code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCamelCase_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=3 , __lowerCAmelCase=3_2 , __lowerCAmelCase=3 , __lowerCAmelCase=1_0 , __lowerCAmelCase=[8, 1_6, 3_2, 6_4] , __lowerCAmelCase=[1, 1, 2, 1] , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase="relu" , __lowerCAmelCase=3 , __lowerCAmelCase=None , __lowerCAmelCase=["stage2", "stage3", "stage4"] , __lowerCAmelCase=[2, 3, 4] , __lowerCAmelCase=1 , ): """simple docstring""" __magic_name__ :Optional[int] = parent __magic_name__ :str = batch_size __magic_name__ :List[Any] = image_size __magic_name__ :Any = num_channels __magic_name__ :Optional[Any] = embeddings_size __magic_name__ :Any = hidden_sizes __magic_name__ :Tuple = depths __magic_name__ :Any = is_training __magic_name__ :Union[str, Any] = use_labels __magic_name__ :List[str] = hidden_act __magic_name__ :Optional[int] = num_labels __magic_name__ :Any = scope __magic_name__ :Dict = len(__lowerCAmelCase ) __magic_name__ :Any = out_features __magic_name__ :str = out_indices __magic_name__ :Tuple = num_groups def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ :Any = None if self.use_labels: __magic_name__ :str = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ :Optional[int] = self.get_config() return config, pixel_values, labels def A ( self ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Dict = BitModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :Optional[Any] = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[int] = self.num_labels __magic_name__ :int = BitForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :str = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :List[Any] = BitBackbone(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :Optional[int] = model(__lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __magic_name__ :Any = None __magic_name__ :Union[str, Any] = BitBackbone(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :Optional[Any] = model(__lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A ( self ): """simple docstring""" __magic_name__ :Tuple = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ :int = config_and_inputs __magic_name__ :str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): a__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a__ = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A ( self ): """simple docstring""" __magic_name__ :Dict = BitModelTester(self ) __magic_name__ :List[str] = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def A ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self ): """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def A ( self ): """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def A ( self ): """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def A ( self ): """simple docstring""" pass def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ :int = model_class(__lowerCAmelCase ) __magic_name__ :List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ :int = [*signature.parameters.keys()] __magic_name__ :Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ :Tuple = model_class(config=__lowerCAmelCase ) for name, module in model.named_modules(): if isinstance(__lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A ( self ): """simple docstring""" def check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): __magic_name__ :Optional[int] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): __magic_name__ :Tuple = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) __magic_name__ :List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __magic_name__ :Dict = self.model_tester.num_stages self.assertEqual(len(__lowerCAmelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __magic_name__ , __magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ :Tuple = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __magic_name__ :int = layer_type __magic_name__ :Tuple = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ :Tuple = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def A ( self ): """simple docstring""" pass def A ( self ): """simple docstring""" __magic_name__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) @slow def A ( self ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ :List[str] = BitModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def __lowercase ( ): """simple docstring""" __magic_name__ :Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def A ( self ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self ): """simple docstring""" __magic_name__ :Any = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowerCAmelCase ) __magic_name__ :Union[str, Any] = self.default_image_processor __magic_name__ :int = prepare_img() __magic_name__ :Tuple = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): __magic_name__ :Tuple = model(**__lowerCAmelCase ) # verify the logits __magic_name__ :Optional[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) __magic_name__ :int = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) ) @require_torch class lowerCamelCase_ ( lowerCamelCase , unittest.TestCase ): a__ = (BitBackbone,) if is_torch_available() else () a__ = BitConfig a__ = False def A ( self ): """simple docstring""" __magic_name__ :Dict = BitModelTester(self )
0
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Optional[Any]: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = len(set_a.intersection(_UpperCAmelCase ) ) if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) else: a_ = len(set_a.union(_UpperCAmelCase ) ) return intersection / union if isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) ): a_ = [element for element in set_a if element in set_b] if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / union else: a_ = set_a + [element for element in set_b if element not in set_a] return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return None if __name__ == "__main__": __lowerCAmelCase ={"a", "b", "c", "d", "e"} __lowerCAmelCase ={"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
697
0
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = '''▁''' __snake_case = {'''vocab_file''': '''prophetnet.tokenizer'''} __snake_case = { '''vocab_file''': { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer''' ), } } __snake_case = { '''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False}, } __snake_case = { '''microsoft/xprophetnet-large-wiki100-cased''': 5_1_2, } def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = collections.OrderedDict() with open(_lowercase , 'r' , encoding='utf-8' ) as reader: __UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): __UpperCamelCase = token.rstrip('\n' ) __UpperCamelCase = index return vocab class __lowerCamelCase (_a ): _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ["""input_ids""", """attention_mask"""] def __init__( self: str,A_: int,A_: str="[SEP]",A_: List[Any]="[SEP]",A_: str="[SEP]",A_: Any="[UNK]",A_: Optional[int]="[PAD]",A_: List[str]="[CLS]",A_: Dict="[MASK]",A_: Optional[Dict[str, Any]] = None,**A_: str,): '''simple docstring''' __UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_,eos_token=A_,sep_token=A_,unk_token=A_,pad_token=A_,cls_token=A_,mask_token=A_,sp_model_kwargs=self.sp_model_kwargs,**A_,) try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) __UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab __UpperCamelCase = {'[PAD]': 0, '[CLS]': 1, '[SEP]': 2, '[UNK]': 3, '[MASK]': 4} for i in range(10 ): __UpperCamelCase = F'''[unused{i}]''' __UpperCamelCase = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab __UpperCamelCase = 12 __UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(A_ ) def __getstate__( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None return state def __setstate__( self: List[Any],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = d try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise # for backward compatibility if not hasattr(self,'sp_model_kwargs' ): __UpperCamelCase = {} __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case_ ( self: Any,A_: List[int],A_: Optional[List[int]] = None,A_: bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_,token_ids_a=A_,already_has_special_tokens=A_ ) if token_ids_a is None: return ([0] * len(A_ )) + [1] return ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] def snake_case_ ( self: Optional[int],A_: List[int],A_: Optional[List[int]] = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self: List[Any],A_: str ): '''simple docstring''' return self.sp_model.encode(A_,out_type=A_ ) def snake_case_ ( self: Any,A_: Optional[int] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCamelCase = self.sp_model.PieceToId(A_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ ( self: str,A_: int ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self: Tuple,A_: int ): '''simple docstring''' __UpperCamelCase = ''.join(A_ ).replace(A_,' ' ).strip() return out_string def snake_case_ ( self: Optional[int],A_: str,A_: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCamelCase = os.path.join( A_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_,'wb' ) as fi: __UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,) def snake_case_ ( self: Tuple,A_: List[int],A_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] __UpperCamelCase = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
1
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('iterations must be defined as integers' ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) a_ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
697
0
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 3 ) -> qiskit.result.counts.Counts: if isinstance(_snake_case , _snake_case ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(_snake_case ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) _A = QuantumRegister(_snake_case , '''qr''' ) _A = ClassicalRegister(_snake_case , '''cr''' ) _A = QuantumCircuit(_snake_case , _snake_case ) _A = number_of_qubits for i in range(_snake_case ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_snake_case ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _snake_case , _snake_case ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_snake_case , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_snake_case , _snake_case ) # simulate with 10000 shots _A = Aer.get_backend('''qasm_simulator''' ) _A = execute(_snake_case , _snake_case , shots=10_000 ) return job.result().get_counts(_snake_case ) if __name__ == "__main__": print( f'Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}' )
2
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _snake_case ( snake_case ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ) -> str: super().__init__( features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ , streaming=UpperCAmelCase__ , num_proc=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = Generator( cache_dir=UpperCAmelCase__ , features=UpperCAmelCase__ , generator=UpperCAmelCase__ , gen_kwargs=UpperCAmelCase__ , **UpperCAmelCase__ , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Build iterable dataset if self.streaming: a_ = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: a_ = None a_ = None a_ = None a_ = None self.builder.download_and_prepare( download_config=UpperCAmelCase__ , download_mode=UpperCAmelCase__ , verification_mode=UpperCAmelCase__ , base_path=UpperCAmelCase__ , num_proc=self.num_proc , ) a_ = self.builder.as_dataset( split='train' , verification_mode=UpperCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
697
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Any = { 'configuration_longformer': [ 'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongformerConfig', 'LongformerOnnxConfig', ], 'tokenization_longformer': ['LongformerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = ['LongformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = [ 'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongformerForMaskedLM', 'LongformerForMultipleChoice', 'LongformerForQuestionAnswering', 'LongformerForSequenceClassification', 'LongformerForTokenClassification', 'LongformerModel', 'LongformerPreTrainedModel', 'LongformerSelfAttention', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = [ 'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLongformerForMaskedLM', 'TFLongformerForMultipleChoice', 'TFLongformerForQuestionAnswering', 'TFLongformerForSequenceClassification', 'TFLongformerForTokenClassification', 'TFLongformerModel', 'TFLongformerPreTrainedModel', 'TFLongformerSelfAttention', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase =numpy.array([0, 0]) __lowerCAmelCase =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase =numpy.array([1, 0]) __lowerCAmelCase =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a ( _UpperCAmelCase , _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = initial_vectors for _ in range(_UpperCAmelCase ): a_ = iteration_step(_UpperCAmelCase ) return vectors def a ( _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = [] for i, start_vector in enumerate(vectors[:-1] ): a_ = vectors[i + 1] new_vectors.append(_UpperCAmelCase ) a_ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a ( _UpperCAmelCase , _UpperCAmelCase ) -> numpy.ndarray: """simple docstring""" a_ = numpy.radians(_UpperCAmelCase ) a_ , a_ = numpy.cos(_UpperCAmelCase ), numpy.sin(_UpperCAmelCase ) a_ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_UpperCAmelCase , _UpperCAmelCase ) def a ( _UpperCAmelCase ) -> None: """simple docstring""" a_ = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() a_ , a_ = zip(*_UpperCAmelCase ) plt.plot(_UpperCAmelCase , _UpperCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
697
0
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar __UpperCamelCase : int = TypeVar('''T''') def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return (position - 1) // 2 def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return (2 * position) + 1 def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return (2 * position) + 2 class a ( Generic[T] ): def __init__( self ): """simple docstring""" lowerCAmelCase = [] lowerCAmelCase = {} lowerCAmelCase = 0 def __len__( self ): """simple docstring""" return self.elements def __repr__( self ): """simple docstring""" return str(self.heap ) def UpperCamelCase__ ( self ): """simple docstring""" return self.elements == 0 def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" self.heap.append((elem, weight) ) lowerCAmelCase = self.elements self.elements += 1 self._bubble_up(_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) lowerCAmelCase ,lowerCAmelCase = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowerCAmelCase ,lowerCAmelCase = self.heap[0] self._bubble_down(_snake_case ) return elem def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.position_map[elem] lowerCAmelCase = (elem, weight) if position > 0: lowerCAmelCase = get_parent_position(_snake_case ) lowerCAmelCase ,lowerCAmelCase = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_snake_case ) else: self._bubble_down(_snake_case ) else: self._bubble_down(_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.position_map[elem] if curr_pos == 0: return None lowerCAmelCase = get_parent_position(_snake_case ) lowerCAmelCase ,lowerCAmelCase = self.heap[curr_pos] lowerCAmelCase ,lowerCAmelCase = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_snake_case , _snake_case ) return self._bubble_up(_snake_case ) return None def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.position_map[elem] lowerCAmelCase ,lowerCAmelCase = self.heap[curr_pos] lowerCAmelCase = get_child_left_position(_snake_case ) lowerCAmelCase = get_child_right_position(_snake_case ) if child_left_position < self.elements and child_right_position < self.elements: lowerCAmelCase ,lowerCAmelCase = self.heap[child_left_position] lowerCAmelCase ,lowerCAmelCase = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_snake_case , _snake_case ) return self._bubble_down(_snake_case ) if child_left_position < self.elements: lowerCAmelCase ,lowerCAmelCase = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_snake_case , _snake_case ) return self._bubble_down(_snake_case ) else: return None if child_right_position < self.elements: lowerCAmelCase ,lowerCAmelCase = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_snake_case , _snake_case ) return self._bubble_down(_snake_case ) return None def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.heap[nodea_pos][0] lowerCAmelCase = self.heap[nodea_pos][0] lowerCAmelCase ,lowerCAmelCase = ( self.heap[nodea_pos], self.heap[nodea_pos], ) lowerCAmelCase = nodea_pos lowerCAmelCase = nodea_pos class a ( Generic[T] ): def __init__( self ): """simple docstring""" lowerCAmelCase = {} lowerCAmelCase = 0 def __repr__( self ): """simple docstring""" return str(self.connections ) def __len__( self ): """simple docstring""" return self.nodes def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if node not in self.connections: lowerCAmelCase = {} self.nodes += 1 def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" self.add_node(_snake_case ) self.add_node(_snake_case ) lowerCAmelCase = weight lowerCAmelCase = weight def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : GraphUndirectedWeighted[T] , ): lowerCAmelCase = {node: maxsize for node in graph.connections} lowerCAmelCase = {node: None for node in graph.connections} lowerCAmelCase = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_UpperCAmelCase , _UpperCAmelCase ) if priority_queue.is_empty(): return dist, parent # initialization lowerCAmelCase = priority_queue.extract_min() lowerCAmelCase = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCAmelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_UpperCAmelCase , dist[neighbour] ) lowerCAmelCase = node # running prim's algorithm while not priority_queue.is_empty(): lowerCAmelCase = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCAmelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_UpperCAmelCase , dist[neighbour] ) lowerCAmelCase = node return dist, parent
4
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def a ( _UpperCAmelCase ) -> int: """simple docstring""" if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def a ( _UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" for char in word: a_ = ord(_UpperCAmelCase ) if not _is_chinese_char(_UpperCAmelCase ): return 0 return 1 def a ( _UpperCAmelCase ) -> Tuple: """simple docstring""" a_ = set() for token in tokens: a_ = len(_UpperCAmelCase ) > 1 and is_chinese(_UpperCAmelCase ) if chinese_word: word_set.add(_UpperCAmelCase ) a_ = list(_UpperCAmelCase ) return word_list def a ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: """simple docstring""" if not chinese_word_set: return bert_tokens a_ = max([len(_UpperCAmelCase ) for w in chinese_word_set] ) a_ = bert_tokens a_ , a_ = 0, len(_UpperCAmelCase ) while start < end: a_ = True if is_chinese(bert_word[start] ): a_ = min(end - start , _UpperCAmelCase ) for i in range(_UpperCAmelCase , 1 , -1 ): a_ = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): a_ = '##' + bert_word[j] a_ = start + i a_ = False break if single_word: start += 1 return bert_word def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: """simple docstring""" a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['cws'] ).cws a_ = [get_chinese_word(_UpperCAmelCase ) for r in res] ltp_res.extend(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=5_1_2 ) bert_res.extend(res['input_ids'] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for input_ids, chinese_word in zip(_UpperCAmelCase , _UpperCAmelCase ): a_ = [] for id in input_ids: a_ = bert_tokenizer._convert_id_to_token(_UpperCAmelCase ) input_tokens.append(_UpperCAmelCase ) a_ = add_sub_symbol(_UpperCAmelCase , _UpperCAmelCase ) a_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_UpperCAmelCase ): if token[:2] == "##": a_ = token[2:] # save chinese tokens' pos if len(_UpperCAmelCase ) == 1 and _is_chinese_char(ord(_UpperCAmelCase ) ): ref_id.append(_UpperCAmelCase ) ref_ids.append(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) return ref_ids def a ( _UpperCAmelCase ) -> Optional[Any]: """simple docstring""" with open(args.file_name , 'r' , encoding='utf-8' ) as f: a_ = f.readlines() a_ = [line.strip() for line in data if len(_UpperCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' a_ = LTP(args.ltp ) # faster in GPU device a_ = BertTokenizer.from_pretrained(args.bert ) a_ = prepare_ref(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: a_ = [json.dumps(_UpperCAmelCase ) + '\n' for ref in ref_ids] f.writelines(_UpperCAmelCase ) if __name__ == "__main__": __lowerCAmelCase =argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __lowerCAmelCase =parser.parse_args() main(args)
697
0
'''simple docstring''' import argparse import struct import unittest class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = data # Initialize hash values _lowerCAmelCase = [ 0x6_A_0_9_E_6_6_7, 0xB_B_6_7_A_E_8_5, 0x3_C_6_E_F_3_7_2, 0xA_5_4_F_F_5_3_A, 0x5_1_0_E_5_2_7_F, 0x9_B_0_5_6_8_8_C, 0x1_F_8_3_D_9_A_B, 0x5_B_E_0_C_D_1_9, ] # Initialize round constants _lowerCAmelCase = [ 0x4_2_8_A_2_F_9_8, 0x7_1_3_7_4_4_9_1, 0xB_5_C_0_F_B_C_F, 0xE_9_B_5_D_B_A_5, 0x3_9_5_6_C_2_5_B, 0x5_9_F_1_1_1_F_1, 0x9_2_3_F_8_2_A_4, 0xA_B_1_C_5_E_D_5, 0xD_8_0_7_A_A_9_8, 0x1_2_8_3_5_B_0_1, 0x2_4_3_1_8_5_B_E, 0x5_5_0_C_7_D_C_3, 0x7_2_B_E_5_D_7_4, 0x8_0_D_E_B_1_F_E, 0x9_B_D_C_0_6_A_7, 0xC_1_9_B_F_1_7_4, 0xE_4_9_B_6_9_C_1, 0xE_F_B_E_4_7_8_6, 0x0_F_C_1_9_D_C_6, 0x2_4_0_C_A_1_C_C, 0x2_D_E_9_2_C_6_F, 0x4_A_7_4_8_4_A_A, 0x5_C_B_0_A_9_D_C, 0x7_6_F_9_8_8_D_A, 0x9_8_3_E_5_1_5_2, 0xA_8_3_1_C_6_6_D, 0xB_0_0_3_2_7_C_8, 0xB_F_5_9_7_F_C_7, 0xC_6_E_0_0_B_F_3, 0xD_5_A_7_9_1_4_7, 0x0_6_C_A_6_3_5_1, 0x1_4_2_9_2_9_6_7, 0x2_7_B_7_0_A_8_5, 0x2_E_1_B_2_1_3_8, 0x4_D_2_C_6_D_F_C, 0x5_3_3_8_0_D_1_3, 0x6_5_0_A_7_3_5_4, 0x7_6_6_A_0_A_B_B, 0x8_1_C_2_C_9_2_E, 0x9_2_7_2_2_C_8_5, 0xA_2_B_F_E_8_A_1, 0xA_8_1_A_6_6_4_B, 0xC_2_4_B_8_B_7_0, 0xC_7_6_C_5_1_A_3, 0xD_1_9_2_E_8_1_9, 0xD_6_9_9_0_6_2_4, 0xF_4_0_E_3_5_8_5, 0x1_0_6_A_A_0_7_0, 0x1_9_A_4_C_1_1_6, 0x1_E_3_7_6_C_0_8, 0x2_7_4_8_7_7_4_C, 0x3_4_B_0_B_C_B_5, 0x3_9_1_C_0_C_B_3, 0x4_E_D_8_A_A_4_A, 0x5_B_9_C_C_A_4_F, 0x6_8_2_E_6_F_F_3, 0x7_4_8_F_8_2_E_E, 0x7_8_A_5_6_3_6_F, 0x8_4_C_8_7_8_1_4, 0x8_C_C_7_0_2_0_8, 0x9_0_B_E_F_F_F_A, 0xA_4_5_0_6_C_E_B, 0xB_E_F_9_A_3_F_7, 0xC_6_7_1_7_8_F_2, ] _lowerCAmelCase = self.preprocessing(self.data ) self.final_hash() @staticmethod def _lowercase ( _lowercase ): """simple docstring""" _lowerCAmelCase = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowercase ) + 8) % 64)) _lowerCAmelCase = struct.pack(""">Q""" , (len(_lowercase ) * 8) ) return data + padding + big_endian_integer def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase = list(struct.unpack(""">16L""" , _lowercase ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0_0_0_0_0_0_0_0 # Compression _lowerCAmelCase = self.ror(_lowercase , 6 ) ^ self.ror(_lowercase , 11 ) ^ self.ror(_lowercase , 25 ) _lowerCAmelCase = (e & f) ^ ((~e & 0xF_F_F_F_F_F_F_F) & g) _lowerCAmelCase = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0_0_0_0_0_0_0_0 _lowerCAmelCase = self.ror(_lowercase , 2 ) ^ self.ror(_lowercase , 13 ) ^ self.ror(_lowercase , 22 ) _lowerCAmelCase = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase = (sa + maj) % 0x1_0_0_0_0_0_0_0_0 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = ( g, f, e, ((d + tempa) % 0x1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0), ) _lowerCAmelCase = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase = [ ((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase = """""".join([hex(_lowercase )[2:].zfill(8 ) for value in self.hashes] ) def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" return 0xF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" import hashlib _lowerCAmelCase = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(_lowercase ).hash , hashlib.shaaaa(_lowercase ).hexdigest() ) def A (): import doctest doctest.testmod() _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: _lowerCAmelCase = f.read() else: _lowerCAmelCase = bytes(__lowerCamelCase , """utf-8""" ) print(SHAaaa(__lowerCamelCase ).hash ) if __name__ == "__main__": main()
5
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase ={ "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": 512, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase = RetriBertTokenizer _UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__="[UNK]" , UpperCAmelCase__="[SEP]" , UpperCAmelCase__="[PAD]" , UpperCAmelCase__="[CLS]" , UpperCAmelCase__="[MASK]" , UpperCAmelCase__=True , UpperCAmelCase__=None , **UpperCAmelCase__ , ) -> int: super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase__ ) != tokenize_chinese_chars ): a_ = getattr(UpperCAmelCase__ , normalizer_state.pop('type' ) ) a_ = do_lower_case a_ = strip_accents a_ = tokenize_chinese_chars a_ = normalizer_class(**UpperCAmelCase__ ) a_ = do_lower_case def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__=None ) -> str: a_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> List[int]: a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> Tuple[str]: a_ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
697
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = UnCLIPImageVariationPipeline lowerCamelCase_ = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"} lowerCamelCase_ = IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase_ = [ "generator", "return_dict", "decoder_num_inference_steps", "super_res_num_inference_steps", ] lowerCamelCase_ = False @property def _snake_case ( self :List[str] ) -> Tuple: """simple docstring""" return 32 @property def _snake_case ( self :List[Any] ) -> Tuple: """simple docstring""" return 32 @property def _snake_case ( self :Optional[int] ) -> Optional[Any]: """simple docstring""" return self.time_input_dim @property def _snake_case ( self :List[str] ) -> Dict: """simple docstring""" return self.time_input_dim * 4 @property def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" return 100 @property def _snake_case ( self :int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def _snake_case ( self :int ) -> Dict: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__A ) @property def _snake_case ( self :Union[str, Any] ) -> Any: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(__A ) @property def _snake_case ( self :List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = { """clip_embeddings_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """cross_attention_dim""": self.cross_attention_dim, } SCREAMING_SNAKE_CASE__ = UnCLIPTextProjModel(**__A ) return model @property def _snake_case ( self :Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = { """sample_size""": 32, # RGB in channels """in_channels""": 3, # Out channels is double in channels because predicts mean and variance """out_channels""": 6, """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": """identity""", } SCREAMING_SNAKE_CASE__ = UNetaDConditionModel(**__A ) return model @property def _snake_case ( self :List[str] ) -> Dict: """simple docstring""" return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _snake_case ( self :Tuple ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _snake_case ( self :Optional[int] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(1 ) SCREAMING_SNAKE_CASE__ = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _snake_case ( self :str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.dummy_decoder SCREAMING_SNAKE_CASE__ = self.dummy_text_proj SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ = self.dummy_tokenizer SCREAMING_SNAKE_CASE__ = self.dummy_super_res_first SCREAMING_SNAKE_CASE__ = self.dummy_super_res_last SCREAMING_SNAKE_CASE__ = UnCLIPScheduler( variance_type="""learned_range""" , prediction_type="""epsilon""" , num_train_timesteps=1000 , ) SCREAMING_SNAKE_CASE__ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""epsilon""" , num_train_timesteps=1000 , ) SCREAMING_SNAKE_CASE__ = CLIPImageProcessor(crop_size=32 , size=32 ) SCREAMING_SNAKE_CASE__ = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _snake_case ( self :Union[str, Any] , __A :Optional[int] , __A :List[str]=0 , __A :str=True ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A ) if str(__A ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(__A ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=__A ).manual_seed(__A ) if pil_image: SCREAMING_SNAKE_CASE__ = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE__ = input_image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE__ = DiffusionPipeline.numpy_to_pil(__A )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _snake_case ( self :str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = """cpu""" SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__A ) SCREAMING_SNAKE_CASE__ = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A , pil_image=__A ) SCREAMING_SNAKE_CASE__ = pipe(**__A ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A , pil_image=__A ) SCREAMING_SNAKE_CASE__ = pipe( **__A , return_dict=__A , )[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self :List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = """cpu""" SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__A ) SCREAMING_SNAKE_CASE__ = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A , pil_image=__A ) SCREAMING_SNAKE_CASE__ = pipe(**__A ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A , pil_image=__A ) SCREAMING_SNAKE_CASE__ = pipe( **__A , return_dict=__A , )[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self :List[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = """cpu""" SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__A ) SCREAMING_SNAKE_CASE__ = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A , pil_image=__A ) SCREAMING_SNAKE_CASE__ = [ pipeline_inputs["""image"""], pipeline_inputs["""image"""], ] SCREAMING_SNAKE_CASE__ = pipe(**__A ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A , pil_image=__A ) SCREAMING_SNAKE_CASE__ = [ tuple_pipeline_inputs["""image"""], tuple_pipeline_inputs["""image"""], ] SCREAMING_SNAKE_CASE__ = pipe( **__A , return_dict=__A , )[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = torch.device("""cpu""" ) class UpperCamelCase_ : lowerCamelCase_ = 1 SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__A ) SCREAMING_SNAKE_CASE__ = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ = torch.Generator(device=__A ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe.decoder.dtype SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) SCREAMING_SNAKE_CASE__ = pipe.prepare_latents( __A , dtype=__A , device=__A , generator=__A , latents=__A , scheduler=DummyScheduler() ) SCREAMING_SNAKE_CASE__ = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) SCREAMING_SNAKE_CASE__ = pipe.prepare_latents( __A , dtype=__A , device=__A , generator=__A , latents=__A , scheduler=DummyScheduler() ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A , pil_image=__A ) SCREAMING_SNAKE_CASE__ = pipe( **__A , decoder_latents=__A , super_res_latents=__A ).images SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A , pil_image=__A ) # Don't pass image, instead pass embedding SCREAMING_SNAKE_CASE__ = pipeline_inputs.pop("""image""" ) SCREAMING_SNAKE_CASE__ = pipe.image_encoder(__A ).image_embeds SCREAMING_SNAKE_CASE__ = pipe( **__A , decoder_latents=__A , super_res_latents=__A , image_embeddings=__A , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def _snake_case ( self :Any ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = torch_device == """cpu""" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor SCREAMING_SNAKE_CASE__ = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=__A , expected_max_diff=__A ) @skip_mps def _snake_case ( self :Optional[int] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = torch_device == """cpu""" SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] self._test_inference_batch_single_identical( test_max_difference=__A , relax_max_difference=__A , additional_params_copy_to_batched_inputs=__A , ) def _snake_case ( self :Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes SCREAMING_SNAKE_CASE__ = [2, 3] self._test_inference_batch_consistent( batch_sizes=__A , additional_params_copy_to_batched_inputs=__A , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=__A ) @skip_mps def _snake_case ( self :Optional[int] ) -> List[str]: """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def _snake_case ( self :str ) -> int: """simple docstring""" return super().test_save_load_local() @skip_mps def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" return super().test_save_load_optional_components() @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :List[str] ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self :int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png""" ) SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/unclip/karlo_v1_alpha_cat_variation_fp16.npy""" ) SCREAMING_SNAKE_CASE__ = UnCLIPImageVariationPipeline.from_pretrained( """kakaobrain/karlo-v1-alpha-image-variations""" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ = pipeline.to(__A ) pipeline.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipeline( __A , generator=__A , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(__A , __A , 15 )
6
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "lilt" def __init__( self , UpperCAmelCase__=3_0522 , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=512 , UpperCAmelCase__=2 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=0 , UpperCAmelCase__="absolute" , UpperCAmelCase__=None , UpperCAmelCase__=4 , UpperCAmelCase__=1024 , **UpperCAmelCase__ , ) -> Optional[Any]: super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = classifier_dropout a_ = channel_shrink_ratio a_ = max_ad_position_embeddings
697
0
"""simple docstring""" def _snake_case ( _snake_case : str ) -> str: '''simple docstring''' return " ".join( ''.join(word[::-1] ) if len(_snake_case ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
7
'''simple docstring''' from __future__ import annotations def a ( _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # We need to create solution object to save path. a_ = [[0 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] a_ = run_maze(_UpperCAmelCase , 0 , 0 , _UpperCAmelCase ) if solved: print('\n'.join(str(_UpperCAmelCase ) for row in solutions ) ) else: print('No solution exists!' ) return solved def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # Final check point. if i == j == (size - 1): a_ = 1 return True a_ = (not i < 0) and (not j < 0) # Check lower bounds a_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. a_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited a_ = 1 # check for directions if ( run_maze(_UpperCAmelCase , i + 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j + 1 , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , i - 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j - 1 , _UpperCAmelCase ) ): return True a_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
697
0
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : List[str] = {'''vocab_file''': '''vocab.json'''} lowercase__ : Union[str, Any] = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } lowercase__ : Optional[int] = {'''mgp-str''': 27} class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _UpperCAmelCase , _UpperCAmelCase="[GO]" , _UpperCAmelCase="[GO]" , _UpperCAmelCase="[s]" , _UpperCAmelCase="[GO]" , **_UpperCAmelCase): '''simple docstring''' super().__init__( unk_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding='utf-8') as vocab_handle: __A : Union[str, Any] = json.load(_UpperCAmelCase) __A : str = {v: k for k, v in self.vocab.items()} @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return len(self.vocab) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Dict = [] for s in text: char_tokens.extend(_UpperCAmelCase) return char_tokens def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return self.vocab.get(_UpperCAmelCase , self.vocab.get(self.unk_token)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return self.decoder.get(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not os.path.isdir(_UpperCAmelCase): logger.error('Vocabulary path ({}) should be a directory'.format(_UpperCAmelCase)) return __A : int = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) with open(_UpperCAmelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase) + '\n') return (vocab_file,)
8
'''simple docstring''' __lowerCAmelCase ={ "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) __lowerCAmelCase ={ "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float: """simple docstring""" a_ = from_type.lower().strip('s' ) a_ = to_type.lower().strip('s' ) a_ = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) a_ = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) if from_sanitized not in METRIC_CONVERSION: a_ = ( F'''Invalid \'from_type\' value: {from_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) if to_sanitized not in METRIC_CONVERSION: a_ = ( F'''Invalid \'to_type\' value: {to_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) a_ = METRIC_CONVERSION[from_sanitized] a_ = METRIC_CONVERSION[to_sanitized] a_ = 1 if from_exponent > to_exponent: a_ = from_exponent - to_exponent else: a_ = -(to_exponent - from_exponent) return value * pow(1_0 , _UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
