code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( A__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE_ : str = '''ViTImageProcessor''' SCREAMING_SNAKE_CASE_ : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : List[str] , A : Any=None , A : Optional[Any]=None , **A : List[Any] ) -> Any: lowercase_ : int = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase__ , ) lowercase_ : str = kwargs.pop('''feature_extractor''' ) lowercase_ : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __call__( self : Tuple , A : int=None , A : Tuple=None , A : Any=None , A : str=None , **A : str ) -> Any: if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: lowercase_ : Tuple = self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if visual_prompt is not None: lowercase_ : Any = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if images is not None: lowercase_ : str = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if visual_prompt is not None and images is not None: lowercase_ : Optional[Any] = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowercase_ : Any = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowercase_ : Union[str, Any] = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase__ ) , tensor_type=lowerCAmelCase__ ) def A ( self : Any , *A : Any , **A : int ) -> Any: return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def A ( self : List[str] , *A : Dict , **A : Union[str, Any] ) -> Union[str, Any]: return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def A ( self : Optional[int] ) -> Optional[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase__ , ) return self.image_processor_class @property def A ( self : Optional[int] ) -> Union[str, Any]: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase__ , ) return self.image_processor
231
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''summary''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : str = "text" SCREAMING_SNAKE_CASE__ : str = "summary" @property def __magic_name__( self :Union[str, Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
696
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : Optional[int] = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys _lowercase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
def _UpperCamelCase ( lowercase__ = 10**9 ): __SCREAMING_SNAKE_CASE : List[str] = 1 __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : Any = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
696
0
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCamelCase_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def _lowerCamelCase ( lowerCamelCase_: str ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: A : List[str] = k.replace(lowercase__ , lowercase__ ) return k def _lowerCamelCase ( lowerCamelCase_: List[str] , lowerCamelCase_: Dict ): '''simple docstring''' A : Optional[int] = DEFAULTS.copy() cfg_kwargs.update(lowercase__ ) A : Optional[int] = PegasusConfig(**lowercase__ ) A : int = PegasusForConditionalGeneration(lowercase__ ) A : Any = torch_model.model.state_dict() A : str = {} for k, v in tf_weights.items(): A : Optional[int] = rename_state_dict_key(lowercase__ ) if new_k not in sd: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: A : str = v.T A : Optional[Any] = torch.tensor(lowercase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected A : int = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) A : Optional[int] = mapping['''shared.weight'''] A : Any = mapping['''shared.weight'''] A : Optional[Any] = {k: torch.zeros_like(lowercase__ ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**lowercase__ ) A : Optional[Any] = torch_model.model.load_state_dict(lowercase__ , strict=lowercase__ ) A : Union[str, Any] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def _lowerCamelCase ( lowerCamelCase_: Any="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' A : int = tf.train.list_variables(lowercase__ ) A : List[str] = {} A : Union[str, Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(lowercase__ , desc='''converting tf checkpoint to dict''' ): A : List[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue A : int = tf.train.load_variable(lowercase__ , lowercase__ ) A : Optional[int] = array return tf_weights def _lowerCamelCase ( lowerCamelCase_: str , lowerCamelCase_: Any ): '''simple docstring''' A : Optional[int] = Path(lowercase__ ).parent.name A : str = task_specific_params[f"""summarization_{dataset}"""]['''max_position_embeddings'''] A : str = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=lowercase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(lowercase__ ) # convert model A : Dict = get_tf_weights_as_numpy(lowercase__ ) A : Any = task_specific_params[f"""summarization_{dataset}"""] if dataset == "large": A : Tuple = task_specific_params A : Optional[int] = convert_pegasus(lowercase__ , lowercase__ ) torch_model.save_pretrained(lowercase__ ) A : Dict = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(lowercase__ , Path(lowercase__ ) / '''pytorch_model.bin''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCamelCase_ = parser.parse_args() if args.save_dir is None: UpperCamelCase_ = Path(args.tf_ckpt_path).parent.name UpperCamelCase_ = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
256
def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = len(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = len(lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __SCREAMING_SNAKE_CASE : str = True for i in range(lowercase__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __SCREAMING_SNAKE_CASE : Union[str, Any] = True if a[i].islower(): __SCREAMING_SNAKE_CASE : Union[str, Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
696
0
"""simple docstring""" from math import isqrt def lowercase ( __UpperCamelCase ) -> Any: return all(number % divisor != 0 for divisor in range(2 , isqrt(lowercase__ ) + 1 ) ) def lowercase ( __UpperCamelCase = 10**6 ) -> int: __magic_name__ = 0 __magic_name__ = 1 __magic_name__ = 7 while prime_candidate < max_prime: primes_count += is_prime(lowercase__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f"""{solution() = }""")
490
from scipy.stats import pearsonr import datasets __lowerCAmelCase : str ='\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' __lowerCAmelCase : Tuple ='\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' __lowerCAmelCase : Optional[int] ='\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Optional[int] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple=False ) -> int: if return_pvalue: __SCREAMING_SNAKE_CASE : int = pearsonr(lowerCAmelCase__ , lowerCAmelCase__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCAmelCase__ , lowerCAmelCase__ )[0] )}
696
0
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _UpperCAmelCase : List[Any] = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = [t[-1] for t in os.walk(os.path.join(lowerCAmelCase__ , os.listdir(lowerCAmelCase__ )[0] , "snapshots" ) )] _UpperCAmelCase : Union[str, Any] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _UpperCAmelCase : List[Any] = jax.random.PRNGKey(0 ) _UpperCAmelCase : int = 4 _UpperCAmelCase : Any = jax.device_count() _UpperCAmelCase : Tuple = num_samples * [prompt] _UpperCAmelCase : Optional[int] = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng _UpperCAmelCase : Union[str, Any] = replicate(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = shard(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.151_4745 ) < 1e-3 assert np.abs(np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 _UpperCAmelCase : str = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCAmelCase__ ) == num_samples def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _UpperCAmelCase : Dict = jax.random.PRNGKey(0 ) _UpperCAmelCase : Tuple = 5_0 _UpperCAmelCase : List[str] = jax.device_count() _UpperCAmelCase : List[str] = num_samples * [prompt] _UpperCAmelCase : Optional[int] = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng _UpperCAmelCase : Any = replicate(lowerCAmelCase__ ) _UpperCAmelCase : int = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = shard(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0565_2401) ) < 1e-3 assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _UpperCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 ) _UpperCAmelCase : Any = 5_0 _UpperCAmelCase : Union[str, Any] = jax.device_count() _UpperCAmelCase : int = num_samples * [prompt] _UpperCAmelCase : Dict = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng _UpperCAmelCase : str = replicate(lowerCAmelCase__ ) _UpperCAmelCase : Dict = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = shard(lowerCAmelCase__ ) _UpperCAmelCase : Any = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3 assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) _UpperCAmelCase : int = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) _UpperCAmelCase : List[Any] = 5_0 _UpperCAmelCase : List[Any] = jax.device_count() _UpperCAmelCase : Tuple = num_samples * [prompt] _UpperCAmelCase : int = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng _UpperCAmelCase : Optional[int] = replicate(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = shard(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3 assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Union[str, Any] = FlaxDDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , ) _UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) _UpperCAmelCase : Tuple = scheduler.create_state() _UpperCAmelCase : List[Any] = scheduler_state _UpperCAmelCase : Optional[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _UpperCAmelCase : List[Any] = jax.random.PRNGKey(0 ) _UpperCAmelCase : List[str] = 5_0 _UpperCAmelCase : str = jax.device_count() _UpperCAmelCase : List[str] = num_samples * [prompt] _UpperCAmelCase : List[Any] = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng _UpperCAmelCase : Tuple = replicate(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = shard(lowerCAmelCase__ ) _UpperCAmelCase : int = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4504_3945) ) < 1e-3 assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def _lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _UpperCAmelCase : Union[str, Any] = jax.device_count() _UpperCAmelCase : int = num_samples * [prompt] _UpperCAmelCase : str = jax.random.split(jax.random.PRNGKey(0 ) , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase__ , ) _UpperCAmelCase : List[Any] = replicate(lowerCAmelCase__ ) _UpperCAmelCase : str = pipeline.prepare_inputs(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = shard(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : List[str] = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention _UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase__ , use_memory_efficient_attention=lowerCAmelCase__ , ) _UpperCAmelCase : Optional[int] = replicate(lowerCAmelCase__ ) _UpperCAmelCase : Dict = pipeline.prepare_inputs(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = shard(lowerCAmelCase__ ) _UpperCAmelCase : Any = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : Optional[int] = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
494
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : int ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : int ={ 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } __lowerCAmelCase : Optional[int] ={'mobilebert-uncased': 5_1_2} __lowerCAmelCase : Union[str, Any] ={} class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : List[Any] = MobileBertTokenizer def __init__( self :Tuple , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]="[UNK]" , lowerCAmelCase__ :List[Any]="[SEP]" , lowerCAmelCase__ :List[Any]="[PAD]" , lowerCAmelCase__ :List[Any]="[CLS]" , lowerCAmelCase__ :Any="[MASK]" , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Tuple=None , **lowerCAmelCase__ :List[str] , ) -> Optional[Any]: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase__ ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE : int = getattr(lowerCAmelCase__ , normalizer_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case __SCREAMING_SNAKE_CASE : str = strip_accents __SCREAMING_SNAKE_CASE : Dict = tokenize_chinese_chars __SCREAMING_SNAKE_CASE : Union[str, Any] = normalizer_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = do_lower_case def __magic_name__( self :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[Any]=None ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__( self :List[str] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : int = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
696
0
"""simple docstring""" import colorsys from PIL import Image # type: ignore def _snake_case ( UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : int ): UpperCAmelCase : Any = x UpperCAmelCase : Optional[int] = y for step in range(lowercase__ ): # noqa: B007 UpperCAmelCase : Dict = a * a - b * b + x UpperCAmelCase : int = 2 * a * b + y UpperCAmelCase : Dict = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _snake_case ( UpperCamelCase : List[Any] ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def _snake_case ( UpperCamelCase : Optional[Any] ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowercase__ , 1 , 1 ) ) def _snake_case ( UpperCamelCase : List[Any] = 800 , UpperCamelCase : int = 600 , UpperCamelCase : List[Any] = -0.6 , UpperCamelCase : List[str] = 0 , UpperCamelCase : Dict = 3.2 , UpperCamelCase : Any = 50 , UpperCamelCase : Dict = True , ): UpperCAmelCase : Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) ) UpperCAmelCase : str = img.load() # loop through the image-coordinates for image_x in range(lowercase__ ): for image_y in range(lowercase__ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase : str = figure_width / image_width * image_height UpperCAmelCase : Any = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase : List[str] = get_distance(lowercase__ , lowercase__ , lowercase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase : Optional[int] = get_color_coded_rgb(lowercase__ ) else: UpperCAmelCase : List[str] = get_black_and_white_rgb(lowercase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure A: Union[str, Any] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
160
import os def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = len(grid[0] ) __SCREAMING_SNAKE_CASE : str = len(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : Dict = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(lowercase__ ): for j in range(n_rows - 3 ): __SCREAMING_SNAKE_CASE : Union[str, Any] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] __SCREAMING_SNAKE_CASE : Union[str, Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: __SCREAMING_SNAKE_CASE : Any = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: __SCREAMING_SNAKE_CASE : Any = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) __SCREAMING_SNAKE_CASE : Optional[int] = max( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if max_product > largest: __SCREAMING_SNAKE_CASE : Tuple = max_product return largest def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[int] = [] with open(os.path.dirname(lowercase__ ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) __SCREAMING_SNAKE_CASE : str = [[int(lowercase__ ) for i in grid[j]] for j in range(len(lowercase__ ) )] return largest_product(lowercase__ ) if __name__ == "__main__": print(solution())
696
0
def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): UpperCAmelCase__ : List[Any] = n - k # Calculate C(n,k) for i in range(lowercase__ ): result *= n - i result //= i + 1 return result def _lowerCamelCase ( __lowerCamelCase ) -> Tuple: '''simple docstring''' return binomial_coefficient(2 * node_count , lowercase__ ) // (node_count + 1) def _lowerCamelCase ( __lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) UpperCAmelCase__ : int = 1 for i in range(1 , n + 1 ): result *= i return result def _lowerCamelCase ( __lowerCamelCase ) -> Any: '''simple docstring''' return catalan_number(lowercase__ ) * factorial(lowercase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[int] = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
79
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowercase ( A__ ): '''simple docstring''' def __magic_name__( self :List[Any] ) -> Any: __SCREAMING_SNAKE_CASE : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''depth_multiplier''' ) ) class _lowercase : '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any]=13 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Optional[Any]=32 , lowerCAmelCase__ :Dict=0.25 , lowerCAmelCase__ :Optional[int]=8 , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Union[str, Any]=1_024 , lowerCAmelCase__ :Any=32 , lowerCAmelCase__ :Tuple="relu6" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Dict=0.02 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :int=True , lowerCAmelCase__ :int=10 , lowerCAmelCase__ :Union[str, Any]=None , ) -> str: __SCREAMING_SNAKE_CASE : Any = parent __SCREAMING_SNAKE_CASE : Dict = batch_size __SCREAMING_SNAKE_CASE : List[Any] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = image_size __SCREAMING_SNAKE_CASE : Optional[int] = depth_multiplier __SCREAMING_SNAKE_CASE : Dict = min_depth __SCREAMING_SNAKE_CASE : List[str] = tf_padding __SCREAMING_SNAKE_CASE : List[Any] = int(last_hidden_size * depth_multiplier ) __SCREAMING_SNAKE_CASE : List[str] = output_stride __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = is_training __SCREAMING_SNAKE_CASE : Optional[int] = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = scope def __magic_name__( self :List[str] ) -> int: __SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__( self :Union[str, Any] ) -> Optional[Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = MobileNetVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = self.num_labels __SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = config_and_inputs __SCREAMING_SNAKE_CASE : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : Optional[Any] = ( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : Tuple = False def __magic_name__( self :Any ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = MobileNetVaModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[int] = MobileNetVaConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV1 does not use inputs_embeds''' ) def __magic_name__( self :Dict ) -> Optional[Any]: pass @unittest.skip(reason='''MobileNetV1 does not support input and output embeddings''' ) def __magic_name__( self :List[Any] ) -> List[Any]: pass @unittest.skip(reason='''MobileNetV1 does not output attentions''' ) def __magic_name__( self :Any ) -> Dict: pass def __magic_name__( self :Any ) -> List[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Any = model_class(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : Union[str, Any] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__( self :Any ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = outputs.hidden_states __SCREAMING_SNAKE_CASE : Optional[int] = 26 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : str = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE : List[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :List[str] ) -> List[Any]: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__( self :Optional[int] ) -> Union[str, Any]: return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v1_1.0_224''' ) if is_vision_available() else None ) @slow def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v1_1.0_224''' ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.default_image_processor __SCREAMING_SNAKE_CASE : int = prepare_img() __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE : int = model(**lowerCAmelCase__ ) # verify the logits __SCREAMING_SNAKE_CASE : Any = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
696
0
from bisect import bisect from itertools import accumulate def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :List[Any] ) -> List[str]: __lowerCAmelCase : Optional[Any] = sorted(zip(lowercase__ , lowercase__ ) , key=lambda SCREAMING_SNAKE_CASE : x[0] / x[1] , reverse=lowercase__ ) __lowerCAmelCase : int = [i[0] for i in r], [i[1] for i in r] __lowerCAmelCase : str = list(accumulate(lowercase__ ) ) __lowerCAmelCase : List[Any] = bisect(lowercase__ , lowercase__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
504
import os from datetime import datetime as dt from github import Github __lowerCAmelCase : List[Any] =[ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Tuple = Github(os.environ['''GITHUB_TOKEN'''] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = g.get_repo('''huggingface/diffusers''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = repo.get_issues(state='''open''' ) for issue in open_issues: __SCREAMING_SNAKE_CASE : Optional[int] = sorted(issue.get_comments() , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
696
0
'''simple docstring''' from ....utils import logging lowerCamelCase : Any = logging.get_logger(__name__) class A__ ( A__ ): def __init__( self : Any , _a : List[str] , _a : Any=None , _a : Any=2048 ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =config.__dict__ _SCREAMING_SNAKE_CASE =modal_hidden_size if num_labels: _SCREAMING_SNAKE_CASE =num_labels
405
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : Dict ={ 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = '''canine''' def __init__( self :Any , lowerCAmelCase__ :List[Any]=768 , lowerCAmelCase__ :Any=12 , lowerCAmelCase__ :str=12 , lowerCAmelCase__ :Optional[int]=3_072 , lowerCAmelCase__ :str="gelu" , lowerCAmelCase__ :Union[str, Any]=0.1 , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :int=16_384 , lowerCAmelCase__ :Tuple=16 , lowerCAmelCase__ :List[Any]=0.02 , lowerCAmelCase__ :int=1E-1_2 , lowerCAmelCase__ :int=0 , lowerCAmelCase__ :List[Any]=0xe000 , lowerCAmelCase__ :List[str]=0xe001 , lowerCAmelCase__ :str=4 , lowerCAmelCase__ :Any=4 , lowerCAmelCase__ :Union[str, Any]=8 , lowerCAmelCase__ :Optional[int]=16_384 , lowerCAmelCase__ :Any=128 , **lowerCAmelCase__ :Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : int = type_vocab_size __SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps # Character config: __SCREAMING_SNAKE_CASE : Tuple = downsampling_rate __SCREAMING_SNAKE_CASE : Optional[Any] = upsampling_kernel_size __SCREAMING_SNAKE_CASE : Any = num_hash_functions __SCREAMING_SNAKE_CASE : Optional[int] = num_hash_buckets __SCREAMING_SNAKE_CASE : List[str] = local_transformer_stride
696
0
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=2_24 , __UpperCamelCase=10_00 , __UpperCamelCase=[3, 3, 6, 4] , __UpperCamelCase=[48, 56, 1_12, 2_20] , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = num_labels snake_case_ = image_size snake_case_ = layer_depths snake_case_ = embed_dims def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ): """simple docstring""" return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase__ , layer_scale_init_value=1E-5 , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = SwiftFormerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() snake_case_ = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.num_labels snake_case_ = SwiftFormerForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() snake_case_ = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) snake_case_ = SwiftFormerForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self ): """simple docstring""" (snake_case_) = self.prepare_config_and_inputs() snake_case_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( A__ , A__ , unittest.TestCase ): """simple docstring""" __A = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __A = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False __A = False def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = SwiftFormerModelTester(self ) snake_case_ = ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def __lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowerCAmelCase__ ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowerCAmelCase__ ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def __lowerCAmelCase ( self ): """simple docstring""" for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = SwiftFormerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason='SwiftFormer does not output attentions' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): snake_case_ = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) snake_case_ = outputs.hidden_states snake_case_ = 8 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __lowerCAmelCase ( self ): """simple docstring""" def _config_zero_init(__UpperCamelCase ): snake_case_ = copy.deepcopy(lowerCAmelCase__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase__ , lowerCAmelCase__ , 1E-10 ) if isinstance(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ): snake_case_ = _config_zero_init(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return configs_no_init snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: snake_case_ = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def a(): '''simple docstring''' snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ): """simple docstring""" return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(lowerCAmelCase__ ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=lowerCAmelCase__ , return_tensors='pt' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): snake_case_ = model(**lowerCAmelCase__ ) # verify the logits snake_case_ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) snake_case_ = torch.tensor([[-2.17_03E00, 2.11_07E00, -2.08_11E00]] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
187
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : Tuple ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = '''transfo-xl''' SCREAMING_SNAKE_CASE__ : List[str] = ['''mems'''] SCREAMING_SNAKE_CASE__ : List[Any] = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self :str , lowerCAmelCase__ :Optional[int]=267_735 , lowerCAmelCase__ :Optional[int]=[20_000, 40_000, 200_000] , lowerCAmelCase__ :List[Any]=1_024 , lowerCAmelCase__ :List[str]=1_024 , lowerCAmelCase__ :Any=16 , lowerCAmelCase__ :Tuple=64 , lowerCAmelCase__ :Union[str, Any]=4_096 , lowerCAmelCase__ :Dict=4 , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :Dict=18 , lowerCAmelCase__ :Union[str, Any]=1_600 , lowerCAmelCase__ :Union[str, Any]=1_000 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Optional[Any]=0 , lowerCAmelCase__ :Union[str, Any]=-1 , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :int=True , lowerCAmelCase__ :str="normal" , lowerCAmelCase__ :Tuple=0.01 , lowerCAmelCase__ :Union[str, Any]=0.01 , lowerCAmelCase__ :str=0.02 , lowerCAmelCase__ :Optional[Any]=1E-5 , lowerCAmelCase__ :Union[str, Any]=0 , **lowerCAmelCase__ :Optional[Any] , ) -> str: __SCREAMING_SNAKE_CASE : str = vocab_size __SCREAMING_SNAKE_CASE : Tuple = [] self.cutoffs.extend(lowerCAmelCase__ ) if proj_share_all_but_first: __SCREAMING_SNAKE_CASE : List[str] = [False] + [True] * len(self.cutoffs ) else: __SCREAMING_SNAKE_CASE : Tuple = [False] + [False] * len(self.cutoffs ) __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Union[str, Any] = d_embed __SCREAMING_SNAKE_CASE : Tuple = d_head __SCREAMING_SNAKE_CASE : Dict = d_inner __SCREAMING_SNAKE_CASE : Optional[Any] = div_val __SCREAMING_SNAKE_CASE : Optional[Any] = pre_lnorm __SCREAMING_SNAKE_CASE : List[str] = n_layer __SCREAMING_SNAKE_CASE : int = n_head __SCREAMING_SNAKE_CASE : str = mem_len __SCREAMING_SNAKE_CASE : Union[str, Any] = same_length __SCREAMING_SNAKE_CASE : str = attn_type __SCREAMING_SNAKE_CASE : Dict = clamp_len __SCREAMING_SNAKE_CASE : Tuple = sample_softmax __SCREAMING_SNAKE_CASE : Optional[int] = adaptive __SCREAMING_SNAKE_CASE : int = dropout __SCREAMING_SNAKE_CASE : Optional[Any] = dropatt __SCREAMING_SNAKE_CASE : int = untie_r __SCREAMING_SNAKE_CASE : Optional[int] = init __SCREAMING_SNAKE_CASE : List[str] = init_range __SCREAMING_SNAKE_CASE : Any = proj_init_std __SCREAMING_SNAKE_CASE : List[str] = init_std __SCREAMING_SNAKE_CASE : Tuple = layer_norm_epsilon super().__init__(eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __magic_name__( self :str ) -> int: # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __magic_name__( self :Tuple , lowerCAmelCase__ :int ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
696
0
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class snake_case__ : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : List[Any]=7 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=19 , lowerCAmelCase_ : List[str]=32 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : str=37 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Union[str, Any]=5_12 , lowerCAmelCase_ : Union[str, Any]=16 , lowerCAmelCase_ : Optional[int]=2 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : List[str]=4 , lowerCAmelCase_ : Union[str, Any]=None , ) -> Union[str, Any]: UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope def UpperCamelCase ( self : Optional[int] ) -> Any: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : str ) -> str: UpperCAmelCase_ = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=lowerCAmelCase__ , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any ) -> Dict: UpperCAmelCase_ = EsmForProteinFolding(config=lowerCAmelCase__ ).float() model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) UpperCAmelCase_ = model(lowerCAmelCase__ ) UpperCAmelCase_ = model(lowerCAmelCase__ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def UpperCamelCase ( self : Any ) -> List[str]: UpperCAmelCase_ = self.prepare_config_and_inputs() ( UpperCAmelCase_ ) = config_and_inputs UpperCAmelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case__ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' __A = False __A = (EsmForProteinFolding,) if is_torch_available() else () __A = () __A = {} if is_torch_available() else {} __A = False def UpperCamelCase ( self : Any ) -> Tuple: UpperCAmelCase_ = EsmFoldModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCamelCase ( self : str ) -> str: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) @unittest.skip('''Does not support attention outputs''' ) def UpperCamelCase ( self : Any ) -> Optional[Any]: pass @unittest.skip def UpperCamelCase ( self : Optional[Any] ) -> str: pass @unittest.skip('''Esm does not support embedding resizing''' ) def UpperCamelCase ( self : Any ) -> Any: pass @unittest.skip('''Esm does not support embedding resizing''' ) def UpperCamelCase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def UpperCamelCase ( self : List[Any] ) -> Dict: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCamelCase ( self : Dict ) -> Any: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCamelCase ( self : Optional[Any] ) -> List[str]: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCamelCase ( self : Union[str, Any] ) -> Any: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCamelCase ( self : int ) -> List[Any]: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCamelCase ( self : Dict ) -> List[Any]: pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def UpperCamelCase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: pass @unittest.skip('''ESMFold only has one output format.''' ) def UpperCamelCase ( self : str ) -> Optional[Any]: pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def UpperCamelCase ( self : Tuple ) -> Tuple: pass @unittest.skip('''ESMFold does not support input chunking.''' ) def UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def UpperCamelCase ( self : Union[str, Any] ) -> Dict: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def UpperCamelCase ( self : Union[str, Any] ) -> Any: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def UpperCamelCase ( self : int ) -> Union[str, Any]: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def UpperCamelCase ( self : int ) -> Union[str, Any]: pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def UpperCamelCase ( self : List[Any] ) -> Optional[int]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase ( self : Union[str, Any] ) -> Tuple: pass @require_torch class snake_case__ ( A__ ): '''simple docstring''' @slow def UpperCamelCase ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() UpperCAmelCase_ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCAmelCase_ = model(lowerCAmelCase__ )['''positions'''] UpperCAmelCase_ = torch.tensor([2.5_828, 0.7_993, -10.9_334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , lowerCAmelCase__ , atol=1e-4 ) )
121
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : str =logging.get_logger(__name__) __lowerCAmelCase : Any ={ # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''megatron-bert''' def __init__( self :int , lowerCAmelCase__ :int=29_056 , lowerCAmelCase__ :Dict=1_024 , lowerCAmelCase__ :Optional[int]=24 , lowerCAmelCase__ :str=16 , lowerCAmelCase__ :Optional[int]=4_096 , lowerCAmelCase__ :Optional[Any]="gelu" , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :List[str]=512 , lowerCAmelCase__ :Any=2 , lowerCAmelCase__ :int=0.02 , lowerCAmelCase__ :Tuple=1E-1_2 , lowerCAmelCase__ :Tuple=0 , lowerCAmelCase__ :Optional[int]="absolute" , lowerCAmelCase__ :List[str]=True , **lowerCAmelCase__ :Tuple , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : List[str] = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Any = intermediate_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : str = initializer_range __SCREAMING_SNAKE_CASE : Dict = layer_norm_eps __SCREAMING_SNAKE_CASE : Dict = position_embedding_type __SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache
696
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __A : Union[str, Any] = logging.get_logger(__name__) def lowercase ( __snake_case : Any , __snake_case : int=False ): lowercase_ : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowercase ( __snake_case : str , __snake_case : int , __snake_case : Optional[int]=False ): for i in range(config.num_hidden_layers ): if base_model: lowercase_ : Optional[int] = '''''' else: lowercase_ : Dict = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : Optional[int] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) lowercase_ : List[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Optional[int] = in_proj_weight[ : config.hidden_size, : ] lowercase_ : Dict = in_proj_bias[: config.hidden_size] lowercase_ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Optional[int] = in_proj_bias[-config.hidden_size :] def lowercase ( __snake_case : str ): lowercase_ : Tuple = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def lowercase ( __snake_case : Optional[Any] , __snake_case : int , __snake_case : List[str] ): lowercase_ : Any = dct.pop(lowercase__ ) lowercase_ : Tuple = val def lowercase ( ): lowercase_ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase_ : Optional[int] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def lowercase ( __snake_case : Any , __snake_case : List[str] , __snake_case : Tuple=True ): lowercase_ : str = ViTConfig() # patch_size if model_name[-1] == "8": lowercase_ : Dict = 8 # set labels if required if not base_model: lowercase_ : List[Any] = 1_0_0_0 lowercase_ : int = '''huggingface/label-files''' lowercase_ : Dict = '''imagenet-1k-id2label.json''' lowercase_ : Any = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='''dataset''' ) , '''r''' ) ) lowercase_ : int = {int(lowercase__ ): v for k, v in idalabel.items()} lowercase_ : Any = idalabel lowercase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowercase_ : Dict = 3_8_4 lowercase_ : str = 1_5_3_6 lowercase_ : int = 1_2 lowercase_ : Optional[Any] = 6 # load original model from torch hub lowercase_ : Optional[int] = torch.hub.load('''facebookresearch/dino:main''' , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowercase_ : Optional[int] = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowercase_ : Tuple = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: lowercase_ : Tuple = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: lowercase_ : Dict = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor lowercase_ : Dict = ViTImageProcessor() lowercase_ : Dict = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowercase_ : str = encoding['''pixel_values'''] lowercase_ : Optional[Any] = model(lowercase__ ) if base_model: lowercase_ : List[Any] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: lowercase_ : Dict = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1e-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) __A : int = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
231
import os import sys import unittest __lowerCAmelCase : List[Any] =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __lowerCAmelCase : Optional[Any] =os.path.join(git_repo_path, 'src', 'transformers') __lowerCAmelCase : Optional[Any] ='\n{0} = None\n' __lowerCAmelCase : Tuple ='\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' __lowerCAmelCase : Dict ='\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tokenizers''' ) __SCREAMING_SNAKE_CASE : Dict = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tensorflow_text''' ) __SCREAMING_SNAKE_CASE : Tuple = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers''' ) __SCREAMING_SNAKE_CASE : Any = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tensorflow_text''' ) __SCREAMING_SNAKE_CASE : List[str] = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers_and_vision''' ) def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCAmelCase__ ) self.assertIn('''tensorflow_text''' , lowerCAmelCase__ ) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCAmelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , '''\nCONSTANT = None\n''' ) __SCREAMING_SNAKE_CASE : List[str] = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( lowerCAmelCase__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) __SCREAMING_SNAKE_CASE : int = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' __SCREAMING_SNAKE_CASE : Optional[Any] = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : str = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' __SCREAMING_SNAKE_CASE : List[Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , lowerCAmelCase__ )
696
0
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Dict , snake_case_ :Union[str, Any] , snake_case_ :str , ): __UpperCAmelCase = len(lowercase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowercase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowercase__ , lowercase__ , ) def lowercase__ ( snake_case_ :Optional[Any] ): __UpperCAmelCase = [] depth_first_search([] , [] , [] , lowercase__ , lowercase__ ) # Print all the boards for board in boards: for column in board: print(lowercase__ ) print('''''' ) print(len(lowercase__ ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
49
import math from numpy import inf from scipy.integrate import quad def _UpperCamelCase ( lowercase__ ): if num <= 0: raise ValueError('''math domain error''' ) return quad(lowercase__ , 0 , lowercase__ , args=(lowercase__) )[0] def _UpperCamelCase ( lowercase__ , lowercase__ ): return math.pow(lowercase__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
696
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( A__ ): lowerCamelCase_ = (PNDMScheduler,) lowerCamelCase_ = (('''num_inference_steps''', 5_0),) def _UpperCAmelCase ( self : Dict , **snake_case_ : Any ): """simple docstring""" A : int = { '''num_train_timesteps''': 1000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCAmelCase__ ) return config def _UpperCAmelCase ( self : int , snake_case_ : Any=0 , **snake_case_ : Any ): """simple docstring""" A : List[Any] = dict(self.forward_default_kwargs ) A : Dict = kwargs.pop('''num_inference_steps''' , lowerCAmelCase__ ) A : Tuple = self.dummy_sample A : Union[str, Any] = 0.1 * sample A : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A : Dict = self.get_scheduler_config(**lowerCAmelCase__ ) A : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals A : Union[str, Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__ ) A : Tuple = scheduler_class.from_pretrained(lowerCAmelCase__ ) new_scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals A : Optional[int] = dummy_past_residuals[:] A : List[Any] = scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample A : str = new_scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" A : List[str] = scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample A : Optional[Any] = new_scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" pass def _UpperCAmelCase ( self : Dict , snake_case_ : Optional[Any]=0 , **snake_case_ : List[str] ): """simple docstring""" A : Optional[int] = dict(self.forward_default_kwargs ) A : Optional[int] = kwargs.pop('''num_inference_steps''' , lowerCAmelCase__ ) A : Optional[Any] = self.dummy_sample A : Optional[Any] = 0.1 * sample A : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A : Tuple = self.get_scheduler_config() A : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A : Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__ ) A : Optional[int] = scheduler_class.from_pretrained(lowerCAmelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residual (must be after setting timesteps) A : Union[str, Any] = dummy_past_residuals[:] A : List[Any] = scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample A : Any = new_scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" A : List[str] = scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample A : Tuple = new_scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _UpperCAmelCase ( self : Union[str, Any] , **snake_case_ : Optional[Any] ): """simple docstring""" A : Optional[Any] = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config(**lowerCAmelCase__ ) A : Any = scheduler_class(**lowerCAmelCase__ ) A : Optional[Any] = 10 A : str = self.dummy_model() A : Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase__ ) for i, t in enumerate(scheduler.prk_timesteps ): A : Tuple = model(lowerCAmelCase__ , lowerCAmelCase__ ) A : Any = scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): A : Optional[int] = model(lowerCAmelCase__ , lowerCAmelCase__ ) A : List[str] = scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample return sample def _UpperCAmelCase ( self : Dict ): """simple docstring""" A : Union[str, Any] = dict(self.forward_default_kwargs ) A : List[Any] = kwargs.pop('''num_inference_steps''' , lowerCAmelCase__ ) for scheduler_class in self.scheduler_classes: A : str = self.get_scheduler_config() A : Tuple = scheduler_class(**lowerCAmelCase__ ) A : Optional[int] = self.dummy_sample A : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCAmelCase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowerCAmelCase__ ) elif num_inference_steps is not None and not hasattr(lowerCAmelCase__ , '''set_timesteps''' ): A : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A : Any = dummy_past_residuals[:] A : Dict = scheduler.step_prk(lowerCAmelCase__ , 0 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample A : List[Any] = scheduler.step_prk(lowerCAmelCase__ , 1 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A : Optional[int] = scheduler.step_plms(lowerCAmelCase__ , 0 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample A : Dict = scheduler.step_plms(lowerCAmelCase__ , 1 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _UpperCAmelCase ( self : str ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _UpperCAmelCase ( self : int ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase__ ) A : Optional[int] = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config(steps_offset=1 ) A : Union[str, Any] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def _UpperCAmelCase ( self : Any ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _UpperCAmelCase ( self : int ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _UpperCAmelCase ( self : List[str] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowerCAmelCase__ ) def _UpperCAmelCase ( self : int ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowerCAmelCase__ ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" A : Union[str, Any] = 27 for scheduler_class in self.scheduler_classes: A : List[str] = self.dummy_sample A : int = 0.1 * sample A : List[str] = self.get_scheduler_config() A : List[str] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): A : List[Any] = scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample def _UpperCAmelCase ( self : Dict ): """simple docstring""" with self.assertRaises(lowerCAmelCase__ ): A : Optional[int] = self.scheduler_classes[0] A : Optional[int] = self.get_scheduler_config() A : List[Any] = scheduler_class(**lowerCAmelCase__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _UpperCAmelCase ( self : Tuple ): """simple docstring""" A : List[str] = self.full_loop() A : int = torch.sum(torch.abs(lowerCAmelCase__ ) ) A : Optional[int] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def _UpperCAmelCase ( self : Tuple ): """simple docstring""" A : List[Any] = self.full_loop(prediction_type='''v_prediction''' ) A : int = torch.sum(torch.abs(lowerCAmelCase__ ) ) A : List[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def _UpperCAmelCase ( self : Tuple ): """simple docstring""" A : Optional[int] = self.full_loop(set_alpha_to_one=lowerCAmelCase__ , beta_start=0.01 ) A : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) A : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def _UpperCAmelCase ( self : int ): """simple docstring""" A : List[Any] = self.full_loop(set_alpha_to_one=lowerCAmelCase__ , beta_start=0.01 ) A : Union[str, Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) A : Union[str, Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
