 1 and is_chinese(_UpperCAmelCase ) if chinese_word: word_set.add(_UpperCAmelCase ) a_ = list(_UpperCAmelCase ) return word_list def a ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: """simple docstring""" if not chinese_word_set: return bert_tokens a_ = max([len(_UpperCAmelCase ) for w in chinese_word_set] ) a_ = bert_tokens a_ , a_ = 0, len(_UpperCAmelCase ) while start < end: a_ = True if is_chinese(bert_word[start] ): a_ = min(end - start , _UpperCAmelCase ) for i in range(_UpperCAmelCase , 1 , -1 ): a_ = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): a_ = '##' + bert_word[j] a_ = start + i a_ = False break if single_word: start += 1 return bert_word def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: """simple docstring""" a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['cws'] ).cws a_ = [get_chinese_word(_UpperCAmelCase ) for r in res] ltp_res.extend(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=5_1_2 ) bert_res.extend(res['input_ids'] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for input_ids, chinese_word in zip(_UpperCAmelCase , _UpperCAmelCase ): a_ = [] for id in input_ids: a_ = bert_tokenizer._convert_id_to_token(_UpperCAmelCase ) input_tokens.append(_UpperCAmelCase ) a_ = add_sub_symbol(_UpperCAmelCase , _UpperCAmelCase ) a_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_UpperCAmelCase ): if token[:2] == "##": a_ = token[2:] # save chinese tokens' pos if len(_UpperCAmelCase ) == 1 and _is_chinese_char(ord(_UpperCAmelCase ) ): ref_id.append(_UpperCAmelCase ) ref_ids.append(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) return ref_ids def a ( _UpperCAmelCase ) -> Optional[Any]: """simple docstring""" with open(args.file_name , 'r' , encoding='utf-8' ) as f: a_ = f.readlines() a_ = [line.strip() for line in data if len(_UpperCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' a_ = LTP(args.ltp ) # faster in GPU device a_ = BertTokenizer.from_pretrained(args.bert ) a_ = prepare_ref(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: a_ = [json.dumps(_UpperCAmelCase ) + '\n' for ref in ref_ids] f.writelines(_UpperCAmelCase ) if __name__ == "__main__": __lowerCAmelCase =argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __lowerCAmelCase =parser.parse_args() main(args)
697
0
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _snake_case : Optional[Any] = numpy.array([0, 0]) _snake_case : Tuple = numpy.array([0.5, 0.866_0254]) _snake_case : Any = numpy.array([1, 0]) _snake_case : str = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : str ): '''simple docstring''' _a = initial_vectors for _ in range(_UpperCAmelCase ): _a = iteration_step(_UpperCAmelCase ) return vectors def snake_case_ (UpperCamelCase : Optional[int] ): '''simple docstring''' _a = [] for i, start_vector in enumerate(vectors[:-1] ): _a = vectors[i + 1] new_vectors.append(_UpperCAmelCase ) _a = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : List[str] ): '''simple docstring''' _a = numpy.radians(_UpperCAmelCase ) _a , _a = numpy.cos(_UpperCAmelCase ), numpy.sin(_UpperCAmelCase ) _a = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_UpperCAmelCase , _UpperCAmelCase ) def snake_case_ (UpperCamelCase : Any ): '''simple docstring''' _a = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _a , _a = zip(*_UpperCAmelCase ) plt.plot(_UpperCAmelCase , _UpperCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _snake_case : Optional[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
22
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase ={ "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": 512, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase = RetriBertTokenizer _UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__="[UNK]" , UpperCAmelCase__="[SEP]" , UpperCAmelCase__="[PAD]" , UpperCAmelCase__="[CLS]" , UpperCAmelCase__="[MASK]" , UpperCAmelCase__=True , UpperCAmelCase__=None , **UpperCAmelCase__ , ) -> int: super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase__ ) != tokenize_chinese_chars ): a_ = getattr(UpperCAmelCase__ , normalizer_state.pop('type' ) ) a_ = do_lower_case a_ = strip_accents a_ = tokenize_chinese_chars a_ = normalizer_class(**UpperCAmelCase__ ) a_ = do_lower_case def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__=None ) -> str: a_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> List[int]: a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> Tuple[str]: a_ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
697
0
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _snake_case ( _lowercase ): lowerCamelCase__: Tuple = 42 lowerCamelCase__: str = 42 class _snake_case ( _lowercase , _lowercase ): lowerCamelCase__: Tuple = 1 @register_to_config def __init__( self: Optional[Any] , __lowerCamelCase: Optional[Any] = 20_00 , __lowerCamelCase: Union[str, Any] = 0.15 , __lowerCamelCase: Any = 0.01 , __lowerCamelCase: Any = 13_48.0 , __lowerCamelCase: Optional[int] = 1e-5 , __lowerCamelCase: int = 1 , ) -> Tuple: # standard deviation of the initial noise distribution __UpperCAmelCase : Tuple = sigma_max # setable values __UpperCAmelCase : Any = None self.set_sigmas(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[str] , __lowerCamelCase: int = None ) -> torch.FloatTensor: return sample def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: List[Any] = None , __lowerCamelCase: Optional[Any] = None ) -> Union[str, Any]: __UpperCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps __UpperCAmelCase : Optional[Any] = torch.linspace(1 , UpperCAmelCase__ , UpperCAmelCase__ , device=UpperCAmelCase__ ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Tuple , __lowerCamelCase: List[Any] = None , __lowerCamelCase: List[Any] = None , __lowerCamelCase: int = None ) -> Optional[Any]: __UpperCAmelCase : Dict = sigma_min if sigma_min is not None else self.config.sigma_min __UpperCAmelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max __UpperCAmelCase : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(UpperCAmelCase__ , UpperCAmelCase__ ) __UpperCAmelCase : Tuple = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __UpperCAmelCase : Union[str, Any] = torch.exp(torch.linspace(math.log(UpperCAmelCase__ ) , math.log(UpperCAmelCase__ ) , UpperCAmelCase__ ) ) __UpperCAmelCase : Any = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _lowerCamelCase ( self: str , __lowerCamelCase: int , __lowerCamelCase: int ) -> Any: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _lowerCamelCase ( self: str , __lowerCamelCase: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: Dict , __lowerCamelCase: Dict = None , __lowerCamelCase: Dict = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler" ) __UpperCAmelCase : List[str] = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __UpperCAmelCase : List[Any] = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __UpperCAmelCase : Optional[Any] = timesteps.to(self.discrete_sigmas.device ) __UpperCAmelCase : Optional[int] = self.discrete_sigmas[timesteps].to(sample.device ) __UpperCAmelCase : Dict = self.get_adjacent_sigma(UpperCAmelCase__ , UpperCAmelCase__ ).to(sample.device ) __UpperCAmelCase : Union[str, Any] = torch.zeros_like(UpperCAmelCase__ ) __UpperCAmelCase : Tuple = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __UpperCAmelCase : Any = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __UpperCAmelCase : List[Any] = diffusion.unsqueeze(-1 ) __UpperCAmelCase : List[str] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __UpperCAmelCase : int = randn_tensor( sample.shape , layout=sample.layout , generator=UpperCAmelCase__ , device=sample.device , dtype=sample.dtype ) __UpperCAmelCase : Any = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __UpperCAmelCase : Union[str, Any] = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=UpperCAmelCase__ , prev_sample_mean=UpperCAmelCase__ ) def _lowerCamelCase ( self: int , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] = None , __lowerCamelCase: Dict = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __UpperCAmelCase : Dict = randn_tensor(sample.shape , layout=sample.layout , generator=UpperCAmelCase__ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __UpperCAmelCase : str = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __UpperCAmelCase : Optional[int] = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __UpperCAmelCase : List[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __UpperCAmelCase : Optional[Any] = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __UpperCAmelCase : Tuple = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __UpperCAmelCase : Tuple = step_size.unsqueeze(-1 ) __UpperCAmelCase : Any = sample + step_size * model_output __UpperCAmelCase : int = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase__ ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: Any , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __UpperCAmelCase : Tuple = timesteps.to(original_samples.device ) __UpperCAmelCase : Tuple = self.discrete_sigmas.to(original_samples.device )[timesteps] __UpperCAmelCase : Tuple = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(UpperCAmelCase__ ) * sigmas[:, None, None, None] ) __UpperCAmelCase : Union[str, Any] = noise + original_samples return noisy_samples def __len__( self: List[Any] ) -> List[Any]: return self.config.num_train_timesteps
382
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "lilt" def __init__( self , UpperCAmelCase__=3_0522 , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=512 , UpperCAmelCase__=2 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=0 , UpperCAmelCase__="absolute" , UpperCAmelCase__=None , UpperCAmelCase__=4 , UpperCAmelCase__=1024 , **UpperCAmelCase__ , ) -> Optional[Any]: super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = classifier_dropout a_ = channel_shrink_ratio a_ = max_ad_position_embeddings
697
0
import math def UpperCamelCase ( __lowerCamelCase : Dict ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase ( __lowerCamelCase : Any = 10001 ): try: snake_case : List[str] = int(_UpperCAmelCase ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) snake_case : Any = [] snake_case : Optional[Any] = 2 while len(_UpperCAmelCase ) < nth: if is_prime(_UpperCAmelCase ): primes.append(_UpperCAmelCase ) num += 1 else: num += 1 return primes[len(_UpperCAmelCase ) - 1] if __name__ == "__main__": print(F'{solution() = }')
204
'''simple docstring''' from __future__ import annotations def a ( _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # We need to create solution object to save path. a_ = [[0 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] a_ = run_maze(_UpperCAmelCase , 0 , 0 , _UpperCAmelCase ) if solved: print('\n'.join(str(_UpperCAmelCase ) for row in solutions ) ) else: print('No solution exists!' ) return solved def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # Final check point. if i == j == (size - 1): a_ = 1 return True a_ = (not i < 0) and (not j < 0) # Check lower bounds a_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. a_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited a_ = 1 # check for directions if ( run_maze(_UpperCAmelCase , i + 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j + 1 , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , i - 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j - 1 , _UpperCAmelCase ) ): return True a_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
697
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Optional[Any] = logging.get_logger(__name__) A__ : List[Any] = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class __snake_case ( UpperCamelCase_ ): _a = '''camembert''' def __init__( self : Any , A_ : Tuple=3_0_5_2_2 , A_ : str=7_6_8 , A_ : Tuple=1_2 , A_ : Optional[Any]=1_2 , A_ : Any=3_0_7_2 , A_ : List[str]="gelu" , A_ : Tuple=0.1 , A_ : int=0.1 , A_ : List[str]=5_1_2 , A_ : int=2 , A_ : List[Any]=0.02 , A_ : str=1e-12 , A_ : Tuple=1 , A_ : str=0 , A_ : Any=2 , A_ : str="absolute" , A_ : str=True , A_ : Optional[int]=None , **A_ : Optional[Any] , ): super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__) lowerCAmelCase_ : Optional[int] = vocab_size lowerCAmelCase_ : int = hidden_size lowerCAmelCase_ : Tuple = num_hidden_layers lowerCAmelCase_ : List[Any] = num_attention_heads lowerCAmelCase_ : int = hidden_act lowerCAmelCase_ : Dict = intermediate_size lowerCAmelCase_ : List[Any] = hidden_dropout_prob lowerCAmelCase_ : List[Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Tuple = type_vocab_size lowerCAmelCase_ : int = initializer_range lowerCAmelCase_ : List[Any] = layer_norm_eps lowerCAmelCase_ : List[str] = position_embedding_type lowerCAmelCase_ : List[str] = use_cache lowerCAmelCase_ : Optional[Any] = classifier_dropout class __snake_case ( UpperCamelCase_ ): @property def UpperCAmelCase__ ( self : List[Any]): if self.task == "multiple-choice": lowerCAmelCase_ : Any = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase_ : str = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
171
'''simple docstring''' __lowerCAmelCase ={ "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) __lowerCAmelCase ={ "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float: """simple docstring""" a_ = from_type.lower().strip('s' ) a_ = to_type.lower().strip('s' ) a_ = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) a_ = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) if from_sanitized not in METRIC_CONVERSION: a_ = ( F'''Invalid \'from_type\' value: {from_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) if to_sanitized not in METRIC_CONVERSION: a_ = ( F'''Invalid \'to_type\' value: {to_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) a_ = METRIC_CONVERSION[from_sanitized] a_ = METRIC_CONVERSION[to_sanitized] a_ = 1 if from_exponent > to_exponent: a_ = from_exponent - to_exponent else: a_ = -(to_exponent - from_exponent) return value * pow(1_0 , _UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
697
0
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _lowerCAmelCase :Any = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class _UpperCAmelCase ( unittest.TestCase ,a ): '''simple docstring''' def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : int = load_tool('''text-question-answering''' ) self.tool.setup() _UpperCAmelCase : Tuple = load_tool('''text-question-answering''' , remote=UpperCAmelCase__ ) def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : Optional[int] = self.tool(UpperCAmelCase__ , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(UpperCAmelCase__ , '''launched the BigScience Research Workshop''' ) def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : List[Any] = self.remote_tool(UpperCAmelCase__ , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(UpperCAmelCase__ , '''launched the BigScience Research Workshop''' ) def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Optional[Any] = self.tool(text=UpperCAmelCase__ , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(UpperCAmelCase__ , '''launched the BigScience Research Workshop''' ) def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : List[Any] = self.remote_tool(text=UpperCAmelCase__ , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(UpperCAmelCase__ , '''launched the BigScience Research Workshop''' )
506
'''simple docstring''' import unittest from transformers import DonutProcessor __lowerCAmelCase ="naver-clova-ix/donut-base" class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = DonutProcessor.from_pretrained(UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } a_ = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) a_ = self.processor.tokenajson(UpperCAmelCase__ ) self.assertDictEqual(UpperCAmelCase__ , UpperCAmelCase__ )
697
0