697
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file SCREAMING_SNAKE_CASE__ = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def A ( __UpperCamelCase=None ) -> Union[str, Any]: if subparsers is not None: A__ = subparsers.add_parser('tpu-config' , description=_description ) else: A__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments A__ = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=__UpperCamelCase , default=__UpperCamelCase , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=__UpperCamelCase , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=__UpperCamelCase , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) A__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=__UpperCamelCase , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=__UpperCamelCase ) return parser def A ( __UpperCamelCase ) -> Optional[Any]: A__ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__UpperCamelCase ): A__ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: A__ = defaults.command_file if not args.command and defaults.commands is not None: A__ = defaults.commands if not args.tpu_name: A__ = defaults.tpu_name if not args.tpu_zone: A__ = defaults.tpu_zone if args.accelerate_version == "dev": A__ = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": A__ = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , __UpperCamelCase ): A__ = f'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: A__ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __UpperCamelCase ): A__ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate A__ = ['cd /usr/share'] if args.install_accelerate: new_cmd += [f'''pip install {args.accelerate_version}'''] new_cmd += args.command A__ = '; '.join(__UpperCamelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess A__ = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'''Running {" ".join(__UpperCamelCase )}''' ) return subprocess.run(__UpperCamelCase ) print('Successfully setup pod.' ) def A ( ) -> Optional[Any]: A__ = tpu_command_parser() A__ = parser.parse_args() tpu_command_launcher(__UpperCamelCase )
9
'''simple docstring''' import unittest from transformers import DonutProcessor __lowerCAmelCase ="naver-clova-ix/donut-base" class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = DonutProcessor.from_pretrained(UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } a_ = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) a_ = self.processor.tokenajson(UpperCAmelCase__ ) self.assertDictEqual(UpperCAmelCase__ , UpperCAmelCase__ )
697
0
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _snake_case : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__="resnet50" , UpperCAmelCase__=3 , UpperCAmelCase__=32 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=True , ) -> Optional[Any]: a_ = parent a_ = out_indices if out_indices is not None else [4] a_ = stage_names a_ = out_features a_ = backbone a_ = batch_size a_ = image_size a_ = num_channels a_ = use_pretrained_backbone a_ = is_training def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ = self.get_config() return config, pixel_values def __SCREAMING_SNAKE_CASE ( self ) -> Dict: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = TimmBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): a_ = model(UpperCAmelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = self.prepare_config_and_inputs() a_ , a_ = config_and_inputs a_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _snake_case ( snake_case , snake_case , snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = (TimmBackbone,) if is_torch_available() else () _UpperCamelCase = {"feature-extraction": TimmBackbone} if is_torch_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = TimmBackboneModelTester(self ) a_ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = 'resnet18' a_ = 'microsoft/resnet-18' a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ , out_indices=[1, 2, 3] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Safetensors is not supported by timm.' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) a_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = True a_ = self.has_attentions # no need to test all models as different heads yield the same functionality a_ = self.all_model_classes[0] a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) a_ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = model(**UpperCAmelCase__ ) a_ = outputs[0][-1] # Encoder-/Decoder-only models a_ = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a_ = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCAmelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = None a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = False a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ )
697
0
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" _a = 2 _a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__A) if n > 1: factors.append(__A) return factors if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=7 , UpperCAmelCase__=3 , UpperCAmelCase__=18 , UpperCAmelCase__=30 , UpperCAmelCase__=400 , UpperCAmelCase__=True , UpperCAmelCase__=None , UpperCAmelCase__=True , ) -> List[Any]: a_ = size if size is not None else {'height': 18, 'width': 18} a_ = parent a_ = batch_size a_ = num_channels a_ = image_size a_ = min_resolution a_ = max_resolution a_ = do_resize a_ = size a_ = apply_ocr def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _snake_case ( snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = LayoutLMvaImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'apply_ocr' ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) a_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , UpperCAmelCase__ ) self.assertIsInstance(encoding.boxes , UpperCAmelCase__ ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> int: # with apply_OCR = True a_ = LayoutLMvaImageProcessor() from datasets import load_dataset a_ = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) a_ = Image.open(ds[0]['file'] ).convert('RGB' ) a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 a_ = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 a_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCAmelCase__ ) self.assertListEqual(encoding.boxes , UpperCAmelCase__ ) # with apply_OCR = False a_ = LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
697
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ : Union[str, Any] = { """configuration_chinese_clip""": [ """CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ChineseCLIPConfig""", """ChineseCLIPOnnxConfig""", """ChineseCLIPTextConfig""", """ChineseCLIPVisionConfig""", ], """processing_chinese_clip""": ["""ChineseCLIPProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[Any] = ["""ChineseCLIPFeatureExtractor"""] lowerCamelCase__ : Optional[int] = ["""ChineseCLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ChineseCLIPModel""", """ChineseCLIPPreTrainedModel""", """ChineseCLIPTextModel""", """ChineseCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
'''simple docstring''' import math def a ( _UpperCAmelCase ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( _UpperCAmelCase = 1_0_0_0_1 ) -> int: """simple docstring""" try: a_ = int(_UpperCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) a_ = [] a_ = 2 while len(_UpperCAmelCase ) < nth: if is_prime(_UpperCAmelCase ): primes.append(_UpperCAmelCase ) num += 1 else: num += 1 return primes[len(_UpperCAmelCase ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
697
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any]=0.999 , UpperCAmelCase_ : Dict="cosine" , ) -> List[str]: if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCAmelCase_ : Dict ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCAmelCase_ : Any ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __lowerCamelCase : List[str] = [] for i in range(UpperCAmelCase_ ): __lowerCamelCase : Any = i / num_diffusion_timesteps __lowerCamelCase : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCAmelCase_ ) / alpha_bar_fn(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) return torch.tensor(UpperCAmelCase_ , dtype=torch.floataa ) class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[Any] = [e.name for e in KarrasDiffusionSchedulers] lowerCamelCase : List[str] = 2 @register_to_config def __init__( self , SCREAMING_SNAKE_CASE_ = 10_00 , SCREAMING_SNAKE_CASE_ = 0.0_0_0_8_5 , SCREAMING_SNAKE_CASE_ = 0.0_1_2 , SCREAMING_SNAKE_CASE_ = "linear" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "epsilon" , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = "linspace" , SCREAMING_SNAKE_CASE_ = 0 , ) -> Dict: if trained_betas is not None: __lowerCamelCase : Optional[Any] = torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCamelCase : Union[str, Any] = torch.linspace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase : Any = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase : Optional[int] = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ , alpha_transform_type='cosine' ) elif beta_schedule == "exp": __lowerCamelCase : Union[str, Any] = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ , alpha_transform_type='exp' ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) __lowerCamelCase : Dict = 1.0 - self.betas __lowerCamelCase : Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = use_karras_sigmas def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> List[str]: if schedule_timesteps is None: __lowerCamelCase : Dict = self.timesteps __lowerCamelCase : Any = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCamelCase : List[str] = 1 if len(SCREAMING_SNAKE_CASE_ ) > 1 else 0 else: __lowerCamelCase : Optional[Any] = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep __lowerCamelCase : Union[str, Any] = self._index_counter[timestep_int] return indices[pos].item() @property def lowercase_ ( self ) -> Dict: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> torch.FloatTensor: __lowerCamelCase : Dict = self.index_for_timestep(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = self.sigmas[step_index] __lowerCamelCase : List[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ) -> str: __lowerCamelCase : Optional[int] = num_inference_steps __lowerCamelCase : List[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCamelCase : List[Any] = np.linspace(0 , num_train_timesteps - 1 , SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCamelCase : str = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase : Optional[Any] = (np.arange(0 , SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1].copy().astype(SCREAMING_SNAKE_CASE_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCamelCase : Any = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase : List[str] = (np.arange(SCREAMING_SNAKE_CASE_ , 0 , -step_ratio )).round().copy().astype(SCREAMING_SNAKE_CASE_ ) timesteps -= 1 else: raise ValueError( f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __lowerCamelCase : Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCamelCase : Dict = np.log(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = np.interp(SCREAMING_SNAKE_CASE_ , np.arange(0 , len(SCREAMING_SNAKE_CASE_ ) ) , SCREAMING_SNAKE_CASE_ ) if self.config.use_karras_sigmas: __lowerCamelCase : Any = self._convert_to_karras(in_sigmas=SCREAMING_SNAKE_CASE_ , num_inference_steps=self.num_inference_steps ) __lowerCamelCase : List[str] = np.array([self._sigma_to_t(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for sigma in sigmas] ) __lowerCamelCase : List[Any] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCamelCase : Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCamelCase : str = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): # mps does not support float64 __lowerCamelCase : int = timesteps.to(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) else: __lowerCamelCase : Optional[int] = timesteps.to(device=SCREAMING_SNAKE_CASE_ ) # empty dt and derivative __lowerCamelCase : Tuple = None __lowerCamelCase : str = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCamelCase : int = defaultdict(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: # get log sigma __lowerCamelCase : str = np.log(SCREAMING_SNAKE_CASE_ ) # get distribution __lowerCamelCase : Optional[Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __lowerCamelCase : int = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __lowerCamelCase : Optional[Any] = low_idx + 1 __lowerCamelCase : Optional[Any] = log_sigmas[low_idx] __lowerCamelCase : Optional[int] = log_sigmas[high_idx] # interpolate sigmas __lowerCamelCase : Union[str, Any] = (low - log_sigma) / (low - high) __lowerCamelCase : Optional[Any] = np.clip(SCREAMING_SNAKE_CASE_ , 0 , 1 ) # transform interpolation to time range __lowerCamelCase : List[str] = (1 - w) * low_idx + w * high_idx __lowerCamelCase : str = t.reshape(sigma.shape ) return t def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> torch.FloatTensor: __lowerCamelCase : float = in_sigmas[-1].item() __lowerCamelCase : float = in_sigmas[0].item() __lowerCamelCase : int = 7.0 # 7.0 is the value used in the paper __lowerCamelCase : int = np.linspace(0 , 1 , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = sigma_min ** (1 / rho) __lowerCamelCase : List[Any] = sigma_max ** (1 / rho) __lowerCamelCase : Union[str, Any] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowercase_ ( self ) -> Any: return self.dt is None def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True , ) -> Union[SchedulerOutput, Tuple]: __lowerCamelCase : Union[str, Any] = self.index_for_timestep(SCREAMING_SNAKE_CASE_ ) # advance index counter by 1 __lowerCamelCase : Any = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCamelCase : List[Any] = self.sigmas[step_index] __lowerCamelCase : Optional[int] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __lowerCamelCase : str = self.sigmas[step_index - 1] __lowerCamelCase : int = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCamelCase : List[str] = 0 __lowerCamelCase : Any = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCamelCase : List[str] = sigma_hat if self.state_in_first_order else sigma_next __lowerCamelCase : Optional[int] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase : List[str] = sigma_hat if self.state_in_first_order else sigma_next __lowerCamelCase : Optional[int] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __lowerCamelCase : Any = model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.config.clip_sample: __lowerCamelCase : Any = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCamelCase : str = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCamelCase : str = sigma_next - sigma_hat # store for 2nd order step __lowerCamelCase : str = derivative __lowerCamelCase : Any = dt __lowerCamelCase : Any = sample else: # 2. 2nd order / Heun's method __lowerCamelCase : Optional[Any] = (sample - pred_original_sample) / sigma_next __lowerCamelCase : int = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __lowerCamelCase : Optional[int] = self.dt __lowerCamelCase : Dict = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __lowerCamelCase : Dict = None __lowerCamelCase : Any = None __lowerCamelCase : Optional[Any] = None __lowerCamelCase : int = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowerCamelCase : Optional[int] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(SCREAMING_SNAKE_CASE_ ): # mps does not support float64 __lowerCamelCase : str = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCamelCase : Union[str, Any] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCamelCase : Dict = self.timesteps.to(original_samples.device ) __lowerCamelCase : Any = timesteps.to(original_samples.device ) __lowerCamelCase : int = [self.index_for_timestep(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for t in timesteps] __lowerCamelCase : Optional[int] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCamelCase : Dict = sigma.unsqueeze(-1 ) __lowerCamelCase : int = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Any: return self.config.num_train_timesteps
13
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = 10 def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = [1, 2, 3, 4] a_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = '' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) a_ , a_ = process_story(UpperCAmelCase__ ) a_ = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = ['It was the best of times.'] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = torch.tensor([1, 2, 3, 4] ) a_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 0 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 23 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 1 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = 101 a_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) a_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) a_ = compute_token_type_ids(UpperCAmelCase__ , UpperCAmelCase__ ) np.testing.assert_array_equal(UpperCAmelCase__ , UpperCAmelCase__ )
697
0
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __UpperCAmelCase ( __a : str ,__a : Optional[int] ) -> str: """simple docstring""" assert isinstance(__a ,__a ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' ,[False, True] ) def __UpperCAmelCase ( __a : Any ,__a : Union[str, Any] ,__a : int ) -> Tuple: """simple docstring""" _a : str = tmp_path / '''cache''' _a : List[Any] = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _a : List[Any] = TextDatasetReader(__a ,cache_dir=__a ,keep_in_memory=__a ).read() _check_text_dataset(__a ,__a ) @pytest.mark.parametrize( '''features''' ,[ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] ,) def __UpperCAmelCase ( __a : Optional[int] ,__a : Optional[Any] ,__a : int ) -> List[str]: """simple docstring""" _a : Dict = tmp_path / '''cache''' _a : Optional[Any] = {'''text''': '''string'''} _a : Optional[Any] = features.copy() if features else default_expected_features _a : Tuple = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) _a : List[str] = TextDatasetReader(__a ,features=__a ,cache_dir=__a ).read() _check_text_dataset(__a ,__a ) @pytest.mark.parametrize('''split''' ,[None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __UpperCAmelCase ( __a : str ,__a : int ,__a : List[str] ) -> List[Any]: """simple docstring""" _a : Any = tmp_path / '''cache''' _a : List[str] = {'''text''': '''string'''} _a : str = TextDatasetReader(__a ,cache_dir=__a ,split=__a ).read() _check_text_dataset(__a ,__a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' ,[str, list] ) def __UpperCAmelCase ( __a : int ,__a : int ,__a : str ) -> Optional[Any]: """simple docstring""" if issubclass(__a ,__a ): _a : Tuple = text_path elif issubclass(__a ,__a ): _a : Tuple = [text_path] _a : Union[str, Any] = tmp_path / '''cache''' _a : Any = {'''text''': '''string'''} _a : int = TextDatasetReader(__a ,cache_dir=__a ).read() _check_text_dataset(__a ,__a ) def __UpperCAmelCase ( __a : Tuple ,__a : Union[str, Any] ,__a : Optional[int]=("train",) ) -> List[Any]: """simple docstring""" assert isinstance(__a ,__a ) for split in splits: _a : Union[str, Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' ,[False, True] ) def __UpperCAmelCase ( __a : int ,__a : int ,__a : Optional[Any] ) -> Any: """simple docstring""" _a : List[str] = tmp_path / '''cache''' _a : List[str] = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _a : Union[str, Any] = TextDatasetReader({'''train''': text_path} ,cache_dir=__a ,keep_in_memory=__a ).read() _check_text_datasetdict(__a ,__a ) @pytest.mark.parametrize( '''features''' ,[ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] ,) def __UpperCAmelCase ( __a : Dict ,__a : List[str] ,__a : Optional[int] ) -> Tuple: """simple docstring""" _a : Optional[Any] = tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" _a : Optional[Any] = {'''text''': '''string'''} _a : str = features.copy() if features else default_expected_features _a : Dict = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) _a : Union[str, Any] = TextDatasetReader({'''train''': text_path} ,features=__a ,cache_dir=__a ).read() _check_text_datasetdict(__a ,__a ) @pytest.mark.parametrize('''split''' ,[None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __UpperCAmelCase ( __a : int ,__a : int ,__a : Dict ) -> Dict: """simple docstring""" if split: _a : Union[str, Any] = {split: text_path} else: _a : Any = '''train''' _a : Any = {'''train''': text_path, '''test''': text_path} _a : List[str] = tmp_path / '''cache''' _a : Union[str, Any] = {'''text''': '''string'''} _a : Tuple = TextDatasetReader(__a ,cache_dir=__a ).read() _check_text_datasetdict(__a ,__a ,splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
14
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __lowerCAmelCase ="\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class _snake_case ( unittest.TestCase , snake_case ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = load_tool('text-question-answering' ) self.tool.setup() a_ = load_tool('text-question-answering' , remote=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.remote_tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = self.tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = self.remote_tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' )
697
0
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) A : Any = logging.getLogger(__name__) A : int = 'Hello world! cécé herlolip' A : Optional[int] = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = BertAbsConfig( temp_dir=""".""" , finetune_bert=__magic_name__ , large=__magic_name__ , share_emb=__magic_name__ , use_bert_emb=__magic_name__ , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) lowercase__ = torch.load(__magic_name__ , lambda __magic_name__ , __magic_name__ : storage ) lowercase__ = AbsSummarizer(__magic_name__ , torch.device("""cpu""" ) , __magic_name__ ) original.eval() lowercase__ = BertAbsSummarizer(__magic_name__ , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) lowercase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs lowercase__ = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__magic_name__ )) ) lowercase__ = torch.tensor(__magic_name__ ).unsqueeze(0 ) lowercase__ = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__magic_name__ )) ) lowercase__ = torch.tensor(__magic_name__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass lowercase__ = encoder_input_ids lowercase__ = decoder_input_ids lowercase__ = lowercase__ = None lowercase__ = None lowercase__ = lowercase__ = None lowercase__ = lowercase__ = None lowercase__ = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical lowercase__ = original(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )[0] lowercase__ = original.generator(__magic_name__ ) lowercase__ = new_model( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )[0] lowercase__ = new_model.generator(__magic_name__ ) lowercase__ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(__magic_name__ ) ) lowercase__ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(__magic_name__ ) ) lowercase__ = torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": A : List[str] = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) A : Tuple = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
15
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase ={"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __lowerCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
697
0
from __future__ import annotations def __a ( A__ : list , A__ : int , A__ : int , A__ : int ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) SCREAMING_SNAKE_CASE = result + left + right return input_list def __a ( A__ : list ): if len(A__ ) <= 1: return input_list SCREAMING_SNAKE_CASE = list(A__ ) # iteration for two-way merging SCREAMING_SNAKE_CASE = 2 while p <= len(A__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(A__ ) , A__ ): SCREAMING_SNAKE_CASE = i SCREAMING_SNAKE_CASE = i + p - 1 SCREAMING_SNAKE_CASE = (low + high + 1) // 2 SCREAMING_SNAKE_CASE = merge(A__ , A__ , A__ , A__ ) # final merge of last two parts if p * 2 >= len(A__ ): SCREAMING_SNAKE_CASE = i SCREAMING_SNAKE_CASE = merge(A__ , 0 , A__ , len(A__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": __A : Any = input('Enter numbers separated by a comma:\n').strip() if user_input == "": __A : Union[str, Any] = [] else: __A : Optional[Any] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
16
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "vit" def __init__( self , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=224 , UpperCAmelCase__=16 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=16 , **UpperCAmelCase__ , ) -> Dict: super().__init__(**UpperCAmelCase__ ) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = image_size a_ = patch_size a_ = num_channels a_ = qkv_bias a_ = encoder_stride class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __SCREAMING_SNAKE_CASE ( self ) -> float: return 1e-4
697
0
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ : Dict = { '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } UpperCAmelCase_ : Dict = logging.get_logger(__name__) class lowerCamelCase_ ( _lowercase ): _lowercase : Tuple = '''mask2former''' _lowercase : Optional[Any] = ['''swin'''] _lowercase : Dict = {'''hidden_size''': '''hidden_dim'''} def __init__( self : Optional[Any] , __A : Optional[Dict] = None , __A : int = 256 , __A : int = 256 , __A : int = 256 , __A : int = 1024 , __A : str = "relu" , __A : int = 6 , __A : int = 10 , __A : int = 8 , __A : float = 0.0 , __A : int = 2048 , __A : bool = False , __A : bool = False , __A : int = 4 , __A : int = 255 , __A : int = 100 , __A : float = 0.1 , __A : float = 2.0 , __A : float = 5.0 , __A : float = 5.0 , __A : int = 1_2544 , __A : float = 3.0 , __A : float = 0.7_5 , __A : float = 0.0_2 , __A : float = 1.0 , __A : bool = True , __A : List[int] = [4, 8, 16, 32] , __A : bool = None , **__A : Dict , ): if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) __A : List[Any] = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__A , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__A , __A ): __A : Any = backbone_config.pop("""model_type""" ) __A : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] __A : str = config_class.from_dict(__A ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ F"""Supported model types: {",".join(self.backbones_supported )}""" ) __A : int = backbone_config __A : Optional[Any] = feature_size __A : Union[str, Any] = mask_feature_size __A : List[str] = hidden_dim __A : Union[str, Any] = encoder_feedforward_dim __A : int = activation_function __A : Any = encoder_layers __A : str = decoder_layers __A : List[str] = num_attention_heads __A : Tuple = dropout __A : Tuple = dim_feedforward __A : Optional[int] = pre_norm __A : Optional[Any] = enforce_input_projection __A : Any = common_stride __A : Any = ignore_value __A : List[str] = num_queries __A : List[str] = no_object_weight __A : str = class_weight __A : Any = mask_weight __A : Dict = dice_weight __A : Optional[Any] = train_num_points __A : str = oversample_ratio __A : str = importance_sample_ratio __A : List[str] = init_std __A : Any = init_xavier_std __A : Any = use_auxiliary_loss __A : Optional[int] = feature_strides __A : List[str] = output_auxiliary_logits __A : List[str] = decoder_layers super().__init__(**__A ) @classmethod def lowerCAmelCase_ ( cls : str , __A : PretrainedConfig , **__A : int ): return cls( backbone_config=__A , **__A , ) def lowerCAmelCase_ ( self : Optional[Any] ): __A : Optional[int] = copy.deepcopy(self.__dict__ ) __A : Any = self.backbone_config.to_dict() __A : Optional[int] = self.__class__.model_type return output
17
'''simple docstring''' def a ( _UpperCAmelCase = 5_0 ) -> int: """simple docstring""" a_ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
697
0
'''simple docstring''' import math import os import sys def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = "" try: with open(SCREAMING_SNAKE_CASE_ , "rb" ) as binary_file: _lowerCAmelCase = binary_file.read() for dat in data: _lowerCAmelCase = F'''{dat:08b}''' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def __a(SCREAMING_SNAKE_CASE_ : dict[str, str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lexicon.pop(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = last_match_id if math.loga(SCREAMING_SNAKE_CASE_ ).is_integer(): for curr_key in lexicon: _lowerCAmelCase = "0" + lexicon[curr_key] _lowerCAmelCase = bin(SCREAMING_SNAKE_CASE_ )[2:] def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = {"0": "0", "1": "1"} _lowerCAmelCase , _lowerCAmelCase = "", "" _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) for i in range(len(SCREAMING_SNAKE_CASE_ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _lowerCAmelCase = lexicon[curr_string] result += last_match_id add_key_to_lexicon(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) index += 1 _lowerCAmelCase = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": _lowerCAmelCase = lexicon[curr_string] result += last_match_id return result def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = os.path.getsize(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = bin(SCREAMING_SNAKE_CASE_ )[2:] _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) return "0" * (length_length - 1) + file_length_binary + compressed def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = 8 try: with open(SCREAMING_SNAKE_CASE_ , "wb" ) as opened_file: _lowerCAmelCase = [ to_write[i : i + byte_length] for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(SCREAMING_SNAKE_CASE_ , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = read_file_binary(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = compress_data(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = add_file_length(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) write_file_binary(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
18
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def a ( ) -> None: """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
697
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
19
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a ( _UpperCAmelCase ) -> int: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _snake_case ( snake_case ): """simple docstring""" @staticmethod def __SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ) -> str: a_ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=UpperCAmelCase__ , help='Name of the model to download' ) download_parser.set_defaults(func=UpperCAmelCase__ ) def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = model a_ = cache a_ = force a_ = trust_remote_code def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
697
0
def _lowercase( __a : int ): if not isinstance(__a , __a ): a__ =f"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if number < 0: return False a__ =number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
20
'''simple docstring''' def a ( _UpperCAmelCase ) -> int: """simple docstring""" assert column_title.isupper() a_ = 0 a_ = len(_UpperCAmelCase ) - 1 a_ = 0 while index >= 0: a_ = (ord(column_title[index] ) - 6_4) * pow(2_6 , _UpperCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
697
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class __A ( UpperCamelCase__ ): UpperCamelCase = """blenderbot-small""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :Any , __snake_case :Optional[int]=5_02_65 , __snake_case :Any=5_12 , __snake_case :Tuple=8 , __snake_case :Optional[Any]=20_48 , __snake_case :List[Any]=16 , __snake_case :Any=8 , __snake_case :Union[str, Any]=20_48 , __snake_case :Any=16 , __snake_case :List[str]=0.0 , __snake_case :Dict=0.0 , __snake_case :str=True , __snake_case :Optional[int]=True , __snake_case :Optional[int]="gelu" , __snake_case :Dict=5_12 , __snake_case :Optional[Any]=0.1 , __snake_case :Tuple=0.0 , __snake_case :Optional[Any]=0.0 , __snake_case :Optional[int]=0.02 , __snake_case :Optional[int]=1 , __snake_case :str=False , __snake_case :List[Any]=0 , __snake_case :int=1 , __snake_case :List[Any]=2 , __snake_case :Optional[Any]=2 , **__snake_case :str , ): '''simple docstring''' __magic_name__ : int =vocab_size __magic_name__ : Optional[Any] =max_position_embeddings __magic_name__ : Optional[Any] =d_model __magic_name__ : str =encoder_ffn_dim __magic_name__ : Tuple =encoder_layers __magic_name__ : List[str] =encoder_attention_heads __magic_name__ : Union[str, Any] =decoder_ffn_dim __magic_name__ : int =decoder_layers __magic_name__ : Tuple =decoder_attention_heads __magic_name__ : Tuple =dropout __magic_name__ : List[str] =attention_dropout __magic_name__ : int =activation_dropout __magic_name__ : Union[str, Any] =activation_function __magic_name__ : Any =init_std __magic_name__ : Any =encoder_layerdrop __magic_name__ : Optional[int] =decoder_layerdrop __magic_name__ : int =use_cache __magic_name__ : Dict =encoder_layers __magic_name__ : Tuple =scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) class __A ( UpperCamelCase__ ): @property def A__ ( self :Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __magic_name__ : List[Any] =OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __magic_name__ : Tuple ={0: """batch"""} __magic_name__ : Tuple ={0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __magic_name__ : Optional[Any] ={0: """batch""", 1: """decoder_sequence"""} __magic_name__ : Union[str, Any] ={0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__snake_case , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. __magic_name__ : Optional[Any] =OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __magic_name__ , __magic_name__ : List[Any] =self.num_layers for i in range(__snake_case ): __magic_name__ : Optional[int] ={0: """batch""", 2: """past_sequence + sequence"""} __magic_name__ : str ={0: """batch""", 2: """past_sequence + sequence"""} else: __magic_name__ : Dict =OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def A__ ( self :Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __magic_name__ : List[Any] =super().outputs else: __magic_name__ : Optional[Any] =super(__snake_case , self ).outputs if self.use_past: __magic_name__ , __magic_name__ : int =self.num_layers for i in range(__snake_case ): __magic_name__ : Optional[int] ={0: """batch""", 2: """past_sequence + sequence"""} __magic_name__ : str ={0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def A__ ( self :List[Any] , __snake_case :PreTrainedTokenizer , __snake_case :int = -1 , __snake_case :int = -1 , __snake_case :bool = False , __snake_case :Optional[TensorType] = None , ): '''simple docstring''' __magic_name__ : str =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Generate decoder inputs __magic_name__ : List[str] =seq_length if not self.use_past else 1 __magic_name__ : Any =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) __magic_name__ : Any ={f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __magic_name__ : List[str] =dict(**__snake_case , **__snake_case ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __magic_name__ , __magic_name__ : int =common_inputs["""input_ids"""].shape __magic_name__ : Any =common_inputs["""decoder_input_ids"""].shape[1] __magic_name__ , __magic_name__ : Optional[int] =self.num_attention_heads __magic_name__ : int =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __magic_name__ : List[Any] =decoder_seq_length + 3 __magic_name__ : List[Any] =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __magic_name__ : Any =torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(__snake_case , __snake_case )] , dim=1 ) __magic_name__ : Optional[Any] =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered __magic_name__ , __magic_name__ : Dict =self.num_layers __magic_name__ : List[Any] =min(__snake_case , __snake_case ) __magic_name__ : List[Any] =max(__snake_case , __snake_case ) - min_num_layers __magic_name__ : Optional[Any] ="""encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(__snake_case ): common_inputs["past_key_values"].append( ( torch.zeros(__snake_case ), torch.zeros(__snake_case ), torch.zeros(__snake_case ), torch.zeros(__snake_case ), ) ) # TODO: test this. __magic_name__ : int =encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(__snake_case , __snake_case ): common_inputs["past_key_values"].append((torch.zeros(__snake_case ), torch.zeros(__snake_case )) ) return common_inputs def A__ ( self :List[str] , __snake_case :PreTrainedTokenizer , __snake_case :int = -1 , __snake_case :int = -1 , __snake_case :bool = False , __snake_case :Optional[TensorType] = None , ): '''simple docstring''' __magic_name__ : Optional[Any] =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __magic_name__ , __magic_name__ : int =common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __magic_name__ : int =seqlen + 2 __magic_name__ , __magic_name__ : Tuple =self.num_layers __magic_name__ , __magic_name__ : List[str] =self.num_attention_heads __magic_name__ : List[Any] =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __magic_name__ : Union[str, Any] =common_inputs["""attention_mask"""].dtype __magic_name__ : int =torch.cat( [common_inputs["""attention_mask"""], torch.ones(__snake_case , __snake_case , dtype=__snake_case )] , dim=1 ) __magic_name__ : Dict =[ (torch.zeros(__snake_case ), torch.zeros(__snake_case )) for _ in range(__snake_case ) ] return common_inputs def A__ ( self :Any , __snake_case :PreTrainedTokenizer , __snake_case :int = -1 , __snake_case :int = -1 , __snake_case :bool = False , __snake_case :Optional[TensorType] = None , ): '''simple docstring''' __magic_name__ : Tuple =compute_effective_axis_dimension( __snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __magic_name__ : Any =tokenizer.num_special_tokens_to_add(__snake_case ) __magic_name__ : Optional[Any] =compute_effective_axis_dimension( __snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__snake_case ) # Generate dummy inputs according to compute batch and sequence __magic_name__ : List[str] =[""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size __magic_name__ : int =dict(tokenizer(__snake_case , return_tensors=__snake_case ) ) return common_inputs def A__ ( self :Optional[Any] , __snake_case :PreTrainedTokenizer , __snake_case :int = -1 , __snake_case :int = -1 , __snake_case :bool = False , __snake_case :Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __magic_name__ : Any =self._generate_dummy_inputs_for_default_and_seqaseq_lm( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) elif self.task == "causal-lm": __magic_name__ : List[Any] =self._generate_dummy_inputs_for_causal_lm( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) else: __magic_name__ : int =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) return common_inputs def A__ ( self :List[str] , __snake_case :Any , __snake_case :Dict , __snake_case :Any , __snake_case :Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __magic_name__ : Union[str, Any] =super()._flatten_past_key_values_(__snake_case , __snake_case , __snake_case , __snake_case ) else: __magic_name__ : Optional[Any] =super(__snake_case , self )._flatten_past_key_values_( __snake_case , __snake_case , __snake_case , __snake_case )