256
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(lowercase__ , lowercase__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate __SCREAMING_SNAKE_CASE : int = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __SCREAMING_SNAKE_CASE : Union[str, Any] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
696
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowercase ( A__ , unittest.TestCase ): _lowerCamelCase = ShapEPipeline _lowerCamelCase = ['''prompt'''] _lowerCamelCase = ['''prompt'''] _lowerCamelCase = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _lowerCamelCase = False @property def lowerCAmelCase__ ( self ): return 32 @property def lowerCAmelCase__ ( self ): return 32 @property def lowerCAmelCase__ ( self ): return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self ): return 8 @property def lowerCAmelCase__ ( self ): __magic_name__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) __magic_name__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCAmelCase__ ) @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) __magic_name__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } __magic_name__ = PriorTransformer(**lowerCAmelCase__ ) return model @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) __magic_name__ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } __magic_name__ = ShapERenderer(**lowerCAmelCase__ ) return model def lowerCAmelCase__ ( self ): __magic_name__ = self.dummy_prior __magic_name__ = self.dummy_text_encoder __magic_name__ = self.dummy_tokenizer __magic_name__ = self.dummy_renderer __magic_name__ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) __magic_name__ = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(lowerCAmelCase__ ).startswith('''mps''' ): __magic_name__ = torch.manual_seed(lowerCAmelCase__ ) else: __magic_name__ = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __magic_name__ = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def lowerCAmelCase__ ( self ): __magic_name__ = '''cpu''' __magic_name__ = self.get_dummy_components() __magic_name__ = self.pipeline_class(**lowerCAmelCase__ ) __magic_name__ = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __magic_name__ = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) __magic_name__ = output.images[0] __magic_name__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __magic_name__ = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase__ ( self ): __magic_name__ = torch_device == '''cpu''' __magic_name__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def lowerCAmelCase__ ( self ): __magic_name__ = self.get_dummy_components() __magic_name__ = self.pipeline_class(**lowerCAmelCase__ ) __magic_name__ = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __magic_name__ = 1 __magic_name__ = 2 __magic_name__ = self.get_dummy_inputs(lowerCAmelCase__ ) for key in inputs.keys(): if key in self.batch_params: __magic_name__ = batch_size * [inputs[key]] __magic_name__ = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def lowerCAmelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ): __magic_name__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) __magic_name__ = ShapEPipeline.from_pretrained('''openai/shap-e''' ) __magic_name__ = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __magic_name__ = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) __magic_name__ = pipe( '''a shark''' , generator=lowerCAmelCase__ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
490
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = prime_factors(lowercase__ ) if is_square_free(lowercase__ ): return -1 if len(lowercase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
696
0
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __UpperCAmelCase ( a_: Optional[Any], a_: str ): _UpperCAmelCase : Tuple = f"""{sampling_rate}""" _UpperCAmelCase : str = '''1''' _UpperCAmelCase : Optional[int] = '''f32le''' _UpperCAmelCase : Optional[int] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(lowercase__, stdin=subprocess.PIPE, stdout=subprocess.PIPE ) as ffmpeg_process: _UpperCAmelCase : List[Any] = ffmpeg_process.communicate(lowercase__ ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error _UpperCAmelCase : Union[str, Any] = output_stream[0] _UpperCAmelCase : Any = np.frombuffer(lowercase__, np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def __UpperCAmelCase ( a_: Dict, a_: Optional[Any], a_: Optional[int] = "f32le", ): _UpperCAmelCase : Tuple = f"""{sampling_rate}""" _UpperCAmelCase : Optional[int] = '''1''' if format_for_conversion == "s16le": _UpperCAmelCase : Optional[Any] = 2 elif format_for_conversion == "f32le": _UpperCAmelCase : List[str] = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) _UpperCAmelCase : str = platform.system() if system == "Linux": _UpperCAmelCase : Union[str, Any] = '''alsa''' _UpperCAmelCase : Optional[Any] = '''default''' elif system == "Darwin": _UpperCAmelCase : str = '''avfoundation''' _UpperCAmelCase : Optional[Any] = ''':0''' elif system == "Windows": _UpperCAmelCase : Union[str, Any] = '''dshow''' _UpperCAmelCase : Any = '''default''' _UpperCAmelCase : Union[str, Any] = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] _UpperCAmelCase : int = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _UpperCAmelCase : int = _ffmpeg_stream(lowercase__, lowercase__ ) for item in iterator: yield item def __UpperCAmelCase ( a_: List[str], a_: Dict, a_: Optional[Any] = None, a_: Union[str, Any] = None, a_: str = "f32le", ): if stream_chunk_s is not None: _UpperCAmelCase : List[str] = stream_chunk_s else: _UpperCAmelCase : List[str] = chunk_length_s _UpperCAmelCase : Optional[int] = ffmpeg_microphone(lowercase__, lowercase__, format_for_conversion=lowercase__ ) if format_for_conversion == "s16le": _UpperCAmelCase : Optional[Any] = np.intaa _UpperCAmelCase : int = 2 elif format_for_conversion == "f32le": _UpperCAmelCase : Optional[Any] = np.floataa _UpperCAmelCase : List[Any] = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: _UpperCAmelCase : Any = chunk_length_s / 6 _UpperCAmelCase : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(lowercase__, (int, float) ): _UpperCAmelCase : int = [stride_length_s, stride_length_s] _UpperCAmelCase : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _UpperCAmelCase : List[str] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _UpperCAmelCase : int = datetime.datetime.now() _UpperCAmelCase : int = datetime.timedelta(seconds=lowercase__ ) for item in chunk_bytes_iter(lowercase__, lowercase__, stride=(stride_left, stride_right), stream=lowercase__ ): # Put everything back in numpy scale _UpperCAmelCase : int = np.frombuffer(item["raw"], dtype=lowercase__ ) _UpperCAmelCase : List[str] = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) _UpperCAmelCase : int = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: str, a_: List[str] = False ): _UpperCAmelCase : str = b'''''' _UpperCAmelCase : str = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) _UpperCAmelCase : Optional[Any] = 0 for raw in iterator: acc += raw if stream and len(lowercase__ ) < chunk_len: _UpperCAmelCase : int = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(lowercase__ ) >= chunk_len: # We are flushing the accumulator _UpperCAmelCase : str = (_stride_left, stride_right) _UpperCAmelCase : int = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: _UpperCAmelCase : Tuple = False yield item _UpperCAmelCase : Any = stride_left _UpperCAmelCase : List[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(lowercase__ ) > stride_left: _UpperCAmelCase : int = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: _UpperCAmelCase : int = False yield item def __UpperCAmelCase ( a_: int, a_: List[str] ): _UpperCAmelCase : List[str] = 2**24 # 16Mo try: with subprocess.Popen(lowercase__, stdout=subprocess.PIPE, bufsize=lowercase__ ) as ffmpeg_process: while True: _UpperCAmelCase : Tuple = ffmpeg_process.stdout.read(lowercase__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
494
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase : int ={ 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_2_8, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 5_0, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 1_0, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 1_0, 'exponential_decay_length_penalty': (5, 1.0_1), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class _lowercase ( unittest.TestCase ): '''simple docstring''' @classmethod def __magic_name__( cls :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : str = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def __magic_name__( cls :List[str] ) -> List[str]: try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Tuple = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ , repo_id='''test-config''' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Any = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCAmelCase__ , repo_id='''valid_org/test-config-org''' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __magic_name__( self :Dict ) -> Optional[int]: CustomConfig.register_for_auto_class() __SCREAMING_SNAKE_CASE : Tuple = CustomConfig(attribute=42 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) __SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 42 ) class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __SCREAMING_SNAKE_CASE : Optional[Any] = c.n_embd + 1 # int __SCREAMING_SNAKE_CASE : Optional[Any] = c.resid_pdrop + 1.0 # float __SCREAMING_SNAKE_CASE : Dict = not c.scale_attn_weights # bool __SCREAMING_SNAKE_CASE : Optional[int] = c.summary_type + '''foo''' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCAmelCase__ , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(lowerCAmelCase__ , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(lowerCAmelCase__ , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(lowerCAmelCase__ , c.summary_type , '''mismatch for key: summary_type''' ) def __magic_name__( self :Dict ) -> str: __SCREAMING_SNAKE_CASE : Dict = PretrainedConfig() __SCREAMING_SNAKE_CASE : str = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCAmelCase__ , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) __SCREAMING_SNAKE_CASE : List[Any] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCAmelCase__ , lowerCAmelCase__ )] if len(lowerCAmelCase__ ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' f''' {', '.join(lowerCAmelCase__ )}.''' ) def __magic_name__( self :Union[str, Any] ) -> List[Any]: with self.assertRaises(lowerCAmelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder __SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) __SCREAMING_SNAKE_CASE : List[str] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[Any]: # A mock response for an HTTP head request to emulate server down __SCREAMING_SNAKE_CASE : Union[str, Any] = mock.Mock() __SCREAMING_SNAKE_CASE : List[Any] = 500 __SCREAMING_SNAKE_CASE : Union[str, Any] = {} __SCREAMING_SNAKE_CASE : Optional[Any] = HTTPError __SCREAMING_SNAKE_CASE : str = {} # Download this model to make sure it's in the cache. __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowerCAmelCase__ ) as mock_head: __SCREAMING_SNAKE_CASE : Optional[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def __magic_name__( self :Union[str, Any] ) -> List[Any]: # This test is for deprecated behavior and can be removed in v5 __SCREAMING_SNAKE_CASE : Optional[int] = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def __magic_name__( self :str ) -> List[str]: __SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained('''bert-base-cased''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCAmelCase__ , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __SCREAMING_SNAKE_CASE : List[Any] = ['''config.42.0.0.json'''] __SCREAMING_SNAKE_CASE : Tuple = 768 configuration.save_pretrained(lowerCAmelCase__ ) shutil.move(os.path.join(lowerCAmelCase__ , '''config.4.0.0.json''' ) , os.path.join(lowerCAmelCase__ , '''config.42.0.0.json''' ) ) __SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def __magic_name__( self :List[str] ) -> Union[str, Any]: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __SCREAMING_SNAKE_CASE : Union[str, Any] = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers __SCREAMING_SNAKE_CASE : int = '''v4.0.0''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCAmelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __SCREAMING_SNAKE_CASE : List[str] = '''v3.0.0''' __SCREAMING_SNAKE_CASE : Any = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(old_configuration.hidden_size , 768 )
696
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class SCREAMING_SNAKE_CASE__ ( A__ ): @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' raise NotImplementedError()
160
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Any ={ 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] =['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
696
0
from typing import Any def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> int: '''simple docstring''' _validation( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) # Creates data structures and fill initial step UpperCAmelCase__ : dict = {} UpperCAmelCase__ : dict = {} for state in states_space: UpperCAmelCase__ : List[str] = observations_space[0] UpperCAmelCase__ : Optional[int] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) UpperCAmelCase__ : Optional[int] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowercase__ ) ): UpperCAmelCase__ : str = observations_space[o] UpperCAmelCase__ : List[str] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function UpperCAmelCase__ : Dict = '''''' UpperCAmelCase__ : Any = -1 for k_state in states_space: UpperCAmelCase__ : Tuple = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: UpperCAmelCase__ : List[str] = probability UpperCAmelCase__ : List[Any] = k_state # Update probabilities and pointers dicts UpperCAmelCase__ : Dict = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) UpperCAmelCase__ : str = arg_max # The final observation UpperCAmelCase__ : Dict = observations_space[len(lowercase__ ) - 1] # argmax for given final observation UpperCAmelCase__ : str = '''''' UpperCAmelCase__ : List[Any] = -1 for k_state in states_space: UpperCAmelCase__ : Union[str, Any] = probabilities[(k_state, final_observation)] if probability > max_probability: UpperCAmelCase__ : List[str] = probability UpperCAmelCase__ : int = k_state UpperCAmelCase__ : Tuple = arg_max # Process pointers backwards UpperCAmelCase__ : Dict = last_state UpperCAmelCase__ : int = [] for o in range(len(lowercase__ ) - 1 , -1 , -1 ): result.append(lowercase__ ) UpperCAmelCase__ : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> List[str]: '''simple docstring''' _validate_not_empty( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) _validate_lists(lowercase__ , lowercase__ ) _validate_dicts( lowercase__ , lowercase__ , lowercase__ ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[int]: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("""There\'s an empty parameter""" ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> Any: '''simple docstring''' _validate_list(lowercase__ , """observations_space""" ) _validate_list(lowercase__ , """states_space""" ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: '''simple docstring''' if not isinstance(_object , lowercase__ ): UpperCAmelCase__ : Dict = F"{var_name} must be a list" raise ValueError(lowercase__ ) else: for x in _object: if not isinstance(lowercase__ , lowercase__ ): UpperCAmelCase__ : Dict = F"{var_name} must be a list of strings" raise ValueError(lowercase__ ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> str: '''simple docstring''' _validate_dict(lowercase__ , """initial_probabilities""" , lowercase__ ) _validate_nested_dict(lowercase__ , """transition_probabilities""" ) _validate_nested_dict(lowercase__ , """emission_probabilities""" ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: '''simple docstring''' _validate_dict(_object , lowercase__ , lowercase__ ) for x in _object.values(): _validate_dict(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = False ) -> Any: '''simple docstring''' if not isinstance(_object , lowercase__ ): UpperCAmelCase__ : List[Any] = F"{var_name} must be a dict" raise ValueError(lowercase__ ) if not all(isinstance(lowercase__ , lowercase__ ) for x in _object ): UpperCAmelCase__ : str = F"{var_name} all keys must be strings" raise ValueError(lowercase__ ) if not all(isinstance(lowercase__ , lowercase__ ) for x in _object.values() ): UpperCAmelCase__ : int = '''nested dictionary ''' if nested else '''''' UpperCAmelCase__ : List[str] = F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(lowercase__ ) if __name__ == "__main__": from doctest import testmod testmod()
79
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ={ 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = '''switch_transformers''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''past_key_values'''] SCREAMING_SNAKE_CASE__ : str = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self :Optional[int] , lowerCAmelCase__ :Union[str, Any]=32_128 , lowerCAmelCase__ :int=768 , lowerCAmelCase__ :Optional[Any]=64 , lowerCAmelCase__ :List[str]=2_048 , lowerCAmelCase__ :Optional[int]=64 , lowerCAmelCase__ :Union[str, Any]=12 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Tuple=12 , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Optional[int]=12 , lowerCAmelCase__ :Optional[Any]=8 , lowerCAmelCase__ :Tuple=False , lowerCAmelCase__ :List[Any]=0.01 , lowerCAmelCase__ :Any="float32" , lowerCAmelCase__ :int=False , lowerCAmelCase__ :int=32 , lowerCAmelCase__ :Optional[Any]=128 , lowerCAmelCase__ :Optional[Any]=0.1 , lowerCAmelCase__ :str=1E-6 , lowerCAmelCase__ :Tuple=0.001 , lowerCAmelCase__ :List[Any]=0.001 , lowerCAmelCase__ :Union[str, Any]=1.0 , lowerCAmelCase__ :Tuple="relu" , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]=0 , lowerCAmelCase__ :Union[str, Any]=1 , **lowerCAmelCase__ :List[str] , ) -> Tuple: __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Optional[int] = d_kv __SCREAMING_SNAKE_CASE : Tuple = d_ff __SCREAMING_SNAKE_CASE : Tuple = num_sparse_encoder_layers __SCREAMING_SNAKE_CASE : List[Any] = num_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __SCREAMING_SNAKE_CASE : Optional[Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __SCREAMING_SNAKE_CASE : List[Any] = self.num_layers // self.num_sparse_encoder_layers else: __SCREAMING_SNAKE_CASE : Tuple = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: __SCREAMING_SNAKE_CASE : Dict = self.num_decoder_layers # HACK: this will create 0 sparse layers __SCREAMING_SNAKE_CASE : List[Any] = num_heads __SCREAMING_SNAKE_CASE : List[Any] = num_experts __SCREAMING_SNAKE_CASE : Tuple = expert_capacity __SCREAMING_SNAKE_CASE : List[Any] = router_bias __SCREAMING_SNAKE_CASE : Optional[Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) __SCREAMING_SNAKE_CASE : List[Any] = router_dtype __SCREAMING_SNAKE_CASE : Optional[Any] = router_ignore_padding_tokens __SCREAMING_SNAKE_CASE : int = relative_attention_num_buckets __SCREAMING_SNAKE_CASE : Any = relative_attention_max_distance __SCREAMING_SNAKE_CASE : Union[str, Any] = dropout_rate __SCREAMING_SNAKE_CASE : Dict = layer_norm_epsilon __SCREAMING_SNAKE_CASE : int = initializer_factor __SCREAMING_SNAKE_CASE : List[str] = feed_forward_proj __SCREAMING_SNAKE_CASE : Any = use_cache __SCREAMING_SNAKE_CASE : Union[str, Any] = add_router_probs __SCREAMING_SNAKE_CASE : int = router_z_loss_coef __SCREAMING_SNAKE_CASE : List[str] = router_aux_loss_coef __SCREAMING_SNAKE_CASE : Dict = self.feed_forward_proj.split('''-''' ) __SCREAMING_SNAKE_CASE : Optional[int] = act_info[-1] __SCREAMING_SNAKE_CASE : Optional[Any] = act_info[0] == '''gated''' if len(lowerCAmelCase__ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase__ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __SCREAMING_SNAKE_CASE : List[Any] = '''gelu_new''' super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ , )
696
0
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Optional[int] = 10**-10 ) -> Optional[Any]: __lowerCAmelCase : Tuple = a while True: __lowerCAmelCase : Optional[Any] = Decimal(lowercase__ ) - ( Decimal(eval(lowercase__ ) ) / Decimal(eval(str(diff(lowercase__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(lowercase__ ) ) < precision: # noqa: S307 return float(lowercase__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(f'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(f'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(f'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
504
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
696
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class A__ ( metaclass=A__ ): A__ = ['''speech'''] def __init__( self : Union[str, Any] , *_a : Any , **_a : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['speech'] ) class A__ ( metaclass=A__ ): A__ = ['''speech'''] def __init__( self : str , *_a : List[str] , **_a : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(self , ['speech'] )
405
from datetime import datetime import requests def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' __SCREAMING_SNAKE_CASE : Tuple = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(lowercase__ ).content if __name__ == "__main__": __lowerCAmelCase : int =input('Enter Video/IGTV url: ').strip() __lowerCAmelCase : Union[str, Any] =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
696
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path A = [ {'dataset': 'wikipedia', 'config_name': '20220301.de'}, {'dataset': 'wikipedia', 'config_name': '20220301.en'}, {'dataset': 'wikipedia', 'config_name': '20220301.fr'}, {'dataset': 'wikipedia', 'config_name': '20220301.frr'}, {'dataset': 'wikipedia', 'config_name': '20220301.it'}, {'dataset': 'wikipedia', 'config_name': '20220301.simple'}, {'dataset': 'snli', 'config_name': 'plain_text'}, {'dataset': 'eli5', 'config_name': 'LFQA_reddit'}, {'dataset': 'wiki40b', 'config_name': 'en'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'}, {'dataset': 'natural_questions', 'config_name': 'default'}, ] def a(lowercase__=True ): '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=A__ ) ) class SCREAMING_SNAKE_CASE ( A__ ): """simple docstring""" __A = None __A = None def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" with TemporaryDirectory() as tmp_dir: snake_case_ = dataset_module_factory(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ) snake_case_ = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase__ ) snake_case_ = builder_cls( cache_dir=lowerCAmelCase__ , config_name=lowerCAmelCase__ , hash=dataset_module.hash , ) snake_case_ = '''/'''.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowerCAmelCase__ ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) snake_case_ = cached_path(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ) self.assertTrue(os.path.exists(lowerCAmelCase__ ) ) @pytest.mark.integration def a(lowercase__ ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp('test_hf_gcp' ) / '''test_wikipedia_simple''' snake_case_ = dataset_module_factory('wikipedia' , cache_dir=lowercase__ ) snake_case_ = import_main_class(dataset_module.module_path ) snake_case_ = builder_cls( cache_dir=lowercase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam snake_case_ = None builder_instance.download_and_prepare() snake_case_ = builder_instance.as_dataset() assert ds @pytest.mark.integration def a(lowercase__ ): '''simple docstring''' snake_case_ = dataset_module_factory('wikipedia' , cache_dir=lowercase__ ) snake_case_ = import_main_class(dataset_module.module_path , dataset=lowercase__ ) snake_case_ = builder_cls( cache_dir=lowercase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) snake_case_ = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowercase__ , lowercase__ ) assert "train" in ds assert isinstance(ds['train'] , lowercase__ ) assert next(iter(ds['train'] ) )
187
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = StableDiffusionInstructPixaPixPipeline SCREAMING_SNAKE_CASE__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} SCREAMING_SNAKE_CASE__ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __magic_name__( self :int ) -> Optional[int]: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __SCREAMING_SNAKE_CASE : str = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __magic_name__( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any]=0 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE : List[Any] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('''RGB''' ) if str(lowerCAmelCase__ ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def __magic_name__( self :Union[str, Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : int = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = '''french fries''' __SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(**lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = output.images __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Dict ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = [inputs['''prompt''']] * 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array(inputs['''image'''] ).astype(np.floataa ) / 255.0 __SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image / 2 + 0.5 __SCREAMING_SNAKE_CASE : Optional[Any] = image.permute(0 , 3 , 1 , 2 ) __SCREAMING_SNAKE_CASE : Any = image.repeat(2 , 1 , 1 , 1 ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Dict = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) __SCREAMING_SNAKE_CASE : Tuple = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Union[str, Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Union[str, Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : List[str] = [round(lowerCAmelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(lowerCAmelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Tuple ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __magic_name__( self :str ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = VaeImageProcessor(do_resize=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase__ , input_image_type='''pt''' ) )[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = components['''vae'''] __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs_by_type(lowerCAmelCase__ , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __SCREAMING_SNAKE_CASE : Optional[int] = vae.encode(inputs[image_param] ).latent_dist.mode() __SCREAMING_SNAKE_CASE : Dict = pipe(**lowerCAmelCase__ )[0] __SCREAMING_SNAKE_CASE : List[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase__ , 1E-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__( self :int , lowerCAmelCase__ :Dict=0 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) __SCREAMING_SNAKE_CASE : Dict = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __magic_name__( self :Dict ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Dict = self.get_inputs() __SCREAMING_SNAKE_CASE : str = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Any = self.get_inputs() __SCREAMING_SNAKE_CASE : int = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : Dict = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Optional[int] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : str = self.get_inputs() __SCREAMING_SNAKE_CASE : Optional[int] = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Dict ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = 0 def callback_fn(lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :torch.FloatTensor ) -> None: __SCREAMING_SNAKE_CASE : Dict = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __SCREAMING_SNAKE_CASE : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE : Tuple = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: __SCREAMING_SNAKE_CASE : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE : List[str] = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() pipe(**lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __magic_name__( self :List[str] ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __SCREAMING_SNAKE_CASE : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __SCREAMING_SNAKE_CASE : Dict = self.get_inputs() __SCREAMING_SNAKE_CASE : List[Any] = pipe(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __magic_name__( self :int ) -> Tuple: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __SCREAMING_SNAKE_CASE : int = inputs['''image'''].resize((504, 504) ) __SCREAMING_SNAKE_CASE : Optional[int] = '''timbrooks/instruct-pix2pix''' __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Any = pipe(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = output.images[0] __SCREAMING_SNAKE_CASE : str = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) __SCREAMING_SNAKE_CASE : str = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
696
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case__ ( A__ , unittest.TestCase ): '''simple docstring''' __A = KandinskyVaaInpaintPipeline __A = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] __A = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] __A = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __A = False @property def UpperCamelCase ( self : int ) -> Any: return 32 @property def UpperCamelCase ( self : List[str] ) -> List[Any]: return 32 @property def UpperCamelCase ( self : Dict ) -> Tuple: return self.time_input_dim @property def UpperCamelCase ( self : List[str] ) -> List[str]: return self.time_input_dim * 4 @property def UpperCamelCase ( self : List[Any] ) -> int: return 1_00 @property def UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase_ = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def UpperCamelCase ( self : Dict ) -> Any: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase_ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase ( self : Optional[int] ) -> List[Any]: UpperCAmelCase_ = self.dummy_unet UpperCAmelCase_ = self.dummy_movq UpperCAmelCase_ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='''linear''' , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowerCAmelCase__ , ) UpperCAmelCase_ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def UpperCamelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any=0 ) -> Optional[int]: UpperCAmelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) UpperCAmelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCAmelCase__ ) # create init_image UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('''RGB''' ).resize((2_56, 2_56) ) # create mask UpperCAmelCase_ = np.ones((64, 64) , dtype=np.floataa ) UpperCAmelCase_ = 0 if str(lowerCAmelCase__ ).startswith('''mps''' ): UpperCAmelCase_ = torch.manual_seed(lowerCAmelCase__ ) else: UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) UpperCAmelCase_ = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase_ = '''cpu''' UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**lowerCAmelCase__ ) UpperCAmelCase_ = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase_ = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) UpperCAmelCase_ = output.images UpperCAmelCase_ = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ = np.array( [0.50_775_903, 0.49_527_195, 0.48_824_543, 0.50_192_237, 0.48_644_906, 0.49_373_814, 0.4_780_598, 0.47_234_827, 0.48_327_848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class snake_case__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self : List[str] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : Any ) -> Optional[Any]: UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' ) UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) UpperCAmelCase_ = np.ones((7_68, 7_68) , dtype=np.floataa ) UpperCAmelCase_ = 0 UpperCAmelCase_ = '''a hat''' UpperCAmelCase_ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) UpperCAmelCase_ = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa ) UpperCAmelCase_ = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase_ = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase_ = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase_ = pipeline( image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='''np''' , ) UpperCAmelCase_ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
121
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : torch.FloatTensor SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None def _UpperCamelCase ( lowercase__ , lowercase__=0.999 , lowercase__="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __SCREAMING_SNAKE_CASE : List[Any] = [] for i in range(lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = i / num_diffusion_timesteps __SCREAMING_SNAKE_CASE : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class _lowercase ( A__ , A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = 1 @register_to_config def __init__( self :Dict , lowerCAmelCase__ :int = 1_000 , lowerCAmelCase__ :float = 0.0001 , lowerCAmelCase__ :float = 0.02 , lowerCAmelCase__ :str = "linear" , lowerCAmelCase__ :Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :int = 0 , lowerCAmelCase__ :str = "epsilon" , lowerCAmelCase__ :float = 1.0 , **lowerCAmelCase__ :int , ) -> Union[str, Any]: if kwargs.get('''set_alpha_to_one''' , lowerCAmelCase__ ) is not None: __SCREAMING_SNAKE_CASE : Optional[int] = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , lowerCAmelCase__ , standard_warn=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = kwargs['''set_alpha_to_one'''] if trained_betas is not None: __SCREAMING_SNAKE_CASE : Any = torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": __SCREAMING_SNAKE_CASE : str = torch.linspace(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __SCREAMING_SNAKE_CASE : List[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __SCREAMING_SNAKE_CASE : Optional[Any] = betas_for_alpha_bar(lowerCAmelCase__ ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __SCREAMING_SNAKE_CASE : Optional[int] = 1.0 - self.betas __SCREAMING_SNAKE_CASE : int = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __SCREAMING_SNAKE_CASE : int = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __SCREAMING_SNAKE_CASE : Any = 1.0 # setable values __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(np.arange(0 , lowerCAmelCase__ ).copy().astype(np.intaa ) ) def __magic_name__( self :List[str] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :Optional[int] = None ) -> torch.FloatTensor: return sample def __magic_name__( self :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, torch.device] = None ) -> List[str]: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = num_inference_steps __SCREAMING_SNAKE_CASE : Union[str, Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE : Optional[int] = (np.arange(0 , lowerCAmelCase__ ) * step_ratio).round().copy().astype(np.intaa ) __SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) self.timesteps += self.config.steps_offset def __magic_name__( self :Tuple , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :int , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :float = 0.0 , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) __SCREAMING_SNAKE_CASE : Optional[Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __SCREAMING_SNAKE_CASE : Any = self.alphas_cumprod[timestep] __SCREAMING_SNAKE_CASE : str = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __SCREAMING_SNAKE_CASE : int = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __SCREAMING_SNAKE_CASE : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __SCREAMING_SNAKE_CASE : List[Any] = model_output elif self.config.prediction_type == "sample": __SCREAMING_SNAKE_CASE : List[str] = model_output __SCREAMING_SNAKE_CASE : Optional[Any] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __SCREAMING_SNAKE_CASE : Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __SCREAMING_SNAKE_CASE : Tuple = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __SCREAMING_SNAKE_CASE : Dict = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : Dict = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : Any = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def __len__( self :Optional[int] ) -> List[Any]: return self.config.num_train_timesteps
696
0
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __A : Tuple = { '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def lowercase ( __snake_case : Union[str, Any] , __snake_case : int , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : List[str] ): if got_ver is None or want_ver is None: raise ValueError( F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' F''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowercase__ ) , version.parse(lowercase__ ) ): raise ImportError( F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( __snake_case : str , __snake_case : Tuple = None ): lowercase_ : int = F'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , lowercase__ ): lowercase_ : Any = requirement, None, None else: lowercase_ : List[Any] = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowercase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' F''' got {requirement}''' ) lowercase_ : Optional[Any] = match[0] lowercase_ : str = want_full.split(''',''' ) # there could be multiple requirements lowercase_ : Tuple = {} for w in want_range: lowercase_ : Dict = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowercase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' F''' but got {requirement}''' ) lowercase_ : Dict = match[0] lowercase_ : List[Any] = want_ver if op not in ops: raise ValueError(F'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": lowercase_ : str = '''.'''.join([str(lowercase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) return # check if any version is installed try: lowercase_ : Dict = importlib.metadata.version(lowercase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) def lowercase ( __snake_case : str ): lowercase_ : Optional[Any] = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowercase__ , lowercase__ )
231
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''summary''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : str = "text" SCREAMING_SNAKE_CASE__ : str = "summary" @property def __magic_name__( self :Union[str, Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
696
0
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowercase__ ( snake_case_ :Optional[Any] , snake_case_ :Union[str, Any] , snake_case_ :List[Any] ): __UpperCAmelCase = AutoConfig.from_pretrained(lowercase__ ) __UpperCAmelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=lowercase__ ) __UpperCAmelCase = checkpoints.load_tax_checkpoint(lowercase__ ) __UpperCAmelCase = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": __UpperCAmelCase = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": __UpperCAmelCase = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __UpperCAmelCase = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): __UpperCAmelCase = F'''layers_{str(lowercase__ )}''' # Self-Attention __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning __UpperCAmelCase = flax_model.params['''encoder''']['''block'''][str(lowercase__ )]['''layer'''] __UpperCAmelCase = tax_attention_key __UpperCAmelCase = tax_attention_out __UpperCAmelCase = tax_attention_query __UpperCAmelCase = tax_attention_value __UpperCAmelCase = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __UpperCAmelCase = tax_global_layer_norm if split_mlp_wi: __UpperCAmelCase = tax_mlp_wi_a __UpperCAmelCase = tax_mlp_wi_a else: __UpperCAmelCase = tax_mlp_wi __UpperCAmelCase = tax_mlp_wo __UpperCAmelCase = tax_mlp_layer_norm __UpperCAmelCase = flax_model_encoder_layer_block # Only for layer 0: __UpperCAmelCase = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T __UpperCAmelCase = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __UpperCAmelCase = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T __UpperCAmelCase = tax_encoder_global_rel_embedding # Assigning __UpperCAmelCase = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] __UpperCAmelCase = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): __UpperCAmelCase = F'''layers_{str(lowercase__ )}''' # Self-Attention __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] __UpperCAmelCase = tax_enc_dec_attention_module['''key''']['''kernel'''] __UpperCAmelCase = tax_enc_dec_attention_module['''out''']['''kernel'''] __UpperCAmelCase = tax_enc_dec_attention_module['''query''']['''kernel'''] __UpperCAmelCase = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning __UpperCAmelCase = flax_model.params['''decoder''']['''block'''][str(lowercase__ )]['''layer'''] __UpperCAmelCase = tax_attention_key __UpperCAmelCase = tax_attention_out __UpperCAmelCase = tax_attention_query __UpperCAmelCase = tax_attention_value __UpperCAmelCase = tax_pre_attention_layer_norm __UpperCAmelCase = tax_enc_dec_attention_key __UpperCAmelCase = tax_enc_dec_attention_out __UpperCAmelCase = tax_enc_dec_attention_query __UpperCAmelCase = tax_enc_dec_attention_value __UpperCAmelCase = tax_cross_layer_norm if split_mlp_wi: __UpperCAmelCase = tax_mlp_wi_a __UpperCAmelCase = tax_mlp_wi_a else: __UpperCAmelCase = tax_mlp_wi __UpperCAmelCase = tax_mlp_wo __UpperCAmelCase = txa_mlp_layer_norm __UpperCAmelCase = flax_model_decoder_layer_block # Decoder Normalization __UpperCAmelCase = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] __UpperCAmelCase = txa_decoder_norm # Only for layer 0: __UpperCAmelCase = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T __UpperCAmelCase = tax_decoder_rel_embedding # Token Embeddings __UpperCAmelCase = tax_model['''target''']['''token_embedder''']['''embedding'''] __UpperCAmelCase = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: __UpperCAmelCase = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(lowercase__ ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": _lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) _lowercase : Any = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
49
def _UpperCamelCase ( lowercase__ = 10**9 ): __SCREAMING_SNAKE_CASE : List[str] = 1 __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : Any = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
696
0