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class A_ : '''simple docstring''' def __init__( self , snake_case , snake_case=2 , snake_case=32 , snake_case=16 , snake_case=3 , snake_case=True , snake_case=True , snake_case=32 , snake_case=4 , snake_case=[0, 1, 2, 3] , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=0.02 , snake_case=3 , snake_case=[1, 384, 24, 24] , snake_case=True , snake_case=None , ): lowercase = parent lowercase = batch_size lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_size lowercase = num_hidden_layers lowercase = backbone_out_indices lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = num_labels lowercase = backbone_featmap_shape lowercase = scope lowercase = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) lowercase = (image_size // patch_size) ** 2 lowercase = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self ): lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self ): lowercase = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [96, 192, 384, 768], 'num_groups': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=UpperCAmelCase__ , backbone_featmap_shape=self.backbone_featmap_shape , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): lowercase = DPTModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): lowercase = self.num_labels lowercase = DPTForDepthEstimation(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): lowercase = self.num_labels lowercase = DPTForSemanticSegmentation(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase = model(UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase = config_and_inputs lowercase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () _UpperCamelCase : Any = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) _UpperCamelCase : str = False _UpperCamelCase : List[str] = False _UpperCamelCase : str = False def SCREAMING_SNAKE_CASE__ ( self ): lowercase = DPTModelTester(self ) lowercase = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='DPT does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(UpperCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase__ , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(UpperCAmelCase__ ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = True if model_class in get_values(UpperCAmelCase__ ): continue lowercase = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.train() lowercase = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) lowercase = model(**UpperCAmelCase__ ).loss loss.backward() def SCREAMING_SNAKE_CASE__ ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = False lowercase = True if model_class in get_values(UpperCAmelCase__ ) or not model_class.supports_gradient_checkpointing: continue lowercase = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.gradient_checkpointing_enable() model.train() lowercase = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) lowercase = model(**UpperCAmelCase__ ).loss loss.backward() def SCREAMING_SNAKE_CASE__ ( self ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = _config_zero_init(UpperCAmelCase__ ) for model_class in self.all_model_classes: lowercase = model_class(config=UpperCAmelCase__ ) # Skip the check for the backbone lowercase = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": lowercase = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: lowercase = DPTModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = 'add' with self.assertRaises(UpperCAmelCase__ ): lowercase = DPTForDepthEstimation(UpperCAmelCase__ ) def UpperCAmelCase_ ( ): lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision @slow class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = DPTImageProcessor.from_pretrained('Intel/dpt-hybrid-midas' ) lowercase = DPTForDepthEstimation.from_pretrained('Intel/dpt-hybrid-midas' ).to(UpperCAmelCase__ ) lowercase = prepare_img() lowercase = image_processor(images=UpperCAmelCase__ , return_tensors='pt' ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): lowercase = model(**UpperCAmelCase__ ) lowercase = outputs.predicted_depth # verify the predicted depth lowercase = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , UpperCAmelCase__ ) lowercase = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , UpperCAmelCase__ , atol=1E-4 ) )
84
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _snake_case : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__="resnet50" , UpperCAmelCase__=3 , UpperCAmelCase__=32 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=True , ) -> Optional[Any]: a_ = parent a_ = out_indices if out_indices is not None else [4] a_ = stage_names a_ = out_features a_ = backbone a_ = batch_size a_ = image_size a_ = num_channels a_ = use_pretrained_backbone a_ = is_training def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ = self.get_config() return config, pixel_values def __SCREAMING_SNAKE_CASE ( self ) -> Dict: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = TimmBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): a_ = model(UpperCAmelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = self.prepare_config_and_inputs() a_ , a_ = config_and_inputs a_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _snake_case ( snake_case , snake_case , snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = (TimmBackbone,) if is_torch_available() else () _UpperCamelCase = {"feature-extraction": TimmBackbone} if is_torch_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = TimmBackboneModelTester(self ) a_ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = 'resnet18' a_ = 'microsoft/resnet-18' a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ , out_indices=[1, 2, 3] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Safetensors is not supported by timm.' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) a_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = True a_ = self.has_attentions # no need to test all models as different heads yield the same functionality a_ = self.all_model_classes[0] a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) a_ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = model(**UpperCAmelCase__ ) a_ = outputs[0][-1] # Encoder-/Decoder-only models a_ = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a_ = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCAmelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = None a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = False a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ )
697
0
from timeit import timeit def a_ (__A ) -> int: """simple docstring""" if number < 0: raise ValueError("the value of input must not be negative" ) __a : Optional[Any] = 0 while number: number &= number - 1 result += 1 return result def a_ (__A ) -> int: """simple docstring""" if number < 0: raise ValueError("the value of input must not be negative" ) __a : List[str] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def a_ () -> None: """simple docstring""" def do_benchmark(__A ) -> None: __a : Any = "import __main__ as z" print(f'Benchmark when {number = }:' ) print(f'{get_set_bits_count_using_modulo_operator(_UpperCAmelCase ) = }' ) __a : Optional[int] = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=_UpperCAmelCase ) print(f'timeit() runs in {timing} seconds' ) print(f'{get_set_bits_count_using_brian_kernighans_algorithm(_UpperCAmelCase ) = }' ) __a : Dict = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=_UpperCAmelCase , ) print(f'timeit() runs in {timing} seconds' ) for number in (25, 37, 58, 0): do_benchmark(_UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
351
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=7 , UpperCAmelCase__=3 , UpperCAmelCase__=18 , UpperCAmelCase__=30 , UpperCAmelCase__=400 , UpperCAmelCase__=True , UpperCAmelCase__=None , UpperCAmelCase__=True , ) -> List[Any]: a_ = size if size is not None else {'height': 18, 'width': 18} a_ = parent a_ = batch_size a_ = num_channels a_ = image_size a_ = min_resolution a_ = max_resolution a_ = do_resize a_ = size a_ = apply_ocr def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _snake_case ( snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = LayoutLMvaImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'apply_ocr' ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) a_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , UpperCAmelCase__ ) self.assertIsInstance(encoding.boxes , UpperCAmelCase__ ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> int: # with apply_OCR = True a_ = LayoutLMvaImageProcessor() from datasets import load_dataset a_ = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) a_ = Image.open(ds[0]['file'] ).convert('RGB' ) a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 a_ = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 a_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCAmelCase__ ) self.assertListEqual(encoding.boxes , UpperCAmelCase__ ) # with apply_OCR = False a_ = LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
697
0
'''simple docstring''' import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __magic_name__ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : List[Any] , lowerCamelCase : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict): for attribute in key.split("""."""): A_ : List[Any] = getattr(_UpperCAmelCase , _UpperCAmelCase) if weight_type is not None: A_ : str = getattr(_UpperCAmelCase , _UpperCAmelCase).shape else: A_ : str = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": A_ : int = value elif weight_type == "weight_g": A_ : Optional[int] = value elif weight_type == "weight_v": A_ : Union[str, Any] = value elif weight_type == "bias": A_ : Tuple = value else: A_ : str = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def lowerCamelCase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict): A_ : int = [] A_ : Any = fairseq_model.state_dict() A_ : Any = hf_model.feature_extractor A_ : Optional[Any] = hf_model.adapter for name, value in fairseq_dict.items(): A_ : str = False if "conv_layers" in name: load_conv_layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) A_ : Optional[int] = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""]): load_adapter(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) A_ : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""")[-1] == name.split(""".""")[0]: A_ : Any = True if "*" in mapped_key: A_ : Optional[Any] = name.split(_UpperCAmelCase)[0].split(""".""")[-2] A_ : Union[str, Any] = mapped_key.replace("""*""" , _UpperCAmelCase) if "weight_g" in name: A_ : Any = """weight_g""" elif "weight_v" in name: A_ : Dict = """weight_v""" elif "bias" in name: A_ : Any = """bias""" elif "weight" in name: A_ : Dict = """weight""" else: A_ : Dict = None set_recursively(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) continue if not is_used: unused_weights.append(_UpperCAmelCase) logger.warning(F'Unused weights: {unused_weights}') def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Dict): A_ : Tuple = full_name.split("""conv_layers.""")[-1] A_ : Dict = name.split(""".""") A_ : Union[str, Any] = int(items[0]) A_ : Any = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) A_ : Union[str, Any] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) A_ : Tuple = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) A_ : int = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) A_ : List[Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(_UpperCAmelCase) def lowerCamelCase ( lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Optional[Any]): A_ : List[str] = full_name.split("""adaptor.""")[-1] A_ : Tuple = name.split(""".""") if items[1].isdigit(): A_ : List[str] = int(items[1]) else: A_ : Optional[int] = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' A_ : Union[str, Any] = value logger.info(F'Adapter proj layer norm bias was initialized from {full_name}.') if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' A_ : List[str] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' A_ : Tuple = value logger.info(F'Adapter proj layer bias was initialized from {full_name}.') if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' A_ : Optional[Any] = value logger.info(F'Adapter proj layer weight was initialized from {full_name}.') elif isinstance(_UpperCAmelCase , _UpperCAmelCase): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' A_ : Any = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.') elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' A_ : int = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.') else: unused_weights.append(_UpperCAmelCase) def lowerCamelCase ( lowerCamelCase : str): A_ , A_ : List[Any] = emb.weight.shape A_ : Union[str, Any] = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase) A_ : Dict = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : List[str] , ): A_ : List[str] = WavaVecaConfig.from_pretrained( _UpperCAmelCase , add_adapter=_UpperCAmelCase , adapter_stride=_UpperCAmelCase , adapter_kernel_size=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , output_hidden_size=_UpperCAmelCase , ) A_ : List[str] = MBartConfig.from_pretrained(_UpperCAmelCase) # load model A_ , A_ , A_ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""")[:-1]), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) A_ : Union[str, Any] = model[0].eval() # load feature extractor A_ : Any = WavaVecaFeatureExtractor.from_pretrained(_UpperCAmelCase , use_auth_token=_UpperCAmelCase) # set weights for wav2vec2 encoder A_ : Any = WavaVecaModel(_UpperCAmelCase) recursively_load_weights_wavaveca(model.encoder , _UpperCAmelCase) # load decoder weights A_ : Union[str, Any] = MBartForCausalLM(_UpperCAmelCase) A_ , A_ : str = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_UpperCAmelCase) logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}') logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}') A_ : Optional[Any] = SpeechEncoderDecoderModel(encoder=_UpperCAmelCase , decoder=_UpperCAmelCase) A_ : str = False A_ : str = MBartaaTokenizer(_UpperCAmelCase) tokenizer.save_pretrained(_UpperCAmelCase) A_ : Tuple = hf_wavavec.config.to_dict() A_ : Any = tokenizer.pad_token_id A_ : List[Any] = tokenizer.bos_token_id A_ : List[Any] = tokenizer.eos_token_id A_ : Any = """mbart50""" A_ : Optional[int] = """wav2vec2""" A_ : Optional[Any] = tokenizer.eos_token_id A_ : Union[str, Any] = 25_0004 A_ : Dict = tokenizer.eos_token_id A_ : List[Any] = SpeechEncoderDecoderConfig.from_dict(_UpperCAmelCase) hf_wavavec.save_pretrained(_UpperCAmelCase) feature_extractor.save_pretrained(_UpperCAmelCase) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=1_024, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=250_004, type=int, help='`decoder_start_token_id` of model config') __magic_name__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
665
'''simple docstring''' import math def a ( _UpperCAmelCase ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( _UpperCAmelCase = 1_0_0_0_1 ) -> int: """simple docstring""" try: a_ = int(_UpperCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) a_ = [] a_ = 2 while len(_UpperCAmelCase ) < nth: if is_prime(_UpperCAmelCase ): primes.append(_UpperCAmelCase ) num += 1 else: num += 1 return primes[len(_UpperCAmelCase ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
697
0
'''simple docstring''' def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Union[str, Any] ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) _a = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = 10 def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = [1, 2, 3, 4] a_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = '' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) a_ , a_ = process_story(UpperCAmelCase__ ) a_ = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = ['It was the best of times.'] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = torch.tensor([1, 2, 3, 4] ) a_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 0 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 23 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 1 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = 101 a_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) a_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) a_ = compute_token_type_ids(UpperCAmelCase__ , UpperCAmelCase__ ) np.testing.assert_array_equal(UpperCAmelCase__ , UpperCAmelCase__ )
697
0