21
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __lowerCAmelCase =logging.get_logger(__name__) class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = ["audio_values", "audio_mask"] def __init__( self , UpperCAmelCase__=2048 , UpperCAmelCase__=1 , UpperCAmelCase__=[16, 16] , UpperCAmelCase__=128 , UpperCAmelCase__=4_4100 , UpperCAmelCase__=86 , UpperCAmelCase__=2048 , UpperCAmelCase__=0.0 , **UpperCAmelCase__ , ) -> Union[str, Any]: super().__init__( feature_size=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , padding_value=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = spectrogram_length a_ = num_channels a_ = patch_size a_ = feature_size // self.patch_size[1] a_ = n_fft a_ = sampling_rate // hop_length_to_sampling_rate a_ = sampling_rate a_ = padding_value a_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=UpperCAmelCase__ , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=UpperCAmelCase__ , norm='slaney' , mel_scale='slaney' , ).T def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> np.ndarray: a_ = spectrogram( UpperCAmelCase__ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=8_0.0 , ) a_ = log_spec[:, :-1] a_ = log_spec - 2_0.0 a_ = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , **UpperCAmelCase__ , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) a_ = isinstance(UpperCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) a_ = is_batched_numpy or ( isinstance(UpperCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a_ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase__ , np.ndarray ): a_ = np.asarray(UpperCAmelCase__ , dtype=np.floataa ) elif isinstance(UpperCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a_ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis a_ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , UpperCAmelCase__ ): a_ = [np.asarray(UpperCAmelCase__ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask a_ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: a_ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] a_ = np.array(UpperCAmelCase__ ).astype(np.floataa ) # convert into correct format for padding a_ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch a_ = np.ones([len(UpperCAmelCase__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) a_ = padded_audio_features * self.padding_value for i in range(len(UpperCAmelCase__ ) ): a_ = audio_features[i] a_ = feature # return as BatchFeature if return_attention_mask: a_ = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: a_ = {'audio_values': padded_audio_features} a_ = BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) return encoded_inputs
697
0
'''simple docstring''' from __future__ import annotations def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) _a = number_of_bytes // partitions _a = [] for i in range(UpperCamelCase ): _a = i * bytes_per_partition + 1 _a = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
22
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Optional[Any]: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = len(set_a.intersection(_UpperCAmelCase ) ) if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) else: a_ = len(set_a.union(_UpperCAmelCase ) ) return intersection / union if isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) ): a_ = [element for element in set_a if element in set_b] if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / union else: a_ = set_a + [element for element in set_b if element not in set_a] return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return None if __name__ == "__main__": __lowerCAmelCase ={"a", "b", "c", "d", "e"} __lowerCAmelCase ={"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
697
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = inspect.getfile(accelerate.test_utils ) UpperCamelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) UpperCamelCase_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) UpperCamelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def _UpperCAmelCase ( self ) -> Dict: print(f"""Found {torch.cuda.device_count()} devices.""" ) UpperCamelCase_ = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def _UpperCAmelCase ( self ) -> Optional[Any]: print(f"""Found {torch.cuda.device_count()} devices.""" ) UpperCamelCase_ = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(f"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def _UpperCAmelCase ( self ) -> List[str]: print(f"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) UpperCamelCase_ = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": snake_case__ : Dict = Accelerator() snake_case__ : str = (accelerator.state.process_index + 2, 1_0) snake_case__ : int = torch.randint(0, 1_0, shape).to(accelerator.device) snake_case__ : List[Any] = """""" snake_case__ : Any = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." snake_case__ : Optional[int] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." snake_case__ : Optional[Any] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
23
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('iterations must be defined as integers' ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) a_ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
697
0
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase_ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def _UpperCamelCase (_lowerCamelCase : str )-> List[Any]: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: __snake_case = k.replace(_lowerCamelCase , _lowerCamelCase ) return k def _UpperCamelCase (_lowerCamelCase : dict , _lowerCamelCase : dict )-> PegasusForConditionalGeneration: '''simple docstring''' __snake_case = DEFAULTS.copy() cfg_kwargs.update(_lowerCamelCase ) __snake_case = PegasusConfig(**_lowerCamelCase ) __snake_case = PegasusForConditionalGeneration(_lowerCamelCase ) __snake_case = torch_model.model.state_dict() __snake_case = {} for k, v in tf_weights.items(): __snake_case = rename_state_dict_key(_lowerCamelCase ) if new_k not in sd: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: __snake_case = v.T __snake_case = torch.tensor(_lowerCamelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected __snake_case = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __snake_case = mapping['''shared.weight'''] __snake_case = mapping['''shared.weight'''] __snake_case = {k: torch.zeros_like(_lowerCamelCase ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**_lowerCamelCase ) __snake_case , __snake_case = torch_model.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) __snake_case = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def _UpperCamelCase (_lowerCamelCase : int="./ckpt/aeslc/model.ckpt-32000" )-> Dict: '''simple docstring''' __snake_case = tf.train.list_variables(_lowerCamelCase ) __snake_case = {} __snake_case = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(_lowerCamelCase , desc='''converting tf checkpoint to dict''' ): __snake_case = any(pat in name for pat in ignore_name ) if skip_key: continue __snake_case = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) __snake_case = array return tf_weights def _UpperCamelCase (_lowerCamelCase : str , _lowerCamelCase : str )-> List[Any]: '''simple docstring''' __snake_case = Path(_lowerCamelCase ).parent.name __snake_case = task_specific_params[f'''summarization_{dataset}''']['''max_position_embeddings'''] __snake_case = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=_lowerCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_lowerCamelCase ) # convert model __snake_case = get_tf_weights_as_numpy(_lowerCamelCase ) __snake_case = task_specific_params[f'''summarization_{dataset}'''] if dataset == "large": __snake_case = task_specific_params __snake_case = convert_pegasus(_lowerCamelCase , _lowerCamelCase ) torch_model.save_pretrained(_lowerCamelCase ) __snake_case = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(_lowerCamelCase , Path(_lowerCamelCase ) / '''pytorch_model.bin''' ) if __name__ == "__main__": UpperCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') UpperCAmelCase_ : str = parser.parse_args() if args.save_dir is None: UpperCAmelCase_ : Optional[int] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase_ : Tuple = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
24
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _snake_case ( snake_case ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ) -> str: super().__init__( features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ , streaming=UpperCAmelCase__ , num_proc=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = Generator( cache_dir=UpperCAmelCase__ , features=UpperCAmelCase__ , generator=UpperCAmelCase__ , gen_kwargs=UpperCAmelCase__ , **UpperCAmelCase__ , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Build iterable dataset if self.streaming: a_ = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: a_ = None a_ = None a_ = None a_ = None self.builder.download_and_prepare( download_config=UpperCAmelCase__ , download_mode=UpperCAmelCase__ , verification_mode=UpperCAmelCase__ , base_path=UpperCAmelCase__ , num_proc=self.num_proc , ) a_ = self.builder.as_dataset( split='train' , verification_mode=UpperCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
697
0
def lowerCamelCase__ ( _a): if n == 1 or not isinstance(_a , _a): return 0 elif n == 2: return 1 else: SCREAMING_SNAKE_CASE : Optional[int] = [0, 1] for i in range(2 , n + 1): sequence.append(sequence[i - 1] + sequence[i - 2]) return sequence[n] def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : List[str] = 2 while digits < n: index += 1 SCREAMING_SNAKE_CASE : Dict = len(str(fibonacci(_a))) return index def lowerCamelCase__ ( _a = 1000): return fibonacci_digits_index(_a) if __name__ == "__main__": print(solution(int(str(input()).strip())))
25
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase =numpy.array([0, 0]) __lowerCAmelCase =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase =numpy.array([1, 0]) __lowerCAmelCase =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a ( _UpperCAmelCase , _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = initial_vectors for _ in range(_UpperCAmelCase ): a_ = iteration_step(_UpperCAmelCase ) return vectors def a ( _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = [] for i, start_vector in enumerate(vectors[:-1] ): a_ = vectors[i + 1] new_vectors.append(_UpperCAmelCase ) a_ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a ( _UpperCAmelCase , _UpperCAmelCase ) -> numpy.ndarray: """simple docstring""" a_ = numpy.radians(_UpperCAmelCase ) a_ , a_ = numpy.cos(_UpperCAmelCase ), numpy.sin(_UpperCAmelCase ) a_ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_UpperCAmelCase , _UpperCAmelCase ) def a ( _UpperCAmelCase ) -> None: """simple docstring""" a_ = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() a_ , a_ = zip(*_UpperCAmelCase ) plt.plot(_UpperCAmelCase , _UpperCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
697
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _A ( __lowercase ): lowercase__: Any = '''decision_transformer''' lowercase__: Union[str, Any] = ['''past_key_values'''] lowercase__: List[str] = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Tuple , __magic_name__ : Optional[Any]=17 , __magic_name__ : Any=4 , __magic_name__ : Union[str, Any]=1_28 , __magic_name__ : Optional[Any]=40_96 , __magic_name__ : List[Any]=True , __magic_name__ : List[Any]=1 , __magic_name__ : Optional[Any]=10_24 , __magic_name__ : Union[str, Any]=3 , __magic_name__ : Tuple=1 , __magic_name__ : Dict=None , __magic_name__ : Tuple="relu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=0.1 , __magic_name__ : str=1E-5 , __magic_name__ : Dict=0.02 , __magic_name__ : List[str]=True , __magic_name__ : List[str]=True , __magic_name__ : Optional[int]=5_02_56 , __magic_name__ : Optional[Any]=5_02_56 , __magic_name__ : int=False , __magic_name__ : Union[str, Any]=False , **__magic_name__ : int , ) -> int: """simple docstring""" __snake_case : str = state_dim __snake_case : Optional[Any] = act_dim __snake_case : Dict = hidden_size __snake_case : int = max_ep_len __snake_case : Any = action_tanh __snake_case : Union[str, Any] = vocab_size __snake_case : Optional[Any] = n_positions __snake_case : Optional[int] = n_layer __snake_case : List[Any] = n_head __snake_case : Tuple = n_inner __snake_case : int = activation_function __snake_case : List[Any] = resid_pdrop __snake_case : Union[str, Any] = embd_pdrop __snake_case : int = attn_pdrop __snake_case : Optional[Any] = layer_norm_epsilon __snake_case : Optional[Any] = initializer_range __snake_case : str = scale_attn_weights __snake_case : str = use_cache __snake_case : List[Any] = scale_attn_by_inverse_layer_idx __snake_case : Dict = reorder_and_upcast_attn __snake_case : Any = bos_token_id __snake_case : Dict = eos_token_id super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
26
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def a ( _UpperCAmelCase ) -> int: """simple docstring""" if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def a ( _UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" for char in word: a_ = ord(_UpperCAmelCase ) if not _is_chinese_char(_UpperCAmelCase ): return 0 return 1 def a ( _UpperCAmelCase ) -> Tuple: """simple docstring""" a_ = set() for token in tokens: a_ = len(_UpperCAmelCase ) > 1 and is_chinese(_UpperCAmelCase ) if chinese_word: word_set.add(_UpperCAmelCase ) a_ = list(_UpperCAmelCase ) return word_list def a ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: """simple docstring""" if not chinese_word_set: return bert_tokens a_ = max([len(_UpperCAmelCase ) for w in chinese_word_set] ) a_ = bert_tokens a_ , a_ = 0, len(_UpperCAmelCase ) while start < end: a_ = True if is_chinese(bert_word[start] ): a_ = min(end - start , _UpperCAmelCase ) for i in range(_UpperCAmelCase , 1 , -1 ): a_ = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): a_ = '##' + bert_word[j] a_ = start + i a_ = False break if single_word: start += 1 return bert_word def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: """simple docstring""" a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['cws'] ).cws a_ = [get_chinese_word(_UpperCAmelCase ) for r in res] ltp_res.extend(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=5_1_2 ) bert_res.extend(res['input_ids'] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for input_ids, chinese_word in zip(_UpperCAmelCase , _UpperCAmelCase ): a_ = [] for id in input_ids: a_ = bert_tokenizer._convert_id_to_token(_UpperCAmelCase ) input_tokens.append(_UpperCAmelCase ) a_ = add_sub_symbol(_UpperCAmelCase , _UpperCAmelCase ) a_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_UpperCAmelCase ): if token[:2] == "##": a_ = token[2:] # save chinese tokens' pos if len(_UpperCAmelCase ) == 1 and _is_chinese_char(ord(_UpperCAmelCase ) ): ref_id.append(_UpperCAmelCase ) ref_ids.append(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) return ref_ids def a ( _UpperCAmelCase ) -> Optional[Any]: """simple docstring""" with open(args.file_name , 'r' , encoding='utf-8' ) as f: a_ = f.readlines() a_ = [line.strip() for line in data if len(_UpperCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' a_ = LTP(args.ltp ) # faster in GPU device a_ = BertTokenizer.from_pretrained(args.bert ) a_ = prepare_ref(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: a_ = [json.dumps(_UpperCAmelCase ) + '\n' for ref in ref_ids] f.writelines(_UpperCAmelCase ) if __name__ == "__main__": __lowerCAmelCase =argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __lowerCAmelCase =parser.parse_args() main(args)
697
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase( __snake_case , __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = AltDiffusionPipeline __magic_name__ = TEXT_TO_IMAGE_PARAMS __magic_name__ = TEXT_TO_IMAGE_BATCH_PARAMS __magic_name__ = TEXT_TO_IMAGE_IMAGE_PARAMS __magic_name__ = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _A = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) _A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) _A = CLIPTextModel(snake_case_ ) _A = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) _A = 77 _A = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCAmelCase__ ( self , snake_case_ , snake_case_=0 ): if str(snake_case_ ).startswith('mps' ): _A = torch.manual_seed(snake_case_ ) else: _A = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowerCAmelCase__ ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowerCAmelCase__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCAmelCase__ ( self ): _A = 'cpu' # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() torch.manual_seed(0 ) _A = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder _A = RobertaSeriesModelWithTransformation(snake_case_ ) _A = text_encoder _A = AltDiffusionPipeline(**snake_case_ ) _A = alt_pipe.to(snake_case_ ) alt_pipe.set_progress_bar_config(disable=snake_case_ ) _A = self.get_dummy_inputs(snake_case_ ) _A = 'A photo of an astronaut' _A = alt_pipe(**snake_case_ ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A = np.array( [0.574_8162, 0.6044_7145, 0.4882_1217, 0.5010_0636, 0.543_1185, 0.4576_3683, 0.4965_7696, 0.4813_2733, 0.4757_3093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self ): _A = 'cpu' # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = PNDMScheduler(skip_prk_steps=snake_case_ ) torch.manual_seed(0 ) _A = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder _A = RobertaSeriesModelWithTransformation(snake_case_ ) _A = text_encoder _A = AltDiffusionPipeline(**snake_case_ ) _A = alt_pipe.to(snake_case_ ) alt_pipe.set_progress_bar_config(disable=snake_case_ ) _A = self.get_dummy_inputs(snake_case_ ) _A = alt_pipe(**snake_case_ ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A = np.array( [0.5160_5093, 0.570_7241, 0.4736_5507, 0.5057_8886, 0.563_3877, 0.464_2503, 0.518_2081, 0.4876_3484, 0.4908_4237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ): # make sure here that pndm scheduler skips prk _A = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=snake_case_ ) _A = alt_pipe.to(snake_case_ ) alt_pipe.set_progress_bar_config(disable=snake_case_ ) _A = 'A painting of a squirrel eating a burger' _A = torch.manual_seed(0 ) _A = alt_pipe([prompt] , generator=snake_case_ , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self ): _A = DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' ) _A = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=snake_case_ , safety_checker=snake_case_ ) _A = alt_pipe.to(snake_case_ ) alt_pipe.set_progress_bar_config(disable=snake_case_ ) _A = 'A painting of a squirrel eating a burger' _A = torch.manual_seed(0 ) _A = alt_pipe([prompt] , generator=snake_case_ , num_inference_steps=2 , output_type='numpy' ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
27
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase ={ "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": 512, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase = RetriBertTokenizer _UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__="[UNK]" , UpperCAmelCase__="[SEP]" , UpperCAmelCase__="[PAD]" , UpperCAmelCase__="[CLS]" , UpperCAmelCase__="[MASK]" , UpperCAmelCase__=True , UpperCAmelCase__=None , **UpperCAmelCase__ , ) -> int: super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase__ ) != tokenize_chinese_chars ): a_ = getattr(UpperCAmelCase__ , normalizer_state.pop('type' ) ) a_ = do_lower_case a_ = strip_accents a_ = tokenize_chinese_chars a_ = normalizer_class(**UpperCAmelCase__ ) a_ = do_lower_case def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__=None ) -> str: a_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> List[int]: a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> Tuple[str]: a_ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
697
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "lilt" def __init__( self , UpperCAmelCase__=3_0522 , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=512 , UpperCAmelCase__=2 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=0 , UpperCAmelCase__="absolute" , UpperCAmelCase__=None , UpperCAmelCase__=4 , UpperCAmelCase__=1024 , **UpperCAmelCase__ , ) -> Optional[Any]: super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = classifier_dropout a_ = channel_shrink_ratio a_ = max_ad_position_embeddings
697
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=lowerCAmelCase ): a__: Optional[Any] = ['keras_nlp'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): requires_backends(self , ['''keras_nlp'''] )
29
'''simple docstring''' from __future__ import annotations def a ( _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # We need to create solution object to save path. a_ = [[0 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] a_ = run_maze(_UpperCAmelCase , 0 , 0 , _UpperCAmelCase ) if solved: print('\n'.join(str(_UpperCAmelCase ) for row in solutions ) ) else: print('No solution exists!' ) return solved def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # Final check point. if i == j == (size - 1): a_ = 1 return True a_ = (not i < 0) and (not j < 0) # Check lower bounds a_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. a_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited a_ = 1 # check for directions if ( run_maze(_UpperCAmelCase , i + 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j + 1 , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , i - 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j - 1 , _UpperCAmelCase ) ): return True a_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
697
0
from heapq import heappop, heappush import numpy as np def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , ): '''simple docstring''' UpperCAmelCase_, UpperCAmelCase_ : Dict = grid.shape UpperCAmelCase_ : str = [-1, 1, 0, 0] UpperCAmelCase_ : Dict = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCAmelCase_, UpperCAmelCase_ : Any = [(0, source)], set() UpperCAmelCase_ : int = np.full((rows, cols) , np.inf ) UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : List[str] = np.empty((rows, cols) , dtype=_lowercase ) UpperCAmelCase_ : Tuple = None while queue: ((UpperCAmelCase_), (UpperCAmelCase_)) : Dict = heappop(_lowercase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCAmelCase_ : Optional[Any] = [] while (x, y) != source: path.append((x, y) ) UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = predecessors[x, y] path.append(_lowercase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_lowercase ) ): UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCAmelCase_ : Tuple = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_lowercase , (dist + 1, (nx, ny)) ) UpperCAmelCase_ : str = dist + 1 UpperCAmelCase_ : List[str] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
30
'''simple docstring''' __lowerCAmelCase ={ "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) __lowerCAmelCase ={ "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float: """simple docstring""" a_ = from_type.lower().strip('s' ) a_ = to_type.lower().strip('s' ) a_ = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) a_ = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) if from_sanitized not in METRIC_CONVERSION: a_ = ( F'''Invalid \'from_type\' value: {from_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) if to_sanitized not in METRIC_CONVERSION: a_ = ( F'''Invalid \'to_type\' value: {to_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) a_ = METRIC_CONVERSION[from_sanitized] a_ = METRIC_CONVERSION[to_sanitized] a_ = 1 if from_exponent > to_exponent: a_ = from_exponent - to_exponent else: a_ = -(to_exponent - from_exponent) return value * pow(1_0 , _UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
697
0
from functools import reduce lowerCamelCase__ : Any = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def UpperCAmelCase_ ( __UpperCAmelCase : str = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda __UpperCAmelCase , __UpperCAmelCase : str(int(__UpperCAmelCase ) * int(__UpperCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(__UpperCAmelCase ) - 12 ) ) if __name__ == "__main__": print(f'''{solution() = }''')
31
'''simple docstring''' import unittest from transformers import DonutProcessor __lowerCAmelCase ="naver-clova-ix/donut-base" class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = DonutProcessor.from_pretrained(UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } a_ = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) a_ = self.processor.tokenajson(UpperCAmelCase__ ) self.assertDictEqual(UpperCAmelCase__ , UpperCAmelCase__ )
697
0
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) UpperCAmelCase_ = logging.getLogger() def A__ ( ) -> List[Any]: """simple docstring""" _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) _UpperCAmelCase = parser.parse_args() return args.f def A__ ( SCREAMING_SNAKE_CASE_ : Dict ) -> str: """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''all_results.json''' ) if os.path.exists(SCREAMING_SNAKE_CASE_ ): with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as f: _UpperCAmelCase = json.load(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(F'''can\'t find {path}''' ) return results def A__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() UpperCAmelCase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __UpperCamelCase ( A__ ): @classmethod def UpperCamelCase( cls ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) _UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def UpperCamelCase( cls ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) _UpperCAmelCase = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) _UpperCAmelCase = get_results(_UpperCamelCase ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _UpperCAmelCase = get_results(_UpperCamelCase ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase( self ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _UpperCAmelCase = 7 if get_gpu_count() > 1 else 2 _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _UpperCAmelCase = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _UpperCAmelCase = get_results(_UpperCamelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) _UpperCAmelCase = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _UpperCAmelCase = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _UpperCAmelCase = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''translation_no_trainer''' ) ) ) @slow def UpperCamelCase( self ): _UpperCAmelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCamelCase ) _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) _UpperCAmelCase = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) _UpperCAmelCase = get_results(_UpperCamelCase ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''image_classification_no_trainer''' ) ) )
32
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _snake_case : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__="resnet50" , UpperCAmelCase__=3 , UpperCAmelCase__=32 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=True , ) -> Optional[Any]: a_ = parent a_ = out_indices if out_indices is not None else [4] a_ = stage_names a_ = out_features a_ = backbone a_ = batch_size a_ = image_size a_ = num_channels a_ = use_pretrained_backbone a_ = is_training def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ = self.get_config() return config, pixel_values def __SCREAMING_SNAKE_CASE ( self ) -> Dict: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = TimmBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): a_ = model(UpperCAmelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = self.prepare_config_and_inputs() a_ , a_ = config_and_inputs a_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _snake_case ( snake_case , snake_case , snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = (TimmBackbone,) if is_torch_available() else () _UpperCamelCase = {"feature-extraction": TimmBackbone} if is_torch_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = TimmBackboneModelTester(self ) a_ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = 'resnet18' a_ = 'microsoft/resnet-18' a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ , out_indices=[1, 2, 3] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Safetensors is not supported by timm.' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) a_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = True a_ = self.has_attentions # no need to test all models as different heads yield the same functionality a_ = self.all_model_classes[0] a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) a_ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = model(**UpperCAmelCase__ ) a_ = outputs[0][-1] # Encoder-/Decoder-only models a_ = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a_ = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCAmelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = None a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = False a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ )
697
0
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = ['image_processor', 'tokenizer'] __lowercase : str = 'AutoImageProcessor' __lowercase : Dict = 'AutoTokenizer' def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ): snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) snake_case__ = kwargs.pop('''feature_extractor''' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) snake_case__ = self.image_processor snake_case__ = False def __call__( self:Optional[int] , *_a:str , **_a:int ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) snake_case__ = kwargs.pop('''images''' , _a ) snake_case__ = kwargs.pop('''text''' , _a ) if len(_a ) > 0: snake_case__ = args[0] snake_case__ = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: snake_case__ = self.image_processor(_a , *_a , **_a ) if text is not None: snake_case__ = self.tokenizer(_a , **_a ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ): return self.tokenizer.decode(*_a , **_a ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self:Tuple ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) snake_case__ = True snake_case__ = self.tokenizer yield snake_case__ = self.image_processor snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ): if added_vocab is None: snake_case__ = self.tokenizer.get_added_vocab() snake_case__ = {} while tokens: snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE ) if start_token is None: break snake_case__ = start_token.group(1 ) snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE ) snake_case__ = start_token.group() if end_token is None: snake_case__ = tokens.replace(_a , '''''' ) else: snake_case__ = end_token.group() snake_case__ = re.escape(_a ) snake_case__ = re.escape(_a ) snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE ) if content is not None: snake_case__ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a ) if value: if len(_a ) == 1: snake_case__ = value[0] snake_case__ = value else: # leaf nodes snake_case__ = [] for leaf in content.split(r'''<sep/>''' ): snake_case__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": snake_case__ = leaf[1:-2] # for categorical special tokens output[key].append(_a ) if len(output[key] ) == 1: snake_case__ = output[key][0] snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a ) if len(_a ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
33
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=7 , UpperCAmelCase__=3 , UpperCAmelCase__=18 , UpperCAmelCase__=30 , UpperCAmelCase__=400 , UpperCAmelCase__=True , UpperCAmelCase__=None , UpperCAmelCase__=True , ) -> List[Any]: a_ = size if size is not None else {'height': 18, 'width': 18} a_ = parent a_ = batch_size a_ = num_channels a_ = image_size a_ = min_resolution a_ = max_resolution a_ = do_resize a_ = size a_ = apply_ocr def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _snake_case ( snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = LayoutLMvaImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'apply_ocr' ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) a_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , UpperCAmelCase__ ) self.assertIsInstance(encoding.boxes , UpperCAmelCase__ ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> int: # with apply_OCR = True a_ = LayoutLMvaImageProcessor() from datasets import load_dataset a_ = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) a_ = Image.open(ds[0]['file'] ).convert('RGB' ) a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 a_ = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 a_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCAmelCase__ ) self.assertListEqual(encoding.boxes , UpperCAmelCase__ ) # with apply_OCR = False a_ = LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
697
0
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_ = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE_ = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowerCamelCase_) UpperCamelCase = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowerCamelCase_ , '''tokenizers''') UpperCamelCase = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowerCamelCase_ , '''tensorflow_text''') UpperCamelCase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tensorflow_text''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers_and_vision''') def UpperCAmelCase__ ( self) -> int: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCamelCase_) self.assertIn('''tensorflow_text''' , lowerCamelCase_) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCamelCase_) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , '''\nCONSTANT = None\n''') UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowerCamelCase_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowerCamelCase_)
34
'''simple docstring''' import math def a ( _UpperCAmelCase ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( _UpperCAmelCase = 1_0_0_0_1 ) -> int: """simple docstring""" try: a_ = int(_UpperCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) a_ = [] a_ = 2 while len(_UpperCAmelCase ) < nth: if is_prime(_UpperCAmelCase ): primes.append(_UpperCAmelCase ) num += 1 else: num += 1 return primes[len(_UpperCAmelCase ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
697
0
from __future__ import annotations def a ( A__ ) -> list[int]: '''simple docstring''' if len(A__ ) == 0: return array SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = min(A__ ), max(A__ ) # Compute the variables SCREAMING_SNAKE_CASE__ : Dict = _max - _min + 1 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: SCREAMING_SNAKE_CASE__ : List[str] = i - _min SCREAMING_SNAKE_CASE__ : Optional[Any] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 for i in range(A__ ): while holes_repeat[i] > 0: SCREAMING_SNAKE_CASE__ : str = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() a_ :Any = input('Enter numbers separated by comma:\n') a_ :Any = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
35
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = 10 def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = [1, 2, 3, 4] a_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = '' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) a_ , a_ = process_story(UpperCAmelCase__ ) a_ = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = ['It was the best of times.'] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = torch.tensor([1, 2, 3, 4] ) a_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 0 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 23 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 1 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = 101 a_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) a_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) a_ = compute_token_type_ids(UpperCAmelCase__ , UpperCAmelCase__ ) np.testing.assert_array_equal(UpperCAmelCase__ , UpperCAmelCase__ )