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , snake_case_ : Tuple , snake_case_ : Any=13 , snake_case_ : Union[str, Any]=7 , snake_case_ : List[str]=True , snake_case_ : Optional[Any]=True , snake_case_ : int=False , snake_case_ : Dict=True , snake_case_ : str=99 , snake_case_ : Any=64 , snake_case_ : Optional[Any]=5 , snake_case_ : List[Any]=4 , snake_case_ : int=64 , snake_case_ : Union[str, Any]="gelu" , snake_case_ : Any=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : List[str]=512 , snake_case_ : List[Any]=16 , snake_case_ : Dict=2 , snake_case_ : str=0.02 , snake_case_ : int=3 , snake_case_ : Tuple=4 , snake_case_ : List[str]=None , ): """simple docstring""" A : int = parent A : List[Any] = batch_size A : Optional[Any] = seq_length A : Tuple = is_training A : Optional[int] = use_input_mask A : Optional[Any] = use_token_type_ids A : int = use_labels A : Optional[int] = vocab_size A : List[Any] = hidden_size A : List[str] = num_hidden_layers A : str = num_attention_heads A : Optional[int] = intermediate_size A : Optional[Any] = hidden_act A : Union[str, Any] = hidden_dropout_prob A : List[Any] = attention_probs_dropout_prob A : str = max_position_embeddings A : Optional[Any] = type_vocab_size A : List[Any] = type_sequence_label_size A : List[str] = initializer_range A : Optional[int] = num_labels A : List[str] = num_choices A : Any = scope def _UpperCAmelCase ( self : Dict ): """simple docstring""" return MPNetConfig.from_pretrained('''microsoft/mpnet-base''' ) def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Optional[int] = None if self.use_input_mask: A : Dict = random_attention_mask([self.batch_size, self.seq_length] ) A : List[str] = None A : Union[str, Any] = None A : int = None if self.use_labels: A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A : Dict = ids_tensor([self.batch_size] , self.num_choices ) A : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self : int ): """simple docstring""" return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self : str , snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Optional[int] ): """simple docstring""" A : Optional[Any] = MPNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() A : Optional[int] = model(lowerCAmelCase__ , lowerCAmelCase__ ) A : Optional[int] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self : str , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : int , snake_case_ : Tuple ): """simple docstring""" A : Tuple = MPNetForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() A : int = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self : int , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : str ): """simple docstring""" A : Optional[int] = self.num_labels A : Optional[int] = MPNetForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() A : Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self : int , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : int ): """simple docstring""" A : Optional[int] = self.num_choices A : str = MPNetForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() A : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A : Tuple = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self : Dict , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : int , snake_case_ : Tuple , snake_case_ : List[str] ): """simple docstring""" A : List[str] = self.num_labels A : List[str] = MPNetForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() A : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self : int ): """simple docstring""" A : List[str] = self.prepare_config_and_inputs() (A) : Union[str, Any] = config_and_inputs A : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( A__, A__, unittest.TestCase ): lowerCamelCase_ = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) lowerCamelCase_ = ( { '''feature-extraction''': MPNetModel, '''fill-mask''': MPNetForMaskedLM, '''question-answering''': MPNetForQuestionAnswering, '''text-classification''': MPNetForSequenceClassification, '''token-classification''': MPNetForTokenClassification, '''zero-shot''': MPNetForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase_ = False lowerCamelCase_ = True def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" A : Any = MPNetModelTester(self ) A : int = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def _UpperCAmelCase ( self : str ): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowerCAmelCase__ ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowerCAmelCase__ ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowerCAmelCase__ ) def _UpperCAmelCase ( self : Any ): """simple docstring""" A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowerCAmelCase__ ) def _UpperCAmelCase ( self : Tuple ): """simple docstring""" A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowerCAmelCase__ ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCAmelCase ( self : str ): """simple docstring""" A : List[str] = MPNetModel.from_pretrained('''microsoft/mpnet-base''' ) A : int = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) A : int = model(lowerCAmelCase__ )[0] A : Optional[Any] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowerCAmelCase__ ) A : int = torch.tensor( [[[-0.05_50, 0.19_43, -0.07_40], [-0.05_62, 0.22_11, -0.05_79], [-0.04_37, 0.33_37, -0.06_41]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) )
256
def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = len(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = len(lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __SCREAMING_SNAKE_CASE : str = True for i in range(lowercase__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __SCREAMING_SNAKE_CASE : Union[str, Any] = True if a[i].islower(): __SCREAMING_SNAKE_CASE : Union[str, Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
696
0
"""simple docstring""" from collections.abc import Callable import numpy as np def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: __magic_name__ = int(np.ceil((x_end - xa) / step_size ) ) __magic_name__ = np.zeros((n + 1,) ) __magic_name__ = ya __magic_name__ = xa for k in range(lowercase__ ): __magic_name__ = y[k] + step_size * ode_func(lowercase__ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
490
from scipy.stats import pearsonr import datasets __lowerCAmelCase : str ='\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' __lowerCAmelCase : Tuple ='\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' __lowerCAmelCase : Optional[int] ='\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Optional[int] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple=False ) -> int: if return_pvalue: __SCREAMING_SNAKE_CASE : int = pearsonr(lowerCAmelCase__ , lowerCAmelCase__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCAmelCase__ , lowerCAmelCase__ )[0] )}
696
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __a = logging.get_logger(__name__) __a = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class A__ ( A__ ): """simple docstring""" UpperCamelCase_ : int = '''longformer''' def __init__( self : List[Any] , lowerCAmelCase__ : Union[List[int], int] = 5_1_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 3_0_5_2_2 , lowerCAmelCase__ : int = 7_6_8 , lowerCAmelCase__ : int = 1_2 , lowerCAmelCase__ : int = 1_2 , lowerCAmelCase__ : int = 3_0_7_2 , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 5_1_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : float = 1e-12 , lowerCAmelCase__ : bool = False , **lowerCAmelCase__ : Union[str, Any] , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = attention_window _UpperCAmelCase : str = sep_token_id _UpperCAmelCase : Tuple = bos_token_id _UpperCAmelCase : Any = eos_token_id _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : List[str] = num_attention_heads _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : Union[str, Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : str = max_position_embeddings _UpperCAmelCase : Optional[Any] = type_vocab_size _UpperCAmelCase : List[str] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : Optional[Any] = onnx_export class A__ ( A__ ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : "PretrainedConfig" , lowerCAmelCase__ : str = "default" , lowerCAmelCase__ : "List[PatchingSpec]" = None ) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = True @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase : Any = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def _lowerCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" _UpperCAmelCase : Optional[Any] = super().outputs if self.task == "default": _UpperCAmelCase : List[Any] = {0: '''batch'''} return outputs @property def _lowerCAmelCase ( self : str ) -> float: """simple docstring""" return 1e-4 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return max(super().default_onnx_opset , 1_4 ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : "PreTrainedTokenizerBase" , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCAmelCase : int = super().generate_dummy_inputs( preprocessor=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _UpperCAmelCase : Optional[int] = torch.zeros_like(inputs["input_ids"] ) # make every second token global _UpperCAmelCase : str = 1 return inputs
494
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : int ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : int ={ 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } __lowerCAmelCase : Optional[int] ={'mobilebert-uncased': 5_1_2} __lowerCAmelCase : Union[str, Any] ={} class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : List[Any] = MobileBertTokenizer def __init__( self :Tuple , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]="[UNK]" , lowerCAmelCase__ :List[Any]="[SEP]" , lowerCAmelCase__ :List[Any]="[PAD]" , lowerCAmelCase__ :List[Any]="[CLS]" , lowerCAmelCase__ :Any="[MASK]" , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Tuple=None , **lowerCAmelCase__ :List[str] , ) -> Optional[Any]: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase__ ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE : int = getattr(lowerCAmelCase__ , normalizer_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case __SCREAMING_SNAKE_CASE : str = strip_accents __SCREAMING_SNAKE_CASE : Dict = tokenize_chinese_chars __SCREAMING_SNAKE_CASE : Union[str, Any] = normalizer_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = do_lower_case def __magic_name__( self :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[Any]=None ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__( self :List[str] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : int = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
696
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: str = logging.get_logger(__name__) A: Optional[Any] = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class SCREAMING_SNAKE_CASE__ ( A__ ): __lowerCAmelCase : str = '''levit''' def __init__( self , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[128, 256, 384] , _SCREAMING_SNAKE_CASE=[4, 8, 12] , _SCREAMING_SNAKE_CASE=[4, 4, 4] , _SCREAMING_SNAKE_CASE=[16, 16, 16] , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=[2, 2, 2] , _SCREAMING_SNAKE_CASE=[2, 2, 2] , _SCREAMING_SNAKE_CASE=0.02 , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : Any = num_channels UpperCAmelCase : Optional[Any] = kernel_size UpperCAmelCase : Union[str, Any] = stride UpperCAmelCase : List[str] = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : List[Any] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : int = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Union[str, Any] = mlp_ratio UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Any = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class SCREAMING_SNAKE_CASE__ ( A__ ): __lowerCAmelCase : List[Any] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def SCREAMING_SNAKE_CASE ( self ) -> float: '''simple docstring''' return 1E-4
160
import os def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = len(grid[0] ) __SCREAMING_SNAKE_CASE : str = len(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : Dict = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(lowercase__ ): for j in range(n_rows - 3 ): __SCREAMING_SNAKE_CASE : Union[str, Any] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] __SCREAMING_SNAKE_CASE : Union[str, Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: __SCREAMING_SNAKE_CASE : Any = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: __SCREAMING_SNAKE_CASE : Any = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) __SCREAMING_SNAKE_CASE : Optional[int] = max( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if max_product > largest: __SCREAMING_SNAKE_CASE : Tuple = max_product return largest def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[int] = [] with open(os.path.dirname(lowercase__ ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) __SCREAMING_SNAKE_CASE : str = [[int(lowercase__ ) for i in grid[j]] for j in range(len(lowercase__ ) )] return largest_product(lowercase__ ) if __name__ == "__main__": print(solution())
696
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ : Dict = '▁' SCREAMING_SNAKE_CASE__ : Any = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( A__ , unittest.TestCase ): __lowerCamelCase = BigBirdTokenizer __lowerCamelCase = BigBirdTokenizerFast __lowerCamelCase = True __lowerCamelCase = True def __UpperCAmelCase ( self ): super().setUp() UpperCAmelCase__ : List[str] = self.tokenizer_class(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Dict = '''<s>''' UpperCAmelCase__ : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """[MASK]""" ) self.assertEqual(len(lowerCAmelCase__ ) , 1004 ) def __UpperCAmelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __UpperCAmelCase ( self ): if not self.test_rust_tokenizer: return UpperCAmelCase__ : Any = self.get_tokenizer() UpperCAmelCase__ : str = self.get_rust_tokenizer() UpperCAmelCase__ : int = '''I was born in 92000, and this is falsé.''' UpperCAmelCase__ : Any = tokenizer.tokenize(lowerCAmelCase__ ) UpperCAmelCase__ : int = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) UpperCAmelCase__ : Any = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Dict = self.get_rust_tokenizer() UpperCAmelCase__ : List[str] = tokenizer.encode(lowerCAmelCase__ ) UpperCAmelCase__ : str = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Union[str, Any] = BigBirdTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) UpperCAmelCase__ : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [285, 46, 10, 170, 382] , ) UpperCAmelCase__ : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCAmelCase__ : str = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def __UpperCAmelCase ( self ): return BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) @slow def __UpperCAmelCase ( self ): UpperCAmelCase__ : Union[str, Any] = '''Hello World!''' UpperCAmelCase__ : Optional[int] = [65, 18536, 2260, 101, 66] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[int] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase__ : Tuple = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @require_torch @slow def __UpperCAmelCase ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase__ : Dict = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase__ : int = ''' '''.join(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = self.big_tokenizer.encode_plus(lowerCAmelCase__ , return_tensors="""pt""" , return_token_type_ids=lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = BigBirdConfig(attention_type="""original_full""" ) UpperCAmelCase__ : Optional[Any] = BigBirdModel(lowerCAmelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCAmelCase__ ) model(**lowerCAmelCase__ ) @slow def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[int] = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) UpperCAmelCase__ : Any = tokenizer.decode(tokenizer("""Paris is the [MASK].""" ).input_ids ) self.assertTrue(decoded_text == """[CLS] Paris is the[MASK].[SEP]""" ) @slow def __UpperCAmelCase ( self ): # fmt: off UpperCAmelCase__ : str = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="""google/bigbird-roberta-base""" , revision="""215c99f1600e06f83acce68422f2035b2b5c3510""" , )
79
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowercase ( A__ ): '''simple docstring''' def __magic_name__( self :List[Any] ) -> Any: __SCREAMING_SNAKE_CASE : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''depth_multiplier''' ) ) class _lowercase : '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any]=13 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Optional[Any]=32 , lowerCAmelCase__ :Dict=0.25 , lowerCAmelCase__ :Optional[int]=8 , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Union[str, Any]=1_024 , lowerCAmelCase__ :Any=32 , lowerCAmelCase__ :Tuple="relu6" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Dict=0.02 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :int=True , lowerCAmelCase__ :int=10 , lowerCAmelCase__ :Union[str, Any]=None , ) -> str: __SCREAMING_SNAKE_CASE : Any = parent __SCREAMING_SNAKE_CASE : Dict = batch_size __SCREAMING_SNAKE_CASE : List[Any] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = image_size __SCREAMING_SNAKE_CASE : Optional[int] = depth_multiplier __SCREAMING_SNAKE_CASE : Dict = min_depth __SCREAMING_SNAKE_CASE : List[str] = tf_padding __SCREAMING_SNAKE_CASE : List[Any] = int(last_hidden_size * depth_multiplier ) __SCREAMING_SNAKE_CASE : List[str] = output_stride __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = is_training __SCREAMING_SNAKE_CASE : Optional[int] = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = scope def __magic_name__( self :List[str] ) -> int: __SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__( self :Union[str, Any] ) -> Optional[Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = MobileNetVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = self.num_labels __SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = config_and_inputs __SCREAMING_SNAKE_CASE : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : Optional[Any] = ( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : Tuple = False def __magic_name__( self :Any ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = MobileNetVaModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[int] = MobileNetVaConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV1 does not use inputs_embeds''' ) def __magic_name__( self :Dict ) -> Optional[Any]: pass @unittest.skip(reason='''MobileNetV1 does not support input and output embeddings''' ) def __magic_name__( self :List[Any] ) -> List[Any]: pass @unittest.skip(reason='''MobileNetV1 does not output attentions''' ) def __magic_name__( self :Any ) -> Dict: pass def __magic_name__( self :Any ) -> List[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Any = model_class(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : Union[str, Any] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__( self :Any ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = outputs.hidden_states __SCREAMING_SNAKE_CASE : Optional[int] = 26 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : str = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE : List[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :List[str] ) -> List[Any]: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__( self :Optional[int] ) -> Union[str, Any]: return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v1_1.0_224''' ) if is_vision_available() else None ) @slow def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v1_1.0_224''' ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.default_image_processor __SCREAMING_SNAKE_CASE : int = prepare_img() __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE : int = model(**lowerCAmelCase__ ) # verify the logits __SCREAMING_SNAKE_CASE : Any = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
696
0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :List[Any] ) -> Optional[int]: if length <= 0 or not isinstance(lowercase__ , lowercase__ ): raise ValueError("""Length must be a positive integer.""" ) return [n * (2 * n - 1) for n in range(lowercase__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
504
import os from datetime import datetime as dt from github import Github __lowerCAmelCase : List[Any] =[ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Tuple = Github(os.environ['''GITHUB_TOKEN'''] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = g.get_repo('''huggingface/diffusers''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = repo.get_issues(state='''open''' ) for issue in open_issues: __SCREAMING_SNAKE_CASE : Optional[int] = sorted(issue.get_comments() , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
696
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class A__ ( A__ ): A__ = '''beit''' def __init__( self : Optional[Any] , _a : int=8192 , _a : str=768 , _a : Optional[Any]=12 , _a : List[str]=12 , _a : int=3072 , _a : Optional[Any]="gelu" , _a : Optional[int]=0.0 , _a : List[str]=0.0 , _a : List[Any]=0.02 , _a : Dict=1e-12 , _a : Dict=224 , _a : Optional[Any]=16 , _a : Optional[Any]=3 , _a : Any=False , _a : str=False , _a : Optional[int]=False , _a : Any=False , _a : str=0.1 , _a : Optional[int]=0.1 , _a : Tuple=True , _a : int=[3, 5, 7, 11] , _a : Union[str, Any]=[1, 2, 3, 6] , _a : str=True , _a : Any=0.4 , _a : Union[str, Any]=256 , _a : str=1 , _a : int=False , _a : List[Any]=255 , **_a : str , ) -> str: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =patch_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =use_mask_token _SCREAMING_SNAKE_CASE =use_absolute_position_embeddings _SCREAMING_SNAKE_CASE =use_relative_position_bias _SCREAMING_SNAKE_CASE =use_shared_relative_position_bias _SCREAMING_SNAKE_CASE =layer_scale_init_value _SCREAMING_SNAKE_CASE =drop_path_rate _SCREAMING_SNAKE_CASE =use_mean_pooling # decode head attributes (semantic segmentation) _SCREAMING_SNAKE_CASE =out_indices _SCREAMING_SNAKE_CASE =pool_scales # auxiliary head attributes (semantic segmentation) _SCREAMING_SNAKE_CASE =use_auxiliary_head _SCREAMING_SNAKE_CASE =auxiliary_loss_weight _SCREAMING_SNAKE_CASE =auxiliary_channels _SCREAMING_SNAKE_CASE =auxiliary_num_convs _SCREAMING_SNAKE_CASE =auxiliary_concat_input _SCREAMING_SNAKE_CASE =semantic_loss_ignore_index class A__ ( A__ ): A__ = version.parse('1.11' ) @property def A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Tuple ) -> float: '''simple docstring''' return 1e-4
405
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : Dict ={ 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = '''canine''' def __init__( self :Any , lowerCAmelCase__ :List[Any]=768 , lowerCAmelCase__ :Any=12 , lowerCAmelCase__ :str=12 , lowerCAmelCase__ :Optional[int]=3_072 , lowerCAmelCase__ :str="gelu" , lowerCAmelCase__ :Union[str, Any]=0.1 , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :int=16_384 , lowerCAmelCase__ :Tuple=16 , lowerCAmelCase__ :List[Any]=0.02 , lowerCAmelCase__ :int=1E-1_2 , lowerCAmelCase__ :int=0 , lowerCAmelCase__ :List[Any]=0xe000 , lowerCAmelCase__ :List[str]=0xe001 , lowerCAmelCase__ :str=4 , lowerCAmelCase__ :Any=4 , lowerCAmelCase__ :Union[str, Any]=8 , lowerCAmelCase__ :Optional[int]=16_384 , lowerCAmelCase__ :Any=128 , **lowerCAmelCase__ :Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : int = type_vocab_size __SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps # Character config: __SCREAMING_SNAKE_CASE : Tuple = downsampling_rate __SCREAMING_SNAKE_CASE : Optional[Any] = upsampling_kernel_size __SCREAMING_SNAKE_CASE : Any = num_hash_functions __SCREAMING_SNAKE_CASE : Optional[int] = num_hash_buckets __SCREAMING_SNAKE_CASE : List[str] = local_transformer_stride
696
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def a(lowercase__ ): '''simple docstring''' if not is_accelerate_available(): return method snake_case_ = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase__ ) < version.parse('0.17.0' ): return method def wrapper(self , *lowercase__ , **lowercase__ ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *lowercase__ , **lowercase__ ) return wrapper
187
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : Tuple ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = '''transfo-xl''' SCREAMING_SNAKE_CASE__ : List[str] = ['''mems'''] SCREAMING_SNAKE_CASE__ : List[Any] = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self :str , lowerCAmelCase__ :Optional[int]=267_735 , lowerCAmelCase__ :Optional[int]=[20_000, 40_000, 200_000] , lowerCAmelCase__ :List[Any]=1_024 , lowerCAmelCase__ :List[str]=1_024 , lowerCAmelCase__ :Any=16 , lowerCAmelCase__ :Tuple=64 , lowerCAmelCase__ :Union[str, Any]=4_096 , lowerCAmelCase__ :Dict=4 , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :Dict=18 , lowerCAmelCase__ :Union[str, Any]=1_600 , lowerCAmelCase__ :Union[str, Any]=1_000 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Optional[Any]=0 , lowerCAmelCase__ :Union[str, Any]=-1 , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :int=True , lowerCAmelCase__ :str="normal" , lowerCAmelCase__ :Tuple=0.01 , lowerCAmelCase__ :Union[str, Any]=0.01 , lowerCAmelCase__ :str=0.02 , lowerCAmelCase__ :Optional[Any]=1E-5 , lowerCAmelCase__ :Union[str, Any]=0 , **lowerCAmelCase__ :Optional[Any] , ) -> str: __SCREAMING_SNAKE_CASE : str = vocab_size __SCREAMING_SNAKE_CASE : Tuple = [] self.cutoffs.extend(lowerCAmelCase__ ) if proj_share_all_but_first: __SCREAMING_SNAKE_CASE : List[str] = [False] + [True] * len(self.cutoffs ) else: __SCREAMING_SNAKE_CASE : Tuple = [False] + [False] * len(self.cutoffs ) __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Union[str, Any] = d_embed __SCREAMING_SNAKE_CASE : Tuple = d_head __SCREAMING_SNAKE_CASE : Dict = d_inner __SCREAMING_SNAKE_CASE : Optional[Any] = div_val __SCREAMING_SNAKE_CASE : Optional[Any] = pre_lnorm __SCREAMING_SNAKE_CASE : List[str] = n_layer __SCREAMING_SNAKE_CASE : int = n_head __SCREAMING_SNAKE_CASE : str = mem_len __SCREAMING_SNAKE_CASE : Union[str, Any] = same_length __SCREAMING_SNAKE_CASE : str = attn_type __SCREAMING_SNAKE_CASE : Dict = clamp_len __SCREAMING_SNAKE_CASE : Tuple = sample_softmax __SCREAMING_SNAKE_CASE : Optional[int] = adaptive __SCREAMING_SNAKE_CASE : int = dropout __SCREAMING_SNAKE_CASE : Optional[Any] = dropatt __SCREAMING_SNAKE_CASE : int = untie_r __SCREAMING_SNAKE_CASE : Optional[int] = init __SCREAMING_SNAKE_CASE : List[str] = init_range __SCREAMING_SNAKE_CASE : Any = proj_init_std __SCREAMING_SNAKE_CASE : List[str] = init_std __SCREAMING_SNAKE_CASE : Tuple = layer_norm_epsilon super().__init__(eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __magic_name__( self :str ) -> int: # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __magic_name__( self :Tuple , lowerCAmelCase__ :int ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
696
0
from collections.abc import Iterable from typing import Any class snake_case__ : '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : int | None = None ) -> str: UpperCAmelCase_ = value UpperCAmelCase_ = None # Added in order to delete a node easier UpperCAmelCase_ = None UpperCAmelCase_ = None def __repr__( self : Union[str, Any] ) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F'''{self.value}''': (self.left, self.right)} , indent=1 ) class snake_case__ : '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase_ : Node | None = None ) -> List[Any]: UpperCAmelCase_ = root def __str__( self : Optional[int] ) -> str: return str(self.root ) def UpperCamelCase ( self : Dict , lowerCAmelCase_ : Node , lowerCAmelCase_ : Node | None ) -> None: if new_children is not None: # reset its kids UpperCAmelCase_ = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase__ ): # If it is the right children UpperCAmelCase_ = new_children else: UpperCAmelCase_ = new_children else: UpperCAmelCase_ = new_children def UpperCamelCase ( self : Optional[Any] , lowerCAmelCase_ : Node ) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def UpperCamelCase ( self : Optional[int] ) -> bool: return self.root is None def UpperCamelCase ( self : Any , lowerCAmelCase_ : Tuple ) -> None: UpperCAmelCase_ = Node(lowerCAmelCase__ ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase_ = new_node # set its root else: # Tree is not empty UpperCAmelCase_ = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase_ = new_node # We insert the new node in a leaf break else: UpperCAmelCase_ = parent_node.left else: if parent_node.right is None: UpperCAmelCase_ = new_node break else: UpperCAmelCase_ = parent_node.right UpperCAmelCase_ = parent_node def UpperCamelCase ( self : List[Any] , *lowerCAmelCase_ : Any ) -> None: for value in values: self.__insert(lowerCAmelCase__ ) def UpperCamelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] ) -> Node | None: if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: UpperCAmelCase_ = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase_ = node.left if value < node.value else node.right return node def UpperCamelCase ( self : Dict , lowerCAmelCase_ : Node | None = None ) -> Node | None: if node is None: if self.root is None: return None UpperCAmelCase_ = self.root if not self.empty(): while node.right is not None: UpperCAmelCase_ = node.right return node def UpperCamelCase ( self : Optional[Any] , lowerCAmelCase_ : Node | None = None ) -> Node | None: if node is None: UpperCAmelCase_ = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase_ = self.root while node.left is not None: UpperCAmelCase_ = node.left return node def UpperCamelCase ( self : int , lowerCAmelCase_ : int ) -> None: UpperCAmelCase_ = self.search(lowerCAmelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase__ , lowerCAmelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase__ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase__ , node.left ) else: UpperCAmelCase_ = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase_ = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCamelCase ( self : Any , lowerCAmelCase_ : Node | None ) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCamelCase ( self : int , lowerCAmelCase_ : str=None ) -> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCamelCase ( self : Optional[int] , lowerCAmelCase_ : list , lowerCAmelCase_ : Node | None ) -> None: if node: self.inorder(lowerCAmelCase__ , node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase__ , node.right ) def UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Node ) -> int: UpperCAmelCase_ = [] self.inorder(lowerCAmelCase__ , lowerCAmelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def _lowerCAmelCase ( __magic_name__ :Tuple ): UpperCAmelCase_ = [] if curr_node is not None: UpperCAmelCase_ = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _lowerCAmelCase ( ): UpperCAmelCase_ = (8, 3, 6, 1, 1_0, 1_4, 1_3, 4, 7) UpperCAmelCase_ = BinarySearchTree() for i in testlist: t.insert(lowercase__ ) # Prints all the elements of the list in order traversal print(lowercase__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(lowercase__ ) print(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
121
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : str =logging.get_logger(__name__) __lowerCAmelCase : Any ={ # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''megatron-bert''' def __init__( self :int , lowerCAmelCase__ :int=29_056 , lowerCAmelCase__ :Dict=1_024 , lowerCAmelCase__ :Optional[int]=24 , lowerCAmelCase__ :str=16 , lowerCAmelCase__ :Optional[int]=4_096 , lowerCAmelCase__ :Optional[Any]="gelu" , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :List[str]=512 , lowerCAmelCase__ :Any=2 , lowerCAmelCase__ :int=0.02 , lowerCAmelCase__ :Tuple=1E-1_2 , lowerCAmelCase__ :Tuple=0 , lowerCAmelCase__ :Optional[int]="absolute" , lowerCAmelCase__ :List[str]=True , **lowerCAmelCase__ :Tuple , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : List[str] = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Any = intermediate_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : str = initializer_range __SCREAMING_SNAKE_CASE : Dict = layer_norm_eps __SCREAMING_SNAKE_CASE : Dict = position_embedding_type __SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache
696
0
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __A : Dict = logging.get_logger(__name__) __A : List[Any] = 'https://openaipublic.azureedge.net/jukebox/models/' __A : str = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def lowercase ( __snake_case : Optional[int] ): if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 1_0: lowercase_ : List[str] = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 1_0: lowercase_ : Optional[Any] = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 1_0: lowercase_ : str = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 1_0: lowercase_ : str = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: lowercase_ : Optional[int] = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: lowercase_ : Dict = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowercase_ : Dict = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: lowercase_ : List[str] = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def lowercase ( __snake_case : List[Any] , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Optional[int] ): lowercase_ : str = {} import re lowercase_ : List[str] = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowercase_ : int = re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowercase_ : str = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowercase_ : int = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowercase_ : Tuple = re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowercase_ : Optional[int] = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowercase_ : Any = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) lowercase_ : Optional[Any] = re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowercase_ : str = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(lowercase__ ): lowercase_ : int = re_encoder_block_conv_in.match(lowercase__ ) lowercase_ : Any = regex_match.groups() lowercase_ : Union[str, Any] = int(groups[2] ) * 2 + int(groups[3] ) lowercase_ : List[Any] = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' lowercase_ : Any = re_encoder_block_conv_in.sub(lowercase__ , lowercase__ ) elif re_encoder_block_resnet.fullmatch(lowercase__ ): lowercase_ : Union[str, Any] = re_encoder_block_resnet.match(lowercase__ ) lowercase_ : List[str] = regex_match.groups() lowercase_ : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) lowercase_ : List[Any] = {'''1''': 1, '''3''': 2}[groups[-2]] lowercase_ : str = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' lowercase_ : Dict = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowercase_ : Tuple = prefix + resnet_block lowercase_ : int = re_encoder_block_resnet.sub(lowercase__ , lowercase__ ) elif re_encoder_block_proj_out.fullmatch(lowercase__ ): lowercase_ : List[Any] = re_encoder_block_proj_out.match(lowercase__ ) lowercase_ : int = regex_match.groups() lowercase_ : Any = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' lowercase_ : Any = re_encoder_block_proj_out.sub(lowercase__ , lowercase__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(lowercase__ ): lowercase_ : int = re_decoder_block_conv_out.match(lowercase__ ) lowercase_ : Any = regex_match.groups() lowercase_ : List[str] = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowercase_ : Tuple = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' lowercase_ : str = re_decoder_block_conv_out.sub(lowercase__ , lowercase__ ) elif re_decoder_block_resnet.fullmatch(lowercase__ ): lowercase_ : str = re_decoder_block_resnet.match(lowercase__ ) lowercase_ : Any = regex_match.groups() lowercase_ : str = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowercase_ : Tuple = {'''1''': 1, '''3''': 2}[groups[-2]] lowercase_ : List[Any] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' lowercase_ : Union[str, Any] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowercase_ : Dict = prefix + resnet_block lowercase_ : Any = re_decoder_block_resnet.sub(lowercase__ , lowercase__ ) elif re_decoder_block_proj_in.fullmatch(lowercase__ ): lowercase_ : Optional[int] = re_decoder_block_proj_in.match(lowercase__ ) lowercase_ : Optional[Any] = regex_match.groups() lowercase_ : int = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' lowercase_ : Any = re_decoder_block_proj_in.sub(lowercase__ , lowercase__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(lowercase__ ): lowercase_ : List[Any] = re_prior_cond_conv_out.match(lowercase__ ) lowercase_ : int = regex_match.groups() lowercase_ : List[str] = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowercase_ : List[str] = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' lowercase_ : int = re_prior_cond_conv_out.sub(lowercase__ , lowercase__ ) elif re_prior_cond_resnet.fullmatch(lowercase__ ): lowercase_ : Union[str, Any] = re_prior_cond_resnet.match(lowercase__ ) lowercase_ : Optional[int] = regex_match.groups() lowercase_ : Tuple = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowercase_ : Optional[int] = {'''1''': 1, '''3''': 2}[groups[-2]] lowercase_ : Union[str, Any] = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' lowercase_ : Tuple = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowercase_ : List[str] = prefix + resnet_block lowercase_ : Tuple = re_prior_cond_resnet.sub(lowercase__ , lowercase__ ) elif re_prior_cond_proj_in.fullmatch(lowercase__ ): lowercase_ : int = re_prior_cond_proj_in.match(lowercase__ ) lowercase_ : Any = regex_match.groups() lowercase_ : Optional[Any] = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' lowercase_ : Union[str, Any] = re_prior_cond_proj_in.sub(lowercase__ , lowercase__ ) # keep original key else: lowercase_ : Optional[Any] = original_key lowercase_ : Any = replace_key(lowercase__ ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: lowercase_ : Any = model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) lowercase_ : int = original_key lowercase_ : Union[str, Any] = original_key lowercase_ : str = value return new_dict @torch.no_grad() def lowercase ( __snake_case : Any=None , __snake_case : Any=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): lowercase_ : Any = requests.get(F'''{PREFIX}{file}''' , allow_redirects=lowercase__ ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=lowercase__ ) open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content ) lowercase_ : str = MODEL_MAPPING[model_name.split('''/''' )[-1]] lowercase_ : List[Any] = JukeboxConfig.from_pretrained(lowercase__ ) lowercase_ : List[Any] = JukeboxModel(lowercase__ ) lowercase_ : Optional[int] = [] lowercase_ : Dict = {} for i, dict_name in enumerate(lowercase__ ): lowercase_ : Optional[int] = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model'''] lowercase_ : Tuple = {} for k in old_dic.keys(): if k.endswith('''.b''' ): lowercase_ : List[Any] = old_dic[k] elif k.endswith('''.w''' ): lowercase_ : int = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowercase_ : Any = old_dic[k] else: lowercase_ : List[Any] = old_dic[k] lowercase_ : Dict = '''vqvae''' if i == 0 else F'''priors.{3 - i}''' lowercase_ : str = fix_jukebox_keys(lowercase__ , model.state_dict() , lowercase__ , lowercase__ ) weight_dict.append(lowercase__ ) lowercase_ : Any = weight_dict.pop(0 ) model.vqvae.load_state_dict(lowercase__ ) for i in range(len(lowercase__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(lowercase__ , lowercase__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) return weight_dict if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) __A : List[str] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
231
import os import sys import unittest __lowerCAmelCase : List[Any] =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __lowerCAmelCase : Optional[Any] =os.path.join(git_repo_path, 'src', 'transformers') __lowerCAmelCase : Optional[Any] ='\n{0} = None\n' __lowerCAmelCase : Tuple ='\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' __lowerCAmelCase : Dict ='\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tokenizers''' ) __SCREAMING_SNAKE_CASE : Dict = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tensorflow_text''' ) __SCREAMING_SNAKE_CASE : Tuple = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers''' ) __SCREAMING_SNAKE_CASE : Any = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tensorflow_text''' ) __SCREAMING_SNAKE_CASE : List[str] = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers_and_vision''' ) def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCAmelCase__ ) self.assertIn('''tensorflow_text''' , lowerCAmelCase__ ) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCAmelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , '''\nCONSTANT = None\n''' ) __SCREAMING_SNAKE_CASE : List[str] = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( lowerCAmelCase__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) __SCREAMING_SNAKE_CASE : int = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' __SCREAMING_SNAKE_CASE : Optional[Any] = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : str = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' __SCREAMING_SNAKE_CASE : List[Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , lowerCAmelCase__ )
696
0
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self : Optional[Any] , _lowercase : Tuple , _lowercase : str=1_00 , _lowercase : List[Any]=13 , _lowercase : List[str]=30 , _lowercase : List[str]=2 , _lowercase : int=3 , _lowercase : Tuple=True , _lowercase : Dict=True , _lowercase : str=32 , _lowercase : str=5 , _lowercase : Optional[int]=4 , _lowercase : Optional[Any]=37 , _lowercase : List[str]="gelu" , _lowercase : int=0.1 , _lowercase : Dict=0.1 , _lowercase : Optional[Any]=10 , _lowercase : int=0.02 , _lowercase : Union[str, Any]=3 , ): __UpperCAmelCase = parent __UpperCAmelCase = vocab_size __UpperCAmelCase = batch_size __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCAmelCase = (image_size // patch_size) ** 2 __UpperCAmelCase = num_patches + 1 def a ( self : str ): __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def a ( self : List[Any] , _lowercase : Any , _lowercase : Union[str, Any] , _lowercase : int ): __UpperCAmelCase = FlaxBeitModel(config=lowerCAmelCase__ ) __UpperCAmelCase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self : Dict , _lowercase : Any , _lowercase : List[Any] , _lowercase : Optional[int] ): __UpperCAmelCase = FlaxBeitForMaskedImageModeling(config=lowerCAmelCase__ ) __UpperCAmelCase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def a ( self : int , _lowercase : Optional[int] , _lowercase : List[Any] , _lowercase : Tuple ): __UpperCAmelCase = self.type_sequence_label_size __UpperCAmelCase = FlaxBeitForImageClassification(config=lowerCAmelCase__ ) __UpperCAmelCase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCAmelCase = 1 __UpperCAmelCase = FlaxBeitForImageClassification(lowerCAmelCase__ ) __UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase = model(lowerCAmelCase__ ) def a ( self : List[str] ): __UpperCAmelCase = self.prepare_config_and_inputs() ( __UpperCAmelCase ) = config_and_inputs __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( A__ , unittest.TestCase ): a__ : Dict = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def a ( self : Optional[Any] ): __UpperCAmelCase = FlaxBeitModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def a ( self : Optional[Any] ): self.config_tester.run_common_tests() def a ( self : List[Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowerCAmelCase__ ) __UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def a ( self : int ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase = model_class(lowerCAmelCase__ ) @jax.jit def model_jitted(_lowercase : Optional[Any] , **_lowercase : Tuple ): return model(pixel_values=lowerCAmelCase__ , **lowerCAmelCase__ ) with self.subTest('''JIT Enabled''' ): __UpperCAmelCase = model_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __UpperCAmelCase = model_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def a ( self : Optional[Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def a ( self : Any ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def a ( self : Dict ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def a ( self : Tuple ): for model_class_name in self.all_model_classes: __UpperCAmelCase = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) __UpperCAmelCase = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(lowerCAmelCase__ ) def lowercase__ ( ): __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class _UpperCAmelCase ( unittest.TestCase ): @cached_property def a ( self : int ): return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def a ( self : List[Any] ): __UpperCAmelCase = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowerCAmelCase__ , return_tensors='''np''' ).pixel_values # prepare bool_masked_pos __UpperCAmelCase = np.ones((1, 1_96) , dtype=lowerCAmelCase__ ) # forward pass __UpperCAmelCase = model(pixel_values=lowerCAmelCase__ , bool_masked_pos=lowerCAmelCase__ ) __UpperCAmelCase = outputs.logits # verify the logits __UpperCAmelCase = (1, 1_96, 81_92) self.assertEqual(logits.shape , lowerCAmelCase__ ) __UpperCAmelCase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , lowerCAmelCase__ , atol=1E-2 ) ) @slow def a ( self : Dict ): __UpperCAmelCase = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowerCAmelCase__ , return_tensors='''np''' ) # forward pass __UpperCAmelCase = model(**lowerCAmelCase__ ) __UpperCAmelCase = outputs.logits # verify the logits __UpperCAmelCase = (1, 10_00) self.assertEqual(logits.shape , lowerCAmelCase__ ) __UpperCAmelCase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) __UpperCAmelCase = 2_81 self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase__ ) @slow def a ( self : Optional[Any] ): __UpperCAmelCase = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowerCAmelCase__ , return_tensors='''np''' ) # forward pass __UpperCAmelCase = model(**lowerCAmelCase__ ) __UpperCAmelCase = outputs.logits # verify the logits __UpperCAmelCase = (1, 2_18_41) self.assertEqual(logits.shape , lowerCAmelCase__ ) __UpperCAmelCase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) __UpperCAmelCase = 23_96 self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase__ )
49
import math from numpy import inf from scipy.integrate import quad def _UpperCamelCase ( lowercase__ ): if num <= 0: raise ValueError('''math domain error''' ) return quad(lowercase__ , 0 , lowercase__ , args=(lowercase__) )[0] def _UpperCamelCase ( lowercase__ , lowercase__ ): return math.pow(lowercase__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
696
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowerCamelCase ( lowerCamelCase_: List[str] ): '''simple docstring''' A : Tuple = prime_factors(lowercase__ ) if is_square_free(lowercase__ ): return -1 if len(lowercase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
256
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(lowercase__ , lowercase__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate __SCREAMING_SNAKE_CASE : int = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __SCREAMING_SNAKE_CASE : Union[str, Any] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
696