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class _a ( A__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =tempfile.mkdtemp() _UpperCAmelCase =5 # Realm tok _UpperCAmelCase =[ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCAmelCase =os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) _UpperCAmelCase =os.path.join(UpperCAmelCase__ , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _UpperCAmelCase =os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE ( self ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def SCREAMING_SNAKE_CASE ( self ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =RealmConfig(num_block_records=self.num_block_records ) return config def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =np.array( [ B"This is the first record", B"This is the second record", B"This is the third record", B"This is the fourth record", B"This is the fifth record", B"This is a longer longer longer record", ] , dtype=UpperCAmelCase__ , ) return block_records def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.get_config() _UpperCAmelCase =self.get_dummy_retriever() _UpperCAmelCase =retriever.tokenizer _UpperCAmelCase =np.array([0, 3] , dtype="long" ) _UpperCAmelCase =tokenizer(["Test question"] ).input_ids _UpperCAmelCase =tokenizer( ["the fourth"] , add_special_tokens=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ).input_ids _UpperCAmelCase =config.reader_seq_len _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase =retriever( UpperCAmelCase__ , UpperCAmelCase__ , answer_ids=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors="np" ) self.assertEqual(len(UpperCAmelCase__ ) , 2 ) self.assertEqual(len(UpperCAmelCase__ ) , 2 ) self.assertEqual(len(UpperCAmelCase__ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.get_config() _UpperCAmelCase =self.get_dummy_retriever() _UpperCAmelCase =retriever.tokenizer _UpperCAmelCase =np.array([0, 3, 5] , dtype="long" ) _UpperCAmelCase =tokenizer(["Test question"] ).input_ids _UpperCAmelCase =tokenizer( ["the fourth", "longer longer"] , add_special_tokens=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ).input_ids _UpperCAmelCase =config.reader_seq_len _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase =retriever( UpperCAmelCase__ , UpperCAmelCase__ , answer_ids=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors="np" ) self.assertEqual([False, True, True] , UpperCAmelCase__ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , UpperCAmelCase__ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path _UpperCAmelCase =retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , B"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: _UpperCAmelCase =os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) _UpperCAmelCase =RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , B"This is the first record" )
408
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __lowerCAmelCase ="\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class _snake_case ( unittest.TestCase , snake_case ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = load_tool('text-question-answering' ) self.tool.setup() a_ = load_tool('text-question-answering' , remote=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.remote_tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = self.tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = self.remote_tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' )
697
0
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: __lowercase = mf_knapsack(i - 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: __lowercase = max( mf_knapsack(i - 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , mf_knapsack(i - 1 , _UpperCAmelCase , _UpperCAmelCase , j - wt[i - 1] ) + val[i - 1] , ) __lowercase = val return f[i][j] def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] ): __lowercase = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: __lowercase = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: __lowercase = dp[i - 1][w_] return dp[n][w_], dp def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] ): if not (isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) )): raise ValueError( '''Both the weights and values vectors must be either lists or tuples''' ) __lowercase = len(_UpperCAmelCase ) if num_items != len(_UpperCAmelCase ): __lowercase = ( '''The number of weights must be the same as the number of values.\n''' f"But got {num_items} weights and {len(_UpperCAmelCase )} values" ) raise ValueError(_UpperCAmelCase ) for i in range(_UpperCAmelCase ): if not isinstance(wt[i] , _UpperCAmelCase ): __lowercase = ( '''All weights must be integers but got weight of ''' f"type {type(wt[i] )} at index {i}" ) raise TypeError(_UpperCAmelCase ) __lowercase , __lowercase = knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = set() _construct_solution(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return optimal_val, example_optional_set def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple ): if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_UpperCAmelCase , _UpperCAmelCase , i - 1 , _UpperCAmelCase , _UpperCAmelCase ) else: optimal_set.add(_UpperCAmelCase ) _construct_solution(_UpperCAmelCase , _UpperCAmelCase , i - 1 , j - wt[i - 1] , _UpperCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = [3, 2, 4, 4] _SCREAMING_SNAKE_CASE = [4, 3, 2, 3] _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 6 _SCREAMING_SNAKE_CASE = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('''optimal_value = ''', optimal_solution) print('''An optimal subset corresponding to the optimal value''', optimal_subset)
502
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase ={"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __lowerCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
697
0
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class A ( _a ): lowercase_ = ['vqvae'] def __init__( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , ) -> Dict: """simple docstring""" super().__init__() self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , mel=UpperCAmelCase__ , vqvae=UpperCAmelCase__ ) def __lowerCAmelCase ( self : Any ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , UpperCAmelCase__ ) else 10_00 @torch.no_grad() def __call__( self : Dict , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict = None , lowerCAmelCase_ : Any = 0 , lowerCAmelCase_ : Dict = 0 , lowerCAmelCase_ : Tuple = None , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : str = 0 , lowerCAmelCase_ : Tuple = 0 , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : Optional[Any] = 0 , lowerCAmelCase_ : Dict = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : List[str]=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" _a = steps or self.get_default_steps() self.scheduler.set_timesteps(UpperCAmelCase__ ) _a = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _a = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _a = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=UpperCAmelCase__ , device=self.device , ) _a = noise _a = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(UpperCAmelCase__ , UpperCAmelCase__ ) _a = self.mel.audio_slice_to_image(UpperCAmelCase__ ) _a = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) _a = (input_image / 2_55) * 2 - 1 _a = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _a = self.vqvae.encode(torch.unsqueeze(UpperCAmelCase__ , 0 ) ).latent_dist.sample( generator=UpperCAmelCase__ )[0] _a = self.vqvae.config.scaling_factor * input_images if start_step > 0: _a = self.scheduler.add_noise(UpperCAmelCase__ , UpperCAmelCase__ , self.scheduler.timesteps[start_step - 1] ) _a = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _a = int(mask_start_secs * pixels_per_second ) _a = int(mask_end_secs * pixels_per_second ) _a = self.scheduler.add_noise(UpperCAmelCase__ , UpperCAmelCase__ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , UpperCAmelCase__ ): _a = self.unet(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )['''sample'''] else: _a = self.unet(UpperCAmelCase__ , UpperCAmelCase__ )['''sample'''] if isinstance(self.scheduler , UpperCAmelCase__ ): _a = self.scheduler.step( model_output=UpperCAmelCase__ , timestep=UpperCAmelCase__ , sample=UpperCAmelCase__ , eta=UpperCAmelCase__ , generator=UpperCAmelCase__ , )['''prev_sample'''] else: _a = self.scheduler.step( model_output=UpperCAmelCase__ , timestep=UpperCAmelCase__ , sample=UpperCAmelCase__ , generator=UpperCAmelCase__ , )['''prev_sample'''] if mask is not None: if mask_start > 0: _a = mask[:, step, :, :mask_start] if mask_end > 0: _a = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _a = 1 / self.vqvae.config.scaling_factor * images _a = self.vqvae.decode(UpperCAmelCase__ )['''sample'''] _a = (images / 2 + 0.5).clamp(0 , 1 ) _a = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _a = (images * 2_55).round().astype('''uint8''' ) _a = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(UpperCAmelCase__ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) _a = [self.mel.image_to_audio(UpperCAmelCase__ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(UpperCAmelCase__ )[:, np.newaxis, :] ) , **ImagePipelineOutput(UpperCAmelCase__ ) ) @torch.no_grad() def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , UpperCAmelCase__ ) self.scheduler.set_timesteps(UpperCAmelCase__ ) _a = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) _a = (sample / 2_55) * 2 - 1 _a = torch.Tensor(UpperCAmelCase__ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _a = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _a = self.scheduler.alphas_cumprod[t] _a = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _a = 1 - alpha_prod_t _a = self.unet(UpperCAmelCase__ , UpperCAmelCase__ )['''sample'''] _a = (1 - alpha_prod_t_prev) ** 0.5 * model_output _a = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _a = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCAmelCase ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] ) -> torch.Tensor: """simple docstring""" _a = acos(torch.dot(torch.flatten(UpperCAmelCase__ ) , torch.flatten(UpperCAmelCase__ ) ) / torch.norm(UpperCAmelCase__ ) / torch.norm(UpperCAmelCase__ ) ) return sin((1 - alpha) * theta ) * xa / sin(UpperCAmelCase__ ) + sin(alpha * theta ) * xa / sin(UpperCAmelCase__ )
22
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "vit" def __init__( self , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=224 , UpperCAmelCase__=16 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=16 , **UpperCAmelCase__ , ) -> Dict: super().__init__(**UpperCAmelCase__ ) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = image_size a_ = patch_size a_ = num_channels a_ = qkv_bias a_ = encoder_stride class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __SCREAMING_SNAKE_CASE ( self ) -> float: return 1e-4
697
0
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _snake_case = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex _snake_case = 10 _snake_case = 256 def _UpperCamelCase ( snake_case__ ) -> Optional[MinHash]: if len(_UpperCAmelCase ) < MIN_NUM_TOKENS: return None __UpperCAmelCase : int = MinHash(num_perm=_UpperCAmelCase ) for token in set(_UpperCAmelCase ): min_hash.update(token.encode() ) return min_hash def _UpperCamelCase ( snake_case__ ) -> Set[str]: return {t for t in NON_ALPHA.split(_UpperCAmelCase ) if len(t.strip() ) > 0} class _snake_case : def __init__( self: Tuple , *, __lowerCamelCase: Dict = 0.85 , ) -> Dict: __UpperCAmelCase : List[str] = duplication_jaccard_threshold __UpperCAmelCase : Optional[Any] = NUM_PERM __UpperCAmelCase : Optional[int] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __UpperCAmelCase : int = defaultdict(UpperCAmelCase__ ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: List[str] ) -> None: __UpperCAmelCase : Optional[int] = self._index.query(UpperCAmelCase__ ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(UpperCAmelCase__ , UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(UpperCAmelCase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(UpperCAmelCase__ ) def _lowerCamelCase ( self: List[str] ) -> List[List[Dict]]: __UpperCAmelCase : int = [] for base, duplicates in self._duplicate_clusters.items(): __UpperCAmelCase : Optional[Any] = [base] + list(UpperCAmelCase__ ) # reformat the cluster to be a list of dict __UpperCAmelCase : str = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(UpperCAmelCase__ ) return duplicate_clusters def _lowerCamelCase ( self: Any , __lowerCamelCase: Tuple ) -> None: __UpperCAmelCase : List[Any] = self.get_duplicate_clusters() with open(UpperCAmelCase__ , "w" ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) def _UpperCamelCase ( snake_case__ ) -> str: __UpperCAmelCase , __UpperCAmelCase : List[Any] = element __UpperCAmelCase : int = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _UpperCamelCase ( snake_case__ ) -> Optional[int]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash, ThreadedIterator(_UpperCAmelCase, max_queue_size=1_0000 ), chunksize=100, ): if data is not None: yield data def _UpperCamelCase ( snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : str = DuplicationIndex(duplication_jaccard_threshold=_UpperCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_UpperCAmelCase ) ), max_queue_size=100 ) ): di.add(_UpperCAmelCase, _UpperCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _UpperCamelCase ( snake_case__, snake_case__ ) -> float: __UpperCAmelCase : List[Any] = get_tokens(_UpperCAmelCase ) __UpperCAmelCase : List[str] = get_tokens(_UpperCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _snake_case = None def _UpperCamelCase ( snake_case__, snake_case__ ) -> int: __UpperCAmelCase : str = [] for elementa in cluster: __UpperCAmelCase : Optional[int] = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: __UpperCAmelCase : Dict = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(_UpperCAmelCase, _UpperCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: __UpperCAmelCase : List[str] = 1 extremes.append(_UpperCAmelCase ) return extremes def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> str: global _shared_dataset __UpperCAmelCase : int = dataset __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Optional[int] = partial(_find_cluster_extremes_shared, jaccard_threshold=_UpperCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _UpperCAmelCase, _UpperCAmelCase, ), total=len(_UpperCAmelCase ), ): extremes_list.append(_UpperCAmelCase ) return extremes_list def _UpperCamelCase ( snake_case__, snake_case__ = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: __UpperCAmelCase : Dict = make_duplicate_clusters(_UpperCAmelCase, _UpperCAmelCase ) __UpperCAmelCase : int = {x["base_index"] for cluster in duplicate_clusters for x in cluster} __UpperCAmelCase : Dict = {} __UpperCAmelCase : Any = find_extremes(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) for extremes in extremes_clusters: for element in extremes: __UpperCAmelCase : Any = element __UpperCAmelCase : Dict = duplicate_indices - set(extreme_dict.keys() ) __UpperCAmelCase : Tuple = dataset.filter(lambda snake_case__, snake_case__ : idx not in remove_indices, with_indices=_UpperCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __UpperCAmelCase : Optional[Any] = element["base_index"] in extreme_dict if element["is_extreme"]: __UpperCAmelCase : List[str] = extreme_dict[element["base_index"]]["copies"] print(f'''Original dataset size: {len(_UpperCAmelCase )}''' ) print(f'''Number of duplicate clusters: {len(_UpperCAmelCase )}''' ) print(f'''Files in duplicate cluster: {len(_UpperCAmelCase )}''' ) print(f'''Unique files in duplicate cluster: {len(_UpperCAmelCase )}''' ) print(f'''Filtered dataset size: {len(_UpperCAmelCase )}''' ) return ds_filter, duplicate_clusters
382
'''simple docstring''' def a ( _UpperCAmelCase = 5_0 ) -> int: """simple docstring""" a_ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
697
0
def UpperCamelCase ( __lowerCamelCase : Any = 4000000 ): snake_case : Optional[int] = [0, 1] snake_case : Optional[int] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 snake_case : str = 0 for j in range(len(_UpperCAmelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'{solution() = }')
204
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def a ( ) -> None: """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
697
0