697
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowercase ( __A : Union[str, Any] , __A : int , __A : Dict , __A : Optional[int] ) -> str: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def lowercase ( __A : str , __A : List[str] , __A : Tuple , __A : Dict , __A : Tuple=True ) -> Tuple: '''simple docstring''' model.train() snake_case : List[Any] = model(__A ) snake_case : int = F.mse_loss(__A , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__A ) def lowercase ( __A : List[str] , __A : int=False ) -> Union[str, Any]: '''simple docstring''' set_seed(42 ) snake_case : Optional[Any] = RegressionModel() snake_case : Dict = deepcopy(__A ) snake_case : Optional[Any] = RegressionDataset(length=80 ) snake_case : Optional[Any] = DataLoader(__A , batch_size=16 ) model.to(accelerator.device ) if sched: snake_case : List[str] = AdamW(params=model.parameters() , lr=1E-3 ) snake_case : List[str] = AdamW(params=ddp_model.parameters() , lr=1E-3 ) snake_case : int = LambdaLR(__A , lr_lambda=lambda __A : epoch**0.65 ) snake_case : Any = LambdaLR(__A , lr_lambda=lambda __A : epoch**0.65 ) # Make a copy of `model` if sched: snake_case , snake_case , snake_case , snake_case : Optional[int] = accelerator.prepare(__A , __A , __A , __A ) else: snake_case , snake_case : Any = accelerator.prepare(__A , __A ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowercase ( __A : List[Any] ) -> Any: '''simple docstring''' snake_case , snake_case , snake_case : Union[str, Any] = get_training_setup(__A ) # Use a single batch snake_case , snake_case : str = next(iter(__A ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model snake_case , snake_case : List[Any] = accelerator.gather((ddp_input, ddp_target) ) snake_case , snake_case : int = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__A , __A , __A , __A ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__A ): step_model(__A , __A , __A , __A ) else: # Sync grads step_model(__A , __A , __A , __A ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__A , __A , __A , __A ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) snake_case : Tuple = ddp_input[torch.randperm(len(__A ) )] def lowercase ( __A : Optional[int] ) -> List[str]: '''simple docstring''' snake_case , snake_case , snake_case : str = get_training_setup(__A ) # Use a single batch snake_case , snake_case : Any = next(iter(__A ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model snake_case , snake_case : List[str] = accelerator.gather((ddp_input, ddp_target) ) snake_case , snake_case : Optional[int] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__A , __A , __A , __A ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__A ): step_model(__A , __A , __A , __A ) else: # Sync grads step_model(__A , __A , __A , __A ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) snake_case : Optional[int] = ddp_input[torch.randperm(len(__A ) )] def lowercase ( __A : Union[str, Any]=False , __A : Any=False ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = Accelerator( split_batches=__A , dispatch_batches=__A , gradient_accumulation_steps=2 ) # Test that context manager behaves properly snake_case , snake_case , snake_case : Optional[int] = get_training_setup(__A ) for iteration, batch in enumerate(__A ): snake_case , snake_case : Optional[Any] = batch.values() # Gather the distributed inputs and targs for the base model snake_case , snake_case : List[str] = accelerator.gather((ddp_input, ddp_target) ) snake_case , snake_case : Union[str, Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__A , __A , __A , __A , __A ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__A ): step_model(__A , __A , __A , __A ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__A ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) snake_case : Tuple = ddp_input[torch.randperm(len(__A ) )] GradientState._reset_state() def lowercase ( __A : Any=False , __A : str=False ) -> str: '''simple docstring''' snake_case : Any = Accelerator( split_batches=__A , dispatch_batches=__A , gradient_accumulation_steps=2 ) # Test that context manager behaves properly snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case : int = get_training_setup(__A , __A ) for iteration, batch in enumerate(__A ): snake_case , snake_case : Optional[Any] = batch.values() # Gather the distributed inputs and targs for the base model snake_case , snake_case : List[Any] = accelerator.gather((ddp_input, ddp_target) ) snake_case , snake_case : str = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__A , __A , __A , __A , __A ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__A )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__A ): step_model(__A , __A , __A , __A ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n""" snake_case : List[str] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__A )) if accelerator.num_processes > 1: check_model_parameters(__A , __A , __A , __A ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def lowercase ( ) -> List[Any]: '''simple docstring''' snake_case : List[str] = Accelerator() snake_case : Dict = RegressionDataset(length=80 ) snake_case : Tuple = DataLoader(__A , batch_size=16 ) snake_case : Tuple = RegressionDataset(length=96 ) snake_case : Optional[Any] = DataLoader(__A , batch_size=16 ) snake_case , snake_case : Any = accelerator.prepare(__A , __A ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__A ): assert id(accelerator.gradient_state.active_dataloader ) == id(__A ) if iteration < len(__A ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__A ): assert id(accelerator.gradient_state.active_dataloader ) == id(__A ) if batch_num < len(__A ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowercase ( ) -> List[str]: '''simple docstring''' snake_case : str = Accelerator() snake_case : Dict = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(__A ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(__A ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(__A , __A ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(__A , __A ) def lowercase ( __A : Optional[int] ) -> Union[str, Any]: '''simple docstring''' main() if __name__ == "__main__": main()
36
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __lowerCAmelCase ="\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class _snake_case ( unittest.TestCase , snake_case ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = load_tool('text-question-answering' ) self.tool.setup() a_ = load_tool('text-question-answering' , remote=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.remote_tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = self.tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = self.remote_tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' )
697
0
def UpperCamelCase_ ( __a = 1_000_000 ) -> int: a__ : int = limit + 1 a__ : str = [0] * limit for first_term in range(1 , __a ): for n in range(__a , __a , __a ): a__ : Optional[int] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a a__ : Tuple = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
37
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase ={"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __lowerCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
697
0
'''simple docstring''' def UpperCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Any = [] snake_case__ : Tuple = 1 while len(__magic_name__ ) < 1E6: constant.append(str(__magic_name__ ) ) i += 1 snake_case__ : Optional[Any] = """""".join(__magic_name__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
38
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "vit" def __init__( self , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=224 , UpperCAmelCase__=16 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=16 , **UpperCAmelCase__ , ) -> Dict: super().__init__(**UpperCAmelCase__ ) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = image_size a_ = patch_size a_ = num_channels a_ = qkv_bias a_ = encoder_stride class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __SCREAMING_SNAKE_CASE ( self ) -> float: return 1e-4
697
0
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowerCAmelCase_ = open # noqa: we just need to have a builtin inside this module to test it properly
39
'''simple docstring''' def a ( _UpperCAmelCase = 5_0 ) -> int: """simple docstring""" a_ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
697
0
def UpperCamelCase ( snake_case__ : list[int] , snake_case__ : list[int] ) -> None: UpperCamelCase : int = len(snake_case__ ) print('The following activities are selected:' ) # The first activity is always selected UpperCamelCase : List[Any] = 0 print(snake_case__ , end=',' ) # Consider rest of the activities for j in range(snake_case__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case__ , end=',' ) UpperCamelCase : Tuple = j if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = [1, 3, 0, 5, 8, 5] __UpperCAmelCase = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
40
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def a ( ) -> None: """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
697
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class lowercase_ (unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] ,lowercase__ : int ,lowercase__ : Any=7 ,lowercase__ : Optional[Any]=3 ,lowercase__ : Any=1_8 ,lowercase__ : Optional[Any]=3_0 ,lowercase__ : Any=4_0_0 ,lowercase__ : str=True ,lowercase__ : Union[str, Any]=3_2 ,lowercase__ : Tuple=True ,): __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size_divisor __lowercase = do_rescale def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = GLPNImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = GLPNImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ ,'''do_resize''' ) ) self.assertTrue(hasattr(lowercase__ ,'''size_divisor''' ) ) self.assertTrue(hasattr(lowercase__ ,'''resample''' ) ) self.assertTrue(hasattr(lowercase__ ,'''do_rescale''' ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): # Initialize image_processing __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): # Initialize image_processing __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ,numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def SCREAMING_SNAKE_CASE ( self : Dict ): # Initialize image_processing __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ,torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
41
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a ( _UpperCAmelCase ) -> int: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _snake_case ( snake_case ): """simple docstring""" @staticmethod def __SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ) -> str: a_ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=UpperCAmelCase__ , help='Name of the model to download' ) download_parser.set_defaults(func=UpperCAmelCase__ ) def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = model a_ = cache a_ = force a_ = trust_remote_code def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
697
0
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: # Construct model if openai_config_file == "": lowerCamelCase_ = OpenAIGPTConfig() else: lowerCamelCase_ = OpenAIGPTConfig.from_json_file(__UpperCamelCase ) lowerCamelCase_ = OpenAIGPTModel(__UpperCamelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # Save pytorch-model lowerCamelCase_ = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCamelCase_ = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() ,__UpperCamelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__UpperCamelCase ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) A_ = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
42
'''simple docstring''' def a ( _UpperCAmelCase ) -> int: """simple docstring""" assert column_title.isupper() a_ = 0 a_ = len(_UpperCAmelCase ) - 1 a_ = 0 while index >= 0: a_ = (ord(column_title[index] ) - 6_4) * pow(2_6 , _UpperCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
697
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowerCAmelCase = None lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } lowerCAmelCase = { 'camembert-base': 512, } lowerCAmelCase = '▁' class _a ( UpperCamelCase__ ): _lowercase : str = VOCAB_FILES_NAMES _lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] _lowercase : Tuple = CamembertTokenizer def __init__( self: List[Any] , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Dict=None , UpperCamelCase_: str="<s>" , UpperCamelCase_: Any="</s>" , UpperCamelCase_: Dict="</s>" , UpperCamelCase_: Optional[Any]="<s>" , UpperCamelCase_: Optional[int]="<unk>" , UpperCamelCase_: Tuple="<pad>" , UpperCamelCase_: Optional[Any]="<mask>" , UpperCamelCase_: Tuple=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCamelCase_: Union[str, Any] , ) -> List[Any]: """simple docstring""" lowercase__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase_ ( self: int , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
43
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __lowerCAmelCase =logging.get_logger(__name__) class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = ["audio_values", "audio_mask"] def __init__( self , UpperCAmelCase__=2048 , UpperCAmelCase__=1 , UpperCAmelCase__=[16, 16] , UpperCAmelCase__=128 , UpperCAmelCase__=4_4100 , UpperCAmelCase__=86 , UpperCAmelCase__=2048 , UpperCAmelCase__=0.0 , **UpperCAmelCase__ , ) -> Union[str, Any]: super().__init__( feature_size=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , padding_value=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = spectrogram_length a_ = num_channels a_ = patch_size a_ = feature_size // self.patch_size[1] a_ = n_fft a_ = sampling_rate // hop_length_to_sampling_rate a_ = sampling_rate a_ = padding_value a_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=UpperCAmelCase__ , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=UpperCAmelCase__ , norm='slaney' , mel_scale='slaney' , ).T def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> np.ndarray: a_ = spectrogram( UpperCAmelCase__ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=8_0.0 , ) a_ = log_spec[:, :-1] a_ = log_spec - 2_0.0 a_ = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , **UpperCAmelCase__ , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) a_ = isinstance(UpperCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) a_ = is_batched_numpy or ( isinstance(UpperCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a_ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase__ , np.ndarray ): a_ = np.asarray(UpperCAmelCase__ , dtype=np.floataa ) elif isinstance(UpperCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a_ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis a_ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , UpperCAmelCase__ ): a_ = [np.asarray(UpperCAmelCase__ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask a_ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: a_ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] a_ = np.array(UpperCAmelCase__ ).astype(np.floataa ) # convert into correct format for padding a_ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch a_ = np.ones([len(UpperCAmelCase__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) a_ = padded_audio_features * self.padding_value for i in range(len(UpperCAmelCase__ ) ): a_ = audio_features[i] a_ = feature # return as BatchFeature if return_attention_mask: a_ = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: a_ = {'audio_values': padded_audio_features} a_ = BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) return encoded_inputs
697
0
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : Dict = False def A_ ( _lowerCAmelCase : Namespace ): """simple docstring""" return TrainCommand(_lowerCAmelCase ) class UpperCAmelCase__ ( A ): @staticmethod def lowerCamelCase_ ( __A : ArgumentParser ): _lowerCamelCase : int = parser.add_parser("train",help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data",type=__A,required=__A,help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.",) train_parser.add_argument( "--column_label",type=__A,default=0,help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text",type=__A,default=1,help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id",type=__A,default=2,help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row",action="store_true",help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data",type=__A,default="",help="path to validation dataset." ) train_parser.add_argument( "--validation_split",type=__A,default=0.1,help="if validation dataset is not provided, fraction of train dataset to use as validation dataset.",) train_parser.add_argument("--output",type=__A,default="./",help="path to saved the trained model." ) train_parser.add_argument( "--task",type=__A,default="text_classification",help="Task to train the model on." ) train_parser.add_argument( "--model",type=__A,default="bert-base-uncased",help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size",type=__A,default=3_2,help="Batch size for training." ) train_parser.add_argument("--valid_batch_size",type=__A,default=6_4,help="Batch size for validation." ) train_parser.add_argument("--learning_rate",type=__A,default=3e-5,help="Learning rate." ) train_parser.add_argument("--adam_epsilon",type=__A,default=1e-08,help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=__A ) def __init__( self : List[Any],__A : Namespace ): _lowerCamelCase : str = logging.get_logger("transformers-cli/training" ) _lowerCamelCase : Tuple = "tf" if is_tf_available() else "torch" os.makedirs(args.output,exist_ok=__A ) _lowerCamelCase : Dict = args.output _lowerCamelCase : List[str] = args.column_label _lowerCamelCase : Tuple = args.column_text _lowerCamelCase : Tuple = args.column_id self.logger.info(f'Loading {args.task} pipeline for {args.model}' ) if args.task == "text_classification": _lowerCamelCase : int = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'Loading dataset from {args.train_data}' ) _lowerCamelCase : Optional[int] = Processor.create_from_csv( args.train_data,column_label=args.column_label,column_text=args.column_text,column_id=args.column_id,skip_first_row=args.skip_first_row,) _lowerCamelCase : Any = None if args.validation_data: self.logger.info(f'Loading validation dataset from {args.validation_data}' ) _lowerCamelCase : int = Processor.create_from_csv( args.validation_data,column_label=args.column_label,column_text=args.column_text,column_id=args.column_id,skip_first_row=args.skip_first_row,) _lowerCamelCase : Union[str, Any] = args.validation_split _lowerCamelCase : Any = args.train_batch_size _lowerCamelCase : Optional[int] = args.valid_batch_size _lowerCamelCase : List[Any] = args.learning_rate _lowerCamelCase : Union[str, Any] = args.adam_epsilon def lowerCamelCase_ ( self : List[str] ): if self.framework == "tf": return self.run_tf() return self.run_torch() def lowerCamelCase_ ( self : int ): raise NotImplementedError def lowerCamelCase_ ( self : Optional[Any] ): self.pipeline.fit( self.train_dataset,validation_data=self.valid_dataset,validation_split=self.validation_split,learning_rate=self.learning_rate,adam_epsilon=self.adam_epsilon,train_batch_size=self.train_batch_size,valid_batch_size=self.valid_batch_size,) # Save trained pipeline self.pipeline.save_pretrained(self.output )
44
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Optional[Any]: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = len(set_a.intersection(_UpperCAmelCase ) ) if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) else: a_ = len(set_a.union(_UpperCAmelCase ) ) return intersection / union if isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) ): a_ = [element for element in set_a if element in set_b] if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / union else: a_ = set_a + [element for element in set_b if element not in set_a] return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return None if __name__ == "__main__": __lowerCAmelCase ={"a", "b", "c", "d", "e"} __lowerCAmelCase ={"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
697
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( lowercase__ : str , lowercase__ : complex , lowercase__ : str = "x" , lowercase__ : float = 10**-10 , lowercase__ : int = 1 , ) -> complex: UpperCamelCase__ :Optional[int] = symbols(lowercase__ ) UpperCamelCase__ :Dict = lambdify(lowercase__ , lowercase__ ) UpperCamelCase__ :Any = lambdify(lowercase__ , diff(lowercase__ , lowercase__ ) ) UpperCamelCase__ :List[str] = starting_point while True: if diff_function(lowercase__ ) != 0: UpperCamelCase__ :List[Any] = prev_guess - multiplicity * func(lowercase__ ) / diff_function( lowercase__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase__ :Optional[Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial # Find fourth Root of 5 print(f'''The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}''') # Find value of e print( "The root of log(y) - 1 = 0 is ", f'''{newton_raphson('log(y) - 1', 2, variable='y')}''', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f'''{newton_raphson('exp(x) - 1', 10, precision=0.005)}''', ) # Find root of cos(x) print(f'''The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}''')
45
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('iterations must be defined as integers' ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) a_ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
697
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : int = filter(lambda _lowerCamelCase : p.requires_grad , model.parameters() ) _lowerCamelCase : Optional[int] = sum([np.prod(p.size() ) for p in model_parameters] ) return params _lowerCAmelCase : Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' if metric == "rouge2": _lowerCamelCase : Optional[int] = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _lowerCamelCase : Optional[int] = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _lowerCamelCase : Dict = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": _lowerCamelCase : List[Any] = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) _lowerCamelCase : Dict = ModelCheckpoint( dirpath=_lowerCamelCase , filename=_lowerCamelCase , monitor=F"""val_{metric}""" , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' return EarlyStopping( monitor=F"""val_{metric}""" , mode="min" if "loss" in metric else "max" , patience=_lowerCamelCase , verbose=_lowerCamelCase , ) class A_ ( pl.Callback ): def _lowercase ( self: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = {F"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__lowerCAmelCase ) @rank_zero_only def _lowercase ( self: List[Any] ,__lowerCAmelCase: pl.Trainer ,__lowerCAmelCase: pl.LightningModule ,__lowerCAmelCase: str ,__lowerCAmelCase: Tuple=True ): '''simple docstring''' logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _lowerCamelCase : Dict = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _lowerCamelCase : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": _lowerCamelCase : Optional[int] = od / "test_results.txt" _lowerCamelCase : List[Any] = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _lowerCamelCase : str = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" _lowerCamelCase : Optional[int] = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=__lowerCAmelCase ) generations_file.parent.mkdir(exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase ,"a+" ) as writer: for key in sorted(__lowerCAmelCase ): if key in ["log", "progress_bar", "preds"]: continue _lowerCamelCase : Union[str, Any] = metrics[key] if isinstance(__lowerCAmelCase ,torch.Tensor ): _lowerCamelCase : Union[str, Any] = val.item() _lowerCamelCase : Tuple = F"""{key}: {val:.6f}\n""" writer.write(__lowerCAmelCase ) if not save_generations: return if "preds" in metrics: _lowerCamelCase : List[str] = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__lowerCAmelCase ) @rank_zero_only def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,__lowerCAmelCase: Any ): '''simple docstring''' try: _lowerCamelCase : Optional[int] = pl_module.model.model.num_parameters() except AttributeError: _lowerCamelCase : Optional[int] = pl_module.model.num_parameters() _lowerCamelCase : Dict = count_trainable_parameters(__lowerCAmelCase ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def _lowercase ( self: Optional[int] ,__lowerCAmelCase: pl.Trainer ,__lowerCAmelCase: pl.LightningModule ): '''simple docstring''' save_json(pl_module.metrics ,pl_module.metrics_save_path ) return self._write_logs(__lowerCAmelCase ,__lowerCAmelCase ,"test" ) @rank_zero_only def _lowercase ( self: List[str] ,__lowerCAmelCase: pl.Trainer ,__lowerCAmelCase: int ): '''simple docstring''' save_json(pl_module.metrics ,pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
46
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _snake_case ( snake_case ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ) -> str: super().__init__( features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ , streaming=UpperCAmelCase__ , num_proc=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = Generator( cache_dir=UpperCAmelCase__ , features=UpperCAmelCase__ , generator=UpperCAmelCase__ , gen_kwargs=UpperCAmelCase__ , **UpperCAmelCase__ , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Build iterable dataset if self.streaming: a_ = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: a_ = None a_ = None a_ = None a_ = None self.builder.download_and_prepare( download_config=UpperCAmelCase__ , download_mode=UpperCAmelCase__ , verification_mode=UpperCAmelCase__ , base_path=UpperCAmelCase__ , num_proc=self.num_proc , ) a_ = self.builder.as_dataset( split='train' , verification_mode=UpperCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
697
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : str = '''xlnet''' __SCREAMING_SNAKE_CASE : Dict = ['''mems'''] __SCREAMING_SNAKE_CASE : Dict = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str]=3_2_0_0_0 , SCREAMING_SNAKE_CASE__ : Any=1_0_2_4 , SCREAMING_SNAKE_CASE__ : Dict=2_4 , SCREAMING_SNAKE_CASE__ : List[str]=1_6 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4_0_9_6 , SCREAMING_SNAKE_CASE__ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : str="bi" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE__ : Tuple=1e-12 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : int=5_1_2 , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=-1 , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : Any="last" , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : List[Any]="tanh" , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : int=5 , SCREAMING_SNAKE_CASE__ : List[Any]=5 , SCREAMING_SNAKE_CASE__ : int=5 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : Tuple=2 , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' __a : Tuple = vocab_size __a : Dict = d_model __a : str = n_layer __a : str = n_head if d_model % n_head != 0: raise ValueError(f'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) __a : str = d_model // n_head __a : str = ff_activation __a : Any = d_inner __a : Dict = untie_r __a : List[str] = attn_type __a : str = initializer_range __a : Tuple = layer_norm_eps __a : List[str] = dropout __a : str = mem_len __a : List[Any] = reuse_len __a : List[Any] = bi_data __a : str = clamp_len __a : List[str] = same_length __a : Optional[int] = summary_type __a : Any = summary_use_proj __a : List[str] = summary_activation __a : List[Any] = summary_last_dropout __a : Union[str, Any] = start_n_top __a : str = end_n_top __a : List[str] = bos_token_id __a : Union[str, Any] = pad_token_id __a : Tuple = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , SCREAMING_SNAKE_CASE__ , ) __a : Dict = kwargs['use_cache'] __a : List[Any] = use_mems_eval __a : List[Any] = use_mems_train super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
47
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase =numpy.array([0, 0]) __lowerCAmelCase =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase =numpy.array([1, 0]) __lowerCAmelCase =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a ( _UpperCAmelCase , _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = initial_vectors for _ in range(_UpperCAmelCase ): a_ = iteration_step(_UpperCAmelCase ) return vectors def a ( _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = [] for i, start_vector in enumerate(vectors[:-1] ): a_ = vectors[i + 1] new_vectors.append(_UpperCAmelCase ) a_ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a ( _UpperCAmelCase , _UpperCAmelCase ) -> numpy.ndarray: """simple docstring""" a_ = numpy.radians(_UpperCAmelCase ) a_ , a_ = numpy.cos(_UpperCAmelCase ), numpy.sin(_UpperCAmelCase ) a_ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_UpperCAmelCase , _UpperCAmelCase ) def a ( _UpperCAmelCase ) -> None: """simple docstring""" a_ = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() a_ , a_ = zip(*_UpperCAmelCase ) plt.plot(_UpperCAmelCase , _UpperCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
697
0
'''simple docstring''' import re import string import numpy as np import datasets UpperCAmelCase__ : Tuple = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" UpperCAmelCase__ : int = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" UpperCAmelCase__ : str = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Optional[Any]=None , __magic_name__ : Dict=False , __magic_name__ : Any=False , __magic_name__ : List[Any]=False , ): """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: lowerCAmelCase__ = np.array([re.sub(__magic_name__ , "" , __magic_name__ ) for x in predictions] ) lowerCAmelCase__ = np.array([re.sub(__magic_name__ , "" , __magic_name__ ) for x in references] ) else: lowerCAmelCase__ = np.asarray(__magic_name__ ) lowerCAmelCase__ = np.asarray(__magic_name__ ) if ignore_case: lowerCAmelCase__ = np.char.lower(__magic_name__ ) lowerCAmelCase__ = np.char.lower(__magic_name__ ) if ignore_punctuation: lowerCAmelCase__ = string.punctuation.maketrans("" , "" , string.punctuation ) lowerCAmelCase__ = np.char.translate(__magic_name__ , table=__magic_name__ ) lowerCAmelCase__ = np.char.translate(__magic_name__ , table=__magic_name__ ) if ignore_numbers: lowerCAmelCase__ = string.digits.maketrans("" , "" , string.digits ) lowerCAmelCase__ = np.char.translate(__magic_name__ , table=__magic_name__ ) lowerCAmelCase__ = np.char.translate(__magic_name__ , table=__magic_name__ ) lowerCAmelCase__ = predictions == references return {"exact_match": np.mean(__magic_name__ ) * 100}
48
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def a ( _UpperCAmelCase ) -> int: """simple docstring""" if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def a ( _UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" for char in word: a_ = ord(_UpperCAmelCase ) if not _is_chinese_char(_UpperCAmelCase ): return 0 return 1 def a ( _UpperCAmelCase ) -> Tuple: """simple docstring""" a_ = set() for token in tokens: a_ = len(_UpperCAmelCase ) > 1 and is_chinese(_UpperCAmelCase ) if chinese_word: word_set.add(_UpperCAmelCase ) a_ = list(_UpperCAmelCase ) return word_list def a ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: """simple docstring""" if not chinese_word_set: return bert_tokens a_ = max([len(_UpperCAmelCase ) for w in chinese_word_set] ) a_ = bert_tokens a_ , a_ = 0, len(_UpperCAmelCase ) while start < end: a_ = True if is_chinese(bert_word[start] ): a_ = min(end - start , _UpperCAmelCase ) for i in range(_UpperCAmelCase , 1 , -1 ): a_ = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): a_ = '##' + bert_word[j] a_ = start + i a_ = False break if single_word: start += 1 return bert_word def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: """simple docstring""" a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['cws'] ).cws a_ = [get_chinese_word(_UpperCAmelCase ) for r in res] ltp_res.extend(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=5_1_2 ) bert_res.extend(res['input_ids'] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for input_ids, chinese_word in zip(_UpperCAmelCase , _UpperCAmelCase ): a_ = [] for id in input_ids: a_ = bert_tokenizer._convert_id_to_token(_UpperCAmelCase ) input_tokens.append(_UpperCAmelCase ) a_ = add_sub_symbol(_UpperCAmelCase , _UpperCAmelCase ) a_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_UpperCAmelCase ): if token[:2] == "##": a_ = token[2:] # save chinese tokens' pos if len(_UpperCAmelCase ) == 1 and _is_chinese_char(ord(_UpperCAmelCase ) ): ref_id.append(_UpperCAmelCase ) ref_ids.append(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) return ref_ids def a ( _UpperCAmelCase ) -> Optional[Any]: """simple docstring""" with open(args.file_name , 'r' , encoding='utf-8' ) as f: a_ = f.readlines() a_ = [line.strip() for line in data if len(_UpperCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' a_ = LTP(args.ltp ) # faster in GPU device a_ = BertTokenizer.from_pretrained(args.bert ) a_ = prepare_ref(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: a_ = [json.dumps(_UpperCAmelCase ) + '\n' for ref in ref_ids] f.writelines(_UpperCAmelCase ) if __name__ == "__main__": __lowerCAmelCase =argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __lowerCAmelCase =parser.parse_args() main(args)
697
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowercase : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase ={ "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": 512, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase = RetriBertTokenizer _UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__="[UNK]" , UpperCAmelCase__="[SEP]" , UpperCAmelCase__="[PAD]" , UpperCAmelCase__="[CLS]" , UpperCAmelCase__="[MASK]" , UpperCAmelCase__=True , UpperCAmelCase__=None , **UpperCAmelCase__ , ) -> int: super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase__ ) != tokenize_chinese_chars ): a_ = getattr(UpperCAmelCase__ , normalizer_state.pop('type' ) ) a_ = do_lower_case a_ = strip_accents a_ = tokenize_chinese_chars a_ = normalizer_class(**UpperCAmelCase__ ) a_ = do_lower_case def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__=None ) -> str: a_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> List[int]: a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> Tuple[str]: a_ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
697
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase : int = logging.getLogger(__name__) @dataclass class UpperCamelCase__ : '''simple docstring''' _UpperCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _UpperCamelCase = field( default=a ,metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _UpperCamelCase = field( default='NER' ,metadata={'help': 'Task type to fine tune in training (e.g. NER, POS, etc)'} ) _UpperCamelCase = field( default=a ,metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _UpperCamelCase = field(default=a ,metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _UpperCamelCase = field( default=a ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} ,) @dataclass class UpperCamelCase__ : '''simple docstring''' _UpperCamelCase = field( metadata={'help': 'The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'} ) _UpperCamelCase = field( default=a ,metadata={'help': 'Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'} ,) _UpperCamelCase = field( default=128 ,metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } ,) _UpperCamelCase = field( default=a ,metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def A__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) lowerCamelCase__ = import_module("""tasks""" ) try: lowerCamelCase__ = getattr(__lowerCAmelCase , model_args.task_type ) lowerCamelCase__ = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , __lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowerCamelCase__ = token_classification_task.get_labels(data_args.labels ) lowerCamelCase__ = dict(enumerate(__lowerCAmelCase ) ) lowerCamelCase__ = len(__lowerCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid={label: i for i, label in enumerate(__lowerCAmelCase )} , cache_dir=model_args.cache_dir , ) lowerCamelCase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowerCamelCase__ = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowerCamelCase__ = ( TokenClassificationDataset( token_classification_task=__lowerCAmelCase , data_dir=data_args.data_dir , tokenizer=__lowerCAmelCase , labels=__lowerCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCamelCase__ = ( TokenClassificationDataset( token_classification_task=__lowerCAmelCase , data_dir=data_args.data_dir , tokenizer=__lowerCAmelCase , labels=__lowerCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ) -> Tuple[List[int], List[int]]: lowerCamelCase__ = np.argmax(__lowerCAmelCase , axis=2 ) lowerCamelCase__ , lowerCamelCase__ = preds.shape lowerCamelCase__ = [[] for _ in range(__lowerCAmelCase )] lowerCamelCase__ = [[] for _ in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowerCAmelCase : EvalPrediction ) -> Dict: lowerCamelCase__ , lowerCamelCase__ = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowerCAmelCase , __lowerCAmelCase ), "precision": precision_score(__lowerCAmelCase , __lowerCAmelCase ), "recall": recall_score(__lowerCAmelCase , __lowerCAmelCase ), "f1": fa_score(__lowerCAmelCase , __lowerCAmelCase ), } # Data collator lowerCamelCase__ = DataCollatorWithPadding(__lowerCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCamelCase__ = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , compute_metrics=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCamelCase__ = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCamelCase__ = trainer.evaluate() lowerCamelCase__ = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_process_zero(): with open(__lowerCAmelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , __lowerCAmelCase , __lowerCAmelCase ) writer.write("""%s = %s\n""" % (key, value) ) results.update(__lowerCAmelCase ) # Predict if training_args.do_predict: lowerCamelCase__ = TokenClassificationDataset( token_classification_task=__lowerCAmelCase , data_dir=data_args.data_dir , tokenizer=__lowerCAmelCase , labels=__lowerCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = trainer.predict(__lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = align_predictions(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = os.path.join(training_args.output_dir , """test_results.txt""" ) if trainer.is_world_process_zero(): with open(__lowerCAmelCase , """w""" ) as writer: for key, value in metrics.items(): logger.info(""" %s = %s""" , __lowerCAmelCase , __lowerCAmelCase ) writer.write("""%s = %s\n""" % (key, value) ) # Save predictions lowerCamelCase__ = os.path.join(training_args.output_dir , """test_predictions.txt""" ) if trainer.is_world_process_zero(): with open(__lowerCAmelCase , """w""" ) as writer: with open(os.path.join(data_args.data_dir , """test.txt""" ) , """r""" ) as f: token_classification_task.write_predictions_to_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return results def A__ ( __lowerCAmelCase : Union[str, Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