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class _lowercase ( A__ ): _lowerCamelCase = '''canine''' def __init__( self , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=3072 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=1_6384 , UpperCamelCase_=16 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-1_2 , UpperCamelCase_=0 , UpperCamelCase_=0XE000 , UpperCamelCase_=0XE001 , UpperCamelCase_=4 , UpperCamelCase_=4 , UpperCamelCase_=8 , UpperCamelCase_=1_6384 , UpperCamelCase_=128 , **UpperCamelCase_ , ): super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ = max_position_embeddings __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = initializer_range __magic_name__ = type_vocab_size __magic_name__ = layer_norm_eps # Character config: __magic_name__ = downsampling_rate __magic_name__ = upsampling_kernel_size __magic_name__ = num_hash_functions __magic_name__ = num_hash_buckets __magic_name__ = local_transformer_stride
490
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = prime_factors(lowercase__ ) if is_square_free(lowercase__ ): return -1 if len(lowercase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
696
0
'''simple docstring''' def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = len(lowercase__ ) while cur > 1: # Find the maximum number in arr _UpperCAmelCase : Tuple = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _UpperCAmelCase : Optional[Any] = arr[mi::-1] + arr[mi + 1 : len(lowercase__ )] # Reverse whole list _UpperCAmelCase : Union[str, Any] = arr[cur - 1 :: -1] + arr[cur : len(lowercase__ )] cur -= 1 return arr if __name__ == "__main__": __a = input('Enter numbers separated by a comma:\n').strip() __a = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
494
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase : int ={ 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_2_8, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 5_0, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 1_0, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 1_0, 'exponential_decay_length_penalty': (5, 1.0_1), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class _lowercase ( unittest.TestCase ): '''simple docstring''' @classmethod def __magic_name__( cls :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : str = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def __magic_name__( cls :List[str] ) -> List[str]: try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Tuple = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ , repo_id='''test-config''' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Any = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCAmelCase__ , repo_id='''valid_org/test-config-org''' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __magic_name__( self :Dict ) -> Optional[int]: CustomConfig.register_for_auto_class() __SCREAMING_SNAKE_CASE : Tuple = CustomConfig(attribute=42 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) __SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 42 ) class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __SCREAMING_SNAKE_CASE : Optional[Any] = c.n_embd + 1 # int __SCREAMING_SNAKE_CASE : Optional[Any] = c.resid_pdrop + 1.0 # float __SCREAMING_SNAKE_CASE : Dict = not c.scale_attn_weights # bool __SCREAMING_SNAKE_CASE : Optional[int] = c.summary_type + '''foo''' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCAmelCase__ , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(lowerCAmelCase__ , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(lowerCAmelCase__ , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(lowerCAmelCase__ , c.summary_type , '''mismatch for key: summary_type''' ) def __magic_name__( self :Dict ) -> str: __SCREAMING_SNAKE_CASE : Dict = PretrainedConfig() __SCREAMING_SNAKE_CASE : str = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCAmelCase__ , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) __SCREAMING_SNAKE_CASE : List[Any] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCAmelCase__ , lowerCAmelCase__ )] if len(lowerCAmelCase__ ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' f''' {', '.join(lowerCAmelCase__ )}.''' ) def __magic_name__( self :Union[str, Any] ) -> List[Any]: with self.assertRaises(lowerCAmelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder __SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) __SCREAMING_SNAKE_CASE : List[str] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[Any]: # A mock response for an HTTP head request to emulate server down __SCREAMING_SNAKE_CASE : Union[str, Any] = mock.Mock() __SCREAMING_SNAKE_CASE : List[Any] = 500 __SCREAMING_SNAKE_CASE : Union[str, Any] = {} __SCREAMING_SNAKE_CASE : Optional[Any] = HTTPError __SCREAMING_SNAKE_CASE : str = {} # Download this model to make sure it's in the cache. __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowerCAmelCase__ ) as mock_head: __SCREAMING_SNAKE_CASE : Optional[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def __magic_name__( self :Union[str, Any] ) -> List[Any]: # This test is for deprecated behavior and can be removed in v5 __SCREAMING_SNAKE_CASE : Optional[int] = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def __magic_name__( self :str ) -> List[str]: __SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained('''bert-base-cased''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCAmelCase__ , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __SCREAMING_SNAKE_CASE : List[Any] = ['''config.42.0.0.json'''] __SCREAMING_SNAKE_CASE : Tuple = 768 configuration.save_pretrained(lowerCAmelCase__ ) shutil.move(os.path.join(lowerCAmelCase__ , '''config.4.0.0.json''' ) , os.path.join(lowerCAmelCase__ , '''config.42.0.0.json''' ) ) __SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def __magic_name__( self :List[str] ) -> Union[str, Any]: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __SCREAMING_SNAKE_CASE : Union[str, Any] = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers __SCREAMING_SNAKE_CASE : int = '''v4.0.0''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCAmelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __SCREAMING_SNAKE_CASE : List[str] = '''v3.0.0''' __SCREAMING_SNAKE_CASE : Any = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(old_configuration.hidden_size , 768 )
696
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A: List[str] = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[int] = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: List[str] = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[int] = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys A: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
160
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Any ={ 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] =['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
696
0
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = 'T5Config' def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ : List[Any] = jnp.zeros_like(lowercase__ ) UpperCAmelCase__ : Tuple = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) UpperCAmelCase__ : List[str] = shifted_input_ids.at[:, 0].set(lowercase__ ) UpperCAmelCase__ : Dict = jnp.where(shifted_input_ids == -100 , lowercase__ , lowercase__ ) return shifted_input_ids class UpperCAmelCase_ ( A__ ): __lowerCamelCase = '''mt5''' __lowerCamelCase = MTaConfig class UpperCAmelCase_ ( A__ ): __lowerCamelCase = '''mt5''' __lowerCamelCase = MTaConfig class UpperCAmelCase_ ( A__ ): __lowerCamelCase = '''mt5''' __lowerCamelCase = MTaConfig
79
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ={ 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = '''switch_transformers''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''past_key_values'''] SCREAMING_SNAKE_CASE__ : str = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self :Optional[int] , lowerCAmelCase__ :Union[str, Any]=32_128 , lowerCAmelCase__ :int=768 , lowerCAmelCase__ :Optional[Any]=64 , lowerCAmelCase__ :List[str]=2_048 , lowerCAmelCase__ :Optional[int]=64 , lowerCAmelCase__ :Union[str, Any]=12 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Tuple=12 , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Optional[int]=12 , lowerCAmelCase__ :Optional[Any]=8 , lowerCAmelCase__ :Tuple=False , lowerCAmelCase__ :List[Any]=0.01 , lowerCAmelCase__ :Any="float32" , lowerCAmelCase__ :int=False , lowerCAmelCase__ :int=32 , lowerCAmelCase__ :Optional[Any]=128 , lowerCAmelCase__ :Optional[Any]=0.1 , lowerCAmelCase__ :str=1E-6 , lowerCAmelCase__ :Tuple=0.001 , lowerCAmelCase__ :List[Any]=0.001 , lowerCAmelCase__ :Union[str, Any]=1.0 , lowerCAmelCase__ :Tuple="relu" , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]=0 , lowerCAmelCase__ :Union[str, Any]=1 , **lowerCAmelCase__ :List[str] , ) -> Tuple: __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Optional[int] = d_kv __SCREAMING_SNAKE_CASE : Tuple = d_ff __SCREAMING_SNAKE_CASE : Tuple = num_sparse_encoder_layers __SCREAMING_SNAKE_CASE : List[Any] = num_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __SCREAMING_SNAKE_CASE : Optional[Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __SCREAMING_SNAKE_CASE : List[Any] = self.num_layers // self.num_sparse_encoder_layers else: __SCREAMING_SNAKE_CASE : Tuple = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: __SCREAMING_SNAKE_CASE : Dict = self.num_decoder_layers # HACK: this will create 0 sparse layers __SCREAMING_SNAKE_CASE : List[Any] = num_heads __SCREAMING_SNAKE_CASE : List[Any] = num_experts __SCREAMING_SNAKE_CASE : Tuple = expert_capacity __SCREAMING_SNAKE_CASE : List[Any] = router_bias __SCREAMING_SNAKE_CASE : Optional[Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) __SCREAMING_SNAKE_CASE : List[Any] = router_dtype __SCREAMING_SNAKE_CASE : Optional[Any] = router_ignore_padding_tokens __SCREAMING_SNAKE_CASE : int = relative_attention_num_buckets __SCREAMING_SNAKE_CASE : Any = relative_attention_max_distance __SCREAMING_SNAKE_CASE : Union[str, Any] = dropout_rate __SCREAMING_SNAKE_CASE : Dict = layer_norm_epsilon __SCREAMING_SNAKE_CASE : int = initializer_factor __SCREAMING_SNAKE_CASE : List[str] = feed_forward_proj __SCREAMING_SNAKE_CASE : Any = use_cache __SCREAMING_SNAKE_CASE : Union[str, Any] = add_router_probs __SCREAMING_SNAKE_CASE : int = router_z_loss_coef __SCREAMING_SNAKE_CASE : List[str] = router_aux_loss_coef __SCREAMING_SNAKE_CASE : Dict = self.feed_forward_proj.split('''-''' ) __SCREAMING_SNAKE_CASE : Optional[int] = act_info[-1] __SCREAMING_SNAKE_CASE : Optional[Any] = act_info[0] == '''gated''' if len(lowerCAmelCase__ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase__ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __SCREAMING_SNAKE_CASE : List[Any] = '''gelu_new''' super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ , )
696
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class snake_case_ ( unittest.TestCase ): def UpperCAmelCase__ ( self : List[str] )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCAmelCase__ ) __lowerCAmelCase : Dict = -1 __lowerCAmelCase : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase__ ) __lowerCAmelCase : int = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ ) __lowerCAmelCase : Union[str, Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __lowerCAmelCase : List[Any] = TextStreamer(lowerCAmelCase__ ) model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowerCAmelCase : Tuple = cs.out[:-1] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( self : Optional[int] )->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __lowerCAmelCase : Tuple = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCAmelCase__ ) __lowerCAmelCase : Tuple = -1 __lowerCAmelCase : Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase__ ) __lowerCAmelCase : int = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ ) __lowerCAmelCase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) __lowerCAmelCase : int = TextIteratorStreamer(lowerCAmelCase__ ) __lowerCAmelCase : List[str] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __lowerCAmelCase : Optional[Any] = Thread(target=model.generate , kwargs=lowerCAmelCase__ ) thread.start() __lowerCAmelCase : List[str] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( self : List[Any] )->Optional[int]: '''simple docstring''' __lowerCAmelCase : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCAmelCase__ ) __lowerCAmelCase : Any = -1 __lowerCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase__ ) __lowerCAmelCase : Dict = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ ) __lowerCAmelCase : Any = greedy_ids[:, input_ids.shape[1] :] __lowerCAmelCase : Any = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __lowerCAmelCase : int = TextStreamer(lowerCAmelCase__ , skip_prompt=lowerCAmelCase__ ) model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowerCAmelCase : Tuple = cs.out[:-1] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( self : Optional[int] )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : str = AutoTokenizer.from_pretrained("""distilgpt2""" ) __lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(lowerCAmelCase__ ) __lowerCAmelCase : Dict = -1 __lowerCAmelCase : List[Any] = torch.ones((1, 5) , device=lowerCAmelCase__ ).long() * model.config.bos_token_id with CaptureStdout() as cs: __lowerCAmelCase : Any = TextStreamer(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) model.generate(lowerCAmelCase__ , max_new_tokens=1 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __lowerCAmelCase : List[Any] = cs.out[:-1] # Remove the final "\n" __lowerCAmelCase : Any = tokenizer(lowerCAmelCase__ , return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def UpperCAmelCase__ ( self : Optional[Any] )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __lowerCAmelCase : List[str] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCAmelCase__ ) __lowerCAmelCase : Optional[Any] = -1 __lowerCAmelCase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase__ ) __lowerCAmelCase : Union[str, Any] = TextIteratorStreamer(lowerCAmelCase__ , timeout=0.001 ) __lowerCAmelCase : Dict = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __lowerCAmelCase : Union[str, Any] = Thread(target=model.generate , kwargs=lowerCAmelCase__ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCAmelCase__ ): __lowerCAmelCase : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text
504
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
696
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase : List[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") lowerCamelCase : Optional[int] = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) lowerCamelCase : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A__ : A__ = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) A__ = field( default=A__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) A__ = field( default=A__ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) A__ = field(default=A__ , metadata={'help': 'A folder containing the training data.'} ) A__ = field(default=A__ , metadata={'help': 'A folder containing the validation data.'} ) A__ = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) A__ = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) A__ = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) A__ = field( default=A__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) A__ = field( default=A__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def A ( self : Optional[int] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE ={} if self.train_dir is not None: _SCREAMING_SNAKE_CASE =self.train_dir if self.validation_dir is not None: _SCREAMING_SNAKE_CASE =self.validation_dir _SCREAMING_SNAKE_CASE =data_files if data_files else None @dataclass class A__ : A__ = field( default=A__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) A__ = field( default=A__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(A__ )} , ) A__ = field( default=A__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A__ = field( default=A__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) A__ = field( default=A__ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) A__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) A__ = field(default=A__ , metadata={'help': 'Name or path of preprocessor config.'} ) A__ = field( default=A__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) A__ = field( default=A__ , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) A__ = field( default=A__ , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) A__ = field( default=A__ , metadata={'help': 'Stride to use for the encoder.'} , ) class A__ : def __init__( self : Dict , _a : str=192 , _a : Dict=32 , _a : Dict=4 , _a : Tuple=0.6 ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =input_size _SCREAMING_SNAKE_CASE =mask_patch_size _SCREAMING_SNAKE_CASE =model_patch_size _SCREAMING_SNAKE_CASE =mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('Input size must be divisible by mask patch size' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('Mask patch size must be divisible by model patch size' ) _SCREAMING_SNAKE_CASE =self.input_size // self.mask_patch_size _SCREAMING_SNAKE_CASE =self.mask_patch_size // self.model_patch_size _SCREAMING_SNAKE_CASE =self.rand_size**2 _SCREAMING_SNAKE_CASE =int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : List[str] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =np.random.permutation(self.token_count )[: self.mask_count] _SCREAMING_SNAKE_CASE =np.zeros(self.token_count , dtype=lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =mask.reshape((self.rand_size, self.rand_size) ) _SCREAMING_SNAKE_CASE =mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def _lowerCAmelCase ( _UpperCamelCase : str ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =torch.stack([example['pixel_values'] for example in examples] ) _SCREAMING_SNAKE_CASE =torch.stack([example['mask'] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def _lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _SCREAMING_SNAKE_CASE =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _SCREAMING_SNAKE_CASE =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mim' , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _SCREAMING_SNAKE_CASE =training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. _SCREAMING_SNAKE_CASE =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _SCREAMING_SNAKE_CASE =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _SCREAMING_SNAKE_CASE =load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _SCREAMING_SNAKE_CASE =None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: _SCREAMING_SNAKE_CASE =ds['''train'''].train_test_split(data_args.train_val_split ) _SCREAMING_SNAKE_CASE =split['''train'''] _SCREAMING_SNAKE_CASE =split['''test'''] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _SCREAMING_SNAKE_CASE ={ '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: _SCREAMING_SNAKE_CASE =AutoConfig.from_pretrained(model_args.config_name_or_path , **lowercase__ ) elif model_args.model_name_or_path: _SCREAMING_SNAKE_CASE =AutoConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: _SCREAMING_SNAKE_CASE =CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(lowercase__ , 'decoder_type' ): _SCREAMING_SNAKE_CASE ='''simmim''' # adapt config _SCREAMING_SNAKE_CASE =model_args.image_size if model_args.image_size is not None else config.image_size _SCREAMING_SNAKE_CASE =model_args.patch_size if model_args.patch_size is not None else config.patch_size _SCREAMING_SNAKE_CASE =( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { 'image_size': model_args.image_size, 'patch_size': model_args.patch_size, 'encoder_stride': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: _SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ ) elif model_args.model_name_or_path: _SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: _SCREAMING_SNAKE_CASE ={ conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } _SCREAMING_SNAKE_CASE =IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: _SCREAMING_SNAKE_CASE =AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _SCREAMING_SNAKE_CASE =AutoModelForMaskedImageModeling.from_config(lowercase__ ) if training_args.do_train: _SCREAMING_SNAKE_CASE =ds['''train'''].column_names else: _SCREAMING_SNAKE_CASE =ds['''validation'''].column_names if data_args.image_column_name is not None: _SCREAMING_SNAKE_CASE =data_args.image_column_name elif "image" in column_names: _SCREAMING_SNAKE_CASE ='''image''' elif "img" in column_names: _SCREAMING_SNAKE_CASE ='''img''' else: _SCREAMING_SNAKE_CASE =column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py _SCREAMING_SNAKE_CASE =Compose( [ Lambda(lambda _UpperCamelCase : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator _SCREAMING_SNAKE_CASE =MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(_UpperCamelCase : int ): _SCREAMING_SNAKE_CASE =[transforms(lowercase__ ) for image in examples[image_column_name]] _SCREAMING_SNAKE_CASE =[mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _SCREAMING_SNAKE_CASE =ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _SCREAMING_SNAKE_CASE =( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Initialize our trainer _SCREAMING_SNAKE_CASE =Trainer( model=lowercase__ , args=lowercase__ , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: _SCREAMING_SNAKE_CASE =None if training_args.resume_from_checkpoint is not None: _SCREAMING_SNAKE_CASE =training_args.resume_from_checkpoint elif last_checkpoint is not None: _SCREAMING_SNAKE_CASE =last_checkpoint _SCREAMING_SNAKE_CASE =trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _SCREAMING_SNAKE_CASE =trainer.evaluate() trainer.log_metrics('eval' , lowercase__ ) trainer.save_metrics('eval' , lowercase__ ) # Write model card and (optionally) push to hub _SCREAMING_SNAKE_CASE ={ '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''masked-image-modeling''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-image-modeling'''], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) if __name__ == "__main__": main()
405
from datetime import datetime import requests def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' __SCREAMING_SNAKE_CASE : Tuple = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(lowercase__ ).content if __name__ == "__main__": __lowerCAmelCase : int =input('Enter Video/IGTV url: ').strip() __lowerCAmelCase : Union[str, Any] =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
696
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging A = logging.get_logger(__name__) A = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class SCREAMING_SNAKE_CASE ( A__ ): """simple docstring""" __A = '''gpt_neo''' __A = ['''past_key_values'''] __A = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , __UpperCamelCase=5_02_57 , __UpperCamelCase=20_48 , __UpperCamelCase=20_48 , __UpperCamelCase=24 , __UpperCamelCase=[[["global", "local"], 12]] , __UpperCamelCase=16 , __UpperCamelCase=None , __UpperCamelCase=2_56 , __UpperCamelCase="gelu_new" , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.1 , __UpperCamelCase=1E-5 , __UpperCamelCase=0.02 , __UpperCamelCase=True , __UpperCamelCase=5_02_56 , __UpperCamelCase=5_02_56 , **__UpperCamelCase , ): """simple docstring""" snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_layers snake_case_ = num_heads snake_case_ = intermediate_size snake_case_ = window_size snake_case_ = activation_function snake_case_ = resid_dropout snake_case_ = embed_dropout snake_case_ = attention_dropout snake_case_ = classifier_dropout snake_case_ = layer_norm_epsilon snake_case_ = initializer_range snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id snake_case_ = attention_types snake_case_ = self.expand_attention_types_params(lowerCAmelCase__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' f"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ f"""`config.num_layers = {self.num_layers}`. """ '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @staticmethod def __lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" snake_case_ = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def a(lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' import torch snake_case_ = input.size() snake_case_ = len(lowercase__ ) snake_case_ = shape[dimension] snake_case_ = torch.arange(0 , lowercase__ , lowercase__ ) snake_case_ = torch.div(sizedim - size , lowercase__ , rounding_mode='floor' ) + 1 snake_case_ = torch.arange(lowercase__ ) + low_indices[:min_length][:, None] snake_case_ = [slice(lowercase__ )] * rank snake_case_ = indices snake_case_ = input[s] snake_case_ = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowercase__ ) def a(lowercase__ , lowercase__ ): '''simple docstring''' import torch snake_case_ = torch.arange(1 , lowercase__ ) snake_case_ = torch.remainder(lowercase__ , lowercase__ ) snake_case_ = remainders == 0 snake_case_ = candidates[divisor_indices] snake_case_ = torch.max(lowercase__ ) return largest_divisor, torch.div(lowercase__ , lowercase__ , rounding_mode='floor' ) class SCREAMING_SNAKE_CASE ( A__ ): """simple docstring""" @property def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction='inputs' ) snake_case_ = {0: '''batch''', 1: '''past_sequence + sequence'''} else: snake_case_ = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __lowerCAmelCase ( self ): """simple docstring""" return self._config.num_heads def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , ): """simple docstring""" snake_case_ = super(lowerCAmelCase__ , self ).generate_dummy_inputs( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) # We need to order the input in the way they appears in the forward() snake_case_ = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch snake_case_ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values snake_case_ = seqlen + 2 snake_case_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) snake_case_ = [ (torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(self.num_layers ) ] snake_case_ = common_inputs['''attention_mask'''] if self.use_past: snake_case_ = ordered_inputs['''attention_mask'''].dtype snake_case_ = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__ )] , dim=1 ) return ordered_inputs @property def __lowerCAmelCase ( self ): """simple docstring""" return 13
187
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = StableDiffusionInstructPixaPixPipeline SCREAMING_SNAKE_CASE__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} SCREAMING_SNAKE_CASE__ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __magic_name__( self :int ) -> Optional[int]: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __SCREAMING_SNAKE_CASE : str = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __magic_name__( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any]=0 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE : List[Any] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('''RGB''' ) if str(lowerCAmelCase__ ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def __magic_name__( self :Union[str, Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : int = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = '''french fries''' __SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(**lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = output.images __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Dict ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = [inputs['''prompt''']] * 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array(inputs['''image'''] ).astype(np.floataa ) / 255.0 __SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image / 2 + 0.5 __SCREAMING_SNAKE_CASE : Optional[Any] = image.permute(0 , 3 , 1 , 2 ) __SCREAMING_SNAKE_CASE : Any = image.repeat(2 , 1 , 1 , 1 ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Dict = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) __SCREAMING_SNAKE_CASE : Tuple = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Union[str, Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Union[str, Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : List[str] = [round(lowerCAmelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(lowerCAmelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Tuple ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __magic_name__( self :str ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = VaeImageProcessor(do_resize=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase__ , input_image_type='''pt''' ) )[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = components['''vae'''] __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs_by_type(lowerCAmelCase__ , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __SCREAMING_SNAKE_CASE : Optional[int] = vae.encode(inputs[image_param] ).latent_dist.mode() __SCREAMING_SNAKE_CASE : Dict = pipe(**lowerCAmelCase__ )[0] __SCREAMING_SNAKE_CASE : List[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase__ , 1E-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__( self :int , lowerCAmelCase__ :Dict=0 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) __SCREAMING_SNAKE_CASE : Dict = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __magic_name__( self :Dict ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Dict = self.get_inputs() __SCREAMING_SNAKE_CASE : str = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Any = self.get_inputs() __SCREAMING_SNAKE_CASE : int = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : Dict = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Optional[int] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : str = self.get_inputs() __SCREAMING_SNAKE_CASE : Optional[int] = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Dict ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = 0 def callback_fn(lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :torch.FloatTensor ) -> None: __SCREAMING_SNAKE_CASE : Dict = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __SCREAMING_SNAKE_CASE : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE : Tuple = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: __SCREAMING_SNAKE_CASE : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE : List[str] = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() pipe(**lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __magic_name__( self :List[str] ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __SCREAMING_SNAKE_CASE : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __SCREAMING_SNAKE_CASE : Dict = self.get_inputs() __SCREAMING_SNAKE_CASE : List[Any] = pipe(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __magic_name__( self :int ) -> Tuple: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __SCREAMING_SNAKE_CASE : int = inputs['''image'''].resize((504, 504) ) __SCREAMING_SNAKE_CASE : Optional[int] = '''timbrooks/instruct-pix2pix''' __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Any = pipe(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = output.images[0] __SCREAMING_SNAKE_CASE : str = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) __SCREAMING_SNAKE_CASE : str = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
696
0
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class snake_case__ ( A__ ): '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : UNetaDModel , lowerCAmelCase_ : UNetaDModel , lowerCAmelCase_ : DDPMScheduler , lowerCAmelCase_ : Union[str, Any] , ) -> str: super().__init__() UpperCAmelCase_ = value_function UpperCAmelCase_ = unet UpperCAmelCase_ = scheduler UpperCAmelCase_ = env UpperCAmelCase_ = env.get_dataset() UpperCAmelCase_ = {} for key in self.data.keys(): try: UpperCAmelCase_ = self.data[key].mean() except: # noqa: E722 pass UpperCAmelCase_ = {} for key in self.data.keys(): try: UpperCAmelCase_ = self.data[key].std() except: # noqa: E722 pass UpperCAmelCase_ = env.observation_space.shape[0] UpperCAmelCase_ = env.action_space.shape[0] def UpperCamelCase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any ) -> List[Any]: return (x_in - self.means[key]) / self.stds[key] def UpperCamelCase ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ) -> List[str]: return x_in * self.stds[key] + self.means[key] def UpperCamelCase ( self : List[str] , lowerCAmelCase_ : Any ) -> Tuple: if type(lowerCAmelCase__ ) is dict: return {k: self.to_torch(lowerCAmelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCAmelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCAmelCase__ , device=self.unet.device ) def UpperCamelCase ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any ) -> Any: for key, val in cond.items(): UpperCAmelCase_ = val.clone() return x_in def UpperCamelCase ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ) -> Any: UpperCAmelCase_ = x.shape[0] UpperCAmelCase_ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCAmelCase_ = torch.full((batch_size,) , lowerCAmelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCAmelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCAmelCase_ = self.value_function(x.permute(0 , 2 , 1 ) , lowerCAmelCase__ ).sample UpperCAmelCase_ = torch.autograd.grad([y.sum()] , [x] )[0] UpperCAmelCase_ = self.scheduler._get_variance(lowerCAmelCase__ ) UpperCAmelCase_ = torch.exp(0.5 * posterior_variance ) UpperCAmelCase_ = model_std * grad UpperCAmelCase_ = 0 UpperCAmelCase_ = x.detach() UpperCAmelCase_ = x + scale * grad UpperCAmelCase_ = self.reset_xa(lowerCAmelCase__ , lowerCAmelCase__ , self.action_dim ) UpperCAmelCase_ = self.unet(x.permute(0 , 2 , 1 ) , lowerCAmelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCAmelCase_ = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , predict_epsilon=lowerCAmelCase__ )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) UpperCAmelCase_ = self.reset_xa(lowerCAmelCase__ , lowerCAmelCase__ , self.action_dim ) UpperCAmelCase_ = self.to_torch(lowerCAmelCase__ ) return x, y def __call__( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]=64 , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : int=0.1 ) -> List[str]: # normalize the observations and create batch dimension UpperCAmelCase_ = self.normalize(lowerCAmelCase__ , '''observations''' ) UpperCAmelCase_ = obs[None].repeat(lowerCAmelCase__ , axis=0 ) UpperCAmelCase_ = {0: self.to_torch(lowerCAmelCase__ )} UpperCAmelCase_ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCAmelCase_ = randn_tensor(lowerCAmelCase__ , device=self.unet.device ) UpperCAmelCase_ = self.reset_xa(lowerCAmelCase__ , lowerCAmelCase__ , self.action_dim ) UpperCAmelCase_ = self.to_torch(lowerCAmelCase__ ) # run the diffusion process UpperCAmelCase_ = self.run_diffusion(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # sort output trajectories by value UpperCAmelCase_ = y.argsort(0 , descending=lowerCAmelCase__ ).squeeze() UpperCAmelCase_ = x[sorted_idx] UpperCAmelCase_ = sorted_values[:, :, : self.action_dim] UpperCAmelCase_ = actions.detach().cpu().numpy() UpperCAmelCase_ = self.de_normalize(lowerCAmelCase__ , key='''actions''' ) # select the action with the highest value if y is not None: UpperCAmelCase_ = 0 else: # if we didn't run value guiding, select a random action UpperCAmelCase_ = np.random.randint(0 , lowerCAmelCase__ ) UpperCAmelCase_ = denorm_actions[selected_index, 0] return denorm_actions
121
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : torch.FloatTensor SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None def _UpperCamelCase ( lowercase__ , lowercase__=0.999 , lowercase__="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __SCREAMING_SNAKE_CASE : List[Any] = [] for i in range(lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = i / num_diffusion_timesteps __SCREAMING_SNAKE_CASE : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class _lowercase ( A__ , A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = 1 @register_to_config def __init__( self :Dict , lowerCAmelCase__ :int = 1_000 , lowerCAmelCase__ :float = 0.0001 , lowerCAmelCase__ :float = 0.02 , lowerCAmelCase__ :str = "linear" , lowerCAmelCase__ :Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :int = 0 , lowerCAmelCase__ :str = "epsilon" , lowerCAmelCase__ :float = 1.0 , **lowerCAmelCase__ :int , ) -> Union[str, Any]: if kwargs.get('''set_alpha_to_one''' , lowerCAmelCase__ ) is not None: __SCREAMING_SNAKE_CASE : Optional[int] = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , lowerCAmelCase__ , standard_warn=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = kwargs['''set_alpha_to_one'''] if trained_betas is not None: __SCREAMING_SNAKE_CASE : Any = torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": __SCREAMING_SNAKE_CASE : str = torch.linspace(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __SCREAMING_SNAKE_CASE : List[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __SCREAMING_SNAKE_CASE : Optional[Any] = betas_for_alpha_bar(lowerCAmelCase__ ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __SCREAMING_SNAKE_CASE : Optional[int] = 1.0 - self.betas __SCREAMING_SNAKE_CASE : int = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __SCREAMING_SNAKE_CASE : int = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __SCREAMING_SNAKE_CASE : Any = 1.0 # setable values __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(np.arange(0 , lowerCAmelCase__ ).copy().astype(np.intaa ) ) def __magic_name__( self :List[str] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :Optional[int] = None ) -> torch.FloatTensor: return sample def __magic_name__( self :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, torch.device] = None ) -> List[str]: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = num_inference_steps __SCREAMING_SNAKE_CASE : Union[str, Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE : Optional[int] = (np.arange(0 , lowerCAmelCase__ ) * step_ratio).round().copy().astype(np.intaa ) __SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) self.timesteps += self.config.steps_offset def __magic_name__( self :Tuple , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :int , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :float = 0.0 , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) __SCREAMING_SNAKE_CASE : Optional[Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __SCREAMING_SNAKE_CASE : Any = self.alphas_cumprod[timestep] __SCREAMING_SNAKE_CASE : str = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __SCREAMING_SNAKE_CASE : int = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __SCREAMING_SNAKE_CASE : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __SCREAMING_SNAKE_CASE : List[Any] = model_output elif self.config.prediction_type == "sample": __SCREAMING_SNAKE_CASE : List[str] = model_output __SCREAMING_SNAKE_CASE : Optional[Any] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __SCREAMING_SNAKE_CASE : Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __SCREAMING_SNAKE_CASE : Tuple = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __SCREAMING_SNAKE_CASE : Dict = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : Dict = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : Any = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def __len__( self :Optional[int] ) -> List[Any]: return self.config.num_train_timesteps
696
0
"""simple docstring""" import os import sys import unittest __A : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __A : Optional[Any] = os.path.join(git_repo_path, '''src''', '''transformers''') __A : Optional[Any] = '\n{0} = None\n' __A : Tuple = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' __A : Dict = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class _UpperCAmelCase ( unittest.TestCase ): def A ( self : Tuple ) -> Union[str, Any]: lowercase_ : str = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(lowerCAmelCase__ ) lowercase_ : Dict = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tokenizers''' ) lowercase_ : Dict = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tensorflow_text''' ) lowercase_ : Tuple = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers''' ) lowercase_ : Any = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tensorflow_text''' ) lowercase_ : List[str] = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers_and_vision''' ) def A ( self : List[str] ) -> Optional[int]: lowercase_ : Union[str, Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCAmelCase__ ) self.assertIn('''tensorflow_text''' , lowerCAmelCase__ ) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCAmelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def A ( self : Optional[Any] ) -> List[Any]: lowercase_ : List[Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , '''\nCONSTANT = None\n''' ) lowercase_ : List[str] = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( lowerCAmelCase__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) lowercase_ : int = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' lowercase_ : Optional[Any] = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def A ( self : Optional[Any] ) -> Any: lowercase_ : str = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' lowercase_ : List[Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , lowerCAmelCase__ )
231
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''summary''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : str = "text" SCREAMING_SNAKE_CASE__ : str = "summary" @property def __magic_name__( self :Union[str, Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
696
0
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase__ ( snake_case_ :Optional[Any] , snake_case_ :List[str] , snake_case_ :Union[str, Any] ): # Construct model if gpta_config_file == "": __UpperCAmelCase = GPTaConfig() else: __UpperCAmelCase = GPTaConfig.from_json_file(lowercase__ ) __UpperCAmelCase = GPTaModel(lowercase__ ) # Load weights from numpy load_tf_weights_in_gpta(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model __UpperCAmelCase = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME __UpperCAmelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , lowercase__ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(lowercase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) _lowercase : List[str] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
49
def _UpperCamelCase ( lowercase__ = 10**9 ): __SCREAMING_SNAKE_CASE : List[str] = 1 __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : Any = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
696
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( A__, A__, unittest.TestCase ): lowerCamelCase_ = StableDiffusionXLImgaImgPipeline lowerCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} lowerCamelCase_ = PipelineTesterMixin.required_optional_params - {'''latents'''} lowerCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCamelCase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def _UpperCAmelCase ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) A : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase__ , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) A : Tuple = EulerDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) A : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) A : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=32 , ) A : Tuple = CLIPTextModel(lowerCAmelCase__ ) A : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=lowerCAmelCase__ ) A : Optional[int] = CLIPTextModelWithProjection(lowerCAmelCase__ ) A : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=lowerCAmelCase__ ) A : int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _UpperCAmelCase ( self : Any , snake_case_ : List[str] , snake_case_ : List[str]=0 ): """simple docstring""" A : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) A : Any = image / 2 + 0.5 if str(lowerCAmelCase__ ).startswith('''mps''' ): A : int = torch.manual_seed(lowerCAmelCase__ ) else: A : int = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) A : Optional[int] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.75, } return inputs def _UpperCAmelCase ( self : Tuple ): """simple docstring""" A : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator A : Tuple = self.get_dummy_components() A : int = StableDiffusionXLImgaImgPipeline(**lowerCAmelCase__ ) A : str = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) A : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) A : int = sd_pipe(**lowerCAmelCase__ ).images A : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A : Tuple = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase ( self : int ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" pass def _UpperCAmelCase ( self : List[str] ): """simple docstring""" A : Tuple = self.get_dummy_components() A : Union[str, Any] = StableDiffusionXLImgaImgPipeline(**lowerCAmelCase__ ) A : Optional[int] = sd_pipe.to(lowerCAmelCase__ ) A : Optional[int] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) # forward without prompt embeds A : List[str] = self.get_dummy_inputs(lowerCAmelCase__ ) A : str = 3 * ['''this is a negative prompt'''] A : List[Any] = negative_prompt A : str = 3 * [inputs['''prompt''']] A : Any = sd_pipe(**lowerCAmelCase__ ) A : Optional[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds A : Any = self.get_dummy_inputs(lowerCAmelCase__ ) A : Optional[Any] = 3 * ['''this is a negative prompt'''] A : List[Any] = 3 * [inputs.pop('''prompt''' )] ( A ) : Any = sd_pipe.encode_prompt(lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ ) A : Optional[int] = sd_pipe( **lowerCAmelCase__ , prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , pooled_prompt_embeds=lowerCAmelCase__ , negative_pooled_prompt_embeds=lowerCAmelCase__ , ) A : List[Any] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCAmelCase ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self : int , snake_case_ : Union[str, Any] , snake_case_ : Optional[int]="cpu" , snake_case_ : Union[str, Any]=torch.floataa , snake_case_ : Any=0 ): """simple docstring""" A : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) A : Any = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 64, 64) ) A : Optional[Any] = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) A : Optional[Any] = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _UpperCAmelCase ( self : str ): """simple docstring""" A : List[str] = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) A : Optional[Any] = self.get_inputs(lowerCAmelCase__ ) A : Optional[Any] = pipe(**lowerCAmelCase__ ).images A : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A : Optional[int] = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