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A__ : Dict = logging.getLogger(__name__) def UpperCamelCase( ): lowerCAmelCase_ : Any = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' ,type=_UpperCAmelCase ,default='''data/dump.txt''' ,help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' ,type=_UpperCAmelCase ,default='''bert''' ,choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' ,type=_UpperCAmelCase ,default='''bert-base-uncased''' ,help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' ,type=_UpperCAmelCase ,default='''data/dump''' ,help='''The dump file prefix.''' ) lowerCAmelCase_ : List[Any] = parser.parse_args() logger.info(f"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": lowerCAmelCase_ : Any = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase_ : Any = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` lowerCAmelCase_ : str = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCAmelCase_ : List[str] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase_ : Optional[Any] = tokenizer.special_tokens_map['''cls_token'''] # `<s>` lowerCAmelCase_ : Tuple = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": lowerCAmelCase_ : List[str] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase_ : int = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` lowerCAmelCase_ : Dict = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(f"""Loading text from {args.file_path}""" ) with open(args.file_path ,'''r''' ,encoding='''utf8''' ) as fp: lowerCAmelCase_ : str = fp.readlines() logger.info('''Start encoding''' ) logger.info(f"""{len(_UpperCAmelCase )} examples to process.""" ) lowerCAmelCase_ : str = [] lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : List[Any] = 10000 lowerCAmelCase_ : Union[str, Any] = time.time() for text in data: lowerCAmelCase_ : Dict = f"""{bos} {text.strip()} {sep}""" lowerCAmelCase_ : int = tokenizer.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) rslt.append(_UpperCAmelCase ) iter += 1 if iter % interval == 0: lowerCAmelCase_ : Dict = time.time() logger.info(f"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) lowerCAmelCase_ : Tuple = time.time() logger.info('''Finished binarization''' ) logger.info(f"""{len(_UpperCAmelCase )} examples processed.""" ) lowerCAmelCase_ : Dict = f"""{args.dump_file}.{args.tokenizer_name}.pickle""" lowerCAmelCase_ : Tuple = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCAmelCase_ : Any = [np.uintaa(_UpperCAmelCase ) for d in rslt] else: lowerCAmelCase_ : Any = [np.intaa(_UpperCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"""Dump to {dp_file}""" ) with open(_UpperCAmelCase ,'''wb''' ) as handle: pickle.dump(rslt_ ,_UpperCAmelCase ,protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
171
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a ( _UpperCAmelCase ) -> int: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _snake_case ( snake_case ): """simple docstring""" @staticmethod def __SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ) -> str: a_ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=UpperCAmelCase__ , help='Name of the model to download' ) download_parser.set_defaults(func=UpperCAmelCase__ ) def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = model a_ = cache a_ = force a_ = trust_remote_code def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
697
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase :str = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Tuple = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Optional[Any] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :int = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys _lowerCAmelCase :Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
506
'''simple docstring''' def a ( _UpperCAmelCase ) -> int: """simple docstring""" assert column_title.isupper() a_ = 0 a_ = len(_UpperCAmelCase ) - 1 a_ = 0 while index >= 0: a_ = (ord(column_title[index] ) - 6_4) * pow(2_6 , _UpperCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
697
0
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE = 50 ): lowercase = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
84
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __lowerCAmelCase =logging.get_logger(__name__) class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = ["audio_values", "audio_mask"] def __init__( self , UpperCAmelCase__=2048 , UpperCAmelCase__=1 , UpperCAmelCase__=[16, 16] , UpperCAmelCase__=128 , UpperCAmelCase__=4_4100 , UpperCAmelCase__=86 , UpperCAmelCase__=2048 , UpperCAmelCase__=0.0 , **UpperCAmelCase__ , ) -> Union[str, Any]: super().__init__( feature_size=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , padding_value=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = spectrogram_length a_ = num_channels a_ = patch_size a_ = feature_size // self.patch_size[1] a_ = n_fft a_ = sampling_rate // hop_length_to_sampling_rate a_ = sampling_rate a_ = padding_value a_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=UpperCAmelCase__ , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=UpperCAmelCase__ , norm='slaney' , mel_scale='slaney' , ).T def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> np.ndarray: a_ = spectrogram( UpperCAmelCase__ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=8_0.0 , ) a_ = log_spec[:, :-1] a_ = log_spec - 2_0.0 a_ = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , **UpperCAmelCase__ , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) a_ = isinstance(UpperCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) a_ = is_batched_numpy or ( isinstance(UpperCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a_ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase__ , np.ndarray ): a_ = np.asarray(UpperCAmelCase__ , dtype=np.floataa ) elif isinstance(UpperCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a_ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis a_ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , UpperCAmelCase__ ): a_ = [np.asarray(UpperCAmelCase__ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask a_ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: a_ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] a_ = np.array(UpperCAmelCase__ ).astype(np.floataa ) # convert into correct format for padding a_ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch a_ = np.ones([len(UpperCAmelCase__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) a_ = padded_audio_features * self.padding_value for i in range(len(UpperCAmelCase__ ) ): a_ = audio_features[i] a_ = feature # return as BatchFeature if return_attention_mask: a_ = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: a_ = {'audio_values': padded_audio_features} a_ = BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) return encoded_inputs
697
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def a_ (__A ) -> Optional[int]: """simple docstring""" def is_in_circle(__A , __A ) -> bool: __a : str = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __a : List[str] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_UpperCAmelCase ) ) # The ratio of the area for circle to square is pi/4. __a : Optional[Any] = proportion * 4 print(f'The estimated value of pi is {pi_estimate}' ) print(f'The numpy value of pi is {pi}' ) print(f'The total error is {abs(pi - pi_estimate )}' ) def a_ (__A , __A , __A = 0.0 , __A = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(_UpperCAmelCase , _UpperCAmelCase ) ) for _ in range(_UpperCAmelCase ) ) * (max_value - min_value) def a_ (__A , __A = 0.0 , __A = 1.0 ) -> None: """simple docstring""" def identity_function(__A ) -> float: return x __a : Union[str, Any] = area_under_curve_estimator( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __a : Optional[Any] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(f'Estimated value is {estimated_value}' ) print(f'Expected value is {expected_value}' ) print(f'Total error is {abs(estimated_value - expected_value )}' ) print("******************" ) def a_ (__A ) -> None: """simple docstring""" def function_to_integrate(__A ) -> float: return sqrt(4.0 - x * x ) __a : Union[str, Any] = area_under_curve_estimator( _UpperCAmelCase , _UpperCAmelCase , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f'Estimated value is {estimated_value}' ) print(f'Expected value is {pi}' ) print(f'Total error is {abs(estimated_value - pi )}' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
351
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Optional[Any]: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = len(set_a.intersection(_UpperCAmelCase ) ) if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) else: a_ = len(set_a.union(_UpperCAmelCase ) ) return intersection / union if isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) ): a_ = [element for element in set_a if element in set_b] if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / union else: a_ = set_a + [element for element in set_b if element not in set_a] return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return None if __name__ == "__main__": __lowerCAmelCase ={"a", "b", "c", "d", "e"} __lowerCAmelCase ={"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
697
0
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __magic_name__ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Tuple ,_a : Union[str, Any] ,_a : Any ,_a : Union[str, Any] ,_a : Optional[int] ,_a : List[str] ,_a : Optional[Any] ,_a : Tuple ,): '''simple docstring''' super().__init__() self.register_modules( vae=UpperCAmelCase__ ,text_encoder=UpperCAmelCase__ ,tokenizer=UpperCAmelCase__ ,unet=UpperCAmelCase__ ,scheduler=UpperCAmelCase__ ,safety_checker=UpperCAmelCase__ ,feature_extractor=UpperCAmelCase__ ,) def _a ( self : Any ,_a : List[str] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A_ : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _a ( self : str ): '''simple docstring''' self.enable_attention_slicing(UpperCAmelCase__ ) @torch.no_grad() def __call__( self : str ,_a : Optional[int] ,_a : Optional[int] = 512 ,_a : Tuple = 512 ,_a : int = 50 ,_a : int = 7.5 ,_a : List[str] = None ,_a : str = 1 ,_a : int = 0.0 ,_a : List[Any] = None ,_a : List[Any] = None ,_a : Tuple = "pil" ,_a : Optional[int] = True ,_a : Any = None ,_a : Union[str, Any] = 1 ,_a : Any = None ,**_a : List[Any] ,): '''simple docstring''' if isinstance(UpperCAmelCase__ ,UpperCAmelCase__ ): A_ : Any = 1 elif isinstance(UpperCAmelCase__ ,UpperCAmelCase__ ): A_ : List[Any] = len(UpperCAmelCase__ ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(UpperCAmelCase__ )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCAmelCase__ ,UpperCAmelCase__ ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(UpperCAmelCase__ )}.' ) # get prompt text embeddings A_ : Optional[Any] = self.tokenizer( UpperCAmelCase__ ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,return_tensors="""pt""" ,) A_ : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A_ : Optional[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) A_ : str = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A_ : List[str] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A_ , A_ , A_ : Dict = text_embeddings.shape A_ : List[str] = text_embeddings.repeat(1 ,UpperCAmelCase__ ,1 ) A_ : List[Any] = text_embeddings.view(bs_embed * num_images_per_prompt ,UpperCAmelCase__ ,-1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A_ : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A_ : Tuple = 42 if negative_prompt is None: A_ : Optional[int] = [""""""] elif type(UpperCAmelCase__ ) is not type(UpperCAmelCase__ ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(UpperCAmelCase__ )} !=' f' {type(UpperCAmelCase__ )}.' ) elif isinstance(UpperCAmelCase__ ,UpperCAmelCase__ ): A_ : str = [negative_prompt] elif batch_size != len(UpperCAmelCase__ ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(UpperCAmelCase__ )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' """ the batch size of `prompt`.""" ) else: A_ : Any = negative_prompt A_ : List[str] = text_input_ids.shape[-1] A_ : int = self.tokenizer( UpperCAmelCase__ ,padding="""max_length""" ,max_length=UpperCAmelCase__ ,truncation=UpperCAmelCase__ ,return_tensors="""pt""" ,) A_ : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A_ : int = uncond_embeddings.shape[1] A_ : Optional[Any] = uncond_embeddings.repeat(UpperCAmelCase__ ,UpperCAmelCase__ ,1 ) A_ : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt ,UpperCAmelCase__ ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ : Any = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A_ : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A_ : Dict = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A_ : Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A_ : int = torch.randn( UpperCAmelCase__ ,generator=UpperCAmelCase__ ,device="""cpu""" ,dtype=UpperCAmelCase__ ).to(self.device ) A_ : Any = torch.randn(UpperCAmelCase__ ,generator=UpperCAmelCase__ ,device="""cpu""" ,dtype=UpperCAmelCase__ ).to( self.device ) else: A_ : Dict = torch.randn( UpperCAmelCase__ ,generator=UpperCAmelCase__ ,device=self.device ,dtype=UpperCAmelCase__ ) A_ : Optional[Any] = torch.randn(UpperCAmelCase__ ,generator=UpperCAmelCase__ ,device=self.device ,dtype=UpperCAmelCase__ ) else: if latents_reference.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) A_ : str = latents_reference.to(self.device ) A_ : List[Any] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A_ : Union[str, Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 A_ : Tuple = (latents_shape[2] - latents_shape_reference[2]) // 2 A_ : List[str] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A_ : List[str] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A_ : Union[str, Any] = 0 if dx < 0 else dx A_ : List[str] = 0 if dy < 0 else dy A_ : List[str] = max(-dx ,0 ) A_ : Any = max(-dy ,0 ) # import pdb # pdb.set_trace() A_ : int = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(UpperCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A_ : int = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A_ : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ : Optional[int] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ : Optional[Any] = {} if accepts_eta: A_ : Any = eta for i, t in enumerate(self.progress_bar(UpperCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance A_ : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : List[str] = self.scheduler.scale_model_input(UpperCAmelCase__ ,UpperCAmelCase__ ) # predict the noise residual A_ : Optional[Any] = self.unet(UpperCAmelCase__ ,UpperCAmelCase__ ,encoder_hidden_states=UpperCAmelCase__ ).sample # perform guidance if do_classifier_free_guidance: A_ , A_ : List[Any] = noise_pred.chunk(2 ) A_ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A_ : List[Any] = self.scheduler.step(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,**UpperCAmelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ) A_ : Optional[Any] = 1 / 0.18215 * latents A_ : Union[str, Any] = self.vae.decode(UpperCAmelCase__ ).sample A_ : Optional[Any] = (image / 2 + 0.5).clamp(0 ,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : Tuple = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if self.safety_checker is not None: A_ : Tuple = self.feature_extractor(self.numpy_to_pil(UpperCAmelCase__ ) ,return_tensors="""pt""" ).to( self.device ) A_ , A_ : Tuple = self.safety_checker( images=UpperCAmelCase__ ,clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A_ : Optional[int] = None if output_type == "pil": A_ : Any = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=UpperCAmelCase__ ,nsfw_content_detected=UpperCAmelCase__ )
665
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('iterations must be defined as integers' ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) a_ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
697