50
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "lilt" def __init__( self , UpperCAmelCase__=3_0522 , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=512 , UpperCAmelCase__=2 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=0 , UpperCAmelCase__="absolute" , UpperCAmelCase__=None , UpperCAmelCase__=4 , UpperCAmelCase__=1024 , **UpperCAmelCase__ , ) -> Optional[Any]: super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = classifier_dropout a_ = channel_shrink_ratio a_ = max_ad_position_embeddings
697
0
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING a__ : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Dict , *a__ : Optional[Any] , **a__ : List[Any] ): super().__init__(*a__ , **a__ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def __snake_case ( self : int , a__ : Union[str, Any]=None ): UpperCAmelCase = {} if top_k is not None: UpperCAmelCase = top_k return {}, {}, postprocess_params def __call__( self : Any , a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a__ : List[str] ): return super().__call__(a__ , **a__ ) def __snake_case ( self : Union[str, Any] , a__ : Dict ): UpperCAmelCase = load_image(a__ ) UpperCAmelCase = self.image_processor(images=a__ , return_tensors=self.framework ) return model_inputs def __snake_case ( self : str , a__ : Optional[Any] ): UpperCAmelCase = self.model(**a__ ) return model_outputs def __snake_case ( self : Union[str, Any] , a__ : Tuple , a__ : Union[str, Any]=5 ): if top_k > self.model.config.num_labels: UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase = model_outputs.logits.softmax(-1 )[0] UpperCAmelCase, UpperCAmelCase = probs.topk(a__ ) elif self.framework == "tf": UpperCAmelCase = stable_softmax(model_outputs.logits , axis=-1 )[0] UpperCAmelCase = tf.math.top_k(a__ , k=a__ ) UpperCAmelCase, UpperCAmelCase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}" ) UpperCAmelCase = scores.tolist() UpperCAmelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(a__ , a__ )]
51
'''simple docstring''' from __future__ import annotations def a ( _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # We need to create solution object to save path. a_ = [[0 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] a_ = run_maze(_UpperCAmelCase , 0 , 0 , _UpperCAmelCase ) if solved: print('\n'.join(str(_UpperCAmelCase ) for row in solutions ) ) else: print('No solution exists!' ) return solved def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # Final check point. if i == j == (size - 1): a_ = 1 return True a_ = (not i < 0) and (not j < 0) # Check lower bounds a_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. a_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited a_ = 1 # check for directions if ( run_maze(_UpperCAmelCase , i + 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j + 1 , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , i - 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j - 1 , _UpperCAmelCase ) ): return True a_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
697
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''levit''' def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=3 , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=16 , _UpperCAmelCase=[128, 256, 384] , _UpperCAmelCase=[4, 8, 12] , _UpperCAmelCase=[4, 4, 4] , _UpperCAmelCase=[16, 16, 16] , _UpperCAmelCase=0 , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = image_size __a : List[Any] = num_channels __a : Dict = kernel_size __a : Optional[int] = stride __a : Optional[int] = padding __a : Dict = hidden_sizes __a : int = num_attention_heads __a : Optional[int] = depths __a : str = key_dim __a : Union[str, Any] = drop_path_rate __a : Optional[Any] = patch_size __a : Tuple = attention_ratio __a : int = mlp_ratio __a : int = initializer_range __a : int = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def _lowerCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowerCamelCase ( self ): return 1e-4
52
'''simple docstring''' __lowerCAmelCase ={ "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) __lowerCAmelCase ={ "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float: """simple docstring""" a_ = from_type.lower().strip('s' ) a_ = to_type.lower().strip('s' ) a_ = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) a_ = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) if from_sanitized not in METRIC_CONVERSION: a_ = ( F'''Invalid \'from_type\' value: {from_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) if to_sanitized not in METRIC_CONVERSION: a_ = ( F'''Invalid \'to_type\' value: {to_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) a_ = METRIC_CONVERSION[from_sanitized] a_ = METRIC_CONVERSION[to_sanitized] a_ = 1 if from_exponent > to_exponent: a_ = from_exponent - to_exponent else: a_ = -(to_exponent - from_exponent) return value * pow(1_0 , _UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
697
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: _snake_case : Dict = None _snake_case : Optional[Any] = logging.get_logger(__name__) _snake_case : str = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _snake_case : List[Any] = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', }, 'tokenizer_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json', }, } _snake_case : Dict = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } _snake_case : Dict = '▁' # Segments (not really needed) _snake_case : Any = 0 _snake_case : Union[str, Any] = 1 _snake_case : Union[str, Any] = 2 _snake_case : Dict = 3 _snake_case : int = 4 class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = """left""" a_ = XLNetTokenizer def __init__( self : Optional[Any] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Dict=False , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : Optional[Any]="</s>" , lowerCAmelCase_ : Any="<unk>" , lowerCAmelCase_ : Tuple="<sep>" , lowerCAmelCase_ : str="<pad>" , lowerCAmelCase_ : Optional[int]="<cls>" , lowerCAmelCase_ : List[str]="<mask>" , lowerCAmelCase_ : List[str]=["<eop>", "<eod>"] , **lowerCAmelCase_ : str , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token super().__init__( vocab_file=lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , remove_space=lowerCAmelCase_ , keep_accents=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = 3 __lowerCAmelCase = do_lower_case __lowerCAmelCase = remove_space __lowerCAmelCase = keep_accents __lowerCAmelCase = vocab_file __lowerCAmelCase = False if not self.vocab_file else True def lowercase ( self : Optional[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase ( self : Optional[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) return (out_vocab_file,)
53
'''simple docstring''' import unittest from transformers import DonutProcessor __lowerCAmelCase ="naver-clova-ix/donut-base" class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = DonutProcessor.from_pretrained(UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } a_ = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) a_ = self.processor.tokenajson(UpperCAmelCase__ ) self.assertDictEqual(UpperCAmelCase__ , UpperCAmelCase__ )
697
0
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _snake_case : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__="resnet50" , UpperCAmelCase__=3 , UpperCAmelCase__=32 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=True , ) -> Optional[Any]: a_ = parent a_ = out_indices if out_indices is not None else [4] a_ = stage_names a_ = out_features a_ = backbone a_ = batch_size a_ = image_size a_ = num_channels a_ = use_pretrained_backbone a_ = is_training def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ = self.get_config() return config, pixel_values def __SCREAMING_SNAKE_CASE ( self ) -> Dict: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = TimmBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): a_ = model(UpperCAmelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = self.prepare_config_and_inputs() a_ , a_ = config_and_inputs a_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _snake_case ( snake_case , snake_case , snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = (TimmBackbone,) if is_torch_available() else () _UpperCamelCase = {"feature-extraction": TimmBackbone} if is_torch_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = TimmBackboneModelTester(self ) a_ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = 'resnet18' a_ = 'microsoft/resnet-18' a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ , out_indices=[1, 2, 3] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Safetensors is not supported by timm.' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) a_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = True a_ = self.has_attentions # no need to test all models as different heads yield the same functionality a_ = self.all_model_classes[0] a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) a_ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = model(**UpperCAmelCase__ ) a_ = outputs[0][-1] # Encoder-/Decoder-only models a_ = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a_ = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCAmelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = None a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = False a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ )
697
0
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" __A = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" __A = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def UpperCAmelCase ( a_ ) -> str: """simple docstring""" __A = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', "stage2.cls_token") ) return token def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> Dict: """simple docstring""" __A = "imagenet-1k-id2label.json" __A = 1_0_0_0 __A = "huggingface/label-files" __A = num_labels __A = json.load(open(cached_download(hf_hub_url(a_ , a_ , repo_type="dataset" ) ) , "r" ) ) __A = {int(a_ ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} __A = __A = CvtConfig(num_labels=a_ , idalabel=a_ , labelaid=a_ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13": __A = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21": __A = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __A = [2, 2, 2_0] __A = [3, 1_2, 1_6] __A = [1_9_2, 7_6_8, 1_0_2_4] __A = CvtForImageClassification(a_ ) __A = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) __A = image_size __A = torch.load(a_ , map_location=torch.device("cpu" ) ) __A = OrderedDict() __A = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __A = list_of_state_dict + cls_token(a_ ) __A = list_of_state_dict + embeddings(a_ ) for cnt in range(config.depth[idx] ): __A = list_of_state_dict + attention(a_ , a_ ) __A = list_of_state_dict + final() for gg in list_of_state_dict: print(a_ ) for i in range(len(a_ ) ): __A = original_weights[list_of_state_dict[i][1]] model.load_state_dict(a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE :List[Any] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
55
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=7 , UpperCAmelCase__=3 , UpperCAmelCase__=18 , UpperCAmelCase__=30 , UpperCAmelCase__=400 , UpperCAmelCase__=True , UpperCAmelCase__=None , UpperCAmelCase__=True , ) -> List[Any]: a_ = size if size is not None else {'height': 18, 'width': 18} a_ = parent a_ = batch_size a_ = num_channels a_ = image_size a_ = min_resolution a_ = max_resolution a_ = do_resize a_ = size a_ = apply_ocr def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _snake_case ( snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = LayoutLMvaImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'apply_ocr' ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) a_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , UpperCAmelCase__ ) self.assertIsInstance(encoding.boxes , UpperCAmelCase__ ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> int: # with apply_OCR = True a_ = LayoutLMvaImageProcessor() from datasets import load_dataset a_ = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) a_ = Image.open(ds[0]['file'] ).convert('RGB' ) a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 a_ = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 a_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCAmelCase__ ) self.assertListEqual(encoding.boxes , UpperCAmelCase__ ) # with apply_OCR = False a_ = LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
697
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "sentencepiece.bpe.model"} _a : List[Any] = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } _a : Union[str, Any] = { "moussaKam/mbarthez": 1_024, "moussaKam/barthez": 1_024, "moussaKam/barthez-orangesum-title": 1_024, } _a : Dict = "▁" class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[str] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int]="<s>" , SCREAMING_SNAKE_CASE_ : Optional[int]="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="</s>" , SCREAMING_SNAKE_CASE_ : Tuple="<s>" , SCREAMING_SNAKE_CASE_ : List[str]="<unk>" , SCREAMING_SNAKE_CASE_ : Any="<pad>" , SCREAMING_SNAKE_CASE_ : str="<mask>" , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __snake_case = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token __snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) __snake_case = vocab_file __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) __snake_case = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} __snake_case = len(self.sp_model ) - 1 __snake_case = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case = [self.cls_token_id] __snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a ( self : List[str] ) -> Dict: return len(self.sp_model ) def a ( self : Optional[int] ) -> List[str]: __snake_case = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a ( self : Dict , SCREAMING_SNAKE_CASE_ : str ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple ) -> List[str]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __snake_case = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) return spm_id if spm_id else self.unk_token_id def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Any: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]: __snake_case = [] __snake_case = '' __snake_case = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token __snake_case = True __snake_case = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) __snake_case = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def __getstate__( self : List[str] ) -> Tuple: __snake_case = self.__dict__.copy() __snake_case = None return state def __setstate__( self : str , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: __snake_case = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case = {} __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __snake_case = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as fi: __snake_case = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
56
'''simple docstring''' import math def a ( _UpperCAmelCase ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( _UpperCAmelCase = 1_0_0_0_1 ) -> int: """simple docstring""" try: a_ = int(_UpperCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) a_ = [] a_ = 2 while len(_UpperCAmelCase ) < nth: if is_prime(_UpperCAmelCase ): primes.append(_UpperCAmelCase ) num += 1 else: num += 1 return primes[len(_UpperCAmelCase ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
697
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Union[str, Any] = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys A_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = 10 def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = [1, 2, 3, 4] a_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = '' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) a_ , a_ = process_story(UpperCAmelCase__ ) a_ = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = ['It was the best of times.'] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = torch.tensor([1, 2, 3, 4] ) a_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 0 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 23 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 1 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = 101 a_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) a_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) a_ = compute_token_type_ids(UpperCAmelCase__ , UpperCAmelCase__ ) np.testing.assert_array_equal(UpperCAmelCase__ , UpperCAmelCase__ )
697
0
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : str = "cpu" , __UpperCamelCase : Union[str, None] = None ): '''simple docstring''' snake_case_ : str = torch.load(__UpperCamelCase , map_location=__UpperCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__UpperCamelCase , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) snake_case_ : Tuple = v.half() if save_path is None: # overwrite src_path snake_case_ : List[str] = src_path torch.save(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": fire.Fire(convert)
58
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __lowerCAmelCase ="\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class _snake_case ( unittest.TestCase , snake_case ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = load_tool('text-question-answering' ) self.tool.setup() a_ = load_tool('text-question-answering' , remote=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.remote_tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = self.tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = self.remote_tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' )
697
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json", "google/bigbird-roberta-large": "https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json", "google/bigbird-base-trivia-itc": "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "big_bird" def __init__(self : List[str] , UpperCAmelCase_ : int=50_358 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Optional[int]=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : Union[str, Any]="gelu_new" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[Any]=4_096 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Tuple=1E-1_2 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : List[str]=1 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Optional[Any]=66 , UpperCAmelCase_ : Optional[Any]="block_sparse" , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : int=None , **UpperCAmelCase_ : Optional[Any] , ) ->Dict: '''simple docstring''' super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , sep_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =vocab_size lowerCamelCase__: str =max_position_embeddings lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: Optional[Any] =num_hidden_layers lowerCamelCase__: Union[str, Any] =num_attention_heads lowerCamelCase__: Optional[Any] =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: List[str] =hidden_dropout_prob lowerCamelCase__: Optional[int] =attention_probs_dropout_prob lowerCamelCase__: List[Any] =initializer_range lowerCamelCase__: Union[str, Any] =type_vocab_size lowerCamelCase__: Any =layer_norm_eps lowerCamelCase__: Tuple =use_cache lowerCamelCase__: Optional[int] =rescale_embeddings lowerCamelCase__: int =attention_type lowerCamelCase__: List[str] =use_bias lowerCamelCase__: int =block_size lowerCamelCase__: Tuple =num_random_blocks lowerCamelCase__: Union[str, Any] =classifier_dropout class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__: Optional[int] ={0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__: str ={0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
59
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase ={"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __lowerCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
697
0
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" snake_case_ : Dict = [] embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', f'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', f'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', f'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', f'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> List[str]: """simple docstring""" snake_case_ : Union[str, Any] = [] attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" snake_case_ : Any = [] token.append((f'''cvt.encoder.stages.{idx}.cls_token''', '''stage2.cls_token''') ) return token def lowerCamelCase_ ( ) -> Dict: """simple docstring""" snake_case_ : Optional[int] = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case_ : Any = '''imagenet-1k-id2label.json''' snake_case_ : List[Any] = 1_000 snake_case_ : Dict = '''huggingface/label-files''' snake_case_ : List[str] = num_labels snake_case_ : List[str] = json.load(open(cached_download(hf_hub_url(_UpperCamelCase , _UpperCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) snake_case_ : Dict = {int(_UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : List[str] = idalabel snake_case_ : List[Any] = {v: k for k, v in idalabel.items()} snake_case_ : Tuple = CvtConfig(num_labels=_UpperCamelCase , idalabel=_UpperCamelCase , labelaid=_UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": snake_case_ : Optional[int] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": snake_case_ : Union[str, Any] = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case_ : List[Any] = [2, 2, 20] snake_case_ : str = [3, 12, 16] snake_case_ : Union[str, Any] = [192, 768, 1_024] snake_case_ : Optional[int] = CvtForImageClassification(_UpperCamelCase ) snake_case_ : Optional[Any] = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) snake_case_ : List[str] = image_size snake_case_ : Any = torch.load(_UpperCamelCase , map_location=torch.device('''cpu''' ) ) snake_case_ : Optional[Any] = OrderedDict() snake_case_ : List[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case_ : Dict = list_of_state_dict + cls_token(_UpperCamelCase ) snake_case_ : List[Any] = list_of_state_dict + embeddings(_UpperCamelCase ) for cnt in range(config.depth[idx] ): snake_case_ : Tuple = list_of_state_dict + attention(_UpperCamelCase , _UpperCamelCase ) snake_case_ : Dict = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): snake_case_ : str = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) image_processor.save_pretrained(_UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=3_8_4, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=r'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
60
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "vit" def __init__( self , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=224 , UpperCAmelCase__=16 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=16 , **UpperCAmelCase__ , ) -> Dict: super().__init__(**UpperCAmelCase__ ) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = image_size a_ = patch_size a_ = num_channels a_ = qkv_bias a_ = encoder_stride class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __SCREAMING_SNAKE_CASE ( self ) -> float: return 1e-4
697
0
import sys UpperCamelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _A ( lowerCAmelCase_ : str = N ): """simple docstring""" lowerCAmelCase__ = -sys.maxsize - 1 for i in range(len(lowerCAmelCase_ ) - 12 ): lowerCAmelCase__ = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: lowerCAmelCase__ = product return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
61
'''simple docstring''' def a ( _UpperCAmelCase = 5_0 ) -> int: """simple docstring""" a_ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
697
0
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCamelCase__ ( lowercase , lowercase=10 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = [] for _ in range(lowercase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowerCamelCase__ ( lowercase , lowercase=10 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = [] for step in range(lowercase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Dict = os.path.join(lowercase , "schedule.bin" ) torch.save(scheduler.state_dict() , lowercase ) SCREAMING_SNAKE_CASE : List[Any] = torch.load(lowercase ) scheduler.load_state_dict(lowercase ) return lrs @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict ): self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertAlmostEqual(UpperCAmelCase_ , UpperCAmelCase_ , delta=UpperCAmelCase_ ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Any = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = torch.tensor([0.4, 0.2, -0.5] ) SCREAMING_SNAKE_CASE : str = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE : Dict = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): SCREAMING_SNAKE_CASE : Optional[Any] = criterion(UpperCAmelCase_ , UpperCAmelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def _A ( self : str ): SCREAMING_SNAKE_CASE : Dict = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([0.4, 0.2, -0.5] ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE : List[str] = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase_ , weight_decay=0.0 , relative_step=UpperCAmelCase_ , scale_parameter=UpperCAmelCase_ , warmup_init=UpperCAmelCase_ , ) for _ in range(1000 ): SCREAMING_SNAKE_CASE : Union[str, Any] = criterion(UpperCAmelCase_ , UpperCAmelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Dict = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCamelCase_ : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None UpperCamelCase_ : str = 1_0 def _A ( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any]=None ): self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertAlmostEqual(UpperCAmelCase_ , UpperCAmelCase_ , delta=UpperCAmelCase_ , msg=UpperCAmelCase_ ) def _A ( self : int ): SCREAMING_SNAKE_CASE : List[Any] = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE : Union[str, Any] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = data SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler_func(self.optimizer , **UpperCAmelCase_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) SCREAMING_SNAKE_CASE : Optional[int] = unwrap_schedule(UpperCAmelCase_ , self.num_steps ) self.assertListAlmostEqual( UpperCAmelCase_ , UpperCAmelCase_ , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) SCREAMING_SNAKE_CASE : Optional[int] = scheduler_func(self.optimizer , **UpperCAmelCase_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase_ ) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE : Optional[Any] = unwrap_and_save_reload_schedule(UpperCAmelCase_ , self.num_steps ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ , msg=f'''failed for {scheduler_func} in save and reload''' ) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : Union[str, Any] = fn def __call__( self : Any , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Dict ): return self.fn(*UpperCAmelCase_ , **UpperCAmelCase_ ) @classmethod def _A ( self : Tuple , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = list(map(self , scheduler.lr_lambdas ) )
62
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def a ( ) -> None: """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
697
0
def lowerCamelCase__ ( __lowerCamelCase : int ): __UpperCAmelCase : List[str] = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = 0, 0, 0 __UpperCAmelCase : Any = ugly_nums[ia] * 2 __UpperCAmelCase : Optional[Any] = ugly_nums[ia] * 3 __UpperCAmelCase : List[Any] = ugly_nums[ia] * 5 for _ in range(1 , __lowerCamelCase ): __UpperCAmelCase : str = min(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ugly_nums.append(__lowerCamelCase ) if next_num == next_a: ia += 1 __UpperCAmelCase : Dict = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __UpperCAmelCase : List[str] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __UpperCAmelCase : int = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"""{ugly_numbers(200) = }""")
63
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a ( _UpperCAmelCase ) -> int: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _snake_case ( snake_case ): """simple docstring""" @staticmethod def __SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ) -> str: a_ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=UpperCAmelCase__ , help='Name of the model to download' ) download_parser.set_defaults(func=UpperCAmelCase__ ) def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = model a_ = cache a_ = force a_ = trust_remote_code def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
697
0
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def A__ ( snake_case_ : Any ): SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: List[str]= image.size SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: int= (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 SCREAMING_SNAKE_CASE__: Tuple= image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) SCREAMING_SNAKE_CASE__: List[Any]= np.array(snake_case_ ).astype(np.floataa ) / 2_55.0 SCREAMING_SNAKE_CASE__: Optional[int]= image[None].transpose(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE__: Dict= torch.from_numpy(snake_case_ ) return 2.0 * image - 1.0 class _lowerCamelCase ( UpperCamelCase_ ): def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) -> List[Any]: super().__init__() self.register_modules(vqvae=lowerCAmelCase , unet=lowerCAmelCase , scheduler=lowerCAmelCase ) @torch.no_grad() def __call__( self , lowerCAmelCase = None , lowerCAmelCase = 1 , lowerCAmelCase = 100 , lowerCAmelCase = 0.0 , lowerCAmelCase = None , lowerCAmelCase = "pil" , lowerCAmelCase = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(lowerCAmelCase , PIL.Image.Image ): SCREAMING_SNAKE_CASE__: str= 1 elif isinstance(lowerCAmelCase , torch.Tensor ): SCREAMING_SNAKE_CASE__: int= image.shape[0] else: raise ValueError(f'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCAmelCase )}' ) if isinstance(lowerCAmelCase , PIL.Image.Image ): SCREAMING_SNAKE_CASE__: Union[str, Any]= preprocess(lowerCAmelCase ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Tuple= image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image SCREAMING_SNAKE_CASE__: Union[str, Any]= (batch_size, self.unet.config.in_channels // 2, height, width) SCREAMING_SNAKE_CASE__: Optional[Any]= next(self.unet.parameters() ).dtype SCREAMING_SNAKE_CASE__: Optional[int]= randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=self.device , dtype=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[Any]= image.to(device=self.device , dtype=lowerCAmelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCAmelCase , device=self.device ) SCREAMING_SNAKE_CASE__: Any= self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler SCREAMING_SNAKE_CASE__: List[Any]= latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] SCREAMING_SNAKE_CASE__: Dict= '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) SCREAMING_SNAKE_CASE__: str= {} if accepts_eta: SCREAMING_SNAKE_CASE__: List[Any]= eta for t in self.progress_bar(lowerCAmelCase ): # concat latents and low resolution image in the channel dimension. SCREAMING_SNAKE_CASE__: Optional[Any]= torch.cat([latents, image] , dim=1 ) SCREAMING_SNAKE_CASE__: Optional[Any]= self.scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) # predict the noise residual SCREAMING_SNAKE_CASE__: Dict= self.unet(lowerCAmelCase , lowerCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE__: Any= self.scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample # decode the image latents with the VQVAE SCREAMING_SNAKE_CASE__: Tuple= self.vqvae.decode(lowerCAmelCase ).sample SCREAMING_SNAKE_CASE__: Optional[int]= torch.clamp(lowerCAmelCase , -1.0 , 1.0 ) SCREAMING_SNAKE_CASE__: Optional[Any]= image / 2 + 0.5 SCREAMING_SNAKE_CASE__: List[Any]= image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__: Tuple= self.numpy_to_pil(lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase )
64
'''simple docstring''' def a ( _UpperCAmelCase ) -> int: """simple docstring""" assert column_title.isupper() a_ = 0 a_ = len(_UpperCAmelCase ) - 1 a_ = 0 while index >= 0: a_ = (ord(column_title[index] ) - 6_4) * pow(2_6 , _UpperCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
697
0
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '▁' __UpperCAmelCase = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } __UpperCAmelCase = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } __UpperCAmelCase = { 'facebook/m2m100_418M': 1024, } # fmt: off __UpperCAmelCase = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class __lowercase ( __lowerCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = ["""input_ids""", """attention_mask"""] snake_case_ = [] snake_case_ = [] def __init__( self : int ,A : List[Any] ,A : str ,A : List[Any]=None ,A : Dict=None ,A : str="<s>" ,A : int="</s>" ,A : List[Any]="</s>" ,A : Optional[Any]="<pad>" ,A : List[str]="<unk>" ,A : Optional[Any]="m2m100" ,A : Optional[Dict[str, Any]] = None ,A : List[str]=8 ,**A : Optional[Any] ,): '''simple docstring''' UpperCAmelCase__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase__ : List[str] = language_codes UpperCAmelCase__ : Dict = FAIRSEQ_LANGUAGE_CODES[language_codes] UpperCAmelCase__ : Optional[int] = {lang_code: f"__{lang_code}__" for lang_code in fairseq_language_code} UpperCAmelCase__ : Tuple = kwargs.get("""additional_special_tokens""" ,[] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A ) for lang_code in fairseq_language_code if self.get_lang_token(A ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A ,tgt_lang=A ,bos_token=A ,eos_token=A ,sep_token=A ,unk_token=A ,pad_token=A ,language_codes=A ,sp_model_kwargs=self.sp_model_kwargs ,num_madeup_words=A ,**A ,) UpperCAmelCase__ : str = vocab_file UpperCAmelCase__ : Dict = load_json(A ) UpperCAmelCase__ : Optional[int] = {v: k for k, v in self.encoder.items()} UpperCAmelCase__ : Dict = spm_file UpperCAmelCase__ : List[Any] = load_spm(A ,self.sp_model_kwargs ) UpperCAmelCase__ : Dict = len(self.encoder ) UpperCAmelCase__ : Dict = { self.get_lang_token(A ): self.encoder_size + i for i, lang_code in enumerate(A ) } UpperCAmelCase__ : Union[str, Any] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(A )} UpperCAmelCase__ : Union[str, Any] = {v: k for k, v in self.lang_token_to_id.items()} UpperCAmelCase__ : List[str] = src_lang if src_lang is not None else """en""" UpperCAmelCase__ : int = tgt_lang UpperCAmelCase__ : int = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) UpperCAmelCase__ : List[str] = num_madeup_words @property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def __lowercase ( self : Dict ): '''simple docstring''' return self._src_lang @src_lang.setter def __lowercase ( self : List[str] ,A : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowercase ( self : Optional[Any] ,A : str ): '''simple docstring''' return self.sp_model.encode(A ,out_type=A ) def __lowercase ( self : List[str] ,A : Dict ): '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A ,self.encoder[self.unk_token] ) def __lowercase ( self : Any ,A : int ): '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A ,self.unk_token ) def __lowercase ( self : Tuple ,A : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token UpperCAmelCase__ : str = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def __lowercase ( self : Optional[int] ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) UpperCAmelCase__ : Union[str, Any] = [1] * len(self.prefix_tokens ) UpperCAmelCase__ : Optional[int] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A )) + suffix_ones return prefix_ones + ([0] * len(A )) + ([0] * len(A )) + suffix_ones def __lowercase ( self : Tuple ,A : List[int] ,A : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.__dict__.copy() UpperCAmelCase__ : Dict = None return state def __setstate__( self : int ,A : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = load_spm(self.spm_file ,self.sp_model_kwargs ) def __lowercase ( self : Any ,A : str ,A : Optional[str] = None ): '''simple docstring''' UpperCAmelCase__ : List[str] = Path(A ) if not save_dir.is_dir(): raise OSError(f"{save_directory} should be a directory" ) UpperCAmelCase__ : Tuple = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) UpperCAmelCase__ : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder ,A ) if os.path.abspath(self.spm_file ) != os.path.abspath(A ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file ,A ) elif not os.path.isfile(self.spm_file ): with open(A ,"""wb""" ) as fi: UpperCAmelCase__ : List[str] = self.sp_model.serialized_model_proto() fi.write(A ) return (str(A ), str(A )) def __lowercase ( self : str ,A : List[str] ,A : str = "en" ,A : Optional[List[str]] = None ,A : str = "ro" ,**A : List[Any] ,): '''simple docstring''' UpperCAmelCase__ : List[Any] = src_lang UpperCAmelCase__ : str = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A ,A ,**A ) def __lowercase ( self : Any ,A : Union[str, Any] ,A : Optional[str] ,A : Optional[str] ,**A : List[Any] ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) UpperCAmelCase__ : List[Any] = src_lang UpperCAmelCase__ : List[str] = self(A ,add_special_tokens=A ,**A ) UpperCAmelCase__ : List[Any] = self.get_lang_id(A ) UpperCAmelCase__ : List[str] = tgt_lang_id return inputs def __lowercase ( self : Union[str, Any] ): '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def __lowercase ( self : List[Any] ): '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowercase ( self : int ,A : str ): '''simple docstring''' UpperCAmelCase__ : int = self.get_lang_token(A ) UpperCAmelCase__ : List[str] = self.lang_token_to_id[lang_token] UpperCAmelCase__ : Union[str, Any] = [self.cur_lang_id] UpperCAmelCase__ : int = [self.eos_token_id] def __lowercase ( self : Dict ,A : str ): '''simple docstring''' UpperCAmelCase__ : int = self.get_lang_token(A ) UpperCAmelCase__ : List[Any] = self.lang_token_to_id[lang_token] UpperCAmelCase__ : Optional[int] = [self.cur_lang_id] UpperCAmelCase__ : str = [self.eos_token_id] def __lowercase ( self : int ,A : str ): '''simple docstring''' return self.lang_code_to_token[lang] def __lowercase ( self : Dict ,A : str ): '''simple docstring''' UpperCAmelCase__ : int = self.get_lang_token(A ) return self.lang_token_to_id[lang_token] def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = sentencepiece.SentencePieceProcessor(**__UpperCamelCase ) spm.Load(str(__UpperCamelCase ) ) return spm def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' with open(__UpperCamelCase , """r""" ) as f: return json.load(__UpperCamelCase ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase , indent=2 )