256
def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = len(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = len(lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __SCREAMING_SNAKE_CASE : str = True for i in range(lowercase__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __SCREAMING_SNAKE_CASE : Union[str, Any] = True if a[i].islower(): __SCREAMING_SNAKE_CASE : Union[str, Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
696
0
"""simple docstring""" def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: # Return True if there is node that has not iterated. __magic_name__ = [False] * len(lowercase__ ) __magic_name__ = [] queue.append(lowercase__ ) __magic_name__ = True while queue: __magic_name__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase__ ) __magic_name__ = True __magic_name__ = u return visited[t] def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str: # This array is filled by BFS and to store path __magic_name__ = [-1] * (len(lowercase__ )) __magic_name__ = 0 while bfs(lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __magic_name__ = float('''Inf''' ) __magic_name__ = sink while s != source: # Find the minimum value in select path __magic_name__ = min(lowercase__ , graph[parent[s]][s] ) __magic_name__ = parent[s] max_flow += path_flow __magic_name__ = sink while v != source: __magic_name__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __magic_name__ = parent[v] return max_flow __lowerCamelCase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __lowerCamelCase = 0, 5 print(ford_fulkerson(graph, source, sink))
490
from scipy.stats import pearsonr import datasets __lowerCAmelCase : str ='\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' __lowerCAmelCase : Tuple ='\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' __lowerCAmelCase : Optional[int] ='\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Optional[int] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple=False ) -> int: if return_pvalue: __SCREAMING_SNAKE_CASE : int = pearsonr(lowerCAmelCase__ , lowerCAmelCase__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCAmelCase__ , lowerCAmelCase__ )[0] )}
696
0
'''simple docstring''' import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __a = logging.get_logger(__name__) __a = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class A__ ( A__ ): """simple docstring""" UpperCamelCase_ : str = '''bart''' UpperCamelCase_ : Optional[int] = ['''past_key_values'''] UpperCamelCase_ : List[str] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Tuple , lowerCAmelCase__ : Tuple=5_0_2_6_5 , lowerCAmelCase__ : List[Any]=1_0_2_4 , lowerCAmelCase__ : Any=1_2 , lowerCAmelCase__ : Union[str, Any]=4_0_9_6 , lowerCAmelCase__ : Tuple=1_6 , lowerCAmelCase__ : List[Any]=1_2 , lowerCAmelCase__ : List[str]=4_0_9_6 , lowerCAmelCase__ : str=1_6 , lowerCAmelCase__ : int=0.0 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : List[str]=1_0_2_4 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : int=0 , lowerCAmelCase__ : Any=2 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : str=2 , **lowerCAmelCase__ : List[str] , ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : str = max_position_embeddings _UpperCAmelCase : Any = d_model _UpperCAmelCase : List[str] = encoder_ffn_dim _UpperCAmelCase : Tuple = encoder_layers _UpperCAmelCase : str = encoder_attention_heads _UpperCAmelCase : Union[str, Any] = decoder_ffn_dim _UpperCAmelCase : List[str] = decoder_layers _UpperCAmelCase : Optional[int] = decoder_attention_heads _UpperCAmelCase : Tuple = dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Dict = activation_dropout _UpperCAmelCase : List[Any] = activation_function _UpperCAmelCase : Dict = init_std _UpperCAmelCase : str = encoder_layerdrop _UpperCAmelCase : Tuple = decoder_layerdrop _UpperCAmelCase : Optional[int] = classifier_dropout _UpperCAmelCase : Union[str, Any] = use_cache _UpperCAmelCase : List[Any] = encoder_layers _UpperCAmelCase : str = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , forced_eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ "The config can simply be saved and uploaded again to be fixed." ) class A__ ( A__ ): """simple docstring""" @property def _lowerCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase : Optional[Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _UpperCAmelCase : Tuple = {0: '''batch'''} _UpperCAmelCase : int = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _UpperCAmelCase : Tuple = {0: '''batch''', 1: '''decoder_sequence'''} _UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. _UpperCAmelCase : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _UpperCAmelCase : Optional[Any] = self.num_layers for i in range(lowerCAmelCase__ ): _UpperCAmelCase : List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} _UpperCAmelCase : Optional[int] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _UpperCAmelCase : Tuple = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def _lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase : Tuple = super().outputs else: _UpperCAmelCase : Tuple = super(lowerCAmelCase__ , self ).outputs if self.use_past: _UpperCAmelCase : Union[str, Any] = self.num_layers for i in range(lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} _UpperCAmelCase : int = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCAmelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Generate decoder inputs _UpperCAmelCase : Tuple = seq_length if not self.use_past else 1 _UpperCAmelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} _UpperCAmelCase : List[str] = dict(**lowerCAmelCase__ , **lowerCAmelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _UpperCAmelCase : List[Any] = common_inputs['''input_ids'''].shape _UpperCAmelCase : Optional[int] = common_inputs['''decoder_input_ids'''].shape[1] _UpperCAmelCase : Tuple = self.num_attention_heads _UpperCAmelCase : List[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _UpperCAmelCase : Optional[Any] = decoder_seq_length + 3 _UpperCAmelCase : Optional[int] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _UpperCAmelCase : Union[str, Any] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ )] , dim=1 ) _UpperCAmelCase : Tuple = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _UpperCAmelCase : List[Any] = self.num_layers _UpperCAmelCase : Tuple = min(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , lowerCAmelCase__ ) - min_num_layers _UpperCAmelCase : Tuple = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowerCAmelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), ) ) # TODO: test this. _UpperCAmelCase : List[str] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowerCAmelCase__ , lowerCAmelCase__ ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) ) return common_inputs def _lowerCAmelCase ( self : str , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCAmelCase : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _UpperCAmelCase : Union[str, Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _UpperCAmelCase : int = seqlen + 2 _UpperCAmelCase : Tuple = self.num_layers _UpperCAmelCase : Union[str, Any] = self.num_attention_heads _UpperCAmelCase : Tuple = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _UpperCAmelCase : Optional[int] = common_inputs['''attention_mask'''].dtype _UpperCAmelCase : List[str] = torch.cat( [common_inputs["attention_mask"], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__ )] , dim=1 ) _UpperCAmelCase : List[str] = [ (torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(lowerCAmelCase__ ) ] return common_inputs def _lowerCAmelCase ( self : int , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCAmelCase : Dict = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase : Union[str, Any] = tokenizer.num_special_tokens_to_add(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase__ ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase : Optional[Any] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _UpperCAmelCase : str = dict(tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) ) return common_inputs def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase : Union[str, Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) elif self.task == "causal-lm": _UpperCAmelCase : List[Any] = self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) else: _UpperCAmelCase : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) return common_inputs def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Any: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase : List[str] = super()._flatten_past_key_values_(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: _UpperCAmelCase : Tuple = super(lowerCAmelCase__ , self )._flatten_past_key_values_( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
494
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : int ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : int ={ 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } __lowerCAmelCase : Optional[int] ={'mobilebert-uncased': 5_1_2} __lowerCAmelCase : Union[str, Any] ={} class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : List[Any] = MobileBertTokenizer def __init__( self :Tuple , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]="[UNK]" , lowerCAmelCase__ :List[Any]="[SEP]" , lowerCAmelCase__ :List[Any]="[PAD]" , lowerCAmelCase__ :List[Any]="[CLS]" , lowerCAmelCase__ :Any="[MASK]" , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Tuple=None , **lowerCAmelCase__ :List[str] , ) -> Optional[Any]: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase__ ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE : int = getattr(lowerCAmelCase__ , normalizer_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case __SCREAMING_SNAKE_CASE : str = strip_accents __SCREAMING_SNAKE_CASE : Dict = tokenize_chinese_chars __SCREAMING_SNAKE_CASE : Union[str, Any] = normalizer_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = do_lower_case def __magic_name__( self :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[Any]=None ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__( self :List[str] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : int = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
696
0
"""simple docstring""" import re import string import numpy as np import datasets A: Dict = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' A: str = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' A: Optional[Any] = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , ) -> Optional[int]: '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCAmelCase : Tuple = np.array([re.sub(lowerCAmelCase__ , """""" , lowerCAmelCase__ ) for x in predictions] ) UpperCAmelCase : Dict = np.array([re.sub(lowerCAmelCase__ , """""" , lowerCAmelCase__ ) for x in references] ) else: UpperCAmelCase : Any = np.asarray(lowerCAmelCase__ ) UpperCAmelCase : Any = np.asarray(lowerCAmelCase__ ) if ignore_case: UpperCAmelCase : Any = np.char.lower(lowerCAmelCase__ ) UpperCAmelCase : Union[str, Any] = np.char.lower(lowerCAmelCase__ ) if ignore_punctuation: UpperCAmelCase : str = string.punctuation.maketrans("""""" , """""" , string.punctuation ) UpperCAmelCase : List[str] = np.char.translate(lowerCAmelCase__ , table=lowerCAmelCase__ ) UpperCAmelCase : Optional[int] = np.char.translate(lowerCAmelCase__ , table=lowerCAmelCase__ ) if ignore_numbers: UpperCAmelCase : Union[str, Any] = string.digits.maketrans("""""" , """""" , string.digits ) UpperCAmelCase : str = np.char.translate(lowerCAmelCase__ , table=lowerCAmelCase__ ) UpperCAmelCase : List[str] = np.char.translate(lowerCAmelCase__ , table=lowerCAmelCase__ ) UpperCAmelCase : List[str] = predictions == references return {"exact_match": np.mean(lowerCAmelCase__ ) * 100}
160
import os def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = len(grid[0] ) __SCREAMING_SNAKE_CASE : str = len(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : Dict = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(lowercase__ ): for j in range(n_rows - 3 ): __SCREAMING_SNAKE_CASE : Union[str, Any] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] __SCREAMING_SNAKE_CASE : Union[str, Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: __SCREAMING_SNAKE_CASE : Any = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: __SCREAMING_SNAKE_CASE : Any = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) __SCREAMING_SNAKE_CASE : Optional[int] = max( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if max_product > largest: __SCREAMING_SNAKE_CASE : Tuple = max_product return largest def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[int] = [] with open(os.path.dirname(lowercase__ ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) __SCREAMING_SNAKE_CASE : str = [[int(lowercase__ ) for i in grid[j]] for j in range(len(lowercase__ ) )] return largest_product(lowercase__ ) if __name__ == "__main__": print(solution())
696
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def _lowerCamelCase ( __lowerCamelCase ) -> int: '''simple docstring''' UpperCAmelCase__ : Optional[int] = botoa.client("""iam""" ) UpperCAmelCase__ : Tuple = { '''Version''': '''2012-10-17''', '''Statement''': [ {'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=lowercase__ , AssumeRolePolicyDocument=json.dumps(lowercase__ , indent=2 ) ) UpperCAmelCase__ : str = { '''Version''': '''2012-10-17''', '''Statement''': [ { '''Effect''': '''Allow''', '''Action''': [ '''sagemaker:*''', '''ecr:GetDownloadUrlForLayer''', '''ecr:BatchGetImage''', '''ecr:BatchCheckLayerAvailability''', '''ecr:GetAuthorizationToken''', '''cloudwatch:PutMetricData''', '''cloudwatch:GetMetricData''', '''cloudwatch:GetMetricStatistics''', '''cloudwatch:ListMetrics''', '''logs:CreateLogGroup''', '''logs:CreateLogStream''', '''logs:DescribeLogStreams''', '''logs:PutLogEvents''', '''logs:GetLogEvents''', '''s3:CreateBucket''', '''s3:ListBucket''', '''s3:GetBucketLocation''', '''s3:GetObject''', '''s3:PutObject''', ], '''Resource''': '''*''', } ], } # attach policy to role iam_client.put_role_policy( RoleName=lowercase__ , PolicyName=F"{role_name}_policy_permission" , PolicyDocument=json.dumps(lowercase__ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"role {role_name} already exists. Using existing one" ) def _lowerCamelCase ( __lowerCamelCase ) -> Dict: '''simple docstring''' UpperCAmelCase__ : Optional[int] = botoa.client("""iam""" ) return iam_client.get_role(RoleName=lowercase__ )["Role"]["Arn"] def _lowerCamelCase ( ) -> int: '''simple docstring''' UpperCAmelCase__ : Tuple = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , lowercase__ , ) UpperCAmelCase__ : str = None if credentials_configuration == 0: UpperCAmelCase__ : Union[str, Any] = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) UpperCAmelCase__ : Dict = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) UpperCAmelCase__ : Optional[Any] = _ask_field("""AWS Access Key ID: """ ) UpperCAmelCase__ : Tuple = aws_access_key_id UpperCAmelCase__ : str = _ask_field("""AWS Secret Access Key: """ ) UpperCAmelCase__ : List[str] = aws_secret_access_key UpperCAmelCase__ : Tuple = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) UpperCAmelCase__ : List[Any] = aws_region UpperCAmelCase__ : List[str] = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , lowercase__ , ) if role_management == 0: UpperCAmelCase__ : Union[str, Any] = _ask_field("""Enter your IAM role name: """ ) else: UpperCAmelCase__ : Tuple = '''accelerate_sagemaker_execution_role''' print(F"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" ) _create_iam_role_for_sagemaker(lowercase__ ) UpperCAmelCase__ : Dict = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase__ , error_message="""Please enter yes or no.""" , ) UpperCAmelCase__ : List[str] = None if is_custom_docker_image: UpperCAmelCase__ : Dict = _ask_field("""Enter your Docker image: """ , lambda __lowerCamelCase : str(lowercase__ ).lower() ) UpperCAmelCase__ : Any = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase__ , error_message="""Please enter yes or no.""" , ) UpperCAmelCase__ : Dict = None if is_sagemaker_inputs_enabled: UpperCAmelCase__ : Optional[int] = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda __lowerCamelCase : str(lowercase__ ).lower() , ) UpperCAmelCase__ : Optional[Any] = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase__ , error_message="""Please enter yes or no.""" , ) UpperCAmelCase__ : Any = None if is_sagemaker_metrics_enabled: UpperCAmelCase__ : Dict = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda __lowerCamelCase : str(lowercase__ ).lower() , ) UpperCAmelCase__ : Union[str, Any] = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) UpperCAmelCase__ : List[str] = {} UpperCAmelCase__ : int = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=lowercase__ , error_message="""Please enter yes or no.""" , ) if use_dynamo: UpperCAmelCase__ : Union[str, Any] = '''dynamo_''' UpperCAmelCase__ : Optional[Any] = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) UpperCAmelCase__ : List[str] = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase__ , error_message="""Please enter yes or no.""" , ) if use_custom_options: UpperCAmelCase__ : Any = _ask_options( """Which mode do you want to use?""" , lowercase__ , lambda __lowerCamelCase : TORCH_DYNAMO_MODES[int(lowercase__ )] , default="""default""" , ) UpperCAmelCase__ : Union[str, Any] = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase__ , error_message="""Please enter yes or no.""" , ) UpperCAmelCase__ : str = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase__ , error_message="""Please enter yes or no.""" , ) UpperCAmelCase__ : Any = '''Which EC2 instance type you want to use for your training?''' if distributed_type != SageMakerDistributedType.NO: UpperCAmelCase__ : List[str] = _ask_options( lowercase__ , lowercase__ , lambda __lowerCamelCase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(lowercase__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" UpperCAmelCase__ : Union[str, Any] = _ask_field(lowercase__ , lambda __lowerCamelCase : str(lowercase__ ).lower() , default="""ml.p3.2xlarge""" ) UpperCAmelCase__ : int = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): UpperCAmelCase__ : Optional[Any] = _ask_field( """How many machines do you want use? [1]: """ , lowercase__ , default=1 , ) UpperCAmelCase__ : List[str] = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=lowercase__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=lowercase__ , use_cpu=lowercase__ , dynamo_config=lowercase__ , eca_instance_type=lowercase__ , profile=lowercase__ , region=lowercase__ , iam_role_name=lowercase__ , mixed_precision=lowercase__ , num_machines=lowercase__ , sagemaker_inputs_file=lowercase__ , sagemaker_metrics_file=lowercase__ , )
79
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowercase ( A__ ): '''simple docstring''' def __magic_name__( self :List[Any] ) -> Any: __SCREAMING_SNAKE_CASE : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''depth_multiplier''' ) ) class _lowercase : '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any]=13 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Optional[Any]=32 , lowerCAmelCase__ :Dict=0.25 , lowerCAmelCase__ :Optional[int]=8 , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Union[str, Any]=1_024 , lowerCAmelCase__ :Any=32 , lowerCAmelCase__ :Tuple="relu6" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Dict=0.02 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :int=True , lowerCAmelCase__ :int=10 , lowerCAmelCase__ :Union[str, Any]=None , ) -> str: __SCREAMING_SNAKE_CASE : Any = parent __SCREAMING_SNAKE_CASE : Dict = batch_size __SCREAMING_SNAKE_CASE : List[Any] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = image_size __SCREAMING_SNAKE_CASE : Optional[int] = depth_multiplier __SCREAMING_SNAKE_CASE : Dict = min_depth __SCREAMING_SNAKE_CASE : List[str] = tf_padding __SCREAMING_SNAKE_CASE : List[Any] = int(last_hidden_size * depth_multiplier ) __SCREAMING_SNAKE_CASE : List[str] = output_stride __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = is_training __SCREAMING_SNAKE_CASE : Optional[int] = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = scope def __magic_name__( self :List[str] ) -> int: __SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__( self :Union[str, Any] ) -> Optional[Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = MobileNetVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = self.num_labels __SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = config_and_inputs __SCREAMING_SNAKE_CASE : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : Optional[Any] = ( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : Tuple = False def __magic_name__( self :Any ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = MobileNetVaModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[int] = MobileNetVaConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV1 does not use inputs_embeds''' ) def __magic_name__( self :Dict ) -> Optional[Any]: pass @unittest.skip(reason='''MobileNetV1 does not support input and output embeddings''' ) def __magic_name__( self :List[Any] ) -> List[Any]: pass @unittest.skip(reason='''MobileNetV1 does not output attentions''' ) def __magic_name__( self :Any ) -> Dict: pass def __magic_name__( self :Any ) -> List[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Any = model_class(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : Union[str, Any] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__( self :Any ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = outputs.hidden_states __SCREAMING_SNAKE_CASE : Optional[int] = 26 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : str = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE : List[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :List[str] ) -> List[Any]: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__( self :Optional[int] ) -> Union[str, Any]: return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v1_1.0_224''' ) if is_vision_available() else None ) @slow def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v1_1.0_224''' ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.default_image_processor __SCREAMING_SNAKE_CASE : int = prepare_img() __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE : int = model(**lowerCAmelCase__ ) # verify the logits __SCREAMING_SNAKE_CASE : Any = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
696
0
from jiwer import compute_measures import datasets _UpperCAmelCase = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' _UpperCAmelCase = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' _UpperCAmelCase = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): def UpperCAmelCase__ ( self : Tuple )->Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def UpperCAmelCase__ ( self : Tuple , _snake_case : Optional[Any]=None , _snake_case : Any=None , _snake_case : List[str]=False )->int: '''simple docstring''' if concatenate_texts: return compute_measures(lowerCAmelCase__ , lowerCAmelCase__ )["wer"] else: __lowerCAmelCase : Optional[Any] = 0 __lowerCAmelCase : Optional[Any] = 0 for prediction, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): __lowerCAmelCase : str = compute_measures(lowerCAmelCase__ , lowerCAmelCase__ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
504
import os from datetime import datetime as dt from github import Github __lowerCAmelCase : List[Any] =[ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Tuple = Github(os.environ['''GITHUB_TOKEN'''] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = g.get_repo('''huggingface/diffusers''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = repo.get_issues(state='''open''' ) for issue in open_issues: __SCREAMING_SNAKE_CASE : Optional[int] = sorted(issue.get_comments() , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
696
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class A__ : def __init__( self : str , _a : str , _a : Dict=13 , _a : List[str]=7 , _a : Tuple=True , _a : Optional[Any]=True , _a : List[str]=True , _a : List[Any]=True , _a : int=99 , _a : Optional[Any]=64 , _a : List[str]=5 , _a : Union[str, Any]=4 , _a : List[str]=37 , _a : Optional[Any]="gelu" , _a : Dict=0.1 , _a : str=0.1 , _a : str=512 , _a : Any=16 , _a : Optional[Any]=2 , _a : List[str]=0.02 , _a : Any=3 , _a : Any=4 , _a : Tuple=None , ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =seq_length _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_input_mask _SCREAMING_SNAKE_CASE =use_token_type_ids _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =type_vocab_size _SCREAMING_SNAKE_CASE =type_sequence_label_size _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =num_labels _SCREAMING_SNAKE_CASE =num_choices _SCREAMING_SNAKE_CASE =scope _SCREAMING_SNAKE_CASE =vocab_size - 1 def A ( self : int ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE =None if self.use_input_mask: _SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, input_mask, token_labels def A ( self : Optional[int] ) -> Dict: '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def A ( self : Optional[Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE =True return config, input_ids, input_mask, token_labels def A ( self : Dict , _a : int , _a : Optional[int] , _a : List[str] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =GPTNeoXModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _SCREAMING_SNAKE_CASE =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE =model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Optional[int] , _a : Optional[int] , _a : Dict , _a : List[Any] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =GPTNeoXModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _SCREAMING_SNAKE_CASE =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , _a : Optional[Any] , _a : str , _a : Dict , _a : int ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =GPTNeoXForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _SCREAMING_SNAKE_CASE =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Tuple , _a : Dict , _a : Dict , _a : Dict , _a : str ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =GPTNeoXForQuestionAnswering(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _SCREAMING_SNAKE_CASE =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : List[str] , _a : List[Any] , _a : int , _a : Optional[int] , _a : Tuple ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =GPTNeoXForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : List[Any] , _a : Optional[Any] , _a : Optional[int] , _a : Optional[Any] , _a : Optional[int] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =GPTNeoXForTokenClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _SCREAMING_SNAKE_CASE =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Dict , _a : int , _a : Any , _a : Optional[int] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =GPTNeoXForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() # first forward pass _SCREAMING_SNAKE_CASE =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _SCREAMING_SNAKE_CASE =ids_tensor((self.batch_size, 3) , config.vocab_size ) _SCREAMING_SNAKE_CASE =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _SCREAMING_SNAKE_CASE =torch.cat([input_ids, next_tokens] , dim=-1 ) _SCREAMING_SNAKE_CASE =torch.cat([input_mask, next_mask] , dim=-1 ) _SCREAMING_SNAKE_CASE =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE =output_from_no_past['''hidden_states'''][0] _SCREAMING_SNAKE_CASE =model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )['''hidden_states'''][0] # select random slice _SCREAMING_SNAKE_CASE =ids_tensor((1,) , output_from_past.shape[-1] ).item() _SCREAMING_SNAKE_CASE =output_from_no_past[:, -3:, random_slice_idx].detach() _SCREAMING_SNAKE_CASE =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) def A ( self : List[str] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE =config_and_inputs _SCREAMING_SNAKE_CASE ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A__ ( A__ , A__ , A__ , unittest.TestCase ): A__ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) A__ = (GPTNeoXForCausalLM,) if is_torch_available() else () A__ = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) A__ = False A__ = False A__ = False A__ = False def A ( self : str ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =GPTNeoXModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=64 , num_attention_heads=8 ) def A ( self : Any ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Optional[Any] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def A ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def A ( self : List[Any] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_decoder() _SCREAMING_SNAKE_CASE =None self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def A ( self : Any ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def A ( self : Tuple ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCAmelCase__ ) def A ( self : Tuple ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) def A ( self : List[str] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def A ( self : Dict ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def A ( self : Any ) -> int: '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def A ( self : Dict , _a : Any ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE =ids_tensor([1, 10] , config.vocab_size ) _SCREAMING_SNAKE_CASE =ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _SCREAMING_SNAKE_CASE =GPTNeoXModel(lowerCAmelCase__ ) original_model.to(lowerCAmelCase__ ) original_model.eval() _SCREAMING_SNAKE_CASE =original_model(lowerCAmelCase__ ).last_hidden_state _SCREAMING_SNAKE_CASE =original_model(lowerCAmelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _SCREAMING_SNAKE_CASE ={'''type''': scaling_type, '''factor''': 10.0} _SCREAMING_SNAKE_CASE =GPTNeoXModel(lowerCAmelCase__ ) scaled_model.to(lowerCAmelCase__ ) scaled_model.eval() _SCREAMING_SNAKE_CASE =scaled_model(lowerCAmelCase__ ).last_hidden_state _SCREAMING_SNAKE_CASE =scaled_model(lowerCAmelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-5 ) ) @require_torch class A__ ( unittest.TestCase ): @slow def A ( self : Tuple ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: _SCREAMING_SNAKE_CASE =GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE =tokenizer('My favorite food is' , return_tensors='pt' ).to(lowerCAmelCase__ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 _SCREAMING_SNAKE_CASE ='''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' _SCREAMING_SNAKE_CASE =model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=20 ) _SCREAMING_SNAKE_CASE =tokenizer.batch_decode(lowerCAmelCase__ )[0] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
405
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : Dict ={ 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = '''canine''' def __init__( self :Any , lowerCAmelCase__ :List[Any]=768 , lowerCAmelCase__ :Any=12 , lowerCAmelCase__ :str=12 , lowerCAmelCase__ :Optional[int]=3_072 , lowerCAmelCase__ :str="gelu" , lowerCAmelCase__ :Union[str, Any]=0.1 , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :int=16_384 , lowerCAmelCase__ :Tuple=16 , lowerCAmelCase__ :List[Any]=0.02 , lowerCAmelCase__ :int=1E-1_2 , lowerCAmelCase__ :int=0 , lowerCAmelCase__ :List[Any]=0xe000 , lowerCAmelCase__ :List[str]=0xe001 , lowerCAmelCase__ :str=4 , lowerCAmelCase__ :Any=4 , lowerCAmelCase__ :Union[str, Any]=8 , lowerCAmelCase__ :Optional[int]=16_384 , lowerCAmelCase__ :Any=128 , **lowerCAmelCase__ :Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : int = type_vocab_size __SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps # Character config: __SCREAMING_SNAKE_CASE : Tuple = downsampling_rate __SCREAMING_SNAKE_CASE : Optional[Any] = upsampling_kernel_size __SCREAMING_SNAKE_CASE : Any = num_hash_functions __SCREAMING_SNAKE_CASE : Optional[int] = num_hash_buckets __SCREAMING_SNAKE_CASE : List[str] = local_transformer_stride
696
0
from __future__ import annotations A = '#' class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self ): """simple docstring""" snake_case_ = {} def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" snake_case_ = self._trie for char in text: if char not in trie: snake_case_ = {} snake_case_ = trie[char] snake_case_ = True def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" snake_case_ = self._trie for char in prefix: if char in trie: snake_case_ = trie[char] else: return [] return self._elements(lowerCAmelCase__ ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" snake_case_ = [] for c, v in d.items(): snake_case_ = [''' '''] if c == END else [(c + s) for s in self._elements(lowerCAmelCase__ )] result.extend(lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) A = Trie() A = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def a(lowercase__ ): '''simple docstring''' snake_case_ = trie.find_word(lowercase__ ) return tuple(string + word for word in suffixes ) def a(): '''simple docstring''' print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
187
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : Tuple ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = '''transfo-xl''' SCREAMING_SNAKE_CASE__ : List[str] = ['''mems'''] SCREAMING_SNAKE_CASE__ : List[Any] = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self :str , lowerCAmelCase__ :Optional[int]=267_735 , lowerCAmelCase__ :Optional[int]=[20_000, 40_000, 200_000] , lowerCAmelCase__ :List[Any]=1_024 , lowerCAmelCase__ :List[str]=1_024 , lowerCAmelCase__ :Any=16 , lowerCAmelCase__ :Tuple=64 , lowerCAmelCase__ :Union[str, Any]=4_096 , lowerCAmelCase__ :Dict=4 , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :Dict=18 , lowerCAmelCase__ :Union[str, Any]=1_600 , lowerCAmelCase__ :Union[str, Any]=1_000 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Optional[Any]=0 , lowerCAmelCase__ :Union[str, Any]=-1 , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :int=True , lowerCAmelCase__ :str="normal" , lowerCAmelCase__ :Tuple=0.01 , lowerCAmelCase__ :Union[str, Any]=0.01 , lowerCAmelCase__ :str=0.02 , lowerCAmelCase__ :Optional[Any]=1E-5 , lowerCAmelCase__ :Union[str, Any]=0 , **lowerCAmelCase__ :Optional[Any] , ) -> str: __SCREAMING_SNAKE_CASE : str = vocab_size __SCREAMING_SNAKE_CASE : Tuple = [] self.cutoffs.extend(lowerCAmelCase__ ) if proj_share_all_but_first: __SCREAMING_SNAKE_CASE : List[str] = [False] + [True] * len(self.cutoffs ) else: __SCREAMING_SNAKE_CASE : Tuple = [False] + [False] * len(self.cutoffs ) __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Union[str, Any] = d_embed __SCREAMING_SNAKE_CASE : Tuple = d_head __SCREAMING_SNAKE_CASE : Dict = d_inner __SCREAMING_SNAKE_CASE : Optional[Any] = div_val __SCREAMING_SNAKE_CASE : Optional[Any] = pre_lnorm __SCREAMING_SNAKE_CASE : List[str] = n_layer __SCREAMING_SNAKE_CASE : int = n_head __SCREAMING_SNAKE_CASE : str = mem_len __SCREAMING_SNAKE_CASE : Union[str, Any] = same_length __SCREAMING_SNAKE_CASE : str = attn_type __SCREAMING_SNAKE_CASE : Dict = clamp_len __SCREAMING_SNAKE_CASE : Tuple = sample_softmax __SCREAMING_SNAKE_CASE : Optional[int] = adaptive __SCREAMING_SNAKE_CASE : int = dropout __SCREAMING_SNAKE_CASE : Optional[Any] = dropatt __SCREAMING_SNAKE_CASE : int = untie_r __SCREAMING_SNAKE_CASE : Optional[int] = init __SCREAMING_SNAKE_CASE : List[str] = init_range __SCREAMING_SNAKE_CASE : Any = proj_init_std __SCREAMING_SNAKE_CASE : List[str] = init_std __SCREAMING_SNAKE_CASE : Tuple = layer_norm_epsilon super().__init__(eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __magic_name__( self :str ) -> int: # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __magic_name__( self :Tuple , lowerCAmelCase__ :int ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
696
0
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class snake_case__ : '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int = 13 , lowerCAmelCase_ : int = 64 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : int = 1_28 , lowerCAmelCase_ : int=[16, 32, 64, 1_28] , lowerCAmelCase_ : int = 7 , lowerCAmelCase_ : int = 4 , lowerCAmelCase_ : int = 37 , lowerCAmelCase_ : str = "gelu" , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : int = 10 , lowerCAmelCase_ : float = 0.02 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : int = 1_28 , lowerCAmelCase_ : List[int] = [2, 2, 2, 2] , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , ) -> List[Any]: UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = encoder_stride UpperCAmelCase_ = num_attention_outputs UpperCAmelCase_ = embed_dim UpperCAmelCase_ = embed_dim + 1 UpperCAmelCase_ = resolution UpperCAmelCase_ = depths UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = dim UpperCAmelCase_ = mlp_expansion_ratio def UpperCamelCase ( self : Any ) -> List[str]: UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def UpperCamelCase ( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] ) -> int: UpperCAmelCase_ = TFEfficientFormerModel(config=lowerCAmelCase__ ) UpperCAmelCase_ = model(lowerCAmelCase__ , training=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict ) -> Tuple: UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = TFEfficientFormerForImageClassification(lowerCAmelCase__ ) UpperCAmelCase_ = model(lowerCAmelCase__ , labels=lowerCAmelCase__ , training=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = TFEfficientFormerForImageClassification(lowerCAmelCase__ ) UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase ( self : Dict ) -> str: UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class snake_case__ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' __A = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __A = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __A = False __A = False __A = False __A = False __A = False def UpperCamelCase ( self : str ) -> int: UpperCAmelCase_ = TFEfficientFormerModelTester(self ) UpperCAmelCase_ = ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def UpperCamelCase ( self : Optional[int] ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''' ) def UpperCamelCase ( self : int ) -> Optional[Any]: pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''' ) def UpperCamelCase ( self : Dict ) -> Optional[int]: pass def UpperCamelCase ( self : Optional[Any] ) -> List[str]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase__ ) UpperCAmelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def UpperCamelCase ( self : Optional[Any] ) -> Any: def check_hidden_states_output(lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict ): UpperCAmelCase_ = model_class(lowerCAmelCase__ ) UpperCAmelCase_ = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) , training=lowerCAmelCase__ ) UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) if hasattr(self.model_tester , '''encoder_seq_length''' ): UpperCAmelCase_ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''' ) and self.model_tester.chunk_length > 1: UpperCAmelCase_ = seq_length * self.model_tester.chunk_length else: UpperCAmelCase_ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: UpperCAmelCase_ = outputs.decoder_hidden_states self.asseretIsInstance(lowerCAmelCase__ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) UpperCAmelCase_ = getattr(self.model_tester , '''seq_length''' , lowerCAmelCase__ ) UpperCAmelCase_ = getattr(self.model_tester , '''decoder_seq_length''' , lowerCAmelCase__ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( self : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str=False ) -> int: UpperCAmelCase_ = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase ( self : Tuple ) -> str: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''' ) def UpperCamelCase ( self : Union[str, Any] ) -> Tuple: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def UpperCamelCase ( self : List[Any] ) -> str: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def UpperCamelCase ( self : Optional[Any] ) -> int: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = TFEfficientFormerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = True UpperCAmelCase_ = getattr(self.model_tester , '''seq_length''' , lowerCAmelCase__ ) UpperCAmelCase_ = getattr(self.model_tester , '''encoder_seq_length''' , lowerCAmelCase__ ) UpperCAmelCase_ = getattr(self.model_tester , '''key_length''' , lowerCAmelCase__ ) UpperCAmelCase_ = getattr(self.model_tester , '''chunk_length''' , lowerCAmelCase__ ) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes''' ): UpperCAmelCase_ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = True UpperCAmelCase_ = model_class(lowerCAmelCase__ ) UpperCAmelCase_ = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) , training=lowerCAmelCase__ ) UpperCAmelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase_ = True UpperCAmelCase_ = model_class(lowerCAmelCase__ ) UpperCAmelCase_ = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) , training=lowerCAmelCase__ ) UpperCAmelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model UpperCAmelCase_ = model_class(lowerCAmelCase__ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes UpperCAmelCase_ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCAmelCase__ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } UpperCAmelCase_ = model(lowerCAmelCase__ ) self.assertTrue(outputs_dict is not None ) def _lowerCAmelCase ( ): UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class snake_case__ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase ( self : Any ) -> List[str]: return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''' ) if is_vision_available() else None ) @slow def UpperCamelCase ( self : Optional[int] ) -> str: UpperCAmelCase_ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''' ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=lowerCAmelCase__ , return_tensors='''tf''' ) # forward pass UpperCAmelCase_ = model(**lowerCAmelCase__ , training=lowerCAmelCase__ ) # verify the logits UpperCAmelCase_ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) UpperCAmelCase_ = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def UpperCamelCase ( self : List[Any] ) -> int: UpperCAmelCase_ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''' ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=lowerCAmelCase__ , return_tensors='''tf''' ) # forward pass UpperCAmelCase_ = model(**lowerCAmelCase__ , training=lowerCAmelCase__ ) # verify the logits UpperCAmelCase_ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) UpperCAmelCase_ = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
121
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : str =logging.get_logger(__name__) __lowerCAmelCase : Any ={ # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''megatron-bert''' def __init__( self :int , lowerCAmelCase__ :int=29_056 , lowerCAmelCase__ :Dict=1_024 , lowerCAmelCase__ :Optional[int]=24 , lowerCAmelCase__ :str=16 , lowerCAmelCase__ :Optional[int]=4_096 , lowerCAmelCase__ :Optional[Any]="gelu" , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :List[str]=512 , lowerCAmelCase__ :Any=2 , lowerCAmelCase__ :int=0.02 , lowerCAmelCase__ :Tuple=1E-1_2 , lowerCAmelCase__ :Tuple=0 , lowerCAmelCase__ :Optional[int]="absolute" , lowerCAmelCase__ :List[str]=True , **lowerCAmelCase__ :Tuple , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : List[str] = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Any = intermediate_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : str = initializer_range __SCREAMING_SNAKE_CASE : Dict = layer_norm_eps __SCREAMING_SNAKE_CASE : Dict = position_embedding_type __SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache
696
0