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =RobertaTokenizer __a =RobertaTokenizerFast __a =True __a ={'cls_token': '<s>'} def UpperCamelCase__ ( self : Optional[Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] _a = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) _a = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _a = {"unk_token": "<unk>"} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase__ ) ) def UpperCamelCase__ ( self : Union[str, Any] , **__a : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def UpperCamelCase__ ( self : Union[str, Any] , **__a : Any ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def UpperCamelCase__ ( self : List[str] , __a : Tuple ): _a = "lower newer" _a = "lower newer" return input_text, output_text def UpperCamelCase__ ( self : Tuple ): _a = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = "lower newer" _a = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] _a = tokenizer.tokenize(UpperCAmelCase__ ) # , add_prefix_space=True) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ ) def UpperCamelCase__ ( self : List[str] ): _a = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=UpperCAmelCase__ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=UpperCAmelCase__ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def UpperCamelCase__ ( self : List[Any] ): _a = self.tokenizer_class.from_pretrained("roberta-base" ) _a = tokenizer.encode("sequence builders" , add_special_tokens=UpperCAmelCase__ ) _a = tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCAmelCase__ ) _a = tokenizer.encode( "sequence builders" , add_special_tokens=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ ) _a = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ ) _a = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) _a = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase__ ( self : int ): _a = self.get_tokenizer() _a = "Encode this sequence." _a = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments _a = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ ) _a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ ) _a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) _a = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Testing spaces after special tokens _a = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ )} ) # mask token has a left space _a = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) _a = "Encode <mask> sequence" _a = "Encode <mask>sequence" _a = tokenizer.encode(UpperCAmelCase__ ) _a = encoded.index(UpperCAmelCase__ ) _a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a = tokenizer.encode(UpperCAmelCase__ ) _a = encoded.index(UpperCAmelCase__ ) _a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCamelCase__ ( self : Any ): pass def UpperCamelCase__ ( self : Union[str, Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) _a = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) _a = "A, <mask> AllenNLP sentence." _a = tokenizer_r.encode_plus(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ ) _a = tokenizer_p.encode_plus(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) _a = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) _a = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( UpperCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def UpperCamelCase__ ( self : List[str] ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _a = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ ) _a = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _a = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , UpperCAmelCase__ ) self.assertEqual(post_processor_state["add_prefix_space"] , UpperCAmelCase__ ) self.assertEqual(post_processor_state["trim_offsets"] , UpperCAmelCase__ ) def UpperCamelCase__ ( self : Any ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = "hello" # `hello` is a token in the vocabulary of `pretrained_name` _a = f'{text_of_1_token} {text_of_1_token}' _a = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase__ , use_fast=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ ) _a = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase__ ) + 1, len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , ) _a = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase__ , use_fast=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ ) _a = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase__ ) + 1, len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , ) _a = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase__ , use_fast=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ ) _a = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , ) _a = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase__ , use_fast=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ ) _a = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , ) _a = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _a = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase__ , use_fast=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ ) _a = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase__ ) + 1, 1 + len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , ) _a = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase__ , use_fast=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ ) _a = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase__ ), 1 + len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , ) _a = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase__ , use_fast=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ ) _a = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase__ ), 1 + len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , )
692
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _snake_case ( snake_case ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ) -> str: super().__init__( features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ , streaming=UpperCAmelCase__ , num_proc=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = Generator( cache_dir=UpperCAmelCase__ , features=UpperCAmelCase__ , generator=UpperCAmelCase__ , gen_kwargs=UpperCAmelCase__ , **UpperCAmelCase__ , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Build iterable dataset if self.streaming: a_ = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: a_ = None a_ = None a_ = None a_ = None self.builder.download_and_prepare( download_config=UpperCAmelCase__ , download_mode=UpperCAmelCase__ , verification_mode=UpperCAmelCase__ , base_path=UpperCAmelCase__ , num_proc=self.num_proc , ) a_ = self.builder.as_dataset( split='train' , verification_mode=UpperCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
697
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCAmelCase =AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase__ ) _UpperCAmelCase =-1 _UpperCAmelCase =ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ ) _UpperCAmelCase =model.generate(UpperCAmelCase__ , max_new_tokens=10 , do_sample=UpperCAmelCase__ ) _UpperCAmelCase =tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _UpperCAmelCase =TextStreamer(UpperCAmelCase__ ) model.generate(UpperCAmelCase__ , max_new_tokens=10 , do_sample=UpperCAmelCase__ , streamer=UpperCAmelCase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCAmelCase =cs.out[:-1] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCAmelCase =AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase__ ) _UpperCAmelCase =-1 _UpperCAmelCase =ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ ) _UpperCAmelCase =model.generate(UpperCAmelCase__ , max_new_tokens=10 , do_sample=UpperCAmelCase__ ) _UpperCAmelCase =tokenizer.decode(greedy_ids[0] ) _UpperCAmelCase =TextIteratorStreamer(UpperCAmelCase__ ) _UpperCAmelCase ={"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCAmelCase =Thread(target=model.generate , kwargs=UpperCAmelCase__ ) thread.start() _UpperCAmelCase ="" for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCAmelCase =AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase__ ) _UpperCAmelCase =-1 _UpperCAmelCase =ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ ) _UpperCAmelCase =model.generate(UpperCAmelCase__ , max_new_tokens=10 , do_sample=UpperCAmelCase__ ) _UpperCAmelCase =greedy_ids[:, input_ids.shape[1] :] _UpperCAmelCase =tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _UpperCAmelCase =TextStreamer(UpperCAmelCase__ , skip_prompt=UpperCAmelCase__ ) model.generate(UpperCAmelCase__ , max_new_tokens=10 , do_sample=UpperCAmelCase__ , streamer=UpperCAmelCase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCAmelCase =cs.out[:-1] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE ( self ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _UpperCAmelCase =AutoTokenizer.from_pretrained("distilgpt2" ) _UpperCAmelCase =AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(UpperCAmelCase__ ) _UpperCAmelCase =-1 _UpperCAmelCase =torch.ones((1, 5) , device=UpperCAmelCase__ ).long() * model.config.bos_token_id with CaptureStdout() as cs: _UpperCAmelCase =TextStreamer(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) model.generate(UpperCAmelCase__ , max_new_tokens=1 , do_sample=UpperCAmelCase__ , streamer=UpperCAmelCase__ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _UpperCAmelCase =cs.out[:-1] # Remove the final "\n" _UpperCAmelCase =tokenizer(UpperCAmelCase__ , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCAmelCase =AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase__ ) _UpperCAmelCase =-1 _UpperCAmelCase =ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ ) _UpperCAmelCase =TextIteratorStreamer(UpperCAmelCase__ , timeout=0.001 ) _UpperCAmelCase ={"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCAmelCase =Thread(target=model.generate , kwargs=UpperCAmelCase__ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCAmelCase__ ): _UpperCAmelCase ="" for new_text in streamer: streamer_text += new_text
408
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase =numpy.array([0, 0]) __lowerCAmelCase =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase =numpy.array([1, 0]) __lowerCAmelCase =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a ( _UpperCAmelCase , _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = initial_vectors for _ in range(_UpperCAmelCase ): a_ = iteration_step(_UpperCAmelCase ) return vectors def a ( _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = [] for i, start_vector in enumerate(vectors[:-1] ): a_ = vectors[i + 1] new_vectors.append(_UpperCAmelCase ) a_ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a ( _UpperCAmelCase , _UpperCAmelCase ) -> numpy.ndarray: """simple docstring""" a_ = numpy.radians(_UpperCAmelCase ) a_ , a_ = numpy.cos(_UpperCAmelCase ), numpy.sin(_UpperCAmelCase ) a_ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_UpperCAmelCase , _UpperCAmelCase ) def a ( _UpperCAmelCase ) -> None: """simple docstring""" a_ = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() a_ , a_ = zip(*_UpperCAmelCase ) plt.plot(_UpperCAmelCase , _UpperCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
697
0
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=None ) -> int: '''simple docstring''' super().__init__( UpperCAmelCase__ ,question_encoder_tokenizer=UpperCAmelCase__ ,generator_tokenizer=UpperCAmelCase__ ,index=UpperCAmelCase__ ,init_retrieval=UpperCAmelCase__ ,) __lowercase = None def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' logger.info('''initializing retrieval''' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('''dist initialized''' ) # needs to be set manually __lowercase = self._infer_socket_ifname() # avoid clash with the NCCL port __lowercase = str(distributed_port + 1 ) __lowercase = dist.new_group(ranks=UpperCAmelCase__ ,backend='''gloo''' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('''dist not initialized / main''' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' return dist.get_rank(group=self.process_group ) == 0 def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=torch.floataa ) -> int: '''simple docstring''' __lowercase = torch.empty(UpperCAmelCase__ ,dtype=UpperCAmelCase__ ) dist.scatter(UpperCAmelCase__ ,src=0 ,scatter_list=UpperCAmelCase__ ,group=self.process_group ) return target_tensor def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __lowercase = next((addr for addr in addrs if addr.startswith('''e''' )) ,UpperCAmelCase__ ) return ifname def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Tuple[np.ndarray, List[dict]]: '''simple docstring''' if not dist.is_initialized(): __lowercase , __lowercase = self._main_retrieve(UpperCAmelCase__ ,UpperCAmelCase__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCAmelCase__ ) # distributed training __lowercase = dist.get_world_size(group=self.process_group ) # gather logic __lowercase = None if self._is_main(): __lowercase = [torch.empty(question_hidden_states.shape ,dtype=torch.floataa ) for _ in range(UpperCAmelCase__ )] dist.gather(torch.tensor(UpperCAmelCase__ ) ,dst=0 ,gather_list=UpperCAmelCase__ ,group=self.process_group ) # scatter logic __lowercase = question_hidden_states.shape[0] __lowercase = [] __lowercase = [] if self._is_main(): assert len(UpperCAmelCase__ ) == world_size __lowercase , __lowercase = self._main_retrieve(torch.cat(UpperCAmelCase__ ).numpy() ,UpperCAmelCase__ ) __lowercase , __lowercase = torch.tensor(UpperCAmelCase__ ), torch.tensor(UpperCAmelCase__ ) __lowercase = self._chunk_tensor(UpperCAmelCase__ ,UpperCAmelCase__ ) __lowercase = self._chunk_tensor(UpperCAmelCase__ ,UpperCAmelCase__ ) __lowercase = self._scattered(UpperCAmelCase__ ,[n_queries, n_docs] ,target_type=torch.intaa ) __lowercase = self._scattered(UpperCAmelCase__ ,[n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(UpperCAmelCase__ )
502
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def a ( _UpperCAmelCase ) -> int: """simple docstring""" if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def a ( _UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" for char in word: a_ = ord(_UpperCAmelCase ) if not _is_chinese_char(_UpperCAmelCase ): return 0 return 1 def a ( _UpperCAmelCase ) -> Tuple: """simple docstring""" a_ = set() for token in tokens: a_ = len(_UpperCAmelCase ) > 1 and is_chinese(_UpperCAmelCase ) if chinese_word: word_set.add(_UpperCAmelCase ) a_ = list(_UpperCAmelCase ) return word_list def a ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: """simple docstring""" if not chinese_word_set: return bert_tokens a_ = max([len(_UpperCAmelCase ) for w in chinese_word_set] ) a_ = bert_tokens a_ , a_ = 0, len(_UpperCAmelCase ) while start < end: a_ = True if is_chinese(bert_word[start] ): a_ = min(end - start , _UpperCAmelCase ) for i in range(_UpperCAmelCase , 1 , -1 ): a_ = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): a_ = '##' + bert_word[j] a_ = start + i a_ = False break if single_word: start += 1 return bert_word def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: """simple docstring""" a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['cws'] ).cws a_ = [get_chinese_word(_UpperCAmelCase ) for r in res] ltp_res.extend(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=5_1_2 ) bert_res.extend(res['input_ids'] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for input_ids, chinese_word in zip(_UpperCAmelCase , _UpperCAmelCase ): a_ = [] for id in input_ids: a_ = bert_tokenizer._convert_id_to_token(_UpperCAmelCase ) input_tokens.append(_UpperCAmelCase ) a_ = add_sub_symbol(_UpperCAmelCase , _UpperCAmelCase ) a_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_UpperCAmelCase ): if token[:2] == "##": a_ = token[2:] # save chinese tokens' pos if len(_UpperCAmelCase ) == 1 and _is_chinese_char(ord(_UpperCAmelCase ) ): ref_id.append(_UpperCAmelCase ) ref_ids.append(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) return ref_ids def a ( _UpperCAmelCase ) -> Optional[Any]: """simple docstring""" with open(args.file_name , 'r' , encoding='utf-8' ) as f: a_ = f.readlines() a_ = [line.strip() for line in data if len(_UpperCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' a_ = LTP(args.ltp ) # faster in GPU device a_ = BertTokenizer.from_pretrained(args.bert ) a_ = prepare_ref(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: a_ = [json.dumps(_UpperCAmelCase ) + '\n' for ref in ref_ids] f.writelines(_UpperCAmelCase ) if __name__ == "__main__": __lowerCAmelCase =argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __lowerCAmelCase =parser.parse_args() main(args)
697
0