65
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __lowerCAmelCase =logging.get_logger(__name__) class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = ["audio_values", "audio_mask"] def __init__( self , UpperCAmelCase__=2048 , UpperCAmelCase__=1 , UpperCAmelCase__=[16, 16] , UpperCAmelCase__=128 , UpperCAmelCase__=4_4100 , UpperCAmelCase__=86 , UpperCAmelCase__=2048 , UpperCAmelCase__=0.0 , **UpperCAmelCase__ , ) -> Union[str, Any]: super().__init__( feature_size=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , padding_value=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = spectrogram_length a_ = num_channels a_ = patch_size a_ = feature_size // self.patch_size[1] a_ = n_fft a_ = sampling_rate // hop_length_to_sampling_rate a_ = sampling_rate a_ = padding_value a_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=UpperCAmelCase__ , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=UpperCAmelCase__ , norm='slaney' , mel_scale='slaney' , ).T def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> np.ndarray: a_ = spectrogram( UpperCAmelCase__ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=8_0.0 , ) a_ = log_spec[:, :-1] a_ = log_spec - 2_0.0 a_ = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , **UpperCAmelCase__ , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) a_ = isinstance(UpperCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) a_ = is_batched_numpy or ( isinstance(UpperCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a_ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase__ , np.ndarray ): a_ = np.asarray(UpperCAmelCase__ , dtype=np.floataa ) elif isinstance(UpperCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a_ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis a_ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , UpperCAmelCase__ ): a_ = [np.asarray(UpperCAmelCase__ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask a_ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: a_ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] a_ = np.array(UpperCAmelCase__ ).astype(np.floataa ) # convert into correct format for padding a_ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch a_ = np.ones([len(UpperCAmelCase__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) a_ = padded_audio_features * self.padding_value for i in range(len(UpperCAmelCase__ ) ): a_ = audio_features[i] a_ = feature # return as BatchFeature if return_attention_mask: a_ = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: a_ = {'audio_values': padded_audio_features} a_ = BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) return encoded_inputs
697
0
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[Any] = FlaxAutoencoderKL @property def __a ( self ): _lowercase : Optional[Any] = 4 _lowercase : List[str] = 3 _lowercase : int = (3_2, 3_2) _lowercase : List[str] = jax.random.PRNGKey(0 ) _lowercase : Union[str, Any] = jax.random.uniform(_lowerCAmelCase , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def __a ( self ): _lowercase : Union[str, Any] = { 'block_out_channels': [3_2, 6_4], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } _lowercase : Optional[Any] = self.dummy_input return init_dict, inputs_dict
66
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Optional[Any]: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = len(set_a.intersection(_UpperCAmelCase ) ) if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) else: a_ = len(set_a.union(_UpperCAmelCase ) ) return intersection / union if isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) ): a_ = [element for element in set_a if element in set_b] if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / union else: a_ = set_a + [element for element in set_b if element not in set_a] return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return None if __name__ == "__main__": __lowerCAmelCase ={"a", "b", "c", "d", "e"} __lowerCAmelCase ={"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
697
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
67
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('iterations must be defined as integers' ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) a_ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
697
0
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowercase__ ( ) -> List[str]: """simple docstring""" raise RuntimeError("""CUDA out of memory.""" ) class _A ( nn.Module ): """simple docstring""" def __init__( self : List[str] ) -> str: super().__init__() __UpperCAmelCase =nn.Linear(3 , 4 ) __UpperCAmelCase =nn.BatchNormad(4 ) __UpperCAmelCase =nn.Linear(4 , 5 ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str ) -> int: return self.lineara(self.batchnorm(self.lineara(__SCREAMING_SNAKE_CASE ) ) ) class _A ( unittest.TestCase ): """simple docstring""" def _a ( self : Dict ) -> List[Any]: __UpperCAmelCase =[] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__SCREAMING_SNAKE_CASE : List[str] ): nonlocal batch_sizes batch_sizes.append(__SCREAMING_SNAKE_CASE ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__SCREAMING_SNAKE_CASE , [128, 64, 32, 16, 8] ) def _a ( self : List[Any] ) -> Optional[Any]: __UpperCAmelCase =[] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] ): nonlocal batch_sizes batch_sizes.append(__SCREAMING_SNAKE_CASE ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase =mock_training_loop_function("""hello""" ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, """hello"""] ) def _a ( self : Tuple ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__SCREAMING_SNAKE_CASE : Any ): pass with self.assertRaises(__SCREAMING_SNAKE_CASE ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def _a ( self : str ) -> Dict: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__SCREAMING_SNAKE_CASE : List[Any] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__SCREAMING_SNAKE_CASE ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def _a ( self : Optional[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__SCREAMING_SNAKE_CASE ) as cm: mock_training_loop_function(128 , """hello""" , """world""" ) self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0] ) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0] ) def _a ( self : Any ) -> Tuple: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__SCREAMING_SNAKE_CASE : Tuple ): raise ValueError("""Oops, we had an error!""" ) with self.assertRaises(__SCREAMING_SNAKE_CASE ) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0] ) @require_cuda def _a ( self : List[Any] ) -> Optional[int]: __UpperCAmelCase =torch.cuda.memory_allocated() __UpperCAmelCase =ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =release_memory(__SCREAMING_SNAKE_CASE ) self.assertEqual(torch.cuda.memory_allocated() , __SCREAMING_SNAKE_CASE )
68
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _snake_case ( snake_case ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ) -> str: super().__init__( features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ , streaming=UpperCAmelCase__ , num_proc=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = Generator( cache_dir=UpperCAmelCase__ , features=UpperCAmelCase__ , generator=UpperCAmelCase__ , gen_kwargs=UpperCAmelCase__ , **UpperCAmelCase__ , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Build iterable dataset if self.streaming: a_ = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: a_ = None a_ = None a_ = None a_ = None self.builder.download_and_prepare( download_config=UpperCAmelCase__ , download_mode=UpperCAmelCase__ , verification_mode=UpperCAmelCase__ , base_path=UpperCAmelCase__ , num_proc=self.num_proc , ) a_ = self.builder.as_dataset( split='train' , verification_mode=UpperCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
697
0
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness a : Tuple = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' a : Optional[int] = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' a : Tuple = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' a : Optional[int] = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' a : Optional[int] = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def A ( self : Dict ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def A ( self : str , a_ : List[Any] , a_ : Optional[int] , a_ : Any=[1, 10, 100] , a_ : Optional[int]=4 , a_ : Optional[int]=3.0 ): """simple docstring""" if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=a_ ) as executor: __snake_case = [] __snake_case = Counter() __snake_case = 0 __snake_case = defaultdict(a_ ) for task_id, (candidates, test_case) in enumerate(zip(a_ , a_ ) ): for candidate in candidates: __snake_case = candidate + "\n" + test_case __snake_case = (test_program, timeout, task_id, completion_id[task_id]) __snake_case = executor.submit(a_ , *a_ ) futures.append(a_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(a_ ): __snake_case = future.result() results[result["task_id"]].append((result["completion_id"], result) ) __snake_case , __snake_case = [], [] for result in results.values(): result.sort() __snake_case = [r[1]["passed"] for r in result] total.append(len(a_ ) ) correct.append(sum(a_ ) ) __snake_case = np.array(a_ ) __snake_case = np.array(a_ ) __snake_case = k __snake_case = {f'''pass@{k}''': estimate_pass_at_k(a_ , a_ , a_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any ) -> List[Any]: def estimator(_UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __snake_case = itertools.repeat(_UpperCAmelCase , len(_UpperCAmelCase ) ) else: assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) __snake_case = iter(_UpperCAmelCase ) return np.array([estimator(int(_UpperCAmelCase ) , int(_UpperCAmelCase ) , _UpperCAmelCase ) for n, c in zip(_UpperCAmelCase , _UpperCAmelCase )] )
69
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase =numpy.array([0, 0]) __lowerCAmelCase =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase =numpy.array([1, 0]) __lowerCAmelCase =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a ( _UpperCAmelCase , _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = initial_vectors for _ in range(_UpperCAmelCase ): a_ = iteration_step(_UpperCAmelCase ) return vectors def a ( _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = [] for i, start_vector in enumerate(vectors[:-1] ): a_ = vectors[i + 1] new_vectors.append(_UpperCAmelCase ) a_ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a ( _UpperCAmelCase , _UpperCAmelCase ) -> numpy.ndarray: """simple docstring""" a_ = numpy.radians(_UpperCAmelCase ) a_ , a_ = numpy.cos(_UpperCAmelCase ), numpy.sin(_UpperCAmelCase ) a_ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_UpperCAmelCase , _UpperCAmelCase ) def a ( _UpperCAmelCase ) -> None: """simple docstring""" a_ = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() a_ , a_ = zip(*_UpperCAmelCase ) plt.plot(_UpperCAmelCase , _UpperCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
697
0
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} lowerCamelCase : Tuple = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } lowerCamelCase : Any = { "abeja/gpt-neox-japanese-2.7b": 2_048, } def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' with open(lowercase , 'r' , encoding='utf-8' ) as f: lowerCamelCase_ = json.loads(f.read() ) lowerCamelCase_ = collections.OrderedDict() lowerCamelCase_ = collections.OrderedDict() lowerCamelCase_ = collections.OrderedDict() with open(lowercase , 'r' , encoding='utf-8' ) as f: lowerCamelCase_ = f.readlines() lowerCamelCase_ = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowercase ): lowerCamelCase_ = b lowerCamelCase_ = idx for wd in b: lowerCamelCase_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : str , A_ : Any , A_ : Any , A_ : Optional[Any]="<|endoftext|>" , A_ : Any="<|endoftext|>" , A_ : Optional[int]="<|startoftext|>" , A_ : Union[str, Any]="<|endoftext|>" , A_ : Any=False , **A_ : Tuple , ) -> Dict: """simple docstring""" super().__init__( unk_token=A_ , pad_token=A_ , bos_token=A_ , eos_token=A_ , do_clean_text=A_ , **A_ , ) if not os.path.isfile(A_ ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(A_ ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) lowerCamelCase_ = do_clean_text lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = load_vocab_and_emoji(A_ , A_ ) lowerCamelCase_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def a__ ( self : List[str] ) -> Dict: """simple docstring""" return len(self.raw_vocab ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def a__ ( self : Optional[Any] , A_ : str ) -> Tuple: """simple docstring""" return self.subword_tokenizer.tokenize(A_ , clean=self.do_clean_text ) def a__ ( self : Optional[int] , A_ : Dict ) -> List[Any]: """simple docstring""" return self.vocab.get(A_ , self.vocab.get(self.unk_token ) ) def a__ ( self : Union[str, Any] , A_ : Union[str, Any] ) -> int: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(A_ ) def a__ ( self : Optional[int] , A_ : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = ''.join(A_ ).strip() return out_string def a__ ( self : Optional[Any] , A_ : "Conversation" ) -> List[int]: """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(A_ , add_special_tokens=A_ ) + [self.eos_token_id] ) if len(A_ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] return input_ids def a__ ( self : List[Any] , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowerCamelCase_ = 0 if os.path.isdir(A_ ): lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: lowerCamelCase_ = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!' ) lowerCamelCase_ = token_index writer.write(','.join(A_ ) + '\n' ) index += 1 with open(A_ , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , A_ ) return vocab_file, emoji_file class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Any , A_ : Union[str, Any] , A_ : int , A_ : Tuple ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = vocab # same as swe lowerCamelCase_ = ids_to_tokens # same as bpe lowerCamelCase_ = emoji lowerCamelCase_ = np.max([len(A_ ) for w in self.vocab.keys()] ) lowerCamelCase_ = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) lowerCamelCase_ = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) lowerCamelCase_ = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) lowerCamelCase_ = re.compile( r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) lowerCamelCase_ = re.compile( r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) lowerCamelCase_ = re.compile( r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) lowerCamelCase_ = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' lowerCamelCase_ = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' lowerCamelCase_ = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self : str ) -> Optional[int]: """simple docstring""" return len(self.ids_to_tokens ) def a__ ( self : Union[str, Any] , A_ : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.content_repattera.sub('<URL>' , A_ ) lowerCamelCase_ = self.content_repattera.sub('<EMAIL>' , A_ ) lowerCamelCase_ = self.content_repattera.sub('<TEL>' , A_ ) lowerCamelCase_ = self.content_repattera.sub('<DATE>' , A_ ) lowerCamelCase_ = self.content_repattera.sub('<DATE>' , A_ ) lowerCamelCase_ = self.content_repattera.sub('<PRICE>' , A_ ) lowerCamelCase_ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowerCamelCase_ = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def a__ ( self : int , A_ : Optional[Any] , A_ : Tuple=False ) -> Dict: """simple docstring""" lowerCamelCase_ = text.replace(' ' , '<SP>' ) lowerCamelCase_ = text.replace(' ' , '<SP>' ) lowerCamelCase_ = text.replace('\r\n' , '<BR>' ) lowerCamelCase_ = text.replace('\n' , '<BR>' ) lowerCamelCase_ = text.replace('\r' , '<BR>' ) lowerCamelCase_ = text.replace('\t' , '<TAB>' ) lowerCamelCase_ = text.replace('—' , 'ー' ) lowerCamelCase_ = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: lowerCamelCase_ = text.replace(A_ , A_ ) if clean: lowerCamelCase_ = self.clean_text(A_ ) def check_simbol(A_ : Union[str, Any] ): lowerCamelCase_ = x.encode() if len(A_ ) == 1 and len(A_ ) == 2: lowerCamelCase_ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2_A1 and c <= 0XC2_BF) or (c >= 0XC7_80 and c <= 0XC7_83) or (c >= 0XCA_B9 and c <= 0XCB_BF) or (c >= 0XCC_80 and c <= 0XCD_A2) ): return True return False def checkuae(A_ : Tuple ): lowerCamelCase_ = x.encode() if len(A_ ) == 1 and len(A_ ) == 3: lowerCamelCase_ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_80_80 and c <= 0XE2_B0_7F: return True return False lowerCamelCase_ = 0 lowerCamelCase_ = [] while pos < len(A_ ): lowerCamelCase_ = min(len(A_ ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 lowerCamelCase_ = [] # (token_id, token, pos) for e in range(A_ , A_ , -1 ): lowerCamelCase_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(A_ ) > 2: lowerCamelCase_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(A_ ) > 0: # the smallest token_id is adopted lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = sorted(A_ , key=lambda A_ : x[0] )[0] result.append(A_ ) lowerCamelCase_ = e else: lowerCamelCase_ = pos + 1 lowerCamelCase_ = text[pos:end] if check_simbol(A_ ): result.append('<KIGOU>' ) elif checkuae(A_ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) lowerCamelCase_ = end return result def a__ ( self : List[Any] , A_ : Tuple , A_ : List[str]="\n" ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(A_ ) > 0: words.append(bytearray(A_ ).decode('utf-8' , errors='replace' ) ) lowerCamelCase_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(A_ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(A_ ) if len(A_ ) > 0: words.append(bytearray(A_ ).decode('utf-8' , errors='replace' ) ) lowerCamelCase_ = ''.join(A_ ) return text
70
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def a ( _UpperCAmelCase ) -> int: """simple docstring""" if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def a ( _UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" for char in word: a_ = ord(_UpperCAmelCase ) if not _is_chinese_char(_UpperCAmelCase ): return 0 return 1 def a ( _UpperCAmelCase ) -> Tuple: """simple docstring""" a_ = set() for token in tokens: a_ = len(_UpperCAmelCase ) > 1 and is_chinese(_UpperCAmelCase ) if chinese_word: word_set.add(_UpperCAmelCase ) a_ = list(_UpperCAmelCase ) return word_list def a ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: """simple docstring""" if not chinese_word_set: return bert_tokens a_ = max([len(_UpperCAmelCase ) for w in chinese_word_set] ) a_ = bert_tokens a_ , a_ = 0, len(_UpperCAmelCase ) while start < end: a_ = True if is_chinese(bert_word[start] ): a_ = min(end - start , _UpperCAmelCase ) for i in range(_UpperCAmelCase , 1 , -1 ): a_ = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): a_ = '##' + bert_word[j] a_ = start + i a_ = False break if single_word: start += 1 return bert_word def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: """simple docstring""" a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['cws'] ).cws a_ = [get_chinese_word(_UpperCAmelCase ) for r in res] ltp_res.extend(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=5_1_2 ) bert_res.extend(res['input_ids'] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for input_ids, chinese_word in zip(_UpperCAmelCase , _UpperCAmelCase ): a_ = [] for id in input_ids: a_ = bert_tokenizer._convert_id_to_token(_UpperCAmelCase ) input_tokens.append(_UpperCAmelCase ) a_ = add_sub_symbol(_UpperCAmelCase , _UpperCAmelCase ) a_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_UpperCAmelCase ): if token[:2] == "##": a_ = token[2:] # save chinese tokens' pos if len(_UpperCAmelCase ) == 1 and _is_chinese_char(ord(_UpperCAmelCase ) ): ref_id.append(_UpperCAmelCase ) ref_ids.append(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) return ref_ids def a ( _UpperCAmelCase ) -> Optional[Any]: """simple docstring""" with open(args.file_name , 'r' , encoding='utf-8' ) as f: a_ = f.readlines() a_ = [line.strip() for line in data if len(_UpperCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' a_ = LTP(args.ltp ) # faster in GPU device a_ = BertTokenizer.from_pretrained(args.bert ) a_ = prepare_ref(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: a_ = [json.dumps(_UpperCAmelCase ) + '\n' for ref in ref_ids] f.writelines(_UpperCAmelCase ) if __name__ == "__main__": __lowerCAmelCase =argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __lowerCAmelCase =parser.parse_args() main(args)
697
0
'''simple docstring''' from __future__ import annotations def a__ ( _SCREAMING_SNAKE_CASE : tuple[int, int] , _SCREAMING_SNAKE_CASE : int ) -> list[tuple[int, int]]: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = position UpperCAmelCase_ : List[str] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCAmelCase_ : List[str] = [] for position in positions: UpperCAmelCase_ , UpperCAmelCase_ : Any = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_SCREAMING_SNAKE_CASE ) return permissible_positions def a__ ( _SCREAMING_SNAKE_CASE : list[list[int]] ) -> bool: """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def a__ ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : tuple[int, int] , _SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if is_complete(_SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = position if board[y][x] == 0: UpperCAmelCase_ : int = curr + 1 if open_knight_tour_helper(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , curr + 1 ): return True UpperCAmelCase_ : int = 0 return False def a__ ( _SCREAMING_SNAKE_CASE : int ) -> list[list[int]]: """simple docstring""" UpperCAmelCase_ : str = [[0 for i in range(_SCREAMING_SNAKE_CASE )] for j in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : str = 1 if open_knight_tour_helper(_SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Union[str, Any] = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
71
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase ={ "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": 512, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase = RetriBertTokenizer _UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__="[UNK]" , UpperCAmelCase__="[SEP]" , UpperCAmelCase__="[PAD]" , UpperCAmelCase__="[CLS]" , UpperCAmelCase__="[MASK]" , UpperCAmelCase__=True , UpperCAmelCase__=None , **UpperCAmelCase__ , ) -> int: super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase__ ) != tokenize_chinese_chars ): a_ = getattr(UpperCAmelCase__ , normalizer_state.pop('type' ) ) a_ = do_lower_case a_ = strip_accents a_ = tokenize_chinese_chars a_ = normalizer_class(**UpperCAmelCase__ ) a_ = do_lower_case def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__=None ) -> str: a_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> List[int]: a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> Tuple[str]: a_ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
697
0
'''simple docstring''' from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
72
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "lilt" def __init__( self , UpperCAmelCase__=3_0522 , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=512 , UpperCAmelCase__=2 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=0 , UpperCAmelCase__="absolute" , UpperCAmelCase__=None , UpperCAmelCase__=4 , UpperCAmelCase__=1024 , **UpperCAmelCase__ , ) -> Optional[Any]: super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = classifier_dropout a_ = channel_shrink_ratio a_ = max_ad_position_embeddings
697
0
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a_ : List[Any] = False class _snake_case ( unittest.TestCase ): pass @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion') pipe.to(a) pipe.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg') SCREAMING_SNAKE_CASE = torch.manual_seed(0) SCREAMING_SNAKE_CASE = pipe( image=a , generator=a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images SCREAMING_SNAKE_CASE = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
73
'''simple docstring''' from __future__ import annotations def a ( _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # We need to create solution object to save path. a_ = [[0 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] a_ = run_maze(_UpperCAmelCase , 0 , 0 , _UpperCAmelCase ) if solved: print('\n'.join(str(_UpperCAmelCase ) for row in solutions ) ) else: print('No solution exists!' ) return solved def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # Final check point. if i == j == (size - 1): a_ = 1 return True a_ = (not i < 0) and (not j < 0) # Check lower bounds a_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. a_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited a_ = 1 # check for directions if ( run_maze(_UpperCAmelCase , i + 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j + 1 , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , i - 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j - 1 , _UpperCAmelCase ) ): return True a_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
697
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = ShapEPipeline lowerCAmelCase_ = ['''prompt'''] lowerCAmelCase_ = ['''prompt'''] lowerCAmelCase_ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] lowerCAmelCase_ = False @property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : int ): """simple docstring""" return 8 @property def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCAmelCase__ ( self : Any ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } __SCREAMING_SNAKE_CASE : List[Any] = PriorTransformer(**_A ) return model @property def UpperCAmelCase__ ( self : str ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[Any] = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } __SCREAMING_SNAKE_CASE : Union[str, Any] = ShapERenderer(**_A ) return model def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.dummy_prior __SCREAMING_SNAKE_CASE : int = self.dummy_text_encoder __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_tokenizer __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_renderer __SCREAMING_SNAKE_CASE : Tuple = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) __SCREAMING_SNAKE_CASE : Dict = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCAmelCase__ ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ): """simple docstring""" if str(_A ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(_A ) else: __SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=_A ).manual_seed(_A ) __SCREAMING_SNAKE_CASE : int = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = '''cpu''' __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**_A ) __SCREAMING_SNAKE_CASE : str = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE : Dict = pipe(**self.get_dummy_inputs(_A ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = output.images[0] __SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __SCREAMING_SNAKE_CASE : str = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self : str ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : List[str] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**_A ) __SCREAMING_SNAKE_CASE : Dict = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE : Tuple = 1 __SCREAMING_SNAKE_CASE : Any = 2 __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: __SCREAMING_SNAKE_CASE : str = batch_size * [inputs[key]] __SCREAMING_SNAKE_CASE : str = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) __SCREAMING_SNAKE_CASE : str = ShapEPipeline.from_pretrained('''openai/shap-e''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE : Any = torch.Generator(device=_A ).manual_seed(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
74
'''simple docstring''' __lowerCAmelCase ={ "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) __lowerCAmelCase ={ "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float: """simple docstring""" a_ = from_type.lower().strip('s' ) a_ = to_type.lower().strip('s' ) a_ = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) a_ = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) if from_sanitized not in METRIC_CONVERSION: a_ = ( F'''Invalid \'from_type\' value: {from_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) if to_sanitized not in METRIC_CONVERSION: a_ = ( F'''Invalid \'to_type\' value: {to_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) a_ = METRIC_CONVERSION[from_sanitized] a_ = METRIC_CONVERSION[to_sanitized] a_ = 1 if from_exponent > to_exponent: a_ = from_exponent - to_exponent else: a_ = -(to_exponent - from_exponent) return value * pow(1_0 , _UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
697
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase__ = logging.get_logger(__name__) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = ['pixel_values'] def __init__( self : Dict , _A : bool = True , _A : int = 32 , _A : Optional[Any]=PILImageResampling.BILINEAR , _A : bool = True , **_A : List[Any] , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = do_resize UpperCAmelCase__ : int = do_rescale UpperCAmelCase__ : List[Any] = size_divisor UpperCAmelCase__ : List[Any] = resample super().__init__(**_A ) def lowercase_ ( self : Optional[Any] , _A : np.ndarray , _A : int , _A : Optional[int] , _A : Optional[ChannelDimension] = None , **_A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Dict = get_image_size(_A ) # Rounds the height and width down to the closest multiple of size_divisor UpperCAmelCase__ : Union[str, Any] = height // size_divisor * size_divisor UpperCAmelCase__ : Dict = width // size_divisor * size_divisor UpperCAmelCase__ : Any = resize(_A , (new_h, new_w) , resample=_A , data_format=_A , **_A ) return image def lowercase_ ( self : Optional[int] , _A : np.ndarray , _A : float , _A : Optional[ChannelDimension] = None , **_A : Dict ): '''simple docstring''' return rescale(image=_A , scale=_A , data_format=_A , **_A ) def lowercase_ ( self : Tuple , _A : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , _A : Optional[bool] = None , _A : Optional[int] = None , _A : Any=None , _A : Optional[bool] = None , _A : Optional[Union[TensorType, str]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Optional[int] , ): '''simple docstring''' UpperCAmelCase__ : Dict = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : int = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : str = size_divisor if size_divisor is not None else self.size_divisor UpperCAmelCase__ : int = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) UpperCAmelCase__ : Optional[int] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. UpperCAmelCase__ : List[str] = [to_numpy_array(_A ) for img in images] if do_resize: UpperCAmelCase__ : Optional[int] = [self.resize(_A , size_divisor=_A , resample=_A ) for image in images] if do_rescale: UpperCAmelCase__ : List[str] = [self.rescale(_A , scale=1 / 255 ) for image in images] UpperCAmelCase__ : Optional[int] = [to_channel_dimension_format(_A , _A ) for image in images] UpperCAmelCase__ : Dict = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A )
75
'''simple docstring''' import unittest from transformers import DonutProcessor __lowerCAmelCase ="naver-clova-ix/donut-base" class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = DonutProcessor.from_pretrained(UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } a_ = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) a_ = self.processor.tokenajson(UpperCAmelCase__ ) self.assertDictEqual(UpperCAmelCase__ , UpperCAmelCase__ )
697
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=16 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=None , ) -> List[Any]: __lowercase : int = parent __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = seq_length __lowercase : Optional[int] = is_training __lowercase : Union[str, Any] = use_input_mask __lowercase : Any = use_token_type_ids __lowercase : Any = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : Optional[Any] = hidden_size __lowercase : str = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : Dict = intermediate_size __lowercase : Dict = hidden_act __lowercase : List[str] = hidden_dropout_prob __lowercase : List[str] = attention_probs_dropout_prob __lowercase : Optional[int] = max_position_embeddings __lowercase : Tuple = type_vocab_size __lowercase : Tuple = type_sequence_label_size __lowercase : str = initializer_range __lowercase : List[str] = num_labels __lowercase : Dict = num_choices __lowercase : Dict = scope def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : List[Any] = None if self.use_input_mask: __lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : List[Any] = None __lowercase : int = None __lowercase : Dict = None if self.use_labels: __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self ) -> Tuple: return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: __lowercase : Dict = NystromformerModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) __lowercase : Dict = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) __lowercase : List[str] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: __lowercase : Tuple = NystromformerForMaskedLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : Union[str, Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: __lowercase : Union[str, Any] = NystromformerForQuestionAnswering(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : Any = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: __lowercase : List[str] = self.num_labels __lowercase : Any = NystromformerForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: __lowercase : Optional[int] = self.num_labels __lowercase : Optional[int] = NystromformerForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : List[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: __lowercase : Tuple = self.num_choices __lowercase : Dict = NystromformerForMultipleChoice(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : Dict = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : Optional[int] = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) : Union[str, Any] = config_and_inputs __lowercase : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase =( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase =( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase =False UpperCamelCase =False def _lowerCamelCase ( self ) -> int: __lowercase : Dict = NystromformerModelTester(self ) __lowercase : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def _lowerCamelCase ( self ) -> Dict: self.config_tester.run_common_tests() def _lowerCamelCase ( self ) -> Any: __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Any: __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Dict = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Tuple: __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Tuple: __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> str: __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> List[str]: __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Tuple: __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ ) @slow def _lowerCamelCase ( self ) -> Union[str, Any]: for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Dict = NystromformerModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def _lowerCamelCase ( self ) -> Tuple: __lowercase : Dict = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) __lowercase : str = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): __lowercase : Union[str, Any] = model(UpperCamelCase_ )[0] __lowercase : List[Any] = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape , UpperCamelCase_ ) __lowercase : int = torch.tensor( [[[-0.4_5_3_2, -0.0_9_3_6, 0.5_1_3_7], [-0.2_6_7_6, 0.0_6_2_8, 0.6_1_8_6], [-0.3_6_2_9, -0.1_7_2_6, 0.4_7_1_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) ) @slow def _lowerCamelCase ( self ) -> Tuple: __lowercase : Tuple = '''the [MASK] of Belgium is Brussels''' __lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) __lowercase : str = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) __lowercase : int = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ) with torch.no_grad(): __lowercase : str = model(encoding.input_ids ).logits __lowercase : int = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(UpperCamelCase_ ) , '''capital''' )