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowercase ( __snake_case : Tuple , __snake_case : Optional[int] ): lowercase_ : List[Any] = XCLIPTextConfig() # derive patch size from model name lowercase_ : str = model_name.find('''patch''' ) lowercase_ : Optional[Any] = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) lowercase_ : Union[str, Any] = XCLIPVisionConfig(patch_size=lowercase__ , num_frames=lowercase__ ) if "large" in model_name: lowercase_ : Dict = 7_6_8 lowercase_ : Any = 3_0_7_2 lowercase_ : str = 1_2 lowercase_ : int = 1_0_2_4 lowercase_ : int = 4_0_9_6 lowercase_ : Dict = 1_6 lowercase_ : Tuple = 2_4 lowercase_ : Dict = 7_6_8 lowercase_ : List[Any] = 3_0_7_2 if model_name == "xclip-large-patch14-16-frames": lowercase_ : int = 3_3_6 lowercase_ : Optional[int] = XCLIPConfig.from_text_vision_configs(lowercase__ , lowercase__ ) if "large" in model_name: lowercase_ : Tuple = 7_6_8 return config def lowercase ( __snake_case : Tuple ): # text encoder if name == "token_embedding.weight": lowercase_ : str = name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": lowercase_ : List[Any] = name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: lowercase_ : List[str] = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: lowercase_ : Any = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: lowercase_ : Dict = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: lowercase_ : str = name.replace('''c_proj''' , '''fc2''' ) if name.startswith('''transformer.resblocks''' ): lowercase_ : List[str] = name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: lowercase_ : Optional[Any] = name.replace('''attn.out_proj''' , '''self_attn.out_proj''' ) if "ln_final" in name: lowercase_ : List[str] = name.replace('''ln_final''' , '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": lowercase_ : Optional[Any] = name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": lowercase_ : Optional[int] = name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): lowercase_ : List[str] = name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' ) if "visual.conv1" in name: lowercase_ : Any = name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: lowercase_ : List[Any] = name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: lowercase_ : Tuple = name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' ) if "visual.proj" in name: lowercase_ : int = name.replace('''visual.proj''' , '''visual_projection.weight''' ) if "text_projection" in name: lowercase_ : List[Any] = name.replace('''text_projection''' , '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: lowercase_ : List[Any] = name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: lowercase_ : int = name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": lowercase_ : Any = name.replace('''positional''' , '''position''' ) if name.startswith('''mit.resblocks''' ): lowercase_ : Optional[Any] = name.replace('''mit.resblocks''' , '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): lowercase_ : Any = name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' ) return name def lowercase ( __snake_case : List[str] , __snake_case : Any ): for key in orig_state_dict.copy().keys(): lowercase_ : Optional[Any] = orig_state_dict.pop(lowercase__ ) if "attn.in_proj" in key: lowercase_ : Optional[int] = key.split('''.''' ) if key.startswith('''visual''' ): lowercase_ : List[Any] = key_split[3] lowercase_ : int = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowercase_ : Tuple = val[ :dim, : ] lowercase_ : int = val[ dim : dim * 2, : ] lowercase_ : Tuple = val[ -dim:, : ] else: lowercase_ : Tuple = val[ :dim ] lowercase_ : List[Any] = val[ dim : dim * 2 ] lowercase_ : Dict = val[ -dim: ] else: if "weight" in key: lowercase_ : int = val[ :dim, : ] lowercase_ : Any = val[ dim : dim * 2, : ] lowercase_ : List[Any] = val[ -dim:, : ] else: lowercase_ : Dict = val[:dim] lowercase_ : Union[str, Any] = val[ dim : dim * 2 ] lowercase_ : str = val[-dim:] elif key.startswith('''mit''' ): lowercase_ : List[str] = key_split[2] lowercase_ : str = config.vision_config.mit_hidden_size if "weight" in key: lowercase_ : List[Any] = val[:dim, :] lowercase_ : List[str] = val[dim : dim * 2, :] lowercase_ : Tuple = val[-dim:, :] else: lowercase_ : Any = val[:dim] lowercase_ : Optional[int] = val[dim : dim * 2] lowercase_ : Union[str, Any] = val[-dim:] else: lowercase_ : List[Any] = key_split[2] lowercase_ : str = config.text_config.hidden_size if "weight" in key: lowercase_ : str = val[:dim, :] lowercase_ : Optional[int] = val[ dim : dim * 2, : ] lowercase_ : Dict = val[-dim:, :] else: lowercase_ : List[Any] = val[:dim] lowercase_ : Dict = val[ dim : dim * 2 ] lowercase_ : int = val[-dim:] else: lowercase_ : Any = rename_key(lowercase__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowercase_ : Optional[Any] = val.T lowercase_ : str = val return orig_state_dict def lowercase ( __snake_case : Optional[Any] ): if num_frames == 8: lowercase_ : Tuple = '''eating_spaghetti_8_frames.npy''' elif num_frames == 1_6: lowercase_ : Any = '''eating_spaghetti.npy''' elif num_frames == 3_2: lowercase_ : Optional[int] = '''eating_spaghetti_32_frames.npy''' lowercase_ : Optional[Any] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename=lowercase__ , repo_type='''dataset''' , ) lowercase_ : List[str] = np.load(lowercase__ ) return list(lowercase__ ) def lowercase ( __snake_case : int , __snake_case : Any=None , __snake_case : Optional[int]=False ): lowercase_ : Optional[int] = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } lowercase_ : int = model_to_url[model_name] lowercase_ : Any = 8 if "16-frames" in model_name: lowercase_ : str = 1_6 elif "shot" in model_name: lowercase_ : Optional[int] = 3_2 lowercase_ : Dict = get_xclip_config(lowercase__ , lowercase__ ) lowercase_ : List[str] = XCLIPModel(lowercase__ ) model.eval() if "drive" in checkpoint_url: lowercase_ : Optional[int] = '''pytorch_model.bin''' gdown.cached_download(lowercase__ , lowercase__ , quiet=lowercase__ ) lowercase_ : List[Any] = torch.load(lowercase__ , map_location='''cpu''' )['''model'''] else: lowercase_ : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase__ )['''model'''] lowercase_ : Optional[int] = convert_state_dict(lowercase__ , lowercase__ ) lowercase_ : List[str] = XCLIPModel(lowercase__ ) lowercase_ : str = model.load_state_dict(lowercase__ , strict=lowercase__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowercase_ : Dict = 3_3_6 if model_name == '''xclip-large-patch14-16-frames''' else 2_2_4 lowercase_ : Optional[int] = VideoMAEImageProcessor(size=lowercase__ ) lowercase_ : Tuple = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) lowercase_ : Union[str, Any] = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) lowercase_ : int = XCLIPProcessor(image_processor=lowercase__ , tokenizer=lowercase__ ) lowercase_ : Tuple = prepare_video(lowercase__ ) lowercase_ : List[Any] = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=lowercase__ , return_tensors='''pt''' , padding=lowercase__ ) print('''Shape of pixel values:''' , inputs.pixel_values.shape ) with torch.no_grad(): lowercase_ : List[Any] = model(**lowercase__ ) # Verify outputs lowercase_ : List[str] = outputs.logits_per_video lowercase_ : int = logits_per_video.softmax(dim=1 ) print('''Probs:''' , lowercase__ ) # kinetics-400 if model_name == "xclip-base-patch32": lowercase_ : Dict = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": lowercase_ : Optional[Any] = torch.tensor([[7.09_99e-04, 9.98_83e-01, 4.55_80e-04]] ) elif model_name == "xclip-base-patch16": lowercase_ : Dict = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": lowercase_ : List[str] = torch.tensor([[7.69_37e-04, 9.97_28e-01, 1.94_73e-03]] ) elif model_name == "xclip-large-patch14": lowercase_ : Dict = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": lowercase_ : Any = torch.tensor([[3.38_77e-04, 9.99_37e-01, 2.88_88e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowercase_ : List[Any] = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowercase_ : Tuple = torch.tensor([[3.85_54e-04, 9.99_29e-01, 3.27_54e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowercase_ : Dict = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowercase_ : Optional[int] = torch.tensor([[7.18_90e-06, 9.99_94e-01, 5.65_59e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowercase_ : str = torch.tensor([[1.03_20e-05, 9.99_93e-01, 6.24_35e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowercase_ : Optional[Any] = torch.tensor([[4.13_77e-06, 9.99_90e-01, 9.83_86e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowercase_ : str = torch.tensor([[4.13_47e-05, 9.99_62e-01, 3.34_11e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowercase_ : List[str] = torch.tensor([[8.58_57e-05, 9.99_28e-01, 6.32_91e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowercase_ : Tuple = torch.tensor([[8.58_57e-05, 9.99_28e-01, 6.32_91e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowercase_ : List[str] = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowercase_ : Optional[Any] = torch.tensor([[9.82_19e-04, 9.95_93e-01, 3.08_63e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowercase_ : Union[str, Any] = torch.tensor([[3.50_82e-04, 9.97_85e-01, 1.79_66e-03]] ) else: raise ValueError(F'''Model name {model_name} not supported''' ) assert torch.allclose(lowercase__ , lowercase__ , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(lowercase__ , organization='''nielsr''' ) processor.push_to_hub(lowercase__ , organization='''nielsr''' ) slow_tokenizer.push_to_hub(lowercase__ , organization='''nielsr''' ) if __name__ == "__main__": __A : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __A : Optional[Any] = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
231
import os import sys import unittest __lowerCAmelCase : List[Any] =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __lowerCAmelCase : Optional[Any] =os.path.join(git_repo_path, 'src', 'transformers') __lowerCAmelCase : Optional[Any] ='\n{0} = None\n' __lowerCAmelCase : Tuple ='\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' __lowerCAmelCase : Dict ='\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tokenizers''' ) __SCREAMING_SNAKE_CASE : Dict = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tensorflow_text''' ) __SCREAMING_SNAKE_CASE : Tuple = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers''' ) __SCREAMING_SNAKE_CASE : Any = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tensorflow_text''' ) __SCREAMING_SNAKE_CASE : List[str] = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers_and_vision''' ) def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCAmelCase__ ) self.assertIn('''tensorflow_text''' , lowerCAmelCase__ ) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCAmelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , '''\nCONSTANT = None\n''' ) __SCREAMING_SNAKE_CASE : List[str] = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( lowerCAmelCase__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) __SCREAMING_SNAKE_CASE : int = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' __SCREAMING_SNAKE_CASE : Optional[Any] = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : str = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' __SCREAMING_SNAKE_CASE : List[Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , lowerCAmelCase__ )
696
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowercase : Optional[int] = logging.get_logger(__name__) _lowercase : int = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _UpperCAmelCase ( A__ , A__ ): a__ : Union[str, Any] = '''swin''' a__ : str = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : str , _lowercase : Optional[int]=2_24 , _lowercase : str=4 , _lowercase : Union[str, Any]=3 , _lowercase : List[str]=96 , _lowercase : Union[str, Any]=[2, 2, 6, 2] , _lowercase : Dict=[3, 6, 12, 24] , _lowercase : List[Any]=7 , _lowercase : Tuple=4.0 , _lowercase : List[Any]=True , _lowercase : List[Any]=0.0 , _lowercase : Tuple=0.0 , _lowercase : Union[str, Any]=0.1 , _lowercase : Optional[int]="gelu" , _lowercase : Any=False , _lowercase : List[str]=0.02 , _lowercase : List[str]=1E-5 , _lowercase : Tuple=32 , _lowercase : int=None , _lowercase : List[str]=None , **_lowercase : Optional[Any] , ): super().__init__(**lowerCAmelCase__ ) __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = len(lowerCAmelCase__ ) __UpperCAmelCase = num_heads __UpperCAmelCase = window_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_absolute_embeddings __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase = int(embed_dim * 2 ** (len(lowerCAmelCase__ ) - 1) ) __UpperCAmelCase = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase__ ) + 1 )] __UpperCAmelCase = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names ) class _UpperCAmelCase ( A__ ): a__ : Optional[Any] = version.parse("1.11" ) @property def a ( self : int ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def a ( self : List[str] ): return 1E-4
49
import math from numpy import inf from scipy.integrate import quad def _UpperCamelCase ( lowercase__ ): if num <= 0: raise ValueError('''math domain error''' ) return quad(lowercase__ , 0 , lowercase__ , args=(lowercase__) )[0] def _UpperCamelCase ( lowercase__ , lowercase__ ): return math.pow(lowercase__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
696
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'andreasmadsen/efficient_mlm_m0.40': ( 'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json' ), } class _SCREAMING_SNAKE_CASE ( A__ ): lowerCamelCase_ = '''roberta-prelayernorm''' def __init__( self : List[str] , snake_case_ : int=5_0265 , snake_case_ : Any=768 , snake_case_ : Dict=12 , snake_case_ : Optional[int]=12 , snake_case_ : Union[str, Any]=3072 , snake_case_ : Dict="gelu" , snake_case_ : List[str]=0.1 , snake_case_ : str=0.1 , snake_case_ : List[str]=512 , snake_case_ : Optional[int]=2 , snake_case_ : List[Any]=0.02 , snake_case_ : str=1E-12 , snake_case_ : Dict=1 , snake_case_ : Tuple=0 , snake_case_ : List[Any]=2 , snake_case_ : int="absolute" , snake_case_ : int=True , snake_case_ : List[str]=None , **snake_case_ : Tuple , ): """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) A : int = vocab_size A : List[Any] = hidden_size A : List[Any] = num_hidden_layers A : str = num_attention_heads A : Tuple = hidden_act A : List[Any] = intermediate_size A : Optional[int] = hidden_dropout_prob A : List[str] = attention_probs_dropout_prob A : List[str] = max_position_embeddings A : Dict = type_vocab_size A : List[Any] = initializer_range A : Dict = layer_norm_eps A : Dict = position_embedding_type A : Optional[Any] = use_cache A : Union[str, Any] = classifier_dropout class _SCREAMING_SNAKE_CASE ( A__ ): @property def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" if self.task == "multiple-choice": A : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
256
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(lowercase__ , lowercase__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate __SCREAMING_SNAKE_CASE : int = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __SCREAMING_SNAKE_CASE : Union[str, Any] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
696
0
"""simple docstring""" from math import pi, sqrt, tan def lowercase ( __UpperCamelCase ) -> Any: if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowercase ( __UpperCamelCase ) -> Any: if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def lowercase ( __UpperCamelCase ) -> Optional[int]: if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> List[Any]: if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) __magic_name__ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> List[str]: if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(lowercase__ , 2 ) * torus_radius * tube_radius def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> str: if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def lowercase ( __UpperCamelCase ) -> Tuple: if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) __magic_name__ = (sidea + sidea + sidea) / 2 __magic_name__ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> str: if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str: if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def lowercase ( __UpperCamelCase ) -> List[Any]: if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> List[str]: if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> List[Any]: if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> Tuple: if not isinstance(lowercase__ , lowercase__ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"""Rectangle: {area_rectangle(10, 20) = }""") print(f"""Square: {area_square(10) = }""") print(f"""Triangle: {area_triangle(10, 10) = }""") print(f"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(f"""Parallelogram: {area_parallelogram(10, 20) = }""") print(f"""Rhombus: {area_rhombus(10, 20) = }""") print(f"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(f"""Circle: {area_circle(20) = }""") print(f"""Ellipse: {area_ellipse(10, 20) = }""") print("\nSurface Areas of various geometric shapes: \n") print(f"""Cube: {surface_area_cube(20) = }""") print(f"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(f"""Sphere: {surface_area_sphere(20) = }""") print(f"""Hemisphere: {surface_area_hemisphere(20) = }""") print(f"""Cone: {surface_area_cone(10, 20) = }""") print(f"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(f"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(f"""Torus: {surface_area_torus(20, 10) = }""") print(f"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(f"""Square: {area_reg_polygon(4, 10) = }""") print(f"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
490
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = prime_factors(lowercase__ ) if is_square_free(lowercase__ ): return -1 if len(lowercase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
696
0
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __a = NewType('DataClass', Any) __a = NewType('DataClassType', Any) def __UpperCAmelCase ( a_: Optional[Any] ): if isinstance(lowercase__, lowercase__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def __UpperCAmelCase ( a_: List[Any] ): _UpperCAmelCase : Dict = {str(lowercase__ ): choice for choice in choices} return lambda a_ : str_to_choice.get(lowercase__, lowercase__ ) def __UpperCAmelCase ( *, a_: Optional[int] = None, a_: Union[str, Any] = None, a_: Tuple = dataclasses.MISSING, a_: List[str] = dataclasses.MISSING, a_: Optional[Any] = None, **a_: Tuple, ): if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls _UpperCAmelCase : Optional[Any] = {} if aliases is not None: _UpperCAmelCase : Tuple = aliases if help is not None: _UpperCAmelCase : Optional[int] = help return dataclasses.field(metadata=lowercase__, default=lowercase__, default_factory=lowercase__, **lowercase__ ) class A__ ( A__ ): """simple docstring""" UpperCamelCase_ : Iterable[DataClassType] def __init__( self : str , lowerCAmelCase__ : Union[DataClassType, Iterable[DataClassType]] , **lowerCAmelCase__ : Any ) -> Tuple: """simple docstring""" if "formatter_class" not in kwargs: _UpperCAmelCase : Optional[int] = ArgumentDefaultsHelpFormatter super().__init__(**lowerCAmelCase__ ) if dataclasses.is_dataclass(lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = [dataclass_types] _UpperCAmelCase : int = list(lowerCAmelCase__ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowerCAmelCase__ ) @staticmethod def _lowerCAmelCase ( lowerCAmelCase__ : ArgumentParser , lowerCAmelCase__ : dataclasses.Field ) -> int: """simple docstring""" _UpperCAmelCase : Optional[int] = F"""--{field.name}""" _UpperCAmelCase : Dict = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowerCAmelCase__ ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) _UpperCAmelCase : Tuple = kwargs.pop("aliases" , [] ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = [aliases] _UpperCAmelCase : str = getattr(field.type , "__origin__" , field.type ) if origin_type is Union or (hasattr(lowerCAmelCase__ , "UnionType" ) and isinstance(lowerCAmelCase__ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowerCAmelCase__ ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." F""" Problem encountered in field \'{field.name}\'.""" ) if type(lowerCAmelCase__ ) not in field.type.__args__: # filter `str` in Union _UpperCAmelCase : Union[str, Any] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] _UpperCAmelCase : List[str] = getattr(field.type , "__origin__" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) _UpperCAmelCase : Optional[int] = ( field.type.__args__[0] if isinstance(lowerCAmelCase__ , field.type.__args__[1] ) else field.type.__args__[1] ) _UpperCAmelCase : Optional[Any] = getattr(field.type , "__origin__" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) _UpperCAmelCase : Optional[int] = {} if origin_type is Literal or (isinstance(field.type , lowerCAmelCase__ ) and issubclass(field.type , lowerCAmelCase__ )): if origin_type is Literal: _UpperCAmelCase : Dict = field.type.__args__ else: _UpperCAmelCase : Optional[int] = [x.value for x in field.type] _UpperCAmelCase : Tuple = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: _UpperCAmelCase : Union[str, Any] = field.default else: _UpperCAmelCase : Optional[int] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument _UpperCAmelCase : Optional[int] = copy(lowerCAmelCase__ ) # Hack because type=bool in argparse does not behave as we want. _UpperCAmelCase : str = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. _UpperCAmelCase : List[str] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way _UpperCAmelCase : int = default # This tells argparse we accept 0 or 1 value after --field_name _UpperCAmelCase : Tuple = '''?''' # This is the value that will get picked if we do --field_name (without value) _UpperCAmelCase : str = True elif isclass(lowerCAmelCase__ ) and issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = field.type.__args__[0] _UpperCAmelCase : Tuple = '''+''' if field.default_factory is not dataclasses.MISSING: _UpperCAmelCase : Optional[int] = field.default_factory() elif field.default is dataclasses.MISSING: _UpperCAmelCase : Optional[Any] = True else: _UpperCAmelCase : int = field.type if field.default is not dataclasses.MISSING: _UpperCAmelCase : Any = field.default elif field.default_factory is not dataclasses.MISSING: _UpperCAmelCase : Tuple = field.default_factory() else: _UpperCAmelCase : str = True parser.add_argument(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): _UpperCAmelCase : Union[str, Any] = False parser.add_argument(F"""--no_{field.name}""" , action="store_false" , dest=field.name , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : DataClassType ) -> Optional[Any]: """simple docstring""" if hasattr(lowerCAmelCase__ , "_argument_group_name" ): _UpperCAmelCase : List[str] = self.add_argument_group(dtype._argument_group_name ) else: _UpperCAmelCase : List[Any] = self try: _UpperCAmelCase : Dict[str, type] = get_type_hints(lowerCAmelCase__ ) except NameError: raise RuntimeError( F"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(lowerCAmelCase__ ): _UpperCAmelCase : int = '''.'''.join(map(lowerCAmelCase__ , sys.version_info[:3] ) ) raise RuntimeError( F"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(lowerCAmelCase__ ): if not field.init: continue _UpperCAmelCase : Optional[Any] = type_hints[field.name] self._parse_dataclass_field(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : str=None , lowerCAmelCase__ : int=None , ) -> Tuple[DataClass, ...]: """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): _UpperCAmelCase : Optional[int] = [] if args_filename: args_files.append(Path(lowerCAmelCase__ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values _UpperCAmelCase : Optional[int] = ArgumentParser() args_file_parser.add_argument(lowerCAmelCase__ , type=lowerCAmelCase__ , action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) _UpperCAmelCase : Optional[Any] = args_file_parser.parse_known_args(args=lowerCAmelCase__ ) _UpperCAmelCase : Any = vars(lowerCAmelCase__ ).get(args_file_flag.lstrip("-" ) , lowerCAmelCase__ ) if cmd_args_file_paths: args_files.extend([Path(lowerCAmelCase__ ) for p in cmd_args_file_paths] ) _UpperCAmelCase : List[str] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last _UpperCAmelCase : Optional[int] = file_args + args if args is not None else file_args + sys.argv[1:] _UpperCAmelCase : int = self.parse_known_args(args=lowerCAmelCase__ ) _UpperCAmelCase : str = [] for dtype in self.dataclass_types: _UpperCAmelCase : Union[str, Any] = {f.name for f in dataclasses.fields(lowerCAmelCase__ ) if f.init} _UpperCAmelCase : str = {k: v for k, v in vars(lowerCAmelCase__ ).items() if k in keys} for k in keys: delattr(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = dtype(**lowerCAmelCase__ ) outputs.append(lowerCAmelCase__ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowerCAmelCase__ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Dict[str, Any] , lowerCAmelCase__ : bool = False ) -> Tuple[DataClass, ...]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = set(args.keys() ) _UpperCAmelCase : List[str] = [] for dtype in self.dataclass_types: _UpperCAmelCase : Optional[Any] = {f.name for f in dataclasses.fields(lowerCAmelCase__ ) if f.init} _UpperCAmelCase : str = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) _UpperCAmelCase : int = dtype(**lowerCAmelCase__ ) outputs.append(lowerCAmelCase__ ) if not allow_extra_keys and unused_keys: raise ValueError(F"""Some keys are not used by the HfArgumentParser: {sorted(lowerCAmelCase__ )}""" ) return tuple(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : bool = False ) -> Tuple[DataClass, ...]: """simple docstring""" with open(Path(lowerCAmelCase__ ) , encoding="utf-8" ) as open_json_file: _UpperCAmelCase : Any = json.loads(open_json_file.read() ) _UpperCAmelCase : Optional[Any] = self.parse_dict(lowerCAmelCase__ , allow_extra_keys=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : bool = False ) -> Tuple[DataClass, ...]: """simple docstring""" _UpperCAmelCase : List[Any] = self.parse_dict(yaml.safe_load(Path(lowerCAmelCase__ ).read_text() ) , allow_extra_keys=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
494
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase : int ={ 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_2_8, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 5_0, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 1_0, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 1_0, 'exponential_decay_length_penalty': (5, 1.0_1), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class _lowercase ( unittest.TestCase ): '''simple docstring''' @classmethod def __magic_name__( cls :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : str = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def __magic_name__( cls :List[str] ) -> List[str]: try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Tuple = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ , repo_id='''test-config''' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Any = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCAmelCase__ , repo_id='''valid_org/test-config-org''' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __magic_name__( self :Dict ) -> Optional[int]: CustomConfig.register_for_auto_class() __SCREAMING_SNAKE_CASE : Tuple = CustomConfig(attribute=42 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) __SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 42 ) class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __SCREAMING_SNAKE_CASE : Optional[Any] = c.n_embd + 1 # int __SCREAMING_SNAKE_CASE : Optional[Any] = c.resid_pdrop + 1.0 # float __SCREAMING_SNAKE_CASE : Dict = not c.scale_attn_weights # bool __SCREAMING_SNAKE_CASE : Optional[int] = c.summary_type + '''foo''' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCAmelCase__ , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(lowerCAmelCase__ , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(lowerCAmelCase__ , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(lowerCAmelCase__ , c.summary_type , '''mismatch for key: summary_type''' ) def __magic_name__( self :Dict ) -> str: __SCREAMING_SNAKE_CASE : Dict = PretrainedConfig() __SCREAMING_SNAKE_CASE : str = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCAmelCase__ , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) __SCREAMING_SNAKE_CASE : List[Any] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCAmelCase__ , lowerCAmelCase__ )] if len(lowerCAmelCase__ ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' f''' {', '.join(lowerCAmelCase__ )}.''' ) def __magic_name__( self :Union[str, Any] ) -> List[Any]: with self.assertRaises(lowerCAmelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder __SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) __SCREAMING_SNAKE_CASE : List[str] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[Any]: # A mock response for an HTTP head request to emulate server down __SCREAMING_SNAKE_CASE : Union[str, Any] = mock.Mock() __SCREAMING_SNAKE_CASE : List[Any] = 500 __SCREAMING_SNAKE_CASE : Union[str, Any] = {} __SCREAMING_SNAKE_CASE : Optional[Any] = HTTPError __SCREAMING_SNAKE_CASE : str = {} # Download this model to make sure it's in the cache. __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowerCAmelCase__ ) as mock_head: __SCREAMING_SNAKE_CASE : Optional[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def __magic_name__( self :Union[str, Any] ) -> List[Any]: # This test is for deprecated behavior and can be removed in v5 __SCREAMING_SNAKE_CASE : Optional[int] = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def __magic_name__( self :str ) -> List[str]: __SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained('''bert-base-cased''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCAmelCase__ , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __SCREAMING_SNAKE_CASE : List[Any] = ['''config.42.0.0.json'''] __SCREAMING_SNAKE_CASE : Tuple = 768 configuration.save_pretrained(lowerCAmelCase__ ) shutil.move(os.path.join(lowerCAmelCase__ , '''config.4.0.0.json''' ) , os.path.join(lowerCAmelCase__ , '''config.42.0.0.json''' ) ) __SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def __magic_name__( self :List[str] ) -> Union[str, Any]: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __SCREAMING_SNAKE_CASE : Union[str, Any] = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers __SCREAMING_SNAKE_CASE : int = '''v4.0.0''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCAmelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __SCREAMING_SNAKE_CASE : List[str] = '''v3.0.0''' __SCREAMING_SNAKE_CASE : Any = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(old_configuration.hidden_size , 768 )
696
0
"""simple docstring""" A: List[str] = 'Alexander Joslin' import operator as op from .stack import Stack def _snake_case ( UpperCamelCase : Union[str, Any] ): UpperCAmelCase : Dict = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase__ ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase__ ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : Union[str, Any] = operand_stack.peek() operand_stack.pop() UpperCAmelCase : Any = operand_stack.peek() operand_stack.pop() UpperCAmelCase : int = operators[opr](lowercase__ , lowercase__ ) operand_stack.push(lowercase__ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A: str = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
160
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Any ={ 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] =['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
696
0
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path SCREAMING_SNAKE_CASE__ : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) SCREAMING_SNAKE_CASE__ : list[int] = [ord(letter) for letter in string.ascii_lowercase] SCREAMING_SNAKE_CASE__ : set[int] = {ord(char) for char in VALID_CHARS} SCREAMING_SNAKE_CASE__ : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ : str = "" UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int for keychar, cipherchar in zip(cycle(lowercase__ ) , lowercase__ ): UpperCAmelCase__ : str = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowercase__ ) return decoded def _lowerCamelCase ( __lowerCamelCase ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : list[str] = [] for key in product(lowercase__ , repeat=3 ): UpperCAmelCase__ : List[Any] = try_key(lowercase__ , lowercase__ ) if encoded is not None: possibles.append(lowercase__ ) return possibles def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def _lowerCamelCase ( __lowerCamelCase = "p059_cipher.txt" ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ : list[int] UpperCAmelCase__ : list[str] UpperCAmelCase__ : str UpperCAmelCase__ : str UpperCAmelCase__ : str = Path(lowercase__ ).parent.joinpath(lowercase__ ).read_text(encoding="""utf-8""" ) UpperCAmelCase__ : Dict = [int(lowercase__ ) for number in data.strip().split(""",""" )] UpperCAmelCase__ : List[str] = filter_valid_chars(lowercase__ ) for common_word in COMMON_WORDS: UpperCAmelCase__ : Optional[int] = filter_common_word(lowercase__ , lowercase__ ) if len(lowercase__ ) == 1: break UpperCAmelCase__ : Dict = possibles[0] return sum(ord(lowercase__ ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
79
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ={ 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = '''switch_transformers''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''past_key_values'''] SCREAMING_SNAKE_CASE__ : str = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self :Optional[int] , lowerCAmelCase__ :Union[str, Any]=32_128 , lowerCAmelCase__ :int=768 , lowerCAmelCase__ :Optional[Any]=64 , lowerCAmelCase__ :List[str]=2_048 , lowerCAmelCase__ :Optional[int]=64 , lowerCAmelCase__ :Union[str, Any]=12 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Tuple=12 , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Optional[int]=12 , lowerCAmelCase__ :Optional[Any]=8 , lowerCAmelCase__ :Tuple=False , lowerCAmelCase__ :List[Any]=0.01 , lowerCAmelCase__ :Any="float32" , lowerCAmelCase__ :int=False , lowerCAmelCase__ :int=32 , lowerCAmelCase__ :Optional[Any]=128 , lowerCAmelCase__ :Optional[Any]=0.1 , lowerCAmelCase__ :str=1E-6 , lowerCAmelCase__ :Tuple=0.001 , lowerCAmelCase__ :List[Any]=0.001 , lowerCAmelCase__ :Union[str, Any]=1.0 , lowerCAmelCase__ :Tuple="relu" , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]=0 , lowerCAmelCase__ :Union[str, Any]=1 , **lowerCAmelCase__ :List[str] , ) -> Tuple: __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Optional[int] = d_kv __SCREAMING_SNAKE_CASE : Tuple = d_ff __SCREAMING_SNAKE_CASE : Tuple = num_sparse_encoder_layers __SCREAMING_SNAKE_CASE : List[Any] = num_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __SCREAMING_SNAKE_CASE : Optional[Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __SCREAMING_SNAKE_CASE : List[Any] = self.num_layers // self.num_sparse_encoder_layers else: __SCREAMING_SNAKE_CASE : Tuple = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: __SCREAMING_SNAKE_CASE : Dict = self.num_decoder_layers # HACK: this will create 0 sparse layers __SCREAMING_SNAKE_CASE : List[Any] = num_heads __SCREAMING_SNAKE_CASE : List[Any] = num_experts __SCREAMING_SNAKE_CASE : Tuple = expert_capacity __SCREAMING_SNAKE_CASE : List[Any] = router_bias __SCREAMING_SNAKE_CASE : Optional[Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) __SCREAMING_SNAKE_CASE : List[Any] = router_dtype __SCREAMING_SNAKE_CASE : Optional[Any] = router_ignore_padding_tokens __SCREAMING_SNAKE_CASE : int = relative_attention_num_buckets __SCREAMING_SNAKE_CASE : Any = relative_attention_max_distance __SCREAMING_SNAKE_CASE : Union[str, Any] = dropout_rate __SCREAMING_SNAKE_CASE : Dict = layer_norm_epsilon __SCREAMING_SNAKE_CASE : int = initializer_factor __SCREAMING_SNAKE_CASE : List[str] = feed_forward_proj __SCREAMING_SNAKE_CASE : Any = use_cache __SCREAMING_SNAKE_CASE : Union[str, Any] = add_router_probs __SCREAMING_SNAKE_CASE : int = router_z_loss_coef __SCREAMING_SNAKE_CASE : List[str] = router_aux_loss_coef __SCREAMING_SNAKE_CASE : Dict = self.feed_forward_proj.split('''-''' ) __SCREAMING_SNAKE_CASE : Optional[int] = act_info[-1] __SCREAMING_SNAKE_CASE : Optional[Any] = act_info[0] == '''gated''' if len(lowerCAmelCase__ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase__ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __SCREAMING_SNAKE_CASE : List[Any] = '''gelu_new''' super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ , )
696
0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :str ) -> Optional[int]: if principal <= 0: raise Exception("""Principal borrowed must be > 0""" ) if rate_per_annum < 0: raise Exception("""Rate of interest must be >= 0""" ) if years_to_repay <= 0 or not isinstance(lowercase__ , lowercase__ ): raise Exception("""Years to repay must be an integer > 0""" ) # Yearly rate is divided by 12 to get monthly rate __lowerCAmelCase : int = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __lowerCAmelCase : Union[str, Any] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
504
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
696
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _lowerCAmelCase ( ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=lowercase__ ) _SCREAMING_SNAKE_CASE =parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=lowercase__ ) env_command_parser(subparsers=lowercase__ ) launch_command_parser(subparsers=lowercase__ ) tpu_command_parser(subparsers=lowercase__ ) test_command_parser(subparsers=lowercase__ ) # Let's go _SCREAMING_SNAKE_CASE =parser.parse_args() if not hasattr(lowercase__ , 'func' ): parser.print_help() exit(1 ) # Run args.func(lowercase__ ) if __name__ == "__main__": main()
405
from datetime import datetime import requests def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' __SCREAMING_SNAKE_CASE : Tuple = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(lowercase__ ).content if __name__ == "__main__": __lowerCAmelCase : int =input('Enter Video/IGTV url: ').strip() __lowerCAmelCase : Union[str, Any] =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
696
0
from scipy.stats import pearsonr import datasets A = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' A = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' A = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ): """simple docstring""" if return_pvalue: snake_case_ = pearsonr(lowerCAmelCase__ , lowerCAmelCase__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCAmelCase__ , lowerCAmelCase__ )[0] )}
187
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = StableDiffusionInstructPixaPixPipeline SCREAMING_SNAKE_CASE__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} SCREAMING_SNAKE_CASE__ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __magic_name__( self :int ) -> Optional[int]: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __SCREAMING_SNAKE_CASE : str = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __magic_name__( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any]=0 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE : List[Any] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('''RGB''' ) if str(lowerCAmelCase__ ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def __magic_name__( self :Union[str, Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : int = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = '''french fries''' __SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(**lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = output.images __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Dict ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = [inputs['''prompt''']] * 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array(inputs['''image'''] ).astype(np.floataa ) / 255.0 __SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image / 2 + 0.5 __SCREAMING_SNAKE_CASE : Optional[Any] = image.permute(0 , 3 , 1 , 2 ) __SCREAMING_SNAKE_CASE : Any = image.repeat(2 , 1 , 1 , 1 ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Dict = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) __SCREAMING_SNAKE_CASE : Tuple = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Union[str, Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Union[str, Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : List[str] = [round(lowerCAmelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(lowerCAmelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Tuple ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __magic_name__( self :str ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = VaeImageProcessor(do_resize=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase__ , input_image_type='''pt''' ) )[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = components['''vae'''] __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs_by_type(lowerCAmelCase__ , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __SCREAMING_SNAKE_CASE : Optional[int] = vae.encode(inputs[image_param] ).latent_dist.mode() __SCREAMING_SNAKE_CASE : Dict = pipe(**lowerCAmelCase__ )[0] __SCREAMING_SNAKE_CASE : List[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase__ , 1E-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__( self :int , lowerCAmelCase__ :Dict=0 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) __SCREAMING_SNAKE_CASE : Dict = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __magic_name__( self :Dict ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Dict = self.get_inputs() __SCREAMING_SNAKE_CASE : str = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Any = self.get_inputs() __SCREAMING_SNAKE_CASE : int = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : Dict = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Optional[int] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : str = self.get_inputs() __SCREAMING_SNAKE_CASE : Optional[int] = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Dict ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = 0 def callback_fn(lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :torch.FloatTensor ) -> None: __SCREAMING_SNAKE_CASE : Dict = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __SCREAMING_SNAKE_CASE : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE : Tuple = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: __SCREAMING_SNAKE_CASE : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE : List[str] = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() pipe(**lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __magic_name__( self :List[str] ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __SCREAMING_SNAKE_CASE : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __SCREAMING_SNAKE_CASE : Dict = self.get_inputs() __SCREAMING_SNAKE_CASE : List[Any] = pipe(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __magic_name__( self :int ) -> Tuple: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __SCREAMING_SNAKE_CASE : int = inputs['''image'''].resize((504, 504) ) __SCREAMING_SNAKE_CASE : Optional[int] = '''timbrooks/instruct-pix2pix''' __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Any = pipe(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = output.images[0] __SCREAMING_SNAKE_CASE : str = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) __SCREAMING_SNAKE_CASE : str = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
696
0
def _lowerCAmelCase ( __magic_name__ :int , __magic_name__ :Optional[int] ): UpperCAmelCase_ = len(lowercase__ ) UpperCAmelCase_ = len(lowercase__ ) UpperCAmelCase_ = ( first_str_length if first_str_length > second_str_length else second_str_length ) UpperCAmelCase_ = [] for char_count in range(lowercase__ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(lowercase__ ) if __name__ == "__main__": print(alternative_string_arrange('AB', 'XYZ'), end=' ')
121