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _snake_case : Any = logging.getLogger() _snake_case : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A ( _a ): def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) _a = {'''source''': '''What is love ?''', '''target''': '''life'''} _a = {'''train''': 12, '''val''': 2, '''test''': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _a = '''\n'''.join([contents[field]] * n_lines[split] ) with open(os.path.join(UpperCAmelCase__ , F'{split}.{field}' ) , '''w''' ) as f: f.write(UpperCAmelCase__ ) def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple = "pytorch" ) -> str: """simple docstring""" _a = self.get_auto_remove_tmp_dir() _a = os.path.join(UpperCAmelCase__ , '''output''' ) _a = os.path.join(UpperCAmelCase__ , '''data''' ) self._create_dummy_data(data_dir=UpperCAmelCase__ ) _a = F'\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n '.split() if gpus > 0: testargs.append(F'--gpus={gpus}' ) if is_apex_available(): testargs.append('''--fp16''' ) else: testargs.append('''--gpus=0''' ) testargs.append('''--distributed_backend=ddp_cpu''' ) testargs.append('''--num_processes=2''' ) _a = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(UpperCAmelCase__ , env=self.get_env() ) _a = os.path.join(UpperCAmelCase__ , '''metrics.json''' ) with open(UpperCAmelCase__ ) as f: _a = json.load(UpperCAmelCase__ ) return result @require_torch_gpu def __lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" _a = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _a = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_gpu @require_ray def __lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _a = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu @require_ray def __lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _a = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 )
22
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase ={ "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": 512, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase = RetriBertTokenizer _UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__="[UNK]" , UpperCAmelCase__="[SEP]" , UpperCAmelCase__="[PAD]" , UpperCAmelCase__="[CLS]" , UpperCAmelCase__="[MASK]" , UpperCAmelCase__=True , UpperCAmelCase__=None , **UpperCAmelCase__ , ) -> int: super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase__ ) != tokenize_chinese_chars ): a_ = getattr(UpperCAmelCase__ , normalizer_state.pop('type' ) ) a_ = do_lower_case a_ = strip_accents a_ = tokenize_chinese_chars a_ = normalizer_class(**UpperCAmelCase__ ) a_ = do_lower_case def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__=None ) -> str: a_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> List[int]: a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> Tuple[str]: a_ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
697
0
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _snake_case ( _lowercase ): def __init__( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: List[Any] ) -> str: __UpperCAmelCase : List[Any] = params __UpperCAmelCase : Optional[Any] = np.array(UpperCAmelCase__ ) __UpperCAmelCase : List[Any] = np.array([len(UpperCAmelCase__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self: int , __lowerCamelCase: Any ) -> str: return (self.token_ids[index], self.lengths[index]) def __len__( self: str ) -> List[str]: return len(self.lengths ) def _lowerCamelCase ( self: Dict ) -> Dict: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def _lowerCamelCase ( self: Any ) -> Optional[Any]: __UpperCAmelCase : int = self.params.max_model_input_size __UpperCAmelCase : Tuple = self.lengths > max_len logger.info(f'''Splitting {sum(UpperCAmelCase__ )} too long sequences.''' ) def divide_chunks(__lowerCamelCase: Any , __lowerCamelCase: str ): return [l[i : i + n] for i in range(0 , len(UpperCAmelCase__ ) , UpperCAmelCase__ )] __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : List[Any] = [] if self.params.mlm: __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"] else: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __UpperCAmelCase : Any = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __UpperCAmelCase : Dict = np.insert(UpperCAmelCase__ , 0 , UpperCAmelCase__ ) if sub_s[-1] != sep_id: __UpperCAmelCase : Tuple = np.insert(UpperCAmelCase__ , len(UpperCAmelCase__ ) , UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(UpperCAmelCase__ ) new_tok_ids.extend(UpperCAmelCase__ ) new_lengths.extend([len(UpperCAmelCase__ ) for l in sub_seqs] ) __UpperCAmelCase : List[str] = np.array(UpperCAmelCase__ ) __UpperCAmelCase : int = np.array(UpperCAmelCase__ ) def _lowerCamelCase ( self: int ) -> str: __UpperCAmelCase : Optional[Any] = len(self ) __UpperCAmelCase : str = self.lengths > 11 __UpperCAmelCase : Any = self.token_ids[indices] __UpperCAmelCase : Union[str, Any] = self.lengths[indices] __UpperCAmelCase : List[str] = len(self ) logger.info(f'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: if "unk_token" not in self.params.special_tok_ids: return else: __UpperCAmelCase : List[Any] = self.params.special_tok_ids["unk_token"] __UpperCAmelCase : List[str] = len(self ) __UpperCAmelCase : List[Any] = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __UpperCAmelCase : Union[str, Any] = (unk_occs / self.lengths) < 0.5 __UpperCAmelCase : str = self.token_ids[indices] __UpperCAmelCase : int = self.lengths[indices] __UpperCAmelCase : Any = len(self ) logger.info(f'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def _lowerCamelCase ( self: Dict ) -> Union[str, Any]: if not self.params.is_master: return logger.info(f'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def _lowerCamelCase ( self: Any , __lowerCamelCase: Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : Optional[Any] = [t[0] for t in batch] __UpperCAmelCase : List[Any] = [t[1] for t in batch] assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) # Max for paddings __UpperCAmelCase : List[Any] = max(UpperCAmelCase__ ) # Pad token ids if self.params.mlm: __UpperCAmelCase : List[str] = self.params.special_tok_ids["pad_token"] else: __UpperCAmelCase : int = self.params.special_tok_ids["unk_token"] __UpperCAmelCase : int = [list(t.astype(UpperCAmelCase__ ) ) + [pad_idx] * (max_seq_len_ - len(UpperCAmelCase__ )) for t in token_ids] assert len(tk_ ) == len(UpperCAmelCase__ ) assert all(len(UpperCAmelCase__ ) == max_seq_len_ for t in tk_ ) __UpperCAmelCase : List[Any] = torch.tensor(tk_ ) # (bs, max_seq_len_) __UpperCAmelCase : Tuple = torch.tensor(UpperCAmelCase__ ) # (bs) return tk_t, lg_t
382
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "lilt" def __init__( self , UpperCAmelCase__=3_0522 , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=512 , UpperCAmelCase__=2 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=0 , UpperCAmelCase__="absolute" , UpperCAmelCase__=None , UpperCAmelCase__=4 , UpperCAmelCase__=1024 , **UpperCAmelCase__ , ) -> Optional[Any]: super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = classifier_dropout a_ = channel_shrink_ratio a_ = max_ad_position_embeddings
697
0
import re def UpperCamelCase ( __lowerCamelCase : int ): if len(re.findall("[ATCG]" , _UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
204
'''simple docstring''' from __future__ import annotations def a ( _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # We need to create solution object to save path. a_ = [[0 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] a_ = run_maze(_UpperCAmelCase , 0 , 0 , _UpperCAmelCase ) if solved: print('\n'.join(str(_UpperCAmelCase ) for row in solutions ) ) else: print('No solution exists!' ) return solved def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # Final check point. if i == j == (size - 1): a_ = 1 return True a_ = (not i < 0) and (not j < 0) # Check lower bounds a_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. a_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited a_ = 1 # check for directions if ( run_maze(_UpperCAmelCase , i + 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j + 1 , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , i - 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j - 1 , _UpperCAmelCase ) ): return True a_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
697
0
def UpperCamelCase( __UpperCamelCase : str ): assert column_title.isupper() lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : List[Any] = len(_UpperCAmelCase ) - 1 lowerCAmelCase_ : Tuple = 0 while index >= 0: lowerCAmelCase_ : Tuple = (ord(column_title[index] ) - 64) * pow(26 ,_UpperCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
171
'''simple docstring''' __lowerCAmelCase ={ "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) __lowerCAmelCase ={ "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float: """simple docstring""" a_ = from_type.lower().strip('s' ) a_ = to_type.lower().strip('s' ) a_ = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) a_ = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) if from_sanitized not in METRIC_CONVERSION: a_ = ( F'''Invalid \'from_type\' value: {from_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) if to_sanitized not in METRIC_CONVERSION: a_ = ( F'''Invalid \'to_type\' value: {to_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) a_ = METRIC_CONVERSION[from_sanitized] a_ = METRIC_CONVERSION[to_sanitized] a_ = 1 if from_exponent > to_exponent: a_ = from_exponent - to_exponent else: a_ = -(to_exponent - from_exponent) return value * pow(1_0 , _UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
697
0
"""simple docstring""" import os def lowerCamelCase_ (): with open(os.path.dirname(_UpperCAmelCase ) + '''/p022_names.txt''' ) as file: _UpperCAmelCase : Optional[int] = str(file.readlines()[0] ) _UpperCAmelCase : List[Any] = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : Any = 0 for i, name in enumerate(_UpperCAmelCase ): for letter in name: name_score += ord(_UpperCAmelCase ) - 64 total_score += (i + 1) * name_score _UpperCAmelCase : Dict = 0 return total_score if __name__ == "__main__": print(solution())
506
'''simple docstring''' import unittest from transformers import DonutProcessor __lowerCAmelCase ="naver-clova-ix/donut-base" class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = DonutProcessor.from_pretrained(UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } a_ = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) a_ = self.processor.tokenajson(UpperCAmelCase__ ) self.assertDictEqual(UpperCAmelCase__ , UpperCAmelCase__ )
697
0
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): if any(not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(_UpperCAmelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(_UpperCAmelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
84
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _snake_case : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__="resnet50" , UpperCAmelCase__=3 , UpperCAmelCase__=32 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=True , ) -> Optional[Any]: a_ = parent a_ = out_indices if out_indices is not None else [4] a_ = stage_names a_ = out_features a_ = backbone a_ = batch_size a_ = image_size a_ = num_channels a_ = use_pretrained_backbone a_ = is_training def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ = self.get_config() return config, pixel_values def __SCREAMING_SNAKE_CASE ( self ) -> Dict: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = TimmBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): a_ = model(UpperCAmelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = self.prepare_config_and_inputs() a_ , a_ = config_and_inputs a_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _snake_case ( snake_case , snake_case , snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = (TimmBackbone,) if is_torch_available() else () _UpperCamelCase = {"feature-extraction": TimmBackbone} if is_torch_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = TimmBackboneModelTester(self ) a_ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = 'resnet18' a_ = 'microsoft/resnet-18' a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ , out_indices=[1, 2, 3] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Safetensors is not supported by timm.' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) a_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = True a_ = self.has_attentions # no need to test all models as different heads yield the same functionality a_ = self.all_model_classes[0] a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) a_ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = model(**UpperCAmelCase__ ) a_ = outputs[0][-1] # Encoder-/Decoder-only models a_ = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a_ = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCAmelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = None a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = False a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ )
697
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ = 16 UpperCAmelCase__ = 32 def a_ (__A , __A = 16 ) -> Tuple: """simple docstring""" __a : Optional[int] = AutoTokenizer.from_pretrained("bert-base-cased" ) __a : Any = load_dataset("glue" , "mrpc" ) def tokenize_function(__A ): # max_length=None => use the model max length (it's actually the default) __a : Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __a : Dict = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a : Optional[int] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__A ): # On TPU it's best to pad everything to the same length or training will be very slow. __a : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __a : List[str] = 16 elif accelerator.mixed_precision != "no": __a : int = 8 else: __a : str = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. __a : List[Any] = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) __a : int = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase__ = mocked_dataloaders # noqa: F811 def a_ (__A , __A ) -> str: """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , _UpperCAmelCase ) == "1": __a : List[str] = 2 # Initialize accelerator __a : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a : str = config["lr"] __a : Union[str, Any] = int(config["num_epochs"] ) __a : List[Any] = int(config["seed"] ) __a : Tuple = int(config["batch_size"] ) __a : List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation __a : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __a : List[Any] = batch_size // MAX_GPU_BATCH_SIZE __a : Union[str, Any] = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) __a , __a : List[str] = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a : Optional[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __a : Tuple = model.to(accelerator.device ) # Instantiate optimizer __a : Optional[Any] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler __a : Any = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a : Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __a : Dict = model(**_UpperCAmelCase ) __a : Union[str, Any] = outputs.loss __a : Union[str, Any] = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __a : Optional[int] = 0 for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a : str = model(**_UpperCAmelCase ) __a : List[str] = outputs.logits.argmax(dim=-1 ) __a , __a : Tuple = accelerator.gather((predictions, batch["labels"]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(_UpperCAmelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __a : List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] __a : Any = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) __a : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , _UpperCAmelCase ) def a_ () -> Union[str, Any]: """simple docstring""" __a : List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) __a : Any = parser.parse_args() __a : Dict = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
351