76
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _snake_case : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__="resnet50" , UpperCAmelCase__=3 , UpperCAmelCase__=32 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=True , ) -> Optional[Any]: a_ = parent a_ = out_indices if out_indices is not None else [4] a_ = stage_names a_ = out_features a_ = backbone a_ = batch_size a_ = image_size a_ = num_channels a_ = use_pretrained_backbone a_ = is_training def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ = self.get_config() return config, pixel_values def __SCREAMING_SNAKE_CASE ( self ) -> Dict: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = TimmBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): a_ = model(UpperCAmelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = self.prepare_config_and_inputs() a_ , a_ = config_and_inputs a_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _snake_case ( snake_case , snake_case , snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = (TimmBackbone,) if is_torch_available() else () _UpperCamelCase = {"feature-extraction": TimmBackbone} if is_torch_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = TimmBackboneModelTester(self ) a_ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = 'resnet18' a_ = 'microsoft/resnet-18' a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ , out_indices=[1, 2, 3] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Safetensors is not supported by timm.' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) a_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = True a_ = self.has_attentions # no need to test all models as different heads yield the same functionality a_ = self.all_model_classes[0] a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) a_ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = model(**UpperCAmelCase__ ) a_ = outputs[0][-1] # Encoder-/Decoder-only models a_ = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a_ = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCAmelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = None a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = False a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ )
697
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A = logging.get_logger(__name__) A = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} A = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } A = { """gpt-neox-20b""": 2_048, } class a__ ( __magic_name__ ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : int="<|endoftext|>" , UpperCamelCase_ : Union[str, Any]="<|endoftext|>" , UpperCamelCase_ : Tuple="<|endoftext|>" , UpperCamelCase_ : Optional[int]=False , **UpperCamelCase_ : Optional[int] , ): """simple docstring""" super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) __UpperCAmelCase : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_) != add_prefix_space: __UpperCAmelCase : Optional[Any] = getattr(UpperCamelCase_ , pre_tok_state.pop("type")) __UpperCAmelCase : int = add_prefix_space __UpperCAmelCase : str = pre_tok_class(**UpperCamelCase_) __UpperCAmelCase : Union[str, Any] = add_prefix_space def a_ ( self : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None): """simple docstring""" __UpperCAmelCase : Optional[Any] = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_) return tuple(UpperCamelCase_) def a_ ( self : Optional[Any] , UpperCamelCase_ : "Conversation"): """simple docstring""" __UpperCAmelCase : Tuple = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_) + [self.eos_token_id]) if len(UpperCamelCase_) > self.model_max_length: __UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
77
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=7 , UpperCAmelCase__=3 , UpperCAmelCase__=18 , UpperCAmelCase__=30 , UpperCAmelCase__=400 , UpperCAmelCase__=True , UpperCAmelCase__=None , UpperCAmelCase__=True , ) -> List[Any]: a_ = size if size is not None else {'height': 18, 'width': 18} a_ = parent a_ = batch_size a_ = num_channels a_ = image_size a_ = min_resolution a_ = max_resolution a_ = do_resize a_ = size a_ = apply_ocr def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _snake_case ( snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = LayoutLMvaImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'apply_ocr' ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) a_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , UpperCAmelCase__ ) self.assertIsInstance(encoding.boxes , UpperCAmelCase__ ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> int: # with apply_OCR = True a_ = LayoutLMvaImageProcessor() from datasets import load_dataset a_ = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) a_ = Image.open(ds[0]['file'] ).convert('RGB' ) a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 a_ = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 a_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCAmelCase__ ) self.assertListEqual(encoding.boxes , UpperCAmelCase__ ) # with apply_OCR = False a_ = LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
697
0
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_: int =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): a__ : Tuple = ["""pixel_values"""] def __init__(self : int , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : int = 8 , **__a : int , ): super().__init__(**__a ) UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_pad UpperCAmelCase_ = pad_size def _lowercase (self : Optional[int] , __a : np.ndarray , __a : float , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[int] ): return rescale(__a , scale=__a , data_format=__a , **__a ) def _lowercase (self : Optional[int] , __a : np.ndarray , __a : int , __a : Optional[Union[str, ChannelDimension]] = None ): UpperCAmelCase_ , UpperCAmelCase_ = get_image_size(__a ) UpperCAmelCase_ = (old_height // size + 1) * size - old_height UpperCAmelCase_ = (old_width // size + 1) * size - old_width return pad(__a , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=__a ) def _lowercase (self : Tuple , __a : ImageInput , __a : Optional[bool] = None , __a : Optional[float] = None , __a : Optional[bool] = None , __a : Optional[int] = None , __a : Optional[Union[str, TensorType]] = None , __a : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__a : List[str] , ): UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_pad if do_pad is not None else self.do_pad UpperCAmelCase_ = pad_size if pad_size is not None else self.pad_size UpperCAmelCase_ = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(__a ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=__a , scale=__a ) for image in images] if do_pad: UpperCAmelCase_ = [self.pad(__a , size=__a ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(__a , __a ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=__a , tensor_type=__a )
78
'''simple docstring''' import math def a ( _UpperCAmelCase ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( _UpperCAmelCase = 1_0_0_0_1 ) -> int: """simple docstring""" try: a_ = int(_UpperCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) a_ = [] a_ = 2 while len(_UpperCAmelCase ) < nth: if is_prime(_UpperCAmelCase ): primes.append(_UpperCAmelCase ) num += 1 else: num += 1 return primes[len(_UpperCAmelCase ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
697
0
import random from .binary_exp_mod import bin_exp_mod def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase=1000 ) -> List[Any]: '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd UpperCAmelCase__ : Union[str, Any] = n - 1 UpperCAmelCase__ : Union[str, Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) UpperCAmelCase__ : Dict = 0 while count < prec: UpperCAmelCase__ : List[Any] = random.randint(2 , n - 1 ) UpperCAmelCase__ : Optional[Any] = bin_exp_mod(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if b != 1: UpperCAmelCase__ : List[Any] = True for _ in range(__lowerCamelCase ): if b == n - 1: UpperCAmelCase__ : List[str] = False break UpperCAmelCase__ : List[str] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[int] = abs(int(input("""Enter bound : """).strip())) print("""Here's the list of primes:""") print(""", """.join(str(i) for i in range(n + 1) if is_prime_big(i)))
79
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = 10 def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = [1, 2, 3, 4] a_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = '' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) a_ , a_ = process_story(UpperCAmelCase__ ) a_ = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = ['It was the best of times.'] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = torch.tensor([1, 2, 3, 4] ) a_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 0 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 23 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 1 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = 101 a_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) a_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) a_ = compute_token_type_ids(UpperCAmelCase__ , UpperCAmelCase__ ) np.testing.assert_array_equal(UpperCAmelCase__ , UpperCAmelCase__ )
697
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : List[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = DPTConfig() if "large" in checkpoint_url: __lowercase = 1_024 __lowercase = 4_096 __lowercase = 24 __lowercase = 16 __lowercase = [5, 11, 17, 23] __lowercase = [256, 512, 1_024, 1_024] __lowercase = (1, 384, 384) if "ade" in checkpoint_url: __lowercase = True __lowercase = 150 __lowercase = """huggingface/label-files""" __lowercase = """ade20k-id2label.json""" __lowercase = json.load(open(cached_download(hf_hub_url(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = [1, 150, 480, 480] return config, expected_shape def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) def snake_case ( lowerCamelCase ): '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __lowercase = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: __lowercase = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: __lowercase = name.replace("""patch_embed""" , """patch_embeddings""" ) if "pos_embed" in name: __lowercase = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: __lowercase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: __lowercase = name.replace("""proj""" , """projection""" ) if "blocks" in name: __lowercase = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: __lowercase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowercase = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name: __lowercase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowercase = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: __lowercase = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: __lowercase = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: __lowercase = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: __lowercase = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: __lowercase = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: __lowercase = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: __lowercase = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __lowercase = name.replace(F'refinenet{layer_idx}' , F'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: __lowercase = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: __lowercase = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: __lowercase = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: __lowercase = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: __lowercase = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __lowercase = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: __lowercase = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: __lowercase = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: __lowercase = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: __lowercase = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: __lowercase = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: __lowercase = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: __lowercase = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: __lowercase = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: __lowercase = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: __lowercase = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: __lowercase = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: __lowercase = name.replace("""bn""" , """batch_norm""" ) if "head" in name: __lowercase = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: __lowercase = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: __lowercase = name.replace("""auxlayer""" , """auxiliary_head.head""" ) return name def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: config.hidden_size, :] __lowercase = in_proj_bias[: config.hidden_size] __lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase = in_proj_weight[ -config.hidden_size :, : ] __lowercase = in_proj_bias[-config.hidden_size :] def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase , __lowercase = get_dpt_config(lowerCamelCase ) # load original state_dict from URL __lowercase = torch.hub.load_state_dict_from_url(lowerCamelCase , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): __lowercase = state_dict.pop(lowerCamelCase ) __lowercase = val # read in qkv matrices read_in_q_k_v(lowerCamelCase , lowerCamelCase ) # load HuggingFace model __lowercase = DPTForSemanticSegmentation(lowerCamelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # Check outputs on an image __lowercase = 480 if """ade""" in checkpoint_url else 384 __lowercase = DPTImageProcessor(size=lowerCamelCase ) __lowercase = prepare_img() __lowercase = image_processor(lowerCamelCase , return_tensors="""pt""" ) # forward pass __lowercase = model(**lowerCamelCase ).logits if """ade""" in checkpoint_url else model(**lowerCamelCase ).predicted_depth # Assert logits __lowercase = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: __lowercase = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(lowerCamelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase ) ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCamelCase , ) if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) __UpperCamelCase : Tuple = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
80
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __lowerCAmelCase ="\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class _snake_case ( unittest.TestCase , snake_case ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = load_tool('text-question-answering' ) self.tool.setup() a_ = load_tool('text-question-answering' , remote=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.remote_tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = self.tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = self.remote_tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' )
697
0
def lowerCAmelCase_ ( __lowerCamelCase = 1_0_0_0_0_0_0 ): __snake_case : Any = 1 __snake_case : Any = 1 __snake_case : Union[str, Any] = {1: 1} for inputa in range(2 , __lowerCamelCase ): __snake_case : str = 0 __snake_case : List[Any] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __snake_case : List[str] = (3 * number) + 1 counter += 1 if inputa not in counters: __snake_case : str = counter if counter > pre_counter: __snake_case : List[Any] = inputa __snake_case : Tuple = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
81
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase ={"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __lowerCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
697
0
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): def constraint_to_multiple_of(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=0 , lowerCAmelCase__=None ): UpperCAmelCase_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: UpperCAmelCase_ = math.floor(val / multiple ) * multiple if x < min_val: UpperCAmelCase_ = math.ceil(val / multiple ) * multiple return x UpperCAmelCase_ = (output_size, output_size) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else output_size UpperCAmelCase_ , UpperCAmelCase_ = get_image_size(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = output_size # determine new height and width UpperCAmelCase_ = output_height / input_height UpperCAmelCase_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width UpperCAmelCase_ = scale_width else: # fit height UpperCAmelCase_ = scale_height UpperCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=lowerCAmelCase__ ) UpperCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=lowerCAmelCase__ ) return (new_height, new_width) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : Optional[int] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 1 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : int , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"height": 384, "width": 384} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = keep_aspect_ratio UpperCAmelCase_ = ensure_multiple_of UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 1 , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) UpperCAmelCase_ = get_resize_output_image_size( _UpperCAmelCase , output_size=(size["height"], size["width"]) , keep_aspect_ratio=_UpperCAmelCase , multiple=_UpperCAmelCase , ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : List[str] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : int = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : int = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Any , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase ) UpperCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio UpperCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Tuple] = None ) -> int: '''simple docstring''' UpperCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(_UpperCAmelCase ): UpperCAmelCase_ = target_sizes.numpy() UpperCAmelCase_ = [] for idx in range(len(_UpperCAmelCase ) ): UpperCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=_UpperCAmelCase ) UpperCAmelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_UpperCAmelCase ) else: UpperCAmelCase_ = logits.argmax(dim=1 ) UpperCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
82
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "vit" def __init__( self , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=224 , UpperCAmelCase__=16 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=16 , **UpperCAmelCase__ , ) -> Dict: super().__init__(**UpperCAmelCase__ ) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = image_size a_ = patch_size a_ = num_channels a_ = qkv_bias a_ = encoder_stride class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __SCREAMING_SNAKE_CASE ( self ) -> float: return 1e-4
697
0
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def snake_case_ ( A_ : Dict, A_ : bool = True, A_ : float = math.inf, A_ : float = -math.inf, A_ : float = math.inf, A_ : float = -math.inf, A_ : bool = False, A_ : float = 1_00, A_ : float = 0.01, A_ : float = 1, ): '''simple docstring''' _lowerCamelCase : Optional[int] = False _lowerCamelCase : str = search_prob _lowerCamelCase : str = start_temperate _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : int = 0 _lowerCamelCase : Any = None while not search_end: _lowerCamelCase : Dict = current_state.score() if best_state is None or current_score > best_state.score(): _lowerCamelCase : Tuple = current_state scores.append(A_ ) iterations += 1 _lowerCamelCase : List[Any] = None _lowerCamelCase : Optional[int] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _lowerCamelCase : List[Any] = random.randint(0, len(A_ ) - 1 ) # picking a random neighbor _lowerCamelCase : Dict = neighbors.pop(A_ ) _lowerCamelCase : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _lowerCamelCase : str = change * -1 # in case we are finding minimum if change > 0: # improves the solution _lowerCamelCase : Optional[Any] = picked_neighbor else: _lowerCamelCase : Optional[int] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _lowerCamelCase : Union[str, Any] = picked_neighbor _lowerCamelCase : List[str] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _lowerCamelCase : Tuple = True else: _lowerCamelCase : Optional[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(A_ ), A_ ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def snake_case_ ( A_ : int, A_ : Tuple ): '''simple docstring''' return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def snake_case_ ( A_ : Optional[int], A_ : List[Any] ): '''simple docstring''' return (3 * x**2) - (6 * y) lowerCAmelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F"""{local_min.score()}""" ) lowerCAmelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F"""{local_min.score()}""" )
83
'''simple docstring''' def a ( _UpperCAmelCase = 5_0 ) -> int: """simple docstring""" a_ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
697
0
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = [0] * len(__SCREAMING_SNAKE_CASE ) lowercase = [] lowercase = [1] * len(__SCREAMING_SNAKE_CASE ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__SCREAMING_SNAKE_CASE ) ): if indegree[i] == 0: queue.append(__SCREAMING_SNAKE_CASE ) while queue: lowercase = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__SCREAMING_SNAKE_CASE ) print(max(__SCREAMING_SNAKE_CASE ) ) # Adjacency list of Graph UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
84
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def a ( ) -> None: """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
697
0
import os def _a ( lowercase__ : str = "input.txt" ): '''simple docstring''' with open(os.path.join(os.path.dirname(lowercase__ ) , lowercase__ ) ) as input_file: SCREAMING_SNAKE_CASE__ : List[str] = [ [int(lowercase__ ) for element in line.split(',' )] for line in input_file.readlines() ] SCREAMING_SNAKE_CASE__ : Optional[Any] = len(lowercase__ ) SCREAMING_SNAKE_CASE__ : str = len(matrix[0] ) SCREAMING_SNAKE_CASE__ : List[Any] = [[-1 for _ in range(lowercase__ )] for _ in range(lowercase__ )] for i in range(lowercase__ ): SCREAMING_SNAKE_CASE__ : Any = matrix[i][0] for j in range(1 , lowercase__ ): for i in range(lowercase__ ): SCREAMING_SNAKE_CASE__ : List[str] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , lowercase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): SCREAMING_SNAKE_CASE__ : List[Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"""{solution() = }""")
85
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a ( _UpperCAmelCase ) -> int: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _snake_case ( snake_case ): """simple docstring""" @staticmethod def __SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ) -> str: a_ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=UpperCAmelCase__ , help='Name of the model to download' ) download_parser.set_defaults(func=UpperCAmelCase__ ) def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = model a_ = cache a_ = force a_ = trust_remote_code def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
697
0
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class _a : """simple docstring""" def __init__( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : int=13 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : Dict=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Tuple=99 , UpperCAmelCase : Dict=32 , UpperCAmelCase : Dict=5 , UpperCAmelCase : str=4 , UpperCAmelCase : Union[str, Any]=37 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : List[str]=128 , UpperCAmelCase : Optional[Any]=32 , UpperCAmelCase : Any=16 , UpperCAmelCase : int=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : List[Any]=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : List[str]=None , ): A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope def __A ( self : List[str] ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : int ): return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self : Any ): ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = self.prepare_config_and_inputs() A_ = True A_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] ): A_ = NezhaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase ) A_ = model(UpperCAmelCase , token_type_ids=UpperCAmelCase ) A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , ): A_ = True A_ = NezhaModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , ) A_ = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , ) A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] ): A_ = NezhaForMaskedLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int ): A_ = NezhaForNextSentencePrediction(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __A ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ): A_ = NezhaForPreTraining(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , next_sentence_label=UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __A ( self : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] ): A_ = NezhaForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str ): A_ = self.num_labels A_ = NezhaForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ): A_ = self.num_labels A_ = NezhaForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : int ): A_ = self.num_choices A_ = NezhaForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : List[Any] ): A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _a ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : str = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Optional[int] = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : List[str] = True def __A ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False ): A_ = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class in get_values(UpperCAmelCase ): A_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase ) A_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def __A ( self : Any ): A_ = NezhaModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def __A ( self : Union[str, Any] ): self.config_tester.run_common_tests() def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : List[str] ): A_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCAmelCase ) def __A ( self : str ): # This regression test was failing with PyTorch < 1.3 ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() A_ = None self.model_tester.create_and_check_model_as_decoder( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) def __A ( self : List[str] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*UpperCAmelCase ) def __A ( self : Union[str, Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase ) def __A ( self : Any ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def __A ( self : int ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = NezhaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @slow @require_torch_gpu def __A ( self : List[str] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return A_ = True A_ = model_class(config=UpperCAmelCase ) A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = torch.jit.trace( UpperCAmelCase , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCAmelCase , os.path.join(UpperCAmelCase , "bert.pt" ) ) A_ = torch.jit.load(os.path.join(UpperCAmelCase , "bert.pt" ) , map_location=UpperCAmelCase ) loaded(inputs_dict["input_ids"].to(UpperCAmelCase ) , inputs_dict["attention_mask"].to(UpperCAmelCase ) ) @require_torch class _a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self : Union[str, Any] ): A_ = NezhaModel.from_pretrained("sijunhe/nezha-cn-base" ) A_ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) A_ = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] A_ = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , UpperCAmelCase ) A_ = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self : List[str] ): A_ = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base" ) A_ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) A_ = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] A_ = torch.Size((1, 6, 21128) ) self.assertEqual(output.shape , UpperCAmelCase ) A_ = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) )
86
'''simple docstring''' def a ( _UpperCAmelCase ) -> int: """simple docstring""" assert column_title.isupper() a_ = 0 a_ = len(_UpperCAmelCase ) - 1 a_ = 0 while index >= 0: a_ = (ord(column_title[index] ) - 6_4) * pow(2_6 , _UpperCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
697
0
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: """simple docstring""" A__ = [0 for i in range(r + 1 )] # nc0 = 1 A__ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. A__ = min(lowercase_ , lowercase_ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
87
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __lowerCAmelCase =logging.get_logger(__name__) class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = ["audio_values", "audio_mask"] def __init__( self , UpperCAmelCase__=2048 , UpperCAmelCase__=1 , UpperCAmelCase__=[16, 16] , UpperCAmelCase__=128 , UpperCAmelCase__=4_4100 , UpperCAmelCase__=86 , UpperCAmelCase__=2048 , UpperCAmelCase__=0.0 , **UpperCAmelCase__ , ) -> Union[str, Any]: super().__init__( feature_size=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , padding_value=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = spectrogram_length a_ = num_channels a_ = patch_size a_ = feature_size // self.patch_size[1] a_ = n_fft a_ = sampling_rate // hop_length_to_sampling_rate a_ = sampling_rate a_ = padding_value a_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=UpperCAmelCase__ , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=UpperCAmelCase__ , norm='slaney' , mel_scale='slaney' , ).T def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> np.ndarray: a_ = spectrogram( UpperCAmelCase__ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=8_0.0 , ) a_ = log_spec[:, :-1] a_ = log_spec - 2_0.0 a_ = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , **UpperCAmelCase__ , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) a_ = isinstance(UpperCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) a_ = is_batched_numpy or ( isinstance(UpperCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a_ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase__ , np.ndarray ): a_ = np.asarray(UpperCAmelCase__ , dtype=np.floataa ) elif isinstance(UpperCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a_ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis a_ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , UpperCAmelCase__ ): a_ = [np.asarray(UpperCAmelCase__ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask a_ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: a_ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] a_ = np.array(UpperCAmelCase__ ).astype(np.floataa ) # convert into correct format for padding a_ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch a_ = np.ones([len(UpperCAmelCase__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) a_ = padded_audio_features * self.padding_value for i in range(len(UpperCAmelCase__ ) ): a_ = audio_features[i] a_ = feature # return as BatchFeature if return_attention_mask: a_ = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: a_ = {'audio_values': padded_audio_features} a_ = BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) return encoded_inputs
697
0
"""simple docstring""" import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase__ ( A_ ,unittest.TestCase ): __UpperCAmelCase = TransfoXLTokenizer __UpperCAmelCase = False __UpperCAmelCase = False def UpperCamelCase_ ( self) -> List[Any]: super().setUp() _lowerCamelCase : List[Any] = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) def UpperCamelCase_ ( self , **SCREAMING_SNAKE_CASE) -> Optional[int]: _lowerCamelCase : Union[str, Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> str: _lowerCamelCase : Optional[int] = """<unk> UNwanted , running""" _lowerCamelCase : int = """<unk> unwanted, running""" return input_text, output_text def UpperCamelCase_ ( self) -> int: _lowerCamelCase : Optional[Any] = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = tokenizer.tokenize("""<unk> UNwanted , running""") self.assertListEqual(SCREAMING_SNAKE_CASE , ["""<unk>""", """unwanted""", """,""", """running"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE) , [0, 4, 8, 7]) def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : Tuple = TransfoXLTokenizer(lower_case=SCREAMING_SNAKE_CASE) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""]) def UpperCamelCase_ ( self) -> Union[str, Any]: _lowerCamelCase : Optional[Any] = TransfoXLTokenizer(lower_case=SCREAMING_SNAKE_CASE) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : int = TransfoXLTokenizer(lower_case=SCREAMING_SNAKE_CASE) _lowerCamelCase : Dict = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" _lowerCamelCase : str = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(SCREAMING_SNAKE_CASE) , SCREAMING_SNAKE_CASE) self.assertEqual(tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE) , SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> int: _lowerCamelCase : Optional[int] = self.get_tokenizer() _lowerCamelCase : Any = len(SCREAMING_SNAKE_CASE) tokenizer.add_tokens(["""new1""", """new2"""]) tokenizer.move_added_token("""new1""" , 1) # Check that moved token is not copied (duplicate) self.assertEqual(len(SCREAMING_SNAKE_CASE) , original_len + 2) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""") , [1]) self.assertEqual(tokenizer.decode([1]) , """new1""")
88
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Optional[Any]: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = len(set_a.intersection(_UpperCAmelCase ) ) if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) else: a_ = len(set_a.union(_UpperCAmelCase ) ) return intersection / union if isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) ): a_ = [element for element in set_a if element in set_b] if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / union else: a_ = set_a + [element for element in set_b if element not in set_a] return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return None if __name__ == "__main__": __lowerCAmelCase ={"a", "b", "c", "d", "e"} __lowerCAmelCase ={"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
697
0
import math def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> float: if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(lowerCamelCase_ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
89
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('iterations must be defined as integers' ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) a_ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
697
0
'''simple docstring''' from __future__ import annotations class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> None: lowerCAmelCase__ = order # a_{0} ... a_{k} lowerCAmelCase__ = [1.0] + [0.0] * order # b_{0} ... b_{k} lowerCAmelCase__ = [1.0] + [0.0] * order # x[n-1] ... x[n-k] lowerCAmelCase__ = [0.0] * self.order # y[n-1] ... y[n-k] lowerCAmelCase__ = [0.0] * self.order def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> None: if len(lowerCamelCase_ ) < self.order: lowerCAmelCase__ = [1.0, *a_coeffs] if len(lowerCamelCase_ ) != self.order + 1: lowerCAmelCase__ = ( F"""Expected a_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(lowerCamelCase_ )}""" ) raise ValueError(lowerCamelCase_ ) if len(lowerCamelCase_ ) != self.order + 1: lowerCAmelCase__ = ( F"""Expected b_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(lowerCamelCase_ )}""" ) raise ValueError(lowerCamelCase_ ) lowerCAmelCase__ = a_coeffs lowerCAmelCase__ = b_coeffs def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> float: lowerCAmelCase__ = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) lowerCAmelCase__ = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] lowerCAmelCase__ = self.input_history[:-1] lowerCAmelCase__ = self.output_history[:-1] lowerCAmelCase__ = sample lowerCAmelCase__ = result return result