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : torch.FloatTensor SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None def _UpperCamelCase ( lowercase__ , lowercase__=0.999 , lowercase__="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __SCREAMING_SNAKE_CASE : List[Any] = [] for i in range(lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = i / num_diffusion_timesteps __SCREAMING_SNAKE_CASE : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class _lowercase ( A__ , A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = 1 @register_to_config def __init__( self :Dict , lowerCAmelCase__ :int = 1_000 , lowerCAmelCase__ :float = 0.0001 , lowerCAmelCase__ :float = 0.02 , lowerCAmelCase__ :str = "linear" , lowerCAmelCase__ :Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :int = 0 , lowerCAmelCase__ :str = "epsilon" , lowerCAmelCase__ :float = 1.0 , **lowerCAmelCase__ :int , ) -> Union[str, Any]: if kwargs.get('''set_alpha_to_one''' , lowerCAmelCase__ ) is not None: __SCREAMING_SNAKE_CASE : Optional[int] = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , lowerCAmelCase__ , standard_warn=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = kwargs['''set_alpha_to_one'''] if trained_betas is not None: __SCREAMING_SNAKE_CASE : Any = torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": __SCREAMING_SNAKE_CASE : str = torch.linspace(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __SCREAMING_SNAKE_CASE : List[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __SCREAMING_SNAKE_CASE : Optional[Any] = betas_for_alpha_bar(lowerCAmelCase__ ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __SCREAMING_SNAKE_CASE : Optional[int] = 1.0 - self.betas __SCREAMING_SNAKE_CASE : int = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __SCREAMING_SNAKE_CASE : int = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __SCREAMING_SNAKE_CASE : Any = 1.0 # setable values __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(np.arange(0 , lowerCAmelCase__ ).copy().astype(np.intaa ) ) def __magic_name__( self :List[str] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :Optional[int] = None ) -> torch.FloatTensor: return sample def __magic_name__( self :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, torch.device] = None ) -> List[str]: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = num_inference_steps __SCREAMING_SNAKE_CASE : Union[str, Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE : Optional[int] = (np.arange(0 , lowerCAmelCase__ ) * step_ratio).round().copy().astype(np.intaa ) __SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) self.timesteps += self.config.steps_offset def __magic_name__( self :Tuple , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :int , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :float = 0.0 , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) __SCREAMING_SNAKE_CASE : Optional[Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __SCREAMING_SNAKE_CASE : Any = self.alphas_cumprod[timestep] __SCREAMING_SNAKE_CASE : str = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __SCREAMING_SNAKE_CASE : int = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __SCREAMING_SNAKE_CASE : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __SCREAMING_SNAKE_CASE : List[Any] = model_output elif self.config.prediction_type == "sample": __SCREAMING_SNAKE_CASE : List[str] = model_output __SCREAMING_SNAKE_CASE : Optional[Any] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __SCREAMING_SNAKE_CASE : Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __SCREAMING_SNAKE_CASE : Tuple = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __SCREAMING_SNAKE_CASE : Dict = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : Dict = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : Any = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def __len__( self :Optional[int] ) -> List[Any]: return self.config.num_train_timesteps
696
0
"""simple docstring""" import os def lowercase ( ): with open(os.path.dirname(lowercase__ ) + '''/p022_names.txt''' ) as file: lowercase_ : List[Any] = str(file.readlines()[0] ) lowercase_ : List[Any] = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() lowercase_ : Union[str, Any] = 0 lowercase_ : Any = 0 for i, name in enumerate(lowercase__ ): for letter in name: name_score += ord(lowercase__ ) - 6_4 total_score += (i + 1) * name_score lowercase_ : Dict = 0 return total_score if __name__ == "__main__": print(solution())
231
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''summary''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : str = "text" SCREAMING_SNAKE_CASE__ : str = "summary" @property def __magic_name__( self :Union[str, Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
696
0
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _lowercase : int = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def lowercase__ ( snake_case_ :Dict=None ): if subparsers is not None: __UpperCAmelCase = subparsers.add_parser('''tpu-config''' , description=_description ) else: __UpperCAmelCase = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments __UpperCAmelCase = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=lowercase__ , default=lowercase__ , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=lowercase__ , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=lowercase__ , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) __UpperCAmelCase = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=lowercase__ , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=lowercase__ ) return parser def lowercase__ ( snake_case_ :Tuple ): __UpperCAmelCase = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(lowercase__ ): __UpperCAmelCase = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __UpperCAmelCase = defaults.command_file if not args.command and defaults.commands is not None: __UpperCAmelCase = defaults.commands if not args.tpu_name: __UpperCAmelCase = defaults.tpu_name if not args.tpu_zone: __UpperCAmelCase = defaults.tpu_zone if args.accelerate_version == "dev": __UpperCAmelCase = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": __UpperCAmelCase = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , lowercase__ ): __UpperCAmelCase = F'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: __UpperCAmelCase = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , lowercase__ ): __UpperCAmelCase = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __UpperCAmelCase = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [F'''pip install {args.accelerate_version}'''] new_cmd += args.command __UpperCAmelCase = '''; '''.join(lowercase__ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __UpperCAmelCase = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'''Running {" ".join(lowercase__ )}''' ) return subprocess.run(lowercase__ ) print('''Successfully setup pod.''' ) def lowercase__ ( ): __UpperCAmelCase = tpu_command_parser() __UpperCAmelCase = parser.parse_args() tpu_command_launcher(lowercase__ )
49
def _UpperCamelCase ( lowercase__ = 10**9 ): __SCREAMING_SNAKE_CASE : List[str] = 1 __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : Any = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
696
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase_ = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] UpperCamelCase_ = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } UpperCamelCase_ = {F'''funnel-transformer/{name}''': 5_12 for name in _model_names} UpperCamelCase_ = {F'''funnel-transformer/{name}''': {'do_lower_case': True} for name in _model_names} class _SCREAMING_SNAKE_CASE ( A__ ): lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ = FunnelTokenizer lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = 2 def __init__( self : List[str] , snake_case_ : List[Any]=None , snake_case_ : int=None , snake_case_ : Dict=True , snake_case_ : Dict="<unk>" , snake_case_ : Union[str, Any]="<sep>" , snake_case_ : Optional[int]="<pad>" , snake_case_ : Tuple="<cls>" , snake_case_ : Union[str, Any]="<mask>" , snake_case_ : Union[str, Any]="<s>" , snake_case_ : List[Any]="</s>" , snake_case_ : List[str]=True , snake_case_ : List[str]=True , snake_case_ : str=None , snake_case_ : int="##" , **snake_case_ : int , ): """simple docstring""" super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , clean_text=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , wordpieces_prefix=lowerCAmelCase__ , **lowerCAmelCase__ , ) A : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase__ ) != tokenize_chinese_chars ): A : Dict = getattr(lowerCAmelCase__ , normalizer_state.pop('''type''' ) ) A : List[Any] = do_lower_case A : List[Any] = strip_accents A : Union[str, Any] = tokenize_chinese_chars A : Dict = normalizer_class(**lowerCAmelCase__ ) A : Any = do_lower_case def _UpperCAmelCase ( self : Union[str, Any] , snake_case_ : Tuple , snake_case_ : List[Any]=None ): """simple docstring""" A : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase ( self : Optional[int] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): """simple docstring""" A : List[Any] = [self.sep_token_id] A : Any = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self : str , snake_case_ : str , snake_case_ : Optional[str] = None ): """simple docstring""" A : Tuple = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
256
def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = len(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = len(lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __SCREAMING_SNAKE_CASE : str = True for i in range(lowercase__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __SCREAMING_SNAKE_CASE : Union[str, Any] = True if a[i].islower(): __SCREAMING_SNAKE_CASE : Union[str, Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
696
0
"""simple docstring""" import argparse from collections import defaultdict def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: __magic_name__ = f'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(lowercase__ , '''r''' ) as f: __magic_name__ = f.readlines() __magic_name__ = f'''class {class_name}(''' __magic_name__ = f'''{4 * " "}def {test_name}(''' __magic_name__ = f'''{8 * " "}{correct_line.split()[0]}''' __magic_name__ = f'''{16 * " "}{correct_line.split()[0]}''' __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = 0 __magic_name__ = 0 __magic_name__ = [] for line in lines: if line.startswith(lowercase__ ): __magic_name__ = True elif in_class and line.startswith(lowercase__ ): __magic_name__ = True elif in_class and in_func and (line.startswith(lowercase__ ) or line.startswith(lowercase__ )): __magic_name__ = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: __magic_name__ = True if in_class and in_func and in_line: if ")" not in line: continue else: __magic_name__ = True if in_class and in_func and in_line and insert_line: new_lines.append(f'''{spaces * " "}{correct_line}''' ) __magic_name__ = False else: new_lines.append(lowercase__ ) with open(lowercase__ , '''w''' ) as f: for line in new_lines: f.write(lowercase__ ) def lowercase ( __UpperCamelCase , __UpperCamelCase=None ) -> Union[str, Any]: if fail is not None: with open(lowercase__ , '''r''' ) as f: __magic_name__ = {l.strip() for l in f.readlines()} else: __magic_name__ = None with open(lowercase__ , '''r''' ) as f: __magic_name__ = f.readlines() __magic_name__ = defaultdict(lowercase__ ) for line in correct_lines: __magic_name__ = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) __lowerCamelCase = parser.parse_args() main(args.correct_filename, args.fail_filename)
490
from scipy.stats import pearsonr import datasets __lowerCAmelCase : str ='\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' __lowerCAmelCase : Tuple ='\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' __lowerCAmelCase : Optional[int] ='\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Optional[int] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple=False ) -> int: if return_pvalue: __SCREAMING_SNAKE_CASE : int = pearsonr(lowerCAmelCase__ , lowerCAmelCase__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCAmelCase__ , lowerCAmelCase__ )[0] )}
696
0
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): __a = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: __a = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Any = (images / 2 + 0.5).clamp(0, 1 ) _UpperCAmelCase : Tuple = images.cpu().permute(0, 2, 3, 1 ).float().numpy() _UpperCAmelCase : Any = numpy_to_pil(lowercase__ ) return images def __UpperCAmelCase ( a_: Optional[Any] ): if images.ndim == 3: _UpperCAmelCase : str = images[None, ...] _UpperCAmelCase : Optional[int] = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images _UpperCAmelCase : List[str] = [Image.fromarray(image.squeeze(), mode="L" ) for image in images] else: _UpperCAmelCase : str = [Image.fromarray(lowercase__ ) for image in images] return pil_images
494
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : int ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : int ={ 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } __lowerCAmelCase : Optional[int] ={'mobilebert-uncased': 5_1_2} __lowerCAmelCase : Union[str, Any] ={} class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : List[Any] = MobileBertTokenizer def __init__( self :Tuple , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]="[UNK]" , lowerCAmelCase__ :List[Any]="[SEP]" , lowerCAmelCase__ :List[Any]="[PAD]" , lowerCAmelCase__ :List[Any]="[CLS]" , lowerCAmelCase__ :Any="[MASK]" , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Tuple=None , **lowerCAmelCase__ :List[str] , ) -> Optional[Any]: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase__ ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE : int = getattr(lowerCAmelCase__ , normalizer_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case __SCREAMING_SNAKE_CASE : str = strip_accents __SCREAMING_SNAKE_CASE : Dict = tokenize_chinese_chars __SCREAMING_SNAKE_CASE : Union[str, Any] = normalizer_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = do_lower_case def __magic_name__( self :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[Any]=None ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__( self :List[str] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : int = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
696
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters A: Optional[int] = (7_2_0, 1_2_8_0) # Height, Width A: Tuple = (0.4, 0.6) # if height or width lower than this scale, drop it. A: Optional[int] = 1 / 1_0_0 A: Any = '' A: List[str] = '' A: List[Any] = '' A: Tuple = 2_5_0 def _snake_case ( ): UpperCAmelCase : Union[str, Any] = get_dataset(lowercase__ , lowercase__ ) for index in range(lowercase__ ): UpperCAmelCase : Optional[int] = random.sample(range(len(lowercase__ ) ) , 4 ) UpperCAmelCase : Optional[int] = update_image_and_anno( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , filter_scale=lowercase__ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCAmelCase : str = random_chars(32 ) UpperCAmelCase : List[str] = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] UpperCAmelCase : Optional[int] = F"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}" cva.imwrite(F"{file_root}.jpg" , lowercase__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}" ) UpperCAmelCase : Optional[Any] = [] for anno in new_annos: UpperCAmelCase : str = anno[3] - anno[1] UpperCAmelCase : str = anno[4] - anno[2] UpperCAmelCase : List[str] = anno[1] + width / 2 UpperCAmelCase : str = anno[2] + height / 2 UpperCAmelCase : List[str] = F"{anno[0]} {x_center} {y_center} {width} {height}" annos_list.append(lowercase__ ) with open(F"{file_root}.txt" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def _snake_case ( UpperCamelCase : Any , UpperCamelCase : Tuple ): UpperCAmelCase : Optional[int] = [] UpperCAmelCase : List[Any] = [] for label_file in glob.glob(os.path.join(lowercase__ , """*.txt""" ) ): UpperCAmelCase : Any = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(lowercase__ ) as in_file: UpperCAmelCase : Union[str, Any] = in_file.readlines() UpperCAmelCase : Optional[Any] = os.path.join(lowercase__ , F"{label_name}.jpg" ) UpperCAmelCase : Tuple = [] for obj_list in obj_lists: UpperCAmelCase : List[Any] = obj_list.rstrip("""\n""" ).split(""" """ ) UpperCAmelCase : Tuple = float(obj[1] ) - float(obj[3] ) / 2 UpperCAmelCase : Optional[Any] = float(obj[2] ) - float(obj[4] ) / 2 UpperCAmelCase : Optional[Any] = float(obj[1] ) + float(obj[3] ) / 2 UpperCAmelCase : List[str] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(lowercase__ ) labels.append(lowercase__ ) return img_paths, labels def _snake_case ( UpperCamelCase : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : int , UpperCamelCase : Any = 0.0 , ): UpperCAmelCase : Optional[Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) UpperCAmelCase : Optional[int] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) UpperCAmelCase : Any = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) UpperCAmelCase : Tuple = int(scale_x * output_size[1] ) UpperCAmelCase : Dict = int(scale_y * output_size[0] ) UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : str = [] for i, index in enumerate(lowercase__ ): UpperCAmelCase : Optional[Any] = all_img_list[index] path_list.append(lowercase__ ) UpperCAmelCase : Union[str, Any] = all_annos[index] UpperCAmelCase : int = cva.imread(lowercase__ ) if i == 0: # top-left UpperCAmelCase : Union[str, Any] = cva.resize(lowercase__ , (divid_point_x, divid_point_y) ) UpperCAmelCase : Union[str, Any] = img for bbox in img_annos: UpperCAmelCase : Union[str, Any] = bbox[1] * scale_x UpperCAmelCase : List[Any] = bbox[2] * scale_y UpperCAmelCase : Any = bbox[3] * scale_x UpperCAmelCase : Union[str, Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right UpperCAmelCase : Tuple = cva.resize(lowercase__ , (output_size[1] - divid_point_x, divid_point_y) ) UpperCAmelCase : List[Any] = img for bbox in img_annos: UpperCAmelCase : Any = scale_x + bbox[1] * (1 - scale_x) UpperCAmelCase : Union[str, Any] = bbox[2] * scale_y UpperCAmelCase : List[Any] = scale_x + bbox[3] * (1 - scale_x) UpperCAmelCase : Optional[int] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left UpperCAmelCase : str = cva.resize(lowercase__ , (divid_point_x, output_size[0] - divid_point_y) ) UpperCAmelCase : int = img for bbox in img_annos: UpperCAmelCase : Optional[int] = bbox[1] * scale_x UpperCAmelCase : Any = scale_y + bbox[2] * (1 - scale_y) UpperCAmelCase : Tuple = bbox[3] * scale_x UpperCAmelCase : List[str] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right UpperCAmelCase : Dict = cva.resize( lowercase__ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) UpperCAmelCase : List[str] = img for bbox in img_annos: UpperCAmelCase : List[Any] = scale_x + bbox[1] * (1 - scale_x) UpperCAmelCase : Optional[int] = scale_y + bbox[2] * (1 - scale_y) UpperCAmelCase : int = scale_x + bbox[3] * (1 - scale_x) UpperCAmelCase : Optional[Any] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: UpperCAmelCase : str = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def _snake_case ( UpperCamelCase : str ): assert number_char > 1, "The number of character should greater than 1" UpperCAmelCase : int = ascii_lowercase + digits return "".join(random.choice(lowercase__ ) for _ in range(lowercase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
160
import os def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = len(grid[0] ) __SCREAMING_SNAKE_CASE : str = len(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : Dict = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(lowercase__ ): for j in range(n_rows - 3 ): __SCREAMING_SNAKE_CASE : Union[str, Any] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] __SCREAMING_SNAKE_CASE : Union[str, Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: __SCREAMING_SNAKE_CASE : Any = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: __SCREAMING_SNAKE_CASE : Any = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) __SCREAMING_SNAKE_CASE : Optional[int] = max( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if max_product > largest: __SCREAMING_SNAKE_CASE : Tuple = max_product return largest def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[int] = [] with open(os.path.dirname(lowercase__ ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) __SCREAMING_SNAKE_CASE : str = [[int(lowercase__ ) for i in grid[j]] for j in range(len(lowercase__ ) )] return largest_product(lowercase__ ) if __name__ == "__main__": print(solution())
696
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase_ ( A__ ): __lowerCamelCase = ['''pixel_values'''] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = True , **_lowerCAmelCase , ): super().__init__(**lowerCAmelCase__ ) UpperCAmelCase__ : str = size if size is not None else {'''shortest_edge''': 224} UpperCAmelCase__ : int = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) UpperCAmelCase__ : int = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase__ : Union[str, Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ , param_name="""crop_size""" ) UpperCAmelCase__ : Optional[int] = do_resize UpperCAmelCase__ : List[Any] = size UpperCAmelCase__ : Tuple = resample UpperCAmelCase__ : Dict = do_center_crop UpperCAmelCase__ : Any = crop_size UpperCAmelCase__ : Optional[Any] = do_rescale UpperCAmelCase__ : Any = rescale_factor UpperCAmelCase__ : Optional[int] = do_normalize UpperCAmelCase__ : Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase__ : Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase__ : Optional[Any] = do_convert_rgb def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ): UpperCAmelCase__ : Optional[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) UpperCAmelCase__ : Dict = get_resize_output_image_size(lowerCAmelCase__ , size=size["""shortest_edge"""] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ): UpperCAmelCase__ : str = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(lowerCAmelCase__ , size=(size["""height"""], size["""width"""]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ): return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ): return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ): UpperCAmelCase__ : Any = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : List[Any] = size if size is not None else self.size UpperCAmelCase__ : Tuple = get_size_dict(lowerCAmelCase__ , param_name="""size""" , default_to_square=lowerCAmelCase__ ) UpperCAmelCase__ : Dict = resample if resample is not None else self.resample UpperCAmelCase__ : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ : List[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ : Optional[Any] = get_size_dict(lowerCAmelCase__ , param_name="""crop_size""" , default_to_square=lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : Any = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : str = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : Union[str, Any] = image_std if image_std is not None else self.image_std UpperCAmelCase__ : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase__ : Union[str, Any] = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase__ : str = [convert_to_rgb(lowerCAmelCase__ ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase__ : Optional[int] = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: UpperCAmelCase__ : List[Any] = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: UpperCAmelCase__ : str = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: UpperCAmelCase__ : Optional[Any] = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: UpperCAmelCase__ : int = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] UpperCAmelCase__ : Tuple = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] UpperCAmelCase__ : int = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
79
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowercase ( A__ ): '''simple docstring''' def __magic_name__( self :List[Any] ) -> Any: __SCREAMING_SNAKE_CASE : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''depth_multiplier''' ) ) class _lowercase : '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any]=13 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Optional[Any]=32 , lowerCAmelCase__ :Dict=0.25 , lowerCAmelCase__ :Optional[int]=8 , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Union[str, Any]=1_024 , lowerCAmelCase__ :Any=32 , lowerCAmelCase__ :Tuple="relu6" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Dict=0.02 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :int=True , lowerCAmelCase__ :int=10 , lowerCAmelCase__ :Union[str, Any]=None , ) -> str: __SCREAMING_SNAKE_CASE : Any = parent __SCREAMING_SNAKE_CASE : Dict = batch_size __SCREAMING_SNAKE_CASE : List[Any] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = image_size __SCREAMING_SNAKE_CASE : Optional[int] = depth_multiplier __SCREAMING_SNAKE_CASE : Dict = min_depth __SCREAMING_SNAKE_CASE : List[str] = tf_padding __SCREAMING_SNAKE_CASE : List[Any] = int(last_hidden_size * depth_multiplier ) __SCREAMING_SNAKE_CASE : List[str] = output_stride __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = is_training __SCREAMING_SNAKE_CASE : Optional[int] = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = scope def __magic_name__( self :List[str] ) -> int: __SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__( self :Union[str, Any] ) -> Optional[Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = MobileNetVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = self.num_labels __SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = config_and_inputs __SCREAMING_SNAKE_CASE : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : Optional[Any] = ( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : Tuple = False def __magic_name__( self :Any ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = MobileNetVaModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[int] = MobileNetVaConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV1 does not use inputs_embeds''' ) def __magic_name__( self :Dict ) -> Optional[Any]: pass @unittest.skip(reason='''MobileNetV1 does not support input and output embeddings''' ) def __magic_name__( self :List[Any] ) -> List[Any]: pass @unittest.skip(reason='''MobileNetV1 does not output attentions''' ) def __magic_name__( self :Any ) -> Dict: pass def __magic_name__( self :Any ) -> List[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Any = model_class(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : Union[str, Any] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__( self :Any ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = outputs.hidden_states __SCREAMING_SNAKE_CASE : Optional[int] = 26 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : str = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE : List[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :List[str] ) -> List[Any]: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__( self :Optional[int] ) -> Union[str, Any]: return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v1_1.0_224''' ) if is_vision_available() else None ) @slow def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v1_1.0_224''' ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.default_image_processor __SCREAMING_SNAKE_CASE : int = prepare_img() __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE : int = model(**lowerCAmelCase__ ) # verify the logits __SCREAMING_SNAKE_CASE : Any = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
696
0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Dict = 600_851_475_143 ) -> str: try: __lowerCAmelCase : Optional[int] = int(lowercase__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) __lowerCAmelCase : Union[str, Any] = 1 __lowerCAmelCase : Tuple = 2 while i * i <= n: while n % i == 0: __lowerCAmelCase : int = i n //= i i += 1 if n > 1: __lowerCAmelCase : Optional[Any] = n return int(lowercase__ ) if __name__ == "__main__": print(f'''{solution() = }''')
504
import os from datetime import datetime as dt from github import Github __lowerCAmelCase : List[Any] =[ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Tuple = Github(os.environ['''GITHUB_TOKEN'''] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = g.get_repo('''huggingface/diffusers''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = repo.get_issues(state='''open''' ) for issue in open_issues: __SCREAMING_SNAKE_CASE : Optional[int] = sorted(issue.get_comments() , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
696
0
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : List[str] = 4_00_00_00 ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =0, 1 while b <= n: if b % 2 == 0: even_fibs.append(lowercase__ ) _SCREAMING_SNAKE_CASE =b, a + b return sum(lowercase__ ) if __name__ == "__main__": print(f'''{solution() = }''')
405
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : Dict ={ 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = '''canine''' def __init__( self :Any , lowerCAmelCase__ :List[Any]=768 , lowerCAmelCase__ :Any=12 , lowerCAmelCase__ :str=12 , lowerCAmelCase__ :Optional[int]=3_072 , lowerCAmelCase__ :str="gelu" , lowerCAmelCase__ :Union[str, Any]=0.1 , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :int=16_384 , lowerCAmelCase__ :Tuple=16 , lowerCAmelCase__ :List[Any]=0.02 , lowerCAmelCase__ :int=1E-1_2 , lowerCAmelCase__ :int=0 , lowerCAmelCase__ :List[Any]=0xe000 , lowerCAmelCase__ :List[str]=0xe001 , lowerCAmelCase__ :str=4 , lowerCAmelCase__ :Any=4 , lowerCAmelCase__ :Union[str, Any]=8 , lowerCAmelCase__ :Optional[int]=16_384 , lowerCAmelCase__ :Any=128 , **lowerCAmelCase__ :Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : int = type_vocab_size __SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps # Character config: __SCREAMING_SNAKE_CASE : Tuple = downsampling_rate __SCREAMING_SNAKE_CASE : Optional[Any] = upsampling_kernel_size __SCREAMING_SNAKE_CASE : Any = num_hash_functions __SCREAMING_SNAKE_CASE : Optional[int] = num_hash_buckets __SCREAMING_SNAKE_CASE : List[str] = local_transformer_stride
696
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') A = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) A = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_0000): out_file.write(data) A = BeautifulSoup(res.text, 'html.parser') A = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get("href")}""")
187
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : Tuple ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = '''transfo-xl''' SCREAMING_SNAKE_CASE__ : List[str] = ['''mems'''] SCREAMING_SNAKE_CASE__ : List[Any] = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self :str , lowerCAmelCase__ :Optional[int]=267_735 , lowerCAmelCase__ :Optional[int]=[20_000, 40_000, 200_000] , lowerCAmelCase__ :List[Any]=1_024 , lowerCAmelCase__ :List[str]=1_024 , lowerCAmelCase__ :Any=16 , lowerCAmelCase__ :Tuple=64 , lowerCAmelCase__ :Union[str, Any]=4_096 , lowerCAmelCase__ :Dict=4 , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :Dict=18 , lowerCAmelCase__ :Union[str, Any]=1_600 , lowerCAmelCase__ :Union[str, Any]=1_000 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Optional[Any]=0 , lowerCAmelCase__ :Union[str, Any]=-1 , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :int=True , lowerCAmelCase__ :str="normal" , lowerCAmelCase__ :Tuple=0.01 , lowerCAmelCase__ :Union[str, Any]=0.01 , lowerCAmelCase__ :str=0.02 , lowerCAmelCase__ :Optional[Any]=1E-5 , lowerCAmelCase__ :Union[str, Any]=0 , **lowerCAmelCase__ :Optional[Any] , ) -> str: __SCREAMING_SNAKE_CASE : str = vocab_size __SCREAMING_SNAKE_CASE : Tuple = [] self.cutoffs.extend(lowerCAmelCase__ ) if proj_share_all_but_first: __SCREAMING_SNAKE_CASE : List[str] = [False] + [True] * len(self.cutoffs ) else: __SCREAMING_SNAKE_CASE : Tuple = [False] + [False] * len(self.cutoffs ) __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Union[str, Any] = d_embed __SCREAMING_SNAKE_CASE : Tuple = d_head __SCREAMING_SNAKE_CASE : Dict = d_inner __SCREAMING_SNAKE_CASE : Optional[Any] = div_val __SCREAMING_SNAKE_CASE : Optional[Any] = pre_lnorm __SCREAMING_SNAKE_CASE : List[str] = n_layer __SCREAMING_SNAKE_CASE : int = n_head __SCREAMING_SNAKE_CASE : str = mem_len __SCREAMING_SNAKE_CASE : Union[str, Any] = same_length __SCREAMING_SNAKE_CASE : str = attn_type __SCREAMING_SNAKE_CASE : Dict = clamp_len __SCREAMING_SNAKE_CASE : Tuple = sample_softmax __SCREAMING_SNAKE_CASE : Optional[int] = adaptive __SCREAMING_SNAKE_CASE : int = dropout __SCREAMING_SNAKE_CASE : Optional[Any] = dropatt __SCREAMING_SNAKE_CASE : int = untie_r __SCREAMING_SNAKE_CASE : Optional[int] = init __SCREAMING_SNAKE_CASE : List[str] = init_range __SCREAMING_SNAKE_CASE : Any = proj_init_std __SCREAMING_SNAKE_CASE : List[str] = init_std __SCREAMING_SNAKE_CASE : Tuple = layer_norm_epsilon super().__init__(eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __magic_name__( self :str ) -> int: # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __magic_name__( self :Tuple , lowerCAmelCase__ :int ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
696
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Optional[int] = logging.get_logger(__name__) class snake_case__ ( A__ ): '''simple docstring''' __A = '''timm_backbone''' def __init__( self : Optional[int] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : Optional[Any] , ) -> Union[str, Any]: super().__init__(**lowerCAmelCase__ ) UpperCAmelCase_ = backbone UpperCAmelCase_ = num_channels UpperCAmelCase_ = features_only UpperCAmelCase_ = use_pretrained_backbone UpperCAmelCase_ = True UpperCAmelCase_ = out_indices if out_indices is not None else (-1,)
121
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : str =logging.get_logger(__name__) __lowerCAmelCase : Any ={ # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''megatron-bert''' def __init__( self :int , lowerCAmelCase__ :int=29_056 , lowerCAmelCase__ :Dict=1_024 , lowerCAmelCase__ :Optional[int]=24 , lowerCAmelCase__ :str=16 , lowerCAmelCase__ :Optional[int]=4_096 , lowerCAmelCase__ :Optional[Any]="gelu" , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :List[str]=512 , lowerCAmelCase__ :Any=2 , lowerCAmelCase__ :int=0.02 , lowerCAmelCase__ :Tuple=1E-1_2 , lowerCAmelCase__ :Tuple=0 , lowerCAmelCase__ :Optional[int]="absolute" , lowerCAmelCase__ :List[str]=True , **lowerCAmelCase__ :Tuple , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : List[str] = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Any = intermediate_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : str = initializer_range __SCREAMING_SNAKE_CASE : Dict = layer_norm_eps __SCREAMING_SNAKE_CASE : Dict = position_embedding_type __SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache
696
0
"""simple docstring""" class _UpperCAmelCase : def __init__( self : Dict , A : Union[str, Any] , A : List[Any] , A : Dict ) -> Union[str, Any]: lowercase_ : str = None lowercase_ : Optional[Any] = None lowercase_ : Union[str, Any] = graph self._normalize_graph(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase_ : Dict = len(lowerCAmelCase__ ) lowercase_ : Any = None def A ( self : Any , A : Union[str, Any] , A : Tuple ) -> Any: if sources is int: lowercase_ : Union[str, Any] = [sources] if sinks is int: lowercase_ : int = [sinks] if len(lowerCAmelCase__ ) == 0 or len(lowerCAmelCase__ ) == 0: return lowercase_ : List[Any] = sources[0] lowercase_ : Tuple = sinks[0] # make fake vertex if there are more # than one source or sink if len(lowerCAmelCase__ ) > 1 or len(lowerCAmelCase__ ) > 1: lowercase_ : Tuple = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase_ : str = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase_ : Optional[int] = max_input_flow lowercase_ : int = 0 lowercase_ : Tuple = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase_ : Optional[int] = max_input_flow lowercase_ : Any = size - 1 def A ( self : List[Any] ) -> str: if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def A ( self : Dict , A : int ) -> str: lowercase_ : str = algorithm(self ) class _UpperCAmelCase : def __init__( self : Tuple , A : Any ) -> Optional[Any]: lowercase_ : List[str] = flow_network lowercase_ : Any = flow_network.verticesCount lowercase_ : int = flow_network.sourceIndex lowercase_ : Dict = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase_ : List[Any] = flow_network.graph lowercase_ : int = False def A ( self : str ) -> str: if not self.executed: self._algorithm() lowercase_ : Optional[Any] = True def A ( self : Optional[int] ) -> Optional[Any]: pass class _UpperCAmelCase ( A__ ): def __init__( self : Optional[int] , A : Optional[Any] ) -> Tuple: super().__init__(lowerCAmelCase__ ) # use this to save your result lowercase_ : str = -1 def A ( self : str ) -> str: if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class _UpperCAmelCase ( A__ ): def __init__( self : str , A : List[str] ) -> List[str]: super().__init__(lowerCAmelCase__ ) lowercase_ : int = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase_ : List[Any] = [0] * self.verticies_count lowercase_ : List[str] = [0] * self.verticies_count def A ( self : Any ) -> str: lowercase_ : Tuple = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase_ : int = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase_ : List[str] = 0 while i < len(lowerCAmelCase__ ): lowercase_ : Optional[Any] = vertices_list[i] lowercase_ : int = self.heights[vertex_index] self.process_vertex(lowerCAmelCase__ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(lowerCAmelCase__ ) ) lowercase_ : int = 0 else: i += 1 lowercase_ : Dict = sum(self.preflow[self.source_index] ) def A ( self : Tuple , A : Tuple ) -> Optional[Any]: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(lowerCAmelCase__ , lowerCAmelCase__ ) self.relabel(lowerCAmelCase__ ) def A ( self : Union[str, Any] , A : List[Any] , A : Tuple ) -> Any: lowercase_ : Tuple = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def A ( self : Tuple , A : List[str] ) -> List[str]: lowercase_ : str = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase_ : Dict = self.heights[to_index] if min_height is not None: lowercase_ : Dict = min_height + 1 if __name__ == "__main__": __A : str = [0] __A : List[str] = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __A : List[Any] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __A : Any = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __A : str = flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
231
import os import sys import unittest __lowerCAmelCase : List[Any] =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __lowerCAmelCase : Optional[Any] =os.path.join(git_repo_path, 'src', 'transformers') __lowerCAmelCase : Optional[Any] ='\n{0} = None\n' __lowerCAmelCase : Tuple ='\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' __lowerCAmelCase : Dict ='\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tokenizers''' ) __SCREAMING_SNAKE_CASE : Dict = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tensorflow_text''' ) __SCREAMING_SNAKE_CASE : Tuple = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers''' ) __SCREAMING_SNAKE_CASE : Any = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tensorflow_text''' ) __SCREAMING_SNAKE_CASE : List[str] = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers_and_vision''' ) def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCAmelCase__ ) self.assertIn('''tensorflow_text''' , lowerCAmelCase__ ) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCAmelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , '''\nCONSTANT = None\n''' ) __SCREAMING_SNAKE_CASE : List[str] = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( lowerCAmelCase__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) __SCREAMING_SNAKE_CASE : int = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' __SCREAMING_SNAKE_CASE : Optional[Any] = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : str = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' __SCREAMING_SNAKE_CASE : List[Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , lowerCAmelCase__ )
696
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _lowercase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( A__ ): def __init__( self : List[Any] , _lowercase : str , _lowercase : List[Any] ): super().__init__() self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) @torch.no_grad() def __call__( self : str , _lowercase : int = 1 , _lowercase : int = 1_00 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : Optional[float] = None , _lowercase : bool = True , ): if audio_length_in_s is None: __UpperCAmelCase = self.unet.config.sample_size / self.unet.config.sample_rate __UpperCAmelCase = audio_length_in_s * self.unet.config.sample_rate __UpperCAmelCase = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) __UpperCAmelCase = int(lowerCAmelCase__ ) if sample_size % down_scale_factor != 0: __UpperCAmelCase = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ''' process.''' ) __UpperCAmelCase = int(lowerCAmelCase__ ) __UpperCAmelCase = next(iter(self.unet.parameters() ) ).dtype __UpperCAmelCase = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowerCAmelCase__ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __UpperCAmelCase = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=lowerCAmelCase__ ) # set step values self.scheduler.set_timesteps(lowerCAmelCase__ , device=audio.device ) __UpperCAmelCase = self.scheduler.timesteps.to(lowerCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __UpperCAmelCase = self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample # 2. compute previous image: x_t -> t_t-1 __UpperCAmelCase = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample __UpperCAmelCase = audio.clamp(-1 , 1 ).float().cpu().numpy() __UpperCAmelCase = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCAmelCase__ )
49
import math from numpy import inf from scipy.integrate import quad def _UpperCamelCase ( lowercase__ ): if num <= 0: raise ValueError('''math domain error''' ) return quad(lowercase__ , 0 , lowercase__ , args=(lowercase__) )[0] def _UpperCamelCase ( lowercase__ , lowercase__ ): return math.pow(lowercase__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
696
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase_ = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
256
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(lowercase__ , lowercase__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate __SCREAMING_SNAKE_CASE : int = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __SCREAMING_SNAKE_CASE : Union[str, Any] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
696
0
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def a ( ) -> None: """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
697
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Optional[Any]: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = len(set_a.intersection(_UpperCAmelCase ) ) if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) else: a_ = len(set_a.union(_UpperCAmelCase ) ) return intersection / union if isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) ): a_ = [element for element in set_a if element in set_b] if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / union else: a_ = set_a + [element for element in set_b if element not in set_a] return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return None if __name__ == "__main__": __lowerCAmelCase ={"a", "b", "c", "d", "e"} __lowerCAmelCase ={"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
697
1
'''simple docstring''' import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset __lowerCAmelCase =pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) __lowerCAmelCase =dataset.iloc[:, 1:2].values __lowerCAmelCase =dataset.iloc[:, 2].values __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase =train_test_split(X, y, test_size=0.2, random_state=0) __lowerCAmelCase =PolynomialFeatures(degree=4) __lowerCAmelCase =poly_reg.fit_transform(X) __lowerCAmelCase =LinearRegression() pol_reg.fit(X_poly, y) def a ( ) -> Tuple: """simple docstring""" plt.scatter(_UpperCAmelCase , _UpperCAmelCase , color='red' ) plt.plot(_UpperCAmelCase , pol_reg.predict(poly_reg.fit_transform(_UpperCAmelCase ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
697
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('iterations must be defined as integers' ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) a_ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
697
1
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class _snake_case : """simple docstring""" def __init__( self , UpperCAmelCase__ ) -> str: a_ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. a_ = len(UpperCAmelCase__ ) - 1 def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." a_ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , UpperCAmelCase__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(UpperCAmelCase__ ) , 5 ) == 1 return output_values def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." a_ = self.basis_function(UpperCAmelCase__ ) a_ = 0.0 a_ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ = 0.0_1 ) -> Any: from matplotlib import pyplot as plt # type: ignore a_ = [] # x coordinates of points to plot a_ = [] # y coordinates of points to plot a_ = 0.0 while t <= 1: a_ = self.bezier_curve_function(UpperCAmelCase__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size a_ = [i[0] for i in self.list_of_points] a_ = [i[1] for i in self.list_of_points] plt.plot( UpperCAmelCase__ , UpperCAmelCase__ , color='blue' , label='Curve of Degree ' + str(self.degree ) , ) plt.scatter(UpperCAmelCase__ , UpperCAmelCase__ , color='red' , label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
697
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _snake_case ( snake_case ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ) -> str: super().__init__( features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ , streaming=UpperCAmelCase__ , num_proc=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = Generator( cache_dir=UpperCAmelCase__ , features=UpperCAmelCase__ , generator=UpperCAmelCase__ , gen_kwargs=UpperCAmelCase__ , **UpperCAmelCase__ , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Build iterable dataset if self.streaming: a_ = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: a_ = None a_ = None a_ = None a_ = None self.builder.download_and_prepare( download_config=UpperCAmelCase__ , download_mode=UpperCAmelCase__ , verification_mode=UpperCAmelCase__ , base_path=UpperCAmelCase__ , num_proc=self.num_proc , ) a_ = self.builder.as_dataset( split='train' , verification_mode=UpperCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
697