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=7 , UpperCAmelCase__=3 , UpperCAmelCase__=18 , UpperCAmelCase__=30 , UpperCAmelCase__=400 , UpperCAmelCase__=True , UpperCAmelCase__=None , UpperCAmelCase__=True , ) -> List[Any]: a_ = size if size is not None else {'height': 18, 'width': 18} a_ = parent a_ = batch_size a_ = num_channels a_ = image_size a_ = min_resolution a_ = max_resolution a_ = do_resize a_ = size a_ = apply_ocr def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _snake_case ( snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = LayoutLMvaImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'apply_ocr' ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) a_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , UpperCAmelCase__ ) self.assertIsInstance(encoding.boxes , UpperCAmelCase__ ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> int: # with apply_OCR = True a_ = LayoutLMvaImageProcessor() from datasets import load_dataset a_ = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) a_ = Image.open(ds[0]['file'] ).convert('RGB' ) a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 a_ = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 a_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCAmelCase__ ) self.assertListEqual(encoding.boxes , UpperCAmelCase__ ) # with apply_OCR = False a_ = LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
697
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __magic_name__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
665
'''simple docstring''' import math def a ( _UpperCAmelCase ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( _UpperCAmelCase = 1_0_0_0_1 ) -> int: """simple docstring""" try: a_ = int(_UpperCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) a_ = [] a_ = 2 while len(_UpperCAmelCase ) < nth: if is_prime(_UpperCAmelCase ): primes.append(_UpperCAmelCase ) num += 1 else: num += 1 return primes[len(_UpperCAmelCase ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
697
0
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : List[str] ): _a = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _a = Vector() def UpperCamelCase__ ( self : Dict ): _a = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase__ ) , "(0,0,0,0,0,1)" ) def UpperCamelCase__ ( self : List[Any] ): _a = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase__ ) , 4 ) def UpperCamelCase__ ( self : Optional[Any] ): _a = Vector([1, 2] ) _a = Vector([1, 2, 3, 4, 5] ) _a = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _a = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def UpperCamelCase__ ( self : int ): _a = Vector([1, 2, 3] ) _a = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def UpperCamelCase__ ( self : List[str] ): _a = Vector([1, 2, 3] ) _a = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def UpperCamelCase__ ( self : Dict ): _a = Vector([1, 2, 3] ) _a = Vector([2, -1, 4] ) # for test of dot product _a = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , "(3.0,6.0,9.0)" ) self.assertEqual((a * b) , 0 ) def UpperCamelCase__ ( self : int ): self.assertEqual(str(zero_vector(10 ) ).count("0" ) , 10 ) def UpperCamelCase__ ( self : Optional[int] ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , "(0,1,0)" ) def UpperCamelCase__ ( self : str ): _a = Vector([1, 2, 3] ) _a = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase__ , UpperCAmelCase__ ) ) , "(3,4,7)" ) def UpperCamelCase__ ( self : List[Any] ): _a = Vector([1, 0, 0, 0, 0, 0] ) _a = x.copy() self.assertEqual(str(UpperCAmelCase__ ) , str(UpperCAmelCase__ ) ) def UpperCamelCase__ ( self : int ): _a = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase__ ) , "(0,1,0)" ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n" , str(UpperCAmelCase__ ) ) def UpperCamelCase__ ( self : Optional[int] ): _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _a = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase__ , UpperCAmelCase__ ) ) def UpperCamelCase__ ( self : List[Any] ): _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _a = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase__ , UpperCAmelCase__ ) ) def UpperCamelCase__ ( self : int ): _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def UpperCamelCase__ ( self : Optional[int] ): _a = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _a = Vector([1, 2, 3] ) self.assertEqual("(14,32,50)" , str(a * x ) ) self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n" , str(a * 2 ) ) def UpperCamelCase__ ( self : int ): _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n" , str(UpperCAmelCase__ ) ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def UpperCamelCase__ ( self : List[str] ): _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _a = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n" , str(a + b ) ) def UpperCamelCase__ ( self : Optional[int] ): _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _a = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n" , str(a - b ) ) def UpperCamelCase__ ( self : Any ): self.assertEqual( "|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
692
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = 10 def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = [1, 2, 3, 4] a_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = '' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) a_ , a_ = process_story(UpperCAmelCase__ ) a_ = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = ['It was the best of times.'] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = torch.tensor([1, 2, 3, 4] ) a_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 0 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 23 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 1 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = 101 a_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) a_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) a_ = compute_token_type_ids(UpperCAmelCase__ , UpperCAmelCase__ ) np.testing.assert_array_equal(UpperCAmelCase__ , UpperCAmelCase__ )
697
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ : str = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Any = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys snake_case__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
408
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __lowerCAmelCase ="\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class _snake_case ( unittest.TestCase , snake_case ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = load_tool('text-question-answering' ) self.tool.setup() a_ = load_tool('text-question-answering' , remote=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.remote_tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = self.tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = self.remote_tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' )
697
0
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' @register_to_config def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = False ,) -> Any: '''simple docstring''' super().__init__() __lowercase = nn.Embedding(UpperCAmelCase__ ,UpperCAmelCase__ ) __lowercase = nn.Embedding(UpperCAmelCase__ ,UpperCAmelCase__ ) __lowercase = False __lowercase = nn.Dropout(p=UpperCAmelCase__ ) __lowercase = TaConfig( vocab_size=UpperCAmelCase__ ,d_model=UpperCAmelCase__ ,num_heads=UpperCAmelCase__ ,d_kv=UpperCAmelCase__ ,d_ff=UpperCAmelCase__ ,dropout_rate=UpperCAmelCase__ ,feed_forward_proj=UpperCAmelCase__ ,is_decoder=UpperCAmelCase__ ,is_encoder_decoder=UpperCAmelCase__ ,) __lowercase = nn.ModuleList() for lyr_num in range(UpperCAmelCase__ ): __lowercase = TaBlock(UpperCAmelCase__ ) self.encoders.append(UpperCAmelCase__ ) __lowercase = TaLayerNorm(UpperCAmelCase__ ) __lowercase = nn.Dropout(p=UpperCAmelCase__ ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = self.token_embedder(UpperCAmelCase__ ) __lowercase = encoder_input_tokens.shape[1] __lowercase = torch.arange(UpperCAmelCase__ ,device=encoder_input_tokens.device ) x += self.position_encoding(UpperCAmelCase__ ) __lowercase = self.dropout_pre(UpperCAmelCase__ ) # inverted the attention mask __lowercase = encoder_input_tokens.size() __lowercase = self.get_extended_attention_mask(UpperCAmelCase__ ,UpperCAmelCase__ ) for lyr in self.encoders: __lowercase = lyr(UpperCAmelCase__ ,UpperCAmelCase__ )[0] __lowercase = self.layer_norm(UpperCAmelCase__ ) return self.dropout_post(UpperCAmelCase__ ), encoder_inputs_mask
502
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase ={"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __lowerCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
697
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _snake_case : int = logging.get_logger(__name__) _snake_case : List[Any] = { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class A ( _a ): lowercase_ = 'blenderbot-small' lowercase_ = ['past_key_values'] lowercase_ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Union[str, Any] , lowerCAmelCase_ : Tuple=5_02_65 , lowerCAmelCase_ : Optional[Any]=5_12 , lowerCAmelCase_ : List[Any]=8 , lowerCAmelCase_ : str=20_48 , lowerCAmelCase_ : Any=16 , lowerCAmelCase_ : List[Any]=8 , lowerCAmelCase_ : Optional[Any]=20_48 , lowerCAmelCase_ : List[Any]=16 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : Optional[Any]=5_12 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : int=0.0 , lowerCAmelCase_ : str=0.0_2 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Union[str, Any]=0 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : List[Any]=2 , **lowerCAmelCase_ : Optional[int] , ) -> str: """simple docstring""" _a = vocab_size _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = encoder_layerdrop _a = decoder_layerdrop _a = use_cache _a = encoder_layers _a = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , is_encoder_decoder=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , forced_eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , ) class A ( _a ): @property def __lowerCAmelCase ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a = {0: '''batch'''} _a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''decoder_sequence'''} _a = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase__ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a , _a = self.num_layers for i in range(UpperCAmelCase__ ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def __lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _a = super().outputs else: _a = super(UpperCAmelCase__ , self ).outputs if self.use_past: _a , _a = self.num_layers for i in range(UpperCAmelCase__ ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] = -1 , lowerCAmelCase_ : Union[str, Any] = -1 , lowerCAmelCase_ : Union[str, Any] = False , lowerCAmelCase_ : int = None , ) -> Mapping[str, Any]: """simple docstring""" _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Generate decoder inputs _a = seq_length if not self.use_past else 1 _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _a = dict(**UpperCAmelCase__ , **UpperCAmelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape _a = common_inputs['''decoder_input_ids'''].shape[1] _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = decoder_seq_length + 3 _a = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _a = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(UpperCAmelCase__ , UpperCAmelCase__ )] , dim=1 ) _a = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _a , _a = self.num_layers _a = min(UpperCAmelCase__ , UpperCAmelCase__ ) _a = max(UpperCAmelCase__ , UpperCAmelCase__ ) - min_num_layers _a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(UpperCAmelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCAmelCase__ ), torch.zeros(UpperCAmelCase__ ), torch.zeros(UpperCAmelCase__ ), torch.zeros(UpperCAmelCase__ ), ) ) # TODO: test this. _a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(UpperCAmelCase__ , UpperCAmelCase__ ): common_inputs["past_key_values"].append((torch.zeros(UpperCAmelCase__ ), torch.zeros(UpperCAmelCase__ )) ) return common_inputs def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple = -1 , lowerCAmelCase_ : Dict = -1 , lowerCAmelCase_ : Optional[int] = False , lowerCAmelCase_ : List[Any] = None , ) -> Mapping[str, Any]: """simple docstring""" _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a , _a = self.num_layers _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = common_inputs['''attention_mask'''].dtype _a = torch.cat( [common_inputs['''attention_mask'''], torch.ones(UpperCAmelCase__ , UpperCAmelCase__ , dtype=UpperCAmelCase__ )] , dim=1 ) _a = [ (torch.zeros(UpperCAmelCase__ ), torch.zeros(UpperCAmelCase__ )) for _ in range(UpperCAmelCase__ ) ] return common_inputs def __lowerCAmelCase ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] = -1 , lowerCAmelCase_ : str = -1 , lowerCAmelCase_ : Tuple = False , lowerCAmelCase_ : int = None , ) -> Mapping[str, Any]: """simple docstring""" _a = compute_effective_axis_dimension( UpperCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a = tokenizer.num_special_tokens_to_add(UpperCAmelCase__ ) _a = compute_effective_axis_dimension( UpperCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase__ ) # Generate dummy inputs according to compute batch and sequence _a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _a = dict(tokenizer(UpperCAmelCase__ , return_tensors=UpperCAmelCase__ ) ) return common_inputs def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple = -1 , lowerCAmelCase_ : List[Any] = -1 , lowerCAmelCase_ : Optional[int] = False , lowerCAmelCase_ : Union[str, Any] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _a = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCAmelCase__ , batch_size=UpperCAmelCase__ , seq_length=UpperCAmelCase__ , is_pair=UpperCAmelCase__ , framework=UpperCAmelCase__ ) elif self.task == "causal-lm": _a = self._generate_dummy_inputs_for_causal_lm( UpperCAmelCase__ , batch_size=UpperCAmelCase__ , seq_length=UpperCAmelCase__ , is_pair=UpperCAmelCase__ , framework=UpperCAmelCase__ ) else: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase__ , batch_size=UpperCAmelCase__ , seq_length=UpperCAmelCase__ , is_pair=UpperCAmelCase__ , framework=UpperCAmelCase__ ) return common_inputs def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> str: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _a = super()._flatten_past_key_values_(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) else: _a = super(UpperCAmelCase__ , self )._flatten_past_key_values_( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
22
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "vit" def __init__( self , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=224 , UpperCAmelCase__=16 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=16 , **UpperCAmelCase__ , ) -> Dict: super().__init__(**UpperCAmelCase__ ) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = image_size a_ = patch_size a_ = num_channels a_ = qkv_bias a_ = encoder_stride class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __SCREAMING_SNAKE_CASE ( self ) -> float: return 1e-4
697