90
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _snake_case ( snake_case ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ) -> str: super().__init__( features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ , streaming=UpperCAmelCase__ , num_proc=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = Generator( cache_dir=UpperCAmelCase__ , features=UpperCAmelCase__ , generator=UpperCAmelCase__ , gen_kwargs=UpperCAmelCase__ , **UpperCAmelCase__ , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Build iterable dataset if self.streaming: a_ = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: a_ = None a_ = None a_ = None a_ = None self.builder.download_and_prepare( download_config=UpperCAmelCase__ , download_mode=UpperCAmelCase__ , verification_mode=UpperCAmelCase__ , base_path=UpperCAmelCase__ , num_proc=self.num_proc , ) a_ = self.builder.as_dataset( split='train' , verification_mode=UpperCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
697
0
"""simple docstring""" # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _lowercase = re.compile(r'''^(?P<major>\d+)''' r'''\.(?P<minor>\d+)''' r'''\.(?P<patch>\d+)$''') @total_ordering @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: str _lowerCamelCase: Optional[str] = None _lowerCamelCase: Optional[Union[str, int]] = None _lowerCamelCase: Optional[Union[str, int]] = None _lowerCamelCase: Optional[Union[str, int]] = None def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: A , A , A = _str_to_version_tuple(self.version_str ) def __repr__( self : Optional[Any] ) -> Tuple: return F'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: return self.major, self.minor, self.patch def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[str] ) -> Any: if isinstance(A_ ,A_ ): return Version(A_ ) elif isinstance(A_ ,A_ ): return other raise TypeError(F'{other} (type {type(A_ )}) cannot be compared to version.' ) def __eq__( self : Union[str, Any] ,A_ : Optional[int] ) -> List[Any]: try: A = self._validate_operand(A_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Optional[int] ,A_ : Optional[int] ) -> Any: A = self._validate_operand(A_ ) return self.tuple < other.tuple def __hash__( self : Union[str, Any] ) -> List[str]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] ,A_ : str ) -> Optional[int]: A = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.version_str def _snake_case ( snake_case__ : Optional[int] ): A = _VERSION_REG.match(snake_case__ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(snake_case__ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def _snake_case ( snake_case__ : Optional[Any] ): return ".".join(str(snake_case__ ) for v in version_tuple )
91
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase =numpy.array([0, 0]) __lowerCAmelCase =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase =numpy.array([1, 0]) __lowerCAmelCase =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a ( _UpperCAmelCase , _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = initial_vectors for _ in range(_UpperCAmelCase ): a_ = iteration_step(_UpperCAmelCase ) return vectors def a ( _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = [] for i, start_vector in enumerate(vectors[:-1] ): a_ = vectors[i + 1] new_vectors.append(_UpperCAmelCase ) a_ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a ( _UpperCAmelCase , _UpperCAmelCase ) -> numpy.ndarray: """simple docstring""" a_ = numpy.radians(_UpperCAmelCase ) a_ , a_ = numpy.cos(_UpperCAmelCase ), numpy.sin(_UpperCAmelCase ) a_ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_UpperCAmelCase , _UpperCAmelCase ) def a ( _UpperCAmelCase ) -> None: """simple docstring""" a_ = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() a_ , a_ = zip(*_UpperCAmelCase ) plt.plot(_UpperCAmelCase , _UpperCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
697
0
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : str , __magic_name__ : str ) -> Any: # load base model lowercase : Any =StableDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowercase : Tuple =load_file(__magic_name__ ) lowercase : str =[] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowercase : Optional[int] =key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) lowercase : List[str] =pipeline.text_encoder else: lowercase : Any =key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) lowercase : Any =pipeline.unet # find the target layer lowercase : Dict =layer_infos.pop(0 ) while len(__magic_name__ ) > -1: try: lowercase : Tuple =curr_layer.__getattr__(__magic_name__ ) if len(__magic_name__ ) > 0: lowercase : Any =layer_infos.pop(0 ) elif len(__magic_name__ ) == 0: break except Exception: if len(__magic_name__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowercase : int =layer_infos.pop(0 ) lowercase : Optional[Any] =[] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(__magic_name__ ) else: pair_keys.append(__magic_name__ ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowercase : Optional[int] =state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowercase : Dict =state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ).unsqueeze(2 ).unsqueeze(3 ) else: lowercase : List[str] =state_dict[pair_keys[0]].to(torch.floataa ) lowercase : Union[str, Any] =state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ) # update visited list for item in pair_keys: visited.append(__magic_name__ ) return pipeline if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = args.base_model_path UpperCamelCase_ = args.checkpoint_path UpperCamelCase_ = args.dump_path UpperCamelCase_ = args.lora_prefix_unet UpperCamelCase_ = args.lora_prefix_text_encoder UpperCamelCase_ = args.alpha UpperCamelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) UpperCamelCase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
92
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def a ( _UpperCAmelCase ) -> int: """simple docstring""" if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def a ( _UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" for char in word: a_ = ord(_UpperCAmelCase ) if not _is_chinese_char(_UpperCAmelCase ): return 0 return 1 def a ( _UpperCAmelCase ) -> Tuple: """simple docstring""" a_ = set() for token in tokens: a_ = len(_UpperCAmelCase ) > 1 and is_chinese(_UpperCAmelCase ) if chinese_word: word_set.add(_UpperCAmelCase ) a_ = list(_UpperCAmelCase ) return word_list def a ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: """simple docstring""" if not chinese_word_set: return bert_tokens a_ = max([len(_UpperCAmelCase ) for w in chinese_word_set] ) a_ = bert_tokens a_ , a_ = 0, len(_UpperCAmelCase ) while start < end: a_ = True if is_chinese(bert_word[start] ): a_ = min(end - start , _UpperCAmelCase ) for i in range(_UpperCAmelCase , 1 , -1 ): a_ = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): a_ = '##' + bert_word[j] a_ = start + i a_ = False break if single_word: start += 1 return bert_word def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: """simple docstring""" a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['cws'] ).cws a_ = [get_chinese_word(_UpperCAmelCase ) for r in res] ltp_res.extend(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=5_1_2 ) bert_res.extend(res['input_ids'] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for input_ids, chinese_word in zip(_UpperCAmelCase , _UpperCAmelCase ): a_ = [] for id in input_ids: a_ = bert_tokenizer._convert_id_to_token(_UpperCAmelCase ) input_tokens.append(_UpperCAmelCase ) a_ = add_sub_symbol(_UpperCAmelCase , _UpperCAmelCase ) a_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_UpperCAmelCase ): if token[:2] == "##": a_ = token[2:] # save chinese tokens' pos if len(_UpperCAmelCase ) == 1 and _is_chinese_char(ord(_UpperCAmelCase ) ): ref_id.append(_UpperCAmelCase ) ref_ids.append(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) return ref_ids def a ( _UpperCAmelCase ) -> Optional[Any]: """simple docstring""" with open(args.file_name , 'r' , encoding='utf-8' ) as f: a_ = f.readlines() a_ = [line.strip() for line in data if len(_UpperCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' a_ = LTP(args.ltp ) # faster in GPU device a_ = BertTokenizer.from_pretrained(args.bert ) a_ = prepare_ref(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: a_ = [json.dumps(_UpperCAmelCase ) + '\n' for ref in ref_ids] f.writelines(_UpperCAmelCase ) if __name__ == "__main__": __lowerCAmelCase =argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __lowerCAmelCase =parser.parse_args() main(args)
697
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=9_9 , __UpperCAmelCase=3_2 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=3_7 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=1_6 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase="None" , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): '''simple docstring''' lowerCAmelCase__ :Tuple = parent lowerCAmelCase__ :int = batch_size lowerCAmelCase__ :Tuple = seq_length lowerCAmelCase__ :Optional[Any] = is_training lowerCAmelCase__ :int = use_input_mask lowerCAmelCase__ :Dict = use_token_type_ids lowerCAmelCase__ :List[str] = use_labels lowerCAmelCase__ :Optional[Any] = vocab_size lowerCAmelCase__ :Dict = hidden_size lowerCAmelCase__ :Optional[int] = num_hidden_layers lowerCAmelCase__ :List[Any] = num_attention_heads lowerCAmelCase__ :str = intermediate_size lowerCAmelCase__ :Optional[int] = hidden_act lowerCAmelCase__ :Tuple = hidden_dropout_prob lowerCAmelCase__ :int = attention_probs_dropout_prob lowerCAmelCase__ :int = max_position_embeddings lowerCAmelCase__ :Optional[int] = type_vocab_size lowerCAmelCase__ :Any = type_sequence_label_size lowerCAmelCase__ :Tuple = initializer_range lowerCAmelCase__ :Any = num_labels lowerCAmelCase__ :Tuple = num_choices lowerCAmelCase__ :int = relative_attention lowerCAmelCase__ :Tuple = position_biased_input lowerCAmelCase__ :Union[str, Any] = pos_att_type lowerCAmelCase__ :Tuple = scope def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ :str = None if self.use_input_mask: lowerCAmelCase__ :Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ :int = None if self.use_token_type_ids: lowerCAmelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ :int = None lowerCAmelCase__ :List[Any] = None lowerCAmelCase__ :Dict = None if self.use_labels: lowerCAmelCase__ :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ :Dict = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = TFDebertaVaModel(config=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase__ :Union[str, Any] = [input_ids, input_mask] lowerCAmelCase__ :Union[str, Any] = model(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = TFDebertaVaForMaskedLM(config=__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase__ :List[Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = self.num_labels lowerCAmelCase__ :Dict = TFDebertaVaForSequenceClassification(config=__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase__ :Union[str, Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :int = self.num_labels lowerCAmelCase__ :List[Any] = TFDebertaVaForTokenClassification(config=__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase__ :List[str] = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[Any] = TFDebertaVaForQuestionAnswering(config=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase__ :Optional[int] = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) :Tuple = config_and_inputs lowerCAmelCase__ :Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :List[str] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __magic_name__ :List[Any] = ( { """feature-extraction""": TFDebertaVaModel, """fill-mask""": TFDebertaVaForMaskedLM, """question-answering""": TFDebertaVaForQuestionAnswering, """text-classification""": TFDebertaVaForSequenceClassification, """token-classification""": TFDebertaVaForTokenClassification, """zero-shot""": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ :List[str] = False __magic_name__ :Optional[Any] = False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = TFDebertaVaModelTester(self ) lowerCAmelCase__ :str = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=3_7 ) def snake_case ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def snake_case ( self ): '''simple docstring''' pass @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) lowerCAmelCase__ :Optional[int] = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase__ :Optional[Any] = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowerCAmelCase__ :Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] lowerCAmelCase__ :Optional[Any] = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1E-4 )
93
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase ={ "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": 512, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase = RetriBertTokenizer _UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__="[UNK]" , UpperCAmelCase__="[SEP]" , UpperCAmelCase__="[PAD]" , UpperCAmelCase__="[CLS]" , UpperCAmelCase__="[MASK]" , UpperCAmelCase__=True , UpperCAmelCase__=None , **UpperCAmelCase__ , ) -> int: super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase__ ) != tokenize_chinese_chars ): a_ = getattr(UpperCAmelCase__ , normalizer_state.pop('type' ) ) a_ = do_lower_case a_ = strip_accents a_ = tokenize_chinese_chars a_ = normalizer_class(**UpperCAmelCase__ ) a_ = do_lower_case def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__=None ) -> str: a_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> List[int]: a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> Tuple[str]: a_ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
697
0
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class UpperCAmelCase_ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = BertJapaneseTokenizer UpperCamelCase_ = False UpperCamelCase_ = True def A__ ( self : Optional[int] ) -> Any: '''simple docstring''' super().setUp() lowercase : Optional[int] =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] lowercase : List[str] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def A__ ( self : List[str] , UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' lowercase : Optional[int] ='''こんにちは、世界。 \nこんばんは、世界。''' lowercase : Dict ='''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def A__ ( self : Tuple , UpperCAmelCase : List[str] ) -> int: '''simple docstring''' lowercase , lowercase : List[str] =self.get_input_output_texts(UpperCAmelCase ) lowercase : Optional[Any] =tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowercase : Optional[Any] =tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) return text, ids def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' pass # TODO add if relevant def A__ ( self : Tuple ) -> List[str]: '''simple docstring''' pass # TODO add if relevant def A__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' pass # TODO add if relevant def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.tokenizer_class(self.vocab_file ) lowercase : Dict =tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(UpperCAmelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def A__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowercase : Optional[int] =self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(UpperCAmelCase ) lowercase : Dict ='''こんにちは、世界。\nこんばんは、世界。''' lowercase : Optional[Any] =tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase : Union[str, Any] =os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCAmelCase , '''wb''' ) as handle: pickle.dump(UpperCAmelCase , UpperCAmelCase ) with open(UpperCAmelCase , '''rb''' ) as handle: lowercase : Tuple =pickle.load(UpperCAmelCase ) lowercase : Dict =tokenizer_new.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : int =MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def A__ ( self : List[str] ) -> Any: '''simple docstring''' try: lowercase : Tuple =MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def A__ ( self : Optional[Any] ) -> str: '''simple docstring''' try: lowercase : Optional[int] =MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def A__ ( self : Dict ) -> Tuple: '''simple docstring''' lowercase : Tuple =MecabTokenizer(do_lower_case=UpperCAmelCase , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def A__ ( self : str ) -> str: '''simple docstring''' try: lowercase : Any =MecabTokenizer( do_lower_case=UpperCAmelCase , normalize_text=UpperCAmelCase , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def A__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowercase : List[str] =MecabTokenizer(normalize_text=UpperCAmelCase , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : int =self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(UpperCAmelCase ) lowercase : Optional[int] ='''こんにちは、世界。\nこんばんは、世界。''' lowercase : Any =tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase : Union[str, Any] =os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCAmelCase , '''wb''' ) as handle: pickle.dump(UpperCAmelCase , UpperCAmelCase ) with open(UpperCAmelCase , '''rb''' ) as handle: lowercase : Tuple =pickle.load(UpperCAmelCase ) lowercase : Tuple =tokenizer_new.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @require_sudachi def A__ ( self : Optional[int] ) -> int: '''simple docstring''' lowercase : str =SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def A__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Any =SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def A__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : int =SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def A__ ( self : Optional[int] ) -> str: '''simple docstring''' lowercase : Optional[Any] =SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : Optional[int] =SudachiTokenizer(do_lower_case=UpperCAmelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def A__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase : int =SudachiTokenizer(normalize_text=UpperCAmelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : int =SudachiTokenizer(trim_whitespace=UpperCAmelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def A__ ( self : Optional[int] ) -> Any: '''simple docstring''' lowercase : int =self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(UpperCAmelCase ) lowercase : Dict ='''こんにちは、世界。\nこんばんは、世界。''' lowercase : List[Any] =tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase : Any =os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCAmelCase , '''wb''' ) as handle: pickle.dump(UpperCAmelCase , UpperCAmelCase ) with open(UpperCAmelCase , '''rb''' ) as handle: lowercase : Union[str, Any] =pickle.load(UpperCAmelCase ) lowercase : str =tokenizer_new.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @require_jumanpp def A__ ( self : Any ) -> Any: '''simple docstring''' lowercase : Any =JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def A__ ( self : int ) -> int: '''simple docstring''' lowercase : Any =JumanppTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def A__ ( self : str ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] =JumanppTokenizer(normalize_text=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Any =JumanppTokenizer(trim_whitespace=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def A__ ( self : List[str] ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : int =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] lowercase : Optional[Any] ={} for i, token in enumerate(UpperCAmelCase ): lowercase : str =i lowercase : int =WordpieceTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def A__ ( self : Any ) -> Tuple: '''simple docstring''' lowercase : List[Any] =BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) lowercase : Tuple =tokenizer.subword_tokenizer lowercase : Union[str, Any] =subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(UpperCAmelCase , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) lowercase : Optional[Any] =subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(UpperCAmelCase , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def A__ ( self : str ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) lowercase : Tuple =tokenizer.encode('''ありがとう。''' , add_special_tokens=UpperCAmelCase ) lowercase : Tuple =tokenizer.encode('''どういたしまして。''' , add_special_tokens=UpperCAmelCase ) lowercase : Any =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowercase : Tuple =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCAmelCase_ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = BertJapaneseTokenizer UpperCamelCase_ = False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' super().setUp() lowercase : Any =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] lowercase : Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def A__ ( self : Dict , **UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **UpperCAmelCase ) def A__ ( self : Optional[int] , UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' lowercase : int ='''こんにちは、世界。 \nこんばんは、世界。''' lowercase : Optional[int] ='''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def A__ ( self : Dict ) -> int: '''simple docstring''' pass # TODO add if relevant def A__ ( self : str ) -> str: '''simple docstring''' pass # TODO add if relevant def A__ ( self : Optional[int] ) -> Dict: '''simple docstring''' pass # TODO add if relevant def A__ ( self : Dict ) -> List[Any]: '''simple docstring''' lowercase : Dict =self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) lowercase : List[str] =tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( UpperCAmelCase , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def A__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' lowercase : List[Any] =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] lowercase : List[Any] ={} for i, token in enumerate(UpperCAmelCase ): lowercase : Tuple =i lowercase : Dict =CharacterTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def A__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowercase : str =self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) lowercase : Tuple =tokenizer.encode('''ありがとう。''' , add_special_tokens=UpperCAmelCase ) lowercase : List[str] =tokenizer.encode('''どういたしまして。''' , add_special_tokens=UpperCAmelCase ) lowercase : Any =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowercase : List[str] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Tuple ) -> List[Any]: '''simple docstring''' lowercase : Optional[int] ='''cl-tohoku/bert-base-japanese''' lowercase : Optional[Any] =AutoTokenizer.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Optional[int] ) -> Any: '''simple docstring''' lowercase : str ='''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) lowercase : str ='''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
94
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "lilt" def __init__( self , UpperCAmelCase__=3_0522 , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=512 , UpperCAmelCase__=2 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=0 , UpperCAmelCase__="absolute" , UpperCAmelCase__=None , UpperCAmelCase__=4 , UpperCAmelCase__=1024 , **UpperCAmelCase__ , ) -> Optional[Any]: super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = classifier_dropout a_ = channel_shrink_ratio a_ = max_ad_position_embeddings
697
0
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowerCamelCase_ = logging.get_logger(__name__) class UpperCamelCase_ (__A ): __magic_name__ = '''vision-encoder-decoder''' __magic_name__ = True def __init__( self : Union[str, Any] , **lowerCAmelCase_ : List[Any] ) -> Union[str, Any]: super().__init__(**lowerCAmelCase_ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) UpperCAmelCase_ : str = kwargs.pop("encoder" ) UpperCAmelCase_ : Dict = encoder_config.pop("model_type" ) UpperCAmelCase_ : List[Any] = kwargs.pop("decoder" ) UpperCAmelCase_ : Dict = decoder_config.pop("model_type" ) UpperCAmelCase_ : Union[str, Any] = AutoConfig.for_model(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = AutoConfig.for_model(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = True @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] , lowerCAmelCase_ : PretrainedConfig , lowerCAmelCase_ : PretrainedConfig , **lowerCAmelCase_ : Dict ) -> PretrainedConfig: logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : List[str] = self.encoder.to_dict() UpperCAmelCase_ : List[Any] = self.decoder.to_dict() UpperCAmelCase_ : Any = self.__class__.model_type return output class UpperCamelCase_ (__A ): __magic_name__ = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> float: return 1e-4 @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} ) class UpperCamelCase_ (__A ): @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase_ : List[Any] = OrderedDict() UpperCAmelCase_ : int = {0: "batch", 1: "past_decoder_sequence + sequence"} UpperCAmelCase_ : Dict = {0: "batch", 1: "past_decoder_sequence + sequence"} UpperCAmelCase_ : Union[str, Any] = {0: "batch", 1: "encoder_sequence"} return common_inputs def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : "PreTrainedTokenizerBase" , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional["TensorType"] = None , ) -> Mapping[str, Any]: import torch UpperCAmelCase_ : Optional[int] = OrderedDict() UpperCAmelCase_ : Any = super().generate_dummy_inputs( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = dummy_input["input_ids"].shape UpperCAmelCase_ : List[str] = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCAmelCase_ : List[str] = dummy_input.pop("input_ids" ) UpperCAmelCase_ : List[str] = dummy_input.pop("attention_mask" ) UpperCAmelCase_ : List[Any] = torch.zeros(lowerCAmelCase_ ) return common_inputs class UpperCamelCase_ (__A ): @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> None: pass def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : PretrainedConfig ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : PretrainedConfig , lowerCAmelCase_ : PretrainedConfig , lowerCAmelCase_ : str = "default" ) -> OnnxConfig: UpperCAmelCase_ : Optional[int] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(lowerCAmelCase_ , lowerCAmelCase_ )
95
'''simple docstring''' from __future__ import annotations def a ( _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # We need to create solution object to save path. a_ = [[0 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] a_ = run_maze(_UpperCAmelCase , 0 , 0 , _UpperCAmelCase ) if solved: print('\n'.join(str(_UpperCAmelCase ) for row in solutions ) ) else: print('No solution exists!' ) return solved def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # Final check point. if i == j == (size - 1): a_ = 1 return True a_ = (not i < 0) and (not j < 0) # Check lower bounds a_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. a_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited a_ = 1 # check for directions if ( run_maze(_UpperCAmelCase , i + 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j + 1 , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , i - 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j - 1 , _UpperCAmelCase ) ): return True a_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
697
0
"""simple docstring""" from statistics import mean import numpy as np def a ( __UpperCAmelCase : list , __UpperCAmelCase : list , __UpperCAmelCase : list , __UpperCAmelCase : int ) -> list: __magic_name__: Dict = 0 # Number of processes finished __magic_name__: List[str] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __magic_name__: Union[str, Any] = [0] * no_of_process # List to include calculation results __magic_name__: str = [0] * no_of_process # Sort by arrival time. __magic_name__: Dict = [burst_time[i] for i in np.argsort(__UpperCAmelCase )] __magic_name__: str = [process_name[i] for i in np.argsort(__UpperCAmelCase )] arrival_time.sort() while no_of_process > finished_process_count: __magic_name__: Tuple = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __magic_name__: Optional[Any] = arrival_time[i] __magic_name__: List[Any] = 0 # Index showing the location of the process being performed __magic_name__: List[Any] = 0 # Saves the current response ratio. __magic_name__: Any = 0 for i in range(0 , __UpperCAmelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __magic_name__: Any = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __magic_name__: Union[str, Any] = temp __magic_name__: Union[str, Any] = i # Calculate the turn around time __magic_name__: List[Any] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __magic_name__: Union[str, Any] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def a ( __UpperCAmelCase : list , __UpperCAmelCase : list , __UpperCAmelCase : list , __UpperCAmelCase : int ) -> list: __magic_name__: List[str] = [0] * no_of_process for i in range(0 , __UpperCAmelCase ): __magic_name__: str = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": __lowerCamelCase = 5 __lowerCamelCase = ['A', 'B', 'C', 'D', 'E'] __lowerCamelCase = [1, 2, 3, 4, 5] __lowerCamelCase = [1, 2, 3, 4, 5] __lowerCamelCase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) __lowerCamelCase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('Process name \tArrival time \tBurst time \tTurn around time \tWaiting time') for i in range(0, no_of_process): print( f'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' f'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(f'''average waiting time : {mean(waiting_time):.5f}''') print(f'''average turn around time : {mean(turn_around_time):.5f}''')
96
'''simple docstring''' __lowerCAmelCase ={ "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) __lowerCAmelCase ={ "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float: """simple docstring""" a_ = from_type.lower().strip('s' ) a_ = to_type.lower().strip('s' ) a_ = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) a_ = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) if from_sanitized not in METRIC_CONVERSION: a_ = ( F'''Invalid \'from_type\' value: {from_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) if to_sanitized not in METRIC_CONVERSION: a_ = ( F'''Invalid \'to_type\' value: {to_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) a_ = METRIC_CONVERSION[from_sanitized] a_ = METRIC_CONVERSION[to_sanitized] a_ = 1 if from_exponent > to_exponent: a_ = from_exponent - to_exponent else: a_ = -(to_exponent - from_exponent) return value * pow(1_0 , _UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
697
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
97
'''simple docstring''' import unittest from transformers import DonutProcessor __lowerCAmelCase ="naver-clova-ix/donut-base" class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = DonutProcessor.from_pretrained(UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } a_ = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) a_ = self.processor.tokenajson(UpperCAmelCase__ ) self.assertDictEqual(UpperCAmelCase__ , UpperCAmelCase__ )
697
0
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def a__ ( lowercase : float ) -> float: """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) return quad(lowercase, 0, lowercase, args=(lowercase) )[0] def a__ ( lowercase : float, lowercase : float ) -> float: """simple docstring""" return math.pow(lowercase, z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
98
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _snake_case : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__="resnet50" , UpperCAmelCase__=3 , UpperCAmelCase__=32 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=True , ) -> Optional[Any]: a_ = parent a_ = out_indices if out_indices is not None else [4] a_ = stage_names a_ = out_features a_ = backbone a_ = batch_size a_ = image_size a_ = num_channels a_ = use_pretrained_backbone a_ = is_training def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ = self.get_config() return config, pixel_values def __SCREAMING_SNAKE_CASE ( self ) -> Dict: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = TimmBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): a_ = model(UpperCAmelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = self.prepare_config_and_inputs() a_ , a_ = config_and_inputs a_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _snake_case ( snake_case , snake_case , snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = (TimmBackbone,) if is_torch_available() else () _UpperCamelCase = {"feature-extraction": TimmBackbone} if is_torch_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = TimmBackboneModelTester(self ) a_ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = 'resnet18' a_ = 'microsoft/resnet-18' a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ , out_indices=[1, 2, 3] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Safetensors is not supported by timm.' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) a_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = True a_ = self.has_attentions # no need to test all models as different heads yield the same functionality a_ = self.all_model_classes[0] a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) a_ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = model(**UpperCAmelCase__ ) a_ = outputs[0][-1] # Encoder-/Decoder-only models a_ = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a_ = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCAmelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = None a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = False a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ )
697
0
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = ["""audio_values""", """audio_mask"""] def __init__( self , __A=2048 , __A=1 , __A=[16, 16] , __A=128 , __A=44100 , __A=86 , __A=2048 , __A=0.0 , **__A , ): super().__init__( feature_size=__A , sampling_rate=__A , padding_value=__A , **__A , ) __a = spectrogram_length __a = num_channels __a = patch_size __a = feature_size // self.patch_size[1] __a = n_fft __a = sampling_rate // hop_length_to_sampling_rate __a = sampling_rate __a = padding_value __a = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__A , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=__A , norm="""slaney""" , mel_scale="""slaney""" , ).T def snake_case_ ( self , __A ): __a = spectrogram( __A , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) __a = log_spec[:, :-1] __a = log_spec - 20.0 __a = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , __A , __A = None , __A = True , __A = None , __A = False , __A = False , **__A , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" f''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' f''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __a = isinstance(__A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __a = is_batched_numpy or ( isinstance(__A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __a = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__A , np.ndarray ): __a = np.asarray(__A , dtype=np.floataa ) elif isinstance(__A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __a = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __a = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __a = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __A ): __a = [np.asarray(__A , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __a = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __a = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __a = np.array(__A ).astype(np.floataa ) # convert into correct format for padding __a = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __a = np.ones([len(__A ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __a = padded_audio_features * self.padding_value for i in range(len(__A ) ): __a = audio_features[i] __a = feature # return as BatchFeature if return_attention_mask: __a = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: __a = {"""audio_values""": padded_audio_features} __a = BatchFeature(data=__A , tensor_type=__A ) return encoded_inputs
99
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=7 , UpperCAmelCase__=3 , UpperCAmelCase__=18 , UpperCAmelCase__=30 , UpperCAmelCase__=400 , UpperCAmelCase__=True , UpperCAmelCase__=None , UpperCAmelCase__=True , ) -> List[Any]: a_ = size if size is not None else {'height': 18, 'width': 18} a_ = parent a_ = batch_size a_ = num_channels a_ = image_size a_ = min_resolution a_ = max_resolution a_ = do_resize a_ = size a_ = apply_ocr def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _snake_case ( snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = LayoutLMvaImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'apply_ocr' ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) a_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , UpperCAmelCase__ ) self.assertIsInstance(encoding.boxes , UpperCAmelCase__ ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> int: # with apply_OCR = True a_ = LayoutLMvaImageProcessor() from datasets import load_dataset a_ = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) a_ = Image.open(ds[0]['file'] ).convert('RGB' ) a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 a_ = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 a_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCAmelCase__ ) self.assertListEqual(encoding.boxes , UpperCAmelCase__ ) # with apply_OCR = False a_ = LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
697
0