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCAmelCase ={ "configuration_layoutlmv3": [ "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv3Config", "LayoutLMv3OnnxConfig", ], "processing_layoutlmv3": ["LayoutLMv3Processor"], "tokenization_layoutlmv3": ["LayoutLMv3Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =["LayoutLMv3TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv3ForQuestionAnswering", "LayoutLMv3ForSequenceClassification", "LayoutLMv3ForTokenClassification", "LayoutLMv3Model", "LayoutLMv3PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLayoutLMv3ForQuestionAnswering", "TFLayoutLMv3ForSequenceClassification", "TFLayoutLMv3ForTokenClassification", "TFLayoutLMv3Model", "TFLayoutLMv3PreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =["LayoutLMv3FeatureExtractor"] __lowerCAmelCase =["LayoutLMv3ImageProcessor"] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys __lowerCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
697
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase =numpy.array([0, 0]) __lowerCAmelCase =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase =numpy.array([1, 0]) __lowerCAmelCase =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a ( _UpperCAmelCase , _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = initial_vectors for _ in range(_UpperCAmelCase ): a_ = iteration_step(_UpperCAmelCase ) return vectors def a ( _UpperCAmelCase ) -> list[numpy.ndarray]: """simple docstring""" a_ = [] for i, start_vector in enumerate(vectors[:-1] ): a_ = vectors[i + 1] new_vectors.append(_UpperCAmelCase ) a_ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a ( _UpperCAmelCase , _UpperCAmelCase ) -> numpy.ndarray: """simple docstring""" a_ = numpy.radians(_UpperCAmelCase ) a_ , a_ = numpy.cos(_UpperCAmelCase ), numpy.sin(_UpperCAmelCase ) a_ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_UpperCAmelCase , _UpperCAmelCase ) def a ( _UpperCAmelCase ) -> None: """simple docstring""" a_ = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() a_ , a_ = zip(*_UpperCAmelCase ) plt.plot(_UpperCAmelCase , _UpperCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
697
1
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: a_ = mf_knapsack(i - 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: a_ = max( mf_knapsack(i - 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , mf_knapsack(i - 1 , _UpperCAmelCase , _UpperCAmelCase , j - wt[i - 1] ) + val[i - 1] , ) a_ = val return f[i][j] def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: """simple docstring""" a_ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: a_ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: a_ = dp[i - 1][w_] return dp[n][w_], dp def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: """simple docstring""" if not (isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) a_ = len(_UpperCAmelCase ) if num_items != len(_UpperCAmelCase ): a_ = ( 'The number of weights must be the same as the number of values.\n' F'''But got {num_items} weights and {len(_UpperCAmelCase )} values''' ) raise ValueError(_UpperCAmelCase ) for i in range(_UpperCAmelCase ): if not isinstance(wt[i] , _UpperCAmelCase ): a_ = ( 'All weights must be integers but got weight of ' F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(_UpperCAmelCase ) a_ , a_ = knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) a_ = set() _construct_solution(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return optimal_val, example_optional_set def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: """simple docstring""" if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_UpperCAmelCase , _UpperCAmelCase , i - 1 , _UpperCAmelCase , _UpperCAmelCase ) else: optimal_set.add(_UpperCAmelCase ) _construct_solution(_UpperCAmelCase , _UpperCAmelCase , i - 1 , j - wt[i - 1] , _UpperCAmelCase ) if __name__ == "__main__": __lowerCAmelCase =[3, 2, 4, 4] __lowerCAmelCase =[4, 3, 2, 3] __lowerCAmelCase =4 __lowerCAmelCase =6 __lowerCAmelCase =[[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] __lowerCAmelCase , __lowerCAmelCase =knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 __lowerCAmelCase , __lowerCAmelCase =knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
697
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def a ( _UpperCAmelCase ) -> int: """simple docstring""" if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def a ( _UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" for char in word: a_ = ord(_UpperCAmelCase ) if not _is_chinese_char(_UpperCAmelCase ): return 0 return 1 def a ( _UpperCAmelCase ) -> Tuple: """simple docstring""" a_ = set() for token in tokens: a_ = len(_UpperCAmelCase ) > 1 and is_chinese(_UpperCAmelCase ) if chinese_word: word_set.add(_UpperCAmelCase ) a_ = list(_UpperCAmelCase ) return word_list def a ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: """simple docstring""" if not chinese_word_set: return bert_tokens a_ = max([len(_UpperCAmelCase ) for w in chinese_word_set] ) a_ = bert_tokens a_ , a_ = 0, len(_UpperCAmelCase ) while start < end: a_ = True if is_chinese(bert_word[start] ): a_ = min(end - start , _UpperCAmelCase ) for i in range(_UpperCAmelCase , 1 , -1 ): a_ = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): a_ = '##' + bert_word[j] a_ = start + i a_ = False break if single_word: start += 1 return bert_word def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: """simple docstring""" a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['cws'] ).cws a_ = [get_chinese_word(_UpperCAmelCase ) for r in res] ltp_res.extend(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for i in range(0 , len(_UpperCAmelCase ) , 1_0_0 ): a_ = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=5_1_2 ) bert_res.extend(res['input_ids'] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) a_ = [] for input_ids, chinese_word in zip(_UpperCAmelCase , _UpperCAmelCase ): a_ = [] for id in input_ids: a_ = bert_tokenizer._convert_id_to_token(_UpperCAmelCase ) input_tokens.append(_UpperCAmelCase ) a_ = add_sub_symbol(_UpperCAmelCase , _UpperCAmelCase ) a_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_UpperCAmelCase ): if token[:2] == "##": a_ = token[2:] # save chinese tokens' pos if len(_UpperCAmelCase ) == 1 and _is_chinese_char(ord(_UpperCAmelCase ) ): ref_id.append(_UpperCAmelCase ) ref_ids.append(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) return ref_ids def a ( _UpperCAmelCase ) -> Optional[Any]: """simple docstring""" with open(args.file_name , 'r' , encoding='utf-8' ) as f: a_ = f.readlines() a_ = [line.strip() for line in data if len(_UpperCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' a_ = LTP(args.ltp ) # faster in GPU device a_ = BertTokenizer.from_pretrained(args.bert ) a_ = prepare_ref(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: a_ = [json.dumps(_UpperCAmelCase ) + '\n' for ref in ref_ids] f.writelines(_UpperCAmelCase ) if __name__ == "__main__": __lowerCAmelCase =argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __lowerCAmelCase =parser.parse_args() main(args)
697
1
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def a ( _UpperCAmelCase = 8 ) -> str: """simple docstring""" a_ = ascii_letters + digits + punctuation return "".join(secrets.choice(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ) ) def a ( _UpperCAmelCase , _UpperCAmelCase ) -> str: """simple docstring""" i -= len(_UpperCAmelCase ) a_ = i // 3 a_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) a_ = ( chars_incl + random(_UpperCAmelCase , quotient + remainder ) + random(_UpperCAmelCase , _UpperCAmelCase ) + random(_UpperCAmelCase , _UpperCAmelCase ) ) a_ = list(_UpperCAmelCase ) shuffle(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) # random is a generalised function for letters, characters and numbers def a ( _UpperCAmelCase , _UpperCAmelCase ) -> str: """simple docstring""" return "".join(secrets.choice(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ) ) def a ( _UpperCAmelCase , _UpperCAmelCase ) -> Any: """simple docstring""" pass # Put your code here... def a ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" pass # Put your code here... def a ( _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: """simple docstring""" pass # Put your code here... def a ( _UpperCAmelCase , _UpperCAmelCase = 8 ) -> bool: """simple docstring""" if len(_UpperCAmelCase ) < min_length: # Your Password must be at least 8 characters long return False a_ = any(char in ascii_uppercase for char in password ) a_ = any(char in ascii_lowercase for char in password ) a_ = any(char in digits for char in password ) a_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def a ( ) -> Dict: """simple docstring""" a_ = int(input('Please indicate the max length of your password: ' ).strip() ) a_ = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(_UpperCAmelCase ) ) print( 'Alternative Password generated:' , alternative_password_generator(_UpperCAmelCase , _UpperCAmelCase ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
697
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase ={ "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": 512, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase = RetriBertTokenizer _UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__="[UNK]" , UpperCAmelCase__="[SEP]" , UpperCAmelCase__="[PAD]" , UpperCAmelCase__="[CLS]" , UpperCAmelCase__="[MASK]" , UpperCAmelCase__=True , UpperCAmelCase__=None , **UpperCAmelCase__ , ) -> int: super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase__ ) != tokenize_chinese_chars ): a_ = getattr(UpperCAmelCase__ , normalizer_state.pop('type' ) ) a_ = do_lower_case a_ = strip_accents a_ = tokenize_chinese_chars a_ = normalizer_class(**UpperCAmelCase__ ) a_ = do_lower_case def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__=None ) -> str: a_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> List[int]: a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> Tuple[str]: a_ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
697
1
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _snake_case : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__="resnet50" , UpperCAmelCase__=3 , UpperCAmelCase__=32 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=True , ) -> Optional[Any]: a_ = parent a_ = out_indices if out_indices is not None else [4] a_ = stage_names a_ = out_features a_ = backbone a_ = batch_size a_ = image_size a_ = num_channels a_ = use_pretrained_backbone a_ = is_training def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ = self.get_config() return config, pixel_values def __SCREAMING_SNAKE_CASE ( self ) -> Dict: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = TimmBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): a_ = model(UpperCAmelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = self.prepare_config_and_inputs() a_ , a_ = config_and_inputs a_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _snake_case ( snake_case , snake_case , snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = (TimmBackbone,) if is_torch_available() else () _UpperCamelCase = {"feature-extraction": TimmBackbone} if is_torch_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = TimmBackboneModelTester(self ) a_ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = 'resnet18' a_ = 'microsoft/resnet-18' a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ , out_indices=[1, 2, 3] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Safetensors is not supported by timm.' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) a_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = True a_ = self.has_attentions # no need to test all models as different heads yield the same functionality a_ = self.all_model_classes[0] a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) a_ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = model(**UpperCAmelCase__ ) a_ = outputs[0][-1] # Encoder-/Decoder-only models a_ = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a_ = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCAmelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = None a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = False a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ )
697
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "lilt" def __init__( self , UpperCAmelCase__=3_0522 , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=512 , UpperCAmelCase__=2 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=0 , UpperCAmelCase__="absolute" , UpperCAmelCase__=None , UpperCAmelCase__=4 , UpperCAmelCase__=1024 , **UpperCAmelCase__ , ) -> Optional[Any]: super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = classifier_dropout a_ = channel_shrink_ratio a_ = max_ad_position_embeddings
697
1
'''simple docstring''' from math import factorial def a ( _UpperCAmelCase = 1_0_0 ) -> int: """simple docstring""" return sum(int(_UpperCAmelCase ) for x in str(factorial(_UpperCAmelCase ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
697
'''simple docstring''' from __future__ import annotations def a ( _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # We need to create solution object to save path. a_ = [[0 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] a_ = run_maze(_UpperCAmelCase , 0 , 0 , _UpperCAmelCase ) if solved: print('\n'.join(str(_UpperCAmelCase ) for row in solutions ) ) else: print('No solution exists!' ) return solved def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # Final check point. if i == j == (size - 1): a_ = 1 return True a_ = (not i < 0) and (not j < 0) # Check lower bounds a_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. a_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited a_ = 1 # check for directions if ( run_maze(_UpperCAmelCase , i + 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j + 1 , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , i - 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j - 1 , _UpperCAmelCase ) ): return True a_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
697
1
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __lowerCAmelCase =logging.get_logger(__name__) class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = ["audio_values", "audio_mask"] def __init__( self , UpperCAmelCase__=2048 , UpperCAmelCase__=1 , UpperCAmelCase__=[16, 16] , UpperCAmelCase__=128 , UpperCAmelCase__=4_4100 , UpperCAmelCase__=86 , UpperCAmelCase__=2048 , UpperCAmelCase__=0.0 , **UpperCAmelCase__ , ) -> Union[str, Any]: super().__init__( feature_size=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , padding_value=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = spectrogram_length a_ = num_channels a_ = patch_size a_ = feature_size // self.patch_size[1] a_ = n_fft a_ = sampling_rate // hop_length_to_sampling_rate a_ = sampling_rate a_ = padding_value a_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=UpperCAmelCase__ , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=UpperCAmelCase__ , norm='slaney' , mel_scale='slaney' , ).T def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> np.ndarray: a_ = spectrogram( UpperCAmelCase__ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=8_0.0 , ) a_ = log_spec[:, :-1] a_ = log_spec - 2_0.0 a_ = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , **UpperCAmelCase__ , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) a_ = isinstance(UpperCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) a_ = is_batched_numpy or ( isinstance(UpperCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a_ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase__ , np.ndarray ): a_ = np.asarray(UpperCAmelCase__ , dtype=np.floataa ) elif isinstance(UpperCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a_ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis a_ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , UpperCAmelCase__ ): a_ = [np.asarray(UpperCAmelCase__ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask a_ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: a_ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] a_ = np.array(UpperCAmelCase__ ).astype(np.floataa ) # convert into correct format for padding a_ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch a_ = np.ones([len(UpperCAmelCase__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) a_ = padded_audio_features * self.padding_value for i in range(len(UpperCAmelCase__ ) ): a_ = audio_features[i] a_ = feature # return as BatchFeature if return_attention_mask: a_ = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: a_ = {'audio_values': padded_audio_features} a_ = BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) return encoded_inputs
697
'''simple docstring''' __lowerCAmelCase ={ "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) __lowerCAmelCase ={ "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float: """simple docstring""" a_ = from_type.lower().strip('s' ) a_ = to_type.lower().strip('s' ) a_ = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) a_ = UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase ) if from_sanitized not in METRIC_CONVERSION: a_ = ( F'''Invalid \'from_type\' value: {from_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) if to_sanitized not in METRIC_CONVERSION: a_ = ( F'''Invalid \'to_type\' value: {to_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}''' ) raise ValueError(_UpperCAmelCase ) a_ = METRIC_CONVERSION[from_sanitized] a_ = METRIC_CONVERSION[to_sanitized] a_ = 1 if from_exponent > to_exponent: a_ = from_exponent - to_exponent else: a_ = -(to_exponent - from_exponent) return value * pow(1_0 , _UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
697
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class _snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=7 , UpperCAmelCase__=3 , UpperCAmelCase__=10 , UpperCAmelCase__=18 , UpperCAmelCase__=30 , UpperCAmelCase__=400 , UpperCAmelCase__=True , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__=[0.5, 0.5, 0.5] , UpperCAmelCase__=[0.5, 0.5, 0.5] , UpperCAmelCase__=None , ) -> int: a_ = size if size is not None else {'shortest_edge': 18} a_ = crop_size if crop_size is not None else {'height': 18, 'width': 18} a_ = parent a_ = batch_size a_ = num_channels a_ = num_frames a_ = image_size a_ = min_resolution a_ = max_resolution a_ = do_resize a_ = size a_ = do_normalize a_ = image_mean a_ = image_std a_ = crop_size def __SCREAMING_SNAKE_CASE ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _snake_case ( snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = VivitImageProcessor if is_vision_available() else None def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = VivitImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , 'image_mean' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'image_std' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'size' ) ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) a_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos a_ = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input a_ = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input a_ = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input a_ = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
697
'''simple docstring''' import unittest from transformers import DonutProcessor __lowerCAmelCase ="naver-clova-ix/donut-base" class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = DonutProcessor.from_pretrained(UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } a_ = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) a_ = self.processor.tokenajson(UpperCAmelCase__ ) self.assertDictEqual(UpperCAmelCase__ , UpperCAmelCase__ )
697
1
'''simple docstring''' class _snake_case : # Public class to implement a graph """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> None: a_ = row a_ = col a_ = graph def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> None: # Checking all 8 elements surrounding nth element a_ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order a_ = [-1, 0, 1, -1, 1, -1, 0, 1] a_ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCAmelCase__ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> int: # And finally, count all islands. a_ = [[False for j in range(self.COL )] for i in range(self.ROW )] a_ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) count += 1 return count
697
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _snake_case : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__="resnet50" , UpperCAmelCase__=3 , UpperCAmelCase__=32 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=True , ) -> Optional[Any]: a_ = parent a_ = out_indices if out_indices is not None else [4] a_ = stage_names a_ = out_features a_ = backbone a_ = batch_size a_ = image_size a_ = num_channels a_ = use_pretrained_backbone a_ = is_training def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ = self.get_config() return config, pixel_values def __SCREAMING_SNAKE_CASE ( self ) -> Dict: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = TimmBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): a_ = model(UpperCAmelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = self.prepare_config_and_inputs() a_ , a_ = config_and_inputs a_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _snake_case ( snake_case , snake_case , snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = (TimmBackbone,) if is_torch_available() else () _UpperCamelCase = {"feature-extraction": TimmBackbone} if is_torch_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = TimmBackboneModelTester(self ) a_ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = 'resnet18' a_ = 'microsoft/resnet-18' a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ , out_indices=[1, 2, 3] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Safetensors is not supported by timm.' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) a_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = True a_ = self.has_attentions # no need to test all models as different heads yield the same functionality a_ = self.all_model_classes[0] a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) a_ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = model(**UpperCAmelCase__ ) a_ = outputs[0][-1] # Encoder-/Decoder-only models a_ = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a_ = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCAmelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = None a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = False a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ )
697
1
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __lowerCAmelCase =open # noqa: we just need to have a builtin inside this module to test it properly
697
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=7 , UpperCAmelCase__=3 , UpperCAmelCase__=18 , UpperCAmelCase__=30 , UpperCAmelCase__=400 , UpperCAmelCase__=True , UpperCAmelCase__=None , UpperCAmelCase__=True , ) -> List[Any]: a_ = size if size is not None else {'height': 18, 'width': 18} a_ = parent a_ = batch_size a_ = num_channels a_ = image_size a_ = min_resolution a_ = max_resolution a_ = do_resize a_ = size a_ = apply_ocr def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _snake_case ( snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = LayoutLMvaImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'apply_ocr' ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) a_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , UpperCAmelCase__ ) self.assertIsInstance(encoding.boxes , UpperCAmelCase__ ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> int: # with apply_OCR = True a_ = LayoutLMvaImageProcessor() from datasets import load_dataset a_ = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) a_ = Image.open(ds[0]['file'] ).convert('RGB' ) a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 a_ = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 a_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCAmelCase__ ) self.assertListEqual(encoding.boxes , UpperCAmelCase__ ) # with apply_OCR = False a_ = LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) a_ = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
697
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase ={ "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __lowerCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
697
'''simple docstring''' import math def a ( _UpperCAmelCase ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( _UpperCAmelCase = 1_0_0_0_1 ) -> int: """simple docstring""" try: a_ = int(_UpperCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) a_ = [] a_ = 2 while len(_UpperCAmelCase ) < nth: if is_prime(_UpperCAmelCase ): primes.append(_UpperCAmelCase ) num += 1 else: num += 1 return primes[len(_UpperCAmelCase ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
697
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={"vocab_file": "vocab.json", "merges_file": "merges.txt"} __lowerCAmelCase ={ "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } __lowerCAmelCase ={ "allenai/longformer-base-4096": 4096, "allenai/longformer-large-4096": 4096, "allenai/longformer-large-4096-finetuned-triviaqa": 4096, "allenai/longformer-base-4096-extra.pos.embd.only": 4096, "allenai/longformer-large-4096-extra.pos.embd.only": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def a ( ) -> Any: """simple docstring""" a_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) a_ = bs[:] a_ = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 a_ = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def a ( _UpperCAmelCase ) -> Dict: """simple docstring""" a_ = set() a_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a_ = char return pairs class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__="replace" , UpperCAmelCase__="<s>" , UpperCAmelCase__="</s>" , UpperCAmelCase__="</s>" , UpperCAmelCase__="<s>" , UpperCAmelCase__="<unk>" , UpperCAmelCase__="<pad>" , UpperCAmelCase__="<mask>" , UpperCAmelCase__=False , **UpperCAmelCase__ , ) -> Optional[Any]: a_ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else bos_token a_ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else eos_token a_ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else sep_token a_ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else cls_token a_ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else unk_token a_ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it a_ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , **UpperCAmelCase__ , ) with open(UpperCAmelCase__ , encoding='utf-8' ) as vocab_handle: a_ = json.load(UpperCAmelCase__ ) a_ = {v: k for k, v in self.encoder.items()} a_ = errors # how to handle errors in decoding a_ = bytes_to_unicode() a_ = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase__ , encoding='utf-8' ) as merges_handle: a_ = merges_handle.read().split('\n' )[1:-1] a_ = [tuple(merge.split() ) for merge in bpe_merges] a_ = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) a_ = {} a_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions a_ = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: return len(self.encoder ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> Any: if token in self.cache: return self.cache[token] a_ = tuple(UpperCAmelCase__ ) a_ = get_pairs(UpperCAmelCase__ ) if not pairs: return token while True: a_ = min(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : self.bpe_ranks.get(UpperCAmelCase__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break a_ , a_ = bigram a_ = [] a_ = 0 while i < len(UpperCAmelCase__ ): try: a_ = word.index(UpperCAmelCase__ , UpperCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a_ = j if word[i] == first and i < len(UpperCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a_ = tuple(UpperCAmelCase__ ) a_ = new_word if len(UpperCAmelCase__ ) == 1: break else: a_ = get_pairs(UpperCAmelCase__ ) a_ = ' '.join(UpperCAmelCase__ ) a_ = word return word def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> int: a_ = [] for token in re.findall(self.pat , UpperCAmelCase__ ): a_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase__ ).split(' ' ) ) return bpe_tokens def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> List[str]: return self.encoder.get(UpperCAmelCase__ , self.encoder.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> str: return self.decoder.get(UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> Union[str, Any]: a_ = ''.join(UpperCAmelCase__ ) a_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a_ = os.path.join( UpperCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) a_ = os.path.join( UpperCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ ) + '\n' ) a_ = 0 with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) a_ = token_index writer.write(' '.join(UpperCAmelCase__ ) + '\n' ) index += 1 return vocab_file, merge_file def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ = [self.cls_token_id] a_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase__ )) + [1] return [1] + ([0] * len(UpperCAmelCase__ )) + [1, 1] + ([0] * len(UpperCAmelCase__ )) + [1] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> List[int]: a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__=False , **UpperCAmelCase__ ) -> Tuple: a_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase__ ) > 0 and not text[0].isspace()): a_ = ' ' + text return (text, kwargs)
697
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = 10 def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = [1, 2, 3, 4] a_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = '' a_ , a_ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) self.assertEqual(UpperCAmelCase__ , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) a_ , a_ = process_story(UpperCAmelCase__ ) a_ = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = ['It was the best of times.'] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = torch.tensor([1, 2, 3, 4] ) a_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 0 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 23 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 1 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = 101 a_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) a_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) a_ = compute_token_type_ids(UpperCAmelCase__ , UpperCAmelCase__ ) np.testing.assert_array_equal(UpperCAmelCase__ , UpperCAmelCase__ )
697
1
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) def a ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: """simple docstring""" a_ = nn.functional.normalize(_UpperCAmelCase ) a_ = nn.functional.normalize(_UpperCAmelCase ) return torch.mm(_UpperCAmelCase , normalized_text_embeds.t() ) class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = CLIPConfig _UpperCamelCase = ["CLIPEncoderLayer"] def __init__( self , UpperCAmelCase__ ) -> Any: super().__init__(UpperCAmelCase__ ) a_ = CLIPVisionModel(config.vision_config ) a_ = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=UpperCAmelCase__ ) a_ = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=UpperCAmelCase__ ) a_ = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=UpperCAmelCase__ ) a_ = nn.Parameter(torch.ones(17 ) , requires_grad=UpperCAmelCase__ ) a_ = nn.Parameter(torch.ones(3 ) , requires_grad=UpperCAmelCase__ ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> Tuple: a_ = self.vision_model(UpperCAmelCase__ )[1] # pooled_output a_ = self.visual_projection(UpperCAmelCase__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 a_ = cosine_distance(UpperCAmelCase__ , self.special_care_embeds ).cpu().float().numpy() a_ = cosine_distance(UpperCAmelCase__ , self.concept_embeds ).cpu().float().numpy() a_ = [] a_ = image_embeds.shape[0] for i in range(UpperCAmelCase__ ): a_ = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images a_ = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): a_ = special_cos_dist[i][concept_idx] a_ = self.special_care_embeds_weights[concept_idx].item() a_ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) a_ = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): a_ = cos_dist[i][concept_idx] a_ = self.concept_embeds_weights[concept_idx].item() a_ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(UpperCAmelCase__ ) result.append(UpperCAmelCase__ ) a_ = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]: a_ = self.vision_model(UpperCAmelCase__ )[1] # pooled_output a_ = self.visual_projection(UpperCAmelCase__ ) a_ = cosine_distance(UpperCAmelCase__ , self.special_care_embeds ) a_ = cosine_distance(UpperCAmelCase__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images a_ = 0.0 a_ = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) a_ = torch.any(special_scores > 0 , dim=1 ) a_ = special_care * 0.0_1 a_ = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) a_ = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) a_ = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
697
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __lowerCAmelCase ="\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class _snake_case ( unittest.TestCase , snake_case ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = load_tool('text-question-answering' ) self.tool.setup() a_ = load_tool('text-question-answering' , remote=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = self.remote_tool(UpperCAmelCase__ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: a_ = self.tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: a_ = self.remote_tool(text=UpperCAmelCase__ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(UpperCAmelCase__ , 'launched the BigScience Research Workshop' )
697
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class _snake_case ( datasets.BuilderConfig ): """simple docstring""" _UpperCamelCase = None class _snake_case ( datasets.ArrowBasedBuilder ): """simple docstring""" _UpperCamelCase = PandasConfig def __SCREAMING_SNAKE_CASE ( self ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> Optional[Any]: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) a_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase__ , (str, list, tuple) ): a_ = data_files if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): a_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a_ = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] a_ = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): a_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a_ = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'files': files} ) ) return splits def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example a_ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema ) return pa_table def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> str: for i, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ): with open(UpperCAmelCase__ , 'rb' ) as f: a_ = pa.Table.from_pandas(pd.read_pickle(UpperCAmelCase__ ) ) yield i, self._cast_table(UpperCAmelCase__ )
697
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase ={"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __lowerCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
697
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = 42 _UpperCamelCase = 42 def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: super().__init__() self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) @torch.no_grad() def __call__( self , UpperCAmelCase__ = 1 , UpperCAmelCase__ = 50 , UpperCAmelCase__ = None , UpperCAmelCase__ = "pil" , UpperCAmelCase__ = True , **UpperCAmelCase__ , ) -> Union[Tuple, ImagePipelineOutput]: a_ = self.unet.config.sample_size a_ = (batch_size, 3, img_size, img_size) a_ = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) a_ = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(UpperCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper a_ = self.scheduler.schedule[t] a_ = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat a_ , a_ = self.scheduler.add_noise_to_input(UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__ ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. a_ = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev a_ = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. a_ = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample a_ = self.scheduler.step_correct( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , step_output.prev_sample , step_output['derivative'] , ) a_ = step_output.prev_sample a_ = (sample / 2 + 0.5).clamp(0 , 1 ) a_ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a_ = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase__ )
697
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "vit" def __init__( self , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=224 , UpperCAmelCase__=16 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=16 , **UpperCAmelCase__ , ) -> Dict: super().__init__(**UpperCAmelCase__ ) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = image_size a_ = patch_size a_ = num_channels a_ = qkv_bias a_ = encoder_stride class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __SCREAMING_SNAKE_CASE ( self ) -> float: return 1e-4
697
1
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __lowerCAmelCase =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , ) -> Optional[Any]: """simple docstring""" output_path.parent.mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _UpperCAmelCase , _UpperCAmelCase , f=output_path.as_posix() , input_names=_UpperCAmelCase , output_names=_UpperCAmelCase , dynamic_axes=_UpperCAmelCase , do_constant_folding=_UpperCAmelCase , use_external_data_format=_UpperCAmelCase , enable_onnx_checker=_UpperCAmelCase , opset_version=_UpperCAmelCase , ) else: export( _UpperCAmelCase , _UpperCAmelCase , f=output_path.as_posix() , input_names=_UpperCAmelCase , output_names=_UpperCAmelCase , dynamic_axes=_UpperCAmelCase , do_constant_folding=_UpperCAmelCase , opset_version=_UpperCAmelCase , ) @torch.no_grad() def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False ) -> Optional[Any]: """simple docstring""" a_ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): a_ = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: a_ = 'cpu' a_ = Path(_UpperCAmelCase ) # VAE DECODER a_ = AutoencoderKL.from_pretrained(model_path + '/vae' ) a_ = vae_decoder.config.latent_channels # forward only through the decoder part a_ = vae_decoder.decode onnx_export( _UpperCAmelCase , model_args=( torch.randn(1 , _UpperCAmelCase , 2_5 , 2_5 ).to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=_UpperCAmelCase , ) del vae_decoder if __name__ == "__main__": __lowerCAmelCase =argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") __lowerCAmelCase =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
697
'''simple docstring''' def a ( _UpperCAmelCase = 5_0 ) -> int: """simple docstring""" a_ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
697
1
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> None: a_ = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) a_ = Vector() def __SCREAMING_SNAKE_CASE ( self ) -> None: a_ = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase__ ) , '(0,0,0,0,0,1)' ) def __SCREAMING_SNAKE_CASE ( self ) -> None: a_ = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase__ ) , 4 ) def __SCREAMING_SNAKE_CASE ( self ) -> None: a_ = Vector([1, 2] ) a_ = Vector([1, 2, 3, 4, 5] ) a_ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) a_ = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def __SCREAMING_SNAKE_CASE ( self ) -> None: a_ = Vector([1, 2, 3] ) a_ = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __SCREAMING_SNAKE_CASE ( self ) -> None: a_ = Vector([1, 2, 3] ) a_ = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __SCREAMING_SNAKE_CASE ( self ) -> None: a_ = Vector([1, 2, 3] ) a_ = Vector([2, -1, 4] ) # for test of dot product a_ = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def __SCREAMING_SNAKE_CASE ( self ) -> None: self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def __SCREAMING_SNAKE_CASE ( self ) -> None: self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def __SCREAMING_SNAKE_CASE ( self ) -> None: a_ = Vector([1, 2, 3] ) a_ = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase__ , UpperCAmelCase__ ) ) , '(3,4,7)' ) def __SCREAMING_SNAKE_CASE ( self ) -> None: a_ = Vector([1, 0, 0, 0, 0, 0] ) a_ = x.copy() self.assertEqual(str(UpperCAmelCase__ ) , str(UpperCAmelCase__ ) ) def __SCREAMING_SNAKE_CASE ( self ) -> None: a_ = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase__ ) , '(0,1,0)' ) def __SCREAMING_SNAKE_CASE ( self ) -> None: a_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(UpperCAmelCase__ ) ) def __SCREAMING_SNAKE_CASE ( self ) -> None: a_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a_ = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase__ , UpperCAmelCase__ ) ) def __SCREAMING_SNAKE_CASE ( self ) -> None: a_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a_ = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase__ , UpperCAmelCase__ ) ) def __SCREAMING_SNAKE_CASE ( self ) -> None: a_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __SCREAMING_SNAKE_CASE ( self ) -> None: a_ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) a_ = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def __SCREAMING_SNAKE_CASE ( self ) -> None: a_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(UpperCAmelCase__ ) ) def __SCREAMING_SNAKE_CASE ( self ) -> None: a_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def __SCREAMING_SNAKE_CASE ( self ) -> None: a_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def __SCREAMING_SNAKE_CASE ( self ) -> None: a_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def __SCREAMING_SNAKE_CASE ( self ) -> None: self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
697
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def a ( ) -> None: """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
697
1
'''simple docstring''' import argparse import struct import unittest class _snake_case : """simple docstring""" def __init__( self , UpperCAmelCase__ ) -> None: a_ = data # Initialize hash values a_ = [ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19, ] # Initialize round constants a_ = [ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, ] a_ = self.preprocessing(self.data ) self.final_hash() @staticmethod def __SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ) -> bytes: a_ = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase__ ) + 8) % 64)) a_ = struct.pack('>Q' , (len(UpperCAmelCase__ ) * 8) ) return data + padding + big_endian_integer def __SCREAMING_SNAKE_CASE ( self ) -> None: # Convert into blocks of 64 bytes a_ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers a_ = list(struct.unpack('>16L' , UpperCAmelCase__ ) ) # add 48 0-ed integers words += [0] * 48 a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array a_ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) a_ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) a_ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100000000 # Compression a_ = self.ror(UpperCAmelCase__ , 6 ) ^ self.ror(UpperCAmelCase__ , 11 ) ^ self.ror(UpperCAmelCase__ , 25 ) a_ = (e & f) ^ ((~e & 0xffffffff) & g) a_ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100000000 a_ = self.ror(UpperCAmelCase__ , 2 ) ^ self.ror(UpperCAmelCase__ , 13 ) ^ self.ror(UpperCAmelCase__ , 22 ) a_ = (a & b) ^ (a & c) ^ (b & c) a_ = (sa + maj) % 0x100000000 a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ = ( g, f, e, ((d + tempa) % 0x100000000), c, b, a, ((tempa + tempa) % 0x100000000), ) a_ = [a, b, c, d, e, f, g, h] # Modify final values a_ = [ ((element + mutated_hash_values[index]) % 0x100000000) for index, element in enumerate(self.hashes ) ] a_ = ''.join([hex(UpperCAmelCase__ )[2:].zfill(8 ) for value in self.hashes] ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: return 0xffffffff & (value << (32 - rotations)) | (value >> rotations) class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> None: import hashlib a_ = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(UpperCAmelCase__ ).hash , hashlib.shaaaa(UpperCAmelCase__ ).hexdigest() ) def a ( ) -> None: """simple docstring""" import doctest doctest.testmod() a_ = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) a_ = parser.parse_args() a_ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: a_ = f.read() else: a_ = bytes(_UpperCAmelCase , 'utf-8' ) print(SHAaaa(_UpperCAmelCase ).hash ) if __name__ == "__main__": main()
697
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a ( _UpperCAmelCase ) -> int: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _snake_case ( snake_case ): """simple docstring""" @staticmethod def __SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ) -> str: a_ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=UpperCAmelCase__ , help='Name of the model to download' ) download_parser.set_defaults(func=UpperCAmelCase__ ) def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = model a_ = cache a_ = force a_ = trust_remote_code def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
697
1