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self: List[str] , __lowerCamelCase: List[str] , __lowerCamelCase: Any=7 , __lowerCamelCase: int=3 , __lowerCamelCase: Any=10 , __lowerCamelCase: str=18 , __lowerCamelCase: Union[str, Any]=30 , __lowerCamelCase: Optional[int]=4_00 , __lowerCamelCase: Tuple=True , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Tuple=True , __lowerCamelCase: Tuple=[0.5, 0.5, 0.5] , __lowerCamelCase: List[Any]=[0.5, 0.5, 0.5] , __lowerCamelCase: Any=None , ) -> int: __UpperCAmelCase : Union[str, Any] = size if size is not None else {"shortest_edge": 18} __UpperCAmelCase : Tuple = crop_size if crop_size is not None else {"height": 18, "width": 18} __UpperCAmelCase : Optional[int] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : int = num_channels __UpperCAmelCase : Optional[Any] = num_frames __UpperCAmelCase : List[str] = image_size __UpperCAmelCase : Dict = min_resolution __UpperCAmelCase : Any = max_resolution __UpperCAmelCase : Dict = do_resize __UpperCAmelCase : Union[str, Any] = size __UpperCAmelCase : Any = do_normalize __UpperCAmelCase : Optional[int] = image_mean __UpperCAmelCase : str = image_std __UpperCAmelCase : Dict = crop_size def _lowerCamelCase ( self: List[str] ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: Any = VivitImageProcessor if is_vision_available() else None def _lowerCamelCase ( self: str ) -> int: __UpperCAmelCase : List[str] = VivitImageProcessingTester(self ) @property def _lowerCamelCase ( self: Optional[Any] ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self: Any ) -> str: __UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "image_std" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_center_crop" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "size" ) ) def _lowerCamelCase ( self: Tuple ) -> int: __UpperCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]: # Initialize image_processing __UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos __UpperCAmelCase : int = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input __UpperCAmelCase : Any = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __UpperCAmelCase : Any = image_processing(UpperCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowerCamelCase ( self: str ) -> List[Any]: # Initialize image_processing __UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input __UpperCAmelCase : Optional[int] = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __UpperCAmelCase : str = image_processing(UpperCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowerCamelCase ( self: str ) -> Dict: # Initialize image_processing __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : List[str] = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input __UpperCAmelCase : str = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __UpperCAmelCase : str = image_processing(UpperCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
382
'''simple docstring''' def a ( _UpperCAmelCase = 5_0 ) -> int: """simple docstring""" a_ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
697
0
def UpperCamelCase ( __lowerCamelCase : Union[str, Any] ): return "".join(chr(ord(_UpperCAmelCase ) - 32 ) if "a" <= char <= "z" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
204
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def a ( ) -> None: """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
697
0
import argparse import json from tqdm import tqdm def UpperCamelCase( ): lowerCAmelCase_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' ,type=_UpperCAmelCase ,default='''biencoder-nq-dev.json''' ,help='''Path to raw DPR training data''' ,) parser.add_argument( '''--evaluation_set''' ,type=_UpperCAmelCase ,help='''where to store parsed evaluation_set file''' ,) parser.add_argument( '''--gold_data_path''' ,type=_UpperCAmelCase ,help='''where to store parsed gold_data_path file''' ,) lowerCAmelCase_ : str = parser.parse_args() with open(args.src_path ,'''r''' ) as src_file, open(args.evaluation_set ,'''w''' ) as eval_file, open( args.gold_data_path ,'''w''' ) as gold_file: lowerCAmelCase_ : str = json.load(_UpperCAmelCase ) for dpr_record in tqdm(_UpperCAmelCase ): lowerCAmelCase_ : int = dpr_record['''question'''] lowerCAmelCase_ : Dict = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(_UpperCAmelCase ) + '''\n''' ) if __name__ == "__main__": main()
171
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a ( _UpperCAmelCase ) -> int: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _snake_case ( snake_case ): """simple docstring""" @staticmethod def __SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ) -> str: a_ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=UpperCAmelCase__ , help='Name of the model to download' ) download_parser.set_defaults(func=UpperCAmelCase__ ) def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = model a_ = cache a_ = force a_ = trust_remote_code def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
697
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class _UpperCAmelCase : '''simple docstring''' def __init__( self , A ) -> None: _UpperCAmelCase : List[str] = value _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : Any = None class _UpperCAmelCase : '''simple docstring''' def __init__( self , A ) -> None: _UpperCAmelCase : Optional[Any] = tree def __lowerCAmelCase ( self , A ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
506
'''simple docstring''' def a ( _UpperCAmelCase ) -> int: """simple docstring""" assert column_title.isupper() a_ = 0 a_ = len(_UpperCAmelCase ) - 1 a_ = 0 while index >= 0: a_ = (ord(column_title[index] ) - 6_4) * pow(2_6 , _UpperCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
697
0
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = len(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: lowercase , lowercase = arr[i + 1], arr[i] return arr if __name__ == "__main__": UpperCAmelCase = list(range(10, 0, -1)) print(F"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
84
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __lowerCAmelCase =logging.get_logger(__name__) class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = ["audio_values", "audio_mask"] def __init__( self , UpperCAmelCase__=2048 , UpperCAmelCase__=1 , UpperCAmelCase__=[16, 16] , UpperCAmelCase__=128 , UpperCAmelCase__=4_4100 , UpperCAmelCase__=86 , UpperCAmelCase__=2048 , UpperCAmelCase__=0.0 , **UpperCAmelCase__ , ) -> Union[str, Any]: super().__init__( feature_size=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , padding_value=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = spectrogram_length a_ = num_channels a_ = patch_size a_ = feature_size // self.patch_size[1] a_ = n_fft a_ = sampling_rate // hop_length_to_sampling_rate a_ = sampling_rate a_ = padding_value a_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=UpperCAmelCase__ , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=UpperCAmelCase__ , norm='slaney' , mel_scale='slaney' , ).T def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> np.ndarray: a_ = spectrogram( UpperCAmelCase__ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=8_0.0 , ) a_ = log_spec[:, :-1] a_ = log_spec - 2_0.0 a_ = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , **UpperCAmelCase__ , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) a_ = isinstance(UpperCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) a_ = is_batched_numpy or ( isinstance(UpperCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a_ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase__ , np.ndarray ): a_ = np.asarray(UpperCAmelCase__ , dtype=np.floataa ) elif isinstance(UpperCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a_ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis a_ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , UpperCAmelCase__ ): a_ = [np.asarray(UpperCAmelCase__ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask a_ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: a_ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] a_ = np.array(UpperCAmelCase__ ).astype(np.floataa ) # convert into correct format for padding a_ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch a_ = np.ones([len(UpperCAmelCase__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) a_ = padded_audio_features * self.padding_value for i in range(len(UpperCAmelCase__ ) ): a_ = audio_features[i] a_ = feature # return as BatchFeature if return_attention_mask: a_ = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: a_ = {'audio_values': padded_audio_features} a_ = BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) return encoded_inputs
697
0
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') UpperCAmelCase__ = logging.getLogger(__name__) @dataclass class snake_case_ : """simple docstring""" snake_case__ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) snake_case__ = field( default=__UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) snake_case__ = field( default=__UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) snake_case__ = field( default=__UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) snake_case__ = field( default=__UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) snake_case__ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) snake_case__ = field( default=__UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class snake_case_ : """simple docstring""" snake_case__ = field(default=__UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) snake_case__ = field( default=__UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) snake_case__ = field( default=__UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) snake_case__ = field( default=__UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) snake_case__ = field( default=__UpperCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) snake_case__ = field( default=__UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) snake_case__ = field( default=__UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) snake_case__ = field( default=__UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def UpperCAmelCase__ (self: List[str] ) -> List[Any]: '''simple docstring''' if self.train_file is not None: __a : Dict = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __a : Any = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class snake_case_ : """simple docstring""" snake_case__ = 42 snake_case__ = True snake_case__ = None snake_case__ = None def __call__(self: Union[str, Any] , __UpperCAmelCase: Optional[int] ) -> Optional[Any]: '''simple docstring''' __a : Dict = "label" if "label" in features[0].keys() else "labels" __a : Dict = [feature.pop(UpperCAmelCase__ ) for feature in features] __a : List[Any] = len(UpperCAmelCase__ ) __a : Optional[int] = len(features[0]["input_ids"] ) __a : Any = [ [{k: v[i] for k, v in feature.items()} for i in range(UpperCAmelCase__ )] for feature in features ] __a : Any = list(chain(*UpperCAmelCase__ ) ) __a : List[str] = self.tokenizer.pad( UpperCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten __a : Union[str, Any] = {k: v.view(UpperCAmelCase__ , UpperCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels __a : Dict = torch.tensor(UpperCAmelCase__ , dtype=torch.intaa ) return batch def a_ () -> Tuple: """simple docstring""" __a : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a : Any = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag" , _UpperCAmelCase , _UpperCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __a : int = training_args.get_process_log_level() logger.setLevel(_UpperCAmelCase ) datasets.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a : Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __a : int = {} if data_args.train_file is not None: __a : List[Any] = data_args.train_file if data_args.validation_file is not None: __a : int = data_args.validation_file __a : Dict = data_args.train_file.split("." )[-1] __a : Any = load_dataset( _UpperCAmelCase , data_files=_UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __a : Any = load_dataset( "swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __a : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __a : Dict = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __a : Union[str, Any] = [f'ending{i}' for i in range(4 )] __a : Dict = "sent1" __a : Optional[Any] = "sent2" if data_args.max_seq_length is None: __a : int = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) __a : Optional[int] = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __a : Tuple = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__A ): __a : Tuple = [[context] * 4 for context in examples[context_name]] __a : List[str] = examples[question_header_name] __a : str = [ [f'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(_UpperCAmelCase ) ] # Flatten out __a : Any = list(chain(*_UpperCAmelCase ) ) __a : Tuple = list(chain(*_UpperCAmelCase ) ) # Tokenize __a : Tuple = tokenizer( _UpperCAmelCase , _UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , padding="max_length" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) __a : Optional[Any] = raw_datasets["train"] if data_args.max_train_samples is not None: __a : int = min(len(_UpperCAmelCase ) , data_args.max_train_samples ) __a : Optional[Any] = train_dataset.select(range(_UpperCAmelCase ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): __a : List[Any] = train_dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) __a : List[Any] = raw_datasets["validation"] if data_args.max_eval_samples is not None: __a : int = min(len(_UpperCAmelCase ) , data_args.max_eval_samples ) __a : Optional[Any] = eval_dataset.select(range(_UpperCAmelCase ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): __a : Optional[int] = eval_dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __a : int = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__A ): __a , __a : Dict = eval_predictions __a : Optional[int] = np.argmax(_UpperCAmelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __a : Optional[int] = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , compute_metrics=_UpperCAmelCase , ) # Training if training_args.do_train: __a : Optional[Any] = None if training_args.resume_from_checkpoint is not None: __a : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: __a : Tuple = last_checkpoint __a : Dict = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __a : Optional[Any] = train_result.metrics __a : Dict = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCAmelCase ) ) __a : Dict = min(_UpperCAmelCase , len(_UpperCAmelCase ) ) trainer.log_metrics("train" , _UpperCAmelCase ) trainer.save_metrics("train" , _UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) __a : List[Any] = trainer.evaluate() __a : List[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCAmelCase ) __a : List[Any] = min(_UpperCAmelCase , len(_UpperCAmelCase ) ) trainer.log_metrics("eval" , _UpperCAmelCase ) trainer.save_metrics("eval" , _UpperCAmelCase ) __a : Any = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCAmelCase ) else: trainer.create_model_card(**_UpperCAmelCase ) def a_ (__A ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
351
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Optional[Any]: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = len(set_a.intersection(_UpperCAmelCase ) ) if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) else: a_ = len(set_a.union(_UpperCAmelCase ) ) return intersection / union if isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) ): a_ = [element for element in set_a if element in set_b] if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / union else: a_ = set_a + [element for element in set_b if element not in set_a] return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return None if __name__ == "__main__": __lowerCAmelCase ={"a", "b", "c", "d", "e"} __lowerCAmelCase ={"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
697
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'google/vit-base-patch16-224': 'https://huggingface.co/vit-base-patch16-224/resolve/main/config.json', # See all ViT models at https://huggingface.co/models?filter=vit } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """vit""" def __init__( self : Any ,_a : Dict=768 ,_a : Optional[int]=12 ,_a : List[Any]=12 ,_a : Any=3072 ,_a : Dict="gelu" ,_a : int=0.0 ,_a : str=0.0 ,_a : Tuple=0.02 ,_a : Union[str, Any]=1e-12 ,_a : Union[str, Any]=224 ,_a : Dict=16 ,_a : Union[str, Any]=3 ,_a : Dict=True ,_a : Optional[int]=16 ,**_a : Optional[Any] ,): '''simple docstring''' super().__init__(**UpperCAmelCase__ ) A_ : List[Any] = hidden_size A_ : Optional[Any] = num_hidden_layers A_ : Any = num_attention_heads A_ : Union[str, Any] = intermediate_size A_ : int = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : Tuple = attention_probs_dropout_prob A_ : Dict = initializer_range A_ : Union[str, Any] = layer_norm_eps A_ : List[Any] = image_size A_ : Union[str, Any] = patch_size A_ : int = num_channels A_ : str = qkv_bias A_ : Union[str, Any] = encoder_stride class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = version.parse("""1.11""" ) @property def _a ( self : List[Any] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a ( self : Dict ): '''simple docstring''' return 1e-4
665
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('iterations must be defined as integers' ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) a_ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
697